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Abstract

The structure of the inertial peak in deep ocean kinetic energy
spectra is studied here. Records were obtained from Polymode arrays
deployed in the Western North Atlantic Ocean (409§ to 70°W, 150N
to 420N). The results are interpreted both in terms of local sources
and of turning point effects on internal waves generated at lower
latitudes.

In most of the data, there is a prominent inertial peak slightly
above f; however, the peak height above the background continuum varies
with depth and geographical environment. Three classes of environment
and their corresponding spectra emerge from peak height variations:
class 1 is the 1500 m level near the Mid-Atlantic Ridge, with the
greatest peak height of 18 db; class 2 includes (a) the upper ocean
(depth less than 2000 m), (b) the deep ocean (depth greater than 2000 m)
over rough topography, and (c) the deep ocean underneath the Gulf
Stream, with intermediate peak height of 11.5 db; class 3 is the deep
ocean over smooth topography, with the lowest peak height of 7.5 db.
Near f, the horizontal coherence scale is 0(60 km) at depths from 200 m
to 600 m, and the vertical coherence scale is 0(200 m) just below the
main thermocline.

A one turning point model is developed to describe inertial waves at
mid-latitudes, based on the assumption that inertial waves are randomly
generated at lower latitudes (global generation) where their frequency-
wavenumber spectrum is given by the model of Garrett and Munk (1972 a,
1975). Using the globally valid wave functions obtained by Munk and
Phillips (1968), various frequency spectra near f are calculated
numerically. The model yields a prominent inertial peak of 7 db in the
horizontal velocity spectrum but no peaks in the temperature spectrum.
The model is latitudinally dependent: the frequency shift and bandwidth
of the inertial peak decrease with latitude; energy level near f is
minimum at about 300 and higher at low and high latitudes. The
observations of class 3 can be well-described by the model; a low zonal
wavenumber cutoff is required to produce the observed. frequency shift of
the inertial peak.
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The differences between the global generation model and the
observations of class 1 and class 2 are interpreted as the effects of
local sources. A locally forced model is developed based on the
latitudinal modal decomposition of a localized source function.
Asymptotic eigensolutions of the Laplace's tidal equation are therefore
derived and used as a set of expansion functions. The forcing is through
a vertical velocity field specified at the top or bottom boundaries of
the ocean. For white noise forcing, the horizontal veloc1ty spectrum of
the response has an inertial peak which diminishes in the far-field.
With the forcing located at either the surface or the bottom, several
properties of the class 2 observations can be described qualltatlvely by
a combination of the global and local models.

The reflection of inertial waves from a turbulent benthic boundary
layer is studied by a slab model of given depth. Frictional effects are
confined to the boundary layer and modelled by a quadratic drag law. For
given incident waves, reflection coefficients are found to be greater
than 0.9 for the long waves which contain most of the emergy. This
result suggests that energy-containing inertial waves can propagate over
great distance as is required by the validity of the model of global

- generation.
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Chapter 1 Introduction

Inertial waves (sometimes called inertial oscillations, or inertial
motions; etc.) have been observed in the ocean for almost half a century
(for a historical review see Webster, 1968). Théy are characterized as a
transient rotation (clockwise in the Northern Hemisphere) of.horizontal
current with frequency near the local inertial frequency £, defined as
20 sin¢ y where Q is the r-otaltional frequency of the earth and ¢
is latitude. Webster (1968) documented their world-wide. existence at all
depths and described their general properties. In his words, inertial
waves are "essentially transient phenomena of thin vertical extent".
Their coherence scale is at least several kiloﬁeters in the horizontal
(Webster, 1968 ; Schott, 1971) but only a few tens of_metefs inlthq
vertical (Webster, 1968 ; Fomin and Savin, 1973). In frequency space,
ine;tial waves are represented by a rather broad.spectral peak located
slightly above f; they are the most energetic components of the internal
wave field. One of the impdrtant recent observations of inertial wavés
w;s their vertical phase propagation reported by Sanford (1975) and
Leaman and Sanford (1975). They showed evidence of a dominant upward
phasé propagation with near-inertial periods in their profiler
measurements in the open ocean. The same feature has a1s§ been observed
in near-shore regions (Johnson et al, 1976; Kundu, 1976) and shallow
. seas (Fomin and Yahpol'skiy, 1975). These findings constitute direct
evidernice for the interpretation of inertial waves as propagating
internal waves. In ﬁhe atmosphere, inertial wgve# have.hot'been observed

in the troposphere; however, evidence of their existence and downward
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phase propagation in the stratosphere has becn recently reported by
Thompson (1977). Thus the observed helical vertical structures of '
ionospheric winds at heights‘from 90 km to 150 km (Rosénberg, 1968) may
be indeed manifestations of inerfial waves generéted in the lower
atmosphere as proposed by Moses (1971).

The importance of inertial waves as transient response of the ocean
to impulsive externai forcing has been recognized for a 16ng time (e.g.,
Rossby, 1938; Pollafd, 1970). Hence knowledge of ineftial wa§es is
crucial to the understanding of the énergetics of ocean circulation as:
the result of atmospheric forcing. On the other hand, recent work on
resonant interactions of internal wa&es (e.g., Olbers, 1976; McComas and
Bretherton, 1977) suggests that inertial waves are important in internal
wave dynamics at mid—lat{tudes: low vertical wavenumber inertiél waves
serve as an energy source for high frequency waves with relatively high
wavenumbers through a diffusive mechanism in wavenumber space; high
vertical wavenumber inertial waves serve as an energy sink for waves
with twice the frequency and relativeiy low wavenumbers as the result of
subharmonic instability, and the energy then is dissibatedvthrough the
mechanism of shear instability. Garrett and Munk (1972 b) ﬁave sﬁown__
that the shear instability in the latter case could be an iﬁpdrtant
dissipation mechanism for oceanic internal waves and hencé provide the
turbulent mixing energy in the thermocline. Disturbances caused by the
internal wave field in which inertial waves. are most energetic are the
major sources of noise‘in undersea accoustic commﬁﬁicatioﬁs; hence the
study of inertial waves also has its importané_military and commercial

applications.
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In the last decade, research in oceanic internal waves was greatly
enhanced by the advent of the frequency-wavenumber spectrum (f-w
spectrum hereafter) developed by Garret£ and Munk (1972 a, 1975). With
the.synthesis of a great number of observatioans, they aeduced a |
universal model spectrum for internal waves in the deep ocean using
linear d&namics under.the hypothesis of horizontal isatropy and vertical
symmetry of the wave field. This attempt to éstimate the complete.energy
spéctrum of internal waves from existing observations led to the design
of critical experiments sﬁch as the Interna1.Wave Experimenf (IWEX;
Briscoe, 1975) to directly measure the wave fieldrin ffeqﬁency and
wavenumber space. The results reported by Mﬁller et at (1978) have
confirmed the general validity of the Garrett-Munk model (GM model
hereafter) in the frequency regime awéy from £, N(z), and the tidal
frequencies ( N(z) is the buoyancy frequency at depth z). The problem at
f is two-fold : theoretically, the WKBJ apprpximation of wave functions
vunderlying the GM model fails near £, which is a latitudinal turning
point; observationally, the IWEX record is too short (40 days) to draw
statistically significant conclusions with sufficient.resolution near f.
The latter limitation also explains the general lack of a detailed
spectral description of inertial waves afterlso many years'
proliferation of moored measurements. For exampie, a frequency
resolution of the ordgr of two percent of f at mid-latitudes réquires
six ﬁonths' data to obtain five degrees of freedom for spectrél
estimates. Most pre-~Polymode (for a description of Polymodg see US
POLYMODE Organi;ing Committee, 1976) observétions simply do not meet

this requirement. Because the Polymode arrays were originally designed
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to study the variability of meso-scale eddy field in the Norﬁh Atlantic,
there was at least nine months' continuous reéora at each mooring site.
Thus, the Polymode arrays have provided an excellent data base for us to
atteﬁpt an up-to-date spectral description of inertial waves in a
wide-range of latitude and geographical environment in a typical open
ocean. Such a description is presented iﬁ Chapter 2 with emphases on the
answers to the following questions:
(a) Is there a universal frequency spectrum near f in‘:he
deep ocean? If not, how does the spectrum vary with the
physical environment (instrument depth, topography,
etc.) ?
(b) What are the coherence scales of inertial waves in the
deep ocean ? Are they consistent with existing theories
and observations 7
Because this study is confined to inertial waves in the ocean interior
(we will call it the "deep ocean"), i.e., away from both the horizontal
and vertical bogndaries, those data within 100 m from either thé surface
or the bottom were excluded from the discussion. Due to the fact éﬁat in
the inertial frequency band moored temperature measuréments are subject
to possible contamination from both the mooring motion andkhorizontal,
advection (discussed in Appendix A), the descriptions in Chapter 2 are
restricted to velocity data only.
The failure of the‘WKBJ approximation also accounts for the
inaccuracy of the GM model near N(z), which is a vertical turning point.
Using an exponential N(z), Desaubies (1975) derived uniformly valid

vertical wave functions with a single turning point to remove this
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apparent singularity and to successfully describe observed‘spectra near
N(z). Eriksen (1978) used a two turning point model to describe high
frequency waves trapped in the main thermoéline. Thus by using
appropriate latitudinal wave functions, we can proceed in the same.way
lto describe the observed spectra near £ in terms of the GM model.
" Latitudinal wave fgnctions with global Qalidity were dBtéined by Munk
and Phillips (1968; MP hereafter). They used the spheroidél wave
eduation to approximate the Laplace's tidal equétiqn and ﬁbtained
approximate one turning point solutions which are validvglobally with
error terms no greater than O< € "1/3), where € is a large paraheter
( 2 10°). For the description of mid-latitude inertial waves which are
our major concerns, the one turning point solutions are appropriate
because tﬁe waves are unlikely to form latitudinal modés by phase
locking between the two turning latitudes. However, at low latitudes
where there_is strong evidence for the existence of latitudinal modes
(Wunsch and Gill, 1976), two turning point solutions must be used. Using
equatorialvmodesvon a beta plane, Eriksen (1979) developed a spectral
model for equatorially trapped waves.

The latitudinal wave functions of horizontal velocity obtained by MP
are proportional to the Airy function which is evanescent“poleward
(oscillatory equatorward) of the turning latitude. The Airy function
reaches its maxiﬁum when the argument is slightly above zero. Thus, by
using theée wave functions in the comstruction of various.frequengy
spectra, one would expect to obgain a spectralvpeak slightly above f in
the horizontal velocity spectrum simply due to the kinématic turning

point effects on internal waves, without the need of a specific forcing
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mechanism. The possible ﬁse of such a model to account for the observed
inertial peak was independently noticed in a recent review paper by
Garrett and Munk (1979), and has been investigated using a- beta plane
model by Munk (1979).

With the appropriate wave functions availéble, an adequate f-w
spectrum is needed to calculate various spectral quantities. Munk and
Phillips_(1968) attempted to calculate the veiocity spectrum using a
crude model of the f~w spectrum, with a relatively weak inertial peak in
the resulting spectrum. Today a decade later, detailed knowledge of the
f-w spectrum near £ is still lacking. The GM model is not applicable
near f; nevertheless, it is a good description of high frequency waves
far from f, i.e., far from their turning latitudes. Hence the part of
the inertial wave energy which results from random sources sufficiently
equatorward of the observation site can be readily calculated using the
GM model. Under the assumption of linear pfopagation, all the low |
'frequency internal waves can be traced to the equator wheré'the u;zGM
frequency spectrum is valid over an extensive frequency rangé. Thus,
once the f-w spectrum at the equator- is known, we can, in principle ,
calculate the spectrum at all latitudes and obtain a unified
interpretation of measurements atbdifferent latitudes. It is quite
reasonable to define this part of the inertial wave field as the '"global
wave field". However, with a beta plane model whose validit§ is
restriéted to low latitudes, such calculations would be very inaccurate.

Apart from the random globél generation mechanism, it is well known

that the local wind could be an effective source for inertial waves in

et e



19
the upper ocean. Ekman (1905) in his classical paper showed that
inertial waves could be generated by changes in the wind field. Rossby
(1938) pointed out that inertial waves could be generafed as transients
during the flow adjustment toward geostrophic equilibrium. Using a
two-layer model with a body force écting on the upper layer, Veronis
(1956) showea that inertial waves were most efficiently generated by an
impulsive wind field. Pollard (1970) refined Verpnis' model to include
continuous stratification and showed that the amplitudes éf"
wind-generated inertial waves were realistic at the surface but too
small to account for the maximum amplitude observed in the deep ocean.
Furthermore, Pollard and Millard (1970) demonstrated that observed
inertial currents in the surface layer could indeed be simulated by
-their model using local wind data. Using a different approach, Kroll
(1975) considered the forcing imposed by a vertical velocity field which
resulted from the divergence of a viscous Ekman layer generated by
surface winds. For sudden onset of the wind field, inertial oscillatioms
were generated in the Ekman layer with frequencies slightly abo#e £;
these disturbances radiated downward along their ray paths which Kroll
derived from a beta plane model. Because the wave amplitudes generally
increase with decreésing forcing scale which enhances the divergence of
the Ekman layer, small scale severe storms (scale ~ 100ka;.stress ~
10 ecm?/sec?) could, in Kroll's modei, give wave amplitudes of
10 cm/sec at great depths. But the forcing used in Pollard's model is
the wind stress itself, not its curl, and hence is insensitive to
forcing scales; even for a wind stress of 10 cm2/sec2; the maximum

speed at great depths is only order 1 cm/sec.
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In the context of wave-current inte;action, Stern (1977) showed that
deep inertial waves could be reinforced by sufface wind through an
over-reflection mechanism at the base of the mixed layer. Ageostrophic
instability of the mean flow as a local source fof‘inertial waves is
currently being investigated by Tai (ongoing PhD thesis, Harvard
University).

The observed dominance of downward energy (upward phase) propagation
with near-inertial frequencies is a direct evidence of significant local
generation (Leaman and Sanford, 1975). It seems relevant to define a
"local wave field" to represent these inertial waves which are forced by
some specific local sources. The distinction between the global and
local wave field is that, the latter is generated locally as inertial
waves, whereas the former is generated at lower latitudes as

super—inertial internal waves, which are well described by the GM model

and only appear as inertial waves when they reach their turning
latitudes. As pointed out in MP, the observed inertial wave energy is
most likely a mixture of these two sources. To distinguish these two
contributions from each other in moored measurements is the main task of
this study. The first step is to calculate a model spectrum for the
global wave field using globally valid wave functions and the GM model.
In Chapter 3, the general theory of low frequency internal waves on
a rotating sphere is reviewed. In Chaptef 4, the construction of a model
spectrum for the global wave field is presented; its limitations and
sensitivities to model parameters are discussed; comparisons between the

model and observations are made with the differences interpreted as the
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contribution from local sopurces.

In order toiexplain the observed spectra in terms of forced waves,
we need the oceanic response spectrum for a specified forcing spectrum.
The ratio of these two is usually called the transfer function. Because
most of the existing models of this kind are based on the f-plane
approximation, a spurious infinite response at the inertial frequency
usuaily occurs. For instance, using a balance between wind generation
and dissipation by vertical friction, Kadse and Tang (1976) derived a
response spectrum which had an infinite cusp at f. However, this
apparent singularity can be removed by including the variation of f with
latitude (i.e., the beta effect) in thg equations of motion. In Chapter
5, the spectral response of the ocean to a highly idealized forcing is
derived, using asymptotic eigenfunctions of the Laplace's tidal
equation. The purpose is to explain the qualitative difference between
some of the observed spectra and the global wave model; |

The existence of the global wave field requires that the dissipation
of low frequency waves, especially those energetic long waveé, be small
enough. Presumably moét of the dissipation of these waves with large
vertical wavelengths is taking place near the bottom. Because most of
the existing models (e.g. Phillips, 1963?' Leaman, 1975) of the
reflection of near-inertial waves off rigid boundéries afe of laminar
'Ekman layer type, they become singular (boundary layer depth is of order
one) when w = f. Howefer, the benthic boundary layer is tﬁrbulent and
of small depth -- of order 20 m (c.f. Wimbush and Munk, 1970; Armi and
D'Asaro, 1979); its dynamics are different frém the ocean interior and

this should be taken into account. A simple model is presented in

—eiriniml e A e
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Chapter 6 to describe the possible effects of the benthic boundary layer
on the reflection of inertial waves propagating from a laminar, inviscid
interior. A slab model is used to describe the boundary layér and the
fricfional effects are modelled by a conventional quadratic drag law.
The major purpose is to calculate the resulting reflection coéfficient
and to assess the possibility of the existence of the global wave fiéld._

Conclusion and discussion appear in Chapter 7.
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Chapter 2 Spectral Description of Inmertial Waves in the

Western North Atlantic

2.1 Introduction

The major pufpose of this chapter is to describe the internal wave
spectrum based on long term (usually 2 9 months) moored current
velocity data. These data are primaril& from variéus Polymode arrays
located in the Western North Atlantic. The emphasis is in the inertial
~ frequency band; with sufficient frequency resolution, characteriétics of
the inertial peak -- energy level, frequency, and bandwidth -- were
analyzed to study tﬁeir variability; spatial coherences were calculated -
wherever there were closely spaced instruments, and coherence scales
(both horizontal and vertical) were estimated. Theoretical
interpretation of these observational results is the main task of later
chapters. |

2.2 Data base and analysis procedure

Listed in Tables 2.1 and 2.2 are the ﬁoored current vel&city data
used in this study. All of them are from the Polymode Array.I, 11, and
III (PMI, PMII, PMIII hereafter) except modring 520, which is paft of
the Muir Seamount Experiment (c.f. Wunsch, 1976). There are altogether
thirty-five statioﬁs and ninty—nine instrument levels. The mooring
positions and topography (from Uchupi, 1971) are displayed in Fig. 2.1.
‘The area covers appréximately twenty—éeven degrees of létitude'(frbm
159N to 420N) and a variety of topographié features : abyssal‘

plains, seamounts, mid-ocean ridge and its associated fracture zones.

At each instrument level of the Polymode arrays, there is at least

one segment of continuous data of approximately eight months duration.
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Up to.three.consecutive segments of data have been collected (~ 27
months) at some sites of the PMII. In order to avdid contamination from
low frequency motions, each segmént of data was first tapered to zero at

both ends and then Fourier transformed. The tapering data window is

¥t =0.5-0.5cos(-10 t/T) for 0<t<0.1T

and 0.9 TEE<T, (2.1)

v o= ] for 0.1 T<t£0.9 T,

where T is the data length. The leakage of power to adjacent bands is
less than 10 % (see Hendry, 1975, Appendix A). Compromising between
resolution and stability, the spectral estimates Weré obtained by
averaging the resulting periodogram over several adjacent frequency
bands. Near the inertial frequency f, the resulting resolution is about
0.0012 cph, which is, for instance, 2.4 Z of £ at 36°. For those
stations with more than one segment of data, the spectrum of each
segment was then ensemble averaged to obtain more degrees of.freedom.
The least degrees pf freedom is 14.

2.3 The observed spectra

For a typical record in the main thermocline (600 m at Station 5),
the two cartesian components of horizon;al kinetic energy spectrum are
displayed in Fig. 2.2. Because these two spectra geﬁerally cahnot be
distinguished in the whole internal wave band, either onme can be ﬁsed to
represent the horizontal kinetic energy spectrum FH( W ). For
frequencies remote from the inertial, tidal, and buoyancy frequenciés,

Fu(W ) can be well described by a power law of the following form :
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Figure 2.2 Spectra of u and v components at 600 m at Station 5 of
the PMII. CPH represents cycle per hour. The straight line
represents the power law EoNw ~P with N = 2.27 cph,
Eo=0.096_cm2/sec2/cph2,_and p = 2.23. Shown on the. bottom

are the 95 %Z confidence intervals.
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FH(W ) = N(z) Eo (w/w,)"P, : ‘(2.2).

where N(z) is the buoyancy frequency in cph at depth‘z, E, a constant
in cm2/sec2/cph2, w a frequency in cph, W, = 1 cph, and p a
dimensionless constant.{f}esumably tﬂe constants E  and p are
independent of z, because in this frequency regime FH(cu ) should be
proportional to N(z) as consistent with the WKBJ scaling. As_ w
approaches f, the spectral level begins to rise above that given by
(2.2) and forms a prominent peak near f -- the so-called iﬁer;ial peak.
Because the essenfial characteristics of a spectral peak are its energy
level, frequency wp, and bandwidth AW, we have tabulated these ﬁhree
parameters for each record in Tébles 2.1 and 2.2. The bandwidth is
defined as the difference between the frequencies where the power falls
to one half of its peak value. The tabulated values of both le and Aw
are in units of f. The energy level of the peék.is expressed in.terms‘of
its.ratiovto the value given by (2.2) with w equal to the peak
frequency, and the logarithm of this ratio is defined as the '"peak
height",.denoted by PH in decibels (db hereafter, defined as 10xlog10),
For the spectrum shown in ?ig. 2.2, Aw= 05 £, Wp= £, and PH= 13.5 db
(with E = .096, p= 2.23).

In order to determine the péak height in a precise way, we first
need a standard procedure to determipe-the constants EO and p ihv
(2.2). For the universal spectrum proposed by Garrett and Munk (1972),

Eo = 0.13, and p = 2. Because significant deviations from the

universal spectrum have been documented by Wunsch (1976) and Wunsch and

‘Webb (1979), we will not use the universal values but apply a
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least-squares to fit the observed spectra to (2.2) between 0.1 cph and
0.8 N(z) for each record,»with E  and p as parametefs to be found. All
the tabulated values of PH were estimated based on E0 and p obtained
through this procedure. As expected, the values of Eo and p do not
vary much over most of the records, but we have found some anomalous
records. For selected stations which are representative of nearby oneé,
if any, within 200 km; the values of Eo and p are listed in Table 2.3

together with those of EHS': which is the value of Fy( w )/N(z)

calculated at the frequency corresponding to a 5-hour period (for oM
spectrum,'EHS';s 3.3). Note that Eyg' is different from Eg'

tabulated by Wunsch (1976); this latter is.the ﬁormalized total energy
at 5-hour period.

The anomaloué records are those of the PMIII clusters A’ahd B,
where the values of E_ and p at nominal depths 1500 m and 4000 m are
significantly different from the others -- Eo is higher and p is
lower. The vaiues of E‘HS are also higher here, but by 1éss than an
order of magnitude; together with the small values of p, the higher
values of E'H5 imply that internal wave energy at periods shorter than
5 hours is significantly highér in these records than the others, up to
an order of magnitude. The WKBJ scaling does not work here at all (see
Fig. 2.3c), but it works so well at other statioms that the values at
one depth are representative of the whole water column (away from the
upper and lower boundaries though). fhe reason for the breakdown of WKBJ
scalipg here is unclear; however, it is very likely assoqiated with the
proximity to the Mid-Atlantic Ridge (about 300 km from either cluster)

and the very rough underlying topography.
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2.3a Variability and classification

The three parameters discussed above can be used as three different
indices for the description of the spectral shape near £, while the
corresponding energy level can be inferred with the aid of Table 2.3. A
variety of épectral shapes have beenireflecfed in the great variability
of these parameters : from 4 db to 20 db for PH; from .03 f to .27 f
for AcU;.from 0.96 £ to 1.15 £ for wp . Hence a universal frequency
spectrum near f is impossible. One of the major tasks of this chapter is
to.find if there is any correlation between this variability and the
physiecal environment (instrument depth, topography, etc.) in which the
measurements were-;aken. Because the spectral shapé is grossly
determined by its peak height, we first consider the variability of the
peak height.

Normalized spectra of horizontal kinetic energy at three statioms
which are typical of three different topographic features -- abyssal
plain, rough relief, and very rough relief close to the Mid-Atlantic
Ridge-- are displayed in Figs. 2.3a, b, and c respectively. In Fig 2.3a i
the peak height at 4000 m (~ 7 db) is Significantly 1es$ than that at
upper levels ( 2 10 db), but the high frequency poftion of the spectra
scale iﬁ the WKBJ sense. In Fig. 2;3b spectra at different levels are
almost indistinguishable from one another through the whole internal
wave band, with peak height abouf Ehe same as that at upper levels in
Fig. 2.3a. Displayed in Fig. 2.3c are the anomaléus specfra noted
before; the peak height at 1426 m is outstanding as compared to the ofher
two levels where the peak height is about the same as in Fig. 2.3b. The

separation of spectral levels at high frequenéies is striking here; at
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Figure 2.3c As in Fig. 2.3 except at Station 623 of the PMIII
cluster B (near the Mid-Atlantic Ridge, very rough topography)
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1426 m and 3927 m, p = 1 and the normalized high frequency enérgy is
significantly higher than that at 128 m. After further explorafion, it
was found that the peak height at 4000 m underneath the Gulf Stream
(Stations 9, 10, 11, 12) was also aﬁout the same as in Fig. 2.3b,
although the topography was smooth there. Thus, the different kinds of
environmept can be roughly grouped into three classeé accérding'to their
correspondiﬁg peak height as follows :
class 1 ¥ |

nominal depth of 1500 m near the Mid-Atlantic Ridge.

average PH : 18 db
class 2

(a) depth less than 2000 m (excluding class 1);

(b) depth greater than 2000 m over rough topogfaphy H

(e) nominal depth of 4000 m underneath the Gulf Stream.

average PH : 11.5 db |
class 3

depth greater than 2000 m over smooth topography.

(excluding class 2c¢)

average PH : 7.5 db

‘The classification of each record has been noted in.Tables 2.1 and
2.2. Displayed in Fig. 2.4 is the histogram of the distribution of peak
height of all the records ekamined, with contribﬁtions from different
classes properly labeled. The substantial overlap between class 1 and
class 2 is basically caused by the ambiguity in identifying the class

for some smooth areas which are adjacent (within about 100 km) to rough
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areas. Due to the propagation of inertial waves, the influence of rough
topography can easily spread to nearby areas. Despite some degree of
looseness, this scheme of classification does provide a sensible way to
describe such a great variability of spect;al shape.

The lowest peak height from a class 3 enviromment is associﬁted with
the record at the 4000 m level of Station 6, which is in the midst of
the Néw England Seamount Chain and is partially surrounded by seamounts
(about 180° azimuth ~-- SE, NE, and NW). Normalized kinetiec energy
spectra of this record are shown in Fig. 2.5. The disappearance of a
prominent inertial peak here is a unique feature in the whole data set.
It is probably caused by the nearby seamounts (the nearest one is about
50 km away), of which some penetrate to less than 2000 m from the sea
surface. However, the record at 3000 m of Station 520 which is only
12 km away from the Muir Seamodnt, shows a prominent peak of 7.5 db.

Therefore the overall influence of seamounts on the spectrum of inertial

waves, if any, is not particularly clear.

2.3b Frequency shift of the inertial peak

It is well known now that in the deep ocean the inertial péak usually
occurs not right at the local £, but at a frequency slightly above it.
Theory suggests that only waves with super-inertial frequencies can
propagate downward from the surface layer, which presumably is the major
source for deep inertial waves. But does this so—cﬁlled blue shift occur
universally in the deep ocean ? Does it vary with depth and geogfaphical
environment and conSequently with peak height ?

The ratios of the peak frequency wp to f for all the records are

e -
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Figure 2.5 Normalized horizontal kinetic energy spectrum at

4000 m, Station 6, PMII. The straight line represents the power law
fit. Error bar is 95 ¥ confidence limit.
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plotted against de#th in Fig. 2.6. The dashed lines represenf the limits
of the frequency resolution aséociated With(Up/f.= 1, i.e., Wp/f is
significantly different from 1 for those points outside the strip
enclosed by the dashed lines. Over smooth topography, it is clear that a
significant blue shift occurs at great depths except near tﬁé Gulf
Stream, where the peak height is greater. The results over rough
topography are mixed; a clear blue shift with depth only occurs at the
PMIII ﬁluster C, where the topography is not particularly rough and the
corresponding peak height is on the lower side of the class 2
distribution (see Table 2.1). Thus there seems to be some correlétion
between the blue shift and peak height. In Fig;.2.7 Wp /£ is»plotted
against peak height for all the 4000 m recordsbexcept Station 6 where
there is no peak. The blue shift is apparently asspciated with records
having lower peak height, which are primarily from the class 3
environment. This result is coﬁsistent with the qotion that inertial
waves in the class 3 environment are free waves coming from elsewhere,.
whereas those in the class 1 and class 2 are strongly influenced by

local sources.

2.3c Bandwidth

The inverse of the band&idth in a frequency spectrum is a nmeasure of
the persistence time scale of a quasi-periodic motion. For instance,
if Aw/f = 0.1, then the persistence time scale of inertial waves is
about ten inertial periods. From Tables 2.1 and 2.2 Aw/f has no
specific relations with PH but has some weak, if not definite,

correlation with latitude. Listed in Table 2.4 is the ensemble average
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of Aw/f within given latitudinal belt. The value at subtropical
latitudes (159 - 20°) is significantly greater than those at
mid-latitudes. This result is consistent with the model to be déscribed

in chapter 4.

Table 2.4
Average bandwidth (in percentage of f) at various latitudes.
Errors are standard deviationms.

latitude ' » average bandwidth

150-200 17 & .055
250-300 | 1 & .044

300-350 .095 + .036
350-420 097 + .047

2.3d Rotary spectrum

In addition to cartesian components, horizontal kinetic energy also
can be decomposed into its rotary components. These have proven useful
in separating inertial wave energy from other currént components
(Gonella, 1972; Mooers, 1973). For the same record shown in Fig. 2.2,
the spectra of the two rotary components are shown_in Fig;‘2.8. The
rotational nature of inertial waves is clearly demonstrated by the
dominance of the clockwise component spectrum E_( W ) over the
counter~clockwise component spectrum E (W ). This dominance begins at
sub-inertial frequencies, reaches its maxiﬁum near £, and continues

through\the whole internal wave band; on the other hand, E_(w )



46

2

2

.CM/'SEC/CPH -

1o | 95%.

——
—

) O : — = 1o
| O I O ‘ 1O ' 10

FREQUENCY (CPH)
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decreases monotonously and smoothly with frequency. This behavior is

typical of all the records and basically consistent with the linear

internal wave theory which predicts

2

E_(w) _ (w-i—\c )

= (— (2.3)
E, (w) o w- f

Because (2.3) was de;ived from an f-plane model, the infinite ratio
at W = f is spurious (see Chapter 4). The cause of the dominance of
clockwise energy at sub-inertial frequencies (as low as 0.4 f in Fig.
2.8) is unclear. It m#y'be due to nonlinear interactions between
inertial waves and low frequency motions. Otherwise, spectra in this
frequency regime presumably is determined by the process of géostrophic
turbulence (Charney, 1971), and the coherence between u and v should be
ze%o and hence no clockwise dominance. Because the-turbpient cascading
would ailow certain amount of energy to be transferred from low to high
frequencies, until f is reached, inertial waves would be reéoﬁantly
forcedlby energy in the clockwise componént; however, energy in the
counter-clockwise component would continue cascading to higher |
frequencies and account for part of the obsefved finitevamount of
counter-clockwise energy and its smooth spectrum. By this mechanism, low
frequency eddies could be potential local sources for inertial waves.
However, a model is needed to verify this speculation.

The most important feature of the rotary spectrum near f is the
large ratio of E_(f) to E,(f). So it is desirable to use the
logarithm of this ratio, denoted by r s as an index for the

description of the rotary spectrum near f. For instance, I? is 25 db in
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Fig. 2.8. As E (W ) decreases smoothly and monotonéusly withw , its
shape does not vary much from record to record. Thus T’ should be
roughly proportional to PH and should have the same variability. In Fig.
2.9 I" is plotted against PH for all the records exéept thosé of the
PMIII clusters A and B, which exhibit the same behavior as the other
records near 28°N and hence are omitted. A roughly linear correlation
between ]? and PH is visible. The systematically low values 6f [ near
280N are probably caused by thevcloseness of f to the diurnal tidal
frequencies; because tides are forced motioms, they could have an.

appreciable amount of counter-clockwise energy.

2.4 Coherences

The calculation of spatial coherence at a particular frequency w
usually yieldé two kinds of information: from the coherence scale, A x,
defined as the separation distance at which the coherence drops to ome
half, one can estimate the wavenumber bandwidtﬁ, Ak, of the underlying
process at W as Ak = 4/Ax (c.f. MP,veq.(59)); from the phase
difference and sepération distance, one can estiméte the dominant
wavenumber at W .

2.4a Horizontal separation

There have been few convincing éstimates of the horizontal coherence
scale for inertial waves in the open ocean. The horizontal spacings of
array measureménts have usually been either too small ( £ 0( 1 km),
e.g., Webster, 1968; Schott, 1970; Briscoe, 1975) or too large. The only
conclusion which can be drawn from previous investigations is that the

horizontal coherence scale is at least several kilometers. However, the
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théory of MP suggests tﬁat the coherence scale ié of the order of teﬁs
of kilometers. There are five clusters of moorings of this size in the
Polymode arrays (see Fig. 2.2) : thg central cluster of PMII (36°N,
55%W), the eastern cluster of PMI (289N, 550 W), the clusters A,
B, and C of PMIII. It is possible now to test the theory of MP using the
coherences estimated from these clustérs. Because the major concerns are
inertial waves, all the coherences discussed below are betweenbthe
clockwise components of horizontal velocity.

Fig. 2.10 shows thé coherence and phase at 600 ﬁ,between Stations 1
and 2 of the PMII; these moorings are 30 km apart in the zénal
direction. Within a narrow band centered at the local f, the high
coherence and small phase are quite conspicuous. For each of the five
clusters mentioned above, the coﬁerences in the inertial frequency band
have been calculated between selected stations and plotted against -
horizontal separation in Fig. 2.11. Each point represents the highest
coherence estimated in three adjaceﬁt ffequencies of which the cgnt;al
one is the local f. The coherence is the result of ayeraging over eleven
frequencies, so the level of no significance at 95 % confidence is about
0.51. In the upper ocean the coherence drops with incfeasing separation,
yielding a coherence scale of approximately 60 km, which is not
inconsistent with the prediction of MP. So the estimated bandwidth is
1/15 radians/km. In the deep ocean the coherence does not vary sb
systematically with separation, and the coherence scale seéms to be less
than that in the upper ocean (some high values with large separations

are probably not significant).
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confidence levels of no significance:
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The estimates qf coherence and phase difference at differént depths
for the three closest stations of the central cluster of PMIL are listed
in Table 2.5. Horizontal wavcnumber spectra have been calculated at each
frequency using these coherence and phase estimates (for the ﬁethod, see
Wunsch and Hendry, 1972). Due to inadequaté array size, the results do -
not yield any dominant wavenumbers which are significéntiy different
from zero and its aliased values. However, recent profiler observations
suggest a horizontal wavelength of the order of 60 km'(Sanford, 1979;

personal communication).

2.4b Vertical separation

There havé been more reports of the vertical coherenée of inertial
waves than of the-horizontal-one. For example, Webster (1968) reported a
low coherence of 0.3 over 80 meters vertical separation in the upper 100
meters at Site D; Perkins (1970) reported significant coherences even
over 1500 meters separation below the mixed layer in the Me&iterranean;
Fomin and Savin (1973) reported that above the main thermocline in the
Black Sea, the coherence decreased rapidly over a distance from 20 to 30
meters, and that below the thermocline, it decreased relatively slowly
with alternating maxima and minima. However, it is generally believed
‘that below the mixed layer in the open ocean, the vertical coherence
scale of inertial waves is 0(70-140m) (Muller et al, 1978). Thé large
values found in the Mediterranean are probably caused by the atypical
dominance of low modes; indeed, Perkins (1970) showed that the vertical
structure of inertial waves in the Mediterranean cédld be well described

by the third vertical mode.
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The third mooring at Station 7 (31.6°9N, 559W) was heavily
instrumented below the main thermocline: ﬁhree additional instruments
were set at 800 m; 950 m, and 1000 m. Clockwise component cohefences at
three adﬁacent frequencieé centered at f for these three instruments and
the one at 1500m are 1isted in Table 2.6. The estimated coherence scale
is of the order of 200 meters. The phase estimates differ significantly
from zero and do not change much from frequency band 1 to band 2, but
drop substantially in band 3;.moreo§er, they are approximately
proportional to the separation distance, suggesting a dominant upward
phase propagation with "local wavelength" about 450 m in bands 1 and 2
and 1100 m.in band 3. It should be noted Fhat for the clockwise
component, phase propggation is from the>1agging station to the leading

one. From the dispersion relation for internal waves (c.f. Phillips,

1977),.upward phase propagation implies downward energy propagation.

This result is consistent with the findings of Leaman and Sanford (1975).
The coherence scale, AZ-/Z, is related to the "equivalent vertical
wavenumber bandwidth," Be s or its equivalent mode number, je’ asl

follows (c.f. Muller et al, 1978): |
2 _ _2bNe (2.3)

AZy = -_(3-; - Je TN(z)
where b is the scale of the variation of buoyancy frequency and N, the
buoyancy frequency at the top of the thermdcline. Using the valueé from.
IWEX profile which is not significantly different from that at Station
7, we have bN = 5500 m.cph, N(900m) = 2.2 cph. With A Zg&= 200m, we |
obtain je = 8, which is closer to j, = 9 of Cairns and Wiliiams

(1976) than j_ = 11 of Garrett and Munk (1975)(c.f. Muller et al,

\
1978, Table 1).
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2.5 Summary
There is no universal spectrum near f, but the deep ocean
environment in the Western North Atlantié can be roughly divided into
three classes according to the height of the inertial peak above the

'power law which best fits the high frequency portion of the internal

wave spectrum (from 0.1 cph to 0.8 N) : class 1 is the 1500 m level near

the Mid-Atlantic Ridge, with the greatest peak height of 18 db; class 2
includes (a) the upper ocean (depth less than 2000 m),'(s) the deep
ocean (depth greater than 2000 m) over rough topography, and (c) the
deep ocean underneath the Gulf Stream, with intermediate peak height of
11.5 db; class 3 is the deep ocean over smooth topography, with the
lowest peak height of 7.5 db.

Substantial blue shift of the inertial peak is basically associated
with low values of peak height at great depths. The bandwidth near
15°N ( ~ 0.17 f) is greater than that north of 25° (~ 0.1 f).

For horizontal separation, the coherence scale in the inertial
frequenéy band is of the order of 60 km at depths from 200‘m.to 600 m,
and probably less than this Qalue.at great depths. The order of
magnitudé is consistent with the prediction of Munk and Phillips (1968).
The wavenumbers estimated from phase diffefences tend to be
indistinguishable from zero. For vertical separation, the coherence
scale is of the order of 200 m just beléw the main therchliné and the
phase differences suggest an upward phase (down&ard energy) propagation.
The estimated vertical wavenumber bandwidth is in close agreement with
the result of Cairns and Williams (1976).

Interpretation of the results summarized above is the central theme
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of later chapters, especially the answer to the following question: Can
we describe the differences among the three classes of observatioms in

terms of the proposed global and local wave models ?
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Chapter 3 Theory of Low Frequency Internal Waves on a

Rotating Sphere

3.1 Dynamical equations

An approximation to the dynamics of interﬁal waves is most easily
‘formulated using the equations of motion on an f—plaﬁé (e.g., Phillips,
1977), under the assumption that the horizontal waveiengths are so small
that the variation of f will not be "felt". This is essentially the WKBJ

approximation to the horizontal wave equation. From the dispersion

relation

. %
m(w-§")
(N w*)” )

ol = (3.1)

where ol and m are the horizontal an& vertical wavenumbers respectively,
Qe can clearly see the breakdown of the WKBJ approximation,ﬁhen w =f,
resulting in an infinite horizontal wavelength. To resolve thisvproblem,
we have to resort to the theory of planetafy ﬁa&es which takes the
sphericity of the earth into account. In order to obtaiﬁ a tractable set
of equations of motion, the usual assumptions made about the eartﬁ's
oceans andlatmosphere are |

(i) ' small perturbations relative to a uniformly rotating spherical

earth,

(ii) a uniform gravity field,

(iii) radial variatiqn of the metrical coefficients is‘negligible,

(iv) the depth of the atmosphere and/or ocean is constant and small

when compared to the earth's radius,
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(v) Boussinesq approximation for the stratification.

The validity of (i)--(iv) was discussed by Miles (1974), and that of

(v) was discussed by Spiegel and Veronis (1960). Then the perturba

equations can be written as (c.f. Eckart, 1960)

ou ; ST Y i
— - 2{Q sin - 2fcos¢ W = - =
at /¢v os}‘ Rcosg¢ .a
K12 : =- 1 2P
a't +2Q5!”¢u -—-——'R—- 3

LA 2Qw595u ==—22--g-f—
at 3z¥* £
t U 3 ] oW |

—_— e 4+ ~—( V COs —_— =

R cos¢ I aﬁ( ?’) ¥ 2 z2* 0

) 2 o

2 i"_N(z*)w =0

3t 4 .

where u, v, w, are the zonal, meridional, and radial components of

velocity; p is the pressure; P and PO are the perturbation and me

tion

(3.2)

(3.3)

- (3.4)

(3.5)

(3.6)

an

density; g is the gravity constant; N(z¥) is the buoyancy frequency at

depth z*; R and ) are the radius and rotational frequency of the

earth; é and ) are the latitude and longitude.

Because the inertial frequency is usually much smaller than the

buoyancy frequency in the ocean, the aqceleration'of vertical velo
can be neglected in (3.4) for inertial waves -- the hydrostatic

approximation. For wave motions of small vertical extent, which is
case of large scale waves as a consequence of condition (iv), the

vertical velocity is smaller than the horizontal ones by a factor

city

the

of

ST

P

R bt
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order (H/R), where H is the ocean depth. Therefore the term 202 cos¢ w
in (3.2) can be neglected on this ground. The term 2f1cos¢ u in (3.4) is
almost always neglected for the cdnvenience of maintaining a self-adjoint
system (Eckart, 1960). Phillips (1966) showed that these two terms had
to be neglected in Egs. (3.25-(3.6) in order to satisfy the conservation
of angular momentum (also see Veronis, 1968). The approximation
associated with the neglect of the horizontal component of the earth's
rotation is usually called the "traditional approximation", which makes

the solutions to (3.2) - (3.6) separable.

3.2 The traditional approximation

Among the various approximations mentioned above, the traditional
approximation is the most controversial one and satisfactory
justification is hard to find %n the literature. The neglect of the
terms involving 2( cos¢ is formally correct in the limit H/R=» 0. For
a homogeneous fluid, the resulting equa;ions are the faﬁous Laplace's
tidal equations (LTE hereafter; c.f. Lamb, 1932). Stewartson and Rickard
(1969) carried out a formal expansion in powers of H/R, in which the
first term was the Longuet-Higgins' solution of the LTE (1968). They
found that, near the inertial latitudes where sin¢ =_t-2%l- , there was an
unintegrable singularity in the second order terms. After developing an
inner expansion around the inertial latitudes, they could not match the
inner and outer solutions and described the perturbation solutions as
"pathological". Moreover, the pathological solutions wére not confined
within the neighborhood of inertial latitudes, but spread over the whole

sphere. By introducing a constant weak stratification N and making a
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double expansion in H/R and (N/II;XH/Rf, Stewartson and Walton (1976)
were able to resolve the matching problem and obtained regular solutions
2 2 34

for 13 (N/R2) (1I/R) 3> (H/R) . However, these §'01utions are still
pathological in the sense that the scale of the second order motiom is
order (N/fl)(H/R) smaller than that of the basic motion aﬁa vanishes as
H/R -» 0. This leads to an infinite velocity shear as H/R—> 0 . Miles P
(1974) pointed out that the fqndamental problem of Stewartson and : :
Walton's expansion was the failure of the solutions of the LTE fbr :
homogeneous fluid (the first order tefms) to provide an adequate
description of the charactefistics of the primitive equation in the
hyperbolic domain. He showed that, by retaining stratification in the
basic equations, the resulting double infinity of modes (i.e., the
barotropic and an infinite set of baroclinic modes) could be.used as
expansion functions to obtain uniformly valid second order solutioms.
The barotropic and baroclinic modes are coupled by the horizontal
component of the earth's rotation at the second order. This coupling
decreases with increasing stratification. The iﬁhibiting effect of
stratification on the influence df the horizontal component of the
earth's rotation was also noted by Phillips (1968), Needler and LeBlond
(1973), Kamenkovich and Kulakov (1977).

Miles (1974) showed that, for free oscillations with frequency E
W < 2Ll < N, the partial differential equation resulting from
(3.2)--(3.6) is elliptic (hyperbolic) poleward (equatorward) of the two

critical latitudes satisfying
. . 2 . .
: w 4f1 w
sing = — 1+ —= (1- ]
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. o W
In general, the critical latitudes are greater than X Sin (E}f ythe

2
inertial latitudes. For strong stratification such that 40 a the
N3 ’

critical latitudes tend to coincide with the inertial latitudes, and the
traditional approximation is formally valid. In the deep ocean

. o
where po=> < .] , then one may find some appreciable sub-inertial energy

due to this broadening of internal wave frequency band.-

3.3 Asymptotic solutions

It is well-known that packets of internal waves in the ocean
propagate along ray paths which undergo rgflections at the vertical
bouqdaries and the turning latitudes where the latitudinal wavenumber
vanishes. A linear random wave-field is represented by the superposition
of ray paths of different frequencies and wgvenumbers. However, the
statistical behavior of the wave field also can be described by a set of
equivalent modes as proposed by Garrett and Munk (1972). Because modal
solutions are more easily obtained than ray solutions, we proceed based
on periodic solutions which have modal structure in depth and are
separable in each coordinate as follows:

’ ) / N
eosé | | U

veos | = A Real F(Z*),exp['ka—Wf)] i Ve (3.7)

p | ' ZQRP(¢)
S ~ -
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N

p | _ r ,P.,Nz(z*)
= A Real{v\/(z*)zxp[i(l()\—wt)] "W Pii 3.8

where U, V, P, F, W are dimensionless functions, and A is a
normalization factor with the dimension of velocity. Defining the
dimensionless depth z = z*/H, frequency 0" = W /2() , and buoyancy

frequency N(z) = N(z )/No, the substitution of (3.7) and (3.8) into

(3.2) — (3.6) yields

ol + swgV = kP | | (3.9)

(3.10)
z 2 ,
EI_F.. + __M’_.H_. ":]"(;_L) \[\/ = 0 - ' (3.11)
2 4R
— [k U + cos¢ —d—v—] = ——-—R LA L € (3.12)
o cof$ P d¢ HoF dz

where the hydrostatic and traditional approximations have been used. Eq.
(3.12) states the condition of separability, where € is the separation
constant which is related to the equivalent depth h (Lindzen, 1967) by

2 1

40R

€

Il

(3.13)



65

The vertical equation can be obtained from (3.11) and (3.12),

dz\t\/ 2 2
“z’feSumwz_O_) | (314

where § = NOH/ZEI R. The boundary conditions are
W=0 at z = 0, -1 | | (3.15)

Because the specific form of N(z) is not crucial to the quaiitative

results, we use the same N(z) of Garrett and Munk (1972),

N(z) = N exp( -zH/b ) (3.16)
where N,=3cph, b =1.3 km, and H =4.5 km. The solutions of the
eigenvalue problem posed by (3.14) and (3.15) are readily obtained and

the eigenvalues are

5
El= "637('0 ’
€= 7.39x 10°,
‘2 -
€j=l.?éxl0§x3. (723)

where the subscripts are the vertical mode numbers. For high modes, the

WKBJ solutions for F(z) and W(z) are

2
. _2(10— ) A2 . _"/;, ~ o, ’ ™
Wi(z) = 2282 ¢ i exp| i j_ch SR de+ I]

~A 2 Y ~ , ' ]
Film= N /’exp [i f_léj/ S N(E) dz ] | (3.17)
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The latitudinal equation can be obtained By eliminating U from

(3.10) and (3.12), yielding

cwp gy A2 p (2 o)y

(3.18)

cos —j—% - _é sing V= (60'605‘276.._5.) D (3w

Eliminating P from (3.18) and (3.19), we have the LTE in terms of V:

cos¢~ (cos i’;— [éws¢ (- smsb)- -——005?5 k ]V

2 k . v
2€ Cos ¢ sin¢ [“5.-‘ sing V- cosd 'j_"
/{l

éw;;é - =

(3..20)

Longuet-Higgins (1965) showed that, for large € , the right-hand side of
' -4 .

(3.20) can be neglected with an error O( 646 of the left~hand side. As

-

5
pointed out in MP, this error is not uniform in ¢ » and becomes 0(€

)
near the inertial latitudes (sin¢ =+0).

But another more serious non-uniformity associated with the apparent

k
cen
vanishes, has not been discussed. For inertial waves, k £ 0( € 3 )

e e

singularity at cos¢> = , where the denominator in (3.20)

(see MP); hence % K| if 0 ~0(1). The singular latitude is near
the poles which is far from the turning latitudes of mid-latitude
inertial waves. Because the wave amplitudes are virtﬁally vanishing

there, this singularity is of no importance. But for low-latitude

inertial waves with @ & 1, this singularity would occur equatorward
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of their turning latitudes and.seriously affects the solutions. The
lower limit in latitude for the validity of neglecting the right-hand
side of (3.20) is about 4° for the first baroclinic mode and decreases
with mode number. Thus the following discussion is restricted to
latitudes greater than 4° and the right-hand side of‘(3.20) is
neglected for now. It is shown in Chapter 4 thét, however, the validity
of one turning point solutiéns on which our model is baséd is réstricted
to latitudes at least greatef than 10°.

.The following derivation of the asymptotic solutions basiﬁally

‘follows MP. Introducing the Mgrcator coordinate M which is defined as

no= Vsécqﬂ'clsé'

°

(3.21) f

we can eliminate the first derivative term in (3.20) and obtain the

spheroidal wave equation in the following form,

sz 2 . | ‘ :
d luz t 'e V — O . o (3.22)

where

Ez = €(os sﬁ (o= sin 75) - K cos y5 (3..23)'.

It is clear that 2 is equivalent to a latitudinal wavenumber. The

turning latitude g& is then defined as the latitude where f = 0. From

(3.23) we have
.2 _ a2 k ( v
2 sin §5 = '*”’R‘[‘"’*"")*—"] (3.24)

It can be seen from (3.22) that 9% is the bdundary between the
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evanescent (poleward) and oscillatory (equator&ard) domain of the
solution. It is also the latitude where the wave rays reflect back to
the equator (Longuet-Higgins, 1965). Hence the basic behavior of the
solution is controlled by the location of 9&.. In Fig. 3.1, 9@ is shown
as a function of 27rv/k for different vertical modes with ¢ = 0.5878.
In genefal, ¢S approaches the inertial latitude.with increasing €
and/or 2 7 /k.

In terms of 7& ; (3.23) can be written as

0’ = (sinzcﬁs— sinz¢)(€ cosz¢ Pk Seczsﬁsl )

(3.25)
With the Langer transformation in ¢ R
3/ # ho |
2 .2 . / ’
2y = (sings-sing” ) d¢ (3.26)
3 ¢ : 1 4 . -

a uniformly valid asymptotic solution of (3.22) is obtained :-
| 4% % % ;'/z) | '
V=(57) AiCe s) [ 1+00e)] G

where Ai is the Airy function which satisfies the boundary condition V =
0 at o0 . Because we are considering a one turning point problem, the
boundary conditions at the other turning latitude can be ignored, and a
continuous spéctrum in k is aliowed. The solutions fof U and P can be
readily obtained by substituting (3.27) into (3.9) and (3.19). The
integral of (3.26) can be evaluated in terms of elliptic ’fﬁnctions (see

Appendix B). When ¢ e~ ¢5 , the Taylor expansion of (3.26) is
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Figure 3.1 Turnlng latitudes of waves with 6 =0.5878 as
functions of zonal wavelength for different vertical modes. The

number next to each curve is the mode number Dashed line indicates
the inertial latitude (360),
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Y, | |
3= (5;"2‘?;) (¢s—¢)[l— -é'cotlﬂ (=)t ] O (3.28)

The controlling scale near 7& is the "Airy scale" defined as

~%

L_:(GSMZﬁ) , | - | (&ﬁ)

whose values for the first and tenth vertical modes at selected
latitudes are shown in Table 3.1. L is symmetrical about the latitude of

45°, and approaches infinity near the poles and the equator, where

this scale becomes irrelevant. Fig. 3.2 shows schematically the

Table 3.1
Airy scales for the l1st and 10th vertical modes.

Parenthetical values are in knm.

Latitude(deg) L ' LlO.
5 ©.033 (210) .0066 (42)
15 .023 (146) - ©.0046 (30)
30 .019 (121) ;0039 (25)
45 .018 (115) | .0037 (24)

variation of the solutions represented by (3.27) with respect to k

and € . For latitudinally propagating waves with k = 0, ¢E is equal to

Ladrigimapinini S,
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Figure 3.2

of 1at1tude, 0" corresponds to the inertial latitude. k 2
increasing the value of k.

Schematic diagram showing the variation of the wave
function V with respect to k and € . Horizontal axis is the sine

means

- e ——
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sin"1( 0" ). An increase in k tends to shift 9& equatorward of
sin"1( @0 ); an increase in € tends to decrease the latitudinal scale
as implied in Eq. (3.29). Therefore, the observations of inertial peak
only a few percent above f imply a fairly large zonal waveleﬁgth. For
instance, assuming that the dominant wave has a tenth-mode vertical
structure, then the observation of an inertial peak with 2.5 % blue
shift at 350 implies that ¢5 should Se 35.39. From Fig. 3.1, we can
infer that the zonal wavelength is, of the order of 100 knm.

3.4 The WKBJ approximation-

For high frequency interﬁal waves, 0' > sin95 , We can épply the
WKBJ approximation to (3322) and obtain tﬁe zero order solutions used in
the GM model. But how much greater than si11¢ should ¢ be for the
WKBJ solutions to be valid ? To answer this question, we have to look
into the error terms in detail. In general, the error of the WKBJ
solutions, denoted by 5 s 1s growing when approaching turning points.
For Eq. (3.22), § can be written as (Mathews and Walker, 1970, p.27)

) |
§ = dm ) C(3.30)
()"

Then from (3.25), we have

2
a2k
(S 2$M¢CD§¢["’2S’”¢+S'"¢$ +ecos‘,]
z
! 2 .
6/"[(sin 965-51!;'75)(“5195* Z"k—'

cos"qﬁ s

I

¥ (3.31)
)] -

For given ¢ , € 5 and k, we can find from (3.31) a frequency 0, beyond

which § is less than some pre-specified value, say, 0.1. In general, G
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is the root of a nonlinear algebraic equation. However, when k = 0, 0%
can be approximated by

where L is the Airy scale at ¢ » Because for given ¢ s &€ 5, and O ;
é' is minimum when k = 0, the 0, given by (3.32) represents a lower
bound for frequency below which the WKBJ solutions are invalid for any
value of k. The values of O¢ calculated using (3.32) for'the first and
tenth modes at selected latitudes are shown in Table 3.2. Since the
obseryed vertical wavenumber spectrum (Leaman and Sanford, 1975)
sdggests that most of the internal wave energy is contained in low
modes, O of the tenth mode is probably thé lower bound for the

validity of the WKBJ approximation and the GM model.

Table 3.2

Values of the critical frequency of the 1lst and

10th vertical modes.

Latitudé (deg) LI %
atitude(deg sing (3= . Sing (j=10)
5 4.75 1.75
15 1.86 . | 1.17
30 1.33 . 1.07
45 1.18 1.04

60 1.11 1.02
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3.5 Discussion
| At latitudes sufficiently away from the equator ( 2 4°), the
asymptotic solutions to the spheroidal wave equétion as obtained by MP
are valid with an error no gfeater than 0O( 6—"). The WKBJ solutions
used in the GM model are valid for frequencies higher than a critical’
value (0. , which is dependent on vertical mode numbers.‘The value
of (O, corresponding to tﬁe tenth vertical mode is used as a critical
fre&uency in the calculation of wave functions ih the next chapter : for

frequencies higher than O¢ , the WKBJ solutions will be used; for

frequencies lower than ¢ , the spheroidal wave solutions will be used.
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Chapter 4 A Model Spectrum for the Global Inertial Wave Field

4.1 Introduction

In the light of the observations presented in Chapter 2, whatever
mechanisms are resp&nsible for the universality of the internal wave
spectrum at high freﬁuencies do not seem to apply near f£. The spectral
shape near f has a strong dependence on geographical location, .
suggesting a strong influence of local sources and/or sinks. Presumably
the internal wave spectrum is determined by the radiation balancé
equation which involves generation, dissipation, propagation and
nonlinear interaction (c.f. Muller and Olbers, 1975). Because low mode
waves contain most of the energy, they have a dominant influence on the
frequency spectrum. McComas and Bretherton (1977) reported that near f
the interaction time scales for low mode waves are very long as compared
to their periods. Therefore nonlinear interactions may not be important
for the existence of the inertial peak. Major dissipation‘of these waves
is probably taking place only at the ocean bottom, and it will be shown
in Chapter 6 that therresqlting reflection coefficient.is near unity and
hence the dissipation rate is small. Therefore the main cause for the
observed inertial peak is likely to be a éombination of the generation
and propagation of internal waves in the open ocean.

Low frequency internal waves randdmly generated at lower latitudes
can propagate to tﬁeir inertial latitude and beéomé, by‘definition,
inertial waves, as long as their zonal wavenumbers are small enough. The

inertial wave field of this origin is defined in Chapter 1 as the global
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wave fiéld. In addition, there are several possible local forcing
mechanisms for inertial waves : wind forcing, energy cascades from
sub-inertial frequencies, interactions between low frequency eddies and
rough topography, etc. Among these, the wind forcing.is probaﬁly the
best understood and also the most important soufce. In the mixed layer,
inertial currents are forced as a direct response to local winds‘and
could propagate along ray paths to the deep ocean nearby with possibly
appreciable amplitudes (Kroll, 1975). This would result in a
predominantly downward propagating wave field which is defined in
Chapter 1 as the local wave field. To distinguish the local wave field
from the global wave field in the observed sﬁectra is the major task of
this chapter. Determination of the spectrum of wind forced inertial
waves requires detailed knowledge of the wind spectrumrwhich-is poorly
known near the ineftial frequency. Furthermore, bouﬁdary layer dynamics
near the inertial frequency are also poorly'understood. We will
therefore proceed in the other direction -- first determining the global
wave spectrum and then ascribevthe residual to local forcing.

Because the f-w spectrum of the global wave field is well described
by the GM model at lower latitudes where the WKBj approximation is
valid, the frequency spectrum near f can be obtaingd by using the GM
model and the wave functions derived in Chapter 3. Thus the-difference
between the global wave spectrum and the observed specfruﬁ can be

interpreted as the result of locally forced waves.

4.2 The Garrett and Munk Model

Under the assumption of statiomarity and homogeneity of internal

o,
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waves in the ocean, Garrett and Munk (1972) patched together a great
number of observations of different origins, trying to seek a universal
f-w spéctrum. In their work, the following additional assumptions were
made
(1) the observed motion is interpreted as linear superposition.of
‘internal waves with random phase relations.
(2) horizontal isotropy and vertical symmetry, i.e., thére is no
preferred directionality. | -
(3) the WKBJ approximations for the wave functions in both the
vertical and latitudinal variable. |
Then ﬁhe energy density can Be written as E( ol, w ) , which depends only
on two variables : the frequency w and horizontal wavenumber & .
Because the observed vertical coherenges were independent of‘frequency,

they proposed the following separable form for E(ol,w ) :

E(a,w)=E, A B(w) o (4.1)

. 2 a2 % . '
where A:%—; , Olx = g7 (w-£7) , Jg =20, (4'2)
A(A)=——I— (rA¢1) 5 o (;\>l() (4.3)
A x
B(W)=—27E—fwzs—z(wz— £*) o os= % (4.4)

The spectrum represented by (4.1)--(4.4) is usually referred as "eM72" .
The wavenumber spectrum A()\) is of top hat shape with cutoff mode

number j, deduced from vertical coherence measurements. The particular
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form of B(w) is chosen to behave like u;z when w > f and also to
have an integrable cusp af f. The w2 behavior when w 3> f is
supported by observétions in most parts of the deep ocean. But the cusp
with s = 1/2 is arbitrary, and is there only to satisfy the condition of
integrability which requires 0 < s £ 1. After admitting.that observed
motions with relatively high wavenumbers are indeed internal waves
rather than fine structures, Garrett and Munk (1975) modified A(A ) so

that it falls off smoothly with a high wavenumber slope,

-t |
AY = (t-)x 2] S as 5

where t = 2.5, and d*.corresponds t0 ju = 6. The model with this
modification is usually referred as "GM75". Using relatively less
contamiﬁated observations from a mid-water float, Cairns and Williams
(1976) showed that t = 2 and j,= 3 are probably better fits.

With normalized wave functions of horizontal velocity X(Z,w ), and

vertical displacement Z( Z,w ), the corresponding frequency spectra are
0 . : 2 '
5 [ X (Z,u)) , Z (ZI“))] E(O(; w) d ol (4.6)
- 00 : )

As a consequence of the underlying WKBJ approximations for X and Z, the
above description applies only for f & W & N(z). Analytical

representations of various spectral quantities based on GM75 were

derived by Desaubies (1976),

#lby,
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4.3 The global inertial wave model

4.3a Normalization

In order to be useful in the spectrum calculations, the wave
functions derived in 3.3 have to be normalized at some low latitude
where the WKBJ approximation is valid. Quite ﬁaturaily and convenigntly,
we choose the equator for formal normalization. The observed small
vertical coherence scales near the equator (Wunsch and ﬁebb, 1979)
suggest that the wavenumber bandwidth there is greater fhan what 1is
given by the GM model, but this is irrelevant because the model is not
applied on the equator. The normalization cqndition requires tﬁat

2

2 , :
”_1 ]ol'z, =1 )

[¢]
g [.i'.(u,z+ v+ W‘)+_2L
-1

at the equator. After substituting (3.7) and (3.8) into (4.7), we have

A’S [%T_.‘; (PeV)e £ W (|+%)P ]dz= 1 e

—— —

where F?* and \y* are the squares of F(z) and W(z) averaged over depth.

From (3.17), we have

Z 2
— [‘_Qo- ~
1 = LT e
w | N
and , -~
F* = N()

Using the solutions obtained in 3.3 for U, V, and P, and their
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asymptotic approximations at ¢ = 0, the following results are obtained :
Yo .
/\2 ' € sin ¢5 -4

: + 0 (¢ |
j{H sin gy (¢ + 'é' ) } | ) ’ (4.9)
(o_z ~ _51_)2 . .

where
5 b (1-€™)

2n H

4.3b Construction of frequeﬁcy spectra

With wave functions given by (3.7), (3.8), and (4.9), the frequency
spectra of v component velocity and density at 1atitude_ 95 and depﬁh z

can be written as

_ m e .,
EV(w'é\'2)=.Z{ C{({(,j,w)lVU(,éj,w'qs’z) d k
j:l - % N
. m o . | (
Ef(w,cf,z).—_-Z{ CT(k,j,w)lp(k,ej,w,,s,z)l d k | 4.10)
I LU | ,

where j is the vertical mode number, m is the maximum mode number,
and @ 1is the frequency. G(k, j, w) is the f-w spectrum of the

following form :

o
Gk, @) =E (L) GG)DChijow),
(1+ 3/5*5t

Gt
J.’-l .

(4.11b)

where C(})
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and E, is the total energy per unit mass per cph averaged over depth
at the equator. The frequency and vértical mode distributions have the
same forms as those of GM75, but we need some arguments to choose a
proper zonal wavenumber spectruﬁ D(k, j, w) fof given w and j.
For w » f, the assumption of horizontal isotropy requires that
energy density be a function of total w;venumbér o only, which is

defined as
of = (k2 +02)1/2

where [ is given by Eq.(3.23). It can be shown that for w> f,

2 % |
b 2 v |
ot~ ehurg L2 06 -
Because k = db cos O
mi Dk w)dk = — d

27 >
where 0 is the azimuthal angle, we have

.-l/

D(k,j,w)=l?:;[l—- (ji—)z] * (w»f) (4.13)

For w= f, we can no longer interpret f as a local latitudinal
wavenumber, because the wave functions are no longer periodic in
latitude; the direction of propagation is primarily zonal, and we do not

have a clear definition of horizontal isotr'opy for inertial waves. The
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following two modcls are therefore proposed for D(k, j, W ) when W= f :
Model 1
Let us first find the range of k for givén w and j, i.e., thek

cutoff wavenumbers -K; and ky which satisfy the following equation :

4"’7]'/7.

. k .y bV .
2sm(¢~—L5)= l+<rz-;—€7—[(l—a'+fl;j)+ < (4.14)

which are obtained from (3.24) by setting ?; = 95 = Lj. Thus ~k; and

k2 are the zonal wavenumbers for which the jth mode wave with _

frequency ¢ will turn at ¢ - Lj'

instead of = @ is that, the wave amplitude is appreciable to
s p

The reason for setting % =¢— Lj

latitudes one Airy scale north of the turning latitude (see Fig. 3.2).

The solutions of (4.14) are

4
-k, A 2 2
- E: coshb . cos 28
_ —csé - 3 (ot TSinth + — —
k) 4o o ~ 1b€jcos s

where @ = ¢.. LJ . Forwx £, the above expression can be
approximated by

~k
kz | .15a

where —_ .-3/1 w-{ | . 4 % » | (4.15b)
kb=t (o u)~ 0ty

Thus the zonal wavenumber of inertial waves 1is restricted to --k0 <
k < ko' If inertial waves, as in the case of global. generation_,'are

propagating from equatorward of their turning latitudes where D(k, j, w )
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is given by Eq. (4.13), we must have (when w =~ f)

’

..Z |
D(k, j, w) oC[l*(%—)ZJ : with lkl < ko

because k is conserved along ray paths. From Eqs. (4.15b) and (4.12), we

have k -4 )

and

DCk,jw) < |+ O(e"é) )

Hence D(k, j, w ) can be approximated by a constant when lkl £ ko!

and the Model 1 for D(k, j, W ) is formally defined as

D(k, j, w) —_— for |k| £ ko, | (4.16)

2 Ko
0 for [k[}ko .

Eq. (4.16) therefore represents the zonal wavenumber s'p_ectrum of an
inertial wave field which can be mapped onto an isotropic internal wave
field at lower latitudes. |

Model 2

Although there is no latitudinal propagation when w = f, we can
still think of (k2 + { 2)1/2, which is equal to k as given by
(4.15b), as a total wavenumber and define D(k, j, w ) acéording to Eq.

(4.13) as follows :
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]
= ﬂ“[,_(_t )z]'/z

=0 otherwise.

Dk, j, w )

for |k £ k (4.17)

This is éctually an artificial definition of hdfizoﬁtal isotropy for
inertial waves which can propagate only in the zonal direction. Tﬁere is
not any physical ground for.the Model 2 except using the same form of
D(k, j, w ) at all frequencies; Fig. 4.llshows the zonél wavenumber
spectra corresponding to these two models.

With these two models for D(k, j, w ), thé integrals in(4.10) were
calculated numerically'up to the critical frequency 0, of the tenth
vertical mode as discussed in Section 3.4,'where-the spectra can be
matched with GM75. The accuracy of the results was assured when no
significant improvements were observed by reducing the integfatidn step.

4.3c_Model results and their semsitivity

Because of the nearly circular motion of inertial waves, the spectra

of the two horizontal velocity components, Eu(u,) and EV(&)), are
the same, and the result for Ev(ul) can be viewed as the horizontal
kinetic energy (H.K.E.) spectrum. The potential energy.(P.E.) spectrum
can be derived from Ef(tu) as

2
g Eplw) |

2 2 : (4.18)
fo N© | -

EPE(w) = 3.’_

Because of the WKBJ approximation in the vertical wave functions, E,

and E,. are proportional to N(z).
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Figure 4.1 Schematic representation of the zonal wavenumber
spectra of (a) Model 1 and (b) Model 2.
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With D(k, j, w ) given by Model 1, m = 20, t = 2.5, and j,- ¢

4
Ev( w )/N(z) and Epg(w )/N(z) were calculated at five selected

latitudes, of which some were chosen to be where there were
observations. The results are shown in Fig. 4.2, whére the scale of the
ordinate correspon&s to E /N, = 0.03 cmz/éecz/cphz, an estimate

from the comparisons with observations to be discussed later in 4.4.
Using the same values for Jx, t; m, and Ey/Ng, the normalized

energy spectra at 320 with D(k, j, W ) given by Model 2 are shown in
Fig. 4.3. Because the latitudinal dependence is the same as in Fig. 4.2,
the spectra at other latitudes are not shown. The only difference
between these two models is a slightly weaker peak in the kinetic energy
spectrum 6f Model 2 -~ 4.5 db as compared to 7 db. Because such a small
difference -- a factor less than two —-- is very‘difficu1t to.distinguish
in the observations, only Model 1 will be used from hereon.

Fig.4.2 thus describes a mapping of the GM spectrum from.the equator
onto higher latitudes. The changes in spectral shape and energy level
with latitude are simply due to the properties‘of wave functions on a
rotating sphere. The most encouraging result is_the presence of
prominent inertial peaks in the velocit& spectra,-whéreas there are no
such peaks in the potential energy spectra. The reason for the formation
of the inertial peaks in the velocity spectra is the constructive
interference of velocity wave functions near their turning latitudes;
however, note that each individual wave function does not have a sharp
peak neai its furning latitude (see Fig. 3.2). The corresponding peak
héight, peak frequency, and bandwidth of the velocity_spectfum at each

latitude are listed in Table 4.1. The blue shift and bandwidth decrease
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CM>/SECS/CPH

1 v 1 -

10 1o 10
FREQUENCY (CPH)

Figure 4.2 Model normalized spectra of (a) horizontal kinetic
energy and (b) potential energy at five latitudes, with D(k, j, W)
given by Model 1, m = 20, jy = 6, ¢ = 2.5, and Ey/N, =0.03
cm2/sec2/cph2. The numbers are latitudes in deg.; the

vertical bars indicate the locations of f.
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Model normalized spectra of horizontal kineti
(solid line) and potential energy (dashed line) at 320

D(k, j, w) given by Model 2 and the ot
in Fig. 4.2.
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Table 4.1
Spectral characteristics of the model spectra shown in
Fig. 4.2. Peak height is in db above the ufzspectrum,

bandwidth in percentage of f,

Laéitude(dég) "#%t' . Peak Height | bandwith
6 1.07 4.5 31.5 %
15 1.03 7. TR ] -
31.6 1.01 o 7. | 7% | o
41.5 - 1.006 T | 5 % | | |
60 1.004 6.5 3.sz. - o

Table 4.2

Values of frequency scale L¢ for the lst and 10th

modes at various latitudes.

Latitude(deg) Lo , . S
=1 j=10 |
5 .376 .076
15 | 086 | 017
30 ’ .033 .0067
45 .018 .0036
60 | .011 . L0022

5 .006 ~.0012
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with latitude, and this can be explained as follows. As ¢$=s ¢‘ and ¢ =
sin ¢ , the argument of the Airy function in (3.27) can be approximated

by (Eq.(39), MP)

Yy _ B siné l(sz

= - +
€3 (€sin2¢) /3cos¢

For given

? y the controlling frequency_séale L , is given by
Sih ' o

-1/3
(€sinz¢$) “cosé

sin¢

which decreases with latitude as shown in Table 4.2. After superposition

(4.19)

L, =

aof many modeé, L o determines the latitudinal dependence of the blue
shift and bandwidth of the resulting spectrum.

In Fig. 4.2, note that the energy level at a particular freéuéncy
increases with latitude, and this can Be explained as folldws:»When a
wave packet propagates poleward, the conservation of wave action (c.f.
Bretherton and Garrett, 1969), A, defined as (waye energy)/frequenCy,

requires that

_éfL . & | = |
Yy + V- ( Cg_lA ) 0 ’

or
9 - ) — _ . C
(;,E-J'C’gV‘A AVC3,

— . . E
where Cg is the group velocity of the wave packet. Because wave rays
converge with increasing latitude, from the equations above, A increases
with latitude. Thus the background spectral level increases with

latitude. Now we can explain why the energy level of the inertial peak



91
variés with latitude as shown in Fig. 4.2. Because the peak height is
almost independent of latitude and the background spectrum is red, the
peak enefgy would decrease monotonously with latitude if the background
spectral level were independent of latitude. At low latitudes, the
poleward increase of the background spectral level is rélativel& slow
while the poleward increase of the inertial frequency is relétively
fast, so the peak energy decreases with latitude. At high latitudes, the
situation is reversed,.so the peak energy begins to increase With‘
latitude; the minimum occurs at about 30°.
Fig. 4.4 shows the ratié of P.E. to H;K.E. at the same five
latitudes together with the curve representing
P.E. (w'-§")

N  (4.20)
H.K. E. ' (W ‘+-F ) ’

the result of the WKBJ approximation (Garrett and Muhk, 1972). The range
of the validity of the WKﬁJ approximation in frequency-increéses with Ef
latitude as described in Table 3.2. Significaﬁt deviations occur at low
latifudes. The approximation is a good one down to 1.02 f at mid-
latitudes, where Fofonoff (1969) showed that Eq. (4.20) was consistent
with observations at frequencies very close to f. The minimum ratio of
P.E. to H.K.E. near f varies from 0.125 at 6° to 0.006 at 60°.
Displayed in Fig. 4.5 are the rotary spectra at 32°, When w = £,

E_ is finite rather than zero as would result from an f-plane model.

The latitudinal dependence of I?( W ), defined in Chapter 2 as

1og(E_./E+), is shown in Fig. 4.6 together with the WKBJ approximation
(c.f. Eq.(2.3)). The behavior of the deviations from the WKBJ result is

the same as ‘in Fig. 4.4 as expected.
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Figure 4.5 Model rotary spectra at 320 yith the same model
parameters as in Fig. 4.2
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Although the results presented above are encouraging in some
respects, it remains to be seen whether they are sensitive to the
parameters j, f, and m in the vertical wavenumber spectruﬁ A(j) and
the special assumptions about D(k, j, W).

The variation of the spectrum of H.K.E. with respect to Je, t, and
m is shown in Figs. 4;7, 4.8, and 4.9 respectively. There are only a
slight.increase in peak height and avdecrease in blue shift with either
increasing j, or decreasing t -- both are equivalent to increasing the

"equivalent band width" as discussed by Muller et al (1978). This

reflects the wavenumber dependence of the horizontal wave functions. The

case with j* = o0 corresponds to the top hat spectrum of GM72Z2. Fig. 4.9
reveals that, for m 7> J, the results are virtually insensitive to
m, the number of modes used in the calculations. Thus the‘results
discussed in the previous section are not éarticularly_sensitive to the.
model parameters.

As indicated in Fig. 3.2, the magnitude of the blue shift shouid be
most sensitive to the zonal wavenumber content of the wave field.
Because the turning latitude of a single wave decreases with increasing
zonal wavenumber, one would expect an increasé in the blue shift of the
inertial peak if there exists a low ﬁavenumber cutoff kc’ i;ee

H

D(k, j, W) =20 er lkl'< kc.'Thé model spectra at 320 were
calculated with two values of kc : 100 (340 km waqelength) and 400 (90

“km wavelength). The results are not particularly semsitive.to kc in
this range. When kc = 100, the peak frequency is essentially

unchanged, i.e., 1.01 f; when kc = 400,‘it increases to 1.03 f. The

other characteristics of the spectra essentially remain the same.
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Figure 4.7 Model normalized horizontal kinetic energy spectra at

320 with different values of jx. Other model parameters are the
same as in Fig. 4.2. The arrow indicates the local f.
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in Fig. 4.7 except for different values of t.
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10 LAT.= 32°

POWER DENSITY
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10 , 10 10

FREQUENCY (CPH)

Figure 4.9 As in Fig. 4.7 except for different values of m
(number of modes summed).
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4.4 Comparisons with observations

4.4a Horizontal kinetic energy spectrum

As noted in Table 4.1, the peak height of the model spectrum is of
the gight order to accoﬁnt for observations from the class 3
environment, i.e., the deep ocean over smooth topography far from strong
currents, where there are no apparent local sources. With’thé eﬁergy
level E07No as an adjustable parameter and other assumptions the
same as used in Fig. 4.2, the model was fitted to the deep observations
at siﬁllatitudes by-requiring that the peak value of H.K.E. Be‘equal to

the observed value at each latitude. The results for Eo/No are

listed in Table 4.3. These six records belong to class 3 except those at .

159 and 41.5°, which are classified as class 2 in Chapter 2 with
some ambiguity. The average of the estimates for E /N, is 0.03

cmz/secz/cph2 with 15 7 standard deviation. Fig. 4.10 shows the

Table 4.3

Estimated ValueS Of EO/NO for Six records at

4000 m. The latitudes and classification of the records

are as indicated.

Latitude(deg) E /N, Class
15 .035 2
28 .022 3.
31.6 .033 3
35.6 .0267 3

37.5 - ,031 3

39.5 ~.033 2¢
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Figure 4.10 Model (smooth curves) and observed normalized spectra
of H.K.E. at 4000 m. Latitude, station number, and 95 % confidence
error bar for each record are shown.
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comparisons of the H.K.E. spectra between the model with-Eo/&o given
above and the corresponding observations. The agreement is fairly good,
indicating that the inertial wave field here is consistent with the
global model.

The estimated value for E /N, can be compared with direct

equatorial observations. An '"eyeball fit" of an eﬁergy spectrum of the

-2 : -
form ET W o the observations of Eriksen (1979, Fig. 3), with the
assumption of equi-partition of H.K.E. and P.E., yields ET = 5.2 x

10-2 cmz/seczlcphz.lFrom the relation
°o , .
fET Nz)ydz = E,
-} :

and the N(z) given by (3.16), we obtain

E/m, = 0.0146cm2/sec?/cph?,
which is about a factor of two less than the extrabolation from
mid-latitude observations. This difference seems to be within the
uncertainty of the estimation of.N(z), considering the difference in
N(z) at mid-latitudes and equatorial. region.

We‘havé noQ obtained a reference energy level for the global wave
field -— 7 db higher than the a;zspectrum extrapolated from high
frequencies, and identified the observations of class 3 with this
category. The average peak‘height of the class 2 observations is 12 db,
indicating that the energy level is about three ;imes the value given by
the model. Thus the partitipn of inertial wave energf éf'the ciass 2
observations is likely to be the following : one third of the total

energy is due to global generation and two thirds local generatiom.
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Assuming that all the local waves are generated at the surface and
propagate downward, which is the case relevant to smooth topography
~areas, then the vertical wavenumber spectrﬁm of the class 2 observations
is such that 5/6 of the energy is travelling downward and 1/6 upward,
because the globél wave field is vertically symmetric (one half upward
and one half downward) as a consequence of the underlying GM model. From
a recent observation of Sanford (personal communication, 1979), about
72 7 of the inertial wave energy is travelling downward, and 28 %
upwérd; this differs from the above interprefation by about 11 % of the
total energy, probably within the estimation errors.

The order of magnitude vafiation of energy levels with latitude at
super-inertial frequencies (Fig. 4.1) seems dontradictofy to
observations, because Wunsch and Webb (1977) reporté& nearly consfant
energy levels at 5-hour period regardless of latitude. However, Eriksen
(1979) reported that near the equator, there is always a jump in energy
level across the M, tidal frequency. Thus, if the super-M, energy

level is constant, the sub—M2 energy level near the equator must be

less than that at higher latitudes, consistent with the model. For high
frequency waves, nonlinear interactions are important in determining the
spectrum; for a mid-latitude model see McComas and Bretherton (1977).

As noted in Table 4.1, tﬁe blue shift predicted by ﬁhe model is
smaller than the observed values in the ciass 3 environment (generally
greater than 3 7% of f£). As discussed in the previous section, a low
zonal wavenumber cutoff with k. 2 0(400) is therefore required to
account for the observed magnitude of the blue shift. Because the

spectral shape is not affected by the value of kc’ we can freeiy
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adjust kc to fit the observed blue shift for each individual record.
However, such a "tuning" was not attempted in Fig. 4.10.

The decrease of the bandwidth with latitude as indicated in Table
4.1 is consistent with observations (see Table 2.4). The predicted
values of the bandwidth are generally less than the observed values;
however, the differences are probably not signifiéant, i.e., not
substantially greater than the frequency resolution limit. On the other
hand, the pressence of a low frequency current can cause the broadening
of the inertial peak through two mechanisms. Firstly, a ﬁniform mean
current could cause a Doppler shift of the inertial frequencf (White;
1972). For example, a uniform current of 10 cm/sec would‘reéult in a
Doppler shift with magnitude of 8 % of f at 30°, provided that the
wavelength of the inertial waves is 100 km. Secondly, Fomin (1973) and
Mooers(1975) have shown that a horizontal shear can cause an "effective

inertial frequency" defined as

= (£(£ + T N2,

where ¥ is the vertical component of the relative vorticity of the mean
current. For a relatively strong eddy w1thl lfv 0.05, we have.

lf - fl— 0.025f. This effect has been observed at Site D by Perkins
(1976). The result of these two_mechanisms is to broaden the observed
inertial bandwidth in long-term measurements by an amount of the order
of 10 % of f, which is large enough to account for the.difference
between observations and the model results.

In summary, by assuming a low zonal wavenumber cutoff with
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k Z 400 (1/90 cycle/km) in the Model 1 for D(k, j,_ul),.the H.K.E. of’>
the class 3 observations can be well-described by the model in terms of
both the peak height and blue shift. The slight difference betweén
observed and calculated bandwidth can be attributed to the kinematic‘
effects of mean flow on inertial waves.

" 4.4b Potential energy spectrum
2

afy ¢

aT" P N?

converted to P.E. spectra and compared with the model. Fig. 4.1l shows

When multiplied by-é( , observed temperature spéctré can be
the results at the ééme latitudes. Here the moéel cannot account for the
observed apparent ineftial peaks. As ﬁentioned earlier, temperature

signals in the inertial band are subject to contaminations (see Appendix :
A), and the inconsistency between the observed H.K.E. and P.E. near £ is
not unexpected. Using the measurements of isotherm’dcpth_froﬁ a o
mid-water float, Cairns and Williams (1976) reported a vertical

displacement spectrum without inertial peaks similar to the model.

4.4c Rotary spectrum

Although the counter-clockwise energy level E, 'at the inertial
frequency predicted by the model is finiﬁe rather than zero (see Fig. .
4.5), it is still much smaller than the observed values (see Fig. 2.8).
At mid-latitudes the calculated T (£) is about 40 db, as compared to 15
db in the observed class 3 spectra (c.f. Fig. 2.9). This'implieé ﬁhat
there is an excess of counter-clockwise energy which must Ee.accounted
for‘by other mechanisms; local energy cascade from low fréquency motions
is a possible candidate (see Section 2.3d). |

4.5 Latitudinal limits of the model

Because the poles are singulaf points of Eq. (3.20), a special
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Figure 4.11 As in Fig. 4.10 except for potential energy. 95 %
confidence error bar is the same for each record. '

B o T
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expansion is needed to obtain valid wave functions there. Consequently,
the model discussed above breaks down when Ysz * 90°. But how close
to X 900 is the model Formally valid ? The validity of the Airy
solution represented by t3.27) depends on the implicit aésumption
tha; lq@l <,90°, i.e., there must be a turning latitude between 00
and 90°. For o>1, therévisrno turning latitude; the Airy solution is
not applicable. However, at latitudes far from ﬂ:v90°; the Airy
solutions can be replaced by the WKBJ s'oluti<.)ns when 0 2 1 because 0%
there is well below unity (see 3.4); hence the model is valid at all
frequencies. Thus the poleward limits of ¢ for the validity of the
model are the latitudes where O¢ = 1. From (3.32), these are
approximately * 68°.

On the other hand, when ¢::5 0°, the latitudinal equatorial modes
for low frequency waves are likely to be established (Maﬁsuno, 1966),
and the continuous wavenumber spectrum underlying the ﬁodel is
irrelevant. The question about where tﬁe transition from the one turning
point problem to the two turning point problem occurs is not easy to
answer. Presumably for each vertical mode m, there exists a maximum

latitudinal mode number D oax such that no equatorial modes exist with

mode number n > 0 oax- Then the turning latitude of mode N,ax 18 the

transition latitude in question for the particular vertical mode m.
Hence the answer is dependent on thé_wavenumber spectrum. Beéausejthe
first vertical mode is usually the most energetic omne, we proceed to
discuss, basgd onm= 1, some possible implications from equétorial wave

dynamics and observations.
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Near the equator, Eq. (3.23) can be approximated by

2

2 2 ’( ‘ '
= en(p ) G

The condition for the establishment of equatorial modes requires

(Matsuno, 1966)

2

-
o €y - jf:—k = €pm (2n+1)

’ : (4.22)
where n =20, 1, 2, «..c... . Then the turning latitude ¢sn for mode

n is ’ ' o
2 ' ' |
c’)s» = Em (2.n+ ‘ ) . ' (4.23)

. We do not have a theory to determine D ax; presumably it depends on
the dissipation and the time T which is required to establish the mode.

With the latitudinal group velocity denoted by cg’ T can be written

' ¢sn | v ‘
d ¢
T = 2 o (4.24)
y '
~¢:  C3
the time it takes a wave packet to make a complete excursion in the wave

guide. From (4.21) and (4.22) we have

[.é"‘( - 6]
an+l ) -
20€m + ——0—'—; ’

W
q

Gy
~



110

For simplicity, we assume that k = 0 in (4.25) and obtain

¢y = (re) (e (ane)- 92] "

{ : | .
i, 1 2 b A, : .
(o €n*) (0-_¢ ) | (4.26)
Substitutling (4.26) into (4.24), we have

Vi % R
T =7né€n (2m+1) (4.27)

The values of €pare related to Cny the gravity wave phase speed for
vertical mode m, as follows:
1 2
401 R

2

Com

€=

With €] = 2.6 m/sec as used by Wunsch and Gill (1976), we have €&, =
1.27 x 10°. The values of ¢ sn and T for m = 1 and some selected

n's are tabulated in Table 4.4. The increase of T with n implies that
higher modes are. more diffiéult to set up as we expected. Wunsch and
Gill (1976) showed clear evidence for the existence of equatorial modes
up ton = 4 in the Pacific; Considering .ﬁhe increase of T with n, the
value of noax is likely 0( 5 ) and the transition occurs at 0( 10°).
For higher vertical modes, T increases and ¢ on decreases; v1(v)° is
probably an upper bound for the relevance of a two turning point model.
Using discrete modall solutions on an equatorial beta plane, Eriksen
(1979) developed a model spectrum for equatorially trapped waves. Hev
found that there were no apparent inertial péaks at ¢ /A 0°, and

that a weak peak first showed up at about 3° with the blue shift equal

’

e e, PN S U SO VLA GRS U U AU

et e
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Table 4.4
Tabulation of 9&% and T of tﬁe 1st barociinic mode
equatorially trapped gravity waves for selected
meriaional mode numbers n. Parenthetical values of T

are in wave periods.

n ' ¢Sn(deg.) T(days)

1 5.30 103 (19)
2 6.80 133 (31)

3 8.0° 157 (44)

4 9.10 178 (57)

5 10.0 197 (69)

6 11.° 214 (82)

10 14.0 272 (132)

to 23 7 of f£. At 6° the blue shift predicted by his model is 18 % as
compared to 7 % by our model; hence the amount of the blue shift is a
good- parameter to distinguish these two models. The observétion at

79 N quoted by Eriksen (1979) showed a 10 % blue shift, which lies
between the prediétions of these two models, implying only part of the
wave field (presumabiy the low vertical modes) has equatorial modal
structure. This supports the speculation that 10° is an upper bound
for thé existence of equatorial gravity modes.

4.6 Summary and discussion

A model spectrum for the global inertial waves randomly forced at

3 : B Ll A : Vs e
P [P RSEUR I » 2 WA R . ’ o .
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lower latitudes has been developed. The model results vary with
latitude. In general, there is a peak a few peréent abovg f in the
horizontal kinetic enmergy spectrum, with peak height a few decibels
above the extrapolation of the spectrum at high frequencies; there is no
distinct peak in the corresponding potential energy épectrum whose shape
is very similar to the result of the GM model. The norﬁalized energy
level at the inertial frequency has its minimum at mid~latitudes
(approximately 30°) with variation less than one.order of magnitudeg
the normalized eneréy level at éuper—inertial frequencies increases wifh
latitude monotonously, yielding a difference greater than one ordér of
magnitude between low and high latitudes. The geperél model results are
not particularly sensitive to the model configuration and parameters.
However, the assumption of a low zonal wavénumber cutoff slightly
increases the blue shift.

Except at very low latitudes (less than 10°), the peak height of
the H.K.E. spectra is about 7 decibels and accounts for the observations
in the deep ocean over smooth topography far from strong currents
(class 3). With the difference between the model results and the upper
ocean observationé (class 2a) attributed to a downward propagating local
wave field, we have estimated an energy budget in ﬁerms of upward and
downward travglling wave energy; tﬁe result is féirly consiétent with
recent observations. A forced model is proposed in Chapter 5 to describe
this local wave field.

The model predicts a slight decrease in both the bandwiath and blue
shift‘with latitude, which is consistent with observations. In order to

produce the observed magnitude of the blue shift, a low zonal wavenumber

RPN

Pt g e
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cutoff of 1/§0 cycle/km is required, i.e.,-the waveleng;h is required to
be less than 90 km. The frequency bandwidth predicted by the model is
slightly less than what is observed, but this difference can be
accounted for by the kinema;ic effects of loQ frequenéy-motioﬁs.

The latitudinal range of the validity of the model is roughly from

10° to 689,
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Chapter 5 A Forced Model for the Local Inertial Wave Field

5.1 Introduction

The purpose of this chapter is té study the oceanic response to é
localized forcing mechanism in the inertial frequency band. As the
. details of the forcing spectrum near f are essentially unknown, Qe
consider an idealized model which is as simple as possible. Our focus is .
on the following question : Can we show qualitatively that the observed
spectral characteristics which cannot be described by the globai model,
are the results of local forcing ? Quantitative results in this chapter
are only suggestive, not conclusive.

The forcing is imposed through boundary conditions of the vertical
velocity field wy at the base (or top) of the surface (or bottom)
mixed layer. In the surface iayer W, could be produced by either the
convergence and divergence of inertial'curfents in the mixed layer, or
the advection of its large scale corrugations by mean surface currents.
In the bottom layer W, could be produced as a result of the
interaction between low frequency eddies and rough topography. But the
details of the boundary layer dynamics will not be pursued here.

At any particular latitude 9& y We éonsider thebrespénse only in a
narrow frequency band around the local f, in which the forcing spectrum
can be simply modeled as white noise. Furthermore, we assume that the
corresponding spatial structure is localized and not varying>with
frequency. The assumption of localness does not imply that remote
' forcing with frequencies in this particular range does not exist, but

that it has been alreédy accounted for by the global model.
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In order to describe the transition of wave functions from
evanescent when w { f to oscillatory when w > f, as noted in Chapter
1, the veriatioh of f with latitude must be taken into account in the
governing equations. The simplest approximation of this kind is the
equatorial beta plane aoproximation with £ = B y; however, this
aproximation is hot strictly valid for the problem of mid-latitude
inertial waves (see Llndzen, 1967). With £ = fo+ By ag m1d—
1at1tudes, the resulting equatlon is the Weber equation whose solutions
are not particularly easy to handle. The recent developmente in
asymptotic solutions of the LTE (e.g., Kamenkovich and Tsybaneva,
1975‘2, b) have provided a feasible way to deal with the LTE directly.
With proper boundary conditioﬁs, the eigensolutions of the LIE form a
complete set (Longuet-Higgins, 1968) which can be used to expand the
latitudinal structure of the forcing function. Then the prohlem
remaining is to solve the vertical equation for each latitudinal mode
subject to specific boundary conditions. At the forced boundary, the
vertical velocity is given, but the other boundary condition needs some _
arguments. Should we let the waves reflect from the vertioalvboﬁndaries
" with the possibility that they form normal modes with the incident waves?
The answer depends on the travel time to take a wave packet through a -
vertical round trip in the. ocean. In Kroll's model (1975) of the ray
paths of internal waves.on a beEal;lane, it was implied that the travel
time was of the order of 60 da}s for those rays which had encountered
their turning points, and of the order of 10 days for those which had
not. Because the Eravel t;me is longer than the time scale of the

forcing (usually Iess-thanva week), it seems appropriate to neglect the

e D e St e e w am o e e
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reflected waves. This conclusion also can be reached by considering the
nearly horizontal propagation of the rays when w= f. With tHe
mid~latitude beta plane approximation, the equation for the awplitude of
thé velocity v, which is proportional to.exp( i (kX - wt)) can be
written as (c.f. Philander, 1978) j | e

'/(Tz'o'i

..([(.f/g )v+({ w)___ " aV)'-_-_-o - (5.1)

wher.e -F = -\co+ ﬁy ’ ﬁ- -—d—-:/- oy and v = RQS . 1f, for
simplicity, we assume k = 0, the ray paths lie in the y-z plane and can
, .

be represented by

z | ‘F(y) 2 a |/1 | -
T s N@)dZ = — [ (w-§*) "df « . (5.2)
o F fo ' B k N

Thén for a surface-generated wave packet reflecting back.to the surface,
the latitudinal distance it travels, d, can bé esgimated Sy refeated
uses of (5.25. For H = 5 km, and ¢, = 309, we obtain d 2 500 km. If
the latitudinal scale of the forcipg"is less than 500 km, the reflected
waves will be out of the forced region and cén then be negleéted in the
local dynamics. Based on these ﬁwo coﬁsid@;étioﬁs, it seems justified in
a local model to assume that the ocean'ig infiniéely déep and that the
waves never reflect' hence we should use appr0pr1ate radlatlon boundary
conditions whenever they are relevant. So the model conflguratlon is

basically the same as that used by Wunsch (1977) in his study of the
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equatorial Indian Ocean. But whereidoes the energy go ? Presumébly part’
of it is lost through friction and/or redistributed through nonlinear
interactions; the remaining energy will eventually become, through
"remote reflections," part of fhé internal wave field equatorwyard of the
forced region.

In order to put this model into its proper pers?ec;ive; we briefly
review some previous models with emphasis on their differences from this
one. The purpose of the model of Pollard (1970) was to study the oceanic
response to a wind event of-finite duration as an-initial value problem.
It was an f;plane model with vertical modal decompoéition and its focus
was on the amplitudes and structures.of wind forced inértial waves. The
model of Hendershott (1973), on the other hand, studied the response to
periodic forcing with the diurnal tidal frequency; its focus was on the
response at this particular freéuency as a function of latitude. The
procedure for obtaining a solution is similar to that used in our model,
but it involved vertical modes rather than propagéting waves, and the
beta plane equations rather than the LTE. The model of Kroll (1975) was
used to study the propagation of inertial waves from the surface mixed
layer to the deep ocean based on ray theory; its focus was on the‘ray
paths at a partiéular frequency near f and the variation of amplitude
along them. For the ray solutions, however, it is generally difficult to
obtain their Eulerian representations which can most easily be compared
with field observations. Furthermore, the response at sub-inertial
frequencies cannot be adequately described.

The organization of this chapter~is as follows : Section 5.2

~describes the formulation of the model and methods of solution; Section
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5.3 preseuts an asymptotic expansion procedure for the LTE in the
parameter regime of inertial waves; Section 5.4 presents the model

results; Section 5.5 is a summary.

5.2 The model and methods o_f solution

At a particular position ( Ao , ¢, ), the local forcing generally

can be represented as a Fourier integral in frequency space as follows:

Wb(A,¢,f)=ﬁ Qea/j V\/}bCAcS'S,V)exP(’;‘rt)dr > | (5.3)

R A S_(Al ¢ ) )
with W= w for 0y >l o >0 (5.4)
(2 lo’z—G‘. l)
=0 otherwise,
‘where @, > ;—-—é > oy y and £ = 20 sin ,50 . Thus the forcing

energy is evehly distributed in a narrow frequency band centered on
+£,, and ,s( 2 ,17 ) ’ represents the spatial distribution of its root
mean square amplitude. In particular, we consider sCA, 95 ) of the

following form :

S‘(A,¢)=.Soexl’[i l(o-(.)\- Ao ) — (¢‘¢o) R ]

where k = -_M . (5.5b)

L

and L is a length scale. Eqs. (5.5a) and (5.5b) represent a disturbance

Lz ," - (S.Sa)
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of which the latitudinal dependence is a Gaussian distribution centered
at ¢o with scale L, and the zonal dependence is sinusoidal with
dimensional wavenumber equal to 1/L. With s( p , ¢ ) given by (5.5a) and
(5f5b), Eq. (5.3) represents a group of zonally propagating waves whose
amplitﬁdes are localized in latitude with scales comparaﬁle»to_their
zonal wavelengths. This is the simpiest model for a latitudinally‘
localized forcing. |

Now the solutions of all the field variables can be written as

(U (N, 2,4)) . EITERIA

Vné et o V(¢ 2,0)

-]

. l . . . »
wir, ¢ 2,1) =F—_1—_[-Reo.| do| W (4, z.0) exp[l(l(u\-crf)} (5.6)
“ o0

P(n ¢, 2 t)

'P(X,f, z1)
\ /

. A . ’
with \,'\\/(f, ?,af) = W, at the forced boundary and proper radiation
. A
conditions at the other. Following Eq. (3.8), W (@ 2,0) generally can .

be written as the sum of an infinite series of functions separable in z

and ¢ as follows:
Wit Ee)=) -i W, @) P, (#) (5.7)
TV ' ' '

Each term in (5.7), when multiplied by exp(i(k;A.- o t)), is a
solution to Egs. (3.2)-(3.6) with terms involving 2} cos¢ neglected.

A el
Similarly, v( ¢, z, o ) and p(¢ y 2, 0" ) can be written
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VipE,0) = — Z Fue @V, ($) (5.8)

os ¢ -

!

20R Y Faolz) P, (f) . (5.9)

h=1

5(4, 2, )

The latitudinal problem

The equation for P, . - can be obtained by eliﬁinating V from (3.18)

and (3.19), yielding the conventional form of the LIE in terms of

pressuge: |
z'P .' ) . . : |
. d n,v '-o‘ d P . a 2 l( ,( v7_+a— | .
_ur 4 T é -V )=_Ko _ Ko , . . |
(, '} ) d vl Jv 01~v1 d 1) +[ h,r ( ) I—vz o v},“a} ]R‘ﬂ' 0(5. 10) )

where VY = s'in?S . With appropriate homogeneous boundary conditioms
imposed at the latitudinal boundaries, % ¢b y €p,els the eigenvalue for
the nth eigensolution P, . . Eq. (5.10) then poses a Sturm-Liouville

problem. For given ¢ and k,, we have the following orthogonality

condition

(“Prvct) Punchr 44 = S0 e |

- - -

Moreover, Pn;cls form a complete set in .[- 45 %b] (Lonéuet—lﬁggins,
Y .

1968). '

From Eq. (3.18), Vv, , ( 47 ) can be obtained as

: - K ol.P,,,r ,“v ..
.‘/h.c = "‘;_- > [(l-vz) —o{ + ——_O" Ph,cr (5.12)

v v
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The bouﬁdgry conditions and corresponding eigensolutions of Eqs. (5.10)

and (5.12) are discussed in Section 5.3.

The vertical problem

The vertical equation for W, ,,( Z ) is the same as (3.14) with €

réplaced by the eigenvalue €, . :

2 | |

i‘) 2 02 ' : ) .

AW ) S W, ) = 0 (5.1
d z? S | o

The boundary condition at the forced boundary can be written
o : } o
. A '.
- Wn,r(zb) Pn',.(?) - befs) R (5.14)

n=¢

where g%, =0 for surface forcing,
= -1 for bottom forcing. _
Multiplying both sides of (5.14) by P’"’o_( ¢ ) and integrating from -¢b

‘to fb y with the use of (5.11)' we obtain

Wn,o-(zb_)-: iAne , o (5.15)

| ?s
where Gn,r = Pn,;r (¢) V?/b(?‘) C{}‘ | (5.16)
- ¢,

From Eq. (3.12) we can obtain F d_(z) from W o (z) as follows :

. (%) = R d W
T €H o d Z

F,

(5.17)
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Before proceeding to solve the vertical equations, we should choose
a suitable N(z). With surface sources, using an eprnential N(z) Wunsch
(1977) encountered two problems : Firstly, Wunsch (1977) has pointed out
that, as z > - u’,kN(z) eventually becomes smaller than any given
frequency o and waves reflect even in an infinitely deep ocean.
Secondly, D. Moore and J. McCreary (éersonal communication via C.
Wunsch) have recently pointed out that the solutions obtained by Wunsch
(1977) in terms of Hankel functions are erroneous because the argument.
" of the Hankel functions in his problem is émail in the far-field
(z - - % ) where the radiation condition should be applied, and the
asymptotic behavior (upward phase propagation tq produce downward energy
propagation) invoked is not correct. Both'prdblems can be resolved,

however, by assuming the following form of N(z) :

N(2) = N/, + exp(z/b) (5.18)

where Ny, is a constant representing a nearly uniform stratification as

z ~» - 00 . If the value of Ny is chosen to be at least several times

greater than f (usually the case in the deep ocean), inertial waves
would not reflect and the WKBJ solutions are valid as z;e - 00, Hence
the appropriate solutions are ghose with upward phase propagation, as
the consequence of requiring downward energy propagation. The parameter-
H, defined as the ocean depth before, is an arbifrary scale for z now,
because we have assumed that.the ocean is infinitely deep. However, for
the problem of bottom forcing, we will assume that the source is located

at z = -1 (or z* = -H), and let the ocean extend to z -» 4-00}
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With N(z) given by (5.18) and boundary condition given by (5.15),

the WKBJ solutions can be readily obtained from Eq. (3.17). Defining

Sboper®
H el (5.19)
and
H - H/
9(2.)—-——(z+|)S[€[ + y(ez/"- b) (5.20)

2

the results for both surface and bottom forcing are written as follows :

Surface forcing

(i) €m0 N - -
Wae(2) = A, . NGE) exp[F 0] ’ (5.21)
. lNo [ 0 ¢
Fn,o-(z)"‘ ” Ah U'N(z) e)(P i)J (5.22)
where : ' .
~ ~Ys ) .
Ane = {/\1(0) EXPIFG‘O)] } (i Gne ) o G2

When multiplied by exp(-i o t), Eqs. (5.21)-(5.23) represent a wave

solution with upward phase (downward energy) propagation.

(ii)€ne €0
~ Y -
W, (2) =B, . N@) “exp [ 9(2)] . (5.24)
1% ~ 4 : (5.25)
Fn.a- (2) = [én,cr’ Bn'o, N(E)-@XF[Q(i‘}] ’
where 2

(5.26)

-y -1 :
.= {[fv”(a)] exp[Q(O)]} (iane)
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Eqs. (5.24)-(5.26) represent an evanescent solution trapped to the

surface (z = 0).

Bottom forcing

(i)e;l.r 70

~ "'I/z .
Whe(2) = Cm,l\l(i) exp [~a Q(i)] o, (5.27)
- -iNo -'/z o~ '/z : o
Frotz)= Tno [€n,el G,,,,N(i) eyp[—; 0(2)} ,  (5.28)
where L ‘ : f

Gn,fr = [R’(")]l(l.an,a-) (5.29) | ' I'_ .

When multiplied by exp(-i 0" t), Eqs. (5.27)-(5.29) represent a wave

solution with downward phase (upward energy) propagation.

(1i)€ns <O

| oo
Wyo(2)= C'm, M(z)’exp[-e(z)] ) (5.30)

TR T T v

No -4 ~ %
Fn,f(z)=-2?l-;-|€,.,¢l Ghaw N exp[-é)(g;]. (5.31)

Eqs. (5.30)-(5.31) represent an evanescent solution trapped to the
bottom (z = -1).
To complete the solutions, we proceed to the latitudinal problem in

the next section, solving for the eigenfunctions Py, and Vn,¢ and their

eigenvalues &, . for given k,
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5.3 Asymptotic solutions of the Laplace's tidal equations in the

parameter regime of inertial waves

5.3a Introduction

General eigensolutions of the LTE , the so-called Hough functions,
were investigated extemnsively by Flattery (1967) and Longuet-Higgins
(1968), but they are global in character and inconvenient to apply in
describing a localized, high wavenumber phenomenon such as oceanic
inertial waves. Because the non-dimensional parameter of the |

22
4QR
gh
depth for a particular mode, g the gravity, is very large ( Z 109

LTE, € =

» where R is the radius of the earth, h the equivalent

under oceanic conditions, asymptotic approximations in terms of € have
been applied by several invéstigators. The spheroidal wave equation was
applied by Longuet-Higgins (1965), and by Munk and Phillips (1968) to
approximate the LTE for large € . Solutions.obtained by the latter

authors were applied in Chapter 4 to construct the global wave model;

however, these solutions are invalid for ¢ ~ cosI( ) (see

€ho
Section 3.3). For a forced model, we need uniformly valid eigensolutions
to expand a given forcing function, therefore the solutiqns of MP canﬁot
be applied here. Using matched asymptotic expénsion methods, Kamenkoviéh
and Tsybaneva (1975 a, b) obtained uniformly valid ésymptotic solutions
in two limits : (a) k is of order unity; (b) k.is of ordervé!i. As
originally pointed out by MP, the zonél wavenumber of inertial waves‘is
of order GVJ or less; in this limit, Kamenkovich et al (1977) have

derived asymptotic formula for positive ¢ but not for negative € .

Miles (1977) has extensively discussed asymptotic eigensolutions of the
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LTE with large € ; however, for ¢ < 1, his results are. formally valid
only for k/¢ £ 0(1).
The purpose of this section is to present an asymptotic expansion

: v,
procedure for the LTE with zonal wavenumber ranging from zero to order € °

’
which includes case (a) of Kamenkovich and Tsybaneva (1975 a) as a
limiting case. However,'the geometry is different;.iheboceén is ﬁét
assumed to cover the whole earth but to be bounded by two latitudes * ¢&'
‘The reason for this assumption is to avoid the complexity involved near
the poles, which actually are separated from the major oceans. Moreover,
the high modes of intérest are insensitive to the details of the
boundary conditions. To be remote from the mid-latitudes which are our
major concern, ¢b has been arbitrarily set to be 60°. For given

and k, approximate eigénsolutions and eigenvalues have been obtained.

The results for positive eigenvalues, which are not affecte&'by bouﬁdary

conditions poleward of the turning latitude, have been compared with

Longuet-Higgins' numerical results (1968).

5.3b Solutions

Dropping all the subscripts, we rewrite (5.10) here for reference

d
(1~v‘)—f- +29

2 I 2 2 2

-0 dP ey k k v+¢7 |
€(o=v)- X - X P=0

d'vl o'z_v‘ d'V [ .o' ] (5-32)

,_vz \)‘&“ d_'l.

The eigenvalue € can be either positive or negative, and we call the
corresponding eigensolutions "positive modes" and “negative modes"
respectively.

In the parameter regime of oceanic inertial waves, i.e.,|€[>» 1,
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Y, L
o £0(1), and k £ 0( € ? ), from the dispersion diagrams of
Longuet-Higgins (1968), only the type 1, type 4, and type 5 waves as
classified by him are present. Type l wavas are inertia-gravity waves
with € > 0; type 4 and type 5 waves are westward-going and
eastward-going waves respectively with € < 0, which are trapped in the

vertical. We shall treat first the case of positive modes.

(i) Positive modes

If we write

’ v
l<_—_sés, (SS,O(')) (5.33)

.1 2 2 -,/32 . . .
and | GO = (6-v)(I-Vv)- € s o (5.34)

then Eq. (5.32) becomes

T

dP
(v )— 4+ 2v —_
dy* -yt 4V

- —€
- y* o

2 ) ) 2 2
- "'P+[e- Q& s ’_‘:‘_E’__J — 0 5.35)

o

there are two positive roots, 9, and +9),, of the equation G(y ) = 0.

Assuming that ¢, ¢ v, , then we have

L ! ~2/3 '
S 3
= - — _— + O € -
Vo=o[I- 2 a_z(,_v)] | (» ) | (5.36)
2 "'/3 - | -2/, : .
v,=|+ie -—'——‘+ O(e 3) _ (5.37)
2 I-O”'

The latitudes corresponding to + P, are the "turning latitudes,” where

Eq.(5.35) changes from hyperbolic (|¥] < ¥, ) to elliptic ([v] >Vo ).
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The latitudinal boundaries, ¢b y are presumably poleward of the -
v A iy
turning latitudes; to be specific, we assume that la’— Sihg‘ol>> € 3 in

what follows. Following the method of matched asymptotic expansion

“(Nayfeh, 1973), we shall first derive the "turning point solution" which

is valid in the vicinity of </, , and the "outer solution'" which is valid

as (1).- '1),) ~s 0(1); then obtain a uniformly valid composite solution

using the matching conditions.

Turning point solution ( P;)

In the vicinity of Vo , we define

. p ’ _
$ = (v-vo)€ (5.38)

o 200 ’
and Pi =B+ B, é +B,€ 4+ ---... - (5.39)

If we substitute (5.38) and (5.39) into (5.35) and equate terms of equal

power in € , then the balance among dominant terms yields ok = -1/3,
B = 1/3 and
2

b
c“gz - E‘_ bs d3 -[C§+ 3 bs ] B":»o (5.40)

where

C = _zv,(v.‘.v:) Y ' (5.41)

h =

(1- vy o> 1-v.*

An approximate solution to (5.40) was found to be
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TCiy)=rAi(c 5y )~ (CV"g) (5.42)

2 2 :
where r b ( Y — Vo ) ; (5.43)
| - v '

Ai and Ai' are the Airy function and its derivative which are bounded at .
+ o0 . ]?( ¥ ) satisfies Eq. (5.40) with the b's replaced by r's. From

Eqs. (5.36), (5.37), and (5.43) we have

' -1
r=b[1+0(ch)]
and consgquently

['(5)=B(5>+ O (€”)

Therefore I? ( § ) is a consistent first order approximation of Ps,

i1.e.,

= I'G)+ O (6-'/3 ) S (5.44)

Quter solution ( Pg)

Solutions poleward of the turning latitudes are exponentlally small
as indicated by the Airy functions in (5.42); hence they have no effects
on solutions equatorward of the turning latltudes, and we shall not
derive them in detail. For 9 {4, , an appropriate expansion was found

to be

Po("):‘"‘ M( Ao + € A,+ € A,+ 6 A3+---- )exF[hé a(v)J (5.45')
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where M is a constant to be determined by the matching conditions. It is
clear from (5.44) and (5.45) that we must carry the second order term

Al in (5.45), in order to obtain a uniformly valid solutiom.

Substituting (5.45) into (5.35) and equating terms of equal power in € ,

we obtain
. 2, |/z.
G ,
alv) = ~ dv
v =V (5.46)
a v'l ./4'
’ Ve = .
AO(V) = 2 2 (5.47)
| V=V o
E 13 | (5.48)
A() = 31— Ac(v) F )
. 2 Yo :
where the signs correspond to those in (5.45), and
- ¥
' .2 2 ° -y
'V-I- —V 2 '1 2 d ’ ’
F(‘V)z ° — + [ [vo-v l —d—-—,{(v)dv |
wivE-v)Cw-m|T v v (5.49)
2 2 v
V+ Vo
.F(V) = © (5.50)

2 Y
»(vi-v)

We should note here that each term on the right-hand side of Eq. (5.49)

is singular when <Y = 0, but it can be shown that

lim F(v) = OC) .

o X

Composite solution

In the vicinity of 7, s P; and P, should macch each other in the
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following sense,

im P,cv)y = lim P; (%) | : (5.51)

V>V o ¥ -

Using Eq.(5.44) and the asymptotic behavior of the Airy-function, the

right-hand side of (5.51), denoted by P , can be written as

% Y Y Y -% -% | .
P=7c¢ 'e‘z(v,,-v)"‘ cos @+ € (Vo-v) J S’,"? . (5.52a)
" . [ZVB(V?;P${]&'
where 3
. 2 '/1_ '/z. 2 w
= - C (Vo - _—
® =3¢ (vo-vY) + - (5.52b)

Now the constant M in (5.45) can be determined through the use of Egs.

(5.45)-(5.52), yielding the following result :

2 2 4 ' 1 s ’

v -V "I B T _

Mz(—'.———f’-—) e’ " (5.53)
2.'))0 ' :

The outer solution which satisfies Eq. (5.51) can be written as

Y +E 14 € B T sin[€ 2am)+ X -Y%
P,=MA.(v) Cos[e “("”tr]* € 2%F(v) m[ atv) 4] +0 (€ ) (5.54)
thus a uniformly valid composite solution can be expressed by

P = P+ P; - Py ‘ ' : (5.55)

Velocity solutions can be obtained from the pressure through the use
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of (5.12), which has been rewritten as

V = [(—vz)._ol_P_.-f €?3? ]

v o o

(5.56)

From Eqs. (5.44), (5.52),.(5.54), (5.55), and (5.56), the following

expressions are obtained,

V,':—G Vo AI(C/S‘S')

1= Vo o, Ao '
Vo'"M(%z_v:_)G Vo > {G, sm[é Q(v)-{-q_] |
¥ eﬁ%’i("“J‘GKF)COS[eV’a(vH;{]
’ : - (5.57)
Vi = - = (29" (w/'- Vo ) (Vo ),) Gin

‘ \/.b== -&fo + eri - ‘/rna

The meanings of the subscripts are the same as before.

Eigensolutions
Since the positive modes are either even or odd functions in the

interval [—- 47" 4’&:] , we must have either

1i£1 = (even); .. ~ (5.58a)
dv V=0 ' '

or Pp) = o - (odd) | - (5.58b)

- e oy I,
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Substituting the asymptotic series for P (Eq. (5.54)) into (5.58a) and

(5.58b), the first order approximation to the eigenvalues can be written

as’
{
/3

Ny
e, )

(5.59)

(nF )2 Jacoy + O (¢

where the» upper sign corresponds to k > 0 and the lower sign to k < H
n is the number of zeros of P(V ) ( V(¥ ) ) in the interval [- 9%,4%]_
if k P 0 (k £ 0). Eq.(5.59) is equi‘va.lent to the result of Kamenkovich
et al (1977, Eq.(4)) within 0O( é-%). The reason for using the zeros of
different variables to label the eigensovlutions fof eastward and
westward waves is the following : The number of zeros of P(VP ) (V( ¥ ))
is invariant with respect to € if k> 0 (k < 0) (Longuet-Higgins,
1968); thus we are able to 'identify the eigen-curves ( €, vs o for éiven
n and k) calculated using (5.59) Qith those of Longuet-Higgins (1968)
for small and moderate; € . Thé relation between the number of zeros for
P and that fér V is varying with €, , so the formula given by Odulo
(1972), which is independent of €,, is not strictly correct (e.g.,
compare his formula with Longuet-Higgins' Fig.ll);.

With the eigenvalues given by (5.59), Eqs.‘ (5.58a) and (5.58b) are
not satisfied to second ordef. Hence the eigensolutions represented by
(5.55), (5.57), ‘and (5.59) have error terms of order G"/é » although the

%)

proposed asymptotic series could produce solvutions accurate to 0(€
if the true éigenvalues were known. Second order calculations of €, are

straightforward, but require considerable efforts; however, they are not
significant for the problem of inertial waves due to the largeness of &,.

Since a(0) itself is dependent on €, , Eq.(5.59) was evaluated using
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an iteration method. Comparisons of the eigenvalues obtained form (5.59)
- with those taken from Longuet-Higgins' paper (1968) are presented in
Table 5.1. Note that the first order approximations to €, are degenerate
and lie between the numerical results for positive and ﬁegat_ive k. The
error is only about 6 % even when &, is as small as 23. The accuracy of
Eq. (5.59) has also been confirmed by Kamenkovich et al (1977)' ﬁsing
numerical results. Eigensolutions with k = 50, 0 = ,5878, ényz = 370.2,
and n = 63 (k > 0), 62(k < 0), are displayed in Figs. S.ia and 5.15.
Note that P has n zeros for k > 0 and (n-1) zeros for k< 0, while V has

(n-1) zeros for k > 0 and n zeros for k £ 0.

Table 5.1
Positive eigenvalues with |k| = 5 (€ is from Eq. (5.59), €;and €_
are from Longuet-Higgins' numerical calculation for k = 5 and -5

respectively. N, and n. are the numbers of zeros of P for k > 0 and

of V for k { 0 respectively.

. Y Y
o n, n_ , €. €. €
2303 3 2 102.7 9.3 98.6
.2886 4 3 89.3 84.2 86.8
.3408 5 b 81. 77.5  79.3
.3885 6 5 5.3 72,6 73.9
4329 7 6 70.9 68.8  69.8
4859 7 & 56.6 54.6 5.6
5456 7 6 45.2 43.3 44.3
6132 7 6 36.2 34.4 35.3
6902 7 6 20, 27.2 28.3

.78 7 6 23.3 . 21.6 22.9

Alryg,
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(ii) Negative modes

If we define Y =]€|, then Eq. (5.32) becomes

A 2 >
(|v)~.f2v |-o dr +[YE(v) y's 1)+6‘1]P=0

0' v d'V "'v" o vz_o" .

where E(‘V) (V O‘)(I-V) ),

The two positive roots for E( ¥ ) = 0 are

-V -2,
s 3 I /3
Vo = 0 +—— Y + O(y
2 0'(/"0'2) )
and — _ sz -1/ / -2/3
V=== ot O (r™7)

It is obvious that the solution now is oscillatory between the two
turning points v, and ), , exponentially decaying equatorw;rd of 9, ,
and having a complicated boundary layer between Y, and 1. The prqblem-
associated with the poles will not be pursued here ; the boundaries we
have chosen, * ¢%, are sufficiently distant from the poles to avoid the

turning point Y, and its boundary layer. Because the expansion procedure
is exactly the same as that used in (ii), only the results are presented

below.

Pressure

P =MA, (v){ws[;( a(v)+.—] ), % s

¥

Pi = —b Aty B (v ) - A [ Y (90= 9]

(5.60)
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"y L -4 Sin 6 -4
D= (22,) (v-v* gcos®-y P S (9- %) }

V-V [2vo (vi*- v )] *

2 Y Y, 3/ 7 .
where @zg)’zcl(?—v")z*.?!:,
PV ——|/Z-r v "“
: E v
g | — dy’
Yo I- v

The expressions for M, A (4 ), b, c, and F( P ) are the same as

and c1(y)

i

before.

Velocity |
2 ! .

I- v '!:'. Ao(v) '/L . 4 T
V.=-M ( v ) Y Ve vt E s:n[y “av) +.4]
[}
-y ¢S ! %~ % %
Y ” [v+-l-E(v) 1..(1;)] cos[f a(v)+-‘i]}

' (5.61)
2/. y,
Vi=-Y v ailc*r?( vem )]

XZ' e 2 z Yy =Y -
Vm= = T(lVD) ('Va"'Vo) (V—-Vo) Sl‘n@

Eigenvalues

The boundary conditions at + qh,are simply V = O; hence the

approximate eilgenvalues are

Y= () /e + OO7%)
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where V,,= sin ¢b; n is the number of zeros ?f V(v ) in [.0, ﬂ]' The
eigensolutions with k =50, 0" = .5878, )'».(1 = 573.1, and n = 31, are
displayed in Figs. 5.2a apd 5.2b. Now the number of zeros of.P
in[o,cl)b] is (n-1) for k > 0 and n for k£ 0. Solutions in the

Southern Hemisphere, which are not shown here, are either symmetric or

anti-symmetric with their counterparts in the Northern Hemisphere; thus

these two cases are degenerate.

5.4 Results
Our major interests are in finding model spectra of v and w at ¢ as
©
functions of depth, which can be directly compared with the observations
presented in Chapter 2. In other words, for each O in [U'l R 0':.] y We
A 2 A 2 ' ’
w(¢o, z, O’)I and v(¢o s Zy O )

want to calculate . With the
knowledge of Pp,o ¢ ¢ ), VM,( ¢ ), Wh'r( z ), and F, ,( z ) as derived in

5.2 and 5.3, the calculation is straightforward using Egqs. (5.7) and
(5.8). To be specific, we choose 950 = 360, 0, = .94sinP , and
02 = 1.26 sin ¢o . For given 0 in fo‘.,o';] ~, we have calculated
A2 a2
lWl and lv | with three different forcing scales at the fol_lowing, four
depths : 200 m, 600 m, 1500 m, and 4000 m. Calculations have been made
for both surface and bottom forcing. | |

For given ¢ , the first step was to calculate the ah,r's from
(5.'16), in which the integration was evaluated numerically using the
trapezoidal rule. For both positive and negative modes,k the value of
a,,, initially increases with n ; after reaching -a.kmaximum’ at some
intermediate n, it then decreases with n. In general, the calculation

-was truncated at four mode numbers n;, ny, n3, and ny such that
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Na N ne 2 b
Y Lanel Nuw # 2 Vel Ne 2 08 [ 163,744
hon _ o (5.62)
' . m=1n3 b
- ~—— / e
€n,s <0 Em,r DO
where ' ¢b 2
Nupoe = f Pm, (¢)d?5 -
- P _ :

Values of 4y, ng, n3, and ny for nine selected. frequéncies

in [0';, c',_-] are listed in Table 5.2 for three different forcing
scales: L = 300 km, 150 km, and 75 km. For frequencies sufficiently
greater than sin 3{?0 y we need only positive médes to describe VI\\lb(fS )
because negative modes are trapped far to> the north of the forced
region. For frequencies close to sin ¢o , we need both kinds of mode and
the expansion is not particularly efficient; it needs several hundred
modes. It is conceivable that for frequencies much less than sin ¢o

(not shown), only negative modes will contribute because positive modes
are trapped far to the south of ¢o . It .is also éxpected from Fourier
_ theory that émal.ler scale forcing requires more modes to describe. Note
that although some mode numbers in Table 5.2 are small, their
corresponding eigenvalues are at least 6(2000) — still large enough for
the validity of the asymptotic expansion. For the case with L= 3.00 km, |
the forcing function 6\\/"(95 ) and its expansion in terms of Py, are
displayed iﬁ Figs. 5.3a and 5.3b for 0 = sin¢o and 0 = 1.12 sin ¢°
respectively. Slightly wavy behavior is observéd wvhen 0 = sin 950 H
however, the localized shape is well reprod‘uced. The results for other

forcing scales are similar.
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Table 5.2

Values of nl, n2, n3, n4

L = 300 km
o . ’ : . :
Singe 1 na nj ny
.94 2 65 4 110
1. 4 66 2 140
1.01 11 46 2 .
1.02 .3 86 -
1.035 ' 3 66
1.06 ' | 6 46
1.12 6 Lt
1.19 6 41
1.26 : 5 41
L = 150 km
O— n
sind, 1 - M2 - P3 ny,
. 94 6 80 34 81
1. 17 181 16 386
1.01 17 61 - 16 226
1.02 16 141
1.035 16 106
1.06 15 76
1.12 ' 13 72
1.19 : 12 70

1.26 ' 12 68
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.94

1.01
1.02
1.035
1.06
1.12

1.19

11

53

. 60
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Table 5.2 (contd.)

L=175kn

nz
102

450

102

n3

54

54

52

48

44

- 19

16

25

n4

1010
440

261 .

- 170

158
140
130

125
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Figure 5.3 The forcing function ) Qb( ¢ )} (solid curve) and its
expansion in terms of Pn,,(symbols) for (a) o = sin ¢, and

(b) ¢ =1.12 sin 950 » where ¢ = 360 and the forcing scale

"L = 300 km.
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5.4a Surface forcing

We first discuss the response spectrum for the case of surface
forcing. With the arbitrary assumption that la4r%7= 1 sz/secz/cycle
per 2() , the spectra at different depths are shown in Figs: 5.4(a, b),
5.5(a, b), and 5.6(a, b) for L = 360 km; 150 km, and 75 km respectively.
At sub-inertial frequencieé, the response is trapped near the surface as
expected. At super-inertial frequencies, the response is propagating
downward wiﬂnlOlz decreasing andl&b[lincreasing with depth. AF
frequencies sufficiently higher than f, the vertical variation scales in
the WKBJ sense. In the velocity spectrum there is a peak slightly above
f whose characteristics vafy with depth and L : in general, ifs
frequency increases and its strength (peak height) decreases with depth;
its bandwidth decreases with L. For instance, at 260 m where the peak is
strongest, the bandwidth and peak height (the latter is defined as the
difference between the maximum power and the minimum power with w> f)
are listed in Table 5.3 for different values of i. The peak height is

not particular dependent on L although the bandwidth is.

Table 5.3
Characteristics of the horizontal velocity spectra for

different values of L.

L (km) peak height (db)  bandwidth
300 8.5 0.14
150 9. ’ 0.09

75 9. 0004
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Figure 5.4 Response spectra of (a) w-velocity and (b) v-velocity

at four different depths (numbers are in meters). The unit of the

vertical axis is cm2/sec2/cph. The forcing is imposed at the . ;
surface (zp= 0) with L = 300 km and ¢, = 360, A straight line '

representing the (@ =2 gpectrum is drawn for reference.
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Figure 5.5 As in Fig. 5.4 except that L = 150 km.
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As in Fig. 5.4 except that L = 75 km
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Now we can qualitatively explain why the observed spectra have
stronger peéks énd smaller blue shifts in the upper océan (class 2a)
than in the deep ocean over smooth topography'(class-3). In the upper
ocean, inertial waves are primarily locally forced as described by the
model; hence the resulting peak frequency is indistinguishable from f,
And the fqrced response is confined to the upper ocean. Together with
the global wave spectruﬁ whose shape is the same at all depths, the
inertial peak is then stronger in the upper ocean. This interpretation
can be illustrated by a schematic diagram, as shown in Fig. 5.7, of the
ray péths of both fhe global and local wave field. Because of the nearly
horizontal prbpagation of inertial waves, locally surface-generated
waves will.propagate away from tbeir forced region before reaching the
bottom; hence they can be measured only by instrumenté at shallow
depths. On the other hand, globally generated waves can be mea;ured at
all depths. Therefore what the upper instfument measures is a
combination of the local and global wave field, while the lower
instrument only measures the global wave field, In the absence of the
local wave field in the deep ocean, the significant blue shift there is
accounted for by.the global model (Chapter 4).Z§;cause the upper ocean
observations suggest that the bandwidth is less than 0.1 f, we expect
from Table 5.3 thatvsmall scale forcing is more important in producing
the observed features:j

Can we interpret the depeﬁdence of the response spectrum on depth
and L in terms of the properties of the excited waves ? We have seen
from Table 5.2 that considerably more high order_negative modes are

excited at near-inertial frequencies than super-inertial frequencies.
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Y

\//
A A L L Ly

Figure 5.7 Schematic diagram showing the ray paths of the local
wave field (dashed lines) and the global wave field (solid lines).
A mooring with two current meters measuring the wave field is also
shown. .
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For negative modes, the vertical structure is exponential (c.f. Eqgs.
(5.24), (5.25)) with trapping scale decreasing with increasing ]enL
Therefore a substantial amount of the near-inertial wave énergy is
confined to small depths, but most of the super—inertiallwave.energy can
penetraté.to great depths. This islwhy the blue shift increases with
depth. Moreover, because super—inertial waves are far from their turning
latitudes, the wave amplitudes are only weakly dependent on frequency
and the resﬁlt of superposition has no prominent peaks. Hence with a
white noise local forcing at the surface, there wili be no prominent
inertial peaks at great depths unless there is a global wave field.

The fact that the inertial peaks are stronger for smaller foréing
scales can be explained as follows. As noted befofe,.smaller scale
forcing excites more high order modes; because high modes tend to
interfere with each other more severely than low mo&es outside the
inertial frequency band (see Chapter 4), the resulting peak will be
stronger if there are more high modes involved.

Because the bandwidth of the inertial peak is controlled by the Airy
frequency scale L4 (c.f.Eq. (4.19)) which decreases with latitude, the
latitudinal dependence of the response spectrum should be similar to
that of the global wave spectrum as shown in Fig. 4.2. With L = 150 km,
the response spectrum w;s calculated at 15° and 50° to explore the
latitudinal dependence. The results for the v component of velocity are
shown in Figs. 5.8a and 5.8b; the results for the vertiéal velocity are
not sensitive to 1atitude and are not shown here. As expected, the
inertial peak is generally weaker at lower latitudes. At 15° thé

substantial response at sub—inertial frequencies results in the absence
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of an inertial peak at 200 m. The large magnitudes of the blue shift
reflect the character of equatorially trapped modes; recall the results
of Eriksen (1979). At 50° the bandwidth is reduced fo b.OSf, and the
sub-inertial energy is also greatly reduced. However, the peak energy
level does not change much with latitude.

One way to estimate the possible forcing amplltude,lvvb|¢ , 1s to
find the value oflVVd¢ such that the energy level of ,\fl near f is
consistent with the upper ocean observations. For instance, by comparing
the spectra at 200 m in Figs. 5.4b, 5.5b, and 5.6b with the observed

F3
spectra at 200m of the PMIII, we havel§h|¢o_= 2 x 10-3
cmZ/sec2/c.p.2f) , which yields a root mean square amplitude of w
in [0'.,0',_] equal to 2 x 10-2 cm/sec. For a mixed layer 40 meters deep,
this vertical velocity field could be produced by the convergence and
divergence of surface inertial currents of amplitudes 50 cm/séc and
wavelength 100 km. Another interesting quantity is the corresponding
downward energy flux G which can be calculated as follows,

| . o | ,
‘G=§ L Real (Pw*) do (5.63)

[ ] =0

A : '
With p obtained from Eq. (5.9) we have

G =9.3 erg/cmzsecv for L = 300 km,
G = 3.2 erg/cm?sec for L = 150 knm.
G=1.3 erg/cmzseé _ for L = 75 km

The reason for the increase of G with L is that, larger scale forcing
excites more low modes which have larger vertical group velocity. These

numbers suggest that this forcing mechanism, if realistic, is an
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important oue for the internal wave field, which, with total energy 4 x
106 erg/cm? (Garrett and Munk, 1972), can be set up in couple of
weeks by this mechanism.

5.4b Bottom forcing

The response spectra at 360 for bottom foreing with L = 150 km
are shown in Figs. 5.9(a, b). No& the sub—inertialiresponse is trapped
to the bottom, while tﬁe super-inertial respohse Behaves the same way as
in the case of surface forcing. The inertial peak is étrongest at deep
levels and ;he blue shift inéfeases with height from the bottom (at
z¥= -4500 m). This explains why the observed inertial peak at deep
levels over rough topograph& (class 2b) is as stréng as that at upper
levels (class 2a). In fact, what one would observe over rough topography
is predominantly a local wave field with both surface and bottom
sources, and the obsgrved spectra is a supgrposition of tﬁe rgsults
shown in Figs. 5.9 and 5.5 with proper forcing amplitudes. By requiring
that the modelled inertial wave energy levels be equal to the observed
values, such a superposition is shown in Fig. 5.10. The spectral shape
is basically the same at all depths, consistent with the observations
over rough topography (see Fig. 2.3b). The déependence of the results on
L and latitude is essentially the same as that for the case of éurface
forcing.

The forcing amplitude required at the botgom to produce the spectra
shown in Fig. 5.10 is such that llez = 8 x 1073 cm2/sec2/c.p.2[2,
éofresponding to a root mean square vertical veiocity of 8 x 102
cm/sec. The resulting vertical energy flux from the bottom to the

interior is about 1.6 erg/cm? sec. Assuming that the energy source is

R L DT
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Figure 5.12 Response spectra of v-velocity with both surface
forcing (,wblz 2 x 10-3 cmz/secz/c-p.Z ) and bottom-
forcing (Iﬁbll 8 x 10f3 cmz/secz/c.p.Z ).
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from the interaction between rough topography and a barotropic eddy with
horizontal velocity amplitude of 5 cm/sec, it will take about 40 days to
convert the eddy energy into internal wave energy. This result suggests
that rough topography could be a pétential sink (source) for eddy
(internal wave) energy and explains why the observed eddy energy at
great depths over rough topographyris an order of magnitude less than

that over smooth topography (Schmitz, 1978; Fu and Wunsch, 1979).

5.5 Summary and discussion

A forced model based on latitﬁdinal modal decomposition is developed
" to study locally forced inertial waves. Asymptotic solutions of the LTE
which are suitable for inertial waves are obtained and applied to the.
problem. The modal decomposition is cumbersome as expected of a
localized function; however, it provides an accurate description of the
transifion of oceanic response from sub—inertial frequencies to
super-inertial frequencies, a singular problem in the conventional
f—plané model. |

The forcing is through a specified vertical velocity field in a
narrow band centered on f at the top and/or bottom boundaries. For
surface forging, the differences in the observed inertial wave spectra
between upper ocean (class 2a) and the deep ocean over smooth. topography
(class 3) can be qualitatively described by the model; For Eotfom
forcing, the strong inertial peaks obse:ved in the deep ocean over rough

topography (class 2b) also can be accounted for by the model.
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The model results are dependent on forcing scale and latitude; the
inertial peak is stronger for sﬁaller forcing scale and/of higher
latitude. In ordef to produce the observed energy level in the upper
ocean, a downward energy flux with magnitudé from 1.5 to 12 erg/cm?sec
is required for forcing scale from 75 km to 300 km. Over rough
topography with scale of 150 km, an upward energy flux of

1.6 erg/cm2 sec is estimated.
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Chapter 6 The Reflection of Inertial Waves from the Benthic

Boundary Layers

6.1 Introduction

The foregoing interpretation of the observed inertial wave energy
over smooth topography as the combination‘of a vertically symmetric
global wave field and a downward propagating local wavé field is based
on the crucial assumption that dissipation is negligible for»the'
energy-containing low wavenumber components. If dissipétidn is
substantial, then the waves are not>able to propagate for great
distance, and thebenergy balance is between local forciﬁg at the surface
and dissipation at the bottom. This is the interpretation proposed by
Leaman (1976) for the observed dominance of downward.energy propégation
in profiler measurements. Displayéd in Fig. 6.1 is a schematic diagram
showing the difference between Leaman's interpretation and ours. Another
assumption underlying Leaman's interpretation is that all the reflected
wave energy can be measured by a local profiler. This would be the case
if the wave field is horizontally homogeneous, which requires that the
wave frequency be at least greater than 1.15 f.-However, as noted in
Chapter 5, because ray paths are nearly horizontal for inertial waves
(c.f. Eq. (5.2)), their reflections from the bottom occur at a great
distance from their source region (see Fig. 5.7), and cannét be measured
by a local instrument. Even for perfect reflections, the propagation of
local inértial waves as observed by a profiler tends to be predominantly
downward. Hence the reflection coefficient estimated by Leaman as the
ratio of upward energy to downward energy observed in profiler measure-
ments is likely an underestimate, and the observed appreciable am&unt of

upward energy should be interpreted as part of the global wave field.
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Existing models for the reflection of inertial waves from rigid
boundaries (e.g. Phillips, 1963; Leaman, 1975) usually assume a constant
viscosity coefficient and solve for the Ekman boundary layer. For near-
inertial frequencies, the resulting boundary layer depth is of the order
of the ocean depth and‘the reflection coefficient is zero. However, this
singular solution is not applicable to the real ocean for the following
reasons: firstly, such an order-ome viscous layer is not observed (e.g.
large amplitudes at great depthg are inconsistent with a viscous decay);
secondly, the benthic mixed layer in which most dissipation occurs has
been neglected. Recent observatioﬁs (e.g. Armi and D'Asaro, 1979)
suggest that near the bottom, a well-mixed boundéry layer with depth a
few tens of meters is quite common. For a review of theofetical models
and eérlier observations of this boundary layer see Wimbush and Munk
(1970). The inclusion of this layer in the dynamics is important
esbécially when dissipation is concerned.‘lt is the purpose of this
chapter to present a simple model for the reflection of inertial waves
from the bottom in the presence of a benthic mixed layer. The major
question_is whether we can obtain a reflection coefficient comparable to

that estimated by Leaman (1976).

6.2 The model

The benthic ocean is modelled as a uniformly stratified layer of
infinite depth on top of a homogeneous layer of depth D. The existence
of this mixed layer is assumed a priori; presumably it is maintained by
turbulence produced in.the shear zéne near fhe bottom. Fig. 6.2 shows

the model configuration. Wave packets come from infinity and reflect
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Figure 6.2 Schematic diagram of the model configuration. Solid
arrows represent the ray paths and their directions of propagation;
dashed arrows represent the directions of phase propagation.
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back from the boundary layer. Because our major interests are the energy
containing waves with low vertical wavenumbers, the viscous effects can
be neglected in the interior. For instance, the wave Ekman number,
ym2/f, is 0(10-%4), where Y is the eddy viscosity (~ 1 cm?/sec), m
is the vertical wavenumber (~»10‘4cm‘1), and f=7.27 x iO‘Ssec‘l.
In the mixed layér, all the dynamic variables are neafly uniform in tﬁe
vertical as the result of turbulent mixing (Armi and D'Asaro, 1979).
Hence the slab model used in the upper oceanic mixed layer (Pollard and
Millard, 1970) and in the atmospheric boundary layef (Geislér and Kraus,
1969) can be applied here. The frictional drag produced at the bottom

can be written as
T =63 T, _ | (6.1)

where CD is a drag coefficient which is hardly dependent on velocity

at high Renolds number;'E is the velocity vector, and lﬁl is its
magnitude. Then the effects of i? in the mixed layer is simply modelled
as a uniform body force EE /D. Mean flow effects (including low _
frequency eddies) are not considered in this model; this is a serious
restriction because the nonlinear drag law has been used to model
frictional effects. However, for places in the mid-ocean where low
frequency flow is weak, this model should be a‘zero order approximation.

The Boussinesq equations on an f-plane can be written

ut - fv = - Py \l (6.2

ATy



167

Ve + fu =-Pp, | (6.3)
Ux + Vy + Wz = 0 , > for z > D, (6.4)
? ' - (6.5)
0 = -Pa- = = to:

Pa foi o
Py - Lo Fw=o0 g | (6.6)

and , , ’ , (6.7)
uWe - fvi= -py - Bu )
! v ‘. / ’ | . : (6.8)
Vi + F W = -~ ?7 - Bv ‘ _ _ : *
Uy + V\,' + Wg ___6 > for D2z>0 (6.9)
0 =-P, | (6.10)
where ,
B = ( u'? + v'2 )I/ZCD/D , B (6.11)

u, v, and w are the east, north, and vertical velocity components, f,=
mean density, P = perturbation demsity, p= .preSSure/ fo 3 N = buoyancy
frequency, g= gravity; the prirged variables are fhe corresponding ones
in the mixed layer. The hydrostatic approximation is assumed in (6.5)
and (6.1‘0). At z = D, the matching conditions are
| p=p' ' ' ' (6.12a)
w=w' ' | (6.12b).

At z = 0, the boundary condition is
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w' =0 | _ (6.13)
Eqs. (6.2)-(6.13) are nonlinear bécause of the nonlinear depéndence of B
on u' and v'. However, for typical values CD = 2 x 1073 (Wimbush and
Munk, 1970), u'= 3cm/sec and D = 20 m (Armi and D'Asaro, 1979), we havel
B =3x 10—6sec_l, which is only 0.04 f at 306 latitude. Hence the
linear.wave solution should be a good zero order solution. Moreover, at
near-inertial frequencies the horizontal particle speed,
(u'24y'2)1/2 of the zero order solution is independent of both
time and space (properties of inertial waves). So wé can simplify the
equations by treating B as a constant, and seek wave solutions of the

following form:

(u, vy...) = Real (G, ¥y oe.) exp(i(kx + mz - wt)) (6.14)

(u', v',...) = Real(g', G',...) exp(i(kz- w t)) (6.15)

where the hatted variables are complex amplitudes; k and m are the
horizontal and vertical wavenumbers; w is the frequency. Assuming m >
0, then the upper sign in (6.14) corresponds to the incident (downward

energy) waves and the lower sign to the reflected waves. Substituting

(6.14) and (6.15) into Eqs. (6.2)-(6.10), we obtain
. A A ,
jwu+rfv = ikp | (6.16)

—iwV+fa =0 | (6.17)
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A A
A )P
O =1+ imp - —
FimP o 7
A 2
iwpt wh, J%? = 0 2

and

A ' . A .
W+ (B-iw)v =0 > D>z>0
g A A
tkuw + w’z = 0 P

Differentiating (6.23) with respect to z, we have

A
|

w =0

ZZz ’

of which the solution satisfying (6.13) is
A A o
w' = -iku'z

From (6.21) and (6.22) we obtain

o kP f
(B-iw) + f£°*

A ik (B-iw)
(B-iw )1+ £t

<2

The matching conditions (6.12a) and (6.12b) become

(6.18)

(6.19)
(6.20)
(6.21)

(6.22)

(6.23)

(6.24)

(6.25)

(6.26a)

(6.26b)
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n.n ¥ 0

where '"1" and "r" represent the incident and reflected waves

respectively. From (6.19) and (6.20) we have

2 2

A A ~ A/ »

'Pi = - Nb Wi , and P. = — b W; (6.27)
wm wm '

Then from (6.26a), (6.26b), (6.25), and (6.27), the following expression

is obtained:

A 22imD

A S m(w‘—{l)v(s-;_w)_w[(g-kwﬁ;‘J
Wi m (W= £D (B-iw) +w[(B-iw)+ £2] (6.28)

where the dispersion relation

kzNg = n2( w2 - £2)
has been used. The reflection coefficient r is defined as the ratio of
the reflected energy flux to the incident energy flux, which is
proportional to lﬁr|2/|ﬁi|2, so we have

e = |z]?
Because B is still unknown, another equation is needed to solve for Z in
terms of the parameters of incident waves. From Eqs. (6.25)~(6.27) we

obtain
A imD ' '
-ikPie (B-iw)(-2)
(B-iw )2. + -F 2 ; (6.29)

with the use of Eqs. (6.16) and (6.17) which yields

2 2
R S
i
w k _ ’
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b X ] A, A
the following relation between u' and U; is obtained:

i . 2 - imD A
a,—_: i (w=-{)(B-w)e (1-2) W (6.30)

w(B-iw)+ ]

In order to be consistent with the requirement that B be a constant, we

must have
— = -i ‘ (6.31)

As a consistency check of the solutions, we should test the validity of

(6.31). From (6.25) we have

=>

i ;W (6.32)
= —_— 4 | — .
Pt

<>

For B & f and w a -f, our solutions are self consistent. Therefore a

consistent approximation for B can be written
R
B 22 e Iu'l . . ) . (6-33)

. - A -
For given u; fEqs. (6.28) and (6.30) then form a closed set of"
' . . A .
'nonlinear algebraic equations with unknowns Z and u', which can be

solved numerically using an iteration method.

6.3 Results
—_— . R
The model results are presented by showing r and d (= [u'[/|3i|)’

the reflection coefficient and the ratio of the horizontal velocity in
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the mixed layer to that of the incident wave, as functions of frequency
. . A
with the other five model parameters ~- m, D, Cp, Np, and Iui' _
varying in their typical ranges. Instead of the vertical wavenumber m,

we use its equivalent mode number j defined as

A

m=jw MN/n, ' (6.34)

where No =73 cph,'ﬁ = 0.122 x 1073 cycle/meter. Eq. (6.34).expresses }
the relation between j and m above the mixed layer where we have assumed
constant buoyancy frequency N, according to the N(z) used by Garrett
and Munk (1972).

There are five cases to be discussed; in each case we vary only one

parameter with the others fixed at the following reference parameters: j

=3,D=20m, Cy=0.002, Np = 0.2 cph, |3;] = 3 cm/sec. The

value for j is the mode number scale, i.e., J., proposed by Cairns and

Williams (1976) for the vertical wavenumber spectrum, corresponding to a
870 m wavelength in the thermocline. Thg values for N, and lail are
typical of the benthic ocean (D'Asaro, 1979; personal communication).
Fig 6.3 shows r and d as functions of w with different jo For w ,
1.2 f is probably the upper bound for the validity of the solutions.
First of all, r is greater than 0.9 for j &£ 20, where lies most of the
energy of the vertical structure of inerfial waves.. Thus ﬁhelestimate of
Leaman (Fig. 13, 19765 -~ r sz.6 for 75 % of the energy —— cannot be

accounted for by the model. When W = f, the vertical velocity of the

incident waves vanishes in an f-plane model, so the mixed layer is
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decoupled from the interior, yielding lﬁ', =0 and r = 1. When (W ~ f)
increases, B becomes increasingly negligible in the denominator in
(6.30); heﬁce ‘3'[ increases toward its inviscid limit 2 |Gi[ for
mD < 1. For w2 1.04 £, both d (Eh?'[ /[Gil ) and the dissipation
rate, CD I:'I 3, increase very slowly; the slight increase.of r
with @ can then be explained by the rapid increase witﬂ w of the
vertical group velocity, yielding a rapid increase of the dissipation
rate for fixed r, therefore r has to increase Qith W at a rate which.
makes Fhe dissipation rate change slowly.aé shown in Fig. 6.3. Similarly
the decrease of r with increasing m also can be explained by the
decrease of the vertical group velocity Wifh increasing.m and the
insensitivity of d (hence the dissipation) to m. Recall that the
vertical group velocity can be written

ow _ w8

o wm T TN (6.35)

Is the result of nearly perfect réflection at small j sensitive to
the particular model parameters used ? Fig 6.4 shows the sensitivity of
the model results to the mixed layer depth D. Note that the scale for
the r-axis has been changed -~ from 0.5-1. in Fig. 6.3 to 0.9-1. For
typical range of D observed in the ocean -- from 5 m td 60 m (Armi and
D'Asaro, 1979), r varies only in a narrow range from 0.94 to 1. Because
B (frictional effects) decreasesrwith increasing D, d is closer to the
inviscid limit for larger D, resulting in smaller r.

Fig 6.5 shows the sensitivity to Nb’ the buoyancy frequency above

the mixed layer. For a rather unlikely large value, N, = 0.8 cph, the
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- Figure 6.4 As in Fig. 6.3 except for different values of the
mixed layer depth D (numbers are in meters).
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w/ f

Figure 6.5 As in Fig. 6.3 except for different values of the
buoyancy frequency Ny (in cph) on top of the mixed layer.
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lowest value of r is about 0.93. The behavior of d does not change with

Ny at all -- the same as in Fig. 6.4 with D = 20 m. The decrease of r
with increasing Ny is cause by the increase of Qertical group velocity
wi.th Ny (c.f. Eq. (6.35)).

Fig. 6.6 shows that r Z 0.99 is essentially insensitive to the drag
coefficignt CD in the rangé 0.002- 0.01; the typical range of Cp in
the benthic ocean is from 0.002 (smb&th bottom) to 0.005 (rough bottom)
(Wimbush and Munk, 1970). As expected, d decreases with increasing Cph.
The crossings of the r curves at intermediate frequencies can be -

explained by the following relation:
A
(1 - 1) ec € 43 |4, - (6.36)

For different values of C, the behavior of the corresponding r could

be diffe;ent from that of d.

The behavior of r for different values of the incident wave
vélocity lsi‘ (Fig. 6.7) is pretty much the same.as that shown in Fig.
6.6, because lail plays the same role as Cp in Eq. (6.36). Smaller
‘Gil induces smaller ,3', and hence smaller frictional effects, so d

. A :
1s larger for smaller luilas shown.

6.4 Summary and discussion

A simple model has been developed to calculate the reflection
coefficient of inertial waves in the presence of a well mixed bottom
boundary layer. The interior dynamics is assumed to be inviscid. The

mixed layer is modelled as a slab and the frictional drag at the bottom
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Figure 6.6 As in Fig. 6.3 except for different values of the drag
coefficient Cp.
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is quadratic in the horizontal wave speed. An approximate Qave soiution
. A .
has been obtained with error of. order max.(’S:I:"E','l'%:‘l , Qﬂiﬁf ), where
CD= drag coefficient, D = boundary layer depth, !G" = wave amplitude
in the boundary layer. For typical conditions in the benthic ohean, the
resulting reflection coefficient is generally greater fhan 0.§ for waves
with equivalent mode number less than 20, and the results are not
sensitive to model parameters. The relatively low values estimatéd ﬁy
Leaman (1976) cannot be accounted for by the model; |

Because of the nonlinearity-introduced.by the fricfion law, we
cannot superpose wave solutions. However, the observed vertical
wavenumber spectrum is dominated by low wavenumber componenté; our
results for low wavenumber waves should be fairly representative. The
existence of inertial waves in the benthic bqundafy layer and its hiéh
coherence with those above (Armi and D'Asaro, 1979) suggest that the
effects of low frequency flow on inertial waves through nonlinear
frictional effects are probably not important. The model results are
then a valid zero order description; however, a'numerical model
including a mean flow would be necessary to verify this speculation.

That the reflection coefficient is near unity is consistent with the

existence of a global inertial wave field as described in Chapter 4.
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Chapter 7 Conclusions

Our work can be summarized as a spectral description of inertial
waves observed in the Western North Atlantic from subtropical to
temperate latitudes, and an attempf to interpret it in terms of the
proposed models of the global and local wave field.

The observations presented in Chapter 2 suggest that a universal
frequency spectrum ddes not exist near the inertial frequency f, where
the spectral shape is very sensitive to the local environment. In most
of the data, there is a pfominent inertial peak slightly above f in the
horizontal velocity spectrum as previously described; however, the peak
height above the background continuum varies with instrument depth and
geographical enviromment. According to the peak height, three classes of
environment and their corresponding spectra emerge: class 1 is the 1500 m
level near tbe Mid-Atlantic Ridge, with the greatest peak height of 18
db; class 2 includes (a) the upper ocean (depth less than 2000 m), (b)
the deep ocean (depth greater than 2000 m) éver rough tépography, and
(c) the deep oéean underneath the Gulf Stream, with intermediate  peak
height of 11.5 db; class 3 is the deep ocean over smooth topography,
with the lowest peak height of 7.5 db. In the inertial fréquency band,
the estimated horizontal coherence scale.is 0(60 km) at depths from 200 m
to 600 m, and probably less than this value at great depths. The order
of magnitude is consistent with the theory of Munk and Phillips (1968).
The estimated vertical coherence scale is 0(200 m):just below the main
thermocline, resulting in a wavenumber band in close agreement with the
result of Cairus and Williams (1976).

A model spectrum for the global wave field is developed in Chapter 4
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based on the wave funcéions‘obtained by Munk and Phillips tl968) and the
assumption that the frequency-wavenumber spectrum is given by the GM
model at lower latitudes. The most significant result of our work
perhaps is the.success of the global wave model in describing the
observations of class 3. Both the energy level and the height of the
observed inertial peak are well-described by’thé médel. Tﬁe‘amount of
the blue shift of the inertial peak predicted by the.model is dependent
on the zonal wavenumber band. To be consistent with the observed blue
shifts, zonal wavelengths are required to be less than 0(90 km). The
observed frequency bandwidths of the inertial peak are slightly larger
than the model results due to the kinematic effects of low frequency
motions; however, their latitudinal dependence is consistent with the
model. The latitudinal limits of the validity of the model is roughly
from 10° to 689,

For the observed spectra of class 1 and class 2, the excess inertial
wave energy above what the global model predicts is interpreted as the
result of local forcing. In the upper ocean, the most likely local
forcing is from the mixed layer and the forced waves transfer energy
downward. With this assumption , we have estimated a budget for downward
and upward travelling energy which is in close agreement (10 %
difference) with a recent estimate of Sanford. To make the idea of local
forcing more concrete, a forced model is develped in Chapter 5 based on
the latitudinal modal decomposition of a localized forcing funcfion
using the asymptotic eigensolutions of the Laplace's tidal equ&tion. The
forcing is through a vertical velocity field specified at the top and/or

bottom boundaries. For surface forcing, major characteristics of the

ey
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class 2a spectra can be qualitatively described by the model. For bottom
forcing, the resulting sﬁectra show prominent inertial peaks at deep
levels, consistent with observations over rough topography (class 2b).
The estiﬁated vertical energy flux from local sourées to the interior
suggests that both the surface and bottom sources are fairly efficient
to generate inertial waves; the total_internal wave energy could be set
up in couple of weeks. If the bottom source is from typical mid-ocean
eddies, the resulting "spin- down'" time scale for the eddies is about a
month.

In order that energetic low mode waves can propagate.over great
distance to form the global wave field, dissipation rates must be very
small for theée waves. A model is proposed in Chapter 6 to study the
reflection of inertial waves from the benthic boundary layer, which is
turbulent and homogeneous and hence can be modelled as a slab.
Frictional effects are confined to this boundary layer and modelled by a
quadratic drag law. For given incident waves, reflection coefficients
are calcﬁlated. For waves with equivalent mode number less than 20,
which contain most of the energy, the reflection coefficient is greater
than 0.9 and increases with decreasing mode number. This is inconsistent
with Leaman's estimate (A2 0.6; 1976) from the difference between
downward and upward travelling energy as measured by velocity profilers.
From the geometry of the ray paths of locally surface-forced waves, it
can be shown that most of the reflected waves cannot be measured by a
local profiler. Hence the interpretation that the excess downward
travelling energy measured By profilers is primarily dissipated in the

bottom boundary layer is misleading.
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In summary, among the different classes of observations, we have
successfully interpreted class 3, class 2a, and class 2b. In order to
explain the observations of class 1, interactions between the
Mid-Atlantic Ridge and low frequency motions which is the only appareﬁt
energy source availab1e>at intermediate.and deep levels,vmust Be
adequately modelled. Time deéendent models like Bell's (1975) are
possible approaches. Iﬁ addition to the huge inertial peaks, other

features of the class 1 spectrum are also interesting: huge M, tidal

peak, prominent super—M2 tidal peaks, small SpeCtral'slope and excess

high frequency energy. Are these caused by the topographic‘effects of
the Mid Atlantic Ridge ? When the mooringsvof the PMIII were deployed, a
discontinuity in water mass was found in the cluster B area (Joyce,
1977). 1Is this frontal feature dynamically important ? Some theoretical
work is needed here.

Concerning the strong inertial peaks found underneath the Gulf
Stream (class 2c), observations at upper levels are important to
determin the nature of the forcing. But the maintenance of moorings
within the core of the Gulf Stream is still beyond the current
capability of mooring technology. Theoretical work on the interactions
between inéritial waves and strong time dependent current would be

illuminating.
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Appendix A Temperature Spectra in the Inertial Frequency Band

The occurrence of apparent inertial peaks in observed temperature
spectra as shown in Fig. 4.1l is not universal in the data examinedf For
instance, Fig. A.l shows the temperatﬁre.spectra at Statioms 1 (3500 m)
and 7 (600 m) of the PMII, where no prominent peaks show up near f;
however, prominent inertial peaks were observed at the 4000 m depth of
Station 7 and at the same depthbof Station 3 (see Fig. 4.11) which was
only 30 km north of Station 1. We have not found any correlation between
the occurrence of the temperature inertial peaks and their physical
environment except‘that, there is always a strong temperature inertial
peak at all depths of those stations roughly along 28°N. Because the
diurnal tidal frequencies are so close to the local inertial frequency
there, the observed temperature peaks are probably due to tidal motionms.
Elsewhere, the occurrence of temperature péaks is essentially
unpredictable. We hereby investigate two possible mechanisms to account
for their occasional occurrence.

As shown in Fig. 4.11, the observed inertial peaks in the
temperature spectra arernot consistent with the global wave model which,
on the other hand, is consistent with the corresponding observed
velocity spectra. For frequencies mear £, the motion of free linear
waves 1is nearl& horizontal, and there should be no éppreciable
temperature fluctuations if the temperature gradient is essentially
ve;tical. However, in the presence of meso-scale eddies, appreciable
horizontal temperature gradient could exist in the mid-ocean

occasionally; when advected by large horizontal inertial currents, it
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Figure A.1  Temperature spectra at 600 m at Station 1 (360y,
550W), and at 3500 m at Station 7 (31.69N, 559W) of the PMII.

Arrows showing the location of the local f; error bar showing the
95 % confidence interval.
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could produce appreciable temperature signals with near inertial
frequencies. The possibility that this mechanism accounts for the
observed temperature peaks is discussed in Section A.l.
Tt is well-known that moored teﬁperature measurements are subject to

" contamination caused by vertical mboring motion. Pressure spectré
measured by TP recorders (Wunsch and Dablén,'1974) show fairly stréng
inertial peaks, indicating strong vertical mooring motion in the
inertial fréquency band. A typical pressure spectrum is.shown in Fig.
A.Z.‘Possible effects of thié mechanism on observed temperature spectra
arevdiscussed in Section A.2.

A.l1 -Advection of horizontal temperature gradient by inertial waves

The propagation of internal waves in the presence of a baroclinic
mean flow was investigated by Mooers (1975). Fof low frequency waves, he
showed that the combined effect of mean shear and its resulting
horizontal density gradient was to extend the free wave frequency band
to.an anomalous low frequency limit. It can be shown that.this low
frequéncy limit is at most é few percent 1oﬁer.than the locallf for
typical mid-ocean conditions, and that the characteristics of velocity
solutions are only slightly modified by the mean flow. However, the
density (or temperature) solutions are seriously affected by the
presence of a horizontal density gradient. Assumfng.that all the field

variables are independent of y, the temperature equation can be written

Toew 2wy 21 o, - | (A.1)
X 32

where T is the mean temperature field. For wave motion with frequencies
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Figure A.2 ' Pressure spectrum of Record 5482 (310y, 600W)
at 800 m.
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near £, it can easily be shown that the horizontal advection dominates
the vertical advection. Then the temperature spectral shape is the same

as that of the horizontal velocity, having an inertial peak. The
. — |
amplitude of the temperature fluctuation, T'®, can be estimated as the

o~

——

product of

and the radius of inertial circle, u/f (ug is a

typical horizontal speed of inertial waves). For a typical mid-ocean

T

eddy, in the main thermocline is about 3 x 1072 deg.C/km (see

MODE-1 Atlas Group, 1977). With u_ = 19 em/sec and £=7.27 x 107> sec”!
'/1. . ' :
we have T'* ~0.04 deg.C, which is withip order of magnitude of the

observed values in the main thermocline (c.f. Table A.l, which shows the
‘values for some strong temperature peaks). Therefore this mechanism
could, to some extent, explain‘the observed inertial peaks in

temperature spectra.

A.2 Mooring motion in the inertial frequency band
If the observed temperature signals are solely caused by the

vertical mooring motion, we should have

- .
T+ P 3P 0 - (A.2)

For a linear vertical temperature gradien;,’which is apéroximately the
case for small vertiéal excurslions, we should-have significant coherence
between.T and P with 180° phase difference. The T-P coherence was
calculated for a great number of stations, and significant coherence
with 180° phase difference in the inertial band was found only at

those stations where the mooring motion was relatively strong. At these
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stations, the temperature spectra indéed have strong inertial peaks. It
seems that strong mooring motion is a sufficient (but not necessary)
condition for the occurrence of'temperatgre inertial peaks. To test
whether the observed temperature peaks are indeéd caused by mooring
motion, we have calculated for four selected staﬁions the root mean
square amplitudes of both temperature and_bressure fluctﬁations in the
‘ e —y _

L8 .
inertial frequency band, denoted by T' and p'? respectivcely, and also

calculated the corresponding local temperature gradient dI/dp from CTD

=% . :
casts. By comparing T'> with dT/dP x P> , we can tell the significance

—Y
of the contribution of mooring motion to the temperature peaks. These
values are listed in Table A.l. For the three records (5482, 5792, and
5492) where mooring motion is strong and the T-P coherence’ is high, the
temperature fluctuations are mainly caused by mooring motion; with weak

mooring motion and low T-P coherence, the temperature fluctuations at

5422 cannot be attributed to mooring motion.

Table A.1
—% —

2
Tabulation of T'* (deg), P'* (dbar), dT/dP (deg/dbar), and

P'* x dT/dP (deg) in the main thermocline for selected records.

s _—Y —%
Record T'? p'? at/ap P'? x dr/dP
5482 1252 9.6 0203 195
5792 .152 . 5.34 .0206 .1
5492 a1 2.91 0202 .06

5422 : .16 .586 .0187 .011
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A.3 Summary
For records from moorings with high T-P coherence with 180° phase

difference in the inertial frequency band, a prominent‘inertial éeak is
usually observed in the temperature spectrum and is mainiy caused by
mooring motion. Fop'records from moorings with low T-P coherence in the
inertial frequency band, the occasional oécurrénce of temperature peaks
is probably due to fhe advection of horizontal temperatﬁre gradient by

the strong horizontal motion of inertial waves.
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Appendix B Evaluation of Elliptic Integrals with Parameters

Greater than One

In the calculation of the wave functions V(?S ) and P( ¢ ) using

Eqs. (3.27) and (3.19), we need to evaluate the following three

2, : .
d3 d%
_—443 , and d¢7’

quantities ¥ . From Eq. (3.26),

¢ N , , (8.1)
_;;23/1= Ss(simﬁs—singb)dy‘ ,
| | - _
we have
- 2 %
—:—E- = f-g (sin¢,—sin1¢)/ , (.2)
e d'3 o, dy NETTY ) R .
j;j;."“«’i‘é(g;)"z?ﬁ“‘ﬁ(g;‘). (B3
4y d}

Once § is known, _‘E‘ and d‘P"

and (B.3). The integral on the right-hand side of (B.1) is an elliptic

can be -easily calculated using Egs. (B.2)

integral of the second kind. Using the notation of Abramowitz and Stegun

(1964), (B.1) can be written

3

_;_§ _ M""[E'(%."‘)"E”""‘)]} | -(B..4)

where m = ;'#-‘;s. (hence m >'1); m is the paramete_rrand ¢ is the
ampiitude of the elliptic integrals. Because most of the formulae and
numerical methods for the evaluation of elliptic integrals are
formulated under the assumption that lml & 1, we have to transform the
elliptic integrals in (B.4) into their correépoﬁ_ding forms with

parameters less than one.



In terms of u defined as

-1/

u=-g ((-msinlk) dAa , (B.5)

]

we have (see Abramowitz and Stegun, 1964; p._593)
E(ulm) = ‘mylE (um"zlmf' ),_('m-l)b( .; (m > ) .(B.6)'..

'fhe relation between u and ¢ is ﬁsually written as
sn(ul m)=sin¢ , R | | (B.7)

where sn is a Jacobian elliptic function. The integrai in (B.5) is the

elliptic integral of the first kind, i.e.,

u=F(¢]|m) |
= Im—‘/:. F( 9’ M-_' ) ( m >‘I ) ' (8.8)
where .
| g = S‘I‘VI—' ( "m"ig,'n¢) _ o (B.9)

F(O l m"l)‘ can be calculated by using a rapidly convergent series

(Dwight, 1968) :

L : | 13 1-3-5
F(ﬁ,m')=%k- smecose<fi—é}+ 2% lf,;.* 2.4_6"%*“") (.10)
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where
z Y%
K = ( ([-)ﬁ'sinze) (complete elliptic integrals of the lst kind)
[4] .
J 3z 4 I 3 5
n l kX .
=< - + P
2(|+p)_[l+ =Pt Yy P ryry } ,

(i-¢ l-m")‘/"]
[H_ (1- m")./"J
!

3 2 :
A - —_— N
2 2‘4 + l’. Sihn 9 P)

—U
l

3-5 5 z ! 4
+ sind + — sin B
246 “t 6.5' .

with u known the remaining calculation in (B.6) is E(uml/2 I m )

which has a similar series representation :

ua oL i A 3 A 1Ir3-F As
E(_“'",zl"“ S$E+'sma!co$¢x (oo m? bt mi )

where sihol = Sh ( Ulm‘/" I"m-‘ ) ’

Z ot By
=f (l-m sihA)d) (complete elliptic integral of the 2nd kind)

l> 4 - 3 ¢ .
I+ % P+ PR
2(!1'}’)[ Z- o pr F | ]

1> A2, A3 .... are the same as before except that sin@ is

replaced by sin & .

it e A e e
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The value of sn(uml/zl m~1) can be calculated by using the
ascending (increase m~1) or descending (decrease m~1)
transformations (Abramowitz and Stegun, 1964), depending on whether

w1 > 0.5 or m~1 < 0.5. Then sn(x ]| r) can be approximated by

sn{xlr)=siny - —Z_— (X-sinxcosx Jepsx (T& 1)

or

S‘n()(h")k fanLX"' %(S;h‘XCOSAX*X)S?CAZ)( (.hzl).'.
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