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Abstract

Sedimentary records of naturally occurring and fallout-derived radionuclides are widely

used as tools for estimating both the ages of recent sediments and rates of sedimentation

and bioturbation.  Developing these records to the point of data interpretation requires

careful sample collection, processing, analysis and data modeling.  In this work, we

document a number of potential pitfalls that can impact sediment core records and their

interpretation.  This paper is not intended as an exhaustive treatment of these potential

problems.  Rather, the emphasis is on potential problems that are not well documented in

the literature, as follows:  1) The mere sampling of sediment cores at a resolution that is

too coarse can result in an apparent diffusive mixing of the sedimentary record at rates

comparable to diffusive bioturbation rates observed in many locations; 2) 210Pb profiles in

slowly accumulating sediments can easily be misinterpreted to be driven by

sedimentation, when in fact bioturbation is the dominant control.  Multiple isotopes of

different half lives and/or origin may help to distinguish between these two possible

interpretations; 3) Apparent mixing can occur due simply to numerical artifacts inherent

in the finite difference approximations of the advection diffusion equation used to model

sedimentation and bioturbation.  Model users need to be aware of this potential problem.

Solutions to each of these potential pitfalls are offered to ensure the best possible

sediment age estimates and/or sedimentation and bioturbation rates can be obtained.
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1.0 Introduction

The radionuclides 210Pb and 137Cs are commonly measured in sediments as tools

for dating recent sediments and to quantify both sedimentation and bioturbation rates.   A

flux of 210Pb occurs to the surface of sediments as the result of the decay of 222Rn, a

member of the 238U decay series.  In shallow fresh and marine sediments, much of the

210Pb results from decay of atmospheric 222Rn, while in deep marine sediments, much of

the 210Pb (and 222Rn) is derived from 226Ra in the water column. 210Pb is particle-reactive

and quickly sorbs to settling particulate matter.   As a consequence of its 22.3-year half-

life, 210Pb provides information about sediment ages, accumulation rates, and particle

reworking over timescales of roughly 100-150 years (e.g. Robbins, 1978; Appleby,

2001).  137Cs has been distributed globally by atmospheric testing of nuclear weapons.

Significant fallout commenced in 1952 and peaked in 1963.  This nuclide is also found in

surficial sediments because it is also particle reactive.  It is used as a chronometer in

sediments either by assuming its peak in activity corresponds to the fallout peak in 1963

or its first detection corresponds to the onset of significant fallout in 1952.  Where

benthic organisms have been active, sedimentary 137Cs distributions can also be used to

constrain bioturbation rates and depths (e.g. Cochran, 1985).

The radionuclide 228Th (t1/2 = 1.9 y) is a member of the 232Th decay series and is

derived from decay of water-column 228Ra.   Elevated 228Ra activities are often observed

in coastal waters (Yamada and Nozaki, 1986), from which a continuous supply of 228Th is

generated. Because Th is particle-reactive, 228Th is rapidly delivered to the seafloor.

Excess 228Th (over and above the supporting activities of 228Ra) can develop in coastal
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sediments, particularly as the water depth increases along with the inventory of overlying

228Ra.  This excess 228Th is another useful tracer of bioturbation depths and rates.

The principles used to infer sediment chronologies and bioturbation rates from

these radionuclides are well established.  However, generating the best possible

interpretation of a dataset of this type requires making wise decisions when collecting

and processing sediment samples and when modeling the radionuclide data.  There are

potential pitfalls in each of these steps that can severely degrade the quality of the final

interpretation.  This paper is not meant to be an exhaustive review of these potential

problems, but instead focuses on how to avoid some of the pitfalls, with an emphasis on

issues not well documented in the literature.  This paper thus provides insight that will

prove useful to the large community of people who use sediment cores and radionuclide-

based sediment chronologies for their research, but who are not experts themselves in

coring techniques and sediment chronologies.  Much of the information presented in this

paper will already be known to the research communities focused on studies of

bioturbation and recent chronological reconstructions from sediments.  We are confident

nonetheless, based on numerous interactions with researchers relying on sediment cores

for paleoenvironmental and/or surficial process interpretation, that there is a large

community for whom the discussion in this paper will prove valuable.

2.0 Methods

The analytical methods used in this work will only be discussed very briefly, as

they are well documented in other papers to which we will refer the reader for detail.

Sedimentary 210Pb and Th isotope data were determined by dissolving sediment in

concentrated nitric, hydrochloric and hydrofluoric acids in a microwave digestion system
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followed by alpha counting. 210Pb was plated onto silver disks using the method of Flynn

(1968) while Th isotopes were plated using a TTA benzene solution (as described for Pa

in Anderson and Fleer, 1982).  Supported 210Pb activities were determined from the

average total 210Pb activity below the depth at which the activities stop decreasing with

depth.  Because the excess 210Pb activities are ~30 times higher than this presumed

supported 210Pb activity, our interpretations are quite insensitive to this estimate.  The

excess 210Pb activity was determined by subtracting the supported 210Pb activity from the

total 210Pb activity.  These data have been previously presented elsewhere (Crusius et al.,

1996), but they have not been modeled, which is the focus of this work.  Much of this

paper, however, focuses on model-based interpretations of idealized data (not these data

from the Sea of Japan).

3.0  Modeling radionuclide distribution in sediments

Much of the interpretation in this paper relies upon a model to infer rates of

sedimentation and/or bioturbation.  In the simplest model version, sedimentation is

treated as a process of advection while bioturbation is treated as a process of diffusion

(e.g. eq 1) . The radionuclide distribution can be described according to:
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where

ρ = density of solid phase (cm3 g-1)

A = nuclide activity (dpm g-1)

t = time (years)

z = depth (cm)

Db = diffusive mixing rate (cm2 yr-1)
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s =  sedimentation rate (cm yr-1)

λ = radionuclide decay constant = 0.0311 yr-1 for 210Pb and 0.0230 yr-1 for 137Cs

This simple treatment of bioturbation provides a reasonable description of data in many

cases, and allows quantifying the time-averaged impact of mixing processes using a

single parameter, the diffusive mixing coefficient (Db, cm2yr-1) (Goldberg and Koide,

1962; Guinasso and Schink, 1975).  It is important to bear in mind that treating mixing as

a process of diffusion requires making certain assumptions about the depth, symmetry

and frequency of sediment mixing (see Boudreau, 1986a and Meysman et al., 2003).  For

simple, idealized cases there are simple analytical solutions to eq. 1  (e.g. Berger and

Heath, 1968; Cochran, 1985; Christensen and Bhunia, 1986) which allow solving for the

sedimentation rate, s, and the bioturbation rate, Db .  Again, these solutions will not be

repeated here.

For non-idealized and/or non-steady-state conditions there is often no analytical

solution to this equation and a numerical sediment mixing model is an excellent tool for

quantitative interpretion of radionuclide profiles in sediments. There are many mixing

models described in the literature.  Some of these utilize diffusive mixing (e.g. Peng et

al., 1979; Santschi et al., 1980) while others simulate non-diffusive (e.g. nonlocal )

mixing processes. (e.g. Boudreau, 1986b; Robbins, 1986).   In this work, we use a

numerical model that uses a finite difference approximation of Eq. 1 whose origin dates

to Santschi et al., 1980 but has been subsequently modified (Crusius, 1992; Crusius et al,

2004).  This model is written in both the C programming language and in Matlab™ and

uses the upwind differencing scheme to model sedimentation (as a process of advection)
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and the forward time, centered space differencing scheme to model diffusive

bioturbation.

4.0  Results and discussion

There are many critical steps between the planning stages of collecting any

sedimentary record to the interpretation of high-quality radionuclide-based chronologies

and/or sedimentation or bioturbation rates.  First, a core must be collected from a region

of sediment deposition.   These locations can be determined in many cases from

predictable patterns of sediment focusing (e.g. sediment accumulates in the deep holes) or

from seismic data which show soft mud. Second, the core must be collected in such a

way as to preserve the core top.  Again, there is a rich literature describing various coring

methodologies and how to avoid coring artifacts (e.g. Baxter et al., 1981; Crusius and

Anderson, 1991).  Once a core has been carefully collected, the core must be sampled

properly to ensure a high-resolution record.  There are two seemingly routine steps that

can potentially have a large impact on the fidelity of the eventual sedimentary record

produced:  1) trimming of core edges and 2) sampling at a sufficiently high resolution.  It

is well known that many sediment coring techniques result in smearing along the core

edges (e.g. Chant and Cornett, 1991).  Trimming the core edges is necessary to avoid

mixing artifacts caused by this process.  This issue has been well documented elsewhere

(Chant and Cornett, 1991) and will not be repeated here.  However, it is not well

documented that coarse-resolution sampling of a core can also degrade the temporal

resolution of the record and lead to apparent mixing of the sediment.

To demonstrate the effects of sample sectioning alone on resulting down-core profiles, an

ideal 1m sediment core was created using the record of annual fallout deposition at New York City
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(decay corrected to deposition year) as the source function.  Cs-137 deposition was estimated using

1.6x-observed annual 90Sr deposition at New York City (USDOE online database, Larsen, 1982;

Cambray et al., 1978).  In this paper, we define “ideal” as follows: 1) global fallout deposition is the

only source of 137Cs to sediments; 2) there is no mixing; 3) there is no compaction; and 4) there is no

wash-in of previously contaminated sediments, or contaminant/sediment focusing.  Annual layers in

each core profile were constructed using a sedimentation rate of 1.0 cm yr-1.  This determined the

thickness of each layer and the NYC fallout flux for each year which, in turn, determined the 137Cs

activity and inventory in each layer.  Once an ideal profile was constructed, sampling at intervals of

1.0, 2.0, 4.0 and 8.0 cm was simulated using Matlab™.  When the modeled core was sampled at 1-

cm interval from a 1-m sediment core with an accumulation rate of 1.0 cm yr-1, there is in no

apparent loss of resolution because the sampling resolution is annual, matching the resolution of the

fallout input file.  The fact that there is no loss of resolution is apparent in the identical shape of the

137Cs fallout record and sediment profile (Figure 1, first and second rows).  When sampling at

increasingly coarse resolution, however, two important effects occur, which we address in turn.  The

first effect is that there is a clear loss of resolution in the record, manifested by a reduced 137Cs

maximum and a merging of the 1958 and 1963 peaks (Figure 1 left-hand panels).  This effect can be

quantified by modeling the effective diffusive mixing rate caused by this process (Dsampling). Dsampling

is zero when the core is sampled at 1-cm resolution (again, because both the fallout input function

and sediment record have annual resolution).  The Dsampling estimate is 0.032, 0.32 and 3.0 cm2yr-1

when the core sampling interval is 2, 4 and 8cm (Figure 1, right panels).  These rates of effective

mixing caused by sampling at coarse resolution are comparable to the diffusive rate of bioturbation

often observed in sedimentary records (Olsen et al., 1981; Cochran, 1985; Smith and Schafer, 1984;

Thomson et al., 1988; Anderson et al., 1988; Crusius et al., 2004) and suggest that the sampling



9

strategy alone could have contributed to the apparent mixing observed in some previously published

studies.  Based on our results, the effects of sampling at coarse resolution are likely to be even more

pronounced in areas where sedimentation rates are lower than 1 cm yr-1. A second, fairly obvious,

impact of this sort of sampling-induced mixing is that both the depth of initial appearance of 137Cs

and the depth of maximum activity become less certain as the sampling resolution coarsens (Figure

1, left panels).  It is worth pointing out that, despite the loss of resolution in these records, the 137Cs

inventory is preserved in each case.  It is also worth pointing out that the size of the sampling

interval necessary to resolve the desired features is tracer-specific.  In other words, the resolution

required to resolve features based on 14C dates would be coarser than that required to resolve

features in 210Pb or 137Cs profiles, due to the longer half-life, and longer period of sustained tracer

input, for 14C compared to 210Pb and 137Cs.

Another important step towards developing a robust interpretation of sedimentary

radionuclide data is to analyze two or more independent chronometers, because the

interpretation can be ambiguous or even misleading using only one chronometer.  As an

example, analyzing the sediment for multiple isotopes can help to resolve whether the

coretop is missing, because one cannot necessarily tell based solely on visual inspection,

(Crusius and Anderson, 1991), and one cannot tell based solely on 210Pb data, either.  A

210Pb profile by itself can only provide an indication of the age of a section of sediment

relative to the age of the core top, based on the idea that half the 210Pb decays every 22

years.  But if the core top is missing, sediment ages will be biased towards too old an age

by an amount equal to the amount of time represented by the missing core top.

Achieving agreement between two chronometers (210Pb and 137Cs, for example), or

demonstrating the presence of an excess of a short-lived nuclide (234Th (t1/2 = 24 d), 7Be
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(t1/2 = 53 d) or 228Th (t1/2 = 1.9 y)) can give confidence that there is no material missing

from the core top.

Another example demonstrating the value of having multiple tracers of sediment

age and bioturbation arises from examination of continental margin 210Pb profiles, which

could be driven either by sediment accumulation, bioturbation, or both.  There is a

common misconception that any 210Pb profile that decreases with depth must reflect

sediment accumulation at a rate reflected by the 210Pb slope, rather than reflecting

bioturbation.  However, in environments with low sedimentation rates, diffusive

bioturbation does not necessarily homogenize the 210Pb profile, but rather it results in a

210Pb slope that increases with increasing rates of bioturbation until the 210Pb activity

appears constant at a sufficiently rapid rate of mixing (see Figure 2 b).   Distinguishing

between downward transport of 210Pb due to sediment accumulation and downward

transport due to bioturbation requires measurement of independent tracers of

sedimentation rate and/or bioturbation rate such as 14C, 137Cs, 239+240Pu, 228Th, etc.

As an example, we present excess 210Pb data from the continental margin of the

Sea of Japan, from a sediment core collected using a multicorer from a water depth of

1473 m (39°50.95’N, 139°10.92’E).  This excess 210Pb profile reveals a steeply sloped

portion extending from the surface to a depth of ~7 cm, underlain by a more gently

sloping region extending to ~11 cm (Figure 2).   Examined on its own, these 210Pb data

could easily be interpreted to suggest a sedimentation rate at this location of 0.25 cm yr-1

at the top of the core, underlain by material deposited at 0.05 cm yr-1 (Figure 2 a), perhaps

reflecting a recent (anthropogenic) change in sedimentation rate.  However, an alternative

interpretation could be that there is negligible sedimentation at this site and the



11

downward transport of 210Pb is due to bioturbation.  Indeed, these data can be modeled

fairly accurately to suggest a slow sedimentation rate (0.02 cm yr-1) and diffusive

bioturbation to a depth of 7 cm at a rate between 0.2 and 2 cm2y-1 (Figure 2 b).

Determining which interpretation is correct requires independent information.   In this

case, we have monospecific foraminiferal AMS 14C dates as well as 228Th data.   The 14C-

based sedimentation rate is only 0.02 cm yr-1.  This is a Holocene average based on a

single date within a core spanning 30 kyr; details are presented in Crusius et al. (1999).

This 14C-based figure is MUCH lower than would be inferred by assuming the downcore

decrease in 210Pb activity is due to sedimentation.  Given that the 14C-based accumulation

rate reflects a 10,000-year average while the uppermost 210Pb profile would reflect a

decadal average, these data do not rule out, of course, that the upper ~7 cm of the record

reflects a recent anthropogenic increase in sedimentation.  A third independent piece of

information settles the issue, however.  Excess 228Th (that present in excess of 232Th, its

radioactive grandparent), penetrates to a depth of 4-5 cm.  These data also are consistent

with a bioturbation rate between 0.2 and 2 cm2yr-1 (Figure 2 c).  Based on the multi-

isotope evidence, therefore, the distribution of all three isotopes in the top 7 cm can be

explained by a slow sedimentation rate (0.02 cm yr-1) and bioturbation of the upper ~7 cm

of sediment at a rate of 0.2 to 2 cm2yr-1.  These data still do not resolve whether the 210Pb

record below ~7 cm truly reflects accumulation at 0.05 cm yr-1 (Figure 2 a) or

accumulation at 0.02 cm yr-1 together with weak bioturbation below 7 cm. The details of

this specific example are not important.  Rather, the take-home message is that

developing a robust interpretation of sedimentary 210Pb data requires information from

independent tracers, and possibly interpretation with a sediment-mixing model.  In
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addition to 14C and 228Th, other independent data that could help resolve these sorts of

questions could include fallout tracers such as 137Cs and 239+240Pu as well some other

independent chronological information (appearance of ragweed pollen, peak in

atmospheric Pb fallout, etc).  It is important to bear in mind with this type of example that

bioturbation can extend to depths of ~30 cm in continental shelf sediments, so

bioturbation-driven slopes of excess 210Pb profiles can reach to these depths as well (e.g.

Anderson et al., 1988; Crusius et al., 2004), far below the depth of the global average

marine sediment mixed layer depth of 10 cm (Boudreau, 1994).  It is also important to

realize that rates inferred from tracers with different half lives may sometimes be

different precisely because they may record processes on different timescales.   For

example, it has been proposed that short-lived isotopes (228Th) may yield faster rates of

bioturbation than long-lived isotopes (210Pb) because the short-lived isotopes may be

adsorbed to younger, more labile particles than the longer-lived isotopes (Smith et al.,

1993).

Another simple way to examine whether an excess 210Pb record reflects mixing or

sedimentation is to plot excess 210Pb versus fallout nuclide data (see Anderson et al.,

1988).  If there is important chronological information to be gleaned from the excess

210Pb, this plot should show a clear non-zero intercept on the 210Pb axis, because

sediments older than 1950 should contain no detectable fallout nuclide while there should

still be quantifiable excess 210Pb.  On the other hand, if the data are caused by downward

mixing, with a negligible contribution from sedimentation, the data will not show a clear

intercept on the 210Pb axis and will instead follow a trend through the origin.   The

methods for quantifying chronological interpretations from 210Pb data are discussed in
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detail in other work (e.g. Appleby and Oldfield, 1978; Appleby, 2001) and will not be

repeated here.

Numerical models are extremely powerful tools for interpreting sedimentary

radionuclide data, as the many papers referred to above help to illustrate.  Yet, such

models can cause errors in interpretation when used by someone unfamiliar with their

idiosynchrosies.  Pointing out one important example requires providing some

background on the mathematical treatment of many common models. Sediment mixing

models utilize numerical techniques (such as finite difference, finite element, etc.) to

approximate the equations describing the distribution of these nuclides (e.g. equation 1).

These techniques use math no more complicated than division yet they can approximate

solutions to differential equations with no analytical solution.  In many models (and the

model used in this paper), both the advection and diffusion terms are based on Taylor

Series approximations of first and second derivatives that allow predicting a future

concentration at a given depth from present concentrations at nearby depths and from the

depth step (depth resolution) of the model. In this example, we use this type of model to

estimate a low mixing rate in a setting where radionuclide transport is dominated by

sedimentation, which is modeled here as a process of advection.  In the terminology of

fluid dynamicists, the Peclet number (Ls/D) is high (L= mixed layer depth (cm); other

terms defined in equation 1).  It turns out that there is “numerical dispersion” which

mixes the modeled radionuclides just as diffusive bioturbation might.  This numerical

dispersion in the model described here is an artifact of the upwind or backward

differencing scheme used for the advection term.  Numerical diffusion occurs as a result

of the discretization of a continuous system in time and space.  For example, consider a



14

particle moving along a finite difference grid with a spacing of delta z and a time step of

delta t.  After a particle has been advected along the finite difference grid for a time

period (delta t), it must drop onto the closest grid node (the spacing of grid nodes is

determined by delta z).  At the end of delta t, the particle moves forward if it is more than

halfway toward a grid point or backwards if it is less than halfway.  As a consequence,

the final position of the particle differs slightly from its ideal position, sometimes being

slightly farther, and other times not as far, as it would be without such roundoff error.

This process is quite similar to random-walk diffusion. This numerical dispersion can

actually be quantified as Dnum, analogous to the diffusive mixing term.  This error stems

from the truncation of the Taylor series used in the upwind difference approximation of
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.  The Taylor theorem states that if the derivatives of a function exist, the function can

be represented by a polynomial.  From the Taylor series,

€ 

Cz −Δz = Cz −
∂C
∂z

Δz +
1
2
∂ 2C
∂z2

Δz 2 − 1
3!
∂ 3C
∂z3

Δz 3 + ....   (Eq. 2)

where

Cz = the concentration at some depth z

∆z = the size of the depth step (cm) between adjacent model grid points

Ignoring the third-order term above and solving for the first derivative yields
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The upwind difference approximation of this advective term is represented by the

right side of equation 4, minus the second term.  Note that the second term on the right

side has the factor 
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sΔz
2

 multiplied by 
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∂ 2C
∂z2

 and is thus analogous to the diffusive term in

Eq. 1 (in which D is multiplied by 

€ 
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).   By ignoring this term, we thus introduce an

error that has the same units as diffusion, hence it’s called numerical diffusion (Dnum.).

For the steady-state case therefore, (e.g. 210Pb),

Dnum. ≈ 
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sΔz
2

  (Eq. 5)

For the transient state case (i.e. interpretation of fallout nuclides 239+240Pu and 137Cs),

Dnum. ≈  

€ 

sΔz
2
(1− c), where c = 

€ 

sΔt
Δz

(Eq. 6)

where

∆t = the size of the time step (years) between model time points

Equation 6 is from Roache (1972).

In each case above (Eqs. 5 and 6), the numerical dispersion is proportional to the

sedimentation rate (s) and to the size of the depth step used (∆z).  As a consequence, the

impacts of numerical dispersion can be readily observed from plots of model runs with

increasingly large depth step (Figure 3a-c).  In the 137Cs model simulation, the “double

peak” observed in radioactive fallout records in 1958 and 1963 is apparent in the

sedimentary record when the depth step is 0.004 cm, but it is gradually eroded as the

depth step increases above ~0.01 cm (Figure 3a).  Equally important is the fact that the

depth of penetration of modeled 137Cs increases from ~14 to ~18 cm as the depth step

increases from 0.04 to 0.5 cm (Figure 3b).  Since the depth of 137Cs penetration is often
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used to suggest a date in the early 1950s when significant atmospheric fallout began, this

numerical dispersion would lead to an error in the date assigned to these sediments,

merely due to the choice of model depth step.  A similar increase in penetration of excess

210Pb (from ~24 to ~28 cm) is apparent when depth step increases from 0.1 to 1 cm

(Figure 3c).  For this specific case, it’s important to minimize the model depth step

sufficiently so that it does not bias the sedimentation and age estimates.  In our core-

sectioning model simulations, Dnum. was minimized at  5 x 10-7, 1 x 10-4, 2.5 x 10-3 and 2.5

x 10-3 cm2 yr-1 for sampling intervals of 1, 2, 4 and 8 cm, respectively.  The more

important take-home message of this section is that the user of a numerical model must

be sufficiently familiar with what the model is doing to ensure appropriate parameters are

chosen for the model and insidious problems such as numerical dispersion are avoided.

5.0  Summary and Conclusions

In order to be confident of sediment ages and of sedimentation and bioturbation

rates implied by sedimentary radionuclide data, there are a number of important steps to

take when collecting and sampling cores and when interpreting and modeling data. The

specific steps we document in this work include sectioning sediment cores at sufficiently

fine resolution, analyzing the sediment for multiple independent tracers of sedimentation

rate and age, and applying an appropriate analytical or numerical model to interpret the

data, taking care to avoid numerical artifacts when using numerical models.
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Figure captions

Figure 1:  Effects of different core sectioning intervals on 137Cs profile and sediment

mixing model results.  Fallout record for New York City (top left) used as 137Cs input for

all model runs (see text).  Left-hand panels (step plots) show results of sampling an ideal

sediment column accumulating at 1 cm yr-1 at increasingly coarse intervals.  Dashed gray

line indicates the “true” depth of the 137Cs maximum.  Right-hand panels show plots with

the average activity for the sampling interval plotted at the midpoint (black lines with

open circles); dark gray lines show model results and calculated mixing rates.  Note error

bars represent an assumed uncertainty of 10 percent with respect to 137Cs activities.

Figure 2: a) Excess 210Pb data (squares) from MC8B from the continental margin of the

Japan Sea (39°50.95’N, 139°10.92’E, 1473 m), and model fits to the data assuming the

210Pb profiles are driven by sedimentation only (no bioturbation) at rates of 0.25 cm yr-1

(solid line) and 0.05 cm yr-1 (dashed line).   Also shown is the trend that would be

predicted based on the measured 14C-inferred sedimentation rate of 0.021 cm yr-1 (dotted

line).  b) Model fits to the excess 210Pb data (squares) assuming the 14C-inferred

sedimentation rate (0.021 cm yr-1), with diffusive mixing rates ranging from 0.02-2 cm2

yr-1;  c)  Modeled profile of 228Th/232Th (activity ratio) assuming the 14C-inferred

sedimentation rate and the diffusive bioturbation rates of 0.2 and 2 cm2 yr-1.

Figure 3:  Numerical dispersion in modeled 137Cs and 210Pb profiles.  a) Modeled 137Cs

profiles varying only the model depth step.  Note that the numerical dispersion increases

with increasing depth step (thin solid line, 0.004 cm; dashed line, 0.01 cm; dotted line,

0.1 cm; thick line with diamonds, 0.5 cm); b) Expansion of 3a showing the region at the

base of 137Cs penetration; c) Modeled 210Pb profile with varying depth step (thin solid line,
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analytical solution; dashed line, depth step = 0.1 cm;  dotted line, 0.3 cm; thick line with

diamonds, 1 cm)
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