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Abstract 

In this thesis, the relationships of olfactory sensitivity to three biological variables 

were tested. The sensitivity of a marine mammal, the sea otter (Enhydra lutris) was 

measured in order to determine whether a marine lifestyle results in impaired olfaction. 

The effect of dietary relevance on sensitivity to specific odorants was evaluated. Finally, 

a new morphometric model of olfactory uptake efficiency was developed and tested 

against behavioral measurements of olfactory sensitivity in twelve mammalian species 

from five orders. 

Olfactory thresholds were obtained for the first time from two sea otters for seven 

odorant compounds from various natural sources. Otters were trained using operant 

conditioning to participate in direct behavioral testing. Sea otter olfactory sensitivity was 

comparable to that of previously studied terrestrial mammals. 

The incidence of an odorant in the diet of the olfactor was found to influence 

specific sensitivity to that compound but to varying degrees among different mammalian 

orders. 

Nasal cavity specimens were measured using radiologic (CT scan) and histologic 

(light microscopy) techniques. Surface areas and volumes of the nasal cavity were used 

to calculate the Olfactory Uptake Efficiency (OUE). OUE is significantly related to 

olfactory bulb volume. A possible relationship was found between OUE and general 

olfactory sensitivity. 
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Chapter 1 : Introduction 

Structure, Function and Context: the impact of morphometry and ecology on 

olfactory sensitivity 

Goals 

There were three major objectives to this thesis: 

I .  To test whether a marine lifestyle has a negative impact on general olfactory 

sensitivity. 

2. To determine the influence of nasal anatomy on olfactory sensitivity in 

mammals. 

3. To determine the influence of dietary chemical ecology on specific olfactory 

sensitivity. 

In order to accomplish this, the following hypotheses were tested: 

1. A marine mammal will have weak general olfactory sensitivity compared with 

terrestrial mammals. 

2. A calculated olfactory uptake efficiency index based on nasal morphometric 

measures is related to overall olfactory sensitivity in mammals. 

3. Individual mammalian species are more sensitive to compounds with high 

ecological relevance; eg., characteristic food odour components, than are other 

mammals for which the same compounds have less relevance. 

Olfactory sensitivity is quantitatively represented by the olfactory detection 

threshold, or lowest detectable concentration. Thresholds vary among individual animals 

and among odorant compounds. An animal's threshold for a particular compound 



represents the animal's specific sensitivity to that compound. However, thresholds may 

also vary with time and context. The range and average of available thresholds for a 

given mammalian species are currently the best available indicators of general or overall 

olfactory sensitivity. Despite many recent advances in olfactory genetics and 

neurophysiology, neither general nor specific olfactory sensitivity has to date been 

predicted from any genetic or neuroanatomical trait. 

This study used anatomical characters, specifically epithelial surface area and 

lumen volume in different regions of the nasal cavity, to compare the olfactory system of 

twelve mammals from five orders: 

Rodentia: House mouse (MW m u s c u l ~ ~ ) ;  Brown rat (Rattus norvegicus) 

Carnivora: Domestic dog (Canis familiaris); Sea otter (Enhydra lutris) 

Insectivora: European shrew (Sorex araneus) 

Chiroptera: Vampire bat (Desmodus rotundus); Seba's short-tailed bat (Carollia 

perspicillata); Great h i t  bat (Artibeus literatus); Pale spear-nosed bat (Phyllostomus 

discolor); mouse-eared bat (Myotis myotis) 

Primates: Human (Homo sapiens); Common squirrel monkey (Saimiri sciureus). 

Nasal cavities were examined post-mortem by computerized tomography (CT) 

and light microscopy. 

Olfactory fbnction was also evaluated directly in live sea otters, as described in 

Chapter 2. A behavioral assay was used to determine olfactory sensitivity of these 

subjects for a set of natural volatile compounds. The animals were trained using operant 

conditioning to distinguish and report the presence of an odorant in an air stream 



presented by an air dilution olfactometer. Each compound was presented in different 

concentrations to determine the lowest concentration that elicits a reliable response: the 

olfactory detection threshold. Sea otters were selected as an example of both divergent 

dietary ecology and divergent nasal morphometry, both resulting from their marine 

lifestyle. These measurements also served to test whether a marine lifestyle decreases 

olfactory sensitivity compared to that of other mammals. 

The nasal anatomical data and sea otter threshold datasets, and published 

olfactory threshold values were used to test a morphometric model of olfactory 

sensitivity. Sensitivity data for the species listed earlier as well as published data for the 

Pig-tailed macaque (Macaca nemestrina) and the European hedgehog (Erinaceus 

europaeus) were also used to evaluate the impact of ecological relevance on specific 

olfactory sensitivity, by comparing the specific olfactory sensitivities of pairs of species 

within the same order but with divergent dietary habits. 

Background 

The evolution of olfactory sensitivity is poorly understood. It is known that 

olfactory sensitivities vary widely among the Mammalia. Some mammals, such as the 

Mouse-eared bat have uniformly poor sensitivity relative to other species for compounds 

available for comparison; i.e., they have poor general sensitivity. In other species, 

sensitivity to a specific compound can be exceptionally good or poor. The pig-tailed 

macaque has comparable sensitivity to the other primates for most compounds tested but 



sensitivity to ethyl acetate fifty times worse than that of the next least sensitive primate; 

i.e. good general but poor specific sensitivity. 

Chemoreception is an extremely important sense for many vertebrates. Its critical 

role is reflected in the fact that all vertebrate species preserve at least one chemoreceptive 

sense (smell or taste), while there are numerous known cases of other senses being 

secondarily lost; e.g., vision in cavefish (Amblyupsis rosae, A. spelaeas), European 

subterranean salamanders (Proteus anguineus), and blind snakes (Ramphotyphlops 

braminus, Leptotyphlops dulcis, L. humilis) or hearing in many species of snakes and 

burrowing lizards (Stoddart, 1980). It is clear that olfaction moderates a wide variety of 

behaviors, from feeding, territoriality and migration to mate selection, breeding and care 

of young. Further, in several mammals it has been demonstrated that olfactory 

experience early in life is responsible for social imprinting, kin recognition and the 

formation of food preferences (Hepper, 1994; Sun and Mueller-Schwarze, 1997; Vargas 

and Anderson, 1 996). 

In mammals, the gene family encoding olfactory receptor proteins is believed to 

constitute 1% of the genome, the largest known gene family in any species (Buck, 2000). 

By contrast, primate trichromatic colour-&ision, the most sophisticated colour-vision 

system in the Mamrnalia, has no more than seven genes coding for three pigment types, 

and the green gene family's five members are nearly identical (Nathans st al, 1986). 

Significance 



Volatile chemical signals differ from light cues in two important ways. First, 

while a variety of no-light or extremely low-light habitats exist in subterranean and deep 

sea environments, there are no odourless or near-odourless habitats in either air or water. 

If living cells or abiotic chemical sources are present, they may be producing chemical 

signals of some survival significance. Therefore, an olfactory sense can be usefbl 

anywhere, unlike vision, which can be compromise and in some species absent or lost as 

noted above. Particular ecological constraints that call for the nasal passages to be open 

infrequently, as in cetaceans, may reduce the importance of nasal chemoreception, but 

this reduction need not apply to a marine species that spends most of its life at the 

surface. The persistence of olfactory sensitivity in a marine environment is tested in the 

sea otter in Chapter 2. 

The second relevant way in which chemoreception and light reception differ is 

that chemical cues carry particular information about their specific sources. If a fish eye 

has evolved high sensitivity to blue light, this is plausibly explained by the fact that it 

belongs to a pelagic fish in whose habitat blue light is abundant and therefore useful for 

detecting a wide variety of objects. If a mammal's olfactory system has evolved high 

sensitivity to butyric acid, the relative abundance of butyric acid in its habitat is not a 

sufficient explanation. Butyric acid is only relevant if it is produced by and can aid in the 

detection of some item of importance. 

Rapid advances within the past fourteen years in the molecular biology of 

olfaction, beginning with the identification of the olfactory receptor protein superfamily 

by Buck and Axle (1 99 I), suggest that detections of different odorant stimuli are 



mediated by different sets of genes. This in turn suggests that olfactory sensitivities to 

particular compounds evolve at least partially independently of one another. Different 

species can thus be expected to differ in their relative sensitivity to different compounds, 

depending on the adaptive value of detecting them. Since many volatile chemicals, 

including aliphatic acids, alcohols, and esters occur with very different frequencies in 

different organisms, taxa and biomes, it is reasonable to expect sensitivity to different 

compounds to be related to their usefulness in detecting and identifying objects of 

importance, such as predators, prey or food items, and conspecifics. This relationship is 

tested in Chapter 3. 

Olfactory sensitivity is extremely difficult to measure directly. Therefore, much 

of what we know about olfaction is inferred from behavioral, genetic, and anatomical 

studies. However, the relationships among ethology, genotype, anatomy and olfactory 

function are not well understood. In particular, no measure has yet been determined that 

quantitatively relates to olfactory sensitivity across species. Variations in the anatomy of 

the nasal cavity is tested in Chapter 4 as a predictor of absolute olfactory sensitivity. 

What creates selection pressure for increased general or specific olfactory 

sensitivity? Assuming that such selection pressure exists, what anatomical or 

physiological traits will affect either general or specific sensitivity? Finally, to what 

extent is it possible for olfactory selection pressure to alter these anatomical and 

physiological traits and what are the non-olfactory effects of such alteration? There have 

been speculations on all three questions, but none has been answered, largely because of 

a scarcity of data, particularly olfactory threshold data. This project utilized a broad range 



of mammals to test candidate sources for selection pressure that influence specific 

sensitivity (dietary chemical ecology) and general sensitivity (terrestrial versus marine 

habitat) and a candidate mechanism of increasing general sensitivity (nasal cavity 

rnorphometry). 



References 

Buck, L. 2000. The molecular architecture of odor and pheromone sensing in mammals. 

Cell, 100:611-618 

Buck, L. and Axle, R. 199 1. A novel multigene family may encode odorant receptors: a 

molecular basis for odor recognition. Cell, 65: 175- 187 

Hepper, P. 1994. Long-term retention of kinship recognition established during infancy 

in the domestic dog. Behavioural Processes, 33:3- 14 

Nathans, J., Thomas, D., Hogness, D. 1986. Molecular genetics of human color vision: 

The genes encoding blue, green and red color pigments. Science 232: 193-202 

Stoddart, M. 1980. The Ecology of Vertebrate Olfaction(chap. 1). Chapman and Hall, 

New York, NY 

Sun, L. and Mueller-Schwarze, D. 1997. Sibling recognition in the beaver: a field test for 

phenotype matching. Animal Behaviour, 54:493-502 

Vargas, A. and Anderson, S. 1996. Effects of diet on captive black-footed ferret (Mustela 

nigripes) food preference. Zoo Biology, 15, 105-1 3 





Chapter 2: Olfactory sensitivity of the sea otter, Enhydra luiris 

Abstract 

Absolute olfactory sensitivity was behaviorally measured in two healthy adult male sea 

otters. Animals were trained using operant conditioning to distinguish between an 

odorant and an odorless stimulus. Absolute thresholds were calculated using the staircase 

method. Thresholds were measured for acetic acid (10"-8.27 moVL), butyric acid (10"- 

9.53mol/L), caproic acid (10"-8.98mol/L), octanoic acid (10"-9.38moVL), amyl acetate 

(1 0"-8.8 1 mol/L and 10"-7.85moVL), benzaldehyde (1 0"-9.72mollL) and eugenol(1OA- 

9.75mol/L). Results show otters have sensitivity consistent other mammals. The data do 

not support the notion that a marine lifestyle leads invariably to reduced olfactory 

sensitivity. 

Introduction 

The sea otter, Enhydra lutris, is an interesting species for measuring olfactory 

sensitivity for three reasons. First, it belongs to an order generally believed to possess 

acute olfactory sensitivity but from which no non-domestic representative has ever been 

tested. Second, it occurs in a habitat believed to be populated by mammals with poor 

olfactory sensitivity, but from which no representative has been tested. Finally, for the 

purpose of assessing the importance of nasal cavity morphology in olfaction, the sea otter 

possesses a highly derived nasal cavity structure. This potential difference in anatomy 

may impact the olfactory function of the animal. 



The sea otter belongs to the Mustelid family of the order Camivora. Olfaction is 

believed to be a behaviorally significant sense in the Camivora. The importance of 

olfaction in carnivores is supported by neuroanatomical data (Gittleman, 1991). Olfactory 

bulb volumes of most carnivores are large relative to their total brain volumes compared 

to ratios in other orders of mammals (Stephan st al, 198 1, Williams et al, 2001, Hutcheon 

et al, 2002). However, olfactory sensitivity among Carnivora has been measured in only 

one species, the domestic dog, Canisfamiliaris (Krestel et al, 1984, Marshall et al, 198 1, 

Moulton et al, 1 960). 

The sea otter is a mustelid and is both a member of Carnivora and a marine 

mammal. "Marine mammal" describes a polyphyletic group sharing a suite of 

environmental adaptations resulting in a number of shared anatomical and physiological 

traits adaptive for life at sea. Mustelids have a wide range of habitats. There are two 

marine otter species, Lutra felina and E. lutris. Lutra felina forages in coastal water but 

dens and spends a good deal of time on land. All other otters inhabit and forage primarily 

in freshwater systems. Clawless otters and several species of river otters are reported to 

venture out into coastal water, but this is not their primary nor preferred foraging ground. 

The'seamink, Mustela macrodon, is now extinct but was believed to have denned on 

rocky Atlantic shores and foraged in coastal water. All other extant Mustelidae are either 

semi aquatic or fully terrestrial. Despite widespread marine foraging, none of the 

Mustelidae aside fi-om the true sea otter, E:. lutris, naturally spend their entire life at sea 

(Nowak, 1997). 



Although olfactory thresholds have not been measured previously in any marine 

mammal, circumstantial evidence supports a widely held belief that marine mammals 

have reduced or vestigial olfactory systems and presumably commensurately poor 

sensitivity. All marine mammals have some respiratory and circulatory adaptations which 

permit long-duration dives. Cetaceans, for example, spend very little time breathing at 

the surface. Neuroanatomical data on cetaceans suggest a vestigial or even completely 

dysfunctional olfactory system. The olfactory bulb is extremely reduced or absent in 

adult mysticetes (Duffield et al, 1992, Oelschlager, 1989, 1992). In odontocetes, it is 

found usually only in the fetal and neonatal stages and is rarely present in adults 

(Breathnach, 1960, Breathnach and Goldby, 1954, Kojima, 195 1, Kukenthal and Ziehen, 

1893, Oelschlager and Kemp, 1998, Schwerdtfeger et al, 1984, Oelschlager and Buhl, 

1985a, b, Ries and Langworthy, 1937, ). Reduction or absence of olfactory bulbs may 

reflect the extremely limited access of cetacean nasal passages to airborne olfactory 

stimuli and related retrograde loss from the reduced value of nasal chemoreception. 

Ecologically, cetaceans are an extreme case. As a group they have the least 

surface resident time of any marine mammal taxon. Pinnipeds, by contrast, spend 

considerable time on land. There is neuroanatomical evidence for reduced importance of 

olfaction in pinnipeds; i.e,. the size of the pinniped olfactory bulb versus total brain size 

is significantly reduced in several species (Fish, 1898, Harrison and Kooyman, 1968), but 

a hnctional brain structure remains. 

Both marine otter species differ from other marine mammals in their feeding 

behaviour. Unlike the carnivorous and piscivorous pinnipeds and the filter-feeding, 



carnivorous and piscivorous cetaceans which generally consume their prey underwater 

and often engulf it whole, otters feed primarily at the sea surface, bringing their prey 

items to the surface, handling them at close range, and chewing them before swallowing, 

which affords them the opportunity of rejecting prey based on both taste and smell 

(Kvitek and Bretz, 2004). It has been shown in both captive and wild animals that E. 

lutris reject butter clams (Saxidomus giganteus) with high paralytic shellfish poisoning 

toxin content (Kvitek et al, 199 1, Kvitek and Bretz, 2004). This discrimination is 

sufficiently fine that at intermediate toxin concentrations, the more highly toxic tissues 

are discarded while the rest of the clam is consumed. 

Neuroanatomical evidence further supports also a well-developed olfactory sense 

in sea otters. The relative size of their olfactory bulb is similar to that of the terrestrial 

mustelids and of the Carnivora in general and is larger than that of freshwater otters 

(Gittleman, 1 99 1). 

Based on phylogeny alone, as a carnivore and a mustelid, the sea otter should 

have a well-developed olfactory sense. As a marine mammal, the sea otter's olfactory 

sense may have degenerated, but if a predominantly submerged lifestyle is the key to 

inducing degenerate olfaction, we expect the sea otter's sensitivity to be better than most 

marine mammals and possibly comparable to that of its terrestrial kin. 

To test these evolutionarily derived scenarios, olfactory sensitivity was 

behaviorally measured in live animals for comparison with previously tested terrestrial 

mammals. 



Methods 

Two captive animals were tested: one male Northern sea otter at the Oregon Coast 

Aquarium and one male California sea otter at the Oregon Zoo. 

Stimulus selection 

Test compounds for this study were selected based upon the availability of 

threshold data from previous studies in order to compare results with those from 

terrestrial mammals. All of the compounds have published thresholds for at least two 

other mammal species including for the closest tested relative, the domestic dog. 

Stimulus generation 

Clinical olfactometry testing techniques for studies on humans provide useful 

procedures for testing behavioral thresholds in animals. Air-dilution olfactometry is a 

standard method for human and nonhuman olfaction studies (Table 1). Pressurized air is 

filtered and split into multiple clean airstreams. Odorant airstreams are saturated by 

passing over or bubbling through a liquid odorant sample and are subsequently diluted 

with clean air before delivery to the subject. Concentration of odorant in the delivered 

airstream can be manipulated during the dilution stage. The instrument can be calibrated 

using chromatographic or other direct in-line methods or by measuring mass change in 

the liquid sample over time. In this way, airstreams at controlled concentrations of the 

chosen odorant can be reliably produced. 

For this research, a portable air dilution olfactometer, suitable for poolside use, 

was constructed (Fig. 1). The wetted surfaces of the olfactometer were composed entirely 

of glass or teflon. Compressed air from a scuba tank was used as the carrier gas. 



Compressed air quality was tested and reported by the participating zoo and aquarium 

facilities. Contaminants (oil mist + particulate matter) were found to be below the 

detection limit of 150 ng/L and water was below the detection limit of 2 ppm (vol). Scuba 

tank air was filtered through commercial DrieriteTM, activated carbon and Molecular 

SieveTM, and divided into a diluting flow of 8LImin and a carrier flow. A carrier flow of 

25-500ml/min was directed to a sample well into which a pure liquid sample of odorant 

in a narrow-necked, plastic distillation device was inserted. The sample well was held at 

29.4"C (85OF), producing a constant rate of evaporation of odorant through the neck of 

the distillation device. The evaporation rate was determined by the volatility of the 

compound and the dimensions of the distillation device. Each device was calibrated by 

mass measurement over 2-6 days of operation (Fig. 2). The sample well was connected 

through a manually operated needle-valve to a diluting air-flow which reached the 

mixing chamber and to an exhaust air-flow which exited the test area. By directing the 

appropriate amount of odorant current into the diluting flow the concentration of odorant 

in the mixing chamber could be varied by a factor of 500, or 2.7 orders of magnitude. 

The mixing chamber consisted of a sequence of three spherical glass chambers each 

containing an evagination from the wall which extended approximately halfway across 

the chamber, perpendicular to the direction of airflow. The mixing chamber was 125 ml 

in volume and opened directly into the sniff port accessed by the test animal. The carrier 

flow ran for 1 hour before use to equilibrate the odorant concentration in the sample well. 

The diluting flow ran blank for at least 2 minutes between trials to flush any odorant from 

the previous trial. 



Behavioral test format 

The test animals were trained using operant conditioning with food (their pre- 

existing diet of crustaceans, mollusks and fish) as a reinforcer. Operant conditioning has 

been used in a large number of olfactory threshold studies to elicit reliable responses 

from a variety of mammals as well as with sea turtles (Table 1, Apfelbach et al, 1998; 

Dagg and Windsor, 197 1; Dorries et al, 1995; Doty and Ferguson-Segall, 1989; Doty et 

al, 1998; Krestel et al, 1984; Manton et al, 1972). The technique calls for the subject 

animal to be reinforced with some positive experience, generally a food reward, 

immediately upon performance of the correct behavior. Incorrect behaviors produce no 

reinforcement, either positive or negative. In a behavioral olfactogram, the correct 

behavior is to sample the stimulus (sniff the airstream) and then touch the negative 

response target if no odour is present or the positive response target if an odour is 

present. Although reinforcement of correct negative responses is often omitted in 

threshold studies for ease of task training, maintaining the same probabilities of 

occurrence and the same reward for positives and negatives minimizes bias in an 

animal's responses (Passe and Walker, 1983). 

A trial consisted of a single two-alternative discrimination task. The test animal 

was required to station at the experiment board on which were mounted the scent port 

and two touch-response objects. At a verbal cue from the trainer, the subject was required 

to sniff the scent port (Fig. 3) and touch either the 'yes' response object (if an odor was 

detected) or the 'no' response object (if no odour was detected) (Figs. 43). Correct 

responses (positive and negative) were reinforced with a food reward. A double blind 



protocol was used, in which the experimenter could not see the animal's response and the 

trainer did not know in advance which response was correct. After the animal had sniffed 

and responded, the trainer reported the response to the experimenter, who responded by 

indicating 'correct' or 'incorrect', on the basis of which the trainer would reinforce the 

animal if appropriate. A two-minute interval between trials allowed the animal to de- 

acclimate from the olfactory stimulus as well as purging leftover odorant from the 

preceding trial. 

Sessions were arranged in a descending staircase protocol, as described by 

Cornsweet (1962): odour and blank trials were interspersed in Ghellerman series of 

twenty triaIs with the constraints that each group contained exactly ten odour trials and 

ten blanks and that no more than three of either occurred in sequence. The odour trials 

began with a presumed super-threshold concentration slightly above the human threshold 

for that compound. Each correct response was followed (after any intervening blank 

trials) by a trial at half the previous concentration until the first incorrect response. 

Thereafter, the concentration was doubled after each incorrect response and halved after 

each correct response. The direction of concentration change was allowed to reverse at 

least six times, and the threshold value for that compound was defined as the mean of the 

log-transformed concentration values of the final four reversal points. 

A variation on this protocol was used at the Oregon Coast Aquarium in 2003, 

when thresholds for acetic acid, butyric acid, and amyl acetate were collected from 

subject Aialik. At the beginning of data collection period it became apparent that the 

distinction between low concentration odour stimuli and blanks was prohibitively 



difficult. Consequently, 'standard' blanks were introduced, which greatly improved 

performance: the first trial of every session was a blank stimulus, and the first trial 

following a smell stimulus was always a blank stimulus. These invariant conditions were 

quickly acquired by the subject with no cueing and provided a periodic basis for 

comparison with the intervening data trials. While this protocol was in effect, 50% of the 

data trials, excluding the standard blanks, utilized blank stimuli. This modification did 

not prove to be necessary the following year, when the subject was more familiar with 

the test protocol, so the standard blanks were not used for the caproic acid, benzaldehyde, 

or eugenol thresholds for Aialik. 

Results 

Eight thresholds were collected for seven compounds. Individual thresholds are 

shown in Table 2 and Fig. 6. 

Aialik, Oregon Coast Aquarium, Northern male, 5 and 6 years old 

Two experimental series were conducted 10 months apart, in September 2003 and 

July 2004. In the first series in September, 2003, thresholds were obtained (in 

chronological order) for amyl acetate (loA-8.8 moVL), acetic acid (10"-8.3 mol l ) ,  and 

butyric acid (10"-9.6 moVL) (Fig. 6a, Table 2). Overall accuracy on all blank or odour 

trials above threshold was 8 1 %. The incidence of false positives dropped dramatically 

early in the data collection period, possibly as the subject adjusted to the presence of the 

standard blanks, which raised the total proportion of blank stimuli presented from 50% 

during training to 67% during data collection. Only two false positives occurred on 



standard blanks, both within the first eight sessions. However, a strong "yes" bias 

persisted; ie., responses were more often correct for odour trials than for blank trials, for 

approximately 20 trials during the amyl acetate threshold measurement. Considering this 

bias, the measured amyl acetate threshold may underestimate the actual threshold. 

Aialik's "yes" bias may have led him to respond yes to odour stimuli that he could not 

detect. However, the last two reversals of that threshold were obtained in the final two 

days of data collection, after the acetic acid and butyric acid thresholds, when the bias 

was no longer present (Table 3). 

The butyric acid threshold was obtained using a step factor of four rather than two 

as a concession to time constraints on testing. 

In the second series in July, 2004, thresholds were obtained (in chronological 

order) for caproic acid (loA-9.0 mol/L), eugenol(lOA-9.8 mol/L), and benzaldehyde 

(10"-9.7 mol/L) (Fig. 6b, Table 2). Overall accuracy on all blank or odour trials above 

threshold was 86%, slightly improved from 2003. In contrast to 2003, a moderate "no" 

bias was present at the beginning of data collection. Similarly to 2004, however, the bias 

decreased over the course of the data collection period. 

Eddie, Oregon Zoo, California male, 6 years old 

One experimental series was conducted in October, 2004. Thresholds were 

obtained for amyl acetate (loA-7.9 mol/L) and octanoic acid (loA-9.4 mol/L) (Fig. 6c, 

Table 2). This subject's response accuracy was slightly lower than Aialik's, and so more 

than six reversals were required (10 for amyl acetate, 7 for octanoic acid). No significant 

bias was evident. 



Discussion 

Natural Variation 

The chemical trends observed in other species threshold distributions are also 

found in the sea otter (Fig. 7,8). For example, threshold decreases with increasing 

carboxylic acid chain length among the shortest acids (C2-C4). Between compound 

variation in thresholds is similar to that observed in other mammals. 

Both animals were tested for one common odorant, amyl acetate. Their amyl 

acetate thresholds differ by a factor of 13, which is well within the range of variation 

previously found in other species. Aialik, the more sensitive animal, was one year 

younger at the time of testing. The animals also belong to different subspecies. The 

extent of divergence between the Northern and California sea otter populations is subject 

to debate but is probably very small. Nevertheless, there are slight anatomical and 

ecological (dietary) differences between sea otter subspecies, and it is possible that there 

are fimctional anatomical and responsedifferences that reflect their recent divergent 

history. 

The fact that the younger animal showed greater sensitivity is consistent with 

previous findings in other mammals. It has been shown in both humans, (Lehmer el al, 

1999, Stevens and Cain, 1987) and rats (Kramer and Apfelbach, 2004) that measures of 

olfactory function, including sensitivity, decline throughout adulthood. The presence and 

strength of this effect in the otters tested is not expected to be large since the animals 

were so young and similar in age. Differences may also arise from slight variations in 



experimental protocol and training technique, individual history, season, hormonal state, 

and environment. 

Potentid sources of error 

The thresholds measured in this study are reported to one decimal place on a base 

ten log scale, or approximately k 25%. The standard deviation of each threshold, 

measured from the groups of reversal point concentrations from which they were 

calculated, range from 40% to 80%, or from 0.1 5 to 0.25 on a log scale. This is not a 

good measure of the error in the threshold values, because many of the possible sources 

of error are systemic for individual animals and the magnitude of these effects is 

unknown. 

Slight and unquantified masking effects were present in all cases due to ambient 

odours in the test areas. Both participating animals were in residence at public zoos and 

aquaria, and testing was conducted in the animals' home exhibits where rigorous 

atmospheric control was not practical. Tests were conducted in outdoor facilities which 

were well-ventilated but subject to natural variations in airborne background odour, 

humidity and temperature. In most cases the most significant contaminant was most 

likely the food with which the animals were rewarded, as they were able to handle their 

food and their noses were in physical contact with it. The presence of a moderate 

masking effect can lead to calculated thresholds that overestimate actual thresholds 

(underestimate sensitivity) by up to 1.5 orders of magnitude (Laing et a!, 1 989). Natural 

background odour in this case was in some aspects more representative of thresholds 

under natural conditions than are hl ly controlled sterile testing conditions common to 



some olfaction studies. However, it was probably not high enough to produce significant 

masking, as demonstrated by the following conservative calculation. 

According to Laing and colleagues, masking is greatest when the masking 

odorant is chemically closely related to the target odorant. In their study, acetic acid was 

the most effective mask for propionic acid, compared with several unrelated compounds. 

They report a median unmasked threshold of 3.5 x lo-" m o m  for five rats in a golno-go 

task. In the same paradigm, the median threshold for masked propionic acid was elevated 

by a factor of thirty, a moderate but significant change, in the presence of 1.1 x ' 0 6  molL 

of acetic acid, just over 30 000 times higher than the unmasked propionic acid threshold 

and 1000 times higher than the propionic acid concentration that could still be detected in 

its presence. Assuming that the rat thresholds for acetic and propionic acid are similar, as 

is the case in mammals for which both are known, the masking agent was present at a 

factor of close to 30,000 above threshold. A similarly superthreshold concentration for 

humans, of any odorant, is generally described as extremely strong or ovenvhelming. 

Thus, as long as the masking background in the present study did not appear very strong 

to the test animal (supporting evidence would include interference with subject animal 

accuracy on blank trials, detection of the masking smell by human observers, and 

possible aversive response by both parties) significant threshold changes (a factor of ten 

or greater) due to masking are unlikely. Nevertheless, sensitivity measurements presented 

here should be viewed as conservative. While they represent realistic natural conditions, 

particularly for an animal feeding in the wild, this difference must be borne in mind for 

comparisons with other species tested under odorless background conditions. 



Repeated exposure to an odorant may also change measured thresholds, in either 

direction. In the short term, olfactory adaptation may occur in which sensitivity 

temporarily decreases following exposure. It has been shown in humans repeatedly 

exposed to the same odorant that detection performance effects of previous exposure is 

only important if the test is repeated within 60 seconds. Performance, although reduced 

to 40% accuracy initially, approaches 100% accuracy under nearly all tested conditions 

after 60 seconds post-exposure (Jacob et al, 2003). Similar results were found for several 

odorants, both pleasant and unpleasant, at near threshold and high superthreshold 

concentrations, for male and female humans. For these reasons, in this study a two 

minute interval separated all trials.The between-session interval selected by Jacob and 

colleagues to allow complete recovery from habituation between test sessions was also 

two minutes. It is worth noting that the inter-trial intervals used in the threshold studies 

of other study species vary widely and can be as little as 20 seconds. However, generally 

in such cases very large numbers of trials are conducted, which most likely mitigates the 

adaptation effect. 

Over days, physiological changes in the nervous system can lead to heightened 

sensitivity to a familiar odorant (Yee and Wysocki, 2001). However, this possible effect 

was unlikely to significantly affect measured thresholds in this study. Yee and Wysocki 

found in male mice exposed continuously to their test odorant for ten days that the 

threshold decreased only by a factor of four. Dalton et al(2002) found in humans that 

much larger increases in sensitivity (up to four orders of magnitude) could be induced in 

reproductive age females, while no significant changes could be induced in 



nonreproductive age females or males. Significant differences in threshold did not appear 

even in reproductive females until at least six test sessions, or twelve complete threshold 

measurements, had been performed. In this study, only one threshold measurement, no 

more than thirty brief (>20 sec) exposures over the course of 3-10 days, occurred for any 

odorant. Therefore, significant enhancement of sensitivity is unlikely. 

Error in calculated thresholds for individual animals due to bias may also be 

present. For subject Aialik, food reinforcement for each correct response was 

approximately constant at 3-4 ounces of mixed shrimp and clam per response throughout 

the testing period. However, in 2003 reward presentation differed between correct odour 

trials and correct blank trials. In order to accommodate time constraints and still allow an 

olfactory deacclimation period, there was a two minute pause following correct odour 

trials but only a one minute pause Gust long enough to deliver reinforcement) following 

blanks. This may have introduced a response bias: Food was delivered more quickly 

following a correct no response, which may have added value to that reinforcement. 

However, the subject was allowed to rest longer in a preferred location (the holding pool) 

and ate more slowly while awaiting the trial following a correct yes response. Therefore, 

the existence of bias in favour of either response is uncertain. 

In addition, a last minute protocol change exposed Aialik to an increased 

proportion of blank stimuli, the standard blanks, when data collection began. During 

training, odour and blank stimuli were presented equally. Aialik learned very quickly to 

respond correctly to the standard blank itself and attained 100% response accuracy to 

standard blanks after eight standard blanks had been presented. However, the standard 



blanks increased the total number of blank stimuli encountered. The observed yes bias in 

the first threshold measured (amyl acetate) suggests an expectation on Aialik's part of 

equal numbers of no and yes responses despite the displacement of the majority of the 

blank trials to immediately follow session pauses. This bias diminished gradually over 

the first six days of testing and a marked difference in response frequencies was present 

only in the early amyl acetate sessions. The fmal two reversals of the amyl acetate series 

were obtained in six trials at the end of testing, after the bias had disappeared, and these 

final reversal values did not raise the calculated threshold, so it appears that the yes bias 

did not affect the threshold value. The amyl acetate threshold for Aialik is presented here 

as a preliminary finding, subject to verification in future studies. 

It should be noted that while Aialik7s initial performance in 2003 reflected a yes 

bias, in 2004 his initial performance reflected a no bias. In both cases, the bias decreased 

over the course of data collection. Although the data do not provide a sufficient base to 

diagnose the imbalance, it is plausible that slight differences in odour and blank 

presentation frequency or reward in refresher training immediately prior to data 

collection (the introduction of the standard blanks in 2003, for instance) introduced a 

corresponding bias which subsequently diminished due to the balance of presentations 

during data collection. 

The overall response accuracies of blank and odour trials for both years suggest 

very little total response bias despite all potential sources. 

Interspecies comparison-general sensitivity 



In order to compare general olfactory sensitivity among species, an Average 

Threshold (AT) was calculated. All threshold values were log transformed. The Average 

Threshold was defined as the mean of the log transformed threshold values of seven 

widely tested odorants, acetic acid (8 species), propionic acid (9 species), butyric acid 

(12 species), ethanol (7 species), butanol(6 species), ethyl acetate (5 species) and amyl 

acetate (7 species). These odorants were chosen in order to maximize the size of the 

dataset while equalizing the representation of the three available chemical groups, 

straight-chain aliphatic acids, alcohols and acetate esters. 

In this study, in toto, fourteen mammal species were compared using these seven 

compounds, for a total set of 98 thresholds. Of these, 55 were obtained from the literature 

and from this study. Due to inherent variation in detectability among these seven 

compounds, it was necessary and plausible to substitute approximations for the missing 

values. In all three chemical groups, an approximate logarithmic decrease in threshold 

with increasing carbon chain length is present in most species. For species with missing 

values in a chemical group where two or more thresholds were available for related 

compounds, the missing values were interpolated. If only one threshold value for that 

species in that chemical group was available, the missing value was extrapolated using 

the mean of the slope in question for all available species. 17 values were approximated 

in this way. The remaining 26 were approximated by the following value: 

For species Q, odorant Y 

Estimated Threshold = (mean [available thresholds(Q)] x meanravailable thresholds 

0r)l)" 



AT served as a general representation of olfactory sensitivity; low AT values 

indicate high sensitivity, high AT values low sensitivity. 

Sea otter thresholds to amyl acetate and all carboxylic acids were near or within 

the range of previously tested mammals (Fig. 7,8). The sea otter threshold to eugenol can 

be compared only with the human threshold and the sea otter benzaldehyde threshold 

only to human and rat (Fig. 9). The sea otter threshold was the lowest for both of these 

compounds, followed by the human threshold being a factor of 10 higher for 

benzaldehyde and a factor of 3 higher for eugenol. The sea otter AT ranks 7th lowest of 

14 species, approximately midrange (Fig. 10). Since sea otter sensitivity as measured 

herein should be regarded as conservative (overestimating true thresholds, see above), 

there is no reason to regard the sea otter as having poor olfactory sensitivity by terrestrial 

mammalian standards. Whether the same can be said in comparison to the Carnivora is 

uncertain. Only one other carnivore (C. familiaris) is available for comparison. 

Compared with the dog, the sea otter AT is elevated by a factor of 5.5. However, absolute 

difference varies widely among odorants. Thresholds for both species also vary by 

individual and by breed in the case of the dog. In addition, the domestic dog lineage has 

been subjected to considerable artificial selection some of which emphasized olfactory 

ability and is not therefore an ideal comparison species for "natural conditions". Further 

comparisons amongst the Carnivora will be needed to more precisely evaluate the effect 

of marine lifestyle on general olfactory sensitivity in Carnivora. 
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Table 1 : Olfactometry and training methods used in threshold measurement of mammals 

Species I 
House mouse 

(Mus musculus) 

Brown rat (Rattus 

nowegicus) 

Human 

(Homo sapiens) 

Pig-tailed macaque 

(Macaca 

nemestrina) 

Common squirrel 

monkey (Saimiri 

sciureus) 

Domestic dog 

(Canis familiaris) 

Stimulus 

solvent dilution 

(unspecified 

solvent) 

solvent dilution 

(propylene 

glycol) 

various 

solvent dilution 

(ethyl phthalate) 

solvent dilution 

(ethyl phthalate) 

air dilution, 

solvent dilution 

(water, 

propy lene 

glycol) 

Training 

operant & classical conditioning 

(food reinforcement and electric 

shock 

operant & classical conditioning 

(water reinforcement and electric 

shock 

verbal instruction 

operant conditioning (food 

reinforcement) 

operant conditioning 

(food reinforcement) 

untrained natural responses; 

operant and classical 

conditioning, various (water 

reinforcement, food 

reinforcement, electric shock, 

light slap) 

Reference 

Schmidt, 198 1 

Moulton and Eayrs, 

1960 

Moulton, 1960 

Devos et al, 1990. 

Laska and Seibt, 

2002a,b 

Laska and Seibt, 

2002a,b 

Laska et al2000 

Krestel et al, 1984 

Moulton et al, 1960 



European 

hedgehog 

(Erinaceus 

europaeus) 

Common 

European shrew 

(Sorex araneus) 

Seba's short-tailed 

bat (Carollia 

perspicillata) 

Mouse-eared bat 

(My0 tis rnyo tis) 

Vampire bat 

(aesmodus 

rotundus) 

Great fruit bat 

(Artibeus lieratus) 

Pale spear-nosed 

bat (Phyllostomus 

discolor) 

air dilution 

solvent dilution 

solvent dilution 

air dilution 

solvent dilution 

(unspecified), 

air dilution 

air dilution 

air dilution 

-- - 

operant conditioning 

operant conditioning (food 

reinforcement) 

classical conditioning 

(electric shock, respiration rate 

monitor) 

classical conditioning (electric 

shock, heartrate monitor) 

operant conditioning (food 

reinforcement) classical 

conditioning (electric shock, 

heartrate monitor) 

classical conditioning (electric 

shock, heartrate monitor) 

classical conditioning (electric 

shock, heartrate monitor) 

Bretting, 1972 

Sigmund and Sedlacek, 

1985 

Laska, 1990 

Obst and Schmidt, 

1976 

Schmidt, 1973 

Schmidt, 1975 

Schmidt, 1975 

Schmidt, 1975 



Table 2: Sea otter behavioral thresholds. Threshold measured as log mol/L 

Aialik 1 -8.3 I -9.5 I -9.0 I -- 
Eddie 

Animal amyl / eugenol 1 benzaldehyd acetic 

acid 

butyric 

acid 

caproic 

acid 

octanoic 

acid 



Table 3: Olfactogram response accuracy. Thresholds are listed in chronological order. 

Odour trial accuracy is reported as % of trials at concentrations above calculated 

threshold. 'Standard blanks' are not included. Totals for year and for blank+odowrare 

calculated from the pooled trials for that row or column (i.e. categories are not weighted). 

Number of trials are in parentheses. 

Aialik Eddie 

Odorant Odours 

% (n) 

Total 

% (n) 

Odours 

% (n) 

Odorant Total 

% (n) 

Blanks 

Yo ((n) 

amyl acetate 1 71 (1 7) 

acetic acid octanoic acid 1 73 (1 1) 

All trials 

I eugenol 

All trials 



Fig. 1 : Air dilution olfactometer schematic 
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Fig. 2: Olfactometer calibration data: mass lost over time from a sample of liquid odorant 

under working conditions of temperature and airflow in the olfactometer. 



Fig. 3: Subject Aialik performing a sniff, Oregon Coast Aquarium, 2004 



Fig. 4: Subject Aialik responds 'yes', Oregon Coast Aquarium, 2003 



Fig. 5: Subject Aialik responds 'no', Oregon Coast Aquarium, 2003 
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Fig. 6a: Subject Aialik's dose-response data, 2003. Vertical line indicates threshold. 
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Fig. 6b: Subject Aialik's dose-response data, 2004. Vertical line indicates threshold. 
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Fig.6~: Subject Eddie's dose-response data, 2004. Vertical line indicates threshold. 



Fig. 7: Olfactory thresholds for short aliphatic acids for all available mammal species. Human 

(Homo sapiens), Common squirrel monkey (Saimiri sciureus), Pig-tailed macaque (Macaca 

nemestrina), House mouse (Mus musculus), Brown rat (Rattus nowegicus), Seba's short-tailed 

bat (Ca~olliaperspicillata), Vampire bat (Desrnodus rotundus), Pale spear-nosed bat 

(Phyllostomus discolor), Great h i t  bat (Artibeus literatus), Mouse-eared bat (Myotis myotis), 

European shrew (Sorex araneus), European hedgehog (Erinaceous Europaeus), Domestic dog 

(Canis familiaris), Sea otter (Enhydra lutris). From: Bretting, 1972; Devos et al, 1990; Hubener 

& Laska, 2001; Laing et aI, 1989; Laska, 1990; Laska et al, 2000; Moulton et al, 1960; Obst et 

al, 1976; Schmidt, 1981; Schmidt, 1975; Sigmund & Sedlacek, 1985, this study33 
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Fig. 8: Olfactory thresholds for acetate esters for all available mammal species. Human 

(Homo sapiens), Common squirrel monkey (Saimiri sciurms), Pig-tailed macaque 

(Macaca nemestrina), House mouse (Mus musculus), Brown rat (Rattus nowegicus), 

Seba's short-tailed bat (Carolliaperspicillata), Vampire bat (Desmodus rotundus), 

Domestic dog (Canis familiaris), Sea otter (Enhydra lutris). From: Devos et al, 1990; 

Krestel et al, 1984; Laska, 1990; Laska and Seibt, 2002a; Moulton, 1960; Obst et al, 

1976; Schmidt, 1975; Yee and Wysocki, 2001 ; this study 



Benzaldehyde Eugenol 

Fig. 9: Benzaldehyde and Eugenol thresholds for all available species. Data from Devos 

et al, 1990; Laing, 1975; this study 



Fig. 10: Average Threshold values for all available species. 



Chapter 3: Chemical ecology and specific olfactory sensitivity 

Abstract 

Insects are known to navigate and identify important resources using highly specific sets of 

chemicals and to exhibit specific heightened sensitivity to these stimuli. Little is known about 

whether important but less specific olfactory stimuli such as food odours for mammals are 

detected with similar enhanced sensitivity. Specific olfactory sensitivities of eight mammal 

species for nineteen natural volatile compounds were compared vis-h-vis their ecological 

relevance to the olfactor, in order to determine whether odorants of greater importance are 

detected with greater sensitivity. Ecological relevance was estimated from the volatile chemistry 

literature as the frequency of occurrence of the compound in the dietary category (or categories) 

of the olfactor (flowers, fruit, grain, foliage, terrestrial vertebrate prey, insect prey, marine prey). 

The relationship was not supported for the Chiroptera, was strongly suggested to be valid for the 

primates, and was shown to be significant for a marine vs. terrestrial carnivore. The results 

suggest that a) chemical ecology plays an important role in determining specific olfactory 

sensitivity in mammals, b) diet is sometimes but not always an adequate proxy for elucidating 

differences in chemical ecology, and c) the chemical ecology of species from radically different 

habitats is easily distinguished Such pairs present a promising model for investigating the 

influence of ecology on specific olfactory sensitivity. 

Background 

Recently, there has been considerable progress towards a new understanding of the 

molecular and cellular basis for olfaction. Since the work of Buck and Axle (1991) identified the 



gene family that encodes olfactory receptor proteins, catalogues of sequences are accumulating 

for olfactory receptor proteins in a variety of organisms, including many mammals (Skoufos et 

al, 2000). It has also been shown that each olfactory receptor cell expresses a single receptor 

protein type (Li et al, 2004, Malnic et al, 1999, Nef ef al, 1992, Ressler et al, 1994, Serizawa et 

al, 2003, Vassar et al, 1994). 

The visualization studies of Vassar et a1 (1994), Nagao et a2 (2000) and Ressler et a2 

(1 994) in mouse (Mus musculus) and rat (Rattus nolvegicus) strongly suggest that all receptors 

of a specified type synapse in one lateral-medial pair of glomeruli in the olfactory bulb. If a 

single olfactory receptor gene is associated with a molecular label, all of the labeled neurons will 

project to a specific pair of loci. The knock-in experiments of Mombaerts et a1 (1996) and Wang 

et a1 (1998) further support the genetic basis of this organization: substitution of the coding 

region of one olfactory receptor gene for the coding region of another will cause the axon of the 

altered neuron to project to the (highly specific) glomemlar target of the substitute gene. The 

ligand-screening work of Katoh et a1 (1993) and Malnic et a2 (1999) suggest that each 

glomerular response may encode a simple molecular feature of the odorant molecule such as a 

functional group or carbon chain length. Cell-culture screening studies have begun to identify 

individual receptor proteins that are sensitive to particular compounds (Zhao et al, 1998, 

Hamana et al, 2003). 

These discoveries are significant for questions about olfactory specialization. Odorant- 

specific molecular architecture suggests that olfactory sensitivities to particular compounds 

evolve at least partially independently of one another. Different species can thus be expected to 

differ in their relative sensitivity to different compounds, depending on their ecological 

importance. 



Specificity of this kind is well documented in other animal taxa, notably among the 

insects. The highly specific relationships of insect predators, herbivores, parasites and pollinators 

provide simple, readily testable models for olfactory specialization, and both behavioral methods 

and electro-anetennogram detection have shown that thresholds are lowered for ecologically 

relevant compounds. This kind of specificity is well known for conspecific pheromone 

components (Cabrera et al, 2001, Francke et al, 2002, Gemeno et al, 2003, Jintong et al, 2001, 

Kalinova et al, 2003, Naka et al, 2003, Priesner et al, 1975, Yamamoto et al, 1999, Yarden et al, 

1996, Zhang et al, 2004, and others) Other important compounds identifying preferred prey, 

forage plants, oviposition sites and other important resources are also detected with higher 

sensitivity (Backman et al, 2000, Bichao et al, 2001, Costantini et al, 2001, Rostelian et al, 2000, 

Stensmyr et al, 2001, Stranden et al, 2003, and others). Antennal detection is highly selective, 

discriminating very slight changes in odorant compound structure (carbon chain length, 

functional group, stereochemistry) that in turn reflect prey or host specificity that is in some 

cases very narrow, famously in the case of the human-specializing malaria vector Anopheles 

gambiae (Costantini et al, 2001). Antennal receptors of this mosquito are strongly activated by 

three complex carboxylic acids specific to human sweat. Where measured in the above listed 

studies, antenna1 response to compounds closely related to the ecologically relevant optimal 

stimuli (isomers or other close analogues) typically drops by a factor of 10-100. 

There have been very few studies related to the specificity of olfactory sensitivity in 

vertebrates. This is not surprising given the logistical difficulties involved in sensitivity 

measurement in vertebrates and the small number of published thresholds. However, there are a 

number of behavioral response threshold and taste distinction studies available. Comparisons 

among insectivorous and omnivorous lizards (Cooper, 1999, Cooper et al, 2000) show that 



tongue-flicking and other investigative responses to prey and plant odours (detected by lingual 

transfer to the vorneronasal system) correspond to natural dietary habits. Omnivorous lizards are 

more likely than insectivorous lizards to respond to plant or h i t  odours. Unfortunately, these 

studies do not distinguish between detection sensitivity and feeding preference or interest. 

Roe deer (Capreoh capreolus) unlike most ungulates, selectively browse tannin-rich 

plants. Feeding studies show that they are capable of distinguishing tannins added to their feed, 

and, if offered a choice of tannin-enriched and tannin-free feed, they will regulate their intake 

precisely at 28g tamidkg feed pellets. This regulation persisted despite variation in the 

concentrations of tannins in their tannin-enriched feed (Verheyden-Tixier and Duncan, 2000). 

While this study does not identify the mechanism of regulation and does not quantify sensitivity 

to different tannin concentrations presented, it is a striking example of effectiveness of detection 

for specific dietary elements. 

Among primates, taste preference and intensity-difference thresholds for sugars have 

been found to correspond to the proportion of fruit in the diet of the species (Hladik and 

Simmen, 1996, Laska et al, 1999, Laska, 1994, 1996). Frugivorous new world primates select 

sugar solutions over water at lower concentrations than omnivorous species do, and they will 

also successfully discriminate smaller concentration differences between sugar solutions. These 

findings are particularly important in that they compare several species along an ecological 

gradient and directly measure sensitivity, providing a vertebrate example of heightened specific 

chemoreception for ecologically relevant compounds. 

Laska and Seibt (2002a) note that three frugivores, the common squirrel monkey (Saimiri 

sciureus), pig-tailed macaque (Macaca nemestrina) and Seba's short-tailed bat (Carollia 

perspicillata), have generally higher sensitivity to acetate esters than carnivores or granivores. 



By contrast, they note also elevated sensitivity to carboxylic acids among carnivores, 

insectivores and sanguivores (domestic dog, Canis familiaris; European hedgehog, Erinaceous 

europaeus; vampire bat, Desmodus rotundus) relative to the hgivores. Esters are major 

components of fmit odours, while carboxylic acids are important in animal body odours. This, 

the authors suggest, supports a role for diet in determining specific olfactory sensitivity. 

There are many non-dietary sources of potentially relevant odour stimuli. The odours of 

conspecifics, predators, favored shelter foliage, and many other resources are important to the 

survival and success of any olfactor. However, the availability of volatile chemical data makes 

diet a logical candidate for testing. The species available for olfactory specialization 

comparisons are those which have been tested for olfactory sensitivity. Of these, the only volatile 

chemical profile available is for humans, so comparative analysis of sensitivity to conspecific 

odours is currently impossible. Similarly, for most species shelter, predators, etc. volatile 

chemical profiles are also unknown. Diet is the only ecological variable for which there is 

sufficient information and sufficient differences among mammal species that comparisons can be 

made from existing volatile chemistry data. 

This study tested the following hypothesis: 

A mammal species will possess elevated sensitivity to compounds of high 

ecological relevance such as characteristic food odour components, 

compared with related species for whom the same compounds have little 

or no relevance. 



Since the sea otter (Enhydra lutris) inhabits a distinctive olfactory landscape compared to 

terrestrial mammals, it presents an excellent opportunity to test this hypothesis by comparing 

sensitivity to marine versus terrestrial odorants. The Carnivora forage on a wide variety of items, 

including fmit and other plant matter. While sea otters specialize in marine invertebrates and to a 

lesser extent fish, other otter species take both marine and freshwater prey as well as frogs and 

occasionally terrestrial prey including birds and rodents. Non-aquatic Mustelidae depend largely 

on rodents, other small mammals, birds, and eggs. Some diets (particularly in the genus Martes) 

also include fruit, honey and carrion, and many species take insects and worms. Among the 

semiaquatic species frogs, fish and aquatic invertebrates are also included (Nowak, 1997). 

There is no dietary specialization at the level of the Camivoraper se for which the 

collective diet encompasses mammals, birds, reptiles, amphibians, fish, invertebrates and plant 

material. However, the natural diets of the two carnivore species available for comparison in this 

study, the sea otter and the domestic dog (Canis familiaris), are to a first approximation 

completely nonoverlapping. Determining the natural or evolutionarily relevant diet of the 

domestic dog is problematic because of its domesticated status, but taking into account the 

lifestyle of domesticated and feral dogs as well as dingoes and congeneric species, it is 

reasonable to describe the diet as consisting of terrestrial vertebrates, indeed, primarily of 

mammals and birds, supplemented very occasionally with plant matter. 

Methods 

Two hundred and twenty literature references (omitted from Ref. section due to space 

constraints, see Appendix) were used to estimate incidence of odorants in various marine and 

terrestrial dietary sources. 



There are patterns of both consistency and variation in the volatile chemistry of the taxa 

and other categories that distinguish the most broadly defined dietary habits. For example, all 

animals give off a wide variety of carboxylic acids. Many are unique at the species or genus 

level, and many others are given off in different quantities by many species. Olfactory sensitivity 

studies in insects (see above) have often revealed high specific sensitivity to compounds that are 

not highly specific to the species' preferred food item and generally conclude that it is the 

proportion of many fairly common compounds that allows even highly specialized feeders to 

identify their host plant or prey. Since the mammal species compared herein tend to have broader 

diets than the insects in the studies listed above, volatile profiles were assigned only to the 

following broad dietary categories: fruits, grains, flowers, plants (other tissue), terrestrial 

vertebrates, insects and marine animals (fish and invertebrates). 

Aliphatic acids, alcohols, and esters occur with very different frequencies in organisms 

from these dietary categories (see Fig 1). Relative importance or Incidence (I) was defined as the 

mean (over all dietary categories consumed by the species) of the fraction of items in each 

category containing the compound. Dietary categories were assigned to species based on natural 

diet descriptions in Walker's Mammals of the World (Nowak, 1997) and are listed in table 1. 

(All categories were arbitrarily assigned equal weight for the calculation of species I value, as 

quantitative dietary breakdowns were not available for all species.) This served as an estimate of 

the proportion of the species diet containing the compound. A sample calculation follows for 

ethanol for the Pale spear-nosed bat, Phyllostomus discolor: 

Dietary categories of P. discolor: flowers, h i t  



Literature available for flowers: 29 species; ethanol is reported in 2. Iflowe,, eth,,l=2/29=0.069 

Literature available for fruit: 35 species; ethanol is reported in 12. Ihi4 ehh,ol=12/35=0.343 

Fourteen mammal species which had been previously tested for olfactory threshold on at 

least one natural odorant were used in the analysis: five bats, Seba's short-tailed bat (Carollia 

perspicillata), the Vampire bat (Desmodus rotundus), the Mouse-eared bat (Myotis myotis), the 

Pale spear-nosed bat (Phyllostomus discolor) and the Great fruit bat (Artibeus literatus), three 

primates, Human (Homo sapiens), the Common squirrel monkey (Saimiri sciureus), and the Pig- 

tailed macaque (Macaca nemestrina), two carnivores, the Domestic dog (Canis familiaris) and 

the Sea otter (Enhydra lutris), two rodents, the House mouse (Mus musculus) and the Brown rat 

(Rattus norvegicus), and one basal and one Soricid insectivore, the European hedgehog 

(Erinaceous ewopaeus) and the Common European shrew (Sorex araneus). For each species, 

each odorant compound for which a published threshold was available was assigned an I value. 

Comparisons among species were confined to simple contrasts between sister lineages 

where sufficient data were available. Ordinarily, all data would be transformed using 

Felsenstein's (1 985) method of independent contrasts in order to permit comparisons across the 

entire phylogeny. However, in this case the variable I was so labile (dietary specialization so 

plastic) that many interordinal or higher comparisons would not be realistic. Thus five 

comparisons were available: Seba's short-tailed bat vs. Vampire bat, Seba's short-tailed bat vs. 



Mouse-eared bat, Human vs. Common squirrel monkey, Human vs. Pig-tailed macaque, and 

Domestic dog vs. Sea otter. 

Results 

Specific sensitivity comparisons involved 16 odorant compounds; six carboxylic acids: 

acetic acid, butyric acid, valeric acid, caproic acid, caprylic acid and octanoic acid; five alcohols: 

ethanol, butanol, hexanol, heptanol and octanol; and five acetate esters; ethyl acetate, propyl 

acetate, butyl acetate, amyl acetate and hexyl acetate. These compounds vary significantly in 

their natural sources (Fig. 1). Most of the carboxylic acids are found in terrestrial vertebrate and 

invertebrate animals and in grains. The shorter carboxylic acids also appear in the marine fish 

and shellfish categories and honey. Those containing even numbers of carbons are common in 

fruit. Acetic, butyric and caprylic acids are common in fungi. 

The alcohols are less common than the carboxylic acids in general, with the notable 

exception of hexanol, which is common in both marine and terrestrial plant and animal 

categories. The other alcohols are most common in fi-uit, grains and flowers. Ethanol is also 

common in fungi and honeys, and ethanol and octanol are also common in marine animals. 

The acetate esters are rare outside the fmit and flower categories, except for ethyl acetate, 

which is common in shellfish, Eungi and grains. 

The most distinctive distributions (occurring in at least 20% of 1-3 natural source 

categories) of these and closely related compounds are illustrated in Fig. 1. 

The species pairs whose olfactory repertoires were contrasted vary in their ecological 

separation. The Macaque-Human contrast has the least separation because the entire macaque 

diet is a subset of the human diet and includes more than half (three of five) of the human dietary 



categories. Therefore, the I values of the odorants in this contrast differ very little between the 

two species (Fig. 2a). The Squirrel monkey-Human contrast also compares the human diet with a 

subset, but in this case a specialized one. The squirrel monkey's high degree of fmgivory, paired 

with the importance of the otherwise rare acetate esters in the fmit category result in a very 

distinctive I profile for the squirrel monkey. A large set of acetate esters have published olfactory 

thresholds for both humans and squirrel monkeys and are therefore available for this comparison. 

The result is a more obvious separation of I values between human and squirrel monkey than 

between human and macaque (fig 2b). 

The highly specialized, completely nonoverlapping diets of the three chiroptera examined 

yielded very distinct I distributions for both species pairs that were contrasted (Fig. 3). 

The diets of the domestic dog and sea otter are also entirely nonoverlapping, but dog prey 

and otter prey are less chemically distinct from each other than are the diets of the Chiroptera. 

Therefore the carnivore I distributions are only moderately distinctive. Both species have 

identical values (0) for amyl acetate. The sea otter has highly varied I values for the remaining 

compounds (all carboxylic acids) while those of the dog vary little (Fig. 4). Incidence values for 

benzaldehyde and eugenol are also included, although only a qualitative comparison of 

thresholds for these compounds will be possible. Incidence for eugenol is zero for both species, 

and for benzaldehyde, the I value is significant for both species but greater for the sea otter. 

By comparing thresholds for each compound among all available species it is easily 

shown that in most cases, macrosmatic (sensitive) species tend to retain their rank throughout 

most of this range of odorants. Although thresholds for certain compounds is low for all species, 

for instance, thresholds for carboxylic acids tend to be uniformly lower than for alcohols, the 

species rank order of sensitivity is largely preserved among different compounds (Fig. 5). 



However, the magnitude of the difference between species varies significantly among 

compounds. Among the contrast species pairs, one species is often clearly generally more 

sensitive, with the notable exception of the primates. Still, it is possible to measure the effect of 

ecology, as represented by I, in the variation of this difference (Fig. 6). 

There was no clear rank order of sensitivity among the primates. In the Human-Squirrel 

monkey contrast, humans showed slightly higher sensitivity among the animal odour compounds 

(mostly carboxylic acids) while the squirrel monkey was slightly more sensitive to fruit specific 

compounds (mostly esters). No such ecological influence is visible in the Human-Macaque 

comparison; this may be due in part to the absence of carboxylic acids available for comparison, 

which left a range of compounds varying rather little in their relative dietary relevance. 

There are relatively few odorants available for comparison for the other species pairs. 

However, the Seba's bat-Vampire bat comparison showed a marked though erratic trend 

favoring the frugivorous Seba's bat among the fruit odorants and with variable results among the 

animal odorants: one for which Seba's bat is more sensitive, one for which the vampire is more 

sensitive, and one for which sensitivity is similar for both. The Seba's bat-Mouse-eared bat 

comparison did not show a trend. The Dog-Sea otter comparison shows the dog to be uniformly 

more sensitive, but the difference steadily and monotonically decreased for less terrestrial, more 

marine-based odorants. 

Regressions of Threshold vs. Incidence showed a nearly significant relationship for the 

Squirrel monkey-Human contrast, (Fig. 7a, ~ ~ = 0 . 2 2 ,  P=0.064). The Macaque-Human, Seba's 

bat-Vampire and Seba's bat-Mouse-eared bat contrasts were not significant (figs. 7b,c,d). The 

Dog-Sea otter contrast, despite its very small sample size, was significant (P=0.04) and 

accounted for most of the observed variation ( ~ ~ = 0 . 8 0 ) .  



Discussion 

The highly varied results of these five comparisons suggest that the estimate 

(approximate dietary chemistry) of chemical ecology is sometimes productive but possibly 

unreliable. 

The most obvious shortcoming is the approximation of the diet itself. First, only fresh 

food items were utilized in the calculation of I values. The chemical profiles of spoiled food 

differ markedly from the same item live or fresh, and detection of spoilage during feeding is of 

obvious adaptive importance. However, since the difference in importance of spoilage detection 

among the study species was not known and spoilage-induced chemical changes specific to the 

diets of any of the study species were not available, this was not attempted. Second, since 

volatile chemical profiles of the specific items consumed by each species were unavailable, 

general categories of taxonomy, geography and plant anatomy were used to distinguish the diets. 

Between species with nonoverlapping, taxonomically distant diets, this may not have much 

impact. However, between the human and the pig-tailed macaque, for example, diets that are 

almost certainly easily distinguishable were necessarily assigned 60% equivalence. Considering 

that there is substantial overlap in the chemistry of any two dietary categories, the remaining 

category difference does not preserve sufficient chemical difference to distinguish the two 

species. This is very likely to have contributed significantly to the nonsignificance of the 

Macaque-Human contrast. 

The second shortcoming is the use of dietary chemistry to estimate all of chemical 

ecology. It is more difficult in this case to speculate upon the possible impact of this drawback 

on the contrast regressions. The estimate will be inappropriate in cases where one or both species 



being contrasted experience significant selection pressure on their ability to detect non-dietary 

olfactory signals, and where those signals differ either chemically or quantitatively in importance 

between the two species. Not only food items but also kin, mates, other conspecifics, predators, 

and presumably many other odour sources are ecologically important stimuli to most species. 

Not enough is known about these myriad potential nondietary signals to predict in which cases 

they will be either important or greatly different between species. However, the variation in one 

ecological variable in this dataset is suggestive of this effect: habitat. 

The primates and chiroptera examined vary in their geographical distributions, but all are 

terrestrial and tropical. The two carnivores, by contrast, inhabit dramatically different 

environments. The Dog-Sea otter contrast demonstrates by far the strongest differentiation in the 

dataset, despite the fact that the dietary comparison showed only moderate chemical differences. 

A detailed examination of this contrast shows that, relative to the dog, the sea otter encounters an 

elevated incidence of acetic acid in its diet, and reduced frequencies of the longer carboxylic 

acids. The incidence of amyl acetate is equal for both species at zero. It must also be borne in 

mind that the sea otter is, overall, not as sensitive an olfactor as the dog. For the four compounds 

tested, the dog threshold is lower in every case. However, the sea otter threshold for the 

ecologically important compound acetic acid is reduced only by a factor of 1.2, while sensitivity 

for the reduced-incidence butyric caprylic and octanoic acids is reduced by a factor of 60, 180, 

and 1530, respectively. Amy1 acetate sensitivity may be the most representative of the general or 

background difference in sensitivity. For this odorant, sea otter sensitivity has fallen by an 

intermediate amount, a factor of 17. The regression of this contrast shows convincingly that in 

this case, dietary relevance was a major factor in determining evolved differences in specific 

sensitivity. 



In addition, sea otter thresholds for eugenol and benzaldehyde can be compared in a 

qualitative manner with dog thresholds for the same compounds (Myers and Pugh, 1985). Sea 

otter thresholds, measured in this study, were nearly equivalent for the two compounds, at 1OA- 

9.8 and 10"-9.7 moVL, respectively. The dog threshold for eugenol, the significantly more 

terrestrial compound, was just over 4000 times lower than the benzaldehyde threshold. 

Unfortunately it is not possible to use these odorants in a quantitative comparison, since the dog 

thresholds were reported in arbitrary concentration units, precluding the possibility of calculating 

threshold contrasts between the two species. Still, the trend in this case also supports the role of 

dietary relevance in sensitivity differences. 

The distinction of the Dog-Sea otter contrast may reflect the fact that while diet 

represents an inadequate proxy for ecological relevance for frugivores or omnivores within a 

single terrestrial biome, the same approximation between a marine and a terrestrial carnivore are 

coincidentally an adequate representation thereof. Most of the ecologically relevant organisms 

with which the dog may interact, prey, predators and conspecifics, are vertebrates and have a 

similar volatile profile among the odorants in the dataset. (Terrestrial vertebrate taxa are quite 

distinctive in other chemical groups such as reduced nitrogen and sulfur compounds and species- 

specific pheromones.) Terrestrial vertebrates are, however, quite distinct from the marine fish, 

mollusks, echinoderms and crustacea. While the available volatiles data does not include sea 

otter predators, these, approaching fkom underwater, are most likely not detected by smell. 

Therefore, terrestrial vertebrates and marine fish and invertebrates adequately represent major 

relevant olfactory stimuli for these two carnivores (excluding only sea otter conspecifics). 

Finally, the separation of these habitats ensures that the food items have no ecological relevance 

for the nonconsuming species because they are not encountered in natural settings. Dogs are not 



exposed to marine animals and sea otters are very rarely exposed to vertebrates of any kind (still 

excepting interactions with conspecifics). This suggests that examining carnivorous mammals 

native to radically different chemical landscapes may be a productive way to further evaluate the 

effect of chemical ecology on specific olfactory sensitivity in mammals. 

An additional factor that may influence whether incidence-sensitivity relationships are 

evident is evolutionary distance or time since divergence. In this study sufficient phylogenetic 

branch length data were not available to compare the comparisons made in the Carnivora, 

Chiroptera and primates, but it is plausible that species pairs which diverged earlier are more 

likely to have developed divergent olfactory repertoire. 

It must be noted that sea otter sensitivity to butyric acid remains higher than to acetic 

acid (Fig. 6e) despite the estimated greater importance of acetic acid (Fig. 4). There are two 

intimately related plausible explanations for this. The first is phylogenetic history. The primitive 

mammalian condition, judging by the otter's seven available relatives, has greater sensitivity to 

butyric acid. In that case, the change in the sea otter lineage has provided a reduction in that 

difference. Secondly, it is very likely that molecular constraint is operating, which limits the 

independence of individual thresholds. The olfactory receptor code is combinatorial, and Malnic 

et al(1999) and Hamana et al(2003) have shown in mice that closely related odorants may share 

most of their repertoire of responsive receptor types. For example, of eight receptor types found 

to be sensitive to octanoic acid, all but one are also sensitive to nonanoic acid, in a sample of 14 

receptor types tested (Malnic et al, 1999). Evolved changes in sensitivity to a specific odorant, if 

they are attributable to differences in the olfactory epithelium, most likely result either from 

changes in the molecular structure of the responsive odorant receptors (in the O W  genes 

themselves) or from changes in the expression patterns of those receptors. Optimizing either 



structure or expression patterns of receptor proteins to detect one compound will very likely have 

reduced but significant sympathetic effects on sensitivity to related compounds, creating 

evolutionary inertia in the differences between sensitivity to, for example, acetic and butyric 

acid. A more detailed comparison using psychophysical, molecular and ecological data from a 

variety of species will be needed in order to detennine the relative importance of odorant- 

specific selective pressure and molecular constraint for specific olfactory sensitivity. 
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Species 

Human (Homo sapiens) 

Common squirrel monkey (Saimiri sciureus) 

Pig-tailed macaque (Macaca nernestrina) 

Seba's short-tailed bat (Carollia 

persp icillata) 

Vampire bat (Desmodus rotundus) 

Mouse-eared bat (Myotis myotis) 

Domestic dog (Canis familiaris) 

Sea otter (Enhydra lutris) 

Dietary categories 

grain, fmit, fungi, terrestrial plants and 

vertebrates 

fruit 

fruit, grain, terrestrial plants 

fruit 

terrestrial vertebrates 

insects 

terrestrial vertebrates 

marine animals 

Table. 1 : Dietary categories assigned to study species. 



Fig. 1 : Sample distributions of vc ile compounds in nature. Compounds ntained within a 

circle are found in at least 20% of items in that category reported in the li---~ture, as listed in 

Appendix A. 



fr~givorous diet ----- ---s omnivorous diet 

macaque (frugivorelherbivore) 

h u m a n  (~mnivore) 

fmrg ivomuskerbivorous diet > omnivorous diet 

Fig. 2: Incidence values of sensitivity-tested odorants in prlmate diets. a) Squirrel monkey- 

Human (Saimi~i sciureus-Homo sapims) contrast, b) Macaque-Human (Macaca nemestrina- 

Homo sapiens) contrast 



Seba's bat (frugivore) 

ethyl 
acetate 

ethanol acetic butyric propionic valeric 

frugivorous diet ----> carnivorous diet 

ethanol acetic butyric propionic 

frugivorous diet ------------ > insectivorous diet 

Fig. 3: Incidence values of sensitivity-tested odorants in bat diets. a) Seba's short-tailed bat- 

Vampire bat (Carolliaperspicillata-Desmodus rotundus) contrast, b) Seba's short-tailed bat- 

Mouse-eared bat (Carolliaperspicillata-Myotis myotis) contrast 



Fig. 4: Incidence values of sensitivity-tested odorants in carnivore diets: Domestic dog- Sea otter 
(Canis familiaris-Enhydra lutris) contrast 
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Fig. 5a-b: Thresholds of all study species compared for each individual odorant- carboxylic 

acids. Seba's short-tailed bat (Carolliaperspicillata), Vampire bat (Desmodus rotundus), 

Mouse-eared bat (Myotis myotis), Pale spear-nosed bat (Phyllostomus discolor), Great h i t  bat 

(Artibeus literatus), Human (Homo sapiens), Common squirrel monkey (Saimiri sciureus), Pig- 

tailed macaque (Macaca nemestrina), Domestic dog (Canis familiaris) Sea otter (Enhydra 

lutris), House mouse (Mus musculus), Brown rat (Rattus nowegicus), European hedgehog 

(Erinaceous europaeus), Common European shrew (Sorex araneus), Data fiom: Bretting, 1972; 

Devos et al, 1990; Hubener & Laska, 2001; Laing et al, 1989; Laska, 1990; Laska et al, 2000; 

Moulton et al, 1960; Obst et al, 1976; Schmidt, 198 1 ; Schmidt, 1975; Sigmund & Sedlacek, 

1985 



Valeric acid 

Fig. 5c-d: Thresholds of all study species compared for each individual odorant- carboxylic acids. Seba's 

short-tailed bat (Carollia perspicillata), Vampire bat (Desmodus rotundus), Mouse-eared bat (Myotis 

myotis), Pale spear-nosed bat (Phyllostomus discolor), Great fruit bat (Artibeus literatus), Human (Homo 

sapiens), Common squirrel monkey (Saimiri sciureus), Pig-tailed macaque (Macaca nemestrina), 

Domestic dog (Canis familiaris) Sea otter (Enhydra lutris), House mouse (Mus musculus), Brown rat 

(Rattus norvegicus), European hedgehog (Erinaceous europaeus), Common European shrew (Sorex 

araneus). Data fiom: Bretting, 1972; Devos et al, 1990; Hubener & Laska, 2001; Laing et al, 1989; 

Laska, 1990; Laska et al, 2000; Moulton et al, 1960; Obst et al, 1976; Schmidt, 198 1; Schmidt, 1975; 

Sigmund & Sedlacek, 1985 



I Caproic acid 

Domestic dog Common Human Sea otter 
squirrel monkey 

Caprylic acid 

Domestic dog Common squirrel Human 
monkey 

Fig. 5e-f Thresholds of all study species compared for each individual odorant- carboxylic 

acids. Seba's short-tailed bat (Carolliaperspicillata), Vampire bat (Desmodus rotundus), 

Mouse-eared bat (Myotis myotis), Pale spear-nosed bat (Phyllostomus discolor), Great fruit bat 

(Artibeus literatus), Human (Homo sapiens), Common squirrel monkey (Saimiri sciureus), Pig- 

tailed macaque (Macaca nemestrina), Domestic dog (Canis familiaris) Sea otter (Enhydra 

lutris), House mouse (Mus musculus), Brown rat (Rattus nowegicus), European hedgehog 

(Erinaceous europaeus), Common European shrew (Sorex araneus). Data fiom: Bretting, 1972; 

Devos et al, 1990; Hubener & Laska, 200 1 ; Laing et al, 1989; Laska, 1990; Laska et al, 2000; 

Moulton et al, 1960; Obst et al, 1976; Schmidt, 1981; Schmidt, 1975; Sigmund & Sedlacek, 

1985 
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Fig. 5g-i: Thresholds of all study species compared for each individual odorant- alcohols. Seba's 

short-tailed bat (Carolliaperspicillata), Vampire bat (Desmodus rotundus), Mouse-eared bat 

(A@otis myotis), Human (Homo sapiens), Common squirrel monkey (Saimiri sciureus), Pig- 

tailed macaque (Macaca nemestrina), House mouse (Mus musculus), Brown rat (Rattus 

nowegicus), Data fiom: Devos et al, 1990; Laska, 1990; Laska et al, 2000; Laska, & Seibt, 

2002b; Moulton and Eayrs, 1960; Obst et al, 1976; Schmidt, 1975 



12 Heptanol 

1 Pig-tailed Human Common 
macaque squirrel 

monkey 

12 Octanol 

Fig. 5j-1: Thresholds of all study species compared for each individual odorant- alcohols. Seba's 

short-tailed bat (Carolliaperspicillata), Vampire bat (Desmodtrs rotundtrs), Mouse-eared bat 

(M'otis myotiS), H m n  @orno sapiens), Common squirrel monkey (Saimiri sciureus), Pig- 

tailed macaque (Macau nemestrivza), House mouse (Mm musculus), Brown rat (;Rat& 

nowegicus), Data fiom: Devos et aE, 1990; Laska, 1990; Laska et al, 2000; Laskq & Seibt, 

2002b; Moulton and Eayrs, 1960; Obst et al, 1976; Schmidt, 1975 
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I - '  Pig-tailed Common House Human 
macaque squirrel 

monkey 
mouse 

I Butyl acetate 

1 3  Common Pig-tailed Brown rat Human 
s q u i d  macaque 
monkey 

Fig. 5m-o: Thresholds of all study species compared for each individual odorant. Seba's short- 

tailed bat (Carollia perspicillata), Vampire bat (Desmodus rotundus), Mouse-eared bat (MS/otis 

myotis), Human (Homo sapiens), Common squirrel monkey (Saimiri sciweus), Pig-tailed 

macaque (Macaca nemestrina), Domestic dog (Canisfamiliaris) Sea otter (Enhydra lutris), 

House mouse (illil;us musculets), Bruw rat (Rattus nowegicers). Data fkom: Devos ef al, 1990; 

Krestel et al, 1984; Lash, 1990; La&&, & Seibt, 2002a; Moulton, 1960; Schmidt, 1975; Yee & 

wysocki, 2001 
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Fig, 5p-q: Thresholds of all study species eompared for each individual odorant, Seba" short- 

tailed bat (Carollia perqdcillata), Vampire bat (Desmodus rotundus), Mowe-eared bat (Adjotis 

myotis), Human (Homo s a p k ~ ) ,  Common squirm1 monkey (Saimiri seiurew), Pig-tailed 

macaque (Macaca nemesb-ina), Domestic dog (Canis familiaris) Sea otter (Enhydra lutris), 

House mouse (MUS musculus3, Brown rat (Rattus wrvegicz~s). Data from: Devos et d, 1990; 

Krestel et al, 1984; L a b ,  1990; Lash, cSr. Seibt, 2002a; Moulton, 1 960; Schmidt, 1975; Yee & 

Wysocki, 2001 
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Fig. 6a,b: Incidence and threshold difference values of primate study species pairs, for all 
available comparison odorants. Squirrel monkey (Saimiri sciurews), Human (Homo sapiens), 
Pig-tailed macaque (Macaca nemestrina). Data from: Devos et aE, 1990; Hubener & Laska, 
2001; Laska et al, 2000; Laska, & Seibt, 2002a,b 
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Fig. 6c,4e: Incidence and threshold difference values of chiroptera and carnivore study species 

pairs, for all available comparison odorants. Seba's short-tailed bat (Carolliaperspicillata), 

Mouse-eared bat (Myootis wayotis) Vampire bat (Desmodus rotundus), Domestic dog (Canis 

familiaris), Sea otter (Enhydra lutris). Data fmm: Krestel et al, 1984; Laska, 1990; Moulton et 

QI, 1960; Obst et al, 1976; Schmidt, 1975, this study 
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Fig. 7c,d: Threshold vs. Incidence contrast regressions. c) Seba's short-tailed bat- Vampire bat 

(Carollia perspicillata-Desmodus rotundus) contrast, d) Seba's short-tailed bat- Mouse-eared bat 

(Carollia perspicillata-Myotis myotis) contrast 



Fig. 7e: Threshold vs. Incidence contrast regression, Domestic dog- Sea otter (Canis familiaris- 

Enhydra lutris) contrast 





Chapter 4: Nasal cavity structure and general olfactory sensitivity 

Abstract 

Absolute olfactory sensitivity (ability to detect very low concentrations of an odorant) is 

a highly variable trait among mammals, ranging over several orders of magnitude for a 

single odorant among the limited number of species that have undergone olfactory 

sensitivity testing. However, it is unknown what biological mechanism causes this 

variation. A morphometric proxy of odorant uptake in the olfactory region, Olfactory 

Uptake Efficiency (OUE) was tested against behaviorally measured olfactory sensitivity 

in twelve species of mammals. Nasal cavities were imaged by computer tomography 

(CT) and conventional histological methods. Surface areas and lumen volumes in the 

olfactory region and in the whole nasal cavity were then measured from digitized images. 

An airflow distribution and mass-transfer model was used to estimate the proportion of 

inhaled odorant molecules delivered to the olfactory epithelium (OUE) for each mammal 

species. Model output was tested against known physical and chemical trends in nasal 

uptake and olfaction, and OUE values were compared with averaged olfactory threshold 

values and relative olfactory bulb volumes across all species. Model predictions were 

consistent with several empirically observed phenomena in olfaction. Independent 

contrasts analysis showed that OUE is significantly related to relative olfactory bulb 

volume (P=0.02), and possibly to behaviorally measured average olfactory threshold 

'(AT) (P=0.10). Results strongly suggest that nasal morphometry plays an important role 

in olfaction, although sensitivity comparisons among species remain problematic because 



of the inherent difficulty of accurately measuring thresholds and the variation in 

experimental protocols in the published threshold literature. 



Introduction 

Olfaction is fundamentally a chemical sampling process that is subject to 

sampling efficiency which must be related to the design of the sampling apparatus; i.e., 

the nose. The olfactory epithelium in the nasal cavity is responsible for the translation of 

chemical input into a neural electrical signal. It is likely that absolute olfactory sensitivity 

is closely related to the probability of the olfactory epithelium intercepting an inhaled 

odorant molecule and thus to nasal cavity size and geometry. The mode1 described herein 

utilizes several measures of the nasal cavity to estimate olfactory uptake efficiency 

(OUE), defined as the ratio of molecules that make physical contact with the olfactory 

tissue to molecules that were inhaled. In addition, an Average Threshold (AT) will be 

calculated for each species based on widely tested odorant thresholds, in order to test the 

following hypothesis: 

A calculated olfactory uptake efficiency index based on morphological measures 

will be significantly related to general olfactory sensitivity in mammals. 

Background 

0IJbctor-y Morphology 

The most peripheral olfactory neurons in the Mammalia are found in the olfactory 

epithelium in the upper region of the nasal cavity (Fig. 1). The olfactory epithelium is 

generally coextensive with the ethmoid bone, which in the rear nasal cavity comprises the 

cribrifom plate, the nasal septum and the ethmoturbinal labyrinth (Greene, 1935). 



The olfactory epithelium has a complex, multilayered structure (Fig. 2). At its 

base is the lamina propria, a vascular layer which supplies blood circulation to the 

sensory tissue above. Above the lamina propria are the basal cells, a mitotically active 

cell population from which new primary olfactory neurons are continuously generated. 

Olfactory neurons deteriorate over time and are constantly replaced, a very rare process 

in the vertebrate nervous system. Above the basal cells are several layers of developing 

and mature olfactory neurons interspersed with occasional secretory cells. The number of 

layers of neurons varies among species. Olfactory neurons are bipolar with a single 

dendrite which extends from the cell body to the top of the epithelium, and ends in a 

terminal knob bearing 8-20 nonmotile cilia which are suspended in the olfactory mucus. 

The dendrites and cilia are supported by a layer of sustentacular cells overlying the 

neurons. The axons of the olfactory neurons project down through the lamina propria, 

where they form nerve bundles that thread through the perforations in the cribriform plate 

to the olfactory bulb, a paired organ located directly behind the plate (Gittleman, 1991). 

The outer layer of the olfactory bulb is the site of the first synapse in the olfactory 

system. There, the receptor neurons contact the dendrites of mitral cells, forming 

glomerular bundles. In mammals, in a single glomerulus about 25 mitral or tufted cells 

will synapse with tens of thousands of receptor axons. At deeper levels, granule cells and 

several categories of juxtaglomerular cells synapse with the mitral and tufted cells, 

allowing communication within and among glomeruli. These cells mediate lateral 

inhibition whereby more strongly activated mitral and tufted cells inhibit less strongly 

activated cells, and on a larger scale, strongly activated glomeruli inhibit weakly 



activated glomeruli. (Aungst et al, 2003, Mori et al, 1999). I t  is believed that this lateral 

inhibition plays an important role in enhancing and sharpening the spatial activation map 

in the bulb (Aungst et al, 2003, Yokoi et ai', 1995). The axons of the mitral and granule 

cells form the lateral olfactory tract which projects to several regions of the brain, 

including the limbic system and the frontal cortex (Allison, 1953). 

Olfactory Physics 

The path traveled by inhaled air through the nasal cavity is very complicated and 

varies significantly with time over a single respiration cycle. Nasal flow varies among 

species and individuals and also depending upon physiological state. Breathing rate, for 

example, increases during physical exercise and alters the flow patterns in the nose. 

Conscious behaviors of the animal also affect nasal air flow. It has been shown in several 

primates and Brown rat (Rattus nomegicus) that during normal breathing very little air 

passes through the olfactory region (Fig. 3a-c) (Kepler et al, 1998, Kimbell et al, 1993, 

Kimbell et al, 1997a, Morgan et al, 199 1, Patra et al, 1986) but that during active sniffing 

(higher total flow rates) a greater proportion of inhaled air is diverted to the olfactory 

region (Chang, 1980, DeVries and Stuiver, 196 1, Kimbell et al, 1997a). 

A study of nasal flow rates in a dog (Canis familiaris) during an olfactory task 

(hunting) has revealed at least two strategies for olfactory detection: 1) While searching 

for a trail, running nose up, the subject maintained a constant slow, inward stream of air 

through the nose for 40 seconds, (concurrent with 30 cycles of mouth-breathing). While 

sniffing the ground, the subject sniffed (nasal inhale-exhale) at a frequency of 140-2 10 

cycledmin (Steen et al, 1996). 



Studies in humans have attempted to unravel how sniffing might be useful during 

olfaction. Schneider et al(1966) measured detection thresholds at different combinations 

of flow rate and sniff duration. They concluded that detection occurs when a critical 

number of molecules reach the olfactory epithelium within a given time window. In 

Schneider's study, the absolute number of odorant molecules inhaled in a 0.50 second 

period was the critical determinant of detection. A more prolonged pulse of lower 

concentration resulting in the same total number of molecules inhaled failed to elicit a 

response. (Fig.4). However, within this window, sniffmg faster for shorter periods 

eventually yielded poorer sensitivity. Moving from a 0.50 second sniff at 40mVsecond to 

a 0.25 second sniff at 80 ml/second doubled the olfactory threshold. This suggests that 

for a given odorant, there is an optimal flow rate which will deliver the most molecules 

within the time window without washing them through so quickly that they fail to 

encounter the epithelial surface. 

Sobel et al (2000) examined thresholds of the lefi and right nostrils separately and 

concurrently. It is well known that airflow resistance is usually greater in one nostril than 

the other (Widdicombe et aE, 1986). The nostrils ahernate accommodating high and low 

flow rates in a process probably governed by the nasal vasculature and referred to as the 

nasal cycle (eg.: Eccles, 1978, Haight and Cole, 1984). Sobel et al(2000) compared 

thresholds in the high flow vs. low flow nostrils and concluded that detection could occur 

through the low-flow nostril at the same threshold as the high flow nostril when the 

subject sniffed longer to compensate for the lower flow rate. The authors suggested that 

two simultaneous flow rates optimize detection of different kinds of odorant. Odorants 



that partition quickly into the mucus, (high difhsivity in air or mucus, or high solubility 

in mucus) will be better detected in fast flow, during which they are transported farther 

over the olfactory surface and activate a larger number of neurons. Odorants that partition 

slowly will be better detected at lower flow rates because they have more time to contact 

the mucus before passing into the trachea. 

Olfactory enzymes and transport proteins 

There is enzymatic activity both in the olfactory mucus and in the nasal mucus 

that coats the respiratory epithelium. The respiratory mucus contains immunoglobins and 

lysozyrnes as well as other antiviral and antibacterial agents and is certainly an important 

line of defense against bacterial invasion in the respiratory system (Drettner, 1979, Jones, 

2001). Both mucosae also produce a wide variety of enzymes that transform organic 

compounds either for detoxification or possibly, in the case of the olfactory mucosa, for 

rapid removal of excess odorant to prevent extended stimulation. (Bogdanffy et al, 1987, 

Bogdanffy, 1990, Dahl, 1988, Dear et a2, 1991, Lazard et al, 1990, Lazard et al, 199 1, 

Zupko et al, 199 1) Activity of most enzymes is several times higher in the olfactory 

epithelium, and many biotransfomation enzymes have been found only in the olfactory 

region. There are two plausible adaptive reasons for this. First, rapid transformation of 

stimuli in the olfactory region is necessary in order to terminate the stimulus; this of 

course is not necessary in the respiratory region. Second, toxin metabolism may be less 

important in the respiratory mucus simply because it is secreted rapidly and continually 

transported by the action of the cilia to the eosophagus for disposal by the digestive 

system. Olfactory mucus is secreted much more slowly and the sensory cilia do not affect 



mucus transport, so enzymatic biotransformation is the most important removal process 

(DeSesso, 1993). This may expIain the specific toxicity of many nasal carcinogens to the 

olfactory tissue where they are transformed into their active forms by localized enzymatic 

activity (BogdanfQ et al, 1987). 

It is interesting to note that based on our current understanding of the olfactory 

mucosa enzyme system, it is not clear whether the compound that binds to the olfactory 

receptor is the same compound that was inhaled. However, for the purposes of this 

model, this question is not relevant. As long as a known compound contacts the olfactory 

epithelium, and a stimulus results, the precise chemical pathway does not matter. 

Olfactory Genetics and Sensitivi~ 

The relationship between olfactory genes and overall olfactory sensitivity remains 

uncertain, but there is wide variation in genomic investment in the olfactory system. 

Issel-Tarver and Rine (1997) defined olfactory receptor gene subfamilies by Southern 

blot hybridization of dog genomic DNA. Genes that cross-hybridized were assigned to a 

common lineage. They found in studies of humans, several artio- and perissodactyls 

(round- and split-hooved ungulates) and carnivores, that the number of lineages in the 

olfactory receptor protein superfamily was probably fixed in the mammalian ancestral 

line 60- 100 million years ago and differs little among mammalian species. However, 

local duplication has since increased OR gene numbers in some lineages more than 

others. The human olfactory genome has been censused at 906 genes (Glusman et al, 

200 l), the mouse (Mus musculus) estimated (extrapolated fi-om -93% identified genes) at 

15 10 (Young et al, 2002) and the dog at 1322 (extrapolated from 50%) (Quignon et al, 



2003). Furthermore, the complete olfactory genome is never functional. A large 

proportion of human olfactory receptor protein genes are pseudogenes (52-70%, Quignon 

et al, 2003, Rouquier et al, 2000, Young et al, 2002, Gilad et al, 2003, Glusman et al, 

2001, Niimura and Nei, 2003). Pseudogene counts up to 20% were found in the mouse 

(Zhang and Firestein, 2002, Young et al, 2002, Rouquier et al, 2000) and 18% in the dog 

(Quignon et a1 2003). Rouquier et al(2000) and Gilad et a1 (2003) found elevated 

pseudogene counts also in a variety of primates although not to the extent reported in 

humans. However, there are published sensitivity data for only three species with 

measured pseudogene content, and the relationship between functional genome size and 

sensitivity must await hrther comparative psychophysical and genetic data. 

Previous Anatomical Models of Olfactory Sensitivity 

It is often suggested that olfactory sensitivity is related to the morphometry of the 

olfactory bulb, the first point of integration and potential amplification of transduced 

olfactory signals. A great deal of work has been done on comparative anatomy of the 

mammalian olfactory bulb. Published bulb dimensions are available for broad selections 

of the Carnivora, Primates, Insectivora, Chiroptera and also for mouse (Gittleman, 1991, 

Stephan et al, 1987, Williams et al, 2001, Hutcheon et al, 2002). However, a clear 

relationship between olfactory bulb dimensions and olfactory sensitivity has not yet been 

observed. 

Bretting (1 972) showed that olfactory bulb size need not correspond to olfactory 

acuity. Comparing the volume of the bulb relative to body mass in Insectivora, Bretting 

found it did not correlate with sensitivity as measured in behavioral studies. Sigmund and 



Sedlacek (1 985), comparing neuroanatomy and sensitivity in shrews (Sorex areneus) and 

humans found very similar olfactory sensitivity despite the shrew's much larger olfactory 

bulb relative to brain volume. An independent contrasts analysis of olfactory bulb 

volume versus threshold using average threshold values and published neuroanatomical 

data implies but does not conclusively demonstrate a relationship (Fig. 5). 

This is not surprising given the results of the visualization studies of Vassar et a l  

(1994), Nagao et a1 (2000), and Ressler et al(1994) in mouse and rat. Attaching a 

molecular label to one olfactory receptor gene, they found that all of the labeled neurons 

expressing that gene project to a specific pair of glomeruli in the olfactory bulb. This 

specificity is further supported by the knock-in experiments of Mombaerts et a2 (1 996) 

and Wang et a1 (1998). Substitution of the coding region of one olfactory receptor gene 

for the coding region of another will cause the axon of the altered neuron to project to the 

highly specific glomerular target of the substitute gene. It is by now generally accepted 

that all neurons expressing a given olfactory receptor type synapse in one lateral-medial 

pair of glomeruli in the olfactory bulb. If olfactory bulb structure is standardized in this 

way throughout the mammals, then bulb size must be at least partly constrained by the 

size of the functional olfactory receptor genome. Both bulb and genome size are no doubt 

related to olfactory distinction among the many thousands of odorants coded for by the 

genome. Olfactory epithelium dimensions are not similarly constrained, as the number of 

cells expressing the receptor type communicating with each glornerular pair is large and 

variable. 



There is a great deal of published data on the histology and dimensions of the 

olfactory epithelium in mammals. It is reasonable to expect that density of olfactory 

neurons influences olfactory sensitivity. However, Sigmund and Sedlacek (1 985) 

compared the shrew, hedgehog, and fox terrier and found that the dog had the highest 

sensitivity and the lowest neuronal density while the shrew had the lowest sensitivity and 

the highest neuronal density. 

Leopold (1988) found among hyposmic humans that two morphometric variables, 

the volumes of two peri-olfactory regions of the nasal cavity, accounted for 58% of the 

variation in olfactory performance in clinical tests. The influential regions of the nasal 

cavity were the region just anterior to the olfactory cleft and the region just below the 

cleft. Based on their proximity to olfactory region, Leopold suggested that changes in 

airflow access to the olfactory epithelia were the critical factors. The mathematical model 

below tests Leopold's hypothesis on an inter-species basis. 

Nasal A igflo w Modeling 

The hnctional variable postulated to be important for absolute olfactory 

sensitivity is olfactory uptake efficiency (OUE), which is equal to the fraction of all 

inhaled molecules that contact the olfactory region's mucus layer. This quantity can be 

expected to depend on the geometry of the nasal cavity, the properties of the odorant, and 

several physiological variables. 

It is well known that chemicals are filtered out of inhaled air as it passes through 

the nasal cavity (Bogdanffy et al, 1987, Gerde and Dahl, 1991, Kepler et aE, 1998, 

Kimbell s t  al, 1993, 1997b, Morris, 1997a,b, Mowis et al, 1993, Thornton-Manning and 



Dahl, 1997). The efficiency of this process varies among chemicals and among nasal 

cavity types. Uptake efficiency for different chemicals can range from 0 to 100% in any 

mammal species. Inhaled odorants diffuse through the nasal airstream, dissolve into the 

mucus layer, and diffuse through it to the olfactory receptors below. Diffusion in the air 

phase depends on the diffusivity of the odorant in air, its concentration gradient toward 

the wall of the nasal cavity, and the temperature and fluid dynamics of the airstream. 

Dissolution rate into the mucus will depend on the solubility of the odorant as well as 

temperature. Diffusion through the mucus layer depends on the diffusivity of the odorant 

in mucus and the steepness of the concentration gradient, and may be facilitated by 

specialized transport enzymes (Lobe1 et al, 2002, Tegoni et al, 2000). Enzymatic 

transformation and removal of odorants render the process even more complex. 

Olfactory uptake efficiency is thus a complicated function of geometry and 

physical and chemical properties. Achieving a simple and yet reasonable model of nasal 

and olfactory uptake is a difficult task. A number of mathematical models have 

nonetheless been proposed. (Hahn et al, 1 994; Keyhani et al, 1 997; Lamine and Bouama, 

1997). All of these have been based upon the assumption that inhaled volatiles dissolve 

into the olfactory mucus and reach a steady state in which an odorant partitions into the 

mucus layer at the same rate as it is removed by metabolic and circulatory processes. 

The simplest version of this is the assumption that after molecules diffuse 

completely across the mucus layer, they are immediately removed at the bottom. Such 

models have successfhlly predicted several phenomena in olfaction, including the fact 

that while some odorants are more easily detected at relatively fast sniff rates, others are 



more easily detected at slower sniff rates (Hahn et al, 19941, which is in turn consistent 

with the proposal by Sobel et a1 (2000) described above. Therefore, this is the removal 

paradigm assumed in the model below. This is in some ways a crude approximation, but 

the variety of fates of the myriad of odorants entering the olfactory mucus are not 

sufficiently well described to warrant a more detailed approach for a model intended to 

describe the behaviour of any odorant. It must be pointed out however that several trends 

in empirically obtained nasal uptake data contradict the predictions of a steady state, 

'zero concentration at the bottom' model. 

If dissolution of odorants into the mucus layer is governed by steady-state 

thermodynamics, then the equilibrium solubility of the odorant and its diffilsivities in air 

and mucus should determine the differences in nasal uptake efficiency between different 

chemicals. Uptake was modeled quantitatively by Keyhani et al(1997) as a function of 

several physiochemical properties of odorant chemicals based on the steady-state 

assumption. However, for a small number of chemicals, uptake efficiency has been 

determined experimentally in the human nasal cavity (Landahl et al, 1950, as reported in 

Morgan and Monticello, 1990), and these data are not entirely consistent with the 

model's predictions (Fig. 6). 

In addition, the steady state models predict that nasal uptake efficiency is 

independent of inhaled odorant concentration. It has been shown in several rodents that at 

high inhaled concentrations uptake efficiency decreases as inhaled concentration 

increases (Fig. 7) (Bogdanfe et al, 1998; Lang et al, 1996; Morris, 1997a, 1999). 



The steady state assumption by definition implies no variation with time. Uptake 

efficiency measurements of nitrous oxide in human and vinyl acetate in rat nasal cavities 

reveal that uptake efficiency decreases significantly over the first 3-10 minutes of 

continuous exposure (Fig. 8) (Bogdanffl et al, 1998; Kelley and Dubois, 1998), a period 

many times longer than the time scale of olfactory stimulation. 

These three points can all be explained by the influence of enzymatic 

biotransformation on uptake rate. First, solubility and difhsivity in mucus will not be 

good predictors of uptake if enzymatic processes in the mucus or the epithelium are more 

important than passive diffusion and removal. The latter two points were demonstrated in 

wide concentration ranges including relatively high inhaled concentrations. Decreasing 

efficiency at higher odorant concentrations almost certainly represents the saturation of 

the olfactory enzyme system. Morris et a1 (1991) found that three structurally similar 

esters and likely substrates of the same carboxylesterase enzymes, introduced to the nasal 

cavity simultaneously, were taken up with significantly lower efficiency than when 

individually introduced, probably as a result of competitive inhibition. 

However, for Cytochrome P450 and several esterases in the olfactory mucus, 

inhaled concentrations of substrate required to saturate the enzyme systems are 1-5 orders 

of magnitude higher than typical olfactory threshold values (Dahl, 1988). Therefore, it is 

reasonable to assume that rates of odorant processing and uptake are not enzyme 

concentration limited at or near olfactory threshold. Decreasing efficiency with time may 

represent the introduction of new rate-limiting steps later in the removal process, either in 

the metabolic pathway or in the eventual removal by the circulatory system. 



Proposed Model: Olfactory uptake efficiency at olfactory threshold 

OUE, defined as the ratio of molecules contacting the olfactory epithelium to 

molecules inhaled, was estimated as the product of two factors: QudQtot the ratio of air 

passing through the olfactory region to air inhaled, and LUE,,, , the ratio of molecules 

contacting the olfactory mucus to molecules passing through the olfactory region. 

Resistance and regional delivery 

The nasal cavity in most mammals is divided into two geometrically distinct 

regions. A saggittal view of this division is shown in Fig. la, in the Pale spear-nosed bat. 

The lower nasal passage has a large hydraulic width, (being a single open compartment 

for up to half of its length). It is through this region that most nasal airflow passes. The 

upper passages, made up of the maxilloturbinal and ethmoturbinal labyrinths, contains 

the olfactory region, and is much more convoluted, with a smaller hydraulic width and 

correspondingly higher airflow resistance. The cross-sectional area of the upper passages 

varies significantly along the length of the nasal cavity (Fig. lb,c). In the posterior 25- 

50% of the nasal cavity, the upper and lower passages are physically separated. In this 

study, where this separation became incomplete, a substitute landmark was assigned to 

represent the boundary. If present, the local minimiurn distance from the lateral wall to 

the septum, nearest the boundary as defined in the previous section was defined as the 

new boundary. If no such local minimum was present, the nearest local minimum 

distance between the two lateral walls of the cavity was used. If neither local minimum 

was available, the boundary was drawn between the nearest inflection point on either 



lateral wall of the cavity (Fig. lb,c). This division continued in the anterior direction until 

no suitable landmark was present; this occurred in the nasal vestibule in all specimens, 

approximately 10% of the nasal cavity length from the anterior tip of the rostrum. The 

length of the boundary if drawn in was excluded from the region perimeters in the 

calculation of perimeter. 

At its broadest extent, the olfactory region occupies >95% of the perimeter of the 

upper cavity as defined above. In order to calculate the proportion of air passing through 

the upper region and hence the olfactory region, the nasal cavity was modeled as two 

parallel air flows, separating in the nasal vestibule and rejoining at the posterior end of 

the cavity. The cross-section of each flow was assumed to be an elliptical slit or bank of 

slits with maximum length -2.5 x maximum width (Fig. 9). In order to calculate the 

resistance of each flow, the measured cross-sectional area and hydraulic slit width of the 

upper and lower nasal cavity regions were applied to this model geometry. 

If two parallel nasal passages sharing a laminar flow have different hydraulic 

widths, and therefore different flow resistances, the air flow will be divided between 

them according to Poiseuille's Law. The force required to push fluid through a passage 

depends on the passage's cross-sectional area, the viscosity of the fluid, the mean flow 

velocity and the surface area of the passage wall which causes the drag. Assuming the 

length of and pressure drop along both passages are equal, and that the viscosity of the air 

is the same for both (as it would be for air at the same temperature), then the proportional 

flow velocities between the two sections would depend only on their cross-sectional areas 

and hydraulic widths, as outlined below. The following abbreviations will be employed: 



w= width (m) 

A= cross-sectional area (m2) 

p= perimeter (m) 

q= kinematic viscosity of air (kg/(m.sec)) 

- 
V = mean flow velocity (mhec) = 0.003 * (body (Kleiber and Rogers, 1961) 

P= pressure difference (Wm2, kg/m-sec2) 

z= length (m) 

Q = volumetric flow rate (m3/sec) 

Treating the passage cross-sections as straight rectangular slits with cross-section 

unvarying in the z direction, the effective or hydraulic width of the slit is defined as 

w=2A/p Eq. 1 

According to Poiseuille's law for laminar flow through a rectangular slit: 

Eq. 2 

Rearranging this expression allows the comparison of flow between two parallel slits of 

equal length, connected at either end and conducting the same fluid. If the slits are 

connected at either end, the pressure differences are equal and an expression for P in the 

'up' slit will equal the same expression for P in the 'down' slit. Equal slit lengths and 



fluid viscosities also cancel out and a sumple flow distribution based only upon the slit 

hydraulic diameters results. 

Therefore, volumetric flow is distributed between the two regions thus: 

substituting in Equation 1 : 

Eq. 3 

Eq. 4 

Eq. 5 

Eq. 6 

Eq. 7 

Eq. 8 

Eq. 9 

Eq. 10 

Eq. 11 

Eq. 12 

For this model, the values A and p were measured in the upper and lower nasal 

passages in each histological section (every 200pm in most specimens, beginning -10% 



from the anterior end of the nasal cavity). The mean value for all measured sections was 

calculated for each variable and these values, A,,, Adown, pup and pdom, inserted into 

Equation 12 to determine Qup/Qta for the specimen. 

Local Uptake EfJiciency: uptake in laminar flow through a mucus-lined slit 

In the upper nasal passage, odorant uptake in the respiratory region is neglected as 

discussed above. In each histological section containing olfactory tissue, modeled uptake 

is calculated as outlined below by approximating the olfactory mucus layer as a 

permeable wall through which odorant molecules are transported by passive diffusion, 

and immediately removed at the outside surface (the bottom of the mucus layer). 

The shape of the nasal passage cross section is again approximated as a slit with 

width w defined as in Equation 1. The following abbreviations will be employed: 

Hime  
- 
C=cross-sectional mean concentration in air 

C,,=concentration in mucus 

Co=concentration in air at the airlmucus interface 

C,=concentration in mucus at the airlmucus interface 

P=Henry's Law constant 

x=variable depth measured fkom the air-mucus interface 

H=total mucus layer height=O.O006cm 

Dairdifhsivity in air 

D,,=diffbsivity in mucus 



G=trans fer rate (rnol/cm2s) 

h=mass transfer coefficient ( cds )  

Sh=Sherwood number (dimensionless constant reflecting duct cross-sectional shape) 

The transfer rate G of molecules out through the permeable wall of a duct or nasal 

passage of arbitrary cross-section, when the concentration at the interior surface of the 

wall is constant, is 

Eq. 13 

where (C, - ?) is the difference between the concentration at the wall and the bulk mean 

concentration in the nasal passage, and h is the transfer coefficient which accounts for 

passage dimensions and fluid properties as follows: 

h=Sh Dair/w Eq. 14 

Here, Sh is the Shenvood number, a dimensionless constant which depends upon the 

shape of the passage cross-section, approximately 4.0 in the case of a slit 2-3 times 

longer than it is wide (Perry, 1963). D, is the difhsivity of the odorant in air, and w is the 

width of the slit. 



In the nasal cavity, the wall is the air-mucus interface, and the concentration at the 

wall, Co will be related to the solubility of the odorant in the mucus and the diffusion rate 

through the mucus layer. Solubility is described by Henry's law, so assuming odorant 

solubility in mucus r solubility in water, the mucus concentration of a given odorant in 

very close proximity to the interface will be a fixed proportion of the air concentration, 

with the proportion determined by Henry's Law: 

c, =& Eq. 15 

Where J3, the Henry's Law Constant, is empirically measured for a given compound at a 

given temperature. 

Assuming passive difhsion of the odorant across the mucus layer and then 

immediate removal at the bottom, (a gross approximation of the actual removal processes 

which will be discussed below), the mucus concentration will decrease linearly from the 

air-mucus interface to the bottom of the layer, where the mucus meets the epithelial cells. 

Differentiating this expression with respect to x yields 

Eq. 16 

Eq. 17 



Assuming steady state uptake at the air-mucus interface, the odorant flux in air 

must equal the flux in the mucus. The first variable is known from the transfer rate G. 

The second is known from Fick's law of diffusion: diffusive flux = diffusivity x 

concentration gradient. Equating the two fluxes yields 

Eq. 18 

Substituting Equations 15 and 17 into Equation 18 yields an expression based on bulk 

mean concentration, the geometry of the nasal passage and the diffusive properties of the 

odorant: 

Solving Equation 19 for wall concentration Co: 

Eq. 19 

Eq. 20 

Substituting Eq. 20 into Eq. 13 yields an expression for transfer rate based upon these 

same properties. 

Eq. 21 



This transfer rate is integrated over the wall surface area and residence time. This total 

odorant flux is divided by the calculation volume to yield the loss in concentration over a 

given length of nasal passage. In this calculation, wall surface area is the product of the 

perimeter measured in the section and the intersection spacing, volume is the product of 

area measured in the section and the inter-section spacing, and residence time in the 

calculation volume is the intersection spacing divided by the mean flow speed. 

Eq. 22 

Since the only permeable surface being considered is the olfactory mucus, the perimeter 

in this expression is the length of olfactory tissue in the cross-section, but in substituting 

for w using Equation 1, the total perimeter of the upper nasal passage is used: 

- 

Eq. 23 

For any region of nasal passage, Local Uptake Efficiency (LUE) is equal to the 

number of molecules retained divided by the number that entered, the concentration lost 

divided by the original concentration, or: 

Eq. 24 



In this study, this calculation was iterated at short intervals along the nasal 

passage length- one iteration per histologic section, every 200p.m for most specimens. AC 

was calculated for each section using perimeter and area values measured on the section 

and z=the length of the inter-section spacing. This concentration difference was 
- - 

subtracted from the initial C, and the calculation was repeated using the new value of C 

and the next histologic section. This process was repeated until the posterior end of the 

nasal cavity; thus, variation in morphometric values and changes in concentration were 

accounted for at a resolution of 200pm. LUEOlf was calculated relative to the unknown 

initial bulk mean concentration, in the most anterior section containing olfactory 

epithelium 

Olfactory Uptake Efjciency 

Assuming that initial concentration of odorant is the same in the upper and lower 

nasal cavity, then OUE is simply the product of the total Local Uptake Efficiency in the 

olfactory region and the proportion of inhaled air passing through the upper nasal cavity 

region. 

Q, OUE = LUE,,, x - 
Q tot 

Eq. 25 

In this calculation there are several important simplifications and assumptions. 

First, it is assumed that temperature in the nasal cavity does not vary significantly among 



species. Dairy the difhsivity of a gas in air, varies with temperature. Temperature in the 

olfactory region in almost all cases approaches internal body temperature very closely 

(Schmidt-Nielson, 1999) and so will vary relatively little for mammals. Mammalian core 

body temperatures lie usually between 36 and 40 "C, or 309 and 3 13 O K  (Schmidt- 

Nielsen, 1997, Morrison and Ryser, 1952). Temperature in the respiratory region will 

grade from environmental temperature to body temperature. 

The sensitivity data available for all species studied thus far were obtained under 

controlled laboratory conditions with ambient temperatures from 20-25 "C, or 293-298 

OK. In humans, probably the least efficient mammalian nasal heat-exchanger, the 

temperature profile in the nasal cavity approaches core body temperature logarithmically 

from ambient temperature, with most of the temperature change occurring in the 

vestibule and valve area (Keck et al, 2000, Lindemann et al, 2004). In the most extreme 

case, ambient and core temperatures may vary among species by as much as 5°K. This 

difference will impact uptake rate in the nasal cavity. The effect of temperature change 

on difhsivity is described by: 

T=temperature ("K) (Wilke and Lee, 1955, as cited in Perry, 1963). 

Therefore, a change in T of 5"K, in the range of 300 OK, or 1.66%, will have only 

a small effect on the difhsion rate, not exceeding 3%. 



The second assumption is that the flow speed of inhaled air, (crnk), is constant 

during sniffing, approximated as double the resting inhalation rate. In fact, linear flow 

rate during active sniffing is under conscious control of the animal and can be highly 

variable, as noted above. Flow rate in each nostril is also subject to a nasal cycle (see 

above, Olfactory Physics). However, attempting to accurately represent such flow rate 

variation is beyond the scope of the present research effort. Resting inhalation rate was 

calculated from lung tidal volume which was estimated from body mass using Kleiber's 

law and the medians of body mass ranges reported in Walker's Mammals of the World 

(Kleiber and Rogers, 196 1, Nowak, 1 997). 

Third, it is assumed that uptake is approximately zero in the respiratory mucosa, 

because odorant enzymatic biotransformation in this region is unimportant. Initial uptake 

will be significant as a new compound dissolves in the respiratory mucus. However, once 

mucus concentration rises and steady state is reached, removal will be limited primarily 

by enzymatic transformation. In fact, it has been demonstrated (Bogdanffy et al, 1 987, 

Bogdanffl st al, 1990) that some toxic compounds such as formaldehyde and 

acetaldehyde are rapidly taken up and metabolized in the respiratory region. However, 

the enzymatic suites of the olfactory and respiratory regions are clearly distinct. There is 

abundant evidence for lower and less diverse enzymatic activity in the respiratory region. 

In addition, while toxin uptake is vital in both regions, odorant uptake would not be 

useful in the respiratory region. Therefore, respiratory region enzymatic 

biotransforrnation and, consequently, uptake by respiratory mucosa were neglected. This 



includes respiratory tissue in the upper nasal cavity region, where only olfactory tissue 

was treated as an absorbing surface. 

Fourth, it is assumed that uptake in the olfactory region is instantaneous at the 

bottom of the mucus layer; i.e., that odorant molecules diffuse passively from the mucus- 

air interface to the mucus-epithelium interface and are instantly removed. This is an 

approximation for the great variety of removal processes taking place in the mucus and 

the epithelium in this region. The approximate 6 pm depth of olfactory mucus is threaded 

with nonmotile olfactory cilia (Menco, 1989, Menco et al, 1978, Reese and Brightman, 

1970). Therefore, uptake by transmembrane cellular processes, as well as binding with 

olfactory receptors, could potentially take place at any depth and after any diffusion 

distance. In addition, secreted enzymes could effect biotransforrnation anywhere in the 

mucus. The modeled linear concentration profile decreasing to zero at the.bottom of the 

mucus layer is a very rough approximation of these processes. 

Fifth, it is assumed that inhaled air passes through the nasal cavity, and the 

olfactory region, directly from front to back. This is close to the real case, as 

demonstrated in the rat (Fig. 10) (Kimbell et al, 1993, 1997a). In the posterior olfactory 

region, airflow must double back and briefly flow in the anterior direction in order to 

reach the exit to the larynx. Therefore, in the real case the flow trajectory in this region is 

longer than in the calculated case, and because of the increased resistance of this route, 

some of the airflow is likely diverted into the lower cavity before it reaches the back of 

the upper cavity. Since the first mentioned airflow has increased residence time (and 

increased uptake) in the olfactory region, and the latter has decreased residence time and 



uptake, it is difficult to say whether this simplification overestimates or underestimates 

uptake. However, since the region involved is fairly small, this will have only a slight 

effect on total olfactory uptake. 

Sixth, the application of Poiseuille's law for calculating the division of flow 

between the upper and lower cavity assumes that the nasal passages are slits of uniform 

cross-section, which is not the case. Any linear error in this calculation that is systemic 

over the whole nasal cavity will have no effect on the ratio Qup/Qbt, so species in which 

the upper and lower cavity do not differ greatly in shape (the two primates, for example; 

see Fig. 20) are unlikely to be significantly affected. However, in cases where the shape 

or degree of longitudinal variability differs importantly between the upper and lower 

nasal cavity (this is true to varying degrees in the other specimens), differential error 

between the two regions will have an unknown effect on QudQtot. 

Seventh, hlly developed parabolic laminar flow is assumed for the calculation of 

LUE. This assumption is reasonable in most but not all cases. Using the entrance length 

calculation of Bejan and Kraus (2003) 

L=O.Ol w(Re) 

where w=hydraulic width, Re=Reynolds number, and L is the length of the duct 

or nasal cavity after which the flow profile is fully developed, the flow profile in the 

human nasal cavity is expected to be fully developed after approximately 14 mm or 14% 

of its length. The human nasal cavity has by far the largest Reynolds number in the 

dataset, approximately 500 at physiological flow rates. Therefore relative entrance 



lengths in other species will be even shorter and entrance region effects are not expected 

to be important. 

Finally, a fully developed concentration profile is assumed in the olfactory region. 

Given the assumption of negligible uptake in the respiratory region, the concentration 

profile at the anterior end of the olfactory region must be flat. This is the point at which 

the concentration profile begins to develop. The point at which the concentration profile 

is fully developed varies among odorant compounds. The Schmidt number, or the ratio of 

kinematic viscosity of air to odorant diffusivity, determines how rapidly the 

concentration profile develops. A Schmidt number of 1 indicates that both profiles 

develop equally fast. Most volatiles have diffusivity values in air between 0.01 cm2/sec 

and 1 cm2/sec and corresponding Schmidt numbers between 0.17 and 17. For the 

odorants with diffusivities less than 0.1 cm2/sec, the concentration profile will develop at 

least as fast as the velocity profile did, and only the very lowest difhsivity odorants will 

develop their concentration profiles significantly more slowly. Therefore, for nonhuman 

nasal cavities in which the velocity profile forms quickly, the concentration profile in the 

olfactory region will also form quickly for nearly all odorants and the fully developed 

concentration profile will be a reasonable assumption. For the human nasal cavity, the 

profile will take between 2mm and 20 cm to develop, depending on odorant difhsivity, 

so for many odorants the assumption will be reasonable, but for the lower diffusivity 

odorants significant portions or the whole olfactory region will be a region of developing 

concentration boundary layers. In these cases the concentration in the middle of the air 

passages will be more uniform, the concentration gradient near the walls will therefore be 



steeper, and uptake will be higher than predicted. The difhsivity used to calculate OUE 

for comparison with olfactory sensitivity, 0.075 cm2/sec, was selected to be 

representative of the odorants whose thresholds were used in the sensitivity comparison. 

For this difhsivity, the concentration profilein the olfactory region will develop in 

between 0.5 - 1 cm and the increased uptake in the developing region will not have an 

important effect on uptake. 

All histological, morphometric and physiological characters implicated in 

potential model error: mucus chemistry, variability of inhalation rate, air temperature, 

and posterior division of the cavity, are similar amongst mammals. Therefore the error in 

the model results can be expected to be fairly uniform across species. 

Methods 

The following twelve species were measured: the House mouse (Mus musculus), 

the Brown rat (Rattus nowegicus), the Common European shrew (Sorex araneus), the 

Human (Homo sapiens), the Common squirrel monkey (Saimiri sciureus), the Vampire 

bat (Desmodus rotundus), Seba's short-tailed bat (Carollia perspicillata), the Mouse- 

eared bat (Myotis myotis), the Pale spear-nosed bat (Phyllostomus discolor), the Great 

fruit bat (Artibeus literatus), the Domestic dog (Canis fam iliaris), and the Sea otter 

(Enhydra lutris). These species represent a wide range of habitat types as well as 

phylogenetic groups, allowing us to examine both variables. 

Specimens were obtained from the American Museum of Natural History, the 

Whitehead Institute at the Massachusetts Institute of Technology, the Biology 



Department of MIT, the California Oiled Wildlife Network, the Harvard Museum of 

Comparative Zoology, the Institute for Hydrology and Ecology at Monk's Hood, Tufts 

Veterinary School, the New England Regional Primate Research Center, Lion Country 

Safari Zoo, and the Cameron Park Zoo. 

Traditional studies of nasal anatomy have relied on light microscopic examination 

of serial sections. This technique, in conjunction with appropriate staining techniques, 

provides high-resolution histological data. However, it does not reflect the dimensions of 

undisturbed tissues. In order to obtain accurate morphometric measures as well as fine- 

level morphological detail, traditional light microscopy was combined with a 

nondisruptive imaging technique, computerized tomography (CT). 

Radiologic techniques 

CT imaging is based on measures of X-ray attenuation, which is closely related to 

tissue mineralization and density. Therefore it is most useful for distinguishing 

gradations of dense tissue and interfaces of bone with soft tissue or air. CT images have a 

pixel resolution of 100 microns, which is sufficient for comparison with conventional 

histologic sections. Consequently, CT data not only show undisturbed anatomical 

relationships but also provide measurements that can be directly compared with those 

from histologic examinations. 

Nasal cavities were scanned using techniques established for both marine mam- 

mal and human cranial anatomy (Ketten, 1994, Ketten et al, 1998). Spiral and contiguous 

CT scans were obtained in the transaxial plane, at 0.1 to 1 millimeter intervals. Scans of 

most specimens were obtained using a Siemens Volume Zoom CT unit in the WHO1 CT 



facility. The house mouse, common European shrew, vampire bat and Seba's short-tailed 

bat specimens were scanned using an Siemens Emotion CT unit. Scan data and images 

were archived on magneto-optical disks. Transaxial and saggital section images were also 

archived as TIFF files as well as printed hard copies on radiologic film. 

CT scans do not reveal fine detail or distinguish tissue types, but they accurately 

reflect the dimensions of undisturbed tissues. Measurements from the CT scans were 

compared with measurements of the identical feature (total nasal cavity length) from the 

histological sections in order to verify the latter and provide a correction factor if 

necessary. 

Histology 

Noses were sectioned for histology according to the method described for rats by 

Gross and colleagues (1982) with appropriate modifications for larger animals. Heads 

were skinned and the lower jaw removed. The nasal cavity was separated fiom the 

cranium immediately posterior to the cribriform plate. This operation was guided by 

landmarks obtained from the CT scans. The nasal cavity was decalcified in EDTA and 

embedded in celloidin. Sections were cut at 20 pm intervals in the transaxial plane. Every 

10" section was stained with haematoxylin and eosin, and mounted on a glass slide. In 

the two largest specimens, the dog and sea otter, section thicknesses varied from 20-36 

pn and every looth and every 50" section, respectively, was stained and mounted. 

Epithelial lengths and lumen areas were obtained by light microscopy using an Olympus 

SZHlO stereomicroscope and an Olympus BX40 transmitted light microscope. Images of 



each section were acquired under magnification using an Hitachi CCD camera model , 

KP- MlU and stored as TIFF files for measurement using Scion ImageTM. 

Morphometry calculations 

Olfactory and respiratory epithelia were distinguished by the following 

characteristics: differential staining in cell bodies, nuclei, and cilia, texture of cilia, 

packing of epithelial cells, and thickness of epithelial layer (Fig. 2b). The sea otter 

specimen had significant pathology and the epithelium was detached from the turbinates 

in many places. Therefore, approximately 30% of the tissue in the upper nasal cavity in 

the vicinity of the olfactory region could not be classified. However, where tissue was 

present it was still easily distinguishable as respiratory or olfactory (Fig. 2c,d). 

Conservative values of LUE and OUE were calculated using only the olfactory tissue that 

could be positively identified. Alternative values were calculated assuming that all the 

epithelium posterior to the first identifiable olfactory epithelium was also olfactory tissue. 

The means of the two values are the reported sea otter LUE and OUE. 

Olfactory epithelial area was calculated as described in Gross et a1 (1982). Length 

of structures of interest was measured in the TIFF image of each histologic section using 

Scion ImageTM 4.0. The length of epithelium in a single histologic section was multiplied 

by the section separation and the resulting section areas summed over the series to 

produce the total epithelial area. Air space cross-sectional areas were measured 

throughout the series and multiplied by section separation to produce lumen volumes. 

Statistical analysis 



The model was tested using chemical property values chosen to be representative 

of the compounds tested in the behavioral study: Henry's law constant=0.00001, 

difhsivity in air=0.075cm2/s and difhsivity in mucus=0.0000 1 cm2/s, except where 

otherwise noted. 

In order to compare general olfactory sensitivity among species, an Average 

Threshold was calculated. All threshold values were log transformed. The Average 

Threshold was defined as the mean of the log transformed threshold values of seven 

widely tested odorants, acetic acid (8 species), propionic acid (9 species), butyric acid 

(12 species), ethanol (7 species), butanol(6 species), ethyl acetate (5 species) and amyl 

acetate (7 species). These odorants were chosen in order to maximize the size of the 

dataset while equalizing the representation of the three available chemical groups, 

straight-chain aliphatic acids, alcohols and acetate esters. To compare fourteen mammal 

species using these seven compounds the total set of thresholds is 98. Of these, 55 were 

available in the literature and from this study. Due to inherent variation in detectability 

among these seven compounds, it was important to substitute approximations for the 

missing values. In all three chemical groups, an approximate logarithmic decrease in 

threshold with increasing carbon chain length is present in most species (Fig. 1 I). For 

species with missing values in a chemical group where two or more thresholds were 

available for related compounds, the missing value was estimated using the rate of 

increase with chain length among the known values. If only one threshold value for that 

species in that chemical group was available, the missing value was extrapolated using 



the mean of the slope in question for all available species. Seventeen values were 

approximated in this way. The remaining 26 were approximated by the following value: 

For species Q, odorant Y 

Estimated Threshold = (mean [available thresholds(Q)] x meantavailable thresholds 

(y)l)ln 

AT was regressed on OUE. Plots of thresholds versus OUE with species values 

are included for inspection (Fig. 12). However, all species values were transformed using 

Felsenstein's method of independent contrasts (Felsenstein, 1985) to remove 

phylogenetic nonindependence before regression. The regressions were performed using 

Stata 8.0, with the constraint that the regression line pass through the origin. The 

topology of the phylogeny used to calculate the contrast values is shown in Fig. 13. 

Variances were estimated from the branch lengths in the Eutherian phylogenies of 

Goodman et a1 (1 998) and Nikaido et al(200 1) wherein branch lengths were calculated 

from molecular data. However, several branch lengths were unavailable. The basal and 

the Carnivora/Chiroptera/Soricidae nodes were left unresolved because there was no 

consensus in the literature. In those cases, two bifurcations were collapsed into one node 

of increased branch length and the extra bifurcation assigned a branch length of zero. In 

addition, branches within the chiroptera were arbitrarily assigned equal length between 

each bifurcation, because published branch lengths were not available. An identical 

regression was performed for Vol$Vbrain VS. OUE. VolfNbrain values were log-transformed 



and OUE was arbitrarily assigned as the independent variable in order to pemit the 

contrasts comparison. 

Results 

Model results 

Variation in OUE was large and significant contributions were made by Qu&Qbt 

and LUE ( R ~ =  0.76 and 0.42, respectively). The two factors were not highly correlated 

(R'=o. 06). 

Relative variation (standard deviatiodmean) was slightly higher for QUP/Qbt than 

for LUE (Table 1). Most species were tightly grouped for both variables with several low 

outliers. The primates and sea otter had unusually low values of QUp/Qtol This was 

attributable in all three cases to their small cross-sectional areas of the upper cavity 

relative to the lower cavity. For the squirrel monkey and the sea otter a small slit width in 

the upper region relative to the lower region was also an important contributing factor. 

The sea otter has unusually convoluted turbinal structure in the anterior nasal cavity, 

extending into the lower region, but persisting for a greater axial distance in the upper 

region. LUE values were also unusually low in both primates, reflecting their relatively 

small area of olfactory epithelium. This is consistent with the low neural investment 

made in olfaction in this highly visual lineage (Stephan et al, 1987, Gilad et al, 2004). 

Respiration and chemistry eflects on uptake 



The model was tested against several empirically observed phenomena in 

respiration, nasal uptake and olfaction. In most cases the model was in qualitative 

agreement with empirical data. However, some limitations were revealed. 

Empirical studies described above show that proportional flow through the upper 

nasal cavity increases with increased inhalation rate. The model fails to account for this 

as Q,/Q,, is independent of total inhalation rate. 

The work of Schneider et a2 (1966) suggests a decrease in uptake efficiency with 

increasing flow rate in humans. This is the most parsimonious explanation for the 

decreasing sensitivity with sniff rate observed in the higher range of sniff rates tested. 

This is consistent with the model output in human as well as in mouse (Fig. 14), which 

shows continuously decreasing LUE in the olfactory region as inhalation flow rate 

increases. This effect is only likely to be important for low LUE species like humans 

since physiologically achievable flow rates for other species would produce only small 

decreases in LUE for most odorants. 

Sobel et a1 (2000) suggested that fast-partitioning odorants would be optimally 

detected at faster flow rates than slow-partitioning odorants. At fast flow rates, uptake of 

slow-partitioning odorants would be small; at slow flow rates, uptake of fast-partitioning 

odorants would occur rapidly over a small area and activate fewer receptors. Three 

chemical properties are used as model input and affect LUE in the olfactory region: 

diffusivity in air, diffusivity in mucus, and Henry's law constant, 8. Diffusivity in air can 

be predicted with reasonable accuracy from molecular formula (Fuller et al, 1966) and 

generally ranges from 0.01 to 1 cm/s2. Diffusivity in mucus is problematic since in order 



to predict it theoretically it is important to know whether the odorant associates with the 

solvent, and the complex biochemistry of the olfactory mucus complicates this question. 

Nevertheless, the typical range of difhsivities of small molecules in any liquid is to 

1 o - ~  cm/s2 (Perry et al, 1997). Henry's Law constants have been empirically determined 

for a large number of small molecules, including all of the odorants used in this study 

(Yaws, 1999). This is the most variable property, ranging from lo-' to 10' (concentration 

in aidconcentration in water at Standard Temperature and Pressure). The effects of all 

three variables are monotonic: increasing D,;, or Dm,, increases uptake; increasing R 

decreases uptake. The sensitivity of the model to these three variables varies with nasal 

morphometry (Fig. 15), and there are important interactions between them. In the high- 

uptake mouse morphometry, LUEolf is almost invariant with Dair above approximately 

2xl0-~cm~/sec, while in the human morphometry there is a strong dependence under all 

conditions of the other two variables that allow appreciable uptake. Dm, only has an 

important effect at values of R greater than 0.01, in either species, which increases with 

increasing D,;,. The most important effect of increasing 13 is the aforementioned 

interaction with Dm above 13 values of 0.0 1, but at extremely high values (13=0.1 in 

human, 1 in mouse), uptake is reduced to extremely low levels and dependence on both 

diffusivity terms becomes unimportant. 

However, it must be borne in mind that in vivo, the solubility and diffusivity of 

odour molecules in mucus is subject to mucus biochemistry, and the behaviour of 

odorants in mucus will be difficult to predict until the mucus enzyme system is more 

completely understood. For this reason the interaction of physiochemical properties with 



sniff rate was examined along a gradient of D,;, values in the human nasal cavity. Dair 

appears twice in the LUE calculation: once in the calculation of odorant concentration 

just above the mucus layer, Co, a negligible effect, and again in the calculation of the 

transfer rate G of molecules into the mucus surface (molecules/area/time). This is later 

integrated over the mucus surface area (molecules/time), and then divided by the upper 

nasal cavity air flow rate Qup (volumehime) to determine total concentration change 

(molecules/volume); therefore, the ratio of Dair /Q,, is the only important uptake 

consequence of Dair (Fig. 1 6). 

The model results in the human nasal cavity support Sobel's theory: at extremely 

high values of Dai, /Qtot (fast-sorbing odorants at low flow rates) uptake is nearly 

complete but over 75% of it occurs in the anterior 25% of the olfactory region, 90% in 

the anterior half, potentially limiting the number of receptors activated. At very low 

values (slow-sorbing odorants at fast flow rates) uptake is evenly distributed but reduced 

to less than 5% (Fig. 17). For the odorants used in this study at double the resting 

inhalation rate, uptake is distributed moderately evenly over approximately half the 

length of the olfactory region, with LUE,lf ranging from 0-20%. According to the model 

output, these odorants could be taken up with greater efficiency at slower inhalation 

rates. 

Model output for LUE was compared with the empirical values for whole nasal 

cavity uptake measured by Morgan and Monticello (1 990) for four compounds (Fig. 18). 

A direct comparison is not strictly valid: Morgan and Monticello tested significantly 

higher inhaled concentrations and longer exposures than those for which the model is 



intended. This introduces the possibility of saturation of the nasal enzyme systems which 

could have differing effects on the substances tested. The model, by contrast, relies on 

physiochemical parameters for all four compounds (Henry's law constants and 

diffusivities in air and water from Perry and Green, 1997 and Dean, 1999). The model 

output was consistent with the empirical data for carbon monoxide (extremely low 

solubility, no uptake), and ethanol and acetone (small, mobile, highly soluble molecules, 

mid-range diffusivities in air and water, moderate uptake) but not for ammonia. 

Ammonia difhsivities and solubility were not dramatically different from ethanol or 

acetone and moderate uptake was predicted (24%). Actual uptake was 80%. Ammonia is 

a weak base that can be found in significant concentrations in nature and is an important 

respiratory system irritant and toxin (Pyatt, 1970, Kirkhorn and Garry, 2000). A robust 

pathway for removal of this compound from the nasal mucosa would be adaptive for the 

protection of the lower respiratory tract. Such a system, if it exists, would explain the 

unexpectedly high nasal uptake of ammonia after prolonged exposure. 

The fact that the model is consistent with observed physical and chemical trends 

and the quantitative comparison with empirical uptake measurements suggest that the 

model varies at least qualitatively with olfactory uptake efficiency. Model output can 

therefore be used as a proxy in order to determine the effect of OUE on sensitivity. 

Morphornet~y efects on threshold 

Model output for the study species is summarized in Table 1. Tabulated values 

are for a single specimen of the Domestic dog, Sea otter, Mouse-eared bat, Spear-nosed 

bat, Vampire bat, Common squirrel monkey, Brown rat and European shrew, and the 



mean of two specimens for the remaining four species. The Mouse-eared bat AT value 

was deemed an outlier and this species was excluded from the analyses involving AT. 

There are obvious and significant phylogenetic effects on AT and particularly on 

OUE (Fig. 12a). The Primates form a distinct group at low AT values and extremely low 

OUE, separated from the nearest nonprimate OUE value by nearly a factor of three. The 

shrew, the Rodents and the Chiroptera form a large cluster with similar, high OUE values 

and widely varying AT. The carnivora have widely separated OUE values intermediate 

between the primates and the rest of the mammals. 

Contrast values are in Fig. 12b. Linear regression of AT vs. OUE among the 

eleven mammals shows a strong although not statistically significant trend ( R ~  = 0.27; P 

= 0.10). 

A regression of AT on the two factors of OUE showed that LUE was the more 

important factor due to its higher variation. However, most of this variation was 

contributed by the extremely low LUE values of the human and squirrel monkey. 

Excluding them from the analysis, the important factor in the remaining variation in OUE 

was QudQdoum- 

Morphometry effects on neuromatomy 

Linear regression shows that OUE is significantly related to the ratio of olfactory 

bulb volume to total brain volume, VolfNbrain (P=0.02. ~ ~ = 0 . 4 3 ,  Fig. 19). 

Discussion 

Signijicance of OUE 



In light of the quality of the data, and especially considering the small size of the 

dataset (1 1 species), the results for AT and OUE are difficult to interpret. The regression 

of AT on OUE appears correlated but is not significant at the 5% level. The R~ value 

indicates that this relationship explains 27% of the variation in the threshold dataset. This 

is remarkable, particularly considering the many sources of error described below, that 

contribute to the large variance of AT. This suggests that nasal cavity morphometry does 

play a role in determining general olfactory sensitivity, in a fashion consistent with its 

role as a physical collector of the stimulus. A larger dataset will be necessary to 

determine whether this relationship is indeed significant. Estimating the power of this 

experiment is problematic since there is no independent reference for the magnitude or 

variability of the effect examined. A first-order power analysis of the regression based on 

the signal to noise ratio, as described in Cohen (1977) shows that under these conditions 

a sample size of thirty species would be 89% likely to show a relationship significant at 

the 5% level (Fig. 20). 

It is interesting to note that even this small sample showed a highly significant 

relationship between OUE and neural investment in brain volume, as represented by 

VoldVbrain. While the relationship between nasal and brain morphometry is striking, 

neither variable appears to be strongly related to directly measured olfactory sensitivity. 

The high variability in intra-species values of AT, as well as the many obvious sources of 

error in the measurement of behavioral olfactory thresholds and the calculation of a 

representative average suggest that these are the limiting factors in predicting olfactory 

sensitivity from anatomy. Modem neurophysiologic theory and cornputer-aided flow 



modeling techniques currently available could increase the sophistication of the 

anatomical model, in fact, to a point unwarranted by the quality of the threshold data 

available currently for testing it. Future research should, ideally, both broaden and 

standardize the psychophysical dataset. Such work is difficult, expensive and practical 

only for a few species. However, a comprehensive comparison of anatomy with 

sensitivity may eventually permit informed sensitivity estimates of mammals for which 

direct measurements are not available. 

Nonolfactory ~OP-phological features 

Three important nonolfactory biological features may have impacted 

measurement of OUE. The first is body mass. Total inhalation flow rate, to which we 

have seen that OUE is extremely sensitive, was predicted fiom body mass. It is worth 

noting that the four largest species have the four lowest values of OUE. However, beyond 

this grouping the pattern breaks down. The smallest of the four, the squirrel monkey, has 

a nearly identical OUE to the largest (human). The two most similar sized species, the 

dog and sea otter, have very dissimilar OUE values. The dog, the larger of the two as 

well as the second largest in the whole dataset, has the highest OUE of the four, a value 

similar to those of the small mammals in the dataset. 

The other two features are both non-olfactory hnctions of the nasal cavity. There 

is extremely wide variation in gross nasal cavity morphology among the species 

examined (Fig. 21). In the case of the sea otter, highly derived turbinal structure was 

observed which greatly increased surface area through most of the nasal cavity. This 

feature is likely to have evolved for the respiratory functions of heat and water retention. 



Among its adaptations to a marine existence, the sea otter has unusually thick h r ,  a 

variety of behavioral and metabolic adaptations for heat conservation (Costa and 

Kooyman, 1984) and a highly derived respiratory system, including a lung volume 2.5 

times that of similarly sized terrestrial mammals, which is believed to be adaptive both 

for long dives and for buoyancy regulation (Kooyman, 1973, Leith, 1976, Lenfant et al, 

1970). 

All but one of the bat species studied utilize nasal echolocation. In the posterior 

nasal cavity of each of these species is a large sinus or pair of sinuses, varying in shape 

and unique to the Chiroptera. This sinus communicates with the surrounding olfactory 

region but does not contain olfactory epithelium. A function in the modification or 

directing of the echolocation signal is likely, analogous to the melon in echolocating 

odontocete whales. This postulated function is supported by the absence of this sinus in 

the Mouse-eared bat, which is a buccal emitter in which the echolocation signal passes 

through the open mouth rather than the nasal cavity. 

Variation and error 

Several simplifying assumptions in the model may produce systematic errors. 

However, the purpose of the model is not to predict actual uptake quantitatively but only 

relatively across varying rnorphometries. It is likely that other sources of variation are 

collectively more important than the deviations of the model from explicit flow and 

transport conditions. 

There was significant inter-individual variation in OUE in species for which more 

than one specimen was measured. Variation between conspecifics ranged from 1.4 to 



30% (Table 2). The most similar animals were two female Mus musculus of the same 

strain. In that case, turbinate morphometry was nearly identical, and considerable 

differences in the extent of the olfactory region resulted in only slightly different LUE 

values. 

Olfactory receptor cell numbers decrease with age (Hinds and McNelly, 198 1, 

Ohta and Ichimura, 2000). While this process begins relatively young, the model output 

suggests that significant loss of uptake efficiency will not be proportional orimmediate, 

particularly in high-uptake species like the mouse, but losses will have a much larger 

uptake effect in low-uptake species including primates. Therefore, the effect of age both 

within and across species is likely to be substantial and complex. 

The most extreme difference was between the two humans. Human turbinate 

morphometry data was taken from Kelly et al(2000) and Keyhani et a1 (1 995) and was 

measured by similar radiographic methods (CT scan). The difference in humans arises 

entirely from turbinate structure, in particular a difference in nasal passage width (w). 

Olfactory tissue distribution data from the same source, an in vivo biopsy sampling study 

(Feron et al, 1998) was superimposed on the two morphometries obtained from Kelly et 

a1 (2000) and Keyhani et a1 (1 995). The difference in LUE was larger than in 

QupIQdown and also opposite in sign. This is expected to be typical of this kind of 

morphometric difference. Increased relative passage width in the upper nasal cavity will 

increase flow through the olfactory region, but as QudQtot increases, residence time 

decreases and so, correspondingly, does LUE,lf. Since the two effects are in opposition, 

the net effect of increased width can be positive or negative. The uptake effect is more 



important in the human case. Therefore, the net result of wider upper nasal passages is 

increased OUE. However, in nasal cavities where uptake is near completion (LUEOlf close 

to 1) the relative importance of the flow distribution effect will increase. While the 

human turbinate morphometry differences may have been an artifact of differences in 

technique between the two sources, intra-species variation in nasal passage width due 

either to turbinate morphology or to occlusion is likely to be an important source of intra- 

species variation in OUE in humans and possibly other species. 

Surface area and volume measurement error due to tissue shrinkage during 

histological processing is a possibility that must always be considered in work of this 

kind. In this case the importance of these effects should be unimportant. While the 

resolution of the CT scans do not permit measurement of very small features, 

comparisons of overall nasal cavity length showed that the calculated length fi-om the 

histological series does not differ systemically from that measured in the undisturbed 

tissue from the scans (Fig. 22). The three largest differences observed are largely 

attributable to lack of resolution in the scans. These specimens, the house mouse, Seba's 

short-tailed bat and common European shrew, are all very small and were scanned on the 

less high-resolution model scanner. Counting only the specimens scanned on the Volume 

Zoom, the largest difference was 5% and the mean difference was 1% (shorter in CT 

scan). 

Intra-species variation in olfactory sensitivity is well documented. It has been 

shown in humans, (Lehrner et al, 1999, Stevens and Cain, 1987), lemurs, (Aujard and 

Nemoz-Bertholet, 2004) and rats (Kramer and Apfelbach, 2004) that many aspects of 



olfactory function, including sensitivity and ability to distinguish between odorants, 

decline throughout adulthood. Among females, seasonal or hormonal variation in 

sensitivity must also be considered. Navarrette-Palacios et al(2003) found in humans 

that significant changes in olfactory sensitivity occur over the course of the menstrual 

cycle, with lowest thresholds during ovulation and highest thresholds during 

menstruation. Schmidt, (1 978) found similar variation in female mice based on hormonal 

state. 

Sexual dimorphism in olfactory sensitivity is also common but not uniform across 

species and compounds. Among humans, better performance by females in olfactory 

tasks has been reported often (Doty, 1986, Yousem et al, 1999, Oberg et al, 2002, Dalton 

et al, 2002). However, this finding is not robust among other mammals. Because of the 

cyclic variations in female sensitivity, most nonhuman studies have simplified their 

analyses by testing only males. Among the five quantitative studies cited here that tested 

both sexes, three reported individual results for each sex. Myers and Pugh (1985) tested 

12 dogs, 5 female, 7 male, and found no significant difference in performance, noting that 

there was no estrous among the females nor any sign of sexual interest on the part of the 

males that would indicate an estrous female. Moulton et al(1960) tested two dogs, and 

the male was uniformly more sensitive than the female. In neither canine study is age 

specified beyond the description 'mature'. Hubener and Laska (2001) tested two adult 

and one subadult male and one adult female pig-tailed macaque. The female acquired the 

task in approximately 200 practice trials before the first of the males, or approximately 

50% faster but her threshold values were not significantly different from any of the 



corresponding mean male thresholds. It is unproven but reasonable to consider that 

sexual dimorphism will eventually be found to vary widely among species and among 

compounds. 

Aside from differences in age and sex of the subject animals, largely 

unquantifiable differences in experimental conditions and technique contributed to 

'noise' in the dataset. Olfactory masking effects, training & reinforcement schedules, 

dilution medium, temperature, trial timing and resulting olfactory acclimation, 

concentration measurement and potentially many other experimental conditions varied 

among the four decades of studies used for developing and testing the model. To 

illustrate the importance of this variation, see Fig. 23 for a comparison of the range of 

threshold values for the 12 tested mammals for butyric acid (6 orders of magnitude) and 

the range of published values in the 17 studies measuring human threshold for butyric 

acid, (4.4 orders of magnitude) which were combined by Devos and colleagues (1 990) to 

yield the value utilized herein. The published mammalian olfactory threshold dataset is 

particularly susceptible to this source of variation compared with the OUE and olfactory 

bulb volume datasets because of the large variety of sources from which it is derived. The 

thresholds used in this study were obtained from 17 studies conducted over 43 years. In 

contrast, OUE data came from four sources (this study and the three human anatomy 

references used to calculate human OUE) dating from the past nine years and olfactory 

bulb volumes were drawn from four sources dating from the past 13 years. 



References 

Aujard, F., Nemoz-Bertholet, F. 2004. Response to urinary volatiles and chemosensory 

hnction decline with age in a prosimian primate. Physiol. Behav. 8 1 :639-44 

Aungst, J., Heyward, P., Puche, A*, Kamup, S., Hayar, A., Szabo, G., Shipley, M. 2003. 

Centre-surround inhibition among olfactory bulb glomeruli. Nature 426(6967):623-9 

Bejan, A,, Kraus, A. 2003. Heat Transfer Handbook. John Wiley & Sons 

Bogdanffy, M. 1990. Biotransformation enzymes in the rodent nasal mucosa: the value of 

a histochemical approach. Environmental Health Perspectives 85 : 1 77-86 

Bogdanffy, M., Randall, H., Morgan, K. 1987. Biochemical quantitation and 

histochemical localization of carboxylesterase in the nasal passages of the Fischer-344 rat 

and B6C3F 1 mouse. Tox. Appl. Pharmacol. 88: 183-94 

Bogdanffy, M., Sarangapani, R., Kimbell, J., Frame, S., Plowchalk, D. 1998. Analysis of 

vinyl acetate metabolism in rat and human nasal tissues by an in vitro gas uptake 

technique. Tox. Sci. 46:235-246 

Bretting, H. 1972. Die Bestimmung der Riechschwellen bei Igeln (Erinaceus europaeus 

L). fur einige Fettsauren. 2. Saugetierkd. 37:286-3 11 

Chang, H. 1980. Flow dynamics in the respiratory tract. In Respiratory Physiology, H. 

Chang, Ed., Marcel Dekker, Inc., New York, NY. 

Cohen, J. 1977. Statistical power analysis for the behavioral sciences, Revised Edition. 

Academic Press, Inc., London 

Costa, D., Kooyman, G. 1984. Contribution of specific dynamic action to heat balance 

and thermoregulation in the sea otter Enhydra lutris. Physiol. 2001. 57: 199-203 



Dahl, A. 1988. The Effect of Cytochrome P-450-dependent metabolism and other 

enzyme activities on olfaction. in Molecular Neurobiology of the Olfactory System, 

Margolis and Getchell (eds.) Plenum Press, NYLondon. pp 5 1-70 

Dalton, P., Doolittle, N., Breslin, P. 2002. Gender-specific induction of enhanced 

sensitivity to odors. Nat. Neurosci. 5 : 199-200 

Dean, J. (Ed) 1999. Lange's Handbook of Chemistry, 15" Ed. McGraw-Hill, NY 

Dear, T., Campbell, K., Rabbitts, T. 1991. Molecular cloning of putative odorant-binding 

and odorant-metabolizing proteins. Biochemistry 30: 10376-82 

DeSesso, J. 1993. The relevance to humans of animal models for inhalation studies of 

cancer in the nose and upper airways. Quality Assurance, Good Practice, Regulation, and 

Law 2(3):2 13 -3 1 

Devos, M., Patte, F., Roualt, J., Laffort, P., Van Gemert, L. 1990. Standardized human 

olfactory thresholds. IRL Press, at Oxford University Press, Oxford, NY, Tokyo 

DeVries, H., Stuiver, M. 196 1. The absolute sensitivity of the human sense of smell. In: 

Rosenblith, W. (Ed.) Sensory Communication, MIT Press, Cambidge, MA, 196 1 

Doty, R. 1986. Gender and endocrine-related influences upon olfactory sensitivity. In: 

Meiselman H, Rivlin RS, eds. Clinical measurement of taste and smelI. New York: 

MacMillan pp 3 77-4 1 3 

Drettner, B. 1979. The role of the nose in the functional unit of the respiratory system. 
, 

Rhinology 17:3-11 



Eccles. 1978. The domestic pig as an experimental animal for studies of the nasal cycle. 

Acta Otolaryngol. 85:43 1-6 

Felsenstein, 1985. Phylogenies and the comparative method. American Naturalist 

125(1):1-15 

Feron F, Perry C, McGrath J, Mackay-Sim A. 1998. New techniques for biopsy and 

culture of human olfactory epithelial neurons. Arch Otolaryngol Head Neck Surg. 

l24(8): 86 1-6 

Fuller, E., Schettler, P., Giddings, J. (1966) A new method for prediction of binary gas- 

phase diffusion coefficients. Ind. Eng. Chem. 58:19-27 

Gerde, P. and Dahl, A. 199 1. A model for the uptake of inhaled vapors in the nose of the 

dog during cyclic breathing. Tox. Appl. Pham. 109:276-288 

Gilad, Y., Wiebe, V., Przeworski, M., Lancet, D., Paabo, S. 2004. Loss of olfactory 

receptor genes coincides with the acquisition of full trichromatic vision in primates. 

PLoS Biol. 2:E5 

Gittleman, J.,199l. Carnivore olfactory bulb size, allometry phylogeny and ecology. 

Journal of Zoology (London) 225 (2):253 -72 

Goodman, M., Porter, C., Czelusniak, J., Page, S., Schneider, H., Shoshani, J., Gunnell, 

G., Groves, C. 1998. Toward a phylogenetic classification of primates based on DNA 

evidence complemented by fossil evidence. Mol. Phylogen. Evol. 9(3):585-98 

Greene, E. 1935. Anatomy of the rat. Trans. Amer. Philos. Soc. 27 : 1-370 

Gross, E., Swenberg, J., Fields, S., Popp, J. 1982. Comparative morphometry of the nasal 

cavity in rats and mice. J. Anat. 135:83-8 



Hahn, I., Scherer, P., Mozell, M. 1994. A mass transport model of olfaction. J. Theor. 

Biol. 167: 1 1 5- 128 

Haight, J., Cole, P. 1984. Reciprocating nasal airflow resistances. Acta Otolaryngol. 

97:93-8 

Hinds, J., McNelly, N. 1981. Aging in the rat olfactory system: correlation of changes in 

the olfactory epithelium and olfactory bulb. J. Comp. Neurol. 203:441-53 

Hubener, F., Laska, M. 2001. A two-choice discrimination method to assess olfactory 

performance in pigtailed macaques, Macaca nemestrina. Physiology and Behaviour 

72:511-9 

Hutcheon, J., Kirsch, J., Garland Jr, T. 2002. A comparative analysis of brain size in 

relation to foraging ecology and phylogeny in the Chiroptera. Brain Behav Evol. 

60(3): 165-80 

IsselTarver, L., Rine, J. 1997. The evolution of mammalian olfactory receptor genes. 

Genetics 145: 185-195 

Jones, N. 2001. The nose and paranasal sinuses physiology and anatomy. Advanced Drug 

Delivery Reviews 5 1 : 5- 1 9 

Keck, T., Leiacker, R., Schick, M., Rettinger, G., Kuhnemann, S. 2000. Temperature and 

humidity profile of the paranasal sinuses before and after mucosal decongestion by 

xylometazolin. Laryngorhinootologie 79(12):749-52 

Kelley, P., Dubois, A. 1998. Comparison between the uptake of nitrous oxide and nitric 

oxide in the human nose. J. Appl. Phys. 85:1203-1209 



Kelly J., Prasad A., Wexler A. 2000. Detailed flow patterns in the nasal cavity. J Appl 

Physiol. 89:323-37 

Kepler, G., Richardson, R., Morgan, K., Kimbell, J. 1998. Computer simulation of 

inspiratory nasal airflow and inhaled gas uptake in a rhesus monkey. Tox. Appl. Pharm. 

15O:l-11 

Ketten, D. (1 994) Functional Analyses of Whale Ears: Adaptations for Underwater 

Hearing, LE .E.E. Underwater Acoustics, vol. l pp.264-270 

Ketten, D., Skinner, M., Wang, G., Vannier, M., Gates, G., Neely, J. 1998. In vivo 

measures of cochlear length and insertion depth of nucleus cochlear implant electrode 

arrays. Ann Otol Rhino1 Laryngol Suppl. 1 75 : 1 - 1 6 

Keyhani, K., Scherer, P., Mozell, M. 1995. Numerical simulation of airflow in the human 

nasal cavity. J Biomech Eng. 1 1 71429-4 1 

Keyhani, K., Scherer, P., Mozell, M. 1997. A numerical model of nasal odorant transport 

for the analysis of human olfaction. J. Theor. Biol. 186:279-301 

Kimbell, J., Godo, M., Gross, E., Joyner, D., Richardson, R., Morgan, K. 1997a. 

Computer simulation of inspiratory airflow in all regions of the F344 rat nasal passages. 

Tox. Appl. Pharm. 1145:388-398 

Kimbell, J., Gross, E., Joyner, D., Godo, M., Morgan, K. 1993. Application of 

computational fluid dynamics to regional dosimetry of inhaled chemicals in the upper 

respiratory tract of the rat. Tox. Appl. Pharm. 121 :253-263 



Kimbell, J., Gross, E., Richardson, R., Conolly, R., Morgan, K. 1997b. Correlation of 

regional formaldehyde flux predictions with the distribution of formaldehyde-induced 

squamous metaplasia in F344 rat nasal passages. Mutat. Res. 380:143-154 

Kirkhorn S, Gany V. 2000. Agricultural lung diseases. Environ Health Perspect. 108 

Suppl4:705- 12 

Kleiber, M., Rogers, T. 196 1. Energy metabolism. Annu. Rev. Physiol. 235-36 

Kooyman, G. 1 973. Respiratory adaptations in marine mammals. Am. Zool. 1 3:457-468 

Kramer, S., Apfelbach, R. 2004. Olfactory sensitivity, learning, and cognition in young 

adult and aged male Wistar rats. Physiol Behav. 8 1 (3):43 5-42 

Krestel, D., Passe, D., Smith, J., Jonsson, L. 1984. Behavioral determination of olfactory 

thresholds to amyl acetate in dogs. Sci. Biobehav. Rev. 8: 169-74 

Laing, D., Panhuber, H., Slotnick, M. 1989. Odor Masking in the Rat. Physiology and 

Behavior 45:689-94 

Lamine, A., Bouazra, Y. 1997. Application of statistical thermodynamics to the olfaction 

mechanism. Chemical Senses 22:67-75 

Lang, S., Langguth, P., Oschmann, R., Traving, B., Merkle, H. 1996. Transport and 

metabolic pathway of thymocartin (TP4) in excised bovine nasal mucosa. J. Pharm. 

Pharmacol. 48: 1 190- 1 196 

Laska, M. 1990. Olfactory sensitivity to food odor components in the short-tailed fruit 

bat, Carolliaperspicillata (Phyllostomidae, Chiroptera). J. Comp. Phys. A 166:395-9 

Laska, M., Seibt, A. 2002a. Olfactory sensitivity for aliphatic esters in squirrel monkeys 

and pigtail macaques. Behavioral Brain Research 134: 165-74 



Laska, M, Seibt, A. 2002b. Olfactory sensitivity for aliphatic alcohols in squirrel 

monkeys and pigtail macaques. J. Exp. Biol. 205: 1633-43 

Laska, M., Seibt, A., Weber, A. 2000. 'Microsmatic' primates revisited: Olfactory 

sensitivity in the squirrel monkey. Chemical Senses, 25:47-53 

Lazard, D., Tal, N., Rubinstein, M., Khen, M., Lancet, D., Zupko, K. 1990. Identification 

and biochemical analysis of novel olfactory-specific Cytochrome P-450IIA and UDP- 

Glucuronosyl transferase. Biochemistry 29: 743 3-40 

Lazard, D., Zupko, K., Poria, Y., Nef, P., Lazarovits, J., Horn, S., Khen, M., Lancet, D. 

1991. Odorant signal termination by olfactory UDP glucuronosyl transferase. Nature 

349:790-3 

Lehmer, J., Gluck, J., Laska, M. 1999. Odor identification, consistency of label use, 

olfactory threshold and their relationships to odor memory over the human lifespan. 

Chemical Senses 24(3):337-46 

Leith, D. 1976. Comparative mammalian respiratory mechanics. Physiologist 

19(4):486-5 10 

Lenfant, C., Johansen, K., Torrance, J. 1970. Gas transport and oxygen storage capacity 

in some pinnipeds and the sea otter. Respir. Physiol. 9:277-286 

Leopold, D. 1988. The relationship between nasal anatomy and human olfaction. 

Laryngoscope 98(11): 1232-8 

Leopold D., Hummel, T., Schwob, J., Hong, S., Knecht, M., Kobal, G. 2000. Anterior 

distribution of human olfactory epithelium. Laryngoscope 1 10(3 Pt 1):417-2 1 



Lindemann J, Keck T, Wiesmiller K, Sander B, Brambs HJ, Rettinger G, Pless D. 2004. 

A numerical simulation of intranasal air temperature during inspiration. Laryngoscope 

114: 1037-41 

Lobel, D., Jacob, M., Volkner, M., Breer, H. 2002. Odorants of different chemical classes 

interact with distinct odorant binding protein subtypes. Chemical Senses 27:39-44 

Menco, B. 1989. Olfactory and nasal respiratory epithelia, and foliate taste buds 

visualized with rapid-freeze freeze-substitution and lowicryl K11M embedding: 

Utrastructural and initial cytochemical studies. Scanning microscopy 3(1):257-72 

Menco, B., Leunissen, J., Bannister, L., Dodd, G. 1978. Bovine olfactory and nasal 

respiratory epithelium surfaces. Cell Tiss. Res. 193 :5O3-24 

Mombaerts, P., Wang, F., Dulac, C., Chao, S., Nemes, A., Mendelsohn, M., Edmondson, 

J., Axel, R. 1996. Visualizing an olfactory sensory map. Cell 87(4):675-886 

Morgan, K., Kimbell, J., Monticello, T., Patra, A., Fleishman, A. 1991. Studies of 

inspiratory airflow patterns in the nasal passages of the F344 rat and rhesus monkey 

using nasal molds: relevance to formaldehyde toxicity. Tox. Appl. Pharm. 1 10:223-240 

Morgan, K., Monticello, T. 1990. Airflow, gas deposition, and lesion distribution in the 

nasal passages. Environ. Health Perspect. 85:209-2 1 8 

Mori, K., Nagao, H., Yoshihara, Y. 1999. The olfactory bulb: coding and processing of 

odor molecule information. Science 286:7 1 1-5 

Morris, J., 1997a. Uptake of acetaldehyde vapor and aldehyde dehydrogenase levels in 

the upper respiratory tracts of the mouse, rat, hamster, and guinea pig. Fund. Appl. Tox. 

35:91-100 



Morris, J. 1997b. Dosimetry, toxicity and carcinogenicity of inspired acetaldehyde in the 

rat. Mutat. Res. 380: 113-124 

Morris, J. 1999. Vapor uptake and its applicability to quantitative inhalation risk 

asessment. Inhal. Tox. 1 1 3943-65 

Moms, J., Clay, R., Trela, B., Bogdanffy, M. 1991. Deposition of dibasic esters in the 

upper respiratory tract of the male and female Sprague-Dawley rat. Tox. Appl. 

Pharrnacol. 108538-46 

Morris, J., Hassett, D., Blanchard, K. 1993. A physiologically based pharmokinetic 

model for nasal uptake and metabolism of nonreactive vapors. Tox. Appl. Pham. 

123:120-129 

Morrison, P, Ryser, F. 1 952. Weight and body temperature in mammals. Science 1 1 6:23 1 

Moulton, D. 1960. Studies in olfactory acuity 3. Relative detectability of n-aliphatic 

acetates by the rat. Quart. J. Exp. Psychol. 12:203-13 

Moulton, D., Ashton, E., Eayrs, J. 1960. Studies in olfactory acuity 4. Relative 

detectability of n-aliphatic acids by the dog. Animal Behaviour 8: 1 17-28 

Moulton, D., Eayrs, J. 1960. Studies in olfactory acuity 2. Relative detectability of n- 

aliphatic alcohols by the rat. Quart. J. Exp. Psychol. l2:99-109 

Myers, L., Pugh, R. 1985. Thresholds of the dog for detection of inhaled eugenol and 

benzaldehyde determined by electroencephalographic and behavioral olfactornetry. Am. 

J. Vet. Res. 46:2409-12 

Nagao, H., Yoshihara, Y., Mitsui, S., Fujisawa, H., Mori, K. 2000. Two mirror-image 

sensory maps with domain organization in the mouse olfactory bulb. Neuroreport 



11(13):3023-7 

Navarrette-Palacios, E., Hudson, R., Reyes-Guerrero, G., Guevara-Guzrnan, R. 2003. 

Lower olfactory threshold during the ovulatory phase of the menstrual cycle. Biological 

Psychology 63:269-79- 

Nikaido, M., Kawai, K., Cao, Y., Harada, M., Tomita, S., Okada, N, Hasegawa, M. 2001. 

Maximum likelihood analysis of the complete mitochondria1 genornes of eutherians and a 

reevaluation of the phylogeny of bats and insectivores. J. Mol. Evol. 53 (4-5):508- 16 

Nowak, R. 1997. Walker's Mammals of the World, Online edition 5.1 Johns Hopkins 

University Press 

Oberg, C., Larsson, M., Backman, L. 2002. Differential sex effects in olfactory 

functioning: the role of verbal processing. J. Int. Neuropsychol. Soc. 8:691-698 

Obst, Von Ch., Schmidt, U. 1976. Untersuchungen zum Riechvermogen von Myotis 

myotis (Chiroptera). Suagetierkunde 4 1 : 10 1-8 

Ohta, Y., Ichimura, K. 2000. Changes in epidermal growth factor receptors in olfactory 

epithelium associated with aging. Ann Otol Rhino1 Laryngol. 1 O9:% -8 

Patra, A., Gooya, A., Morgan, K. 1986. Airflow characteristics in a baboon nasal passage 

cast. J. Appl. Phys. 61 : 1959- 1966 

Perry, R., Chilton, C., Kirkpatrick, S. 1963. Chemical Engineers' Handbook, 4" Ed. 

McGraw-Hill, NY 

Perry, R., Green, D. (Eds). 1997. Perry's Chemical Engineers' Handbook, 7" Ed. 

McGraw-Hill, NY 



Pyatt, F. 1970. Potential effects on human health of an ammonia rich atmospheric 

environment in an archaeologically important cave in southeast Asia. Occup Environ 

Med. 60(12):986-8 

Reese, T., Brightman, M. 1970. In: Taste and Smell in Vertebrates (Ciba Symposium) G. 

Wolstenholme and J. Knight, Eds., Churchill, London 

Ressler, K., Sullivan, S., Buck, L. 1994. Information coding in the olfactory system: 

evidence for a stereotyped and highly organized epitope map in the olfactory bulb. Cell 

79: 1245-55 

Schmidt, C. 1978. Olfactory threshold and its dependence on the sexual status in the 

female laboratory mouse. Naturwissenschaften 65 : 60 1 
- 

Schmidt, C. 198 1. Behavioral and neurophysiological studies of the olfactory sensitivity 

in the albino mouse. 2. Saugetierkd. 47: 1 62-8 

Schmidt, U. 1973. Olfactory threshold and odour discrimination of the vampire bat 

(Desmodus rotundus). Period. Biol. 7539-92 

Schmidt, U. 1975. Vergleichende Riechschwellenbestimmungen bei neotropischen 

Chropteren (Desmodus rotundus, Artibeus literatus, PhyNostornus discolor). Z .  

Saugetierkd. 40:269-96 

Schmidt-Nielsen, K. 1997. Animal Physiology. Cambridge University Press, Cambridge, 

U.K. 

Schneider, R., Schmidt, C., Costiloe, P. 1966. Relation of odor flow rate and duration to 

stimulus intensity needed for perception. J. Appl. Phys. 2 1 : 10- 14 



Sigmund, L. and Sedlacek, F. 1985. Morphometry of the olfactory organ and olfactory 

thresholds of some fatty acids in Sorex areneus. Acta 2001. Femica l73:249-5 1 

Sobel, N., Khan, R., Hartley, C., Sullivan, E., Gabrieli, J. 2000. Sniffing longer rather 

than stronger to maintain olfactory detection threshold. Chemical Senses 25: 1-8 

Steen, J., Mohus, I., Kvesetberg, T., Walloe, L. 1996. Olfaction in bird dogs during 

hunting. Acta Physiol. Scand. 1 57: 1 1 5 

Stephan, H., Frahm, H., Baron, G. 1987. Comparison of brain structure volumes in 

Insectivora and primates. VII. Amygdaloid components. J Hirnforsch. 28(5): 57 1-84 

Stevens, J., Cain, W. 1987 Old-age deficits in the sense of smell as gauged by thresholds, 

magnitude matching, and odor identification. Psycho1 Aging 2(1):36-42. 

Tegoni, M., Pelosi, P., Vincent, F., Spinelli, S., Campanacci, V., Grolli, S., Ramoni, R., 

Cambillau, C. 2000. Mammalian odorant binding proteins. Biochimica et Biophysica 

Acta 1482:229-40 

Thornton-Manning, J.,Dahl, A. 1997. Metabolic capacity of nasal tissue interspecies 

comparisons of xenobiotic-metabolizing enzymes. Mutat. Res. 3 80(1-2):43 -5 9 

Vassar, R., Chao, S., Sitcheran, R., Nunez, J., Vosshall, L., Axel, R. 1994. Topographic 

organization of sensory projections to the olfactory bulb. Cell 79:98 1-9 1 

Wang, F., Nemes, A., Mendelsohn, M., Axel, R. 1998. Odorant receptors govern the 

formation of a precise topographic map. Cell 93:47-60 

Wieland, G. 1938. Uber die grosse des riechfeldes beim Hunde. Ein beitrag zur methodik 

derartiger untersuchungen. 2. Hundenforsch., Leipzig 12: 1-23 



Widdicombe, Phil. 1986. The Physiology of the nose. Clinics in Chest Medicine 

7(2): 159-70 

Williams. R., Airey, D., Kulkarni, A., Zhou, G., Lu, L. 2001. Genetic dissection of the 

olfactory bulbs of mice: QTLs on four chromosomes modulate bulb size. Behav Genet. 

3 1 (l):6 1-77 

Yaws, C. (Ed). 1999. Chemical Properties Handbook. McGraw-Hill 

Yee, K., Wysocki, C. 2001. Odorant exposure increases olfactory sensitivity: olfactory 

epithelium is implicated. Physiology and Behavior 72:7O5 - 1 1 

Yokoi, M., Mori, K., Nakanishi, S. 1995. Refinement of odor molecule tuning by 

dendrodendritic synaptic inhibition in the olfactory bulb. Proc. Natl. Acad. Sci. USA 

92:3371-5 

Yousem, D., Maldjian, J., Siddiqi, F., Hummel, T., Alsop, D., Geckle, R., Bilker W., 

Doty R. 1999. Gender effects on odor-stimulated functional magnetic resonance 

imaging. Brain Res. 8 18:480-487 

Zupko, Poria, Lancet. 199 1. Immunolocalization of Cytochromes P-45001fl and P- 

45001f2 in the rat olfactory mucosa. Eur. J. Biochem. 196:51-8 



(PhyElostornus discolor). The upper nasal cavity containing the olfactory epithelium is 

highlighted in yellow. Directly underneath is the lower-resistance region of the lower 

nasal cavity, which conducts the bulk of the nasal airflow. 

Fig. 1: Transverse histological sections through the nasal cavity of the House mouse 

(Mus musculus). The olfactory epithelium is highlighted in yellow. b: an anterior section, 

where the olfactory epithelium is not extensive. The separation of upper and lower nasal 

cavity is indicated by the blue line. c: a posterior section, where the olfactory epithelium 

nearly fills the upper nasal cavity. Here, the lower nasal cavity is physically separated. 

Identical scale, bar=l rnm 
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Developing neurons 

Fig. 2:a) Olfactory epithelium, schematic; b) House mouse (Mus musculus) nasal 

epithelium, respiratory on left, olfactory on right; c) Sea otter (Enhydra lutris) nasal 

respiratory epithelium; d) Sea otter (Enhydra lutris) olfactory epithelium 



Fig. 3 : Nasal airflow patterns. a)baboon (Papio sp.), video analysis of dye flow in 

transparent nasal cast, from Patra et al, 1986 



Fig. 3: Nasal airflow patterns. b) rhesus monkey (Macaca mulatta), video analysis of dye 

flow in transparent nasal cast, from Morgan et al, 199 1 .  



Fig. 3: Nasal airflow patterns. c)  F344 rat (Rattus norvegicus), video analysis of dye flow 

in transparent nasal cast, from Morgan el a!, 199 1. 



Fig. 4: The interaction of flow rate and 

time in olfactory detection, fiom 

Schneider et al, 1966 
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Fig. 5a: Average Threshold (AT) versus olfactory bulb 

volume, all available species values. From Hutcheon et al, 

2002, Gittleman, 1991, Stephan et al, 1987, Williams eb ul, 

200 1 

log VolfNbrain 

Fig. 5b: Independent contrasts analysis, AT versus olfactory 

bulb volume, all available species 



log VolfNbrain 

Fig. 5c: Independent contrasts analysis, AT versus olfactory bulb 

volume, OUE study species 



Fig. 6: Modelled human (Homo sapiens) 

nasal uptake compared with empirical 

values, model from Keyhani et al, 1997, 

empirical values from Morgan and 

Monticello, 1990. 

x=phy sicochemical parameter 

y=nasal uptake efficiency 

Sc=Schrnidt number (inversely 

proportional to diffusivity in air) 



Fig. 7: Nasal uptake efficiency for 

acetaldehyde in four rodents at four odorant 

concentrations. House mouse (Mus 

musculus), Hamster (Mesicricetus sp.), 

Brown rat (Rattus norvegicus) and Guinea 

pig (Cavia porcellus). From Morris, 1997a 



Fig. 8: Human (Homo sapiens) nasal tissue 

uptake efficiency kinetics. From Kelley and 

Dubois, 1998 



Fig. 9: Schematic representation of the mammalian nasal cavity as modeled 

herein. 



Fig. 10: Posterior nasal 

airflow in the brown rat, 

(Rattus nowegicus) 

From Kimbell et al, 1997a 



Human (Homo sapiens) 1 0.262 1 0.188 1 0.049 

Common squirrel monkey (Saimiri sciureus) 1 0.135 1 0.408 1 0.055 

OUE 

0.663 

0.517 

Species 

House mouse (Mus rnusculus) 

Brown rat (Rattus nowegicus) 

Mouse-eared bat (Myotis myotis) 1 0.647 1 0.897 1 0.580 

Pale spear-nose bat (Phyllostomus discolor) 1 0.652 1 0.855 1 0.558 

QudQtot 

0.729 

0.616 

LUEolf 

0.909 

0.839 

Vampire bat (Desrnodus rotundus) 1 0.747 1 0.901 1 0.673 

Great fmit bat (Artibeus literatus) 

Seba's short-tailed bat (Carollia 

perspicillata) 

European shrew (Sorex araneus) 1 0.617 1 0.987 1 0.608 

0.719 

0.710 

Domestic dog (Canis familiaris) 

Sea otter (Enhydra lutris) 

std. dev./mean 1 0.389 1 0.299 1 0.498 

0.764 

0.937 

0.616 

0.176 

mean 

standard deviation 

Table 1. Olfactory uptake values for 14 mammal species for a compound of Henry's law 
constant=O. 0000 1, difhsivity(air)=O. 075cm2/s and dif~sivity(mucus)=0.0000 1 cm2/s, at a 
total nasal flow rate of 2 x resting inhalation flow rate 
Q,/Qtot =flow through upper cavityltotal nasal flow 
LUE = molecules encountering olfactory tissue/molecules in upper cavity flow 
OUE (Olfactory Uptake Efficiency)= molecules encountering olfactory tissueltotal 
molecules inhaled 

0.542 

0.664 

0.658 

0.850 

0.552 

0.215 

0.405 

0.150 

0.766 

0.229 

0.455 

0.227 
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Fig. 1 1: Previously published olfactory thresholds organized by chemical group a) 

carboxylic acids. Human (Homo sapiens), Common squirrel monkey (Saimiri sciureus), 

Pig-tailed macaque (Macaca nemestrina), House mouse (Mus musculus), Brown rat 

(Rattus nowegicus), Seba's short-tailed bat (Carolliaperspicillata), Vampire bat 

(Desmodus rotundus), Pale spear-nosed bat (Phyllostomus discolor), Great h i t  bat 

(Artibeus literatus), Mouse-eared bat (Myotis myotis), European shrew (Sorex araneus), 

European hedgehog (Erinaceous Europaeus), Domestic dog (Canis familiaris), Sea otter 

(Enhydra lutris). Data from: Bretting, 1972; Devos et ad, 1990; Hubener & Laska, 2001; 

Laing et al, 1989; Laska, 1990; Laska et al, 2000; Moulton et al, 1960; Obst et al, 1976; 

Schmidt, 1981; Schmidt, 1975; Sigmund & Sedlacek, 1985, this study 
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Fig. 1 1 : Previously published olfactory thresholds organized by chemical group b) 

alcohols; c)acetate esters. Human (Homo sapiens), Common squirrel monkey (Saimiri 

sciureus), Pig-tailed macaque (Macaca nemestrina), House mouse (Mus musculus), 

Brown rat (Rattus norvegicus), Seba's short-tailed bat (Carolliaperspicillata), Vampire 

bat (Desmodus rotundus), Pale spear-nosed bat (Phyllostomus discolor), Great h i t  bat 

(Artibeus literatus), Mouse-eared bat (Wotis myotis), European shrew (Sorex araneus), 

European hedgehog (Erinaceous Europaeus), Domestic dog (Canis familiaris), Sea otter 

(Enhydra lutris). Data from: Devos et al, 1990; Krestel et al, 1984; Laska, 1990; Laska 

and Seibt, 2002a,b; Moulton, 1960; Moulton and Eayrs, 1960; Obst et al, 1976; Schmidt, 

1975; Yee and Wysocki, 2001; this study 
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Fig. 12a: AT vs. OUE, species values. Human (Homo sapiens), Common squirrel 

monkey (Saimiri sciureus), House mouse ( M s  musculus), Brown rat (Rattus 

nowegicus), Seba's short-tailed bat (Carollia perspicillata), Vampire bat (Desmodus 

rotundus), Pale spear-nosed bat (Phyllostomus discolor), Great h i t  bat (Artibeus 

literatus), European shrew (Sorex araneus), Domestic dog (Canis familiaris), Sea otter 

(Enhydra lutris) 
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Fig. 12b: AT vs. OUE, contrast values 



Fig. 13. Complete phylogeny of morphometric study species. Human (Homo sapiens), 

Common squirrel monkey (Saimiri sciureus), House mouse (Mus musculus), Brown rat 

(Rattus norvegicus), Seba's short-tailed bat (Carolliaperspicillata), Vampire bat 

(Desmodus rotundus), Pale spear-nosed bat (Phyllostomus discolor), Great h i t  bat 

(Artibeus literatus), Mouse-eared bat (Mjlotis myotis), European shrew (Sorex araneus), 

Domestic dog (Canis familiaris), Sea otter (Enhydra lutris). Data from: Goodman et al, 

1998, Nikaido et al, 2001. 
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Fig. 14a: LUE versus sniff rate, human (Homo sapiens) nasal mophometry. Red point: 

rate double resting inhalation rate 
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Fig. 14b: LUE versus sniff rate, mouse (Mus muscuZus) nasal morphometry. Red point: 

double resting inhalation rate 
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Fig. 16: Effects of Difhsivity in air (Da, cm2/sec) and inhalation flow rate (Qup, ml/sec) 
on Local Uptake Efficiency of the olfactory region (LUEolf). Human (Homo sapiens) 
nasal cavity 
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Fig. 17: Effect of diffusivity in air (Da, cm2/sec) and upper nasal cavity flow rate (Qup, 

W s e c )  on distribution of uptake in the human (Homo sapiens) nasal cavity. a) 

cumulative uptake, b) fractional uptake 



Empirically measured nasal cavity uptake 

Fig. 18: Model output versus empirical results for proportional uptake of four 

compounds in the human (Homo sapiens) nasal cavity. 

Uptake=l-(concentration inhaled/concentration exhaled) 

Data from Morgan and Monticello, 1990. 
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Fig. 19a: Log-transformed ratio of olfactory bulb volume to brain volume vs OUE. 

Human (Homo sapiens), Common squirrel monkey (Saimiri sciureus), House mouse 

(Mus musculus), Brown rat (Rattus norvegicus), Seba's short-tailed bat (Carollia 

perspicillata), Vampire bat (Desmodus rotundus), Pale spear-nosed bat (Phyllostomus 

discolor), Great fruit bat (Artibeus literatus), Mouse-eared bat (Myotis myotis), European 

shrew (Sorex araneus), Domestic dog (Canis familiaris), Sea otter (Enhydra lutris). a) 

species values 
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Fig. 19b: Log-transformed ratio of olfactory bulb volume to brain volume vs OUE. 

Human (Homo sapiens), Common squirrel monkey (Saimiri sciureus), House mouse 

(Mus muscudus), Brown rat (Rams norvegicus), Seba's short-tailed bat (Carollia 

perspicillata), Vampire bat (Desmodus rotundus), Pale spear-nosed bat (Phyllostornus 

discolor), Great h i t  bat (Artibeus literatus), Mouse-eared bat (Myotis myotis), European 

shrew (Sorex araneus), Domestic dog (Canis familiaris), Sea otter (Enhydra lutris). b) 

contrast values 
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Fig. 20: Power analysis of OUE vs. AT regression based on signal to noise ratio, ~ ~ / ( l -  

R ~ ) .  Poweqrobability that an experiment of a given sample size will yield a P value of 

<0.05 
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Fig. 21 : sample nasal cavity sections; histological sections above, CT scans on facing 
page. a)House mouse, Mus musculus (distances measured in cm from the rostra1 end) 
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Fig. 2 1 : sample nasal cavity sections; histological sections above, CT scans on facing 
page. b) Brown rat, Rattus nowegicus (distances measured in cm Erom the rostra1 end) 
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Fig. 21 : sample nasal cavity sections; histological sections above, CT scans on facing page. c) 
Common squirrel monkey, Saimiri sciureus (distances measured in cm from the rostra1 end) 
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Fig. 2 1 : sample nasal cavity sections; histological sections above, CT scans on facing 

page. d) Mouse-eared bat, Myotis rnyotis (distances measured in cm from the rostra1 end) 



identical scale, bar=Smrn 



1.2 1.4 identical scale, b a ~ l  rnm 

Fig. 2 1 : sample nasal cavity sections; histological sections above, CT scans on facing 

page. e) Pale spear-nosed bat, Phyllostomus discolor (distances measured in cm fiom the 

rostra1 end) 
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Fig. 21: sample nasal cavity sections; histological sections above, CT scans on facing 

page. f )  Great h i t  bat, Artibeus literatus (distances measured in cm from the rostra1 end) 
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Fig. 21 : sample nasal cavity sections; histological sections above, CT scans on facing page. g) 

Seba's short-tailed bat, Carollia perspicillata (distance measured in cm from rostra1 end) 
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Fig. 2 1 : sample nasal cavity sections; histological sections above, CT scans on facing 

page. h) Vampire bat, Desmodus rotundus (distances measured in cm from the rostra1 

end) 
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Fig. 21 : sample nasal cavity sections; histological sections above, CT scans on facing 

page. i) Domestic dog, Canis familiaris (distances measured in cm from the rostra1 end) 
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Fig. 21: sample nasal cavity sections; histological sections above, CT scans on facing 

page. j) Sea otter, Enhydra lutris (distances measured in cm from the rostra1 end) 
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Fig. 21 : sample nasal cavity sections; histological sections above, CT scans on facing 

page. k) European shrew, Sorex araneus (distances measured in cm from the rostra1 end) 
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Table 2: Individual values of model output for species of which two specimens were 

measured. 

(Artibeus literatus) (Homo sapiens) (Mus musculus) (Carollia perspicillata) 



Fig. 22: Ratio of nasal cavity length measured from CT scans to nasal cavity length 

measured from histological sections. Species arranged in ascending order of nasal cavity 

length. 
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Fig. 23. Variation in published olfactory thresholds for butyric acids. Data fiom Bretting, 

1972; Devos et al, 1990; Hubener & Laska, 2001 ; Laing et al, 1989; Laska, 1990; Laska 

et al, 2000; Moulton et al, 1960; Obst et al, 1976; Schmidt, 198 1 ; Schmidt, 1975; 

Sigmund & Sedlacek, 1985, this study 



Chapter 5:  Summary and Conclusions 

This project utilized such data as is available for mammals to test a candidate 

source of selection pressure for specific sensitivity, (dietary chemical ecology), a 

candidate source of selection pressure for general sensitivity (terrestrial versus marine 

habitat) and a candidate mechanism of increasing general sensitivity (nasal cavity 

morphometry). 

The question of presumed olfaction-eroding habitat, specifically marine habitat, 

was addressed through the sea otter. Many marine mammal species appear to have 

vestigial or dysfunctional olfactory systems. If it is the marine habitat that reduces the 

importance of nasal chemoreception, then the sea otter should also have shown impaired 

olfactory function. However, if it is the particular dive and respiration habits of the 

Cetacea that are responsible, the sea otter should have unimpaired olfactory finction. The 

typical mammalian olfactory thresholds measured in the sea otter and reported in Chapter 

2 show that reduced olfactory function need not occur in a marine species that breathes 

freely at the surface most of its life. 

Considering the widely varying natural distributions of volatile chemicals, the 

adaptive importance of detecting each must also vary widely for any animal, depending 

on the value of the information that the chemical can provide, for example about the 

location and nature of its source. If specific sensitivities to different odorants evolve 

independently, as is suggested by our current knowledge of the molecular biology of 

olfaction, then it is reasonable to expect sensitivity to different compounds to be related 

to their usefulness in detecting and identifying objects of importance such as food items. 



The results of the specific sensitivity comparisons reported in Chapter 3 show that in 

some cases, notably between a marine carnivore, the sea otter, and a terrestrial carnivore, 

the domestic dog, and between two primates with divergent dietary habits, the 

omnivorous human and the frugivorous squirrel monkey, differences in dietary 

importance are reflected in specific sensitivity. In other cases, however, exemplified by 

the chiroptera, diet leaves no signal in the olfactory sensitivity repertoire. These cases 

may reflect competing odorant sources of greater ecological importance than diet, 

especially if food searches are conducted primarily in other sensory modalities. In no case 

did the dietary significance signal swamp out sensitivity trends related to odorant 

chemical structure which may plausibly result fiom overlap between sister odorants in the 

combinatorial olfactory receptor code. 

No measure has yet been described that is strongly related to olfactory sensitivity 

differences among species. The results of Chapter 4 clearly show that the morphometry 

of the nasal cavity is strongly related to olfactory neuroanatomy in the brain. This striking 

result implies a balance of anatomical investment in olfactory structures presumably 

adaptive for maximizing functional return on that investment. However, neither of these 

important anatomical features is as strongly related to measured sensitivity as they are to 

each other. Considering the relative difficulty of accurate behavioral sensitivity 

measurement compared with morphometric measurement, variation in the behavioral 

dataset is likely to be largely responsible for this difference. 



Chapter 6: Glossary 

Olfactory threshold: lowest airborne concentration of odorant that can be distinguished 

from odourless air (specific to individual olfactory and odorant) 

Average Threshold (AT): a representation of average olfactory sensitivity for a species, 

the mean of log-transformed values of seven widely available olfactory thresholds: acetic 

acid, propionic acid, butyric acid, ethanol, butanol, ethyl acetate and amyl acetate 

Incidence (I): A property of a particular odorant for a particular animal: the proportion of 

food items in the diet of the animal that contain the odorant 

Olfactory Uptake Efficiency (OUE): the ratio of odorant molecules taken up by the 

olfactory mucus to total molecules inhaled 

Local Uptake Efficiency (LUE): the ratio of odorant molecules taken up in an area to 

total molecules entering the area; e.g.: the olfactory region 

Relative olfactory bulb volume (Qup/Qto3: ratio of the volume of the olfactory bulb to 
total brain volume 
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