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Abstract 

Obtaining accurate and repeatable navigation for robotic vehicles in the deep ocean is diffi- 
cult and consequently a limiting factor when constructing vehicle-based bathymetric maps. 
This thesis presents a methodology to produce self-consistent maps and simultaneously 
improve vehicle position estimation by exploiting accurate local navigation and utilizing 
terrain relative measurements. 

It is common for errors in the vehicle position estimate to far exceed the errors asso- 
ciated with the acoustic range sensor. This disparity creates inconsistency when an area 
is imaged multiple times and causes artifacts that distort map integrity. Our technique 
utilizes small terrain "submaps" that can be pairwise registered and used to addition- 
ally constrain the vehicle position estimates in accordance with actual bottom topography. 
A delayed state Kalman filter is used to incorporate these sub-map registrations as rela- 
tive position measurements between previously visited vehicle locations. The archiving of 
previous positions in a filter state vector allows for continual adjustment of the sub-map 
locations. The terrain registration is accomplished using a two dimensional correlation and 
a six degree of freedom point cloud alignment method tailored for bathymetric data. The 
complete bathymetric map is then created from the union of all sub-maps that have been 
aligned in a consistent manner. Experimental results from the fully automated processing 
of a multibeam survey over the TAG hydrothermal structure at the Mid-Atlantic ridge are 
presented to validate the proposed method. 
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Chapter 1 

Introduction 

1.1 Mativation 

Acoustic measurement techniques have been used extensively to gather information about 
the topography. of the sea floor. The favorable properties of sound propagation through 
water make acoustic range sensing possible over scales from centimeters to full ocean depth. 
Constructing a bathymetric map requires both a set of range measurements to the sea floor 
and the corresponding locations of the vessel or vehicle carrying the range sensor when the 
measurements were taken. The precision and accuracy of these two pieces of information 
dictates the fidelity of the resulting map. Thus, mapping is a coupled problem where 
inaccuracy in either range or position will corrupt the accuracy of the other during the 
creation of the map. In the limiting cases, a perfect range sensor will be limited by position 
or navigation errors and perfect navigation estimates will be limited by the range sensor 
accuracy. In any real mapping system, inaccuracies in both range sensing and navigation 
will be present, and efforts to improve the resulting product should therefore focus on the 
element contributing the greater amount of error to the final map. 

As an example, consider that in recent years Global Positioning System (GPS) measure- 
ments have greatly improved ship-based sea floor mapping systems. Ships are now able to 
make maps all over the globe using accurate and repeatable navigation that was previously 
impossible to obtain. This major positioning advancement has improved large scale sea 
floor mapping accuracy to an extent that would not have been achievable by better sonar 
range measurements alone. 

Bottom mapping from underwater vehicles, which operate at much closer proximity 
to the sea floor, offer the potential for much finer resolution and higher terrain accuracy 
than that achievable from surface-based surveys. Remotely operated vehicles (ROVs) and 
autonomous underwater vehicles (AUVs) are regularly outfitted with acoustic range sensors 
and are capable of flying survey patterns close to the bottom in rough terrain. Close 
proximity to the bottom avoids many of the acoustic limitations for shipbased surveys 
such as water depth and sound speed profiling. Vehicle-based mapping systems regularly 
support science, forensics, exploration archeology and military applications 14,23,118,144, 
1451. Unfortunately, good vehicle position information is still difficult to obtain underwater. 

Although many methods of positioning underwater do exist, they are all limited by 
accuracy or scale. In comparison to the high sub-meter resolution of today's commercially 



available vehicle-based range sensors, navigation remains the limiting factor when creating 
vehicle-based terrain maps. A single sonar ping, whether from a single beam or rnultibeam 
sonar system, represents a very accurate relative measurement between the sensor and the 
environment. The navigation limitation manifests itself as an inability to place the ping 
ranges in space to form an accurate representation of the environment in a single global 
coordinate frame. This thesis focuses on the navigation limitations of mapping algorithms 
and offers a solution designed to enforce consistency between the acoustic mapping sensor 
data and the navigation data. The end result is a terrain map constructed without the 
inconsistencies and misregistrations that typically reduce the utility of maps created in 
navigationally-limited circumstances. 

1.1.1 Problem statement 

The map making process involves several steps which introduce error. The total mapping 
error diagrammed in Fig(1-1) symbolically shows the individual error contributions from 
navigation, sensor offsets, modeling and the mapping sonar itself. These divisions repre- 
sent the steps required to take sensor measurements, in the sensor coordinate frame, and 
abstract them to a map. Sonar errors include all the factors related to obtaining a sen- 
sor relative measurement to  the environment. Sewor offsets are the transforms between 
the vehicle frame and the mapping and navigation sensors that can only be directly mea- 
sured with limited precision and are generally refined using the mapping data. Modeling 
errors are associated with the difference between the estimated and actual vehicle pose as 
a function of vehicle dynamics and navigation sensor noise. This primarily represents the 
vehicle frame attitude and depth estimation. Depth, pitch, roll and heading are measured 
from known environmental references and filtered with a vehicle model. Navigation errors 
are the potentially large scale [x, y] positioning errors caused by dead reckoning naviga- 
tion, heading sensor bias and deviation, and poor or unavailable ground-referenced position 
measurements. 

Although all four pieces of the uncertainty contribute to the total error, vehicle-based 
mapping is currently navigation-limited. To reduce this limitation and move to a more 
equal distribution of errors this thesis focuses on the following tasks: 

creating additional vehicle positioning constraints by matching or registering sections 
of bathymetric data which have been viewed multiple times in a single survey, 

combining these constraints in a navigational framework to provide improved vehicle 
navigation estimates, and 

0 producing as a final product a dense surface terrain map of a natural sea floor with 
an associated error representation. 

1.2 Related research 

The tools and techniques used in the thesis have been adapted from the communities of 
robotics, acoustic underwater mapping, and graphical modeling. Although many of the 
individual components related to the goal of improved terrain mapping have been addressed, 



(a) Vehicle-based mapping @) Surface-baaed hydrography 

Figure 1-1: A compaeson of the contributing errors for vehicle-based and slup-based mapping. 
(a) Proportzonal error sources for deep water mapping. (b) E m r  relations for surfam-based 
mapping. Vehicle-based mapping is navigationally limited where as for surface-based surveys 
navigation u relatzvely well &ow in eompadon to other potentzal e m  source. 

this thesis combines them for the first time into a robust algorithmic fmmework capable of 
handling unstructured seafloor mapping. The following sections of this chapter summarize 
the background and context for the concepts that serve as a building blocks for the presented 
mapping algorithm. 

1.2.1 Underwater Navigation 

The desire to create accurate acoustic and photographic maps with underwater vehicles 
has pushed the need for better underwater navigation systems and estimation techniques. 
Underwater positioning systems can be grouped according to methods which use fixed 
ground based teferences or those based on relative positioning through velocity integration. 
E d  of these methods has its own associated error sources, and the choice of method is 
often dictated by the goals of the mapping effort. Ultimately, this thesis will Eocus on the 
usefulness of accurate DR navigation over short time scales. 

Fixed Reference 

Satellite based GPS, which can be used for accurate position estimation on land, does not 
work subsea due to the rapid attenuation of electromagnetic radiation in water. The closest 
analog underwater is long baseline (LBL) navigation [go] which uses bottom tethered acous- 
tic beacons that are fixed at known locations. The round trip time of flight measurements 
between an acoustic transponder on the vehicle and the beacons can be used to triangulate 
the vehicle position in two and thcdimensions. Typically operating at frequencies be- 



tween 9 and 15 kHz, LBL systems can produce ground referenced position estimates with 
bounded error in deep water over kilometer scale ranges. Unfortunately, the actual error 
statistics for these estimates are highly coupled to the environment and are difficult to char- 
acterize [12] [138]. LBL systems are affected by acoustic multi-path, terrain-caused shadow 
zones, sound speed changes related to water properties, transponder motion caused by cur- 
rents, accurate signal detection at the acoustic receivers, and relatively tong, O(1sec) signal 
times of flight. The majority of these errors manifest themselves as biases and patterned 
outliers rather than random noise which can be easily filtered. Bingham [ l l ]  investigated 
the spatial variability of the these errors using a hypothesis grid over the survey area and 
suggests that the ability to estimate the spatial dependencies allows for more robust and 
accurate navigation. LBL systems also require the deployment of additional infrastructure 
that makes quickly surveying an area difficult. In deep water a typical 3 beacon LBL net 
can take 24 hours to deploy and survey in. 

Even given these drawbacks the benefit of a long range ground referenced position 
measurement is compelling enough to make LBL a standard navigation tool to produce 
position estimates accurate to between 1 and 10 meters. LBL performance can be improved, 
with the penalty of reduced range, by increasing the acoustic frequency. Systems like 
EXACT, which operates at 300 kHz, produce O(1cm) errors in position over ranges less 
than 200 meters [146]. The EXACT system has been used for underwater mapping [122,144] 
and to provide ground truth for DR navigation tests [139,140]. Over the shorter ranges this 
system is less susceptible to the bias and inaccuracy associated with sound speed errors, 
multi-path, and transponder motion. 

Ship-based ultr~short-baseline (USBL) acoustic systems, which use an acoustic array to 
provide range and bearing measurements, in combination with surface GPS measurements 
can also generate navigation fixes in deep water [79,87]. The accuracy of these measurements 
however, is related by the angular resolution at the receiving array and translates to a 
position accuracy of 0(1%) of the water depth. These systems do not require external 
beacons to be deployed, but do need a measurement of the water column sound velocity 
profile. 

Overall, LBL and USBL provide useful data for working in the deep ocean, but the 
frequency dependent acoustic attenuation of sound in seawater 11351 will always be a limiting 
factor in obtaining direct position measurements of high accuracy over long ranges. 

Relative positioning 

Velocity integrated navigation, commonly known as dead reckoning (DR), is the most fre- 
quently used method to navigate underwater vehicles. It requires no infrastmcture external 
to the vehicle and relies principally oa measurements of vehicle heading and ground relative 
velocity. The performance of DR navigation is directly proportional to the quality of the 
heading and velocity measurements [139], which each have their own inherent error sources. 
Heading measurements from magnetic compasses are often contaminated by random noise, 
heading dependent bias (deviation) and low bandwidth [53]. Fiber optic gyroscopes (FOGS) 
generate heading measurements that are much higher quality and bias free, but are currently 
only available from expensive inertial measurement units (IMUs) [98]. 

Velocity measurements for underwater vehicles typically come from an acoustic doppler 



current profiler (ADCP) or DVL operating in a bottom lock mode. These bottom relative 
velocity measurements are typically accurate to better than 0(1%) of the instrument veloc- 
ity [73]. The combination of heading and DVL measurements has been used extensively for 
DR navigation and is generally expected to produce integrated position measurements ac- 
curate to 1% of the distance traveled [18,139,140] when heading dependent bias is minimal 
or nonexistent. 

An additional complication to DR accuracy is the rotational offset between the attitude 
and velocity sensors. Raw velocity measurements are obtained in the DVL coordinate 
frame and need to be merged with heading measurements recorded in the heading sensor's 
coordinate frame. Although the coordinate frame offset can be roughly measured for an 
initial guess, any remaining error in the offsets will contribute to a growing deterministic bias 
in the integrated position estimates. When LBL measurements are available Kinsey [71,73] 
has proposed methods to estimate this offset online using adaptive estimation techniques. 
When LBL measurements are not available a systematic way of determining this full offset 
has not been presented. 

Although DR navigation is ultimately limited by time dependent error growth, the 
accurate short term navigation possible from precise navigation sensors is worth taking 
advantage of. The terrain mapping algorithm presented in this thesis will utilize this short 
term accuracy to construct small bathymetric maps over short time scales. 

1.2.2 Sonar mapping 

Acoustic mapping in the ocean has a long history of acwmplishments and motivations 
[89,135]. Starting with single beam shipbased acoustic soundings and progressing through 
evolutions of sonar design and positioning advancements, the achievable limits of sea floor 
mapping accuracy have been continually pushed. The thesis incorporates contributions 
from sea floor mapping efforts that can be broken down into the areas of hydrographic 
surveying, terrain aided navigation and vehicle-based acoustic mapping. 

Surface-based hydrographic surveys 

The roots of sea floor exploration and map making lie within the hydrographic community. 
This group's charter to provide the best possible maps to end users for navigation, explo- 
ration, and science has motivated considerable technological development. Multibeam sonar 
systems, capable of imaging swaths of the sea floor up to multiple times the water depth 
in width [6,32,33,38,88] have become standard tools for bathymetric mapping. Typically, 
multibeam measurements combined with ship's navigation, usually dead reckoned prior to 
GPS, are used to create tracks of bathymetric data that can be merged into a single map. 
A detailed error accounting for such system is discussed by Hare [51]. The difficulty in 
merging crossing and overlapping tracks due to inconsistencies in the common areas has 
been a long standing problem. Nishirnuara [I021 addressed this issue and suggested a 2D 
correlation measurement to determine a [x, y] shift that minimizes the depth error between 
two overlapping sections of bathymetry. This method was used to constrain kilometer scale 
errors between crossing tracklines. A similar approach to remove errors was also presented 
by Karngar-Parsi [67,68]. More recently similar correlation measurements have been put 



into a larger sparse matrix minimization [78]. This minimization utilizes the initial track- 
line positions and free surface gravity measurements as constraints. The resulting solution 
shifts individual tracklines that are assumed to be rigid. On a broader scale the compila- 
tion of many different surveys that have potentially different navigation errors has also been 
addressed [61]. In this work a Monte Carlo method was used to perturb depth estimates 
within the appropriate navigation related error limits to generate a composite map which 
shows a reduced variance in the predicted depth. 

The hydrographic community has also investigated robust and automated ways to deal 
with the tremendous amount of the data generated by modern sonars systems [21]. Shallow 
water ship-based surveys can range in data size between lo6 and 10'' individual soundings 
and surpass the capacity for interactive data filtering. These data sets typically consist of 
either beam ranges or points that have been transformed into 3D Cartesian space. In data 
sets this large the problem of outlier detection is significant as spurious soundings can easily 
corrupt the integrity of a trackline map or an entire survey. The common outlier rejection 
techniques [21,22,54,55,82] attempt to reject spurious ranges or points inconsistent with 
the surrounding data, either within an individual ping or in a preliminary map. It is worth 
noting that the outlier problem for surface based surveys is often more significant than 
in vehicle-based surveys due to the longer acoustic path length to the bottom and water 
column scatterers. 

The transformation from individual soundings to a map has typically been done using 
various gridding techniques. These algorithms typically use a weighted sum of the sounding 
within a neighborhood of regularly spaced grid points. A more advanced gridding tech- 
nique [20,21] attempts to estimate the true depth at known points using the influence of 
neighboring soundings. This method also supports multiple depth hypotheses at a given 
location as a measure of robustness to outliers and systematic bias in the data. Other 
works on bathymetric gridding have focused on using adaptively generated Delaunay based 
triangular meshes rather than regularly spaced grids [22]. Triangular meshes are offered as 
a solution to the "low pass" effect that occurs with griddiig algorithms and have the ability 
to adjust for density of the soundings on the sea floor. 

Terrain aided navigation 

There has been much interest in terrain aided navigation for underwater vehicles. The 
majority of this work has focused on the idea of generating a vehicle position estimate 
given an a priori map of the environment [24,34,104] rather than creating a map of the 
environment with which to navigate. These methods assume some type of onboard mapping 
sensor, typically a multibeam sonar, and some vehicle DR navigation capability. Carpenter 
[24] suggests the idea of using "local" or "short term" navigation to create small patches 
of bathymetry that can be matched to a larger known map. The most common method 
for obtaining a terrain match and a vehicle position measurement is correlation. Using a 
correlation measure alleviates the need to identify distinct targets in the environment and 
relies on more basic shape information. Carpenter has used bathymetric contours and a 
Hausdorff distance measure to determine matches and translational shifts between small 
sub-maps and a base map [24]. Nygren [I041 proposed a correlation measure between a 
base map and the local terrain as measured by an acoustic array. These methods represent 



the &or with contour lines or as a 2D height map. Although it is alluded to, none of 
these methods develop a framework for the simultaneous construction of and navigation 
with a terrain map. 

The majority of terrain navigation algorithms use Kalman filters to merge the ground 
relative correlation measurements with the vehicle DR navigation. The Kalman filter r e  
quires a position estimate and a corresponding measurement uncertainty. The majority 
of the these methods have not fully addressed this measurement uncertainty. The most 
complete treatment, by Nygren [104], relates the bathymetric error between the measured 
local terrain and prior maps using a Gaussian error assumption. Assuming the depth mea- 
surements are independent over the matching area a Gaussian likelihood is created as a 
function of correlated position and used to estimate the covariance of the terrain match. 

Particle filter methods [48,70] have also been suggested for underwater terrain naviga- 
tion. Bachmann and Williams [3,141] suggest that under typical operating conditions a 
vehicle instrumented with only a single beam echo sounder can improve its DR navigation 
significantly with a Rao-Blackwellized particle filter. These methods rely on the availability 
of a prior terrain map of the environment and use the discrepancy between the measured 
depth at the vehicle location and the map depth for particle resampling. 

There have been far fewer attempts to use featurebased map matching methods for 
terrain aided navigation. Sistiaga 11231 has suggested using an attribute vector to describe 
the local geometry of features dehed as morphologically invariant points. These points 
are taken from the difference between a low resolution base map and a smoothed version 
of a vehicl+based high resolution map. Majumder [85,86] has used a feature-based sums 
of Gaussians method in a Bayesian framework for terrain aided navigation. By model- 
ing feature locations as 2D Gaussian random variables he was able to construct a feature 
map over a grid of the sea floor. The sums of Gaussians environmental model provides a 
more complex representation of the environment than single points while maintaining the 
attractive computational properties of Gaussian descriptors. This method is also able to 
side step the data association issues required by most Kalman filter type algorithms. The 
vehicle navigation was propagated over time also with a Gaussian model. To create map 
relative position measurements a correlation technique was used to match the currently 
visible features to features stored in the map. 

Vehiclebased mapping 

Efforts to evaluate the mapping accuracy of vehicle-based underwater surveys have been 
somewhat limited. Stewart [128,129] was the first researcher to use land robotic techniques 
for mapping with uncertain sensors and apply them to underwater acoustic mapping. Us- 
ing the occupancy grid methods developed by Moravec [95] and Elfes [35] he attempted to 
model how the navigational and mapping sensor uncertainties contributed to a terrain map. 
Although this method was able to produce useful maps, its major disadvantage was its own 
honesty. Since the contributing factors to the mapping error (sensor and navigation) were 
combined into a single sensor model prior to representation in the occupancy grid, very 
uncertain navigation data would "blur" what would have otherwise been high resolution 
mapping sensor data. The resulting maps had soft edges and a "low-passed" look to them. 
Additional work on the occupancy grid concept for an extension to 3D [94] and the associ- 



ation of specific sensor measurements to individual cells in the grid [131,132] suggests some 
possible improvements to this limitation, but the method is still hindered by unfavorable 
scaling in large environments and when a large number of sensor readings are taken. 

Exploiting the accuracy of the EXACT 300kHz navigation system Singh [121,122] looked 
at the effect the mapping sensor to vehicle frame offsets have when combining data from 
multiple tracklines. In this case the EXACT system was able to reduce the [x, y] navigation 
uncertainty to a small enough size that the sensor offset error was the dominant error 
contributor to the map, Fig(1-1). The sensor offsets were determined by minimiai  a 
measure of the surface variance, 

Figure 1-2: A photomosaic and bathmetric mop ereaced over an amhaeological site [122]. 
Corresponding objects are ihdicated. This bathymetnc was ma& wing the EXACT LBL system 
capable of cmtimeter level precision over nrnges of < 200 meters. 

Using standard 9 kHzLBL navigation Jakuba [63] has been able to create maps of the 
rugged terrain found a hydrothermal vent site$ from sonar data collected with an A W .  
This work mentions errors which cause difficulty in merging tracklines into a correctly reg- 
istered composite survey. Although the mismatches in overlapping trackinw are indicated, 
a systematic method for removing the registration error is not presented. 

The author [I141 has shown that accurate composite terrain maps can be assembled 
by combining acoustic range images taken from multiple vantage points. In this work the 
complications associated with navigation error were limited by assuming a few discrete 
sensor vantage points, and more effort was expended on the creation of an accurate s m d  
scale scene. Here range image registration techniques were used to obtain refined estimates 
of the sensor vantage points and create a composite scene. 

1.2.3 Simultaneous Localization and Mapping 

In recent years the Simultaneous Localization and Mapping (SLAM) community within 
robotics h& focused on the coupled problem of mapping an area while concurrently de 
riving improved position estimates from the map. SLAM algorithms have been shown to 
greatly improve robotic mapping in applications where the robot navigation is poor and 
the mapping sensor accuracy is high. These situations are similar in nature to the deep 
sea mapping problem where accurate navigation is hard to obtain. Alprithrnically, the 



attractive feature of this methodology is that it provides a common framework for manip 
ulating navigation and mapping uncertainty. The specific solutions to the SLAM problem 
differ according to the types of environmental measurements they utilize and the manner in 
which they fuse the measurements with additional data, such as navigation. The following 
sections review many of the current SLAM techniques that are relevant for subsea mapping. 

Environmental representations 

The seminal paper by Smith [I261 framed the SLAM problem as a probabilistic estimation 
problem and started what have become know as featurebased solutions. These methods 
attempt to identify and track the location of specific features in the environment. Feature 
locations, typically described using Gaussian approximations, are added to a filter state 
vector and represent the "map" of the environment. For this type of solution the mapping 
sensor measurements must be assigned to individual features currently in the state vector or 
declared as new features and added to the state vector. This data association problem and 
can be a source of divergence for these algorithms [99]. Feature-based methods have been 
proposed to navigate AUVs using range and hearing data from active beacons or passive 
sonar targets in the environment [loo, 101,125,130,142]. The previously described terrain 
aided navigation by Majumder [85,86] is a feature-based method using natural landmarks. 

Featureless approaches do not extract specific features from the mapping sensor mea- 
surements and instead use the raw sensor measurements directly. This is commonly done 
with sensors that map a section of the environment at once. Lu [83] proposed one of the 
original featureless SLAM approaches using laser range scans of a 2D environment. Nu- 
merous SLAM algorithms continue to use 2D and more recently 3D laser scanning [I031 to 
provide a representation of the environment and relative position measurements. Feature- 
less methods usually associate an individual scan or a set of scan locations to a pose kept 
in a state vector. 

Solution methods 

Proposed SLAM frameworks to integrate the mapping and navigation data include the 
extended Kalman filter (EKF) [126], particle filters [93], sparse information filters [36,133], 
junction tree filters [I071 and constraint networks [83]. Each of these approaches have 
advantages and disadvantages in the context of bathymetry mapping, where the ability to 
retain and update old vehicle positions is desirable. 

A delayed state version of the recursive EKF solution provides an iterative formulation 
for mapping and retaining knowledge of prior platform positions [39,81]. This solution is 
subject to severe limits due to computational growth if additional methods are not used 
to reduce the O(n2) computational burden related to a dense covariance matrix at each 
measurement update [42,47,80]. The EKF solutions are also subject to linearizion errors 
as the constraints between delayed states are linearized only when they are incorporated 
into the recursion [26]. If the trajectory of delayed states is deformed significantly, such as 
with a large loop closure, the constraints may no longer be accurate and bias the solution. 
However, this iterative solution has a possible real time implementation that could produce 
adjusted navigation information useful to the surveyor trying to ensure complete coverage of 
a survey area. Recently, the attractive sparseness properties of the information matrix have 



been utilized in methods for reducing the computation of similar linear Gaussian iterative 
methods [42] [133]. In the context of underwater photographic mapping Eustice [36] [37] 
has addressed the scale problem for delayed state filters represented in the dual information 
form. The sparseness properties of the information representation have allowed the number 
of delayed states to be extended from 10's to 1000's. 

Alternatively, if the navigation problem is treated as a more general network of possibly 
nonlinear constraints derived from mapping data that link previous vehicle positions to one 
another, several other possible solutions exist. In a feature-less scan-matched representation 
of the environment that assumes independent Gaussian measurement errors between scans, 
a maximum likelihood (ML) solution for the pose locations can be formulated. This solution 
takes the form of a linear problem involving a constraint matrix [83]. Extensions of this 
methodology have been used for very large maps [49]. Frese [41] presents a constraint 
based multigrid solution designed as an incremental mapping approach to achieve O(n) 
update computation and retain the ability to relinearize pose constraints during the solution 
process. Bosse's [15] [16] ATLAS solution keeps all the constraint information in a relative 
framework and uses a non-linear least squares solution to resolve the resulting network 
for the pose positions. To avoid potential problems with overconfidence in network based 
solutions associated with unknown cross correlations Schlegel [I171 advocates a pose network 
solution based on Covariance Intersection (CI). All of these approaches require an accurate 
initial guess for the solution and a correct network topology of links. 

1.2.4 Registration methods 

The ability to reorient ones self when given access to a set of maps requires that a registra- 
tion, or relative transform, can be determined between maps portraying common portions 
of a larger scene. In the context of underwater navigation, map registration offers the 
possibility to recognize previously visited locations and reset navigation errors that have 
been accumulating over time. Two and three dimensional registration techniques have been 
actively researched in the fields of computer vision and graphical modeling, and are now 
being applied liberally in the field of robotics to create relative measurements of position. 

All of the registration methods utilized in the terrain navigation methods described in 
Section 1.2.2 assume a 2D height map to represent the terrain and perform registrations. 
To move toward more general terrain matching it is necessary to consider methods which 
can work in full 3D. The close proximity to the sea floor provided by vehicles, will increase 
mapping resolution, but also decrease the ratio of viewing distance to scene relief. From 
vehicles there will be more extreme angles of incidence between the sea floor and the sonar 
beams, and an increased risk of occlusions in highly featured areas. 

A significant body of work surrounds 3D registration techniques used to construct vol- 
umetric representations of objects and scenes scanned with laser range finders. Laser range 
finders produce an "image" of highly accurate ranges. The majority of the techniques 
to register the 3D point clouds constructed from range images are based on the iterative 
matching methods originally proposed by Besl [lo] and Chen [27]. Improvements to the 
basic methods have addressed computation [116], robustness [43], scale [112], surface at- 
tributes [44] and solution methodology [46,92]. More recently there has been application for 
3D modeling and registration in outdoor scenes [2,76,127,137] and robotics [75,120] [103]. 



In the past, the primary difference between the modeling and robotics applications was 
whether the sensor location was assumed to be known. More recently this has changed 
with modeling work that assumes no a priori knowledge of the object orientation within 
the sensors view [58]. 

The vast majority of regi&ration methods based on point sampled surfaces, and the 
associated techniques for surface normal estimation, [56,66,9l, 1081 use principal component 
techniques as a measure of robustness to sensor noise. However, with laser scanners the 
level of assumed sensor noise relative to the feature size and sampling density in the scanned 
scenes is small. There have been only a few attempts [25,114,134] attempts to use similar 
registration methods for sonar sensing, and a systematic approach to handling sonar related 
errors has not been presented. A broad survey of processing techniques related to acoustic 
imaging has been presented by Murino [96,97]. 

This thesis will also apply both 2D correlation and 3D registration techniques to the 
mapping sonar data when developing terrain based relative pose measurements. 

1.3 Thesis breakdown 

1.3.1 Outline of methods 

The main objective of this thesis is to demonstrate that creating a feedback path that 
enforces consistency between the terrain mapping data and vehicle navigation data will 
produce more self consistent and accurate bathymetric maps. The proposed framework cre- 
ates this feedback path by using small terrain sub-maps created over short time scales with 
a vehicle navigation estimate generated by dead reckoning. The registration of these sub- 
maps creates relative position measurements between the current and past vehicle states. 
These measurements are then fused into a SLAM navigation framework bared on a delayed 
state EKF [Bl]. When sub-maps are created they are attached to a snap shot of the vehicle 
state, which is then stored in the delayed state vector and used as a local origin for the 
bathymetry in the sub-map. A schematic of the proposed algorithm is shown in Fig(1-3). 

Figure 1-3: The b&c wncept behind the sub-mappeng abovithm. The vehicle has flown the 
green tnrjectory above the bottom and the suntey swath has been broken into a sehes of sub-maps. 
The reference b m e s  along the tmjectory tndicate the vehiole positions where the sub-maps were 
started. The red regions zndicnte where the maps cover a wmnon area of the se&oor and the 
potential m s t s  to establish a link, shown in red, which eonstmans the da t i ve  position of the 
preuiously viszted positions. 



The survey of SLAM algorithms presented in Section 1.2.3 suggests there are many 
potential options for a framework to combine the sub-map measurements and the vehicle 
navigation estimation. The choice of the EKF based solution is based on the following 
observations concerning many of the SLAM options. 

An important distinction between this application and many land-based applications 
is that underwater the surveyor can design the vehicle trajectory to avoid the need 
for closing large loops. This is often not possible in land-based applications where 
the vehicle trajectory is constrained by the environment, such as in a building. As a 
result we consider this application to be less prone to linearization and link proposal 
issues associated with closing large loops. 

The focus of the problem is on accurately mapping a specific area of interest on the 
sea floor rather than covering expansive amounts of terrain. Knowing this it is not 
necessary to penalize a choice of method based on a scale limitation. Experience 
suggests that maintaining up to 100 prior poses will suffice for a developmental and 
useful solution. 

It is desirable to maintain a potentially real-time implementation. As such, batch 
methods requiring all of the data are less desirable. 

The relative pose measurements between sub-maps are obtained using sequential 2D and 
3D registrations techniques. Terrain maps are stored using all the original mapping data 
and the registrations are performed without extracting distinct features from the mapping 
sensor measurements. By retaining all of the dense mapping data in the sub-maps the 
ability to extract additional geometric information when needed is preserved. The desire to 
accommodate a 3D registration is motivated by some of the limitations found in applying 
2D methods to vehicle mapping in highly featured areas [62] [63]. 

1.3.2 Assumptions and restrictions 

The algorithm and procedures presented here are considered applicable to a broad variety 
of applications requiring AUV and remotely operated vehicle (ROV) bathymetric surveys. 
To this regard the following list of conditions applies to the methods developed within this 
thesis. 

Due to the relatively short ranges between the vehicle and the bottom, it is assumed 
that the speed of sound is constant. Although in the proximity of a hydrothermal 
vent system this assumption can be easily violated, there are relatively few instances 
where a sonar will image the bottom directly through a large amount of hydrothermal 
fluid. Additionally, in such a complex spatially varying environment it is not realistic 
to consider that sufficient water property data could be taken for an accurate sound 
speed correction. 

Over the course of a survey the terrain being covered is considered static. There is no 
explicit accounting for the possibility of a changing environment. 



0 The terrain is considered unstructured and natural. Man made targets or beacons 
in the environment are not explicitly formulated in this algorithm. The algorithm 
requires a minimum amount of 3D terrain richness or structure consistent with what 
would be expected at geologically or archaeologically interesting sites. Obvious lirni- 
tations to this method exist over large flat and featureless areas of the sea floor. 

0 Over the course of a survey all sensor positions with respect to the vehicle are as- 
sumed to be constant. A procedure to determine the static offset between the vehicle 
frame and the mapping sonar using short term navigation and mapping data will be 
presented. 

0 The primary navigation information used in the presented algorithm is derived from 
on-board sensor data. This method assumes the vehicle platform is instrumented with 
sensors sufficient to generate a dead reckoning position estimate. This would require 
at least 2D bottom relative velocity, vehicle heading and pressure depth. 

1.3.3 Contributions 

The main contributions of this thesis are as follows. 

0 For the first time a delayed state SLAM algorithm is applied to bathymetric mapping 
and real world results which show an clear improvement in mapping accuracy are 
given. 

A demonstrated improvement to 3D registration performance based on a point selec- 
tion technique that incorporates properties of sonar mapping data is shown. 

0 A robust error metric to visualize artifacts in bathymetric maps is developed. 

1.3.4 Thesis structure 

The remaining chapters of this thesis are broken down to wver the individual aspects of the 
presented mapping algorithm. Chapter 2 covers the basic aspects of acoustic range sensing 
and how they relate to mapping. The core of the SLAM algorithm is covered in Chapter 
3. This chapter reviews the basic delayed state EKF and covers the specifics for this 
problem, including the vehicle modeling and the sub-map handling. Chapter 4 develops 
methods for registering the small sections of acoustically mapped terrain generated by the 
EKF. Chapter 5 presents experimental results for two surveys over a hydrothermal vent 
site. This sub-mapping method is compared to more standard mapping techniques and 
examples are given to show the robustness and failures of the bathymetric sub-mapping 
algorithm. Chapter 6 concludes with a summary and suggests directions for future work 
and further improvement. 





Chapter 2 

Acoustics for mapping 

2.1 Introduction 

This chapter describes the sonar range sensing details relevant to the proposed sub-mapping 
algorithm. Based on the argument presented in Chapter 1, that the leading order cause of 
error in vehicle-based bathymetric maps is navigation related, the treatment of the acoustic 
range sensor itself is intentionally simple. The acoustic data is reduced down to a set of 
ranges and "confidences" for each sonar ping that are used for all subsequent processing. 
The ranges are defined for each beam using the peak returned amplitude and the confi- 
dence measure is based on the duration of the backscattered return windowed around the 
determined range. The final set of ranges is produced after automated data cleaning steps 
remove outliers from a preliminary set of proposed ranges. 

2.2 Range determination 

Oceanographic sonars used for vehicle-based mapping typically operate at frequencies greater 
than 100 kHz and trade off increased range resolution at the expense of sensing distance. 
The high acoustic frequency places mapping sonars in the rough surface scattering regime 
where incoherent contributions from individual bottom scatterers are primarily responsible 
for producing the backscattered acoustic energy. The transition to rough surface scattering 
from specularly directed scattering occurs when the incident acoustic wave length is propor- 
tional to surface shape excursions, or roughness, over the size of the beam footprint [89,135]. 
For typical vehicle surveys flown between 15 and 50 meters in altitude the foot print size will 
be O(1m) and the wavelengths will be sub-centimeter for frequencies greater than 150kHz. 
Within this scattering regime the grazing angle dependence on the back scatter strength 
should be less significant than with spectral scatter and the duration of the return pulse 
should be proportional to the interaction length with the bottom [89,135]. 

The sonar modeling only assumes that a high frequency pulse of short time duration r 
is sent with a scanning single beam or a multibeam sonar, and that the return signal will 
be discretely sampled. For a multibeam system the sampled beam ss[k] at  pointing angle 



6' is taken as the magnitude of the complex beam formed signal 

where, N is the number of head elements and u(0, n) is the appropriate phase correction for 
each element of the receiving array. A  ample beamformed ping is shown in Fig(2-1). The 
range to the bottom r along a beam is determined from the time of the peak amplitude 
for the returned signal assuming a constant sound speed. This detection method will be 
more accurate for beams near normal incidence and less accurate for beams incident with the 
bottom away from normal [60]. A sketch of the beam geometry is shown in Fig(2-2(a)). Due 
to the rough surface scattering, the side lobe interference created by high intensity specula 
scattering know to corrupt the near normal beams [I] has not been noticed. However, away 
from normal incidence the longer interaction length with bottom increases the probability 
that scatters off the beam axis will contribute to the return at times different than scatters 
on the beam axis. Phase based range detection methods for multibeam sonars, [50,74,143], 
can be applied to improve this performance, however the accuracy will still be limited by 
the seafloor roughness properties [l3,84] that affect phase coherence. 

Figure 2-1: Sample SM2000 beam formed s a a r  image drawn in a Carteszan coordinate frame. 
The color scale indzcates the beamfoned amplitude normalized to the manmum returned am- 
plitude. Thzs ping w onented as if the vehzcle, located a [O,O] ,  is flying into the page vnth a 
steep termin r ise  to port. Note that the downwad slope on the nght w poorly imaged. 

The maximum range resolution for a sonar transmitting a 6xed length pulse of time 
duration r is determined by the along axis depth of a scattering volume in which the 
returns from individual scatters can no longer be distinguished. This is the well know range 



resolution cell 

where c is the sound speed. To consider an acoustic return with finite samples taken at 
range spacings of dr a range error model of the form 

has be developed to characterize range error [50,51]. These simple error estimates do not 
however consider the direct of affects of incidence angle, bottom type, surface roughness 
and range on a ping-to-ping basis. As an alternative to the more complex statistical error 
modeling this would require, a confidence based approach is used instead to indicate returns 
with potentially poor range detection properties. For the peak amplitude detection method 
range inaccuracy will increase as the duration of the returned signal increases and a single 
peak in the backscattered energy becomes less distinct [17] .  As a measure of return duration, 
D, the second moment of the returned puke windowed around the determined range in 
calculated as 

D =  ( cg'=-, k 2 s [ k  + k*] 
E L  sz[k + k*] ) ' I 2 ,  (2.4) 

where w is the number of samples specifying one half of a window width and the maximum 
return occurs at sample k*.  This measure serves the purpose of indicating beams that 
have interacted with the bottom away from normal incidence, been corrupted by side lobe 
interference or for any other reason lack a distinctive unimodal return peak. The histogram 
in Fig(2-2) shows that the duration D correlates with beam incidence quite well. The surface 
normals used to verify this relation were estimated from a 3D constructed terrain map 
and the surface normal estimation method described in Appendix B.2. In the subsequent 
processing the calculated duration for each range will not be used directly as measure of 
range variance, but as an indicator of potential accuracy by which particular beam ranges 
are included in or excluded from the mapping process. 

2.3 Outlier rejection and ping clean up 

The sonar data processing is designed to automatically determine the beam ranges and 
durations, and then remove all returns suspected as range outliers. The outlier rejection 
will produce a final set of beam angles and ranges. Since the sonar ranges will be used to 
create small submaps, prior to creating a single composite map, the data cleaning is setup 
to operate on the range returns directly instead of a 3D point cloud. The steps in the range 
detection and data cleaning are outlined in Fig(2-3) and described below. 

2.3.1 Inner ping 

Within a single ping outlier rejection is accomplished with an amplitude threshold followed 
by a median filter based rejection. A minimum amplitude threshold is dynamically set to 



(a) Beam sketch 

Histogram ot m u m  duration vs Spnnlng angle, 
normalized by angle 
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(b) Relation between return duration and 
spanning angle, 1/, 



remove ranges from beams with little return energy. The time varying gain for the sonar 

TVG =Alogr+2Br+C 

is used to account for spreading and attenuation. The remaining amplitude fluctuation 
between beams can be attributed to the bottom backscatter coefficient and the ensonified 
area. The dynamic threshold starts from an initial value and identifies ranges which fall 
below. If the number of ranges below the threshold exceeds a specified number the threshold 
is reduced, otherwise those range returns are removed. The initial guess for the threshold 
value can be related to beam pattern side lobe level relative to the main lobe, and the peak 
returned amplitude across the ping. For the data presented here the threshold was started 
at 22% of the peak amplitude returned over the ping. 

Median rejection is accomplished by calculating the median range for a specified number 
of beams to each side of a selected beam. If the difference between the selected beam range 
and the median is greater than a threshold, the beam range is removed. This rejection is 
done from the inner beams to the outer. 

These two simple checks are able to remove the significant fraction of range outliers 
within a single ping. An example range detected ping is shown in Fig(2-4). 

(a) Beam ranges detected by amplitude (b) Cleaned up beam rangas 

Figure 2-4: Example of intm ping median rejechon. (a) Single sonar ping with the return 
mnges indacated. (b) The same ping after outlier mjection. Note that a few range values on the 
poorly amaged slope to the reght have be removed and many beams with low return ed a m p h d e  
do not have a range defined. 

2.3.2 Over multiple pings 

The outlier rejection within a single ping will fail when a group of ranges are incorrect 
in a similar way. This can occur if another acoustic instrument contaminates a ping or if 



large number of beams do not hit the bottom and instead pick up noise. To account for 
this neighboring pings in time are also used for median rejection. A range image using 
adjacent pings can be created for this purpose, Fig(2-5(a)), A median range image can also 
be calculated using a neighbo~hood of range pixels surrounding each pixel. Outlier rangee 
are identified by differencing the range image and the median image, and h d i i g  the returns 
that exceed a threshold. The image in Fig(2-5(b)) shows the kinds of outliers this method 
will detect. 

(a) Ranges shown as a ping image (b) Cleaned up ping image 

& si fjnal rejection step a crohar track filter can med. This check i8 rn&e to emure 
Wt the detarrgked r for increasing bean angles from n& mr ta 
battom points that we further outboard than the previ6w.s OR* This is useful for &acing 
r-mge mers at %he outer be- and applicable if the environment cont& w ovtohanging 
features. The check for side Qf the arrw is simply 

whe* & :, Br-1 are the beam anglm away from ndir,  whem 8 = 0. 

2.4 Summary 



cable to most commercially available sonar systems. Knowing that range detection will be 
poor away from normal incident, a simple returned pulse duration statistic is used to indi- 
cate potentially inaccurate ranges. An automated data cleaning process is used to remove 
outlier ranges and reduce the set of initially proposed ranges to the set that will be used 
for mapping. Since surface sampling redundancy can be build into surveys by overlapping 
tracklines, the thresholds for the data cleaning are set aggressively to remove questionable 
range returns that could cause error in the sub-map terrain registration process. 





Chapter 3 

Sub-mapping SLAM bathymetry 

3.1 Introduction 

The proposed sub-mapping algorithm is formulated around the delayed state extended 
Kalman filter [39,81]. The delayed state filter is used to compute a dead reckoned vehicle 
trajectory from navigation sensor data and allow for updating the position estimates of 
previously visited vehicle locations. A continuous-discrete EKF [5] implementation is used 
to handle asynchronous navigation measurements and produce a causal estimate of the 
current vehicle position and attitude. The vehicle position and attitude estimate is used to 
project the mapping sonar data over a short time window and create local terrain sub-maps. 
The data within each sub-map will be referenced to a local origin declared to be the current 
vehicle pose at the time the sub-map is started. Sonar data will be added to a sub-map 
until one of several conditions is met to indicate the map's closure. A new map, with a new 
reference frame, is started immediately following the closure of the previous map. 

The diagram in Fig(3-1) shows the data paths for the filter. The creation of bathymetry 
sub-maps requires knowledge of the current vehicle state and the range detected sonar data. 
Newly created sub-maps are stored and their reference frame origins remain in the delayed 
portion of the filter state vector. When a map is closed checks are made to determine possible 
overlap with the other maps in the catalog. Overlapping maps are pairwise registered to 
generate relative pose measurements between the sub-map origins stored in the delayed state 
vector. As this filter runs the origins of the sub-maps are updated using the relative pose 
measurements, and a network of links between previously visited vehicle poses is created. 

The remaining sections of this chapter outline the specifics of the delayed state EKF for 
the problem of bathymetric sub-mapping. In particular, the constant velocity vehicle model 
sufficient to capture the slow dynamics of a broad class of marine vehicles is described, and 
the relevant issues related to sub-map generation are discussed. 

3.1.1 State vector and coordinate frames 

The proposed filtering algorithm and sub-map manipulation strategy is developed around 
the idea of reference frames and pose composition. A 6 DOF pose can be considered a coor- 
dinate transformation that represents the spatial relationship between two reference frames. 
The basic head-to-tail and tail-to-tail composition relations developed by Smith [I261 will 
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Figure 3-1: The delayed state EKF block diagram. The proposed algorithm utilizes vehicle 
navigation data to  cmate small bathymetric sub-maps. The sub-map origins will be held i n  the 
delayed state vector and used to create relative pose measurements that reduce navigation e m r .  

be used to manipulate these transformations. These composition relations (summarized in 
Appendix A) join together successive pose relations and propagate first order estimates of 
their uncertainty. The relevant coordinate frames for the filter are shown in Fig(3-2). 

The filter state is written to represent the vehicle body frame position with respect 
to a local level integration frame, indicated by x,. All navigation sensor measurements 
relate to the vehicle body frame through individual sensor transforms that specify the 
static pose offsets of each sensor as physically mounted to the vehicle. The mapping sonar 
measurements are also related through the vehicle body frame and a sensor offset. All of the 
vehicle-to-sensor offsets are considered static. Additionally, we consider that an individual 
sensor, such as a north seeking heading sensor, will produce a sensor measurement with 
respect to its own sensor local level frame that may differ from the vehicle local level frame. 

To accommodate sub-mapping the complete filter state vector, x,,, is partitioned into 
the current vehicle state x, and a delayed portion consisting of previously visited vehicle 
positions. The state vector in (3.1) shows the vehicle state and N delayed states serving as 
sub-map origins. 

delayed states 

This state vector will grow in length as new sub-maps are created and delayed states 
representing their locations are added to the filter. The notation for the delayed states 
indicates that the delayed state, x,<, marked by subscript s describes the transform from 
the local level origin to the origin of sub-map a. The covariance matrix for the filter describes 
the covariance of the vehicle, P,,,,, the covariance of the sub-map origins, P,,ix,i, and all 
of the respective cross correlations PxuXsi and Px,,x,i . 
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Figure 3-2: Coordinate system overview. This diagram illustrates the coordinate system wn-  
vention used to model the vehicle and sensor frames. All transforms are parameterized over 6 
DOFs. The static sensor oflsets, {x, ,~,&~,x,, , ,&.),  are measured urith respect to the vehicle 
body jrame. A procedure to refine the vehicle-to-sonar offset wing the mapping data is given 
in Appendix C. To avod excessive subscripting the vehicle state and sub-map ongins urill be 
written as x, and x,, respectavely and the local level frame ongin i s  implaed. Dansform x,b, 

is used to describe the angles for the individual sonar beams as a roll urith respect to the sonar 
M e .  The rneosud sonar ranges R are consided along the 2 a& of the rolled sonar beam 
&me. The kth 8D poant within sub-map i is writoen as m,[k] and located at the end of the beam 
range vector xe, . 

3.2 Vehicle model 

The pose of the vehicle body frame is described by a six DOF parameterization with position 
and attitude variables measured in the local level reference frame. The angular conventions 



follow those of Fossen 1401, using a heading $, pitch 0 and roll 4 Euler angle sequence to 
take the vehicle local level frame to the moving vehicle body frame. Additional states for 
the vehicle body frame velocities, [u, u, w], and angular rates, ip, q, TI, are also placed in the 
vehicle portion of the complete state vector. 

To model the motion of the vehicle a constant velocity model is used. This simple model 
is sufficient to capture the slow dynamics of an ROV or AUV during a survey type mission. 
Although more complicated dynamic models can be used, this model has proven sufficient 
in experimentally demonstrating the bathymetric sub-mapping algorithm. The model is 
written in the form of a non linear deterministic function f(x,(t)) that is perturbed by 
white process noise, w, with zero mean and diagonal covariance Q. The kinematic portion 
of the vehicle model relates the vehicle body frame velocities and angular rates to the time 
derivatives of the position variables expressed in the local level frame. The rotation matrix 
!,~(q5,0, $) maps the body frame velocities to the local level frame velocities. The matrix 
J ( + , B ,  $) maps the body frame angular rates to the local level frame angular rates. Both 
!,R(+, 0, $I) and J(+,B, $) depend non-linearly on [+,B,  $1. The white process noise w adds 
to the linear and angular acceleration terms and represents a probabilistic disturbance to the 
vehicle motion which accounts for the unmodeled vehicle thruster inputs that perturb the 
system from its current constant velocity. The complete continuous time model is expressed 

where, W[,jx1] = [WI, w2, w3, w4, w5, w6IT. The details of the reference frame kinematics and 
additional information on underwater vehicle modeling can be found in Fossen [40]. 

3.2.1 Navigation sensor measurements 

The formulation of the continuous-discrete [5] filter allows for asynchronous handling of 
navigation data produced by different sensors. The navigation sensor measurements are 
written as z[tk] and the state prediction of the measurements is handled using non-linear 
measurement models of the form 



where x+,,,) is one of the static vehicle-to-sensor offsets drawn in Fi(3-2) .  These mea- 
surement models me implemented as mired-coordinate fundions that predict the sensor 
measurements in the individual sensor coordinate systems. The sensor measurements are 
assumed to be corrupted by a time independent zero mean Gaussian noise v with covariance 
R, where E[wvT] = 0. Measurements for the navigation sensors are available at discrete 
times represented by t k .  The complete messurement model is then 

For this application the filter u t i i es  navigation measurements of the body frame veloc- 
ities, surface relative depth, and three axis attitude. Although LBL position estimates will 
be used to evaluate the output of the sub-mapping algorithm, they are not incorporated 
directly into the filter. Thus, the vehicle state filtering within this framework is really dead 
reckoning integration. 

3.3 Vehicle navigation 

The EKF uses the continuous time prediction equations to move the state estimate forward 
incrementally from time t k - l  to tr, for the next navigation measurement or sonar ping. The 
first order EKF requires the Jacobian F,(t) of the vehicle model f(x,(t)) taken over all 
elements of the state vector. When the entire augmented state is considered, the delayed 
states are not affected by the vehicle model and their time derivatives are assigned to be 
zero. For N delayed states this is written as 

Thus, the time derivative equations for the mean state vector and covariance take the form. 

where, 

is the Jacobian of the vehicle model function evaluated at the current vehicle state. The 
structure of the covariance equation indicates that the prediction step will update the vehicle 
covariance and the cross covariances between the current vehicle state and the delayed states. 

The state prediction using (3.9) is carried out numerically using a Runge-Kutta approx- 
imation. The integration produces the mean vehicle state 2; and covariance P& at time 
t k .  The update for the new state to incorporate the measurement at tr, is then accomplished 



using the standard EKF discrete time update equations 

Here the Jacobian H of the measurement equation h,(x,[tk],&(,,,,)) taken over the 
entire state vector is needed. Similar to the vehicle model Jacobian, the required matrix 
contains zeros over the delayed state portion of the state vector. For a navigation sensor 
updating m states the Jacobian takes the form H = [H,, O~,,snl], where 

In accordance with the mixed-coordinate implementation the matrix R contains the 
appropriate measurement covariance for the navigation sensor expressed in that sensor's 
measurement frame. Typical values for the measurement covariances are show in Table 5.2 
in Chapter 5. 

3.4 Sub-map creation 

The bathymetric sub-maps are created online as the navigation data filtering progresses. 
Each map contains points that are defined with respect to a local sub-map origin contained 
in delayed portion of the state vector. The delayed state poses consist of 6 DOF pose defined 

by 
Xg, = [zI Y, z, $IT. (3.13) 

The first sub-map origin is taken as the initial vehicle pose at the start of the filtering. 
Successive map origins are defined when the currently active submap meets a closure 
condition based on the structure of the terrain within the map or a limit on the navigation 
uncertainty. These conditions are described in Section 3.4.1. The state vector augmentation 
is completed as 

T T new map T T T T T  x ~ ~ ~ = [ x ~ , x , ~ , . . . , x ~ ~ ] ~  x~~~=[x,,x,~,... rX,N,X,] . (3.14) 

When new sub-maps are created additional rows and columns are also added to the 
covariance matrix. These new elements will be non-zero because the current state is corre- 
lated with all currently held delayed states. The growth of the covariance matrix is written 
in a block form as 



This covariance matrix augmentation allows the new sub-map origin to inherit the correct 
uncertainty of its position estimate and correlation with the other delayed states. 

The raw data within each sub-map consists of a set of 3D points 

where m,[l.. . n] = [x, y, zIT. The points are created from the beam ranges using the 
position and attitude from the state vector at the ping time t, and the composition sequence 

The various pose vectors in this sequence are shown in Fig(3-2). The vehicle pose ~ ~ ( t , )  is 
extracted from the state vector once %[t,]- is created using the prediction equations (3.9). 
The sonar transforms x,b, and q,,, are taken from the beam-formed and processed data 
described in Chapter 2. The use of local map origins allows for easy manipulation of the 
sub-maps. Once the sub-maps are created they are considered rigid and any motion of a 
sub-map will be accomplished by updating the sub-map origin x , .  The EKF algorithm 
which accommodates vehicle trajectory integration and sub-map creation is summarized in 
Algorithm 1. 

Algorithm 1 EKF Loop The main contznuous-dzsmete EKF loop alternates between 
handling navigation sensor data and sub-map creation. Algorithm 2 continues with the 
details of making a relative pose measurement between delayed states using the available 
sub-maps. 

while Running the filter, t < t,d do 
Get times [t,,,, t,,g,t,,] to the next sonar and navigation measurement. 
t* = min[teaar tnavrgatim] . 
Predict the state for time t*, jtaW(ta)-, PaUg(Ca)-, using (3.9). 
if t* &om sonar then 

Extract hP and add the ping to currently open sub-map using (3.17). 
Call Algorithm 2 Sub-map handling. 

else 
Get the navigation measurement z[t"] 
Predict the navigation measurement, k[t*], using (3.6) 
Update the state vector: xaUg[t*]- + x,,[t*], Pa,[t*]- --t P,,[t*] using (3.11). 

end if 
t = t* 

end while 

3.4.1 Dynamic map sizing 

The primary assumption supporting the algorithmic generation of sub-maps is that the 
short time scale DR navigation produced by the filter integration is sufficiently accurate to 



create sub-maps that represent the true world. Without external ground referenced position 
measurements the dead reckoning error will grow without bound and a sub-map will become 
arbitrarily distorted if it is not closed. This eventuality suggests there is an optimal size at 
which to break a terrain map and begin another. The selection of this break point involves 
the following trade offs. 

A sub-map should be small enough that it does not contain a significant mount of 
internal error or distortion caused by accumulated dead reckoning error. Since the 
maps are considered rigid once formed any internal distortions will only degrade the 
ability of match sections of terrain. 

A sub-map should be large enough to contain sdcient  3D information that it can 
be registered unambiguously to another map. Small maps will contain less internal 
distortion but be more difficult to register. 

Given these criteria there are a few obvious limitations in applying this technique. First, 
the DR navigation must be reasonable enough that sub-maps can be made at all. Second, 
the sea floor can not be flat and featureless to the point where terrain matching is not 
possible. Fortunately, there is little interest in mapping such areas. 

In an effort to algorithmically break and initiate submaps the characteristics of the 
sub-maps are monitored as sonar pings are added and the map size increases. To monitor 
the amount of 3D spatial information in a map there are several possible options. Ideally, 
a single statistic, that is not computationally expensive to compute, would indicate the 
potential for any sub-map to be registered correctly. The following list presents some 
possible measures. 

Normal space occupancy 

As an improvement to the performance of iterative closest point registration algorithms 
Rusinkiewicz [I181 has proposed a normal based sampling technique where the input point 
cloud is down sampled by selecting points over the space of surface normal as uniformly 
as possible. The idea is to help the point matching solution by using all of the available 
constraining geometry. To convert this into a "registerability" test, the increase in normal 
space occupancy can be monitored as sonar ranges are added to a sub-map and the map's 
geometry changes. Surface normals can be estimated using the principal component analysis 
(PCA) technique described in Appendix B.3. This test can be performed using a threshold 
for the number of occupants needed to consider a normal space bin occupied and a threshold 
for the total number of occupied bins that would suggest a good registration. A non-zero 
threshold on the number of occupants per bin helps suppress errant surface normals, caused 
by poor surface sampling and noisy data, from falsely populating the normal space. The 
image in Fig(3-4(a)) shows how the normal space occupancy changes as terrain in accrued 
into sample sub-maps. 



Principal components 

An inexpensive test for 3D structure can be made using the condition number of the co- 
variance matrix 

N 

C = x [(mi - m)(mi - I ~ I ) ~ ]  (3.18) 
z = 1  

where, mi = [x, y, zIT is one of N  points in the map Mi and m is the centroid of the 
point cloud. If this matrix is poorly conditioned the principal components of the submap 
describe an approximately planar surface, or the aspect ratio of the map is far from one 
to one. In general the condition number will be large when the map is started, decrease 
as the map gathers terrain and then increase again once the along track distance of the 
maps significantly exceeds the cross track width of the map. Although it is impossible to 
distinguish between these two cases using the condition number at one instant in time, a 
large condition number suggests a map with poor registration characteristics. The graph 
in figure Fig(3-4(b)) shows how the condition number will change for a selection of sample 
submaps. 

Auto  correlation 

During the map creation the shape of the auto correlation surface produced by correlating 
a gridded version of a submap with itself can be used as a map breaking test. Ideally, 
the terrain within the map will contain enough relief that the sub-map will only correlate 
with itself for small displacements. This would suggest that additional maps covering the 
same area will have the same desirable property for registration. The correlation can be 
calculated with a gridded version Mi of map Mi. The gridded surface should represent a 
height map of the form z = f (x, y) on a regularly sampled mesh. The correlation surface C 
is defined as 

1 X=,Y 
(3.19) 

where, represents the set of N , ,  the common bins between the map and the shifted 
map that overlap. 

The correlation surface can be approximated using a quadratic surface fit of the form 

The curvature of the correlation surface is described by the matrix H. This matrix should 
be positive definite, well conditioned and have Eigen values that both exceed a threshold. 
When these conditions are satisfied the sub-map can be broken. Unfortunately, the gridding 
and correlation can be expensive to use as a continuous map monitoring test and is only 
used in a batch sense after increments of terrain are added to the sub-maps. 



Growing navigation error 

As an attempt to limit the mapping error internal to a sub-map, a map breaking test can 
be made to compare the vehicle navigation error with respect to the current sub-map origin 
and the placement error of the sonar range points relative to the vehicle. The purpose of 
this test is to break a sub-map when the vehicle positioning error grows larger than the 
error associated with the mapping sensor itself. This would suggest that the limiting factor 
in overall mapping accuracy is becoming the vehicle's lack of navigation rather than the 
sonar sensor itself. 

To develop this test the placement of a ping into a sub-map relative to the sub-map 
origin using (3.17) can be rewritten as 

Here x,,, represents the vehicle pose relative to the sub-map origin and &,, represents 
the placement of the range point relative to the vehicle. The combined uncertainty for point 
placement into the current sub-map can then be written as, 

where, Px,,~,,, captures the sub-mapto-vehicle uncertainty, PXvrkXvrh captures the vehicle- 
to-point uncertainty and the cross correlations are zero. The Jacobian J,,,,@ = [J,,,,e,, JBSrkez] 

comes from the composition operation x,,, B)&, , see Appendix A.2.1. The ping placement 
error has been calculated and plotted for the individual ranges in two consecutive sub-maps 
in Fig(3-3). This figure shows that the error internal to a sub-map will grow away as the 
vehicle moves away from the sub-map origins. 

Equation (3.22) indicates that the sub-mapto-vehicle and vehicle-to-point errors are 
additive. Although strictly speaking any vehicle pose error will combine with the range 
point placement error, it is more realistic to consider the situation where the vehicle position 
error begins to dominate the range placement error. As a test we can compute the vehicle 
error online during the atering process and pre-compute a threshold value for the vehicle- 
to-point error using some typical error values for a sonar measurement. 

For online computation P,,,,,, can be created using the Jmbian eJ.,B associated 
with the relative pose operation ex,, B) hP between the current vehicle position and the 
sub-map origin. This uncertainty can be written as 

Within this covariance matrix the most important components are those associated with 
the vehicle position in [z, y, z]. The attitude errors can be lumped in with the sonar errors 
as they will directly contribute to the error volume the sonar range points are placed in. 



The attitude errors are also related to measurements from obtainable references like North 
and the gravity vector, and not subject to the large scale error g r d  of the vehicle position 
estimates. 

Precomputing a sonar mapping error threshold requires an error statistic for the sonar 
range accuracy, an error measure related to the sonas beam pattern, as well as an assumed 
beam range. These statistics will affect the transformations x,,, x,b and xh between the 
vehicle and the range point placement. If the errors are approximated as Gaussian for 
computational convenience the respective covariance matrices take the form 

2 2 where, u,,,, uwp and represent the vehicle frame attitude errors. Typical values for 
these are given in Table 5.2. For the sonar ~ 2 ,  u$ and are conservative estimates for 
the standard deviations of an individual beam angle, the for-aft beam width and the range 
error respectively. Using (3.24) the vehicletorpoint uncertainty Px,k,,k is written as 

followed by 

An algorithmic test to close a sub-map can be implemented by comparing a determinants 
of the of upper left 3 x 3 blocks extracted from P, ,,,,~, and Px,,kX.+k. When det(P,,,,,,,) 
exceeds det(P,,,,,,,,) the navigation error is dominating the ping placement error and the 
sub-map can be broken and a new map started. Fig(3-4(c)) show examples of this test for 
several example sub-maps. 

Additional map checks 

Aside from the map breaking conditions described above other simple checks are also em- 
ployed during the sub-map generation. The minimum and maximum map size are limited 
and tested by an online by a calculation of map area based on a bounding border of the sub- 
map point cloud. The maximum map size limit serves to bound potential errors caused by 
angular error in the registration process. Although smaller internal sections of the sub-maps 
will overlap with other sub-maps during registration, the resulting transform is applied to 
the entire map as a rigid body. As a result the end points of large maps with high aspect 
ratios can be displaced significantly due to a lever arm effect. Thus, it is desirable to limit 
the total sub-maps size independent of the other end conditions. To support a generaha- 
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Figure 3-3: Sonar measumefit e m r  p w t h  internal to a sub-map. (a) Tuo coweecLtive 
sub-maps created by the wehicle moving rtght to left. ( b )  The growth of total mopping ewwr 
internal to $he sub-maps. Note that the uncertainty ''resets" when the second map is started 
and P,,,,,,, %tarts overe7"jhm the new map origin. The ellipse in (b) indicates a step change 
where the vehicle's forwarel pmgmss s&pped momentarily and position weertainty continued to 
gmw. The mapping e m r  for each ping <s calculated as a 1 u uneertai&y volume using the 
squae mot of the detenninamt of ths upper left 3 x 3 block of Pxa,7kx,,rh . The values u, = .ID, 
uw = .3", up = .1M were wed in the oakuladion of Pxs*,kx 

tion to 3D mapping the map area can be calculated after orthographically projecting the 
map point cloud onto a plane described by the normal vector from a mapwide PCA, see 
Appendix B.2. Additionally, the map wpect ratio can be monitored to serve as a map 
breaking condition after the minimum map area condition is satisfied. 

Jkanples of online calculation of the sub-map properties described above are shown in 
Fig(3-4). 
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F i e  3-4: E~amples of the changing sub-map pmpe-. The changing pmpnies  i n  f p r e s  
(a), (h), (cJ and (d) are plotted as a fpmction along track mapping distance. Two @ample maps 
are shown in (e) and (f). The along tmck direction is rndiooted by the long a& a m w .  (a) The 
normal space owrcpancy condataon was set to .I and several well featured maps were bnoken when 
it was exuded.  (b) The p r i m i d  eomgonent condition number shows consnderable vwiabllity 
buO do& highlight appfoairnadely planar t e r n  The fir& 50 meters of map 19 (e) are very 
planar. (c) W vehicle psitron wwertainty as oolculated by (3.@), inc.peose9 mtil it m d s  
the sonar mapplng uneertmnty threshold V e M l  sections in the rcncevtdinty lines indicaee that 
the ROV held position momentarily and continued to accmlalaEe position uncertainty. (dl The 
increasing map arm as ako monitored. 
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3.5 Relative pose measurements 

Terrain matching and registering sub-maps will create relative pose constraints between the 
delayed states that reduce the growing uncertainty created by the DR process model. At 
a map closure, links to previously defined maps can be hypothesized in a straight forward 
manner. Since the delayed states represent the sub-map origins in a single coordinate frame, 
checks can be made for overlap using the intersection of the sub-map borders. This can be 
done in an all-against-all manner to check for all possible links, including new links between 
previously delayed states that may now be possible because of the trajectory refinement, 
at O ( N a )  cost. Experimentally, a simpler test for the current map against all prior maps, 
O ( N )  computation, has worked well. This is due to the large sub-map size relative to 
magnitude of pose uncertainty. Very few links should need to be reestablished if the survey 
pattern allows for continual small scale adjustment of the map origins. Simple checks on the 
size and shape of the intersection region between sub-map borders are also used to avoid 
the risk of ill-conditioned matches being made, such as maps which overlap along a long 
thin strip rather than an approximately square area. As a ad-hoc method of incorporation 
position uncertainty into the link proposal, the borders of the sub-maps can be "dilated" 
in proportion to the [x, y] pose uncertainty of the map origins. The similar problem of 
uncertainty based link proposal has been addressed in visual based systems [36,110] where 
problem is inherently harder due to the more equal relation between camera foot print size 
on the sea floor and the vehicle pose uncertainty. 

Figure 3-6: Vector d4agmm showing a sub-map regwtmtion measurement. Two overlapping 
sub-maps (d) and (blue) are shown with tha'r locations in the local levelfreme indecatd by x,l 
and x,s The vector 8.,, indicates the relatiue pose between the origins aa predzcted by the EEF. 
The adddtion a m t i a n  vector, A, is Betemd by the map registration and used to create the 
ochal t e m h  relative measurement zx,,,. 

The vector d-am in Fig(3-5) illustrates the measurement between two overlapping 
sub-map* The measurement model to predict a relative link given the augmented state 
v a o r  is the tad-to-tail operation deflned in Appendix A.2.3. Thii operation is written in 



the form of a non-linear measurement model 

whose arguments are the sub-map origins. The accompanying Jacobian for the meawrement 
with respect to the entire state vector will be a sparse matrix 

This Jacobian can be used to predict the uncertainty estimate of the relative pose measure- 
ment as 

kV xev = &, P ~ ~ ~ H : , .  (3.29) 

If a terrain measurement is made by the registration process it can be incorporated into 
the filter in a similar manner as a navigation measurement. The actual measurement z,, 
will also have an accompanying measurement convariance estimate %,,,., . The prediction 

*a 
equations (3.9) are used to obtain %&[t,] for the time when the last ping is placed in the 
sub-map and the map is closed. The update equations 3.11 are then used to update the 
entire state vector after replacing h,(.)  with h,(x,,x,,), H with H,,, and R with &,,2.,,, . 
The on-line sub-map registration is summarized in Algorithm 2. 

3.6 Summary 

This chapter has described an EKF framework to both estimate the vehicle trajectory using 
navigation data and incorporate terrain relative measurements between previously visited 
vehicle states. The details for constructing point cloud terrain maps on-line were discussed 
and several tests to evaluate the potential for the terrain within a map to be registered were 
given. These tests serve as break points for the completion of a sub-map and the start of an 
other. It was also shown that an estimate of the point placement error internal to the sub- 
map can be calculated from the filter covariances. This error can also be used as a test to 
determine when the vehicle position error begins to dominate the error in point placement 
due to the sonar inaccuracies alone. Although map breaking tests involve tunable thresholds 
that have to be set in accordance with the data set at hand, the tests themselves indicate 
that map breaking conditions can be formulated to use the mapping data incrementally in 
an automatic fashion. Lastly, the measurement model for the relative pose measurements 
between delayed states was given. These measurements will be produced by the registration 
procedure and used to constrain the potentially large scale growth in due to the DR vehicle 
model. 



Algorithm 2 Sub-map handling The sub-map handling process monitors the submap 
properties as the maps are created, closes maps and handles registration to previous maps. 
Algorithm 3 will continue when overlapping submaps are determined and may return with 
the delayed state measurement z , ~  The measurement acceptance test mentioned in this 
algorithm will be described in Section 5.3.2. 

Determine terrain properties of Mi ,  Section 3.4.1. 
if map M i  gets closed at time t* then 

Create delayed state x,,,, for the next map Mi+l 
Find the border contour Ci of Mi 
f o r j = l . . . i - 1  d o  

if Ci n C j  passes intersection tests then 
Try and register M i  and M j ,  Call Algorithm 3 M a p  Registration 
if Algorithm 3 returns a measurement zSij then 

Compute i,,, and H,,, with (3.27) and (3.28) 
Update, xaug[t*]- + xaug [t*], Paug[t*]- + Paug[t*], using (3.11). 
Do measurement acceptance test, (See Section 5.3.2) 
if Passes test then  

Keep update state vector 
else 

Revert the state and covariance back to x,,[t*]- and Paug[tV]-. 
Flag this map pair as a bad match. 

end if 
end if 

end  if 
end for 

end  if 



Chapter 4 

Terrain registration 

4.1 Introduction 

This chapter outlines the techniques developed to pairwise register bathymetric sub-maps. 
The registration is performed to obtain the 6 DOF transformation that aligns two small 
sections of bathymetry created using short term vehicle navigation. The alignment procass 
is divided into two steps. The 6rst step uses a 2D correlation to find the [x, y] translation 
which best aligns the submaps. The second step uses an iterative closest point algorithm 
to determine a h a 1  6 DOF transformation. It is shown that incorporating sonar return 
attributes into the ICP point selection step improves the matching convergence. The results 
of the registration are evaluated using an error metric based on the pairwise error between 
corresponding points from each map. Lastly, the registration error estimates required to 
incorporate the relative transform as a measurement for the delayed state EKF are discussed. 

4.2 Relative position measurements 

4.2.1 Selection of methods 

The proposed map matching is accomplished using correlation and ICP methods that at- 
tempt to minimize surface wide errors in map registration rather than the errors between 
specific features that have been extracted from the surfaces themselves. Experimentation 
has indicated that identifying and utilizing geometric features extracted from acoustically 
mapped terrain data is problematic. The view point dependent nature of acoustic scattering 
will cause the same feature imaged from multiple vantage points to appear differently and 
have different error statistics. (See Chapter 2). This fact violates the primary assumption 
that featurcbased registration methods make regarding features that are invariant to view- 
point [64,65]. An additional motivation for choosing featureless methods is the desire to 
register the individual maps into a single consistent point cloud. Ideally, the registration 
will recover the transform ;T that allows M j  to be combined with Mi and describe a single 
surface C in the overlapping area 



Methods that utilize a set of surface features during registration are susceptible to proposing 
transforms that best match the feature points at the expense of errors distributed over 
the entire surface. Although feature based methods have been proposed for underwater 
navigation [86,101, 113, 123,1241, their utility has not been demonstrated for creating a 
consistent terrain representation. 

The map alignment used here is broken down into a two step process which offers 
robustness and minimizes the chance for obtaining a false match. The 2D correlation mea- 
surements are used to determine the large scale shifts that are possible given the potential 
for large [x, y] positioning errors. Compared to [x, y] translational errors, the maps relative 
orientation and depth are very well known by direct measurement using navigation sensors. 
This fact makes 2D correlation an effective alignment method. The ICP step serves to refine 
the 6 DOF transform between the maps and uses the correlation result as an initial guess. 
This refinement is meant to better the correlation measurement in [x, y] and also correct 
for small changes in depth and attitude. Typical errors related to marine attitude sensors 
suggest that the angular refinements will be on the order of a few degrees. The quality of 
this initial guess, as aided by correlation and navigation sensors, provides the ICP algorithm 
with a good starting point. Of greater concern to the ICP algorithm is the quality of the 
point cloud data. In comparison to laser scanner data, which is known to register well with 
ICP methods, acoustically mapped terrain will have a higher level of noise relative to the 
feature scales within the point clouds. It should also be suspected that the acoustic maps 
have biases in them related to the finite beam width of the sensor. 

4.2.2 Sub-mapping specifics 

The map matching process has been developed to perform pairwise registrations using the 
common area between two overlapping sub-maps created with the EKF filtering algorithm. 
The inputs to the registration process are . the point clouds sets Mi and M j ,  each described in their own local reference frames, 

the initial guess for the relative transform between the reference frame, xSij, created 
with equation (3.27), 

and an uncertainty estimate for the transform, Ps,j = H,P,,~H:, obtained from the 
filter covariance and the Jacobian of the measurement function (3.27). 

For generality the registration can be performed in either of the input map reference frames, 
and the fact that the EKF state vector contains the sub-map pose locations in a common 
coordinate frame can be ignored. Thus, as an initial step, the predicted relative pose x,,~ 
is used to transform the ~ o i n t  cloud in maD M i  into reference frame i. This is ex~ressed - 3 

using the transform operator $ T (described in Appendix A) as iMj = ; T M j .  Two example 
sub-maps that have been transformed into a single coordinate frame are shown in Fig(4-1). 
The sub-map registration will then produce the residual vector A, shown in Fig(3-5), that 
corrects the EKF prediction of the sub-map relative pose. The relative pose measurement 
returned to the filter is constructed by 

Z,.. = A a3 XSij. 
'3 (4.2) 
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range points nearest to the grid nodes. The point depth uncertainties are calculated using 
(3.22). Incorporating this uncertainty measure into (4.3) serves to capture the growing 
nature of the mapping uncertainty internal to each sub-map. 

The correlation measurement for the alignment transform is then 

A, = argmin C(x, y). 
t%Yl 

(4.5) 

To check that A, does in fact correspond to a local minima, a quadratic surface of the form 
shown in (3.20) can be fit to C(x, y) in the neighborhood of the calculated minimum. A 
minimum is verified by a positive definite Hessian matrix H. 

The size of the window over which x and y are vapid for the correlation can be set 
using the uncertainty estimate Px,,xsU for the initial estimate of the relative transform 
x., provided by the EKF. An [x, y] 99%x2 confidence ellipse can be calculated from the 
upper left 2 block of Pxs,,x,i. A sample correlation measurement is summarized in Fi(4-2). 

Uncertainty estimation 

To use the correlation measurement in the EKF a fist  order estimate of its uncertainty is 
needed. To develop this the correlation measurement, (4.3), can be considered proportional 
to a log likelihood expression for the aligning [x, y] shift. This likelihood would consider 
the individual grid cell depth disparities as zero mean independent Gaussian measurements 
and be written as 

where the vector y represents depths in the fixed map M, and x(x, y) represents a measure- 
ment of these depths as a function of the translation [x, y]. The mat& A is the diagonal 
matrix of node wise depth uncertainties, A = diag[u&[l], . . . ,U~,~[~VI] .  In the neighbor- 
hood of maximum, this likelihood can be approximated by a Gaussian over the x and y 
translations directly. This will generate an estimate of the measurement uncertainty that 
is related to the curvature of the likelihood. The approximation can be written as 

where, the minimum occurs as A, = [%,m,lT and c = 2 7 r u x u , ~ .  The parame- 
ters ux, cr,, m,, m, and p can be solved for using a least squares fit with the values of 
C(x, y) around the minimum. The covariance matrix for the correlation measurement is 
then written a s  - - - 

The initial guess for the uncertainty parameters in the least square solution can be come 
for a simpler surface fit around the minimum of the form C(x, y) - [x, y ]T~[x ,  y]T and 



solving R, - H-l. Similar derivations for terrain codat ion uncertainty can be found 
in 1104-1061. In practice the correlation surface is usually represented well by a quadratic 
and this approximation seems reasonable. Solving for m, and my is also used to generate 
a sub grid cell estimate of the minimum location. Most importantly, the Eigen vectors of 
PA are able to capture the orientation of the uncertainty, Fig(42(f)). 

(d) Depth error, map 1 (e) Depth error, map 22 / f )  Correlation function 

Figure 4-2: Sample cornlation measurement. (a) Two overlapping sub-maps. (b,cJ The 
gsidded depth tmages of the overlapping regton for each map, referenced to fmme I .  (d,e) Depth 
uncertainty of each mop. (f)  The cornlahon wdt C(x,  y) shown with the principal azis of ffie 
uncertainty matix PA indicated by  the veetms located as the minimum wrrelotion score. 

4.3.2 Iterative closest point matching 

The ICP registration step is used to refine the 2D registration. This step should reduce the 
total error between the sub-map surfaces and offer robustness to errors in heading, pitch, and 
roll that affect the submap origins. The point-to-point and point-to-plane ICP algorithms 
were evaluated to see which performed better for acoustically created maps. Both methods 
attempt to minimize a distance measure calculated for a subset of nearest neighbor points 
between selected from the overlapping region of the two point clouds. The application of 
these methods for bathymetry has not been well tested, but preliminary results suggest 
reliable registration can be performed when using sonar data [25,114,134]. Unfortunately, 
generalizations about the applicability to sonar mapping are difficult to make due to the 
strong dependence on data quality, point selection, and error metrics [116]. The performance 



evaluation presented here used repeated trials from randomized starting locations around 
a nominal solution for many sub-map pairs. The ability to repeatedly register a sub-map 
pair to a single pose solution from many different starting locations indicates the robustness 
and consistency of the registration. 

The following, somewhat standard, ICP aagmentations were used for both the point-to- 
point and point-to-plane implementations. 

Points positioned on or near the boundaries between maps were not used as point 
pairs. 
After point pair selection, those pairings with link lengths greater than two standard 
deviations from the mean link length were rejected. 
The point selection used between 500 and 2000 points from the common regions. 
Paired points with surface normals differing by more than 45" were rejected. 

The initial location of map M j  at the start of the ICP registration is produced from 

where the transform 1 T, relates the composition of the correlation measurement and the 
initial relative pose guess from the EKF, T, 2 A, @ x,, . 

The cost function for the point-to-point method [lo] penalizes the sum of squared distances 
for the selected point pairings and can be written as 

where, mj[k] and mi[k] make a nearest neighbor pair, and wk is used to weight the contribu- 
tion of individual point pairs to the cost function. For a given set the point pairings, Horn's 
closed form least square quaternion solution [57] can be used to determine the transform T 
that bring the pairs into alignment. The basic algorithm repeats the following steps, 

select point pairs, 
a solve for T using Horn's algorithm, 
a apply T to the points mj[ . ]  

repeat, 

until the alignment transform T between steps approaches unity, indicating the point set 
alignment has stabilized. 

Application of this method to the bathyrnetric submaps has shown poor convergence 
properties for repeated randomized trials over many different map pairs. An example is 
shown in Fig(4-3). The trajectories of the transform parameters do not exhibit strong con- 
verge to single solution. This is not unexpected, as the method is known to produce slow 
convergence when applied to noisy surface data [43,111]. Examination of the point pair 
links between the sub-maps shows it is common to generate a large number of links that 



do not suggest a consistent direction of motion for improved alignment. This will occur 
where the surfaces parallel each other and is likely to happen when the terrain is relatively 
flat. Additionally, the point-to-point approach is prone to aligning artifacts in the scanning 
pattern when the underlying terrain shows little structure of its own. The striped pattern 
created from the individual multibeam pings, seen in Fig(4-1), can cause the alignment to 
find an incorrect match when the maps are created by the vehicle flying on reciprocal head- 
ings. The weighting of individual point pair distances proportional to the point placement 
error using wh was not found to affect the convergence behavior significantly. 

(a) Translation trajectories 

(c) Pairwise error reduction 

Figure 4-3: The typzcal convergence of the poznt-to-poznt ICP algorithm for the tevain sub- 
maps using imtiol guesses that wem randomized amand an assumed map alignment. (a) Ban% 
lation trajectories an [x, y]. (b) The change in onentation parameters. (c) The reduction of the 
point pair distance during convergence. Translation was mndomized over a 2m radius, heading 
over 3' an4 pitch and d l  over 2'. 

The pointAo-plane ICP method [27] seeks to minimize the sum of squared distances between 
the closest point paitings along a local surface normal. This distance measure only penalizes 
surface separation along the surface normal direction and allows contacting surfaces to slide 



tangentially without penalty. Although this method can be more prone to local minima 
than the point-to-point method, it performs significantly better in practice. 

The minimization cost function for the normal projected distance is written as 

j T = arg m i n x  II(Trnj[k] - m i [ k ] )  . ni[k]II , (4.11) 
T 

k=l 

where n,[k]  is an estimate of the surface normal at point m i [ k ] .  Since a closed form solution 
for j. T does not exist, the cost needs to be reduced with an iterative process. The error d[k]  
for an individual point pairing can be rewritten using the components of T as 

d[k ]  = ( R m j  [k] + t - mi [ k ] )  . ni [k] (4.1211) - (mj [k]  - mi [ k ] )  . ni [k] + r . (mj [k] x ni [ k ] )  + t . ni [k ] ,  (4.12b) 

where r = [ T , , T ~ ,  T = ]  simplifies the rotation R by assuming the cost will be minimized over 
small angular displacements. Using this substitution, the minimization can be rewritten 
with respect to the parameter vector x = [rTtTIT as 

Taking partial derivatives of this cost function and setting them to zero results in a 6 x 6 
matrix equation of the form 

F ~ F X  = ~ ~ b ,  

where F is a matrix of Jacobians relating the change in parameters [rTtTIT to the change 
in each point pairwise distance d[k]  

and b is the residual vector 

The basic algorithm proceeds by repeating the following steps until the newly determined 
transform approaches identity. 

Select point pairs 
Calculate F and b 
Compute x = (FTF) - lFTb  
Apply an updated transform T f x to the points m j [ . ]  

Repeat 

The final values for R and t are then related to the ICP transform Ai,. 
The point-to-plane method requires the calculation of surface normals for the selected 

points. A robust normal estimation can be made using local principal component analyzes 



on groups surface of points [91,108]. This technique determines the direction of minimal 
variance that indicates the normal to a tangent plane (see Appendix B.2). The normals 
calculated in this manner have been accurate enough to successfully apply the point-tw 
plane ICP to bathymetric data. The actual accuracy of the normal estimation however is 
difficult to quantify given the lack of ground truth. A detailed description covering the 
effects of point cloud noise on the normal calculations has been presented by Mitra [91]. 
Beyond the basic PCA implementation, an additional step to reject surface normals for 
sonar returns with long return pulse duration can be used. Also, varying the size of the 
region the local points are collected from in proportion to the point sample density helps 
the normal estimation consistency. 

Point selection 

As noted by Gelfand [43], the stability of the ICP solution is related to structure of the of 
the matrix FTF which encodes all of the point cloud shape and normal information. If this 
matrix is poorly conditioned the solution will be unconstrained in one or more directions. 
This is seen by writing the change in total cost (4.13) as 

When F ~ F ,  is poorly conditioned there will exist motions in [rTtTIT that produce little 
variation in cost. To combat this problem methods have been proposed to select the set 
of matching points from the point clouds that better constrain the solution by minimizing 
the condition number of FTF. Gelfand [43] presents a method to select points based on 
constraining the Eigen vectors of F ~ F .  In practice this method has proven to be sensitive to 
the aspect ratio of the common area between maps and tends to select points near the region 
borders. This behavior is undesirable in the context of bathymetric sub-mapping for two 
reasons. First, the aspect ratio of the submaps is highly variable due to their incremental 
assembly. Second, the map edge points will typically be imaged off normal incidence with 
the sea floor and be more prone to error, Fig(44(c)). 

As an alternative approach to addressing the solution stability, a normal space sampling 
method is used. In this method the space spanned by the region wide set of surface normals 
is gridded and points are chosen as uniformly as possible from the populated grid cells 
[116]. The idea is to utilize as much constraining geometry as possible. To tailor this to 
sonar mapping the selection of the points from each normal bin is made according to the 
shortest returned pulse duration. The objective is to cover the normal space as completely 
as possible while choosing points that were generated with the potentially most accurate 
sonar range measurements. The obvious caveat to this approach is that points imaged 
at favorable near normal incidence from one vantage point will not be imaged favorably 
from a different vantage point. To account for this the number of points selected from 
the first surface is increased. After the nearest neighbor points on the second surface are 
found, the number of links is reduced to the desired number by rejecting links to points on 
the second surface which have long returned pulse durations. This double sorted duration 
based sampling has improved the convergence properties of the point-to-plane ICP. Fig(4-4) 
shows an example of the point selections for both standard and duration preferenced normal 
sampling. As shown in this case, the duration preferenced sampling will tend to condense 



the selected points into areas that have been favorably imaged. In some sense, this behavior 
is suggestive of a feature based registration approach, but still maintains a large number 
of corresponding points across the surface. The convergence behavior for randomized down 
sampling, standard normal space sampling, and duration preferenced smpliig are shown 
in Fig(45). An outline of the sampling algorithm is given in Appendix B.3. 

It is worth noting that surface shapes do exist which prevent a normal space sampling 
strategy from constraining the matrix F ~ F .  For example, if the mapped terrain describes a $ 
sphere the normals space will be fully populated yet the solution is completely unconstrained 
in three rotations [43]. In the context of bathymetric mapping such cases can be considered 
L"pthological" and present a more significant problem to normal space sampling methods 
applied to 3D object modeling. Also, simple chechs can be made to ensure that the selected 
points have a minimal coverage over the common region and are not overly concentrated in 
a single area. 

(a) Normal space sampling 

(c)  Colored by 2nd moment 

(b) Normal space & moment sam- 
pling 

(d) Normal space occupancy 

F i e  44:  Comparison of standard and re tun  dumtion prefemnced normal space sampling. 
(a) Map potnts that would be selected using standard normal based aamplzng. (b) Pomts selected 
for pulse dumtion normal sampling. (cc) T e m i n  color eoded by received pulse dumtion. The 
black line indicates t k  vehicle path. Note the longer pulse duration retuns closer to the edges 
of the map. (d) The normal space occupancy for thes seetion of terrain. 



(a) Random 
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(d) Normal space 

(b) Random 

(e) Normal spgce 

(c) Random 

(f) Normal space 

(g) Normal space & dura- (h) Normal spaoe & durw (i) Normal space & duration 
tion tion 

Figure 4 5 :  Sample convergence behazdor for the three different pant selection methods. (a,b,c) 
Random down sampling. (d,e,f) Nonnal @pace smnpHng. (g,h,z) Pulse duration prefeeneed 
sampling. Randomid startang points were used and daration based sampling pmdaced the 
tightest convergence behador wa both translation and arqgularmotion, and resulted in the smallest 
painvise links lengths. In all cases the convergence ww supelior to the point-to-point method. 
Tmnslatnon was randomired over a 2m mdzua, headng over 3O on4 pitch and mll over 2'. 
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ICP error estimation 

An uncertainty estimate for the point-to-plane estimate can be made once the iteration has 
converged. Using the value of F at the solution, the covariance of the transform parameters 
can be related to the nearest neighbor point distances. The relationship follows as 

where A = diag[u:. . . u:] is a diagonal matrix containing a scalar variance statistic for 
each point pair link length. These individual pair wise variances can be computed from the 
uncertainty related to each point PXqvk,,, . Alternatively, if all the point pair variances 
are assumed equal this simplifies to &, = U ~ ( F ~ F ) - ~ .  In this cwe it is clear that the 
poorly constrained directions will map directly to large error covariances. An estimate for 
u2 can be generated from the painvise link lengths as u2 = var(d[l. . . n]). In practice this 
estimate of uncertainty has proven to be over confident in magnitude, but correct in the 
orientation when FTF is poorly conditioned. This was checked using the stopping points 
of the randomized trials, Fig(45), and a X2 bound on the calculated R matrix, Fig(4-6). 
To compensate for this the calculated covariance R = U ~ ( F ~ F ) - ~  can be scaled in the 
algorithm. 

Figure 46: Example confidence ellapse for the ICP registration e m r .  The confidence ellzpse 
is dmwa at the convelgence centroid of several mndom trials, similar to those shown in _Fig(& 
5). This pa&atzcular edse shows the e m  eoual'iance to be over conwent. The shape of the 
wnwelgence paths indicates the less constmined dimtions. 



Limitations to ICP and pairwise measurements 

The above uncertainty measure does not capture the pomibility of the ICP algorithm con- 
verging to a local minina and instead of the &ual solution. To guard against local minima 
a terrain consistency cheek will be performed using a surface error evaluation with other 
nearby maps. This will be discussed in section Section 5.3.2. 

Also, the EKF formulation has assumed that Merent pairwise registration measure- 
ments involving common sub-maps are independent. This assumption is commonly made 
in similar constraint based SLAM algorithms [15,42,49,83] due to the difficulty in cal- 
culating the measurement cross correlatiom explicitly. If the individual pairwise matches 
do not share any common points this mumption can be justified. However, due to the 
pulse duration sampling strategy it is likely that the same points will be used for differ- 
ent measurements involving the same areas on a sub-map. Unfortunately, the difficulty in 
accurately predicting even the direct pairwise covariance suggests the required c r w  corre- 
lations to remove the independence assumption would not be easily calculated. As such, the 
independence mumption between the measurements in used without complete justification. 

Figure 4-7: An example of the ICP solution filadlng a local minima . (a) Two sub-maps with 
a low Eevel of constmmng t e m n  (b) Two attmctaon mgwns for the hamlatioh soluhon. ['c) 
Two dgemnt ualwee for the final &nks lengths nuggestdng one of the attmction regions is a better 
match than the other. 

4.4 Measurement evaluation 

4.4.1 Surface error 

To further evaluate the performance of the terrain matching it is necessary to deiine an 
error metric which penalizes sub-map mis-registration and highlights inconsistencies when 
maps are not aligned correctly. Ideally, two correctly registered point cloud sets Mi and 
Mi will combine to produce a composite point cloud set C which describes a single surface. 
The surface error statistics of C should approach those of the noisier surface, M ,  or Mj,  in 
the common region. Any additional error in the overlapping region should be attributed to 
mis-registration. 



Within the bathymetric mapping community no standard method for reporting mapping 
errors exists. At the larger scales for ship based surveys, depth errors can be calculated 
by binning the depth soundings into grid cells and calcnlating the variance in depth per 
cell [61]. A more sophisticated method proposed by Calder [20] [21] generates a depth 
variance statistic as part of its depth estimation at grid points. These approaches assume 
that the seafloor can be modeled as a height map of the form z = f (x, y). At a large scale 
the assumption is valid, however for vehicle based mapping over rugged terrain the height 
map assumption is less justified. The depth variance calculated for points contained in any 
[x, y] grid cell will over predict errors in regions of sloping and featured terrain, and is not 
applicable general 3D mapping. 

To develop a better error metric that can be applied to point cloud data the following 
criteria are required. 

The error measure should remain as independent as possible from bin size. 

The measure should be applicable to poorly registered maps. This would include 
composite point clouds containing "air-gaps" in regions where the surfaces do to touch. 

The measure should utilize the fact that bathymetry surveys can be broken down into 
sub-maps. 

A measure that satisfies these conditions will be broadly applicable to 3D mapping 
in more complex environments and be able to highlight many of the artifacts commonly 
present in bathymetric maps. 

4.4.2 Principal component analysis (PCA) 

The 3D graphical modeling community has addressed surface error measurements using lo- 
calized PCA. Composite graphical models of complex objects created from multiple range 
scans are often stored in point cloud form. Error statistics for the model surface can be 
generated by grouping points locally around the surface and performing individual principal 
component analysis on the groups [66,108]. A surface variance calculated in this manner 
represents the orthogonal projection error of the points onto a locally fit plane. Practically 
this is accomplished by binning the point data into grid cells or voxels and then obtaining 
the PCA normal direction and variance estimates described in Appendix B.2. Generating 
reliable results using this idea requires the noise and misregistration errors within the com- 
posite point cloud to be smaller than the feature scale of the shape itself. This condition 
generally holds true in the realm of graphical modeling using laser scan data. Experimen- 
tation, however, suggests that point clouds generated from acoustically mapped terrain do 
not generally satisfy this condition. Maps created acoustically will have a higher ratio of 
noise to surface feature size and are prone to greater registration error. Fig(4-8) shows how 
the PCA based error estimate will break down as registration errors grow. In the limit the 
surface error calculated using this method is bounded by the choice of bin cell size. This 
makes applying the method difficult. Choosing a bin size too small will cap the error value 
causing it to under predict. Choosing a large cell size allows surface features on the same 
length scale as the bin size to bias the error estimate even if the underlying point cloud is 
perfectly registered. 



(a )  Correct (b)  Failed case 

I 
Increasing mis-regishation 

e 

( c )  Upper and lower bounds 

Figure 4 8 :  Lower and upper bounds of the PCA surface e m r  metric when applied to a 
composite 2D point cloud. (0) Sketch showing three well registered point clouds (color coded 
points) where the PCA correctly predicts the surface variance. Arrows indicate the normal to 
the fitted line within each bin (vertical black lines). (b) Thwe mis-registered point clouds whew 
the PCA method fails. The right most bin shows the fitted line becoming vertical as the mis- 
registration e m r  becomes larger than the bin size. (c) The upper and lower bounds for the 
calculated variance. The upper bound is limited by the bin size directly. 

4.4.3 Point based errors 

Point-to-~oint distance measurements have Droven to be more robust than surface variance 
calculations in capturing the potential registration error between bathymetric sub-maps. 
Point-to-point distances can be used to evaluate both pairwise map registration and the error 
in a composite surface created from more than two maps. The pairwise case is discussed 
here and the multiple map case is described in Section 5.3.1. 

To develop with measure the distance between a specific point pl  in map M1 to the 
closest point in map M2 can be formalized using the euclidean norm 1 1  .I[ as 

Calculating d(pl[k],Mz) for every point k in the common region between maps M1 and 
M z  directly indicates the registration error between the point sets. An example is shown 
in Fig(4-9(b)). Unfortunately, calculation of the nearest point distance for each point in 
the common area is computationally expensive for maps containing 0(100,000) points. 
Layered data structures such as k-d trees [8,45] can reduce this cost to O(log(N)) .  To 
reduce computation further the intersecting region on M1 can be gridded and the point- 
to-point distance for n points in each grid cell j can be averaged as 

This bin-wise average shown in figure Fig(49(c)) approximates the dense point map quite 
well. Computing a histogram for the error based on all points or the binned error shows 
how the registration errors are distributed, Fig(49(f)). Correctly registering two sub-maps 



should move the mass of the histograms toward zero. The lower bound on the point-to- 
point error metric for a perfect registratjon is proportional to the sample density of the 
points on the terrain surfme. To quantify the registration error with a simpler statistic the 
mean, median, and variance of the point error distribution can be calculated. Tests for the 
reduction in these three statistics are used in assessing whether a registration was successful 
and if the determined relative pose transform should be returned to the EKF algorithm 
as a measurement. Fig(4-ll{c)) shows the error histograms for a map pair at different 
stages of the registration process. The registration algorithm will first attempt a correlation 
measurement and check if the surface error is reduced from the initial EKF proposed error. 
If the error is reduced the ICP matching is performed. If the ICP measurement is able to 
improve the surface error it is returned for the EKF update. If the error is not reduced 
the correlation measurement is returned. An outline of the complete registration process 
showing these error reduction checks is given in Algorithm 3. 

(a) Two overlapping map. (b) Point-to-point error 



Algorithm 3 Map Registration The registration process to return a relative pose mea- 
surement to the sub-mapping EKF. 

Transform point cloud Mi into frame to make WMj 
Grid point maps to make Mi and Mi. 
Set the she of correlation window using Pxa, .x,ij 
Attempt 2D correlation to obtain A, and R: 
if Correlation H positive definite & surface error reduced then 

Attempt ICP between Mi and iMj 
if ICP convergent & ICP surface error < Correlation surface error then 

Return measurement z,,~ = Ai, @ A, EB xsij and % ,., 
' I  v = &, to Algorithm 2. 

else 
Return measurement z,, = A, @ x,,~ and %#. .,. 

3 ' I  
= R, to Algorithm 2. 

end if 
end if 

4.5 Summary 

This chapter has outlined the pairwise registration process used to create relative pose 
links between sub-map origins. A complete example of the registration process is shown in 
Fig(4-10) and Fig(4-11). This example illustrates the reduction of surface error during the 
registration steps and shows the surface error that results after the relative pose measure- 
ment is incorporated into the EKF filter. Due to the filter's own estimate of xaij the surface 
error after the incorporation into the filter is generally greater than what the correlation or 
ICP predict independently. 

The sequential application of correlation matching and an ICP algorithm is robust to 
local minima and improves the registration of sub-maps. The point-to-plane ICP method 
has superior convergence properties over the point-to-point method. This is most likely due 
to the "sliding" the point-to-plane cost function allows and the predominately low relief 
maps that slow convergence for the point-to-point method. In addition the point selection 
preferenced on the returned sonar pulse duration improves the convergence behavior of the 
point-teplane algorithm. Finally, it was shown that a point-to-point error metric more 
accurately captures the registrations errors than the PCA based method typically used by 
the graphical modeling community. 



(c) Correlation surface 

(b) Initial mapto-nzp error 
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(d) Mapto-map error after correlation 

Figure 410:  Summary of the steps in the sub-map registration sequence. (a) Two overlapping 
sub-maps. (b) The surface error ouer the common area prior to registration. This alignment is 
pmvkded by the EKF predicted relative pose x,, . (c) TIae correlation surface and uncertainty 
orientation. (d) The surfam error after shiftmg 12 usang correlation solution. Note the error 
is sagn&antly d u e e d .  



(a) Maptomap error &er ICP (b) Mapbmap error after EKF 
upd& 

(c) Histograms of maptc-map (d) Gridded surface prior to reg- 
surface errors istration 

(e) Gridded surface after registre 
tion 

Figure 4-11: Registma%on example continued. (a) The surface e m  after applying the ICP 
solution. (b) The surface e m r  using thd submap positions obtained after the ICP measurement 
ls incopxnted by the state update equaDions. (c) Histogram showing the reduecion of e m r  
between the initial alignment, the cornlation and ICP memul~.ments. The 'Ldfter EKF" line 
shows the e m r  using the updated map origiw. (d,e) Gridded versions of the maps before and 
after @traboon. The similarity of these images irtdbtes how m&-mgisDmtion, os show in 
Fig(#-lO(b)) as not earrily discemibk from a g d k d  map alone. 





Chapter 5 

Experimental results and 
validat ion 

5.1 Introduction 

This chapter presents a validation of the proposed sub-mapping algorithm using results 
from a real world large scale mapping experiment. It is shown that a better terrain map 
can be produced using a sub-map framework than using more standard navigation filtering 
techniques. To compare and evaluate maps a point-based error metric is developed to 
indicate the total amount on mis-registration in a composite point cloud that describes 
the entire map. The sub-mapping method is able to reduce this surface error significantly. 
Tests are also done to show the robustness the of sub-mapping method to some common 
error sources present in robotic surveys. Some additional details of the algorithm are also 
discussed and a post processing pose refinement step is presented. 

5.2 Survey description 

The bathymetric surveys presented here were specifically designed to test the proposed 
sub-mapping algorithm, Fig(5-1). By general underwater surveying standards, these sur- 
veys contain an extreme amount of bottom coverage and numerous crossing tracklines that 
would normally increase the potential for registration errors caused by uncertain navigation. 
Ideally however, the sub-mapping algorithm will take advantage of the crossing tracklines 
lines and limit the surface errors in these regions. The survey patterns are consistent with 
the previously stated assumption that underwater surveys can be designed to avoid the 
large loop closures known to cause difficulty for SLAM algorithms. The specific details for 
the surveys are given in Table 5.1. Although the surveys were completed with an ROV the 
survey design is consistent with A W  mapping capabilities. 

The vehicle platform used for this work was the JASON ROV, which is part of the US 
National Deep Submergence Facility, Fig(5-2). The ROV contains on board navigation sen- 
sors for three axis attitude, three axis bottom relative velocity and, surface relative depth. 
Table 5.2 shows the specific characteristics of the navigation senms. The individual sensor 
measurements are recorded asynchronously at rates varying between 5 and 10 Hz. Acous- 



tic long baseline navigation fixes from external beacons are also obtained at a 10 second 
interval using a vehicle mounted transponder. The JASON system is position controlled in 
real time using dead reckoning navigation based on the integration of Doppler velocity log 
(DVL) velocities and measured attitude [72]. During the surveys the LBL fixes are used to 
periodically "reset" the DR navigation and keep the vehicle close to intended survey path. 
The LBL fixes are not, however, used in real time in a continuous filtering sense. 

Table 5.1: Summary of suruey details 

I Detail 

Vehicle altitude 

Path length & duration 

Sonar frequency 
Outgoing pulse length 
Range resolution 
Ping rate 
Sonar transmitting beams angles 
Beamforming 
Total number of pings 

Description 
-.25 m/s 
Survey 1, 15 - 20 m 
Survey 2, 25 - 30 m 
Survey 1, -5.1 km -13 hours 
Survey 2, ~ 1 . 8  km -4.5 hours 
200 kHz 
50 - 75 p 
-4 cm per sample 
~1 ping per second 
120" athwart ships, 3" fore-aft 
128 beams uniform across 120" 
-30,000 each survey 

- Calibration details for the SM2000 can be found in [28,29,60]. 

Table 5.2: Navigation sensors 

I Measurement I Sensor I Precision I 
I Headine (north seekine) I FOG' 1 &.lo I 

' The Fiber Optic Gyro (FOG) also has the desirable property of zero 
heading dependent deviation. 

-, 
~ i t c h / G l  
Depth (surface relative) 
Vehicle velocity (bottom relative) 
Position (x,v) 

The multibeam sonar used for this work was the SM2000 sonar (Kongsberg-Mesotech 
Ltd). The details specific to the sonar are given in Table 5.1. The sonar ping rate was chosen 
to ensure a dense bottom coverage for the nominal altitude and fore-aft beam width. A 
procedure to determine the sonar pose offset, x,,, with respect to the vehicle body frame 
is given in Appendix C. It is important this be done prior to running the sub-mapping 
algorithm as the errors produced by this offset being incorrect will translate directly into 
sub-map motion during the registration process. The sonar data was batch processed using 

Tilt sensors 
Pressure sensor 
Acoustic Doppler (DVL) 
Lona Base Line 

+O.lo 
+0.01m 
+O.Olm/s 
O h )  



TAG s 
3350 

Figure 5-1: TAG surveys. The two survey paths are shown over a low rssoluteon map of the 
TAG mound. The black suntey (suntey 1) wndazm mdhple crossings over the maan hydwther- 
mal vent. The sloping ssdes of the mound are at an appmximateiy 4Pungle. The smaller survey 
(survey 2) wwas completed m t h  a single cmssrng line and dightlg vider tmckline spacing. 

I'. : , 
.*:-!a ' - t*-* . < .  

(a) JASON (b) The JASON aurface navigation display 

Figure 5-2: The JASON ROV shown pmbr to hunch over the TAG hydrothermal mount. 
(a) SM2OOO sonar (mewing head highlighted) mounted in a down looking eonfigurntion. The 
transmit army is hidden by the DVL. The ROV is wntmlled actively i n  tmnslation, yaw and 
depth. Pztch and roll rely on passive stability. (b) A screen shot of the DVLNAV topside 
nawigation system [72] available to the navigator on watch. The position of JASON, the clump 
weaght MEDEA, the ship, and the LBL position fizes (+ symbols) are shown i n  real time. The 
trackline of the vehicle is shown as a bead c m b  tmil (green dotted tine). During operation 
JASON uses Doppler based DR navigation for closed loop speed and position control. The 
navigator is able to monitor ths LBL &es in m l  time and resets the position estimate to an 
LBL fiz when the diffemnce between the DR and LBL poszhon grows. 



the methods detailed in Chapter 2. 
The remaining sections of this chapter present data and results from survey 1, the 

larger of the two surveys shown in Fig(5-1). Similar plots for survey 2 are shown and 
described in Appendix D. The data from survey 2 has been processed with an identical 
set of algorithm parameters and shows similar rermlts as survey 1. The trackline pattern in 
survey 2 resembles a more standard survey with several parallel tracklines and a crossing 
line. The second survey was performed with slightly wider trackline spacing and a higher 
flying altitude above the bottom. 

The detailed plot of the survey 1 tracklines in Fig(5-3) shows the vehicle trajectory 
generated by DR navigation using the DVL velocity and attitude measurements only. The 
tracklines diverge from the LBL fixes due to the integration of velocity and heading noise, 
and error in the knowledge of the offsets x, and &v between the vehicle frame, and the 
attitude and velocity sensors respectively. Since the DR navigation is completely relative, 
the start of the DR track is shifted to coincide with an LBL position fix at a similar time. 
The covariance ellipses spaced periodically along the track show the growing uncertainty in 
the position estimate with time. 

I - DR path 

Figure 5-3: Survey 1 tmdlines in detail. The DR tmcWines for survey 1 am shown with 
the LBL navigation jkes and 99%xa uncertainty ellipses. l"he elligses show a bound for the 
DR position estimate in [q y] and grow steadily over the coarse of the survey. Note the lack of 
LBL data for a section of the map (middle right). Thm "shadow zone" was most l-ikely caused 
bg t emin  interfering with the direet acowtic path. The three LBL beams were located at the 
followmng [x, y] locations, [l572.5, 3l5l.S'],[J78O.g, 4746.3],[4264.3, 2275.21. 

The total sonar sounding density is shown in Fig(5-4(a)). The width of the sonar swath 
on the bottom for a single trackline is shown in Fig(5-4(b)). Along the highlighted trackline 
(red) four sub-maps were created. The swath width extends to the neighboring tracklines 



for creating a significant amount of redundant coverage. The actual swath width on the 
bottom will vary according to the terrain slope and the closely spaced tracklines ensure 
coverage in mgged terrain. 

(a) Sounding density @) Example sub-maps 

Figure 5-4: Sonar sounding density for survey 1 .  (a) The soundkg density on the bottom. The 
"hashed" features zndicate when! the vehicle's f o w a d  motion stopped and the sonar continued 
$0 ping. @) BxampEe &-mops cmted along the highlighted (dl truckline. The tmok line 
spacing was set to obtain approximately 200% bottom wuerage, ie. complete wwemge to the 
adjacent lane. The van'ability in track width suggests that closely spaced lines are needed to 
ensure complcta bottom coverage. 

5.3 Complete maps 

A single composite terrain map is created from the union of the individual sub-map point 
clouds once they are independently transformed to the common vehicle local level coordinate 
frame. The composite point cloud C is written as 

where the transform parameters, 1T S x,,, for each map Mi are determined from the final 
estimate of the delayed state vector Ideally, given perfect sensor measurements and 
exat3 map registrations, this composite point cloud would describe a zero thickness point 
sampled surface. More likely though, the point sampled sur fm will have a "thickness" 
related to errors in the individual maps themselves and registration errors where the maps 
are mis-aligned with each other. To evaluate the registration error within the composite 
point cloud knowledge of the origin sub-map for each point should be retained. If the origin 
map for each point is known, a point based error metric can be constructed to show how the 
worst case sub-map alignment error is distributed across the surface. For similar reasons 
to those discussed in Section 4.4, the vertical variance and a surface variance relative to a 
fitted plane do not accurately represent the error in the composite point cloud. Therefore, 



the following point based error method is used to evaluate the mapping error. 

5.3.1 Composite surface errors 

To extend the pairwise point-to-point error metric of Section 4.4.3 to surfaces composed of 
more than two maps it is necessafy to consider that there will be a set of maps contributing 
points to any patch on the surface. Thus, the measure of total mapping accuracy for a 
surface patch should calculate the largest amount of misregistration present among these 
maps. To develop this the nearest neighbor point-t+point distance used for pairwise error 
measuring, (4.19), needs to be extended. The first step is to determine a set wise distance 
between one point and many other sub-maps. The second step is to find the largest set wise 
distance amongst the entire set of maps contributing points to a surface patch. To evaluate 
the error across the surface, patches can be created by binning the surface in [x, y] if the 
terrain is relatively flat, or sorted the composite point cloud into 3D voxels in areas of high 
relief. 

Once the surface is binned consider a point pi from map M i  located in surface bin j .  
Also, consider the set of maps I; that have contributed points to bin j AND all the bins 
that surround bin j .  Set I;, defines the set of maps that points in map M i  are measure 
to. By requiring all members of I; to contribute points to the bins surrounding bin j 
biasing the error near the submap boundaries is avoided. From the point pi a maximal 
mis-registration distance can then be defined as 

where d(pi, Mk) is the distance from pi to the nearest point in sub-map Mk. This measure 
can be used to determine how well a given map is registered to a region covered by other 
maps. This is similar in form to the Hausdorff distance [30], except that this considers the 
distance from one point to multiple point sets rather than the distance between two sets 
with multiple points each. 

To estimate the total surface error within bin j ,  the maximum value of the single map 
error needs to be calculated over all maps that have contributed points to j .  To do so, the 
set of maps contributing points to bin j can be defined as Fj. Note that Fj can be larger 
than set I; since it only requires contribution of points to bin j and not all of j's neighbors. 
If a set a points P is chosen, one at random for each map in F', one instance of the total 
map error for bin j can be written as 

Several instances of this measurement can be averaged to reduce the variance associated 
with picking the random points from each map. The motivation for the surface binning 
and random point selection is to reduce the computation while still generating an error 
estimate that shows the surface errors clearly. The diagram in Fig(5-5) gives an example of 
this map-to-map error measurement for a 2D slice showing the "thickness" of a composite 
point cloud for several maps that are not correctly registered. Several examples of this 
measurement calculated for the real terrain are shown in Fig(5-6). 



Map 1 
Map 2 
Map 3 

Figure 6-5: Map-to-map envr  example sketch. Thw ellustrates the calculation of the map- 
to-map error m equation 5.3. The w l o d  poznts represent members of individual maps and 
the vertical divisions ~epresent bins. Wathin each bin, a point is chosen at mndom fwm each 
map. The thin anvws indicate the closest pairs of all poznts from the other maps. The balded 
blue armws mdzcate the m&mum nis-registration e m r  within each bin. Also note that when 
datemining the closest points allowing the seawh outside of the immediate bin will avoid bin size 
related artifacts. The magenta a m w  zndicates how a wan& green4lue point would i n w m t l y  
be vsed if seamhing was only allowed k g d e  a given bin. Finally, note that the right most bin 
vsdh pairings daes not &ow any Map 3 (green) pair%ngs. This is because there am no Map 3 
points in  both sumundang bins. 

To convert the bin-wise error measurements into a scalar value for the whole map, the 
mean or median of the error over all bins can be calculated. The lower bound for the measure 
is related to the surface sampling density, as even perfectly aligned maps will have a sample 
to-sample distance. To try and remove this lower bound, and have an error measure that can 
approach zero, it is tempting to use the point-*plane distance as defined in (4.12) instead 
of the point-to-point distance. This would project the point-to-point distance onto a local 
surface normal and allow the error to go to zero where the surfaces are perfectly aligned. 
Experience, however, suggests that the difficulty in estimating surface normals for any given 
point will cause this to be a noisier measurement of the error. The improved performance 
of the ICP registration (Section 4.3.2) based on the preferenced sampling for points that 
have potentially better range accuracy, and consequently better surface normal estimates, 
is consistent with this obse~ation. As such the point-to-point error is used instead of the 
point-to-plane and the lower bound is noted. 

Using this measure of error the incremental change in total surface mis-registration c a n  
be monitored as sub-maps are created and relative pose measurements between the sub- 
maps are made. The surface error will increases as maps are added using the filtered EKF 
state estimate for the initial map positions. When a relative pose mewurement is made 
between two maps, the base positions of all the maps are adjusted by the update equations 
(311) If the measurement is correct, not a local minimum, the surface error should be 
reduced over all maps. An example of thii reduction in error is shown between figures 
56(c) and 5-6(d). 



(a) Start (b) New map in green 

(c) New map in green (d) Measurement to green - red 

5.3.2 Terrain consistency checking 

Recursive Kalman estimatms are known to diverge from a correct state estimate when 
biased or unmodeled measurements are incorporated [5]. For sub-mapping this can arise 
when the pairwise map registration returns a measurement corresponding to a local minima 
instead of the ideal terrain match. Divergence is generally undetectable from examination 
of the filter covariances directly. One passible check is to monitor whether the normalized 

for a particular relative pose measurement measurement stays within a 6 DOF X2 bound. 
Violating this bound could indicate that the measurement corresponds to an unlikely terrain 
match outside of reasonable state uncertainty bounds. However, satisfying the bound do= 
not imply a correct match because the measurement a,, could come from a nearby local 
minima and not the ideal match. 



As an alternative, a consistency check can be made using the mapto-map error to verify 
an improvement after a relative pose measurement is incorporated into the filter. TO do 
this, the median of the binned mapto-map error is calculated for a composite point cloud 
generated from both maps involved in the pairwise measurement AND all of their overlap 
ping neighbors. The Kalman update, equation (3.11), for the delayed state measurement 
is then performed and the median error for the point cloud generated using the updated 
sub-map poses is calculated. If error increases the measurement is rejected and the state 
is reverted to a copy stored prior to the measurement update. The increase in error would 
suggest that the measurement is incorrect, and using it requires the submaps to be moved 
in an inconsistent way. This simple check prevents the effects of a single mis-registration 
from propagating through the entire map. The pairwise measurement shown in Flg(5.3) 
would pass this test, as the surface error over all overlapping maps is reduced &er the 
measurement. 

In general the Kalman filter equations offer no guarantees with regard to the actual sur- 
face error. The filter covariances, which indicate the uncertainty in the sub-map locations, 
are only affected in two ways. Process noise in the vehicle model will increase the state 
covariance and any measurement, even an erroneous one, will decrease the state covariance. 
Thus, a decreasing covariance for the delayed state locations is not a sufficient condition 
for improving map accuracy. The consistency check described here is baaed on the only 
available information that is external to the filter itself. The drawbacks of this check are 
that it is expensive to compute and that it can be too permissive if the underlying terrain 
has a low level of features which generate error when mis-registered. 

It should be noted that the amount of surface error caused by a terrain mis-match is 
a function of the terrain itself. In very featured terrain registration errors a noticeable 
because any error in sub-map placement generates inconsistency. If the terrain has a low 
level of relief mis-registrations can be undetected. In the limiting case, submaps from a 
perfectly flat bottom can be arbitrarily placed without error. This terrain dependence is 
the primary reason all of the error comparisons used in the algorithm are relative. Defining 
fixed thresholds on the acceptable amounts of surface error is not generally feasible. 

5.3.3 Preliminary maps 

Two "standard" mapping methods to compare the proposed submapping algorithm against 
are, mapping using DR navigation and mapping using a Kalman filtered combination of 
vehicle velocity, attitude, depth and LBL measurements. The DR navigation alone is not 
ideal, due to the lack of ground referenced measurements, but is representative of what a 
robotic vehicle using today's most accurate commercially available navigation instruments 
is capable doing on its own. The images in Fig(5-7) show the submap layout and surface 
error for a survey using DR navigation only. The submaps were created so the mapto-map 
error metric could be used, but no relative pose measurements between the sub-maps were 
made. The overlap map, Fig(5-7(a)), shows the redundancy at the center of the survey 
where some sections of the bottom were imaged as many as ten times. The tracklines for 
this survey are those shown in Fig(5-3). 

The mapping error produced when LBL fixes are incorporated in the navigation esti- 
mation is shown in Fig(58(a)). This error map shows a clear improvement in comparison 



to the DR navigation and the error is primarily located around the sloping outskirts of the 
mount where the potential for large &registration errors is the highest. The tr~klines 
shown in Fig(58(b)) are consistent with the LBL positions. Prior to filtering numerous 
LBL outliers were removed by hand to prevent obviously erroneous fixes from being in- 
corporated into the filter. The LBL fixes where assigned covarianw of 0: = uz = lm. 
Similar surface error results are obtained using a causal filter and non-causal smoother [63] 
on the same data. The gridded version of the terrain created with this method is shown in 
Fig(5-ll(b)). A vertical slice through the terrain, which show the disparity between the 
individual sub-maps, is show in Fi(5-13(a)). 

(a) Surface error (b) Sub-map overlap 

Figure 5-7: DR nawigahon results. (a) The wlor coded stackzng depth of the wb-maps. (b] 
The map-to-map surface e m r  for the wmposite map cwted  using Dl$ namgation. Note that 
the e m n  are large where the stacking depth is also large. Thds rntdimtes that more overlapping 
covemge is leading diwctly to more inconsistent mapping. 



(a) Surface error (b) Filtered vehicle trajectory 

Figure 5-8: Results for LBL filtered nawgation. (a) The resulting map-to-map e m r  when 
LBL navigateon zs wed to genemte a map. Note that the e m r  i s  less than that shown in Fig(5- 
7(b)) for the DR mappng. The distributwn of e m r  is related to the generally circular shape of 
the TAG mound and located on the steeper terrain slopes (refer to Fzg(5-1)). (b) The estimated 
uehzcle path produced by the coma1 Kalman filter. The filtered tmjeetory zs alzgned wkth the LBL 
fizes suggestzng the drift associated vnth the DR navigation only has been removed 

5.4 Sub-mapping results 

The proposed sub-mapping algorithm will generate a network of constraints between the 
sub-map origins when applied to the same data as above, Fig(5-9). The links are proposed 
based on the intersection of sub-map borders (Section 3.5) and relative pose measurements 
are attempted according to the steps mentioned in Algorithm 3 in Section 3.5. As a result of 
these pairwise measurements the sub-map origin position uncertainty no longer grows steady 
along the survey path and is instead related to the link topology. Poses topologically farther 
from the start of the survey and less connected tend to show larger position uncertainty. 
This is not a definite statement because the calculated covariances of the individual pairwise 
measurements used during the filter updates vary from one pair to the next. The failed 
links shown in Fig(5-9) correspond to l i  that were proposed due to overlapping map 
borders but were not established because they failed the error reduction tests mentioned 
in Algorithm 3 or the incorporation of the measurement failed the consistency check in 
described in Section 5.3.2. 

The map-temap surface error for the composite point cloud is shown in Fig(5-10). 
The error has been significantly reduced from the filtered LBL map. Most importantly, 
error is distributed relatively uniformly across the surface and in general not proportional 
to the number of overlapping sub-maps as seen in Fig(5-7(a)). Surface error growth in 
regions of high overlap would indicate repeatedly poor registration. The two areas of the 
error remaining in the map can be related to two specific submaps within which the ROV 



Figure 5-9: Sub-mapping pose network. Thw pose netW0rk was established by the sub-mapping 
algorathm. Nodes indicate the location of the sub-map ongzns. Blue lmks indicate consecutiue 
poses in  time. Green links indicate where relative pose meammments were made. Magenta link8 
indicate li* that were tvied but not establGhed. The uncertainty ellzpses have been scaled in  
size by 8 times for visibility. Note that the poses fall into alignment with the LBL fi loeations 
even though thk algorithm did not utilued LBL measurements. This survey wllsisted of 62 
sub-maps and 92 established links. 

was "yanked" by the tether and the constant velocity assumption was intensely violated. 
The terrain within these maps is distorted in an unmodeled way and will always present 
a registration problem. The important thing to note however, is that the error caused by 
these maps remains localized and does not propagate through the entire composite map. 

A gridded version of the terrain created using the sub-mapping approach is shown in 
Fig(&ll(b)). This terrain maps shows considerably more detail than the LBL constructed 
map. As an example of the detail, a close up view of an Ocean Drilling Program reentry 
cone is show in Fig(5-12). This feature can be clearly seen in the submapped terrain and 
is completely obscured in the LBL map. The slices through the terrain shown in Fig(5-13) 
also highlight the more consistent nature of the sub-mapped terrain. 

Relation to LBL errors 

A closer examination of Fig(5-9) reveals that the submap origins align with nearby LBL 
fixes when the pose network is shifted to align with a single LBL fix at  the start of the 
survey. It is worth noting however, that the difference in map accuracy between the map 
created using LBL measurements and the sub-mapping map suggests that proximity to 
the LBL fixes, as in Fi(5-$(a)), does not gumantee surface consistency. This observation 
can be discussed with regard to both composite map consistency and the accuracy of the 
sub-map pose network locations. 



Figwe 5-10: The map-to-map surface ermr for Me sub-mapped t e m n  is s i ~ n z f i ~ n U y  redveed 
corn@ to the DR and LBL f i l ted  map emrs .  The two small figions of e m  that &ts can. 
be attributed to inkmd&to&ons in two maps that w m  a&&& by a "yank' of the ROV by its 
tether* Maps with a n t e d  dcSeo&on will always mis-register iunth dl or part of the w m u n d h g  
rnBps. 

The improved surface accutacy with submapping suggests that the simplistic Gaussian 
modeling of LBL position fix errors, used in the Kalman filter to incorporate the LBL data, 
is not sullident. The non-Gaussian nature of the LBL errors [12,63,145] more likely requires 
a richer error treatment if the iixes sse to be used in an automated filter. The improvement 
in map quality should be more precbly stated as an improvement to LBL mapping, when 
LBL measurements are handled with Gaussian ~sumptions, Used in this manner the LBL 
measurements are not helping the terrain consistency and are instead causing surface errors. 

With regard to map positioning, the improvement in map quality does not directly 
imply that the submapping method will produce better position estimates of the submap 
origins than the LBL measurements. The errors cawdated with LBL navigation will vary 
across a s q  area, but remain bounded. The submapping pcse network is relative, 
and positicm uncertainty for the sub-map origins will grow as an unbound4 function of 
topological d i s a c e  away from any point in the network assumed to be b o r n .  Theae two 
types of error are different and make a direct comparimn between the wcuraey of the rmb- 
map origins and the LBL position fixes difiicult. For a pose network large enough there will 
always exist some distance ac rw the network where the positioning errors of the mbmaps 
origins relative to eacb other will exceed the LBL positioning error. 

Survey density 

The trmkbes used for s w e y  1 contain a significant mount of overlap and d o w  a dense 
sub-map p w  network to be created. To teat the submapping concept for a more typical 
survey pattern with less overlap the survey can be reprocessed with some of the mbmaps 



(a) Const~ucted using EKF sub-mapping 

(b) Constructed using sub-maps 

Figure 5-11: Cornpawon between the sub-map created t m i n  and the LBL created t e m i ~  (a) 
T e m i n  created with LBL filtered nav. (b) firman produced by sd-mapping. The sub-napped 
t e d n  shows significantly more detail and less scan pattern adifact. Note that the two areas 
in  (b) that do show Borne pattering (circled), correspond to areas that show error in Fig(5-10). 
The a m w  zn (b) indacates the location of an ODP re-entry cone. 



(b) Photo of ODP cone 

Figure 6 1 2 :  Close up of mapping detail. (a) Temin map showing the hathymetry mated 
for the 4 m dtametw Ocean Drilling Pmgmm re-entry cone. (I?) Re-entry cone photographed by 
JASON'S still camem. Note that the concave shape of the cone is captured in ~ hathymety. 

(a) XZ slice through the LBL map 

(b) XZ slice through the sub-map created map 

Figure 613: Sleces wl the XZ phne to illustrate mb-registmtion. {a) Stice thmugh the LBL 
created temin map, with the points color coded bgl sub-map number. Note the "gapsJ' between 
maps indicating regiatnrtdon emr .  (b) Slice thmugh the sub-map created terrain. The maps 
more clearly define a single surface and the main peok on the TAG mound is more clearly 
represented. 



prevented from accepting links. The plots in Fig(5-14) show the results when the sub-maps 
from every other line are forbidden from acquiring links. The resulting surface error plots 
still show a significant improvement over the DR and LBL mapping cases. It is important 
to note that since fewer maps are used to show the error in Fig(5-14(c)) there are less 
opportunities to create surface error. To compensate for this all of the sub-maps can be 
included in the map and the surface error can be directly compared to the previous maps 
with the same amount of data. This error is shown in Fig(5-14(d)). The similar amount of 
error between the full survey and the reduced survey suggests that a small number of links 
will help reduce the DR related errors and produce an improved map. The data for survey 
2, presented in Appendix D, shows another survey topology that is also more typical of a 
standard vehicle-based survey. 

5.5 Robustness to common errors 

Automated processing of vehicle navigation data is often complicated by unknown offsets 
between the vehicle body frame and the navigation sensors, and unmodeled sensor biases. 
This section describes several typical sensor offsets that cause problems when processing 
navigation data and shows how they will affect the sub-mapping algorithm. Although the 
sensor offsets can be measured approximately, errors in their knowledge will create differ- 
ences between the survey pattern the vehicle actually flew under closed loop control and the 
pattern recreated in post processing by examination of the logged navigation data. For this 
discussion a survey can be considered as a sequence of tracklines each specified by a head- 
ing, speed, and starting position. If external ground referenced navigation, such as LBL, is 
available position will have a definite origin and orientation. If ground-based measurements 
are not, DR navigation is the only option and position needs to be defined relative to an 
arbitrarily chosen origin. Without loss of generality, the position and orientation of this 
origin can be made coincident with the vehicle body frame pose at some time, as measured 
using the onboard navigation sensors. The orientation of this frame will be determined 
with the heading measurement provided by the heading sensor. It can also be assumed that 
the ground relative velocity measurements, from the DVL, will correspond to the velocities 
measured along the vehicle body frame axes. Fig(5-15(a)) shows a sketch of a vehicle per- 
forming a four leg survey with the heading and velocity sensors correctly oriented to the 
vehicle and no unknown biases. 

When an unknown static offset affects the heading measurement, Fig(5-15(b)), the ac- 
tual vehicle path over the bottom will differ from what the navigation sensors would indicate. 
The recorded data would suggest the vehicle also flew the path shown in Fig(5-15(a)), the 
measured heading was identical for each leg and forward motion occurred purely in surge 
for both cases. The actual pattern is entirely self consistent, but the vehicle has surveyed a 
different part of the seafloor. Because the sub-mapping algorithm is entirely relative, this 
error between the desired survey and the actual survey is unobservable. 

As shown in Fig(5-15(c)) a static DVL offset will shear the mapped bathyrnetry swath 
but still created a square trackline crossing. As such the error between reality and the 
recorded trajectory is not obsenrable from the crossing location and only observable in the 
terrain distortion occurring when the sonar data is mapped using the navigation data in 
post processing, Fig(5-16). This type of distortion will potentially affect the registration 
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(a) Sub-map overlap (b) Poae network 

(c) Surface error for data removed (d) Surface error with all data 

Figure 5-14: Results for survey 1 wath the sub-maps from every other line prevented from 
lading to the pose network. (a) The overlap plot for the sub-maps allowed to link. The amount 
of overlap ZP reduced compared to the original survey, Fzg(5-?(a)). (b) The pose network created 
by the sub-mappzng algorithm has fewer links and slightly larger ermr covariance for sub-map 
locations. (c) The map-to-map surface error for the reduced number of sub-maps. (d)  The 
mappzng error when the links and navigation in @) are used with all of the mapping data. Thw 
error zs still reduced signzficantly from the LBL mapping case, Fig@-ll(a)) 



of sub-maps, as once created the sub-maps are considered rigid. Although some work on 
non-rigid registration has been done [19,59], attempting to parameterize this distortion and 
account for it has not been attempted here. 

When the heading source has deviation, or heading dependent bias, the crossing points 
of the tracklines will change Fig(5-15(d)). In this case also, the recorded navigation data 
will suggest the vehicle performed the survey as in Fig(5-15(a)). Since the actual crossing 
point over the previous t r u n e  will show inconsistency, this error is observable in the 
sub-mapping context and can be corrected for. This is illustrated by the test shown in 
Fig(5-17). The heading data for survey 1 was corrupted intentionally prior to the running 
the algorithm. The corrupted tracklines show significant error with respect to the LBL 
position fixes. As shown in Fig(5-17(b)) the sub-mapping was able to compensate for the 
error and create a network consistent with the LBL. The mapping error, Fig(5-17(c)), 
is still comparable to the unbiased sub-mapping case and only shows one high error area 
related to the final maps which were not linked back to earlier sub-maps. It should be noted 
however that although the effect of the bias has been largely removed, it was not modeled 
and is in some sense a pleasant but undeserving result. The amount of unmodeled bias that 
can be removed by the sub-mapping EKF algorithm is a function of the process noise and 
measurement noise used in the model. A large vehicle process noise will result in the filter 
utilizing the terrain matches heavily at the expense of filtering the navigation sensor noise. 



(a) Base case (b) Static heading bias 

(0 )  Static DVL 0% bias (d) Heading dependent 
heading bias 

Figure 515:  Ezample vehicle tmjectories aflected by heading and DVL offset e m r .  (a) A 
sample four leg path driven by a vehecle (gray boz) with a heading sensor (d arrow) and DVL 
(black a m )  mounted correctly on the vehscle. The overlapping sonar swath is blue. The local- 
level orientatzon zs coincident with the heading sensor at the start. The direction of motion is 
detemaned by the dimtion of the DVL a m w ,  as would be for an ROV or AUV in closed loop 
control with a commanded surge velocity and zero commanded sway. The vehicle orientation is 
defined by the heading sensor a m w .  (b) The actual bottom track the vehscle would produce wdh 
a statac heading offset and the identical commanded path as (a). Note that measured vehaele 
navzgation data wodd suggest the vehicle flew an identical path as (a). (c) Actual vehiele path 
for a statsc DVL offset. The napped swath as now dwtorted by a shear. (d) The vehicle path 
for a headeng dependent heading bias. The swath remains square to the vehicle, but the crossing 
paint is in a differed location. 



(a) Survey path over bottom ob- 
jects 

(b) Rscon- 
strueted map 
from navigation 
data 

Figure 5-1B: E@xt of bias on the mapped tewuin. (a) Actual vehrcle trajectory over objects 
for an DVL off& ermr, the same path as in Fig(5-15(~]). The objects @ r o m  wzth gray 
square) are mapped with two crossing ngcklines. (b)  The map created from the nadgligntion 
data. The navighon suggests the vehicle perfbnned the survey as zn Fig(5-15(a)). The objects 
appear distorted in  the map. The grayed objects am from the overlapphg pass and are distorted 
dmrently than the objects from the first pass. 



(a) Heading dependent bias trajectory 

(c) Map error 

Figure 517: R e d t s  for simulated heading dependent bias. (a) DR tmcklenes when a heading 
dependent bias of ZOws($ - $) as added to the act& laead~ng. (b) The pose network developed 
by the sub-mappang dgorithm. The poses align with the LBL jkes again and the effect of the 
heading bias has bwn moved. (c) The msulting map error. The swface e m r  and sub-map 
locations are oompamble to the an-biased case. The one selection of hegh e m r  is the result of 
the last few maps (large ellipses in (b)) not hang linked back to the previous maps. 



5.6 Additional map refinements 

To &eve an additional reduction in total map error the final submap poses extracted from 
the state vector of the delayed state filter can be used as an initial guess for a final pose 
optimization. This step can be using counter the effect of unmodeled biases and linearization 
errors that have been incorporated into the EKF solution. Many SLAM techniques [15,41, 
49,831 use the formulation of a constraint network to estimate global poses from strictly 
relative measurements. Although in implementation the solutions vary, the problem is 
commonly pased as an optimization of a vector valued cost function which relates the 
individual pose locations to a measure of disparity across all of the available constraints. 
A source of difficulty for these methods is the creation of a good initial guess for the pose 
locations to start the optimization. For the problem at hand an initial guess is provided 
directly from the final delayed state vector %w and the constraints are the pairwise terrain 
registration measurements z*, already created for the proposed links. 

For each link a disparity transform can be written using the composition sequence 

that loops from the local level origin, through the relative pose constraint and back to 
the origin. If all the relative pose constraints z,, are satisfied exactly by the location of 
map origins i and j in the local level frame e,, will be the identity transform. If not e,,, 
represents a small displacement required to close the pose loop. The pose optimization 
problem to minimize the size the of the disparity transforma over all sub-map locations is 
formulated for M links as 

where I = {x,,, ... ,x,,) is the set of N submap origin positions and % ,,,.,,, is the 
uncertainty associated with each relative pose messurement. The particular representation 
of the disparity transform will affect the solution of this optimization problem. Pennec [I091 
has suggested the axis angle representation of the error transform. Standard optimization 
packages, such as Matlab's optimization toolbox, can readily handle equations in the form 
of (5.6). 

The solution obtained from (5.6) can be used to reconstruct a refined composite terrain 
map which shows reduced surface error, Fig(5-18). It should be noted however that, this 
solution does not penalize the actual surface error and can potentially result in pose refine- 
ment at the expense of increased surface error. To combat this (5.6) can be augmented with 
addition terms to penalize deviations between the pose variables and measurements made 
directly with navigation sensors at times closest to when the sub-map origins were originally 
defined. Of the 6 degrees of freedom arsociated with each origin, x and y translation will 
be the most uncertain and can be left unpenaliied. Pitch, roll, heading and depth however 
are all measured with respect to stable references and can be more heavily penitlized. The 



new cost function takes the form 

/ M  N \ 

where Wi is the navigation weighting factor and z ,  is the collection of navigation measure 
ments associated with pose x,,. The weighting can be chosen similar to the measurement 
covariances of the navigation sensors themselves. It should be noted however, that in using 
(5.7) the solution can be reconstrained to navigation sensor readings that were biased and 
the sub-mapping algorithm compensated for. Obtaining improvement with either of the 
these cost functions has required repeated iteration on the weightings and in general should 
not be considered guaranteed because the surface error is not directly penalized. 

5.7 Summary 

The results from a real world data set presented in this chapter show the fully automated 
sub-mapping method can significantly improve terrain mapping consistency when compared 
to more standard mapping methods using DR and LBL navigation. To show this a point 
based surface error metric was defined to indicate the total amount of mis-registration within 
the complete terrain map created by the union of individual submaps. The reduction of this 
error indicates consistency between the mapping data and the navigation data. The sub- 
mapping algorithm was able to reduce the surface error when applied to both test surveys, 
and showed robustness to a common heading deviation error. A mapping consistency check 
based on surface error was also defined. This check adds robustness to the algorithm and 
prevents errors associated with local minima in the terrain registration step from degrading 
the entire map. Lastly, two pose refinement steps were presented to adjust the final sub-map 
positions and potentially reduce the surface error further. 



Map to map surface enor 

(a) Maps error using EKF poses 

Map to map surface error - 

(b) M a p  error using optimized poses 



Chapter 6 

Conclusions 

6.1 Introduction 

This thesis has presented a methodology for reducing the navigation related errors that 
currently limit the accuracy of the vehicle-based bathymetric mapping. The proposed ap- 
proach has been motivated by the simple observation that, the range accuracy of a sonar 
measurement relative to the vehicle, will in general be better than the accuracy of the ve- 
hicle's own position estimate. With this in mind, the submapping algorithm was designed 
to utilize the accurate short term navigation provided by high quality navigation sensors 
and break the entire mapping problem into smaller sections with limited individual error. 
The submapping concept has proven to be an effective way of creating addition constraints 
which reduce the corrupting affects of large scale vehicle positioning errors. The sub-maps 
also allow for the construction and evaluation of an entire bathymetric map. 

6.2 Summary 

The individual aspects of this thesis can be summarized as follows. 

a Sonar Processing The sonar processing as described in Chapter 2 was designed to 
automatically process multibeam data into individual beam ranges with an accom- 
panying "pulse duration" measurement. The simple second moment measurement of 
returned pulse duration was shown to correlate well with the beam angle of incidence 
to the seafioor, and is used as an indicator of range measurement accuracy. 

Delayed state filter A delayed state extended Kalman filter was used to both filter 
vehicle navigation data and archive previously visited vehicle positions. The delayed 
state vector allows relative position measurements based on registered terrain maps 
to be incorporated into the vehicle position estimation. This allows the navigation to 
be constrained by the mapping data itself. 

Sub-map creation Small bathymetric sub-maps were created using short term DR 
navigation. It was shown that filter covariances can be used to estimate the uncer- 
tainty of the mapping data within the sub-maps. Tests were presented to monitor the 
geometric properties of the submaps as they are created. 



Sub-map registration A procedure was presented to pairwise register bathymetric 
sub-maps using a two dimensional correlation and a six DOF point cloud registration. 
It was shown that a point-to-plane ICP will provide better convergence properties 
than the point-to-point method when applied to bathyrnetric data. A point selec- 
tion algorithm based on uniform normal space sampling and returned acoustic pulse 
duration was shown to improve convergence of the point-to-plane method. 

Complete map evaluation A point based error metric was developed to evaluate 
to distribution of registration error in the composite map created from the union 
of individual sub-maps. Using this measure of surface error a consistency test was 
developed to indicate incorrect sub-map registrations during the filtering process. 

Experimental results The completely automatic processing of a deep water data 
set was presented. The sub-mapping method was able to produce more accurate 
maps than can be created using DR navigation alone or LBL filtered navigation. The 
proposed sub-mapping algorithm was also shown to compensate for heading dependent 
heading sensor bias. 

6.3 Limitations & Future Work 

6.3.1 Ground truth 

The results presented in this thesis have been judged on the basis of self consistency. The 
point based multiple map error metric is able to highlight inconsistencies, but an overall 
ground truth is still missing. Additional experimental work will be needed to resolve some 
remaining issues regarding the true accuracy of the individual maps and the accuracy of 
the pairwise registration. 

6.3.2 Navigation 

SLAM framework 

The implementation of the delayed state EKF has proved convenient for navigation fil- 
tering and easy manipulation of uncertainty estimates. This solution however does not 
scale well due to the O(n2) update computation. The adoption of another SLAM solu- 
tion methodology with more desirable computational properties is an necessary extension. 
Potential avenues would include information form solutions [37] and constraint based ap- 
proaches [15] [41]. For a constraint based approach, a fixed state size Kalman estimator 
could be used to create the individual sub-maps from the vehicle navigation data. A more 
computation attractive framework would allow for a real-time extension of the sub-mapping 
method. The current implementation is strictly casual, but limited to less than 100 sub- 
maps. More amiable computation would also allow for a multi-scale implementation of the 
sub-map algorithm where maps are broken into smaller pieces with new local origins as the 
estimate of there position becomes more confident. 



LBL characterization 

Characterizing the errors associated with LBL navigation is difiicult, as LBL is typically the 
only ground referenced measurement available in typical A W  and ROV deployment sce- 
narios. The presented terrain registration should provide the ability to ground reference the 
vehicle position over the coarse of a survey and allow meaningful LBL measurement resid- 
uals to be calculated. Thii could shed light on some of the pe~sistent and time dependent 
(tide related) errors in LBL navigation. 

6.3.3 Terrain registration 

Section 5.6 presented a method for potentially reducing the surface error further by ap- 
plying a non-linear optimization over the pairwise constraints developed by the sub-map 
registration. The word potentially is used because this optimization does not penalize sur- 
face error directly. In fact, this refinement can be framed as the more general and unsolved 
problem of multi-view point cloud alignment. Although many solutions have been pro- 
posed [7,9,14,112,119,136], non have developed a computationally efficient method for 
directly penalizing surface error. Unlike the similar problem of bundle adjustment in com- 
puter vision [52], where a distance measure between specific features can be defined, the 
distance between point clouds is not easily obtained. The proposed sub-mapping algorithm 
has converted bathymetric mapping to multi-view registration. However, for sub-maps cre- 
ated in this manner the problem is further complicated by errors internal to the sub-maps 
themselves. This is not generally addressed in multi-view registration and a straight forward 
way to characterize this error is not immediately apparent. 

6.3.4 Acoustic modeling 

The acoustic modehg used in this thesis has been intentionally simple. The returned pulse 
duration measure was created as a proxy for an individual return's range accuracy. The 
Gaussian assumptions for beam width were made for computational simplicity. A more 
detailed investigation into the affects of beam width and rough surface scattering should 
produce more accurate estimates of range uncertainty. The use of "point cloudsn is also an 
approximation for a finite beam width sensor. The point cloud approximation and the more 
sophisticated error model may be better handled using a particle sampled representation [77] 
to generate a denser point cloud with statistics consistent with the true nature of the errors. 





Appendix A 

Relative pose transformations 

The following sections summarize the notation used to represent the coordinate frame re- 
lationships used in this thesis. 

A . l  Basic definitions 

Vectors written in the form 
xij = [x, Y, z ,  0, @,$IT 

describe the spatial relationship of reference frame j with respect to frame i ,  Fig(A-1). 
The parameters [z, y, z] determine the vector 'tij = [z, y, zIT that points from the origin of 
frame i to the origin of frame j as expressed in coordinate frame i. The angular parameters 
[O, 4, $1 represent the sequence of rotations about the z axis, then y' axis and finally x" axis 
that take the orientation of frame i to the orientation of frame j .  Although this notation 
follows that used by Smith [126], the rotation sequence differs and follows the convention 
used by Fossen [40]. As a result the direct application of Smith's detailed equations requires 
a re-ordering of the angular sequence. 

Figure A-1: Basic sketch of the coordinate fmmes. 

These parameters can be written as a transformation to express any point jp, originally 
expressed in frame j ,  as the point 5 expressed in frame i .  The transformation operator j T 



is applied as 

and requires the rotation matrix ;R. This matrix is written in terms of the individual 
rotations as, 

There is a common relationship between with pose vector components, the translation vector 
and rotation matrix, and transform operator 

where any one can be determined from the others. 
To accommodate sub-maps the sets of points {mi[l], mi [2], . . . , mi [n]} contained in map 

Mi are expressed in the base reference frame for map Mi. To move these points to a new 
reference frame the transform 3 T can be applied to map Mi as 

After the transform operation the individual points can be written as {jmi [k], jmi[2], . . . , jmi [n]). 

A.2 Additional relations 

The composition, or sequential linking, of two reference frame relations will produce a single 
relation. To specify this relation the head-to-tail operation 

is used. The composition has removed the intermediary frame j .  The calculation of the 
parameters for xik is accomplished by 

The individual parameters for roll, pitch and heading [B, 4, $]ik can be solved for using the 
elements of i R  [126]. 



The Jacobian of this relationship with respect to the individual parameters is calculated 
as 

The Jacobian is used to propagate a first order estimate of the relationship covariance when 
the individual parameters are considered random variables with their own covariance and 
cross covariance estimates. 

A.2.2 Inverse 

The inverse operation can be used to change the direction of a pose relation. This is defined 
as 

x .. " Gx.. 3 % -  13. (A.lO) 

The individual parameters are calcnlated from 

The Jacobian relation 

can then be used to convert the covariance estimate accordingly. 

Lastly, the tail-to-tail relation can be used to derive the intermediary relation between two 
poses relations 

The parameters for xjk can be calculated from 

T i  jtjk = + j~ tik 

{R = ( ;R)~("~R).  



The Jacobian for this relation is calculated as 



Appendix B 

3D Point set matching 

B. 1 Surface gridding 

Surface gridding can be considered broadly as any process which takes a point cloud of 
non-uniformly spaced surface samples and generates samples at  the nodal points of a pre- 
determined grid. For the figures presented in this thesis a Gaussian weighted gridding is 
used that assumes the terrain can be described as a height map. This method weights 
the contributions of the point samples to the depth at the grid nodes based on a radially 
symmetric Gaussian function, Fig(B-1). The parameters of the Gaussian dictate how far 
the influence of a single point will spread. Typical values for these parameters create a 
Gaussian kernel with a standard deviation proportional to the sonar foot print size on the 
bottom. Although more sophisticated surface gridding methods exist this simple method 
has proven sufficient to create grids for individual submaps used in the registration process 
and for displaying the complete composite maps. The extension to true 3D gridding can 
be made using mesh generation methods that consider the direction the surface is image 
from [31,62]. Notationally, the gridded version of a submap point cloud M ,  is represented 
by Mi. 

B.2 PCA surface normal estimation 

Normal estimation 

Given a set of the 3D points that describe a surface, a robust surface normal estimation can 
be achieved using a principal component analysis over localized groupings of the points. This 
method is used as a standard in many surface registration and representation techniques 
[56,66,91,108]. For a given sample point p* in a map, a set of points P = {pl, . . . , p,) 
located within a predefined spherical radius of p* is created. A local covariance matrix can 
can be calculated as: 



Figure B-1: Surface gndding sketches. (a) Points contributing $0 a grid node are selected to 
be i n ~ d e  a specified d i w  h r n  the node. (b) A Gausscan kenel weights the indiendwl point 
contributions to the node depth. 

where, the centroid of the point set p is determined by 

Let E = [vl, ~2~ v3] be the matrix of Eigen vectors and {A1, X2, X3) the =gen values of C. 
If A1 < Xz < XQ are the Eigen vectors of C and span W3, VI is normal to the surface tangent 
plane spanned by vz and vs at pt.  This defines the surface normal estimate n* = vl and 
indicates the direction of minimal projected residual variance to the tangent plane. 

When an entire map is considered, additional tests can be used to avoid spurious normals 
at the map edges or in regions of low sample density. In this application checks are made 
for a m i n i  number of points contained within the sphere. If too few points surround 
p* the surface normal is not calculated and p* is left out of any subsequent operations that 
require a surface to be defined. A check can also be made on the condition number of C. 
As the ratios 9 and % approach 1, the point set 7J more likely describes a spherical or 
cylindrical collection of points rather that a planar surface. In the cams where either ratio 
is below a preset threshold, typically 0(10), the normal at p* is also left undehed. A more 
detailed analysis on the effect of sample density and surface curvature has be shown by 
Mitra [91]. Due to the directional ambiguity associated with vl, additional steps can be 
taken to ensure normal direction consistency among neighbors [56]. 



Surface error 

The local surface variance can also be estimated using the principal components [108]. The 
Eigen values of C equal the sum of the squared projections along the principal directions, 
ie ., 

Thus the variance in the jth principal directions is 

and can be used as a measure of the surface error in a region surrounding point pi. 

B.3 Point sampling methods 

Rusinkiewicz [I161 suggests that a surface normal based sampling approach can be used 
to down sample a point cloud prior registration. This is accomplished by discretizing the 
space of surface normal directions into bins and sampling uniformly amongst the bins to 
obtain the down sampled point set. As a robustness measure for sonar data registration, a 
step to sort the points in each bin by returned acoustic pulse duration can be added to the 
procedure detailed in Algorithm 4. 

Algorithm 4 Normal based sampling This can he done to sclcc:t M points from a set 
size N. 

I: For each point in P determine a surface normal using the PCA method, Appendix B.2. 
2: Define normal space bins, Bzv, over the ranges [-.rr 5 L, 5 T] & [-T 5 L, 5 TI. 
3: For each point determine the angles between the normal vector and the x and y axes. 
4: Sort all points with defined normals into the bins. 
5: if Using pulse duration sampling then 
6: Order points in all bins by increasing returned duration. 
7: else 
8: Randomize the ordering of points within each bin. 
9: end if 

10: Let M be the number of remaining points to be selected and n be the number of 
populated bins. 

11: while M > n do 
12: Select the first point from each populated bin. 
13: S e t M = M - n  
14: Find the new n value 
15: end while 
16: Select M points, by choosing the first point from the remaining n bins randomly. 





Appendix C 

Sonar sensor offset refinement 

Placing the sonar ranges in space to build a map requires knowledge of the vehicle-to- 
sonar offset x,, shown in Fig(3-2). The sensor offset can be physically measured with 
limited precision, but will usually require an additional correction to be determined by an 
investigation of the mapping data. Errors in the offset will causes range points to be mapped 
inconsistently even when the vehicle position is known precisely. The basic idea is to find 
the offset vector that minimizes a measurement of the surface error for a region mapped 
from several vantage points where the vehicle navigation is well known. A methodology 
for doing this is given by Singh [121,122]. Here, the mapto-map error metric developed in 
Section 5.3.1 is used in a similar manner to refine the hand measured estimate of x,,. 

A short length of vehicle trajectory which contains the vehicle flying a U-turn is taken 
from the TAG data set, as described in Chapter 5. Over this short section of trackline 
the vehicle navigation is assumed to be exact and all the error in the mapped surface is 
attributed to error in the sensor offset. Without precise position measurements, as used by 
Singh, the next most reasonable step is to select a short section of DR navigated trackline 
that has some small amount of error, Fig(C-1). For this section of trackline the terrain on 
the interior of the U-turn is imaged by the sonar three different times. 

The optimal sensor offset will minimize the binned composite surface error over the 
multiply mapped region. Assuming that x,, is parameterized with three translations and 
three rotations, x,, = [t,, t y ,  t,, 0, q3, $1, the minimization is written as 

where, T j  = F3 = { M I ,  Mz ,  M Q }  are the overlapping maps and M3(Fj, T j )  is the mapto- 
map error for a single bin in the common area described in Section 5.3.1. Fig(C-2) shows a 
comparison of the mapto-map error over the common region for two different values of the 
roll offset. Of the angular offsets, roll will affect the surface error the most significantly [122]. 
Equation C.l can be solved numerically to yield the final set of offset parameters. 

There a multiple choices for the surface error metric used in ((2.1). The sum over the 
bin-wise variances to fitted planes, described in Appendix B.2, and the sum of bin-wise 
variance in the z direction can also be used. These would both be computed after the 



Figure GI: Three seA-maps are m t e d f i o m  the U-turn data. The map 
to match the vehicle posi~on track in [E, y] for the three sectdons of the U. 

(a) Roll offsd 2.S0 (b) Roll ofhsetg so 

Figure C-2: roll offset8 will change the amowat of 5wf~ice emr in the werlapfing 
rigson. These plob were made wing 1.6mbinning. 

maps {MI, Mz,  M 3 )  hwe been merged into a single composite point cloud. The plots 
in Fig(C-J) show the change in all three surface error metrics as a function of the roll, 
pitch and heading o h t s .  The roll and pitch offsets show a clear minimum in error. The 
heading offset, Fig(O-3(c)), is the most diacult, to estimate since the surface variance does 
not cbange significantly when the offset is varied. For rtlI three offset angles the mpto-map 
error metsic indicates the change in surface error ss well or better than the fitted plane error 
or a variance error. 



(b) Pitch 

Figure C-3: Van'ations in surface m r  for the vehicle-to-sonar 77311, pitch and headins of- 
sek. These images show haw the di$aent auifaee e m r  calsdatiim methods am able to captwe 
the change in swfme e m 7 .  Roll (a) and pitch @) show clear r n t n i m m  at pal.ticulear a f s t  
values while heading (4 is less clear. The daffmnt e m r  me8821rxment have BB normalized for 
comparison. 





Appendix D 

TAG survey 2 

The results for the second TAG survey are shown here. The wond survey aras completed 
with the vehicle flying at a higher altitude and with wider spaced tracklines. The algorithm 
parameters used to process this data set were identical to those used to process s m y  
1. Qualitatively similar results were obtained. The sub-mapping algorithm was able to 
create a pose network and produce a terrain map with less surf- error than both DR 
navirration alone and LBL filtered navkation, FidD-1) shows the tracklioes and thegowing 
uncertainty ellipses for 

- >  . 
the DR navigation. 

Estimated vehkle MhctMv 

Figure D-1: Dead reckoning only tmcklines for the second survey shown with LBL &es and 
gmwzng 99?&' uneertaWy dltppses. Note that the nor-thern ends of the lines ahgn with the 
LBL fies while the southern ends of the lines do not. This suggests there could be a locateon 
dependent bias in the LBL &es. 



The surface error for the DR navigated map is shown in Fig(D-2(a)). The overall level 
of error is less than that for survey 1. A difference in the surfme error should be expected. 
The amount of detectable surface error is a function of both the navigation errors and the 
underlying terrain itself. The actual terrain for survey 2 is shown in Fig(D-4). The sub-map 
overlap plot in Fig(D-2(b)) shows that the surface sampling for this s w e y  is less redundant 
than survey 1. 

Map to map rurhx ermr ........................................... 

(a) Mapt-map surface err01 (b) Submap overlap 

Figure D-2: DR nawgatwn wsults for survey 2. (a) The map-to-map surface ermr using the 
DR navigation s h o w  in F$g(D-1). (bJ The total sub-map overlap. 



The surface error from the sub-mapped terrain and the pose network for thii survey are 
shown in Fig/D-3). The surface error is reduced from that shown in Fig{D-2(a)). &, the 
surface error is more uniformly distributed across the terrain and does not show an increase 
in the neighborhood of the crossing trackline as visible in Fi(D-2(a)). The pose network 
shows a network dependent error growth instead of a time dependent growth. It can be 
noticed that even after submapping the southern sub-map origies still do not align with 
the LBL fixes. This further suggests that the LBL is biased in this region of the mvey  
area. 

(a) Surface error after sub-mapping (b) Pose network 

Figure D-3; Survey 2 surface error after sub-mappang. (a) The surface e m r  for the composite 
map created w$th the sub-mapping algoribhn. (b) The pose network and final sub-map origzn 
couarianees. The time dependent growth of the pose ucertainties lw been eliPninated and the 
error Ls now network dependent. 

The terrain map for survey 2 are shown in Fig(D-4). For this survey the difference 
between the terrain maps is difficult to detect. This diEcultly in apparent accuracy speaks 
to the utility of the mapto-map error for indicating the map regions with errors that would 
otherwise be unknown. 



atw - 

w- 

m-- - 

(a) DR ter~ain 

(b) Sub-mapping terrain 

Figure D-4: The gridded terrain fw s w e y  2. (a) Tenain cwted from the DR navigation. 
(b) Tbrroin created from the mb-mapping dgas'thm, 
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