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Abstract

The effect of rotation on the propagation of internal solitary waves is examined. Wave evolution

is followed using a new rotating extension of a fully-nonlinear, weakly nonhydrostatic theory for

waves in a two-layer system. When a solitary wave solution of the non-rotating equations is used

as the initial condition the wave initially decays by radiation of longer inertia-gravity waves. The

radiated inertia-gravity wave always steepens, leading to the formation a secondary solitary-like

wave. This decay and re-emergence process then repeats. Eventually a nearly localized wavepacket

emerges. It consists of a longwave envelope and shorter, faster solitary-like waves that propagate

through the envelope. The radiation from this mature state is very weak, leading to a robust,

long-lived structure that may contain as much as 50% of the energy in the initial solitary wave.

Interacting packets may either pass through one another, or merge to form a longer packet. The

packets appear to be modulated, fully-nonlinear versions of the steadily translating quasi-cnoidal

waves.
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I. INTRODUCTION

Long nonlinear internal solitary waves have received much attention over the last several

decades due to the both in situ and remote sensing evidence for their common occurrence

in coastal and marginal seas. During the same period, there have been great advances

in understanding the dynamics of these waves. The canonical model for describing their

dynamics is Korteweg-de Vries (KdV) theory in which a balance between weak nonlinearity,

represented by α = a/hs � 1, and weak nonhydrostatic dispersion, β = (hs/l)
2 = O(α),

gives rise to the solitary waves. Here a is a wave amplitude scale, hs is a depth scale, and l is

a wave lengthscale. KdV models with extensions to include bottom topography, dissipation,

mean flows, and other effects have been applied to oceanographic and similar atmospheric

observations with generally good results. The phenomenology, if not always the precise

quantitative characteristics, is captured by the KdV class of theories (see reviews1,2).

One effect that has received somewhat less attention is that of the earth’s rotation.

This is because that while the waves are long with respect to the depth, they are still short

compared to the internal deformation radius such that γ = l/LR � 1. Here LR = c0/f is the

deformation radius, c0 is the linear long wave phase speed, and f is the Coriolis frequency.

As a consequence, rotational effects are frequently ignored. However, if γ2 = O(α) then

these weak rotational effects are comparable to the nonlinear and nonhydrostatic effects.

For propagation in the x-direction in a domain unbounded in the transverse y-direction, the

rotationally-modified KdV, or Ostrovsky, equation3,4,

(ηt + α1ηηξ + β1ηξξξ)ξ = γ1η, (1)

governs the evolution of the interfacial displacement η(ξ, t). Here t is time, and ξ = x −

c0t. The coefficients α1, β1, and γ1 are functions of the vertical structure function (i.e.,

stratification)4,5.

In the hydrostatic limit β1 = 0, (1) has periodic nonlinear inertia-gravity wave solutions

(wavelengths of order LR) in which the nonlinearity is balanced by the low-frequency ro-

tational dispersion3,6. These periodic solutions exist up to a limiting amplitude, beyond

which the rotational dispersion is unable to balance nonlinearity. At the limiting amplitude

the solution is a sequence of parabolic arcs. For β1 finite and γ1 = 0, (1) reduces to the

KdV equation with its solitary wave solutions. When both β1 and γ1 are finite, (1) does

not admit steadily propagating, localized solitary wave solutions7. There does exist a family
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of steadily-translating periodic solutions that have the characteristics similar in some ways

to the cnoidal wave solutions to the KdV equation, thus these periodic solutions to (1)

have been termed quasi-cnoidal waves8,9. One particular approximate solution consists of

sequence of KdV solitary waves joined by parabolic arcs10.

When a KdV solitary wave is used as the initial condition for (1), it will slowly decay due

to radiation of inertia-gravity waves11−13. Furthermore, Grimshaw et al.12 used an asymp-

totic analysis to show that the radiation leads to a complete decay of the initial solitary

wave in a finite time. Numerical solutions of (1) with small γ1 (i.e. small rotation) are

in good agreement with this theory12. With increased rotation, and a periodic domain, an

interesting recurrence occurred. The initial solitary wave decayed by radiation; however,

the radiated inertia-gravity wave, which was now larger amplitude, could itself steepen to

produce a secondary solitary wave with an amplitude comparable to the initial wave11. This

was followed by another episode of radiation decay, ultimately leading to a near-periodic

recurrence of the solitary wave riding on a longer background inertia-gravity wave. A sim-

ilar recurrence of the initial solitary wave was also found in an open system12. However,

this phenomena was not explored in great detail (only one run is reported), nor were the

numerical solutions carried to large times to see if the recurrence was indeed periodic.

The objective of this paper is to further examine the radiation decay of solitary waves

and the recurrence phenomenon. One of the principal reasons for the failure of KdV-type

models to accurately capture the details of observed wave evolution is that the amplitudes are

frequently well beyond the weakly nonlinear realm. Thus, the restriction to weakly-nonlinear

waves will be relaxed, while retaining the assumption of long, weakly nonhydrostatic waves.

Numerical solutions to these new governing equations are then explored in the case of an

initial solitary wave in an unbounded domain.

II. THE MODEL

The situation under consideration is an inviscid, two-layer fluid with layer depths hi and

velocity vectors ui. Here i = 1 and 2 refer to the upper and lower layers, respectively.

The layer densities are ρ1 and ρ2 = ρ1 + ∆ρ. The system is rotating about the z-axis with

constant Coriolis frequency f (> 0). The gravitational acceleration g is directed in the

negative z-direction. In the absence of motion h1 = h0 and h2 = H − h0, where H is the
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total depth. The bottom is flat and the upper surface is rigid.

The propagation of nonlinear interfacial waves in this system will be studied in the limit

of fully nonlinear, α = O(1), and weakly nonhydrostatic long waves, β � 1. In the absence

of rotation Miyata14 and Choi and Camassa15 derived a coupled set of equations (denoted as

the MCC equations for brevity) for fully nonlinear, weakly nonhydrostatic interfacial waves.

The extension of the MCC theory to include rotation mirrors the non-rotating derivation of

Choi and Camassa15, so only the additional details related to rotation are outlined here.

The waves will be taken to propagate in the x-direction. With rotation, motion in the

transverse y-direction will occur; however, it will be assumed that ∂/∂y = 0. From Choi

and Camassa15, the continuity and vertically averaged x-momentum equations for each layer,

including the Coriolis term, are

hit + [hiūi]x = 0 (2)

ūit + ūiūix − fv̄i = −gηx +
1

ρi
Px + Di + O(β2). (3)

Here the overbar indicates a vertical average over a layer, ui and vi are, respectively, the

velocities in the x and y-directions, η(x, t) = h0 − h1 is the interface displacement, and

P (x, t) is the pressure at the interface. The subscripts t and x indicate differentiation. The

O(β) nonhydrostatic effects are given by15

Di = h−1
i

[
1
3
h2

i

(
ūixt + ūiūixx − (ūix)

2
)]

x
. (4)

The exact, vertically averaged y-momentum equations are

(hiv̄i)t + (hiuivi)x + fhiūi = 0. (5)

When ui is expanded in powers of β,

ui = u
(0)
i + βu

(1)
i + O(β2),

it follows directly from the first-order version of (3) with f = 0 that u
(0)
i is independent of

z if u
(0)
iz = 0 at t = 0. With rotation, expansion of vi, along with the condition that v

(0)
iz = 0

at t = 0, similarly gives v
(0)
i = v

(0)
i (x, t). Thus uivi = ūiv̄i + O(β2), and after using (2), (5)

gives to O(β2),

v̄it + ūiv̄ix + fūi = 0. (6)
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Equations (2), (3), and (6) can be simplified by eliminating Px. The Boussinesq ap-

proximation ∆ρ/ρ1 � 1 is also employed since it is reasonable in the oceanic context and

consistent with the rigid-lid assumption. First, though, the equations are nondimension-

alized using
√

g′H , H, l, and l/
√

g′H for (ūi, v̄i), hi, x, and t, respectively. The reduced

gravity g′ = g∆ρ/ρ1. The resulting nondimensional, rotating MCC equations (MCC-f) are

h1t + [sh1(h1 − 1)]x = 0 (7)

st +
[

1
2
s2(2h1 − 1) − h1

]
x
− γv = β(D2 − D1) (8)

vt + svh1x + s(2h1 − 1)vx + sVx + γs = 0 (9)

Vt + [svh1(1 − h1)]x = 0. (10)

Here s = ū2 − ū1 and v = v̄2 − v̄1. Note that η (= h0 − h1) has been eliminated in favor of

h1 and h2 = 1 − h1. The barotropic transports in the x and y-directions are, respectively,

U = ū1h1 + ū2h2, V = v̄1h1 + v̄2h2. (11)

With the rigid-lid assumption U = U(t) and must be specified. In (7)-(10) it has been set

to U = 0. The nonhydrostatic terms Di are given by (4) with ū1 = s(h1 − 1) and ū2 = sh1.

The two parameters that appear in (7)-(10) are

γ =
l

LR
, β = (

H

l
)2 (12)

where the scaling depth hs is set to H in β. With this scaling LR =
√

g′H/f . As already

introduced, these parameters measure the relative effects of rotation and non-hydrostatic

dispersion, respectively. Note that unlike in (1), γ is not restricted to be small. Equation (1)

can be obtained from (7)-(10) in the small amplitude, weakly-rotating limit after restriction

to unidirectional propagation.

When γ = 0 with β finite, and (7) and (8) reduce to the (non-rotating) MCC equations.

If v = V = 0 at t = 0, they remain zero from (9) and (10). Solitary waves solutions can

then be found from integration of14−16

(
dη

dζ

)2

= β−13η2

[
1 − c−2(h0 − η)(1 − h0 + η)

h2
0(1 − h0 + η) + (1 − h0)2(h0 − η)

]
, (13)

where ζ = x− ct,

c = ±[(h0 − η0)(1 − h0 + η0)]
1/2 (14)
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is the phase speed, and η0 is the wave amplitude. In the limit η0 → 0, c → c0 = (h0−h2
0)

1/2,

the linear long wave phase speed in this two-layer system. The shear s(ζ) is given by

s =
cη

(h0 − η)(1 − h0 + η)
. (15)

As in weakly nonlinear theory, the solitary waves point into the deeper layer so that η0 < 0

(> 0) for h0 < 0.5 (> 0.5 ). There are no solitary wave solutions for h0 = 0.5. Solitary

waves are limited to a maximum amplitude η0max = h0 − 0.5 that reaches mid-depth. This

limiting wave has infinite wavelength and is a smooth, dissipationless transition between two

uniform (conjugate) states. These “thick” solitary waves and conjugate state do not arise in

the KdV equation, but do appear when the cubic nonlinearity is included in the KdV-type

models17. The solitary waves from (13) agree quite well with full nonhydrostatic numerical

calculations, laboratory experiments, and oceanic observations15,18−20.

The MCC equations, unlike their weakly nonlinear counterparts, do not filter out Kelvin-

Helmholtz instability21. As a consequence, the solitary waves can be unstable at high wave

numbers. Numerical solutions of the MCC equations show that if the grid resolution was

too fine, unstable short waves first emerge near the wave crest and ultimately overwhelm

the calculations21. This instability is enhanced for large amplitude waves, especially as

h0 becomes small (or approaches one). The instability can be controlled by filtering out

wavenumbers above the linear stability threshold22.

In the limit β = 0 with γ finite, (7)-(10) are the shallow-water equations and have no

solitary wave solutions. However, periodic, finite amplitude inertia-gravity wave solutions

can be found23. As in (1) with β1 = 0, these periodic waves arise from a balance between

nonlinearity and low-frequency rotational dispersion. For a fixed frequency (or wavelength),

these inertia-gravity waves exist up to a limiting amplitude, beyond which the rotational

dispersion is insufficient to balance nonlinearity. These waves come in two classes. In the

first, the limiting wave has a corner shape where the interface slope, ηx, is discontinuous

at the wave crest. This solution is the fully-nonlinear analog of the sequence of parabolic

arcs found for (1) with β1 = 0. In the second type, the limiting wave has a lobe shape with

ηx = 0 at both crest and trough.

When both γ and β are finite it has not been possible to find steadily propagating solitary

wave solutions. This is, of course, not too surprising since such solutions do not exist in

the weakly nonlinear limit3,7. The question of periodic quasi-cnoidal solutions to the MCC-f

6



equations is unresolved.

In the next section the evolution of MCC solitary waves (13) under the influence of

rotation are considered. It is found that the solitary wave initially decays by radiation of

inertia-gravity waves. The radiated long inertia-gravity wave always steepens, leading to

the recurrence of a solitary-like wave. For long times, a nearly localized packet emerges.

It consists of a long wave envelope and shorter, faster solitary-like waves that propagate

through the envelope only to decay at the head and re-emerge at the tail.

III. NUMERICAL SOLUTIONS

A. Methods

The MCC-f equations, (7)-(10), are solved with the numerical method developed for a set

of wave equations that are closely related to the non-rotating single-layer version of the MCC

equations24. The method uses centered, fourth-order finite differences for all x-derivatives

except those in Di, which are differenced using centered, second-order stencils. Temporal

integration is a fourth-order Adams-Bashforth predictor-corrector scheme with iteration on

the corrector step. Only minor modifications of the scheme are necessary for the MCC-f

equations.

The solutions are initiated with a solitary wave, found from integration of (13), with

c > 0. To achieve long integration times without using an exceptionally large, or periodic,

grid, the numerical domain is periodically extended in the positive x-direction (with h = h0

and s = v = V = 0). An equal number of points are removed from the upstream boundary.

Some linear damping is added near this boundary to relax s, v, and V toward zero and h to

h0 and minimize any reflection from the grid shifting. The grid domain was large enough to

minimize disturbances generated at moving upstream boundary affecting the leading part

of the solution.

The scheme was successfully tested by checking solitary wave propagation in the absence

of rotation. The solitary wave instability21 was found in some cases, and could be controlled

by high-wavenumber filtering. However, in the results presented below this was not neces-

sary. The instability was either not present, or controlled by using grid size with a maximum

wavenumber below the stability threshold. In all cases a minimum of about 25 grid points
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per solitary wave are used.

To organize the presentation of results the lengthscale l has been set to LR in (12), giving

γ = 1 and β = (H/LR)2 = Hf2/g′ in (7)-(10). This choice is arbitrary and it is possible

to take l = H, giving β = 1 and γ = H/LR. In either case, the sole remaining parameter

is H/LR and conversion between them amounts to a rescaling of x and t. In the former

scaling the inertia-gravity waves have lengths of O(1) and the solitary waves are an order-

of-magnitude shorter. Typical mid-latitude oceanic values of H = 100 − 4000 m (coastal

to deep ocean), f ≈ 10−4 s−1, and g′ ≈ 0.03 m s−2 give β ≈ [0.3 − 13] × 10−4. Thus,

β1/2 = H/LR = 0.01, 0.02 and 0.04 are investigated.

The other independent variables are h0 and η0. In order to minimize the emergence

of the Kelvin-Helmholtz instability most results below are for h0 = 0.25, though smaller

values, with high-wavenumber filtering implemented as needed, have been investigated and

similar results have been obtained. Wave amplitudes spanning the allowable range have

been considered.

B. Results

Figure 1 shows an example with [h0, β1/2] = [0.25, 0.02]. The initial solitary wave

amplitude η0 = −0.2. The figure shows η(x, t) in the frame moving with the linear phase

speed c0, at equally spaced time intervals. Initially, the solitary wave decays by radiation of

long inertia-gravity waves. However, by t ≈ 10, the inertia-gravity wave has steepened to

produce a packet of short solitary-like waves. The largest, lead wave of this group quickly

separates from the group and grows in amplitude. By the time this secondary wave has

reached its maximum amplitude at t ≈ 30, the primary wave amplitude has decayed by

≈ 80%. This decay and re-emergence process repeats until a nearly localized, temporally

periodic wavepacket separates from the initial disturbances. This waveform consists of a

long O(LR) envelope through which a shorter solitary-like waves propagate. The speed of

the packet, or group speed, is just slightly greater than c0.

The maximum interfacial displacement |η| in this solution is shown in Fig. 2. Note that

this figure shows times significantly greater than those shown in Fig. 1. Also shown is the
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solitary wave amplitude from weakly nonlinear asymptotic theory12

η

η0
=

(
1 − t

td

)2

, t2d =
3η0(2h0 − 1)

c2
0βγ2

, (16)

where td is the terminal damping time. In this example, the initial decay is given reasonably

well by (16) even though the wave amplitude is well beyond the weakly nonlinear regime.

For large times the maximum wave amplitude decays very slowly, but at t > 400 it is still

greater than 60% of the initial amplitude. The period between maximum amplitude peaks

decreases until t > 240 when it becomes nearly constant at 20.9.

The robust nature of the leading wavepacket is further emphasized when energy is con-

sidered. The MCC-f equations can be manipulated to obtain an energy equation (following

Choi and Camassa15), where the energy [to O(β)] between x = x1 and x2 is

E =

∫ x2

x1

[
1

2
η2 +

2∑

i=1

1

2

(
hi(ū

2
i + v̄2

i ) +
1

3
βh3

i ū
2
ix

)]
dx. (17)

The first term on the right is the potential energy from the interfacial displacement. The

sum is kinetic energy integrated over the layers. The last term in the sum arises from the

kinetic energy in the vertical velocity field w2
i /2. Figure 3 shows E integrated over a range

of x within 1.5 of the leading edge of the wavepacket in Fig. 1. It has been normalized by

the energy of the initial solitary wave E0. As does the maximum amplitude, the integrated

energy decays rapidly until about t = 100. It then decreases much more slowly, perhaps

approaching a steady asymptotic value of ∼ 38.5% of the initial energy.

Both the evolution of the maximum amplitude and the energy of the leading wavepacket

suggest a possible asymptotic approach to a localized state where the the radiation and

energy loss to trailing inertia-gravity waves ceases. However, examination of the solutions

indicates that decay and re-emergence process results in the continual weak radiation. Figure

4 shows a close-up of the leading wavepacket and the smaller trailing waves at t = 291.56.

However, these small amplitude waves drain very little energy (which goes as the square of

the amplitude). While it appears that this leading wavepacket is not a completely localized

structure, it is remarkably long lived. For reference, an inertial period is 2π.

Figures 5 and 6 show two more examples. In Fig. 5 the initial wave amplitude η0 = −0.05

is smaller than in Fig. 1 (where η0 = −0.2). The other parameters, [h0, β1/2] = [0.25, 0.02],

are unchanged. The evolution for this smaller initial wave is much the same, with a rapid

emergence of a localized wavepacket after the steepening of the radiated inertia-gravity wave.
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Again, a substantial fraction of the initial energy, now ≈ 48%, is contained in the leading

wavepacket at the last time shown. The packet speed is now slightly less than c0 and the

time between amplitude maxima is ≈ 26.3.

In Fig. 6 both η0 = −0.2 and h0 = 0.25 are the same as Fig. 1; however, β1/2 = 0.01 is

smaller by a factor of two. When compared to Fig. 1, the early evolution for t < 100 is more

complex. The development of the leading packet takes longer, and involves two separate

steepening events in the radiated inertia-gravity wave train. Despite the complicated initial

period a recurrent waveform does appear for t > 100, though it is substantially weaker than

the previous two examples. At t = 180 only about 6% of the initial energy is contained in

the leading packet. The time between amplitude maxima is ≈ 30.7.

These results are typical of other values of h0, β, and η0. The time for the localized

packet to emerge and its other characteristics depend on the parameters. Some of these

characteristics are illustrated in Fig. 7 which shows the leading disturbances with h0 = 0.25

for a set of runs in which β and η0 are varied. All the solutions are at times after the energy

is decaying very slowly and at a phase of the recurrence cycle when the solitary-like wave

is close to the mid-point of the packet and the amplitude is maximum. The top three plots

show runs with η0 = −0.2 and β1/2 = 0.01, 0.02, and 0.04. The bottom two are for η0 = −0.1

and −0.05 with β1/2 = 0.02. The similar structure of the solutions for the various values of

η0 and β is clear. The figure also shows that decreasing β with η0 fixed (or vice-versa) leads

to a smaller amplitude, shorter packet. The second and third solutions (from the top of the

figure) have nearly the same amplitude max|η| = 0.127 and 0.128, respectively. Thus, for a

fixed amplitude, the length of the structure increases with β1/2.

Recall that x is scaled with LR. If instead, x is scaled with H, x → x/γ, with γ = H/LR

and β = 1. This alternate scaling, where the influence of rotation increases with γ, shows

that the packet length compared to the depth H decreases as γ or the amplitude increases.

Given the robust nature of these wavepackets it is of interest to explore their interactions.

Two examples are shown in Figs. 8 and 9. The first shows a calculation initiated with two

well-separated solitary waves of amplitudes η0 = −0.2 and −0.05, with h0 = 0.25 and

β1/2 = 0.02. From Figs. 1 and 5 it is expected that each solitary wave will produce a

packet and that the one from the larger wave will overtake the one from the smaller wave.

This is indeed what happens, and remarkably, the packets appear to pass through one

another with little adverse effect. Comparison of the larger leading wavepacket with the one
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from Fig. 1 shows very little difference between the two. The smaller second packet from

is noticeably distorted as it propagates through the inertia-gravity waves radiated by the

larger wavepacket, but is still identifiable.

The second example (Fig. 9) is identical to the first except the smaller of the two initial

solitary waves has η0 = −0.1. Instead of the soliton-like interaction above, the two packets

merge (each is identifiable at t ≈ 50). The resulting packet is initially more complicated

than the clean examples seen so far, but it does remain intact. At times greater than shown,

the leading packet becomes organized and nearly periodic with two or three solitary-like

waves (depending on the phase) in the packet. Figure 10 shows a close up of the solution at

t = 415.69. Note that the packet is now longer than the earlier “single-wave” case.

The longevity of these wave packets must involve a near-balance of nonlinearity with

both rotational and nonhydrostatic dispersion, though the details are still to be established.

Figures 9 and 10 show that packets with more than one solitary-like wave can exist and

suggest that these packets might be interpreted as a modulated periodic wave. Waves of the

quasi-cnoidal type may be the underlying “fast” wave.

As a simple test of this idea, the approximate quasi-cnoidal solution of (1) can be com-

pared with the properties of the waves in Fig. 10. This solution consists of sequency

of solitary waves joined by parabolic arcs and is given (in the present notation and non-

dimensionalization) by10

η = −η0

9
+ η0sech

2(
x − ct

∆
) +

γ2

18(2h0 − 1)

[
(x − ct − λ

2
)2 − λ2

12

]
.

The wavelength λ and the phase speed c are given by

λ = 18∆, c = c0 +
(2h0 − 1)η0

3c0
+

γ2λ2

72c0
. (18)

Here η0 is the amplitude of the KdV solitary wave that comprises the inner solution at the

junction of the arcs and

∆2 =
4

3

βc4
0

(2h0 − 1)η0

.

The amplitude of the peak of the quasi-cnoidal wave, ηM , is related to η0 through

ηM =
8

9
η0 +

4γ2βc4
0

(2h0 − 1)2η0
.

From Fig. 10 ηM ≈ −0.1. For the conditions of that run, h0 = 0.25, γ = 1, and β1/2 = 0.02,

this gives η0 = −0.11, and from (18), λ = 0.32 and c − c0 = 0.046. The wavelength from
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Fig. 10 is λ ≈ 0.37 and c− c0 = 0.026, determined from the speed of the central wave in the

figure. Given the strong nonlinearity of the numerical solution and the assumption of weak

nonlinearity of the theory, the agreement is reasonable. One effect of strong nonlinearity is to

reduce the wave speed below that predicted by weakly nonlinear theory15. The discrepancy

in wave speeds is consistent with this.

An additional comparison is found from the linear dispersion relation obtained from

(7)-(10), ω2 = (γ2 + c2
0k

2)(1 + 1
3
βc2

0k
2)−1. Linear waves have a maximum group speed,

cg = ∂ω/∂k, at finite wavenumber k. For h0 = 0.25, γ = 1, and β1/2 = 0.02, the maximum

cg = 0.94c0 at k = 16.28. This is close to the packet speed cg ≈ c0 and k = 17.0, based on

λ = 0.37, from Fig. 10. It is consistent with the fact that a packet is the leading disturbance

in all the numerical solutions.

This development of the leading wavepackets is not a consequence of the full nonlinearity

of the MCC-f equations. Weakly nonlinear equations with errors O(α2, αβ, β2) obtained

from the MCC-f equations (see the Appendix) give the same qualitative results. There

are, of course, quantitative differences with the fully nonlinear solutions, particularly for

large amplitudes. This is illustrated in Fig. 11 where the leading waveform from Figs. 1

and 5 are shown along with the corresponding solutions from the weakly nonlinear model.

The latter were initiated with a non-rotating, weakly nonlinear solitary wave with the same

amplitude as the MCC-f runs. For the small amplitude η0 = −0.05 the differences in the

two solutions is minor (Fig. 11(a)). When η0 = −0.2 the differences are substantial (Fig.

11(b)); however, the qualitative character of the solution remains. With the fully nonlinear

model the leading wavepacket has a larger amplitude, is faster, and contains a greater

fraction of the initial energy. Also shown in the figure are the same calculations with the

MCC-f model with the O(αβ) nonlinear-dispersive terms removed (i.e., the same dispersion

operator, D2 −D1 = 1
3
βc2

0sxxt, as the weakly nonlinear model). The agreement with the full

MCC-f model is quite good, especially after such long times, implying that the nonlinear

dispersion is of secondary importance when compared to higher-order nonlinear terms. A

careful study of the limitations of the weakly nonlinear model, or the MCC-f model with

linear dispersion, is worthwhile, but not attempted here.
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IV. DISCUSSION

The role of rotation on internal solitary waves was explored using a fully-nonlinear, weakly

nonhydrostatic theory for interfacial waves in a rotating, two-layer system. Numerical solu-

tions show that an initial solitary wave will decay by radiation of an inertia-gravity wave.

The radiated wave will itself steepen to eventually produce a second solitary wave that

grows at the expense of the initial wave. The process will then repeat, producing a decay

and rebirth recurrence cycle. While this initial stage has been identified in several previous

numerical solutions of the weakly-nonlinear Ostrovsky equation (1), this study shows that

ultimately a new, nearly localized wavepacket emerges. The waveform consists of a long

O(LR) envelope through which shorter, faster solitary-like waves propagate, vanishing as

they reach the leading edge and re-emerging at the trailing edge. These packets are not

completely localized, but the trailing radiated waves are very weak. Consequently, the en-

ergy in an established wavepacket, which can be as much as half of the energy of initial

solitary wave, decays on a very long timescale.

These results suggest that the packets found in the numerical solutions are modulated

fully-nonlinear versions of the quasi-cnoidal waves found for (1). However, it remains to be

seen if the MCC-f equations actually possess quasi-cnoidal solutions, though it does seem

likely that they do. Computation of the properties of any steadily propagating periodic so-

lutions of (7)-(10) is a substantial numerical task that is now being addressed. An additional

effort is necessary to uncover the detailed dynamics of the packets. Work in that direction

is underway, but in the simpler context of weakly nonlinear waves where analytical progress

is more likely possible.

The timescale for the packet to clearly emerge from the initial solitary wave was on the

order of the decay time (16), which for the ocean parameters introduce in Section 2, is

about 1 − 4 days. The recurrence period is similar. These timescales are long, but given

the distances internal solitary waves are known to propagate (e.g., 400 km over 3 days in

the South China Sea), it is reasonable to expect that the effects discussed here could be

important. For example, over long distances individual solitary-like are ephemeral, yet the

packets transmit substantial energy at a speed given approximately by the linear longwave

phase speed. Furthermore, the generation of the packets is not limited to the decay of an

initial solitary wave. Other more general initial conditions (not shown) also give rise to

13



these wavepackets. This is not surprising since in the absence of rotation, general initial

conditions will usually produce solitary waves, and thus the localized packets when rotation

is present. It does suggest that these wavepackets may be a fundamental part of long-range

propagation if internal solitary waves in the ocean.
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APPENDIX

MCC-f equations (7)-(10) can be reduced to a set of equations for weakly nonlinear waves

by expanding the dependent variables in powers of α,

η = αη(1) + α2η(2) + ...

Dropping terms of O(α2, αβ, β2) results in the weakly nonlinear equations

ηt + σ[sη]x + c2
0sx = 0

st + σssx + ηx − γv = 1
3
βc2

0sxxt

vt + σsvx + sVx + γs = 0

Vt + c2
0[sv]x = 0

where σ = 2h0 − 1. With V = 0 these equations are the same as derived by Gerkema25,

after recognizing that here s and v involve layer-averaged velocities rather than velocities at

the interface. The retention of V is a consequence of not restricting rotational effects to be

weak. Equation (1) can be obtained from these equations in the limit of weak rotation and

unidirectional propagation.

Non-rotating (γ = v = V = 0) solitary waves solutions η(x − ct), s(x − ct) are found by

integrating

(sx)
2 =

6

c2
0

[
s2

2
− σs3

6c
+

c2
0s

cσ
+

c2
0

σ2
ln(1 − σs

c
)

]
,

with η = c2
0s(c − σs)−1. The wave speed c follows from setting sx = 0 with s = s0 =

cη0(c
2
0 + ση0)

−1.

14



Non-rotating solitary wave solutions to the MCC-f equations (7) and (8) without the

mixed nonlinear-dispersive terms (i.e., D2 − D1 = 1
3
βc2

0sxxt) are found by integrating

(sx)
2 =

6

c2
0

[
s2

2
+

s(h1 − h0)

c
+

s3(1 − 2h1)

6c
− I1 +

c2

3
I2

]

with (15) relating s and h1 = h0 − η. The phase speed c is found by setting sx = 0 with

η = η0 and s = s0. Here

I1 = ln

(
h1 − 1

h0 − 1

)
+ h0 ln

(
h1(h0 − 1)

(h1 − 1)h0

)

I2 = 3h0(1 + 2h2
0 − 3h0) ln

(
h1(h0 − 1)

(h1 − 1)h0

)
+ 3h2

0(1 − h0)(h
−1 − h−1

0 )

−1

2
h3

0(h
−2
1 − h−2

0 ) + 3h0(2h0 − h2
0 − 1)((h1 − 1)−1 − (h0 − 1)−1)

+
1

2
(h3

0 + 3h0 − 3h2
0 − 1)((h1 − 1)−2 − (h0 − 1)−2).
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Figure Captions

Fig. 1: Numerical solution for a solitary wave with η0 = −0.2 and [h0, β
1/2] = [0.25, 0.02].

The interface η(x, t) is shown at equal time intervals in a frame moving with the linear

wave speed c0.

Fig. 2: The maximum amplitude, max|η|, of the solution in figure 1 is shown as a

function of t by the small circles. The dashed line is the amplitude decay from weakly

nonlinear theory (16).

Fig. 3: The energy E within x = 1.5 of the leading edge of the leading wavepacket,

normalized by the energy, E0, of the initial solitary wave in Fig. 1.

Fig. 4: The interface displacement of the leading wavepacket from the run in Fig.

1 at t = 291.56.

Fig. 5: Numerical solution for a solitary wave with η0 = −0.05 and [h0, β
1/2] =

[0.25, 0.02]. The interface η(x, t) is shown at equal time intervals in a frame moving with

the linear wave speed c0.

Fig. 6: Numerical solution for a solitary wave with η0 = −0.2 and [h0, β
1/2] =

[0.25, 0.01]. The interface η(x, t) is shown at equal time intervals in a frame moving with

the linear wave speed c0.

Fig. 7: The interface displacement η of the leading wavepacket for h0 = 0.25 with

the parameters η0 and β1/2 indicated. Each plot is offset vertically by 0.1 and shown at

a point in the calculation when the solitary-like wave is near the mid-point of the disturbance.

Fig. 8: Solution with two solitary waves, η0 = −0.2 and −0.05, and [h0, β
1/2] =

[0.25, 0.02]. The interface η(x, t) is shown at equal time intervals in a frame moving with

the linear wave speed c0.
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Fig. 9: Solution with two solitary waves, η0 = −0.2 and −0.1, and [h0, β
1/2] =

[0.25, 0.02]. The interface η(x, t) is shown at equal time intervals in a frame moving with

the linear wave speed c0.

Fig. 10: The interface displacement of the leading wavepacket from the run in Fig.

9 at t = 415.69.

Fig. 11: Comparison of the leading waveform from the MCC-f model (solid), the

weakly nonlinear model (dashed), and the MCC-f model with the linear non-hydrostatic

dispersion (dash-dot). (a) [h0, β
1/2] = [0.25, 0.02] with η0 = −0.05 at t = 144.34 (b) The

same for η0 = −0.2 at t = 153.96.
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FIG. 1: Numerical solution for a solitary wave with η0 = −0.2 and [h0, β
1/2] = [0.25, 0.02]. The

interface η(x, t) is shown at equal time intervals in a frame moving with the linear wave speed c0.
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FIG. 2: The maximum amplitude, max|η|, of the solution in figure 1 is shown as a function of t by

the small circles. The dashed line is the amplitude decay from weakly nonlinear theory (16).
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FIG. 3: The energy E within x = 1.5 of the leading edge of the leading wavepacket, normalized by

the energy, E0, of the initial solitary wave in Fig. 1.
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FIG. 4: The interface displacement of the leading wavepacket from the run in Fig. 1 at t = 291.56.
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FIG. 5: Numerical solution for a solitary wave with η0 = −0.05 and [h0, β
1/2] = [0.25, 0.02]. The

interface η(x, t) is shown at equal time intervals in a frame moving with the linear wave speed c0.
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FIG. 6: Numerical solution for a solitary wave with η0 = −0.2 and [h0, β
1/2] = [0.25, 0.01]. The

interface η(x, t) is shown at equal time intervals in a frame moving with the linear wave speed c0.
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FIG. 7: The interface displacement η of the leading wavepacket for h0 = 0.25 with the parameters

η0 and β1/2 indicated. Each plot is offset vertically by 0.1 and shown at a point in the calculation

when the solitary-like wave is near the mid-point of the disturbance.
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FIG. 8: Solution with two solitary waves, η0 = −0.2 and −0.05, and [h0, β
1/2] = [0.25, 0.02]. The

interface η(x, t) is shown at equal time intervals in a frame moving with the linear wave speed c0.
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FIG. 9: Solution with two solitary waves, η0 = −0.2 and −0.1, and [h0, β
1/2] = [0.25, 0.02]. The

interface η(x, t) is shown at equal time intervals in a frame moving with the linear wave speed c0.
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FIG. 10: The interface displacement of the leading wavepacket from the run in Fig. 9 at t = 415.69.
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FIG. 11: Comparison of the leading waveform from the MCC-f model (solid), the weakly nonlinear

model (dashed), and the MCC-f model with the linear non-hydrostatic dispersion (dash-dot). (a)

[h0, β
1/2] = [0.25, 0.02] with η0 = −0.05 at t = 144.34 (b) The same for η0 = −0.2 at t = 153.96.
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