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ABSTRACT

Measurements of ocean currents were made by the
author in the Western Mediterranean Sea at five depths
for two months during early 1969. In terms of the dom-
inant and persistent presence of inertial oscillations,
circularly polarized currents having periods of a half
pendulum day, the data are among the most striking
ever collected.

Two contemporary theories have been adapted for
interpretation of this data. On the basis of a ray or
short-wave-Iength theory, energy arriving at the obser-
ving site is found to fall into two categories, that
making direct arrival from the, sÜrface where it is-
assumed to have been generatedj and that' which under-
goes one or more -reflections. To the extent that the
former dominates , it is found that the Algerian Coast
about 130 km. to the south would cast a shadow to the
north, the precise shape of which would be highly
dependent on small variations in frequency.. The nature
of this frequency dependence implies a gradual increase
in frequency with depth at the observing latitude.
Although the data show a measurable. shift (about 3%)
towards higher frequencies, which is roughly the
required amount, the lack of, progressive frequency
change with depth does not support the shadow
hypothesis.

In addition, the data is interpreted in terms of
normal mode theory ,where the nearby coast is seen to
force a discrete modaL struct~re to the solutions.
The observed variation b£ current phase with depth
indicates that a single internal mode dominates over
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a large 'portion of the data, while variations of both
current amplitude and phase with depth are consistent
this being the :third internal vertical mode. Exis tence
of a normal mode is also consis tent with the long time,
on the order of three weeks, for which the oscillations
were observed to persist and with the dimensions of
the Mediterranean Basin.

Thesis Ferris WebsterSupervisor. . . . . . II . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Associate Scientis t, Department of
Physical Oceanography, Woods Hole
Oceanographic Institution ~
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of' these measurements are their relatively extensive

coverage in the vertical, duration for typically two

months per record and rapid sampling in time. Several

of these are accompanied by surface wind data.

Other significant recent observations of inertial

motion have been made in enclosed or semi-enclosed basins

such as the Sea of Japan where Nan-niti, Akamatsu~ and

Yasuoka (1966) have reported observations made with

neutrally buoyant floats. This technique was devised

for a study of steady drifts and is not particularly

well suited for periodic motions since it usually in-

volves a small number of infrequent observations.

Extensi ve current measurements in the Great Lakes have

been made, ,primarily in connection with pollution

studies, and .these generally show strong inertial-period
motion (Verber, 1966; Malone, 1968), especially during

periods when a thermocline exists. Finally in the

Mediterranean itself, a continuing French program has

made numerous simultaneous measurements of winds and

currents from their manned buoy, the Bou€e Laboratoire

(Gonella, Cr€pon, and Madelain, 1969), located about

100 km. south of Nice. Their current measurements

have-so far been limited to the upper 100 meters of

the ocean due to operational difficulties (the buoy is

11
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on a slack mooring, requiring large drift corrections).

From this body of data, a consistent pattern of

properties of inertial motion has been established. By

the nature of the observations, time variations are most

easily resolved. One finds nearly circular, clockwise

currents having periods wi thin a few percent of the local

inertial period or half pendulum day. These are super-

imposed on a broad spectrum of other processes but are

usually quite noticeable in the data and often are the

most energetic constituent present, dominating even the

mean current. However, the motions are transient, per-

sisting for a few days at most; indeed, the persistence

is generally' for only a few cycles. No systematic cor-

relation between amplitude and duration of the bursts of

inertial energy has been found nor is any asymmetry be-
i
i

tween the rise and decay apparent. Vertical persistence

(that is, separation in the vertical across which inertial

currents do not differ appreciably) is likewise limited.

The author has recently examined most of the largely un-

pub lished data. collected at W. H. O. I. by.. computing co-

herencies between contemporaneous pairs of current 
meter

records. No records separated by more than 100 meters

showed significant coherence, a single pair of instruments

s,~,parated by 80 meters showed moderate coherence (0.6)
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at inertial period only, while a pair of instruments only

2 meters apart showed almost perfect coherence. Since

suitably close instrument spacing is available only in

the upper part of the ocean, the possibility of there

being larger scales of vertical coherence in the deep

water must .be left open. Measurements sui table for es-

timating horizontal scales of inertial oscillations are

sparse indeed owing to the difficulty and expense of main-

taining two or more moorings at the same time. We know

of only two such sets of measurements made in the deep

sea which simultaneously take into account the demons-

tratèdly important depth dependence; both were made by

Fofonoff and Webster. In the first of these, two in- '

struments at 620 meters depth, near 29°N 68° 30'W and

separated by about 65 km. showed no coherence even 

though
there was a strong inertial signal at one of the instru-

ments. The second pair of measurements was. made near

Site D with a horizontal separation of 3 km. and with

current meters at 88 and 98 meters. Appreciable coher-

ence was found ('\ 0.7) and part of the coherence loss may

have been due ,to vertical separation instead of horizontal.

The features .of inertial oscillations which require ex-

planation are thus persistence in time of a few days, in

the vertical of several tens or meters and in the horizon-

tal for a few tens of kilometers.
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It has .been understood for some time that any dis-

turbance of the ocean with a broad spectrum of input

energy will give rise to inertial oscillations; e. g.
Cahn (1945). Since the group velocity of these motions

becomes vanishingly small as frequencies approach

inertial, this effect is easy to understand; all other

cons ti tuents of the initially induced motion disperse
relatively rapidly. Determination of the precise nature

of the forcing has proved elusive however. Hendershott

(1964) considered, in a statistical sense, forcing

of the ocean induced by tidal interaction with the ir-

regular ocean bottom. We now know that tidal. forcing,

which should be important only near latitude 30°, is not

the only source of inertial period currents since they

have often been found at other latitudes. Nevertheless,

Hendershot t' s theoreti cal treatment of the problem an-

ticipates much of what is now known.

Most recent studies involving forced motion have

dealt with wind-induced motion. The Great Lakes measure-

ments have been treated in this respect QY Csanaday (1968)

and by Birchfield (1969) and the Bouée Laboratoire data

in a series of papers by Crépon (1969), the mos~ recent

of which is referenced here. These ~tudies show that

qualitatively inertial currents of the magnitude observed

near the ocean surface can in fact be established by
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argued that such a source would imply very large co-

herence scales ) although it is not clear how this can

be reconciled~wi th the very slow propagation rate of the

waves and the fact that this rate is different for

various constituents of the waves. We will return to

these important points later. For the moment we simply

argue against excluding either model on the basis of
existing .data.

The general plan of this thesis is to present new

evidence of a type which will bear more directly on the

problems outlined above. A truly comprehensive ex-

periment, .which will probably be done someday, would

involve a .suf,ficiently large number of instruments to
permit tracing the flow of energy within a suitably

large region;' Such an experiment is beyond the ~scope

of a thesis experiment and, due to limited instrument

reliabili ty, . may not even be technologically feasible
at this time . . Instead, it was decided to exploit the
profound effect which a coastline can have on inertial

oscillations and which can help explain their properties.

It is clearat.once that the effect must "be considerable

since the horizontal component of current velocity, which

is by far the .largest component in inertial motion,

must vanish at the coastline. If the coastline is
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chosen to run eas t-wes t and be southward (or more generally

equatorward) of an observing site, its effect is par-

ticularly useful for interpretation of the resulting

àata. These effects can be viewed in two ways; in terms

of ray theory, or in terms of normal modes, both of

which will be explored in succeeding chapters.

In more detail, the thesis will proceed as follows.

Chapter II will describe a series of current measurements

made in the rledi terranean during January, February and

the Algerian coast, which is one of the few coasts in

i

L

I

I

I

March of 1969. The site was chosen so that effects of

the world having thedes'ired properties, could be in-
terpreted most easily. Chapter III discusses the

Medi terranean observations on the basis of a ray theory

of propagation, the chief effect of which is to prohib_it

energy of exactly inertial frequency which originates

in the surface layers from penetrating below a certain

critical depth providing that certain conditions' at the

coast are satisfied. Normal modes are considered in

Chapter IV. The presence of th~ coast is found to force

a particular structure to the inertial motion; the wave-

number spectrum must be discrete instead of continuous.
_ H _

Finally, a general discussion of results and conclusions

are given in Chapter V.
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Chapter II Observations

Description of site and mooring

During the period from January 22 to March 12, 1969,

current measurements were made in the Mediterranean Sea at

380 01 ~N 5° 00 ~E, about 120 km. north of the Algerian

coast. The mooring was set and recovered by the R/V

Atlantis II during cruise number 49. Interest in this

region was aroused by the properties which theory pre-

dicted should be imparted to oscillations of inertial

period by the long east-west coastline 
south of the obser-

ving site. In particular, a ray theory for the propagation

of such oscillations had raised the possibility of as-

sociating them with motions induced in the surface layers,

perhaps by storms. Amore complete description for the

motivation for these measurements is deferred until the

next chapter when) at the same time) the data can be

interpreted in terms of ray 
theory .

Topography of the Western Mediterranean Basin is

t
i

shown in figure 1. Note particularly the straightness

of the Algerian coastline and flatness of the bottom

near the observing site, where the water depth is

generally within a few hundred meters of 
2800 meters

(~ 1500 fathoms). These features together combine to

simplify greatly the calculations which will later be
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Figure 2
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Schematic diagram of mooring configuration. The
drawing is not done to scale.
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made in connection with interpretation of the data.

Figure 2 shows schematically the mooring configuration

and depths at which each of the five current meters were

located. The design is basically an adaptation of that

developed at the Woods Hole Oceanographic Institution for

similar applications. A subsurface float, equipped with

beacon light and radio transmitter which operate only

when the float is at the surface, was used for reasons

of reliability and security; there is a great deal of

shipping through the area. Recovery of the mooring was

achieved through the acoustic release~ which released

the anchor upon receiving a coded acoustic command. A

number of glass spheres were located immediately above

the release in order to float the instrument packages

to the surface in the event that the mooring line parted,
which did not occur. For the mooring line itself, wire

cable was used except towards. the bottom of the mooring

where braided nylon rope was used so that it could be

cut and terminated at sea to correspond to the depth of

water measured at the time. The wire cable was chosen for

protection against fi~h attack which has in the past

severed a number of nylon mooring lines in the upper

several hundred meters of the ocean. However, no fish

bites were evident in the polyethelene jacket of the

cable when it was recovered.



22

Depths of the instruments were determined by two

methods. The first of these was to measure the water

depth on location and cut the line to appropriate length~

taking into account the anticipated stretch of the nylon

line of about 18%. More directly, a pressure recorder

was located immediately under the primary flotation

sphere, giving a continuous record of pressure versus time

for the whole duration 
of the mooring. The two depth

determinations gave the same result to wi thin experimental

error) fixing depth of the subsurface float at 105 meters

~ 5 meters. No significant variation in depth with time

was found from the pressure record.

In keeping with conventions established at the Woods

Hole Oceanographic Institution, where the data is kept in

archive, the mooring is designated as number 289. Data

series collected by 
each of the five c~rrent meters are

designated as numbers 2892 through 
2896 in order of in~

creasing depth.

Instrument performance

The current meters used in this experiment were

Geodyne model 850 instruments with minor modifications.

In operation) the instruments record speed in terms 

of

rotor rotations and direction in terms of orientation of

a vane and of the instrument case with respect to an
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internal compass. The data are recorded internally in
digi tal form on magnetic tape. In the recording mode

used, the instrument is turned on once every fifteen

minutes. A burst of speed and direction samples are taken

at five second intervals for about two and one-half minutes

after which the instrument is shut down for the remainder

of the fifteen minute cycle. During subsequent processing,

the data are vector averaged over these 2.5 minute bursts

to give a single value of speed and direction every 15

minutes. Consequences of this procedure in terms of

spectral content of the data ha ve been. described in detail

by Webster (1967). The principle advantage is that it

effecti vely reduces the quantizing interval for the data
and thus reduces the noise level introduced by quantizing.

The effect is not important at the frequencies of interest

here which have periods long compared with 15 minutes.

Timing of the instruments is critical for many of

the inferences to be drawn from the data, making it essen-

tial to establish accuracy of the internal instrument

clocks. Each instrument has two clocks, one to initiate

sampling a burst of data every 15 minutes and another

which only inserts a mark into the data every 12 hours.

By comparing the two clocks in each instrument, i twas

determined that each pair was running 
at a common rate.

Next, the absolute rate of each pair was found by
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noting the number of 15 minute intervals between two

precisely timed events inserted in the record, one im-

mediately before deploying the instrument and one im-

mediately after recovering it. This procedure was ap-

plied to each data series, except as noted below, showing

the time base to have a long-term error of less than

to. l% in each case. Short term errors seem unlikely

insofar as they would have been detected unless both

clocks experienced the same rate anomaly at the same time.

¡
¡

!

,

I

Also) past testing has shown that the 
clocks normally

run at a very uniform rate in the constant 

thermal

enviornment of the sea.

The single exception where the 
absolute time' cou,ld

not be double-checked occurred in the instrument at 1200,

meters depth. During recovery of this instrument ~ the

internal tape recorder failed so thatit was not possible

to detect the event inserted at the end of 
the data

series as was done with the other instruments. On the

~

~

other hand, the two internal clocks did run 

at th~ same

rate and the total data length until recovery agreed well

with the other instruments. It 
therefore seems 

reasonable

to conclude that timing accuracy for this instrument was

comparable with the others and that all clocks ran with-

in t O.L% of the proper rate.
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A variety of other instrument malfunctions occurred,

most of the effects of which were edited out during sub-

sequent data processing. A detailed description of these
would involve discussing working of the instrument at

greater length than is appropriate here even though the

associated editing consumed a great deal of time. The

two most important of these intermittent failures in-

volved occasional failure of the instrument to turn on

for a scheduled burst of observations and occasional bit

failures in the binary output associated with the photo-

diodes and fiber optics of the direction sensors. Both

problems were easily detected and corrected by suitable

interpolation.
The final data, edited, vector averaged to give 15

minute samples, and plotted as speed and direction, are

shown in figure 3. The figure is presented at this time

since it shows two other problems with the data which

were not removed by editing. The first of these is a

design failure rather than a malfunction. Because the

speeds at the observing . site were so low, there are

numerous instances in the data from the bottom four in-

struments where the rotor did not turn at all, particularly

towards the middle of the observing period. This property

of the rotor is well understood (Fofonoff and Ercan, 1967)

and is due to the magnets imbedded in the rotor being
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attracted to the magnetically operated reed switch used

for readout. Since the direction sensors did not stall,

some information is available 
during these periods) and

to make use of it, a speed of i. 8 cm/sec, corresponding

to the stall speed of the rotor, was inserted when the

rotor stalled. Then when computing Cartesian components,

upon which all subsequent calculations were made, a

smooth transition across the rotor-stall period resulted.

Since the data are dominated by the sum of a mean current

and an inertial period os cillation over much of its length)

other interpolations are easy to devise. For the present

purpose, however, the simple procedure outlined above

proved satis£:actory and allows the reader to view 
the

rotor-stall problem in an undisguised form. No con-

clusion of this thesis would be altered 
by using a more

complex interpolation scheme for the 
missing speeds.

The final instrument problem has to do with stick-

ing of the direction sensors. As noted earl~er) there

are two of these , both resembling an ordinary compass card)

measuring orientation of the ca~e and of a vane, and

having optical read-out attachments. These sensors

have a history of sticking; that is, of requiring in-

creasing torque for the sensing card to change its angular

posi tien within its frame. This is generally attributed
to a combination of thermal contraction in cold water

'-
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and distortion of the instrument due to high pressure in

deep water but the causes are not well understood. In the

present instruments, the vane sensors of the three deep-

est instruments began to stick on March i, February 25

and February 20 respectively, in order of increasing

depth. There is also some evidence of a sticking vane

during the last few days of the 700 meter record. In

all cases except for the bottommost instrument there was

only partial sticking so that a precise date of failure

cannot be assigned. These failures are particularly

troublesome to the extent that 

they de~3troy the charac-

teristic circular polarization of inertial currents, but

this failure was total only in the deepest instrument.

Fortunately, the only serious instrument malfunctions

were confined to roughly the last third of the data so

that several weeks of data are available from all five

instruments and during this period the overall qi.áli ty
of the data is excellent. It should be noted especially

that those malfunctions which occurred are not such as to

affect estimates of frequency made from the data.

Summary of measurements

The basic data series have already been shown in

polar form in figure 3 and discussed from the point of

vie~ ~r instrument performance. Of more interest for

purposes of ir:.~.,,-:::Y'etation and analysis are the. correspond-
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ing Cartesian components which are shown in figure 4.

The topmost five traces show the east-west component of

current in order of increasing depth with the lower five

traces giving a similar presentation for the north-south

current component. Eastward and northward flows are

considered posi ti ve with westward and southward flows

considered negative. Time is shown as days originating

at .0000 Greenwi ch mean time. As was claimed earlier,

assignment of a non-zero speed to the intervals where

the rotor has stalled permits data available in the

direction sensors to produce smooth values for the

Cartesian components.

A number of features of the data are apparent at

once. Attention is directed in particular to the fourth
or i 700 meter depth from the beginning of the record

until about mid-February, where a series of inertial 05-

cillations of extraordinary clarity and persistence can

be seen.

Long term trends are more clearly seen from what are

commonly called progressive vector diagrams, defined as

the hodograph of

t

j
o

::
U(T)dT

~
where t is the starting time of the series and u is the

o

yc



.
.
.
-
 
I
I

E
A

ST
C

O
M

PO
N

E
N

T

eM
/S

E
C

N
O

R
T

H
C

O
M

PO
N

E
N

T

C
M

/S
E

C

i::
":

"/
'\!

W
.''

'' 
.v

~
-Y

,j~
-:

-:
;~

'i1
12

00

-
+
~
~
-
'
V
0
'
:
-
~
-
'
v
'
~
~
V
\
 
1
7
0
0

5

C
I

-
r
 
.
'
 
i
 
I
 
I
 
V
~
"
~
¡
,
W
'
Z
V
\
(
_
~
 
2
2
0
0
 
~ z

dW
N

W
v0

1\
12

00
 ~

'. 
;;-

Jò
J)

..-
-~

~ 
70

0
~
~
J
J
~
'
j
 
1
2
0
C

~~
11

00
_~

~~
;"

'1
22

00
5
 
1
0

M
A

R
15

20
25

JA
N

FE
B

F
i
g
u
r
e
 
4

E
a
s
t
 
a
n
d
 
n
o
r
t
h
 
c
o
m
p
o
n
e
n
t
 
o
f
 
c
u
r
r
e
n
t
s
 
a
t
 
t
h
e

f
i
v
e
 
o
b
s
e
r
v
i
n
g
 
d
e
p
t
h
s
.



31
horizontal vector velocity. This quantity for each data

series is shown in figures 5 through 9. Small tick marks

along the curve correspond to 0000 GMT of the indicated

date. At the 200 meter level there is a mean current

towards the south until about February 10 after which it

turned towards the north or northwest. In order to show

more detail for that portion of the curve where it traces

over itself, the second, smaller curve in figure 5 shows

part of the curve expanded by a factor of two. Pro-

gressi ve ve~tor diagrams for the remaining four data series

are very similar in overall appearance, being directed'

towards the south-southwest until about February 17 and

towards the west-northwest thereafter . Since the direc-
tion sensors of the deepest instrument were not function-
ing properly after February 20, the rough agreement of

this series with that above it after that date may be

fortuitous. The long term drifts are thus well cor-

related between the various pairs of records. All show

a sudqen shift in the mean flow on about February 16,

except at the 200 meter level, where the change occurred

some six days earlier.

It is clear at once from the basic data series that

there is an enormous concentration of energy near the

inertial frequency f in aii the data series. This is
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shown quanti tati vely in figures 10 through 14 where

spectra of each of the data series are plotted. The

quantities plotted are the kinetic energy spectra,

defined as the average of the autospectra of east and

north current components. Spectral analysis techniques

are well known so that the procedure used can be sum-

marized briefly. The Cartesian component of each data

series was. broken into four sections, each of which

contained 1024 samples. Each section was then Fourier

analyzed and the resulting Fourier coefficients smoothed

according to the usual procedure

a ~ =n
i. a. i +
ib n-

2

ib
an

i
ib an+ i

with a similar formula for b , where a ~is the smoothedn n
estimate and the a the original 

estimates . Such smooth-
n

ing provides a convolution window for the spectrum .which

behaves as.ymptotically as 
the inverse sixth power. of

- frequency, which is- sufficient, to resolve most of the
high-frequency spectrum except in the immediate vicinity

M
L"-

:r

of the inertial peak.

The procedure used yields frequency resolution of

.004 cycles per hour (1/2 56 hours). According to the

usual statistical argument, the resulting spectral

,. ~
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estimates would be 
distributed according to chi-squared

with four degrees of freedom for each data section since

there are two Fourier coefficients for each of the two

scalar series. However, since the two series are nearly

perfectly coherent near inertial frequency, only two

degrees of freedom can be assumed in that frequency band.

Hence the resultant spectrum is considered to be dis-

tributed according to chi-squared with 16 degrees of

freedom except near inertial frequency where there are

only 8 degrees of freedom. For the former case, the
true spectral values are expected to be wi thin a factor

of 0.45 to 1. 85 of the computed values at the 95% con-

fidence levels and for the latter case, the correspond-

ing factors are 0.30 and 2.38. Statistical stability

of the spectral estimates has been sacrificed to some

extent to give greater frequency resolution. Still

it is clear from the plotted results that the width of

the peak at inertial frequency is not resolved since it

is defined by only two or three estimates.

It is of interest to note in passing that all

spectra show the same characteristic shape at fre-

quencies above inertial as do those measured at Site D

and elsewhere. Harmonics can be seen at multiples of

inertial frequency, presumably due to clipping caused

by rotor stalls and leakage from the main peak.
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A different view of the spectral content of the data

is afforded by figure 15 where the same spectra have been

recomputed .wi th maximum frequency resolution and plotted

on a log-linear scale in the vicinity of the inertial peak.

This can only be done at the expense of statistical

stability, -which, according to the discussion just given,

results in estimates distributed according to chi-squared

with 2 degrees of freedom. Note that the spectrum of

the 2200 meter measurements has only half the frequency

resolution of the others since the series is only about

half as long. The apparent structure shown near inertial

frequency::canbe explained on the basis of statistical

instability, or by time varying properties of the signal,

as well as by the signal having the indicated structure

in a deterministic sense. One way o~ characterizing

these spectra is through their value of Q, defined as

the frequency width of the spectral peak divided by

its central frequency. While values of Q are sometimes

used as an indication of the extent to which damping is

present in a:highly tuned resonator , it is given here

only as a guide to the sharpness of 
the spectral peak.

The spectra of figure 15 show half-power bandwidths

roughly equal to or double that imposed by the spectral

analysis, which is O. OOI cy cles per hour (1/1024 hrs.),
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indicating ..that the peaks are still not well resolved.
The corresponding estimates for Q range from 25 to 50,

which should be thought of as representing lower bounds.

The kinetic energy spectra do not indicate the

extent to which the currents are circularly polarized,

although it is clear from the progressive vector diagrams

that the curr.ents corresponding to inertial frequency

have a strong rotary component in the clockwise direction.
,

Documentation of the circular, clockwise character of

the data is provided by the following scheme which is

essentially due to Mooers (1970, Appendix III).

Given. series u and v, corresponding to east ~nd

north components or current res,pecti vely, define the
compi~:i, çi,rrent U by U = u + i v. The n-th Fourier com-

ponents U of U may be represented asn

Un

iwnt
=Ane +A-n

-iw t
e n

with complex. coefficients An and A_n The currentiwnt .
e repr~$ents a current of unit magnitude rotating

"

l
:4

in a circular :counterclockwise sense and ,in 

the rep-

resentation for U , A defines its amplitude and phase.'. n n
Similarly, A defines the amplitude and phase of the-n
circular, clockwise-rotating component of Un. The

coefficients An and A are defined in terms ~f the-n
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real Fourier coefficients of the u and v series as follows:

An = ~ ( (aun + b vn) + i (avn - bun) J

A
-n = ~((a - b ) + i(a + b )Jun vn vn un

where aun' bun are respectively the Fourier costne and

sine coefficients of series u for frequency wn' and

avn' bvn' ,are the corresponding coefficients of series v.

The valuesaun' etc., are recoverable given An' A_n,

which shows .that the decomposition given for Un is the

most general possible. It is now reasonable to define

the spectrum of U at frequency wn as

SUU(Wn) = A A *
n n

SUU(-Wn) = A A *
-n -n

where the-overbar denotes ensemble averaging and * denotes

coniplexconj ugation. Thus at pasi ti ve frequencies, SUU

measures tee clockwise energy. By applying the

expressions for A and A , and making use of the usualn -n
spectral relations
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. 48. Puu(wn) 2 2
:: -a + bunun.

p vv ( wn )
2

+ b
2:: avn. vn,

Quv(wn) :: aun b - a bvn vn un

where P , P are the autospectra of u and v respec-uu vv
ti vely ,and Quv is the quadrature spectru~ between them,

one finds

Suu(Wn) :: ~LP + P + 2Q Ju u vv uv

Suu(-Wn) = ~LP + P - 2Q J.uu vv uv

Note that the sum of these is the kinetic energy density

at frequency w. Table 1 shows these two quanti tiesn
evaluated at inertial frequency for each data serie~.

That the currents are almost totally l?ircular,c clock-

wise polarized is evident.
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Tab Ie I

Kinetic energy density at inertial frequency decomposed

into counterclockwise and clockwise constituents.

met ers

Suu( f)

2
( cm/ s e c) / c . p . h. '

SUU(-f)
2

(cm/sec) /c.p.h.

Depth

200 12. 2167.

700 4. 434.

1200 3. 164.

i 700 3. 603.

2200 9. 106.

In terms of' spectral ana:iysif?, it. is possible to

cha~acterizeto some extent the similarity between the

various records, which is apparent in figure 4, ror

example, hy computing coherence estimates between;pairs

of records. Here the coherence C between two scalar

time series, say thè east components of two current-

vector series, is defined by

C = (P122 + QI22)~ (PiiP22 )-~
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where Pl2 and Q12 are respectively the co- and quadrature

spectra between series 1 and 2. Similarly Pii and P22

are the autospectra of series i and of series 2. (Note

that some .authors define C2 as the coherence.) The

associated:.phase e is defined as a = tan-I: QI2/P 12.

We recall. that.coherence at a particular frequency

implies a .consistent phase relationship between con-

stituents .of the two series at 

that frequency over the

data series ~ and e is a measure of that phase difference.

Table.. 2 shows the result of computing coherence

at inertial frequency between corresponding components

of various pairs of records. The records were divided

into 9 s~ctions of 128 hours each, for which the ex-

pected coherence for an incoherent,. Gaussian process

is .30 and for. which coherence greater than 

0 .56 is

significant at the 95% level 

according to Amos and
i

Koopman (1963). An exceptim. is made for the pair

involving the deepest instrument since .that instrument
failed after February 20. In this 

case , there. are ?nly
"

5 . data pieces :.and the corresponding expected and 95%

significance levels are 0.41 and. o. 73 respectively.

Also computed is the t;oherencebetween the. records 

from

200 and 1700 meter levels s~nce they are the two most

widely separated series for which there is an adequate

1 Jl
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signal leveL.

Table 2

Coherence at inertial frequency between various

pairs of current records.

Inst. Depths East Components North Components

C e C e

200 - 700 0.7 119° 0.6 1240

700 - 1200 0.2 -166° 0.2 ' -1450

1200 - 1700 0.6 -220 0.6 -290

1700 - 2200 0.6 -840 0.6 -850

200 - 1700 0.6 -1120 0.5 -1130

. All' pairs' shöwsignificant coherence except for the

700' - 1200 meter pair, even though both these series

clèarly contain "signals of very nearly inertial frequency~

This suggests that theré is not a consistent -Øhase te-

lation between .the two series ~ Examination' of figure 4

shows in fact .that the two series have nearly the same

phase during the. early ,part of the data series ~ but

nearly opposite ,phase during the last part. It has

already been noted. that there was .an apparent change

.i ,
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in the character of the records around mid-February ~

The phase estimates are more difficult to interpret,

being angular. 
averages -which, as is clear from figure 4 $

are somewhat:variable with time.

Variation of coherence with frequency is illus-

trated in figure 16 for the east components of the

series at 200 and l700 meters. It is. fairly typical of

coherence between the other pairs of series, decreas-

ing to the expected value for an incoherent process

at frequencies away from inertial.

The standård techniques which have been used here

do not give any insight into the variations of amp-

Ii tude .and phase with time which are apparent in the
data series shown in figure 4. One suspects that in

view or..the uhigh signal strength in the records that.

other techniques are possible which would yield

quantitative estimates of ,these variations. A tech-
niquefor doing this, somewhat 

loosely called complex ¡o
P

'1

-

demodulation, has been devised and is now described~

Camp'leX: Demodulation

For inertial waves, one can define the complex( ) -iftcurrent U t= u + iv = Ae . The hodograph of such

a current describes a circle in the complexu, v plane,
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rotating in. the clockwise direction. More generally,

we can also include a counter-clockwise rotating com-

ponent and superimpose many such currents with different

frequencies 0 Thus

00

u ( t) = J dw A ( w )

_00

-iwte II-I.

To be definite, it is imagined that the magnitude of

A 'is sharply peaked near w = f as is appropriate for

a signal.dominated by inertial oscillations.

Next.; imagine an idealized inertial wave e -ift.
and seek a complex coefficient D for it 

which makes it
most . c~Loseiyresemble the given signal in a least

squares sense over some interval of time 2T centered

around some specified time ~. If 2T is held rixed

throughout,. (two inertial cycles in the case .athand) ~

then the resulting quantity D(~) is called the. complex

demodulate ,0fU or of u and Vol The defining criterion

is then that

1 This definition of complex demodulation is not analy-

tically equivalent to that defined by Bingham, Godfrey
and Tukey (1967) but has the same heuristic interpretation d



1'+T

~ I De-ift -U(t) 12dt = 
minimum II-2

1'-T

or', taking d~*' where * denotes complex conjugation,

we have at once

i
D = 2T

1'+T

J
1'-T

ifte U ( t). d t . II-3

Substituting the specified expression for U and carry-

ing out some easy integrations, we finally have

00

D(1') = J dw A(w) W(w-f) e-i(w-f) . 1i-4
_00

Here W(w) is the real arnpli tude window through which

the demodulate D sees the spectral distribution A of

the signal. It is given by

W(w) =
sin wT

wT
II-5

The shape of this window, which appears so often in

spectral analysis ,is shown in the accompanying sketch.

~ _..- -
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There is also a phase shift associated with the window;

namely ( w-f) 1'.

As an .illustrative example, suppose the signal

consists of ,a pure sine wave of frequency slightly dif-

ferent from f; say, A(w) = A ô (w-f-E) so that U(t) =o .
Ao e-i (f+E). It then follows that

00

D( 1') = Ao J dw ô(w-f-~)W(w-f)
-i (w-f)1"e

_00

A WeE)
-i E-r ii-6= e

0

For E sufficiently small, we have WeE) = 1, but the

phase continues to change linearly with time at a

rate depending on the difference of the signal frequency

from the demodulation frequency.
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In 'practice) the demodulation frequency was chosen

as theine~tialfrequency at the observing latitude,

380 Ol IN, which corresponds to a period of 19. 43 hours.
The period 2T, over which the least-square fit by this

signal was.~made, was chosen as two inertial periods

and the ucomplex demodulates D( "C) were computed for

increments. in "C of one inertial cycle. That is to say,

~ portion .of :data two inertial periods in length wasT i f. f f -iftchosen. .,.h s was it by a curve 0 the orm e to
gi ve a demodulà.tè 'estimate D( "C 1) . Then the next por-

tion of .datawas chosen (in order of increasing time)

of equal. length and' overlapping the preceding portion

by one u ine~tial period or one-half its length. This

dà.tawas:.similarly fitted to give D("C2) and so on.

Hence, each'. estimate of D( "C) is completely independent

of all,others except for the two which immediately

precede and, follow it, and with each of these the de-

termining,.portions of data overlap by half their length.

i

i

I

I

I

i

The mean ,was 'also determined for each piece at the same

time the sine~wave fit was made. A linear trend was

experimentally found as well but proved to have no

significant effect on the other quantities.
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As a numerical example, a signal was synthesized

at 15 minute intervals consisting of wh~te noise which

was uniformly,distributed between 0 and 80 cm./sec.

plus a signal' having the desired rotary characteristic

wi th a magnitude or half-wave amp Ii tude of 10 cm. /sec.

and a period 
of 19.0 hours. The signal was barely

discernable in the resulting series. Results of de-

modulating .this signal at 19.6 hours (3% lower fre-

quency) in the manner described above is shown in

figure 17 as.a magnitude and phase. Exact val~~s for

magnitude .and p~ase for the signal alone are- shown by

dashed .lines. The 3% frequency difference app~ars as'

a uniform 
drift of phase with time. For the present

case, demodulation clearly defines the signal fre-

quency to within a small fraction of one percent.

More generally) the precision to which the signal fre-

quency can be. determined depends on how long it re-

mains constant and on the structure of the spectrwr

near its _peak ~ as well as on the level of noise present.

None of these factors can be known a priori for the

data being considered here but this example indicates

that if the ,spectrum is sharply peaked, 

demodulation

can be expected to give a satisfactory 

estimate of

the frequency of the peak even in the presence of

substantial amounts of noise.

- --.'- .
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Figure 17 Complex demodulate of a synthetic signal
plus noise as discussed in the text. The
demodulation frequency was 3% lower than
the signal frequency. Exact values of
amplitude and phase for the signal alone
are shown by dashed lines .
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Results of 
the procedure when applied to the data

are shown..in figure is as a magnitude and phase. The

I

I

I

~
i

t

I
!

I
.

I
,

~

right hand-series of curves are the magnitude and the

left hand ,series the 'phases with successive data series
given in..orderof increasing depth. As noted in the

preceding .example, a slow change in phase is interpreted

as a difference 
between the signal and. demodulation.

frequencies ~. This. is embodied in 

the inset at far

right which shows slope of the phase curves for various

departures..ofthe signal 
above local inertial frequency

as a per.centage of that frequency.

It ,is clear that there is a systematic departure.

fro~ .lo~alinertial period in 
the direction of increas-

ing frequency~ Particularly noteworthy is the first

part of the"data at the fourth (1700 m.) level~ wh:Lch

was pointed:.out earlier as being unusually sinusoidal

in appearance. The phase change there is remarkably

ì

I
lI
~.

II

~....

L.

uniform and,. corresponds to a frequency three percent

above inertial. A similar trend' is 
apparent in' the

other four curves during 
about the first three 

weeks

of the data ser.ies. Also of interest during this period

is the difference in phase between the various pairs

of curves; ,the two upper curves have nearly the same

phase at any given time and the three lower curves
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also have rou¡slily the same phase, but these two phases
differ from one another by about 180o. Those portions

of data for which the phase estimates seem least stable

correspond in general to intervals where amplitudes

are quite small.

~hus the demodulation method gives more easily

interpretable ~results than do the spectra in figure 15

for this particular set of data. A frequency shift is

suggested tn all of the spectra, but no quantitative

estimate of it is. possible even with spectra computed

at maximum frequency resolution.

Two final points should be noted. Firstly, data

from the bottommost instrument cannot be used after

February 20 since directions are not available after

that time ~. Secondly, the demodulation technique used

here is so successful largely because of the very sharp

single .peak .present' in the spectra. The spectral . .~.

....".-:'---

window implied by the procedure is not a very good one,

at least by the standards of conventional spectral

analysis, .and so cannot discriminate wellagainst,sig-
nals at other frequencies.

Some ,success has been achieved using the method

at Site D where a strong tidal peak is present by

adj ustingthe demodulation interval (2T) so that the
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spectral window . (W) -has a zero at tidal frequency when

demodulating an inertial signal. The results are not

as clean as those shown here but suggest a shift towards

high frequencies of the inertial energy.

Supporting .data

A hy.drographic station was made immediately after

the mooring was set using a Bisset-Berman STD to a depth

of 1500 meter.s. This has been combined with a conven-

tional hy.drographic station (AII-1273) made a few hours

later at. 40~N 6~E; The two are shown together in ,figure 19,
with Station 1273 ha~ingbeen used below 1000 meters.

Temperatur.e' points read from theSTD trace at points

between .which.the trace was nearly linear are shown by

solidround:,dots and those from Station 1273 are denoted

by solid. squares . Correspondingly determined values

for salinity. are denoted by x' sand + 's . Note the. good-r,,-:
. agreement in .the region between 1000 and 1500 meters.

where the,twö.measurements overlap.

These data were used to comDute the stability or

Brunt- Väisälä frequency as a function of depth shown

in figure 20. The plot is made on a displaced

logarithmic scale in the vertical so that details may

be seen in the surface layers. Open circles indicate



-
CI~
Cbi-
Q)

.§
:il-
ci
IJ
Q

Figure 19

3000

x\
.

I T
x_ .-e/~~. )(. "-
\ X~~X,

x

\
x

ix

j
.t

1
x
+
i

+
.

+
+
.
+

38.4

.
\.
i

./.
i.

i.,.
T,
i
\.
\.\..

37.6 38.6 %038,0 38.237.8

13.0 14.0 15.0 °C

Temperature and salinity vs. depth. Circles
and x's show temperature and salinity res-
pecti vely from an STD lowering made at the
observing site when the mooring was deployed
Squares and +' s are corresponding data from
All station 1273 at 400N 6°E taken 

several
hours later.



o
o

100 0
o

o 0



66

depths at which temperature-salinity pairs were tabu-

lated for .the' stabili ty computation. They are useful
primarily .in the deep water where the constancy of the
stability.prevents the tabulated depths from being

apparent; the .uniformi ty of the deep stratification is

not due to any lack of depthwise resolution in the

observational .data. Depths corresponding to cùrrent.

meter levels '.are marked by an x. Stability was com....

puted from, the equation of Hesselberg and Sverdrup

using Ekman' sequation of state for seawater (Fofonoff,

1962). .Sincei t depends on gradients, the stability

is determined as .. a piecewise constant 
function between

tabulat:ed,depths. 'The stability frequency plays an

important role' irithe dynamical arguments. which foL,low,

and it .is' unfortunate that additional determination
of it .could '.not have been made. This was ,due to

scheduling.of .'.shipand personnel, whose primary 
com-

mi tment. lay ..inexploring the. hydrographic : 
properties

of the . Mediterranean water much further ,north, around

lati tude 42~N ~ As a result of this acti vi ty, it is

known that ,there were significant changes in the

stability of this northern region both in space and time,

believed to .be associated with wintertime formation of
deep water in the Mediterranean basin. These changes were
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confined to the northern part of the basin however and

historical data (W,HoOoIo archives) show no significant

variation of s tabili ty within the observing region,
changes being evident only in the near-surface levels

over the months during which the current measurements

were made .It is therefore reasonable to accept the

computed stability to be a fair representation over the

area of interest 0

Figure 21 shows wind measurements as speed and

direction throughout the observingperiodo These were

obtained as geostrophic winds computed from the 12

hourly pressure data at selected grid points available

through the Environmental 
Science Service. Administration

and interpolated to the observing site 0 1 The grid points

involved in 
this scheme were rather widely separated, being

at 350N 05°E, 400N OOoE, 45°N 05°E, and 400N lODE. It

can be argued both ways about ,the adequacy of this grid,

depending upon whether one 'believes deep inertial oscil-

lations to be generated by the wind, if they are at all,

through either local or large scale forcing.

The author is grateful to Christopher Welch for making
available his computer programs for carrying out these
computations 0
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Two possibly important features of the wind data

are pointed out ~ namely the storms which took place

around Januaryi4 several days before the mooring was

deployed and the stormy period in mid-February. It

is possible that the latter is related to the change
1 '

in the mean current or to the change in the character

of the inertial oscillations which were observed dur~

ing the same period. The former might similarly have

been responsible for the large inertial signal ob-

served throughout the first three weeks of

observations.

¡,
p. .~'
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Chapter III A ray theory interpretation

Techniques for tracing the flow of energy through

a slowly varying medium have evolved into. a fairly stan-

dard formalism as outlined, for example, by Whitham (1960)

and the approach used here follows quite closely that of

Eckart (1960), except that emphasis here is on local

rather than global features of the solutions. Our

attitude is similar to that of Blanford (1966) who ex-

amined, however, only hori zontal paths of propagation.

One feature inherent in moored current meter data is

sparse sampling in the verticaL. Yet it is sufficiently

dense to require that account be kept of depths 
at which

inertial-period energy may be found. Hence ,our at-

tention is fixed on vertical as well as horizontal com-

ponents of wave propagation 0

Basic equations."=-: .~
We begin by writing the equations of motion for a

rotating, stratified, incompressible fluid in spherical

coordinates where the Boussinesq approximation has been

made:
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ut - fv = - PA/Ca cos cp )

v + fu = -
p cpl at III-l

¡oJ t = -
pz

- N2 ç

w = ç.
'C

Wz + LUA + (v cos ~)~J/(a cos ~) = 0

where

f = 2 Q sin ~ is the coriolis frequency,
1.-'

Q is the earth i s rotation rate,

~, . A, z are latitude, longitude and elevation
(measured upwards) respectively,

u, v, ware respectively east-west, north-south,
ard up-down components of velocity,

p is pressure variation about hydrostatic
di vided by the mean density,

z; is vertical particle displacement from
equilibrium,

a is the radius of the earth, and

N is the Brunt-Väisäläfrequency, defined by
N2 = -gpz/p

wi th p = p (z) the in situ density and g the acceleration
of gravity. The horizontal component of earth's rotation

is neglected here, an approximation which is discussed
later in this chapter and more fully in Appendix I.

~

These are essentially the equations used by Munkand

Phillips, for example, except that we will retain the

term wt in the third equation. It is possible to use
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them in this form and it is essential to do so if one is

interested in solu~ions valid over a wide range of

latitude. But for our purposes, where the range of

lati t~jes is limited, significant simplification is

~
lI

possible,
Define local Cartesian coordinates x, Y with re-

spect to some reference point ~ , À byo 0
x ; a(À - Ào) cos ~o; Y = a(~ - ~o).

Then making the approximations (all in the

continuity equation)

cos ~ ~ cos ~o

sin ~ ~ sin ~o

and v tan ~o
(: (: v

y

the equations become

ut fv + Px = 0

vt + fu + Py = 0

wt + Pz + N21; = 0 1II-2

r;t w = 0

u + v + wx Y z
Finally, so that f may have a simple dependence on y,

= a a

we may make a Taylor expansion of f about ~ which foro

small values of y leads easily to

f ~ fey) = f + ßyo
1II-3
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where f = 2n sin e , ß = 2n cos e la. These are sub-o 0 0
stantially the same equations as used by Blanford (1966)

and constitute what may be called the non-equatorial beta-

plane approximation.

Another way of viewing the approximation is that

the chief neglect is of the convergence of the meridians

towards the poles. At the latitudes of ~nterest (~ 380)

the meridians converge only by about l% per degree of

latitude, again indicating that the approximation is

satisfactory. More important is that the latitudinal

dependence of Coriolis force is retained since this
variation determines behavior of the solutions having

near-inertial frequency, as will be seen.

The phase function

We seek solutions of the form

(u, v, w; p, 7,) = (U, V, W, p, Z)eiCP iii-4
where U, V, W, p, Z, and the phase function cp are all,

in general, functions of x, y, z, t. Note that if f and

N are constant then U, ..., Z may be taken as constants

so that cp has the simple form

cp = kx + £y + mz + wt.

Substi tution into the original equations then gives the

familiar dispersion relation for inertio-gravi ty waves

(k2 + £2)(N2 _ w2) = m2(w2 - f2). 1II-5
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Of interest here is the more general case f = f + ßyo

and N = N (z). Nevertheless, to the extent that f and N

are not rapidly varying, we suppose that U, ..., Z vary

only s lowly in space or time compared to ~. Thus we

neglect derivatives of U, ..., Z with respect 
to those

of ~; e.g.,

Ux = CU + iU~ Jx x i~e ~ iU~ ei~x ' etc. iii-6
,;

This approximation, known as the WKB approximation,

is the standard one in ray theory. Quite recently,

attention has been drawn to the fact that in the case of

inertial period motions there is necessarily a region,

the' size of which depends on the parameters involved#

where the approximation breaks down. Approximation- ii1-6

is essentially a short wavelength assumption., while, re-,

ferring to the dispersion relation I1I-5, we see that as

f approaches w, corresponding to _a wave group 
travelling

northward, it follows that the horizontal scales become

unbounded. Or, in terms of the phase funetion, jx and jy

vanish, invalidating 111-6. . The extent of the region

where this difficulty appears clearly depends 
on something

like the ratio (k2 + 12 )/m2 which cannot be estimated

atthis time. Since there is no hope of delimiting the

region in which ray theory is valid without some knowledge
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of the spatial scales involved, the issue is not pursued

further. Instead, the theory is assumed valid over a

sufficiently large region for present purposes. In the
next chapter, a quite different approach is followed,

not depending on the approximation 1ii-6.
Now substitution into the equations III-2 yields

iU'Pt fV + . PcP = 0i x

i V'P t + fU + iP'P = 0
Y

i Wept + iP'P + N2Z = 0
z 1II-7

U'P + V'P + W'Pz = 0
x Y

iZ t W = 0

In keeping with the foregoing discussion, we hold that

U, ..., Z change slowly and treat the above equations

as a linear system for those variables. Hence for

solutions to be non-trivial, we require that the

following determinant vanish:

i'Pt -f 0 'P 0
x

f i 'Pt 0 'P 0
Y

0 0 i 'Pt 'Pz N2 = 0

'P 'P 'Pz 0 0
x y
0 0 -i 0 i'Pt.
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This is entirely analogous to the derivation of the dis-

persion relation and reflects the hypothesis that the

waves are locally comparable to plane waves correspond-

ing to the local values of f and N.

Expanding the determinant we have 1

(~ 2 + ~ 2) (N2 _ ~ 2) _ ~ 2( ~ 2 _ f2) = o. iii-8x y t z t .
This is of course comparable to the dispersion relation

except that Nand f are no longer constant and the equation

is treated as a partial differential equation for ~ called

by Eckart the Hamilton-Jacobi equation. Although nonlinear,

the equation is only first order and hence soluble. Fortu-

nately, we can s~ot separable solutions of the form

I = kx + wt +Q(y) + R(z) III-9
and the indicated dependence in x and t could have been

assumed at the outset.

If the horizontal component of rotation is retained

in the original ,equations, separable solutions are not t
!

possible unless, for example, N is constant. This is

not an interesting case in terms of interpreting our data,

but can be used to explore quantitatively the consequences

1 A spurious factor of ~t has been dropped in iii-B. In

a more exact treatment, this factor is associated with.
Rossby waves.
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of neglecting horizontal rotation. Carrying out the

relevant calculations in Appendix I ,we find the con-
'-

sequences to be negligible and we are amply justified in

our approximation by the enormous simplification which

results.
Upon substituting III-9 into III-8, we find the

following equations for Q and Hi

f 2 (k 2 + Q' 2) _ S 2 (w 2 _ f2) = 0o

III-IO
and f 2R'2 -' s2(N2 - w2) = 0o

where s is a separation constant of dimensions l/length.

The first of these can be integrated analytically since

f has such a simple dependence on y (f= f 0 + ßy) but
the second must be done numerically since N(z) is given

only in tabulated form. For the moment tliis quadrature

is simply indicated and the phase function CP is taken

as known;

Q = Q(y; w, k, s)
y

= · y J
i

( S 2 (w 2 _ f 2) f - 2 _ k 2 J ~ dyo

z

R = R(z; w, s)-:t J

zl

III-ll
(s2(N2 - w2) f -2J~ dzo
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where y l' zl are essentially arbitrary constants which

we will eventually take to be the origin of a ray path.

Ray paths

Knowing the phase function, construction of the ray

paths is straightforward, proceeding in the manner des-

cribed by Eckart (19 60) . The rays will have the pro-

perty of being everywhere parallel to the group velocity

and so have the interpretation of being the lines along

which energy propagates. By proceeding from first

principles it is possible to arrive at simple analytical

expressions for the rays ~

Consider the sum of two wave-like constituents of

the motion having slightly different values for their

governing parameters; thus, for example,

u = u(exp i(k"'x+w"'t+Q(y;w" ,k'" ,s"')+R(z;w'" ,s"'))

+ exp i (k"x+w"t+Q (y; wll,k" , s ,,')+R( z; wll,.s") J)

where we have assumed that the amplitude U is not 
strongly

dependent on theparameters w, k, s, and 
where k'" = k + 6k

k" = k - ok, etc., for some suitably small values of ok~

ow, and os.
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We may then write by Taylor's theorem

Q (y ; w ~ , k ~ ,s ~ ) = Q (y ; w , k , s ) + ~ ~ Ô w+ ~ ~ ôk + ~ ~ ô s

and similarly for R, neglecting higher order terms.

Substituting these into the expression for u we find

( aQ aQ aR aQ aR Ju=2Ucos (ak +x) ôk+ (aw +~t) ôw+ (~ãš) ôJ

.exp i(kx+wt+Q(y,w,k,s)+R(z,w,s)J. III-12

Thus the result resembles a wave having properties or

the mean frequency and wavenumbers, but modulated by a

carrier which is a slowly varying function of space and

time. This is entirely analogous to the usual derivation

of group velocity, except that the phase function is some-

what more complicated here, having other than linear de-

pendence on the y and z variables. Energy is effectively.

trapped wi thin its envelope and hence moving with the

envelope. From the final expression III-12 for u, the

envelope is seen to move according to:

aQ = Xl xak
-

aQ + aR R-i III-13=
as as
aQ +,2B = ti - t.
aw dW
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With Q(y) and R(Z) known, the first two of these deter-

mine a surface in x, y, z space in which the energy must

travel and the third the travel time. Here Xl' ~l and

ti are constants which are chosen so that the energy

passes through a given point at a given time.

Carrying out the indicated differentiation of Q and

R, one may write more explicitly

y

x - xi = :trf 0 .. J (w2
Yi

i

_ f2 _ r2 f 2 J-~ dyo

Jy~i = :tl/f 0
Yi

i.

(w2 _ f2)(w2 _ f2 - r2 f2J-~ dyo

111-1J

:tl/fo

Z

Jzi

/
Yi

(N2 ;. w2 )+lz dz

t - t = :¡:sw/fi 0 (w2 _ f2 _ r2 f 2 J-Jz dyo

Z

:!sw/f 0 J
zl

k
(N2 _ w2 J- 2 dz

with r = k Is. We see from these that any ray, cor-

responding to a specified value of rand s, .will pass
through the point Xl' Y i' zl at time t i if ~l = 0
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which we now assume e The two integrals in y can be car-

ried out analytically:

fiw2
2 2 _k i k- f - r fo J ~ dy = ß sin-i (f (w2 - r2f02)-2J

and )(w2 - f2) (w2 _f2 - r2fo 2 J-~ dy III-15

= ~(W2 + r2f 2 )/ß sin- i (f (w2 _ r2f 2 )-~Jo 0
k+ ~f/ß (w2 - r2 f 2 - f2 J 2o

Geometry of the rays is determined entirely by the

first two of the equations III-14, which depend only on

the single parameter r. Thus for each value of r ~ there

are in general eight curves which pass through the ray

source xl' Yi' zl corresponding to the various choices

of sign. Four of these increase in Z as x and y increase

away from the origin and so are rej ectea since, the ray

origin is taken to beat the sea surface . The remaining

four curves are symmetrical about the plane x = xl" re-

ducing to a pair of lines. lying in the plane x =xl when

r = O.

Each ray has a northernmost limit which is charac-

terised by vanishing of the radical in the expression

III-I5, corresponàing to a latitude above which waves
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of the prescribed frequency cannot propagate. This extremum

is given by

1:

Y = (:t(w2 _ r2f 2) 2 - f J/ß.ext 0 0 iii-16

The negative sign yields extreme or turning latitudes having

very large negative values for y. These correspond to south-

ward-bound rays which would reach turnin~ latitudes in the

southern hemisphere if it were not for the Algerian coastline

from which they are reflected northwards in the present case.)

For the moment, these rays are ignored and we concentrate on

the northward-bound rays which can arrive at the observing

site without undergoing reflections.

Since the two northbound rays are symmetrical, it suf-

fices to plot only one of them. This is done for a single

frequency w = f and various values of r in figure 22. The'o

solid lines emanating from the chosen origin 'are the rays

which may of course be shifted east or west without change of

shape corresponding to a different choice of origin. Note

that r acts as a steering parameter determining the ray direc

tion. Solid lines intersecting the rays are lines of constari

depth as indicated. Thus energy input at the chosen point

can be expected to. spread out along this surface ,withdif-

ferent values of w corresponding to different surfaces and
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values of r determining direction within each surface.

Also shown in figure 22 are dashed lines intersecting

the rays. These are determined from the third of the equa-

tions iii-14 and are proportional to travel time from the

origin. Note the crowding of these lines near their northe

mos t limit, especially for r very small. Such crowding

corresponds to a bunching up of the energy in the correspon

ing region; hence the case r ~ 0 is of particular interest.

Although a ray point moves increasingly slowly as it moves

northward, the travel time to its turning latitude is not

infinite, even for the case r = 0 when the group velocity

vanishes at the northern limit. Rather, the energy travers

the path in a fini tetime and is eventually reflected south

ward' again.

Ambigui ty in the travel time is apparent in the govern

ing equation, for it depends not only on the parameter r

which defines a ray for a given frequency, but also upon tt

separation constant s. In fact, travel times are propor-

tional to s, which we do not know ho~ to estimate~ Hence.~

deep inertial oscillation which arrives from the ocean

surface without having undergone reflections- can bétraced

back to a fairly well defined region of the surface

(depending upon how accurately its frequency can be deter- .

mined) but we cannot know,how long ago it origina ted.there

This is a severe handicap for the ray theory, whichpreven1
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establishing a direct relationship between deep inertial

currents and meteorological processes.

The special geography of the Mediterranean is poten-

tially quite important at this point, for the Algerian

coastline places a limit on how far to the south the

inertial energy can be generated. Thus there is a maximum

depth to which energyarri ving at the observing site

directly from the surface (without reflection) can reach.

Below this depth there is a shadow with respect to direct

arrivals from the sutface ria~t by the coast, below which

energy can arrive only by having undergone one or more

reflections. Of the rays with near-inertial frequency

originating 'at the surface, those which do not travel

northwards will intersect the coast and be reflected back

into the hypothetical shadow zone , perhaps having been

attenuated. This possibility is now explored.

That energy flow into the region' of interest is possible

through reflections of rays from the coast can be seen

geometrically. Neglecting the east~west component of wave-

number k in the dispersion relation III-5, the e~pression.

can be rearranged into the form

mi
i

k:
i( (N2_W2 )/(w2_f2) J 2 = tan e
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where e is the angle of the wavenumber vector wi threspect to

horizontal. From the observed frequency and the value of f

corresponding to the latitude of the coast ~ we have w/f = 1.05.

Then if N = i. 0 cycle per hour ~ the corresponding value for a

is 89°; i. e. the wavenumber vector is about one degree from

verticaL. Thus for the particular frequencies chosen, the

dispersion diagram in the i,m plane is "X" shaped (or double

cone-shaped in'. three dimensions) with a sharp vertex. It is

apparent that as w increases towards f, the vertex becomes

increasingly sharp and e approaches 90°. Hence since the

group velocity is the gradient in wavenumber space. of the

curves corresponding to constant frequency, it is directed

perpendicularly ,to the constant-w curve and with a component

towards the maxis.

In figure 23(a) a line OB having the same angle ~ as

that of the coast, estimated to be about 5°, is drawn

through the origin in i,m space. (The angles drawn are

exaggerated for illustrative purposes, but their qualitative

interrelationship is correct.) Also shown are 
the loci

satisfying the dispersion relation for frequency w. The

short arrows at the extremities show the 
direction ~fthe

p;roup velocity appropriate to each branch of the dispersion

curve. A perpendicular to OB is constructed through the

point K.. In. order that incident and reflected waves canceli

Li
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on the reflecting boundary, they must have the same frequenc;

and their vector wavenumbers must have the same projection

onto the line OB. Hence if OK. is the incident vector, theni
OK must be the reflected, account being taken of the associr
ated group velocity directions. Rays directed southward fro

the surface and reflected at the coast are thus directed dow

ward after reflection. Incident and reflected rays form equ

angles with respect to the horizontal rather than with respe

than the wavenumber vector, in which case, the reflected

energy is directed upwards. In the present case, this does

not happen unless the frequency exceeds about 0.1 cycles/hot

In appraising the relative importance of energy arri vii

by direct arrival from the surface and by indirect arrival

after having undergone one or more reflections, it is neces.,.

sary to consider dissipation, dispersion and possible absor'

tion during the reflecting process. The first two of these

are increasingly effective as the distance in:-reases .which

ray must travel before its critical latitude is reached.

Dissipation, say by viscosity; will be more effective throu

the increased travel time and will be particularly effecti~

for motions with high ¡.¡avenumbers and hence large shears.

this respect, it is significant that the typicalreflectior:

case cons idered in figure 23a results in a re fIe cted wave



89

wi th wavenumber higher than that incident. The increase in

magnitude of the wavenumber vector is given by -cos(~-e)/

cos(~+e) which, for e = 89° and ~ = 5°, amounts to about 1.5.

For reflection from the deep bottom where the slope is about

0.20 a similar elongation takes place, reflection being about

the vertical. Hence for downward propagating rays, the first

reflection is always such that the wavenumber vector is

lengthened, although not by a very large amount. For unstrati-

fied fluids, a similar effect has been examined in detail by

. O.M. Phillips (1963).

A related phenomenon is shown in figure 23 (b) where it is

seen that the incoming parallel rays reflected from the coast

ha ve the spacing beti...een them reduced, corresponding to an

increase in the local 
energy density. The increase in energy

density is given by the same factor as before, being about

1.5. A striking example of this mechanism in the non-rotating

case in the laboratory has been reported by Sandstrom (1969).

Dispersion through spreading occurs in two ways ~ firstly

because energy constituents traveling along a ray may have

different travel times and secondly, if the generating region

is localized, there will be roughly radial spreading of ener~

away from the source. Both effects will contribute to lower

the energy level at the observing site due to energy arrival

from a particular source of a particular time and can pre-

ferentially discriminate against reflected arrivals. Howeve~

Ii d._ II

'-
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if energy introduced near inertial frequency persists suffi-

ciently long for it to travel without substantial attenuatio

between boudnaries defined by the coast , critical latitude,

and ocean top and bottom, dispersion will not playa signifj

cant role in lowering energy levels at great depths. EnergJ

would in fact be dispersed throughout the water volume,

having undergone repeated reflections from the bounding

surfaces. It is this possibility which raises doubt about

the reality of a shadow zone and even about the appropriate-

ness of the ray approach. No definitive theoretical argumei

either way appears within reach.

The final possibility mentioned above for rays reflectE

from the coast is that they will be attenuated there in the.

sense that the reflected energy is less than the incident.

The ratio of transmitted to incident energy can be conven-

iently described as the transmission coefficient of the

surface. Recently, Longuet-Higgins (1969) has evaluated th
~~.i

;'~

~
:l-\reflection properties of various kinds of non::planar,bound-

aries, showing that the transmission coefficient is an

extremely complicated function of the geometry of the

reflecting surface and that even small irregularities in

the surface can produce large changes in the transmission

coefficient. Although Longuet-Higgins 'resul tsarederi ved

for the case of no rotation, his technique is applicable tc

the present case and similar conclusions hold. But applica
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tion of the theory to a particular irregular bottom would be

difficult at best, and in any case, our knowledge of the

Mediterranean bottom is not sufficiently detailed to carry

out such a program.

Thus the conclusions to be dra1fn about energy propaga-

tion along rays purely from theory are a rather mixed lot.

The possible existence of a shadow has been pointed out,

depending on dissipation rates for inertial oscillations and

on the detailed shape of the Algerian slope from which rays

must reflect in order to reach deep water at the observing

si te. In a recent paper Larsen (1969) has pointed out that

the existence of a pure shadow zone in which there is no

energy at all is not tenable from the point of view of

energy flux even though such a shadow is implied by ray

theory. This is because in order to synthesize the shadow

exactly by a normal mode expansion one must include modes

propagating in from infinity towards the ass umedsource

region, thereby violating the radiation condition. Neverthe-

less, Larsen' s. ~olution, found for a non-rotatig ~ ~uniformly

stratified channel of constant deDth (except for a thin

barrier) and synthesized from the first 300 normal modes,

does not differ quali tati vely from that obtained by the much

simpler ray approach. In particular, the laboratory experi-
ments of Sandstrom (1969) mentioned earlier do not permit one

to distinguish between the two theories.
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We next turn to an examination of the data in the light

of what has been said about ray theory.

Application of ray theory

There are two complications in interpreting the data on

the basis of ray theory which have so far been glossed over.

These correspond to inadequate 

knowledge of wand r. It is

to be expected that the rays will be quite frequency depen-

dent since a small change in frequency corresponds to a

fairly large change in turning latitude; at Mediterranean

latitudes, a 2% change in frequency corresponds roughly to a

I degree change in turning latitude. For the special case

r = 0, corresponding to rays traveling due north, figure 24

shows rays of various frequencies originating near the

Aigerlian coast as computed from the measured stratificationr '
shown earlier in figure 20. Recall that these mark the limit

below which one does not expect to find energy at inertial

frequency, at least for the case r = 0, which has arrived

directly from the ocean surface. They are lab~ited according,

to the turning latitude for a ray of given frequency and alse

according to the percent by which this frequency is greater

than inertial. For this particular case (r = 0) we find tha1

energy of the observed frequency of I. 03 inertial would not

'penetrate to the 1700 meter level where it was in fact
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observed. The case r ~ 0 is there fore considered next.
Unless r = 0, a ray having frequency exactly corre-

sponding to inertial frequency of the observing latitude

cannot reach the observing site. This can be seenei ther

from figure 22 or equation iii-16. Hence the case of

interest involves taking w ~ f andr ~ O. Suppose oneo

then plots the ray for a specified frequency (~ f ) whicho

has its turning point at the observing site as shown in

figure 25. We see at once that these rays penetrate more

deeply than do those for r = O. The value of r chosen is

in fact the largest possible for which a ray of the speci-

fied frequen'cy will reach the observing latitude. The ray
thus defined also reaches the greatest depth at the observi

site. From the figure it can be seen that a frequency shlf

of 2% or more permits energy to propagate to all depths

where measurements were made. Waves of higher frequency ca

also pass through the site, so that 2% is the minimum fre-

quency increase required for directs~rm arrivals at the

deep instruments, but any higher frequency will do. Again

it is argued that those rays closest to inertial frequency

are the ones with which the largest amplitudes are associat

by virtue of their slow propagation rate near the turning

latitude. Consequently, what one expects to see as a resuJ

of direct arrival from the surface is a band of frequencie~
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of I. 02 fo and higher, but weighted towards the 1.02 f limit.

In a gross sense, this is what the data shows; there is

a small frequency shift near 200 meters depth of about 1%,

at least on a long-term basis, and a larger shift of about 3%

at greater depths. The percentage shift above inertial fre-

quency is slightly ßrger in both cases than might be expected

if one were observing a band of frequencies centered around

fo at the upper instrument and 1.02 fo at the lower ones.

Also, the very low amplitudes characteristic of t.he deepest
instrument might be considered as due to the hypothesized

shadow zone. But there are also some disturbing discrepan-

cies between observation and ray theory. There seems no

evidence for a slowly increasing frequency with depth which

might be expected from theory; the data at 700 meters shows

as much of a frequency shift as the deepest instrument and

even at 200 meters the early part of the record suggests a

comparab Ie shift. As pointed out previously, frequencies

this high are not excluded by th~ theory, but if the excita-

tion were broad-band in frequency, which seem~most reason-

able, the observed signal would consist of a band of

frequencies ~ the mean of which would change slowly towards

higher frequency as the observin~ depth increased.

Ray theory thus gives some insight into how inertial

\,enengy may propagate in the ocean and it partially explains,the observed increase in frequency with depth. In the hope
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of understanding additional aspects of the data, such as the

variation of phase with depth, normal modes are next investi-

gated.
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Chapter iv Normal mode analysis

Solutions to equations III-lor III-2 have so far

been forced into a particular form so that the flow of

energy could be traced. The form of the solutions was

seen to correspond to a short-wavelength approximation

and, consequently, the existence of boundaries did nòt

affect the solutions except to block the flow of energy

into certain regions. Solutions 
investigated in this

chapter have quite a different nature, depending in an

essential way on the shape of the basin in which they

e xi st.

Equations III-l have separable solutions. of the

'-

form

u = ei(sÀ - wt)u (~)u (z)2 'l 3

etc.

with a corresponding separation for equations III-2.

This fact combined with the simple boundaries of the

Mediterranean region where the observations were taken,

make it particularly simple to explore effects of these

boundaries. With reference to figures i and 24,

reasonable approximations to the irregular boundaries

are seen to be a 
vertical , east-west wall along ~ = 37°

and a flat (z= constant) sea floor 2800 meters below
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the surface. Under these assumptions, the boundaries

fit naturally into the separation scheme outlined above

to make the problem completely separable.

A particularly elegant and complete separation of

the equations of motion in spherical geometry (III-l)~
has been reported by Munk and Phillipsf Rather than go". .
through a complete derivation here of the corresponding

separation for the beta-plane approximation used ine rJ
Chapter III, that given by Munk and Phillips is used.

That both approaches yield basically the same result is

shown in Appendix II inasmuch as both yield the same

Airy function dependence in the north-south direction

in the vicinity of the critical latitude. Thus a unify-

inglink between investigators using spherical and beta-

plane geometries is provided by the appendix.

Vertical structure

For reference purposes, the Munk-Phillip~ analysis
,

is briefly summarized. With omission of the term wt in

equation III-i, solutions in the following separated .form

are sought

~ U(~)
~ = naRe Z (z )exp i (s À - wt) iV( ~)p naP ( ~ )

IV-i
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~:1
= QaRe W(z) exp 1(Ú _ wt) p(~)ri 1

Ll/wJ

where the variables U, v, w, P, Z define variation of

the indicated variables in either the vertical or

lati tudinal directions, An equation for W is then found

.to be

W + ( y N /2 an ) 2 W = 0zz
iV-

where y is a dimensionless separation constant.

Boundary conditions on W at the free surface and bottom

are respectively

W -g(y/2an) W = 0z
iV-

and W = o.

The analysis here departs from that of Munkand

Phillips in that instead of making a WKB or short-wave-

length approximation in solving the equation for W, it

is solved numerically with values of N (z) as given in

figure 20. This reflects the primary concern 
of this

chapter with lower modes. Solutions to IV-2 and IV-3

are not possible for arbitrary 
values of y, but only
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for discrete values Y = Yn' n = i, 2,
, each cor-

responding to a different solution Wn (z) and thus iden-

tifying the n-th mode. This much is known from classical

St urm-Liouville theory. Once a particular W is knownn

which describes the vertical dependence of w on z for

a particular mode, then the corresponding vertical de-

pendence Zn of u, v, and p can be found from

Z =n
4a dWn

ay2 dz

IV-4

As a practical matter, N (z) is known only as a

piecewise constant function. Hence, in an interval where

N is constant, IV-2 has sine and cosine solutions, the

coefficients of which can be related to those of the pre-

ceding layer by requiring that Wand Z be continuous a-

cross the common interface of 
the two layers. This cor-

responds to continuity of vertical displacement and

pressure respectively across the interface. With two

coefficients in the top layer related through IV-4 but

otherwise arbitrary, IV-2 can be integrated in this

fashion from top to bottom. This procedure is repeated

for various values of y until a value is found for which

the bottom boundary condition is satisfied. Then Tv-4

cwl be solved for Z, again giving trigonometric solut-

ions in each layer.
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The results of this calculation are shown in figure

26, in which ,vertical structure of horizontal currents

are plotted,for the first five modes; that is Z (z),n

n = 1,.... y 5~ .Accompanying each of these curves are

five horizontal line segments at depths' corresponding

to the five observing depths. Hence the length of

each line segment within a given mode represents the

maximum .horizontal velocity reached relative to that

at a different, depth. Comparison between modes is 
not

possible -since each may be multiplied by an arbitrary

scaling .factor. In the figure, the curves have been

normalized to ,have the same maximum amplitude, not the

same total energy.

Table 3

Vertical..separation constants y corresponding to then

first few vertical modes.

mode y

0 5.

i 539.
2 957.
3 1314.
4 1728.

5 2 i 70.

102
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Values. found for the vertical separation constant y

for these .modes .plus the barotropic mode (n = 0) are

shown in Table 3. The dimensionless quantity y. is a

measure of. the vertical wavenumber m which for the

case of ,constant Nis .given exactly bym =' 'yN/2an.

With N = 1.;0 c.p.h., we note that the barotropic mode

. -1yields m ~ .130 km . The vertical wavelength is
thus much ,greater than, the water depth, corresponding to
the fact .that the horizontal velocities for this. mode

are es'sentially constant 
over the water' column. Such

a large value ,is admissible and in fact required by

the free ._surface. Ho~ever, referring to the dis-'

persion .relation III-5, one finds that for w = 1. 03f,

the corre~ponding horizontal wavelength is' on the4 .order .0flO kilometers. It .therefore seems dotibtful.
that the barotropic' mode plays a significant role in

the present .si tuation.
For data' sufficiently densely sampled in the

vertical, it is .possible to make a formal decom-

position .of .theobservations into modes 
by using the

fact' that the ',modes are orthogonal.; that is, after,

being suitably scaled, they have the 
property

104
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__ ~io if n = m

Z (z) dz
m

otherwise

where h is the ocean depth. But in the present case,

there is not a sufficient number of instrument levels

L

I

I

I

I

I

I

I

I

I

I
I
I

to carry out this procedure. High order modes (high

compared with the fifth say) cannot be distinguished

from lower modes . Nevertheless, comparing predicted

amplitudes .and phases at the five observation depths

for the third mode with those given by either ,the

Cartesian components (figure 4) or the complex de-

modulates (figure 18) shows a very suggestive cor-

relation. ' Particular~y noticeable is the phase re-
versal between 700 and 1200 meters during the first

half of the data series ¡' That the rrequency at each

of the bottom four depths. appears nearly the same, at

least on average during the first half of the series,

also suggests a single process in effect at those J

depths.

The observations at 200 meters do not fit par-

ticularly well into this simple scheme since' amp-

litudes there are somewhat higher than expected on the

basis of the third mode alone. One possibility is that

many high order modes are superimposed on a basic third
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mode structure~ Since these tend to vary with depth'
i.

as N 2, the ~OO meter depth, where N is about double that

at the other depths, would tend to have amplitudes about

40% higher from these modes than would the other depths.

From a ,completely different point of view; an

argument for the dominance of a single vertical mode

whether or not it is the third can 
be made from the .

L

I

I

I
.,
,

I
!
~

I
l

I
l

I
~

I
l

I

~

observed relationship between phases of inertial os-

cillations '.at the several observing depths. As

previously noted, the difference in phase of oscillations

between any.pair of depths tends to be either 00 or

1800, at least.during the first portion of 
data when

amplitudesare1'arge. But suppose two modes were pre-

sent so that the oscillations at any depth were the

sum of two vectors. Amplitudea of the two vectors

would be different fútictions of depth, e~ch varying

with depth in a manner characteristic of its mode and

in general _reversing phase several times within~he
water COIUInr ,At any particular instant ,"the'sum of

the two vectors at one depth would thus not in general

lie in the -same plane with that at another. Hence the

difference in phase between the two depths, which can

be thought of as the difference in the resultant direc-

tions at some instant of time, will not in general be

~-l
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either 0° OL .18ôo. This is a compelling argument con-

sidering..the many pairs of depths involved. It is now

restated -more ',analytically .

Suppo$e~two modes are present with depth dependence

ai (z) and .a2 (z), not necessarily the first and second
modes, and..have the same frequency (J. We then. may write

for the.complex current U = u + i v at each of two dis-

tinct ~epths zl and z2
I..

U(z.)
J

_ iwt( iaii lai2~= Uj -e ai . e + a2. e j =. J J.) 1,2

where aij = ai (Zj)

and aii and ai2 ,are phases of modes with depth dependence

ai and ,a2 respectively. Rewriting this as amplitude

and phase, we have in obvious notation'

i (wt + 8. )
U. = a. e J j = i ,2

J J

with a. 2 = alj 2 + a2j 2

J

and tan 8j = ~~ijSinail+a2jSinai2)/(aljcosail+a2jcosai2).

We now ask .under what circumstances the phases 81 and
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82 at the two, depths could differ by 0 or 180o that,

is tan 81 = :! tan 82. Clearly if one mode dominates :t

say ai ::::. a2 ' this will happen. It also happens if

ai - ai2 = nir for integer n, so that the modes them-
1

selves are either exactly 

in or out of phase.

It is possible to analyze the observations

directly in terms of normal modes. The procedure selec-

ted for doing this 
is based on analysis of the complex

demodulates. Resolution of the data is much better

in time than in depth, and it is appropriate to analyze

first in the time variable. Since the time variability

is known to be on the. order of several cycles and the

signal frequency is typically near 1.03f, demodulates.

were recomputed for 10 inertial periods and a demodu-

lation frequency of i. 03f. The longer time interval
gives more stable amplitude estimates and better fre-

quency resolution. Interpreting the demodulates as

the current .vector corresponding to the demodulation

frequency at some particular time, given for example

by east and north components, there then remains the

problem of approximating these components as a linear

superposition of the normal modes shown in figure 26.

The same mode will in general 
have a different 

amp-

Ii tude in each of the two Cartesian components and so
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has a phase and magnitude of its own. Phases for each

mode are thus to be interpreted as the orientation of

the plane in which lie current vectors describing the

particular mode at the time when the demodulates des-

cribe the direction of current. Because of the way in

which the normal mode values are normalized, the mag-

nitude of each mode can be interpreted as the maximum

speed attained by that mode within the water column.

Finally, the particular modes used in the approx-

imationandthe number of them must be chosen. In'

principle ~ one could pick any five modes and construct

a linear combination of them which would pass exactly

through the ~ currents (as measured by their demodulates)

at each of: the observing depths. However the, result~

ing equations do not appear sufficiently well con-

ditioned to permit this. For when it was tried with

the modes 0 through 4 or i through 5, the modes were

found to have unreasonably large magnitudes

(~ 90 cm/sec) but the same phase, indicating the ten-

dency to cancel one another at the observing depths.

This difficulty was removed by requiring a least-squares

fi t by only 4 modes. In that case, the modes do not

give an exact repre~entation of the demodulates and

have a residue corresponding to the difference between
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the observed current and that synthesized by the normal

modes.

Tables 4a and 4b show the results of analyzing

the demodulates for modes 0 through 3 and i through 4

resDectively to find amplitudes a. and p ses 6. for. i i
each of 4 modes. Since sound theoretical arguments

have been given for believing that there is no baro~'

tropic mode (mode 0) in the Mediterranean, it is

noteHorthy that such a low amplitude is given for it

by the analysis. The three modes which the two tables

have in common are very much the same, giving some

confidence in the stability of the procedure used.

In neither 'case do the residues referred to above

exceed 1.5 cm. /sec. Lack of a phase d~ift with time

for the third mode indicates that the demodulation

frequency chosen is the correct one for that mode.

What appears to be a consistent rate of phase change

in modp.s _1 and 2 suggests a possibly higher frequency

for these modes. While it is not possible to adequat-

ely assess the rea Ii ty of these small frequency shifts,
we will see later on that a similar effect follows

theoretically; that is, each mode will be found to have

its own characteristic frequency. Note that the ~mod~l

decomposition could not be continued beyond mid-February
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due to failure of direction sensors in the bottommost

instrument.
With a single point in the horizontal, nothing

can be said about horizontal structure of the currents

from an observational standpoint. Nevertheless, the

long east~west coastline exerts a dominant effect which

can be determined theoretically, thereby providing some

insight into what scales of motion might be possible.

The following section explores this possibility.

Horizontal structure
In a manner similar to the derivation of the ver-

tical dependence, Munk and Phillips' deri ve the follow-

ing equation which describes the latitudinal structure: .

d2V +
d-¡;i?

Ô 2V = r.JY'a COB' $ Bin 

$ 
J. . r~. cr.

_t2 _ ly202 COs2cjJ L'

dV- - S
d:¡

B1n$1_ IV-5.

where :¡ is a north-south Mercator coordinate

cj

V = J Bec $ d$, ô' = Y'COB'$(la'-Bin'$)-(2s/a)cos'$~S',
o

and cr is the non-dimensional frequency cr = wig. Again

a WKB solution is possible since the variablecoéfficients
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of the equation are generally slowly 
varying. But it

is found .that near the latitude where the wave frequency

approximates - the local inertial frequency, the approx-

imation breaks down. Careful balancing of terms in
IV-5 then leads approximately to the Airy equation

d2V

dri 2

nV = 0 iv-6

where ri = ~ - ~O cr - 2sin ~O
L + (aL) 2 - 2L cos ~ 0

cr = win

L = (y2 sin 2~0)-1/3

a = slcos ~b (or a = ka with k the east~west wave-

number) and ~O is a reference latitude, taken here Çl.s

that of the .observing site.

by the Airyfuncti6ris and so

Solutions thus' are given

..,..ll=- -

V(~) = A Ai(ri) + B Bi(n).

But Bi increases exponentially towards the north while

Ai decreasea exponentially. Hence, since at any northern
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boundary it .must be that V = 0, the Ai and Bi terms can-

cel there .which requires that A ~~ B if the boundary is

sufficiently far northward. Consequently, the Bi term

can be safely neglected here, Thus the following boun-

dary conditions are appropriate for IV-5:

V + 0 for ~ ~~ ~O

IV-7

V = 0 at ~ = ~ i

when~i is the southern boundary.

Existence of the Balearic islands somewhat clouds

the simple situation presented above, particularly since

observations suggest a frequency corresponding to a

latitude of .about 40°. The fact is. that ~ to treat nor-
mal modes in detail for a basin .of general shape is a

formidable problem and beyond the scope of this thesis.

But the inteht here is only, to ~ainsomeinsight into
variation of amplitude with latitude and not to make a.

detailed comparison with observations, so that the 

great

simplification which results would seem to justify the

liberties taken with the northern boundary condition.

;At the;southernboundary, V(n ),= o 
and sonmust

take on the value of one of the zeros of the Airy function
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Ai there, say n= nm. With each value of n thus specified

for the southern boundåry latitude (37°) and frequency

fixed at 1.03 f, the second of equation iv-6 determines

a relationship between y and a or between y and k, the

east-west wavenumber. Then with permissible values of

y known fr.om the vertical equation IV-2, corresponding

discrete values for k can be found. The situation is
summarized in figure 27. Curved lines show the relation-

ship between y and k corresponding to the first five

zeros of Ai with n defining the m-th horizontal mode.m .
Brokenhor.izontal lines, corresponding to the first

few values of y, that is, to thè first few vertical

modes, intersect the curved 
lines , thus giving per-

missible values for k. It is seen that there are n

pos~ible horizontal modes corresponding to then~th ver-

tical mode. For the case n = 3, the three possible
latitudinal dependences are shown in 

figure 28, corres-

ponding to the observed frequency, 1.03 times inertial

:'¡'

L

t
frequency .of the observing latitude. Since each pos-

sibili ty shows appreciable amplitude at the observing

site, the hypothesis of a dominant third vertical mode

is tenable.

Horizontal structure is completely determined by

vertical and horizontal mode numbers and the frequency;
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it remains to see whether the possibilities available

for the third vertical mode and observed frequency are

consistent .with geometry of the observing region.

With reference 
again to figure 28, the three possible

wavelengths .are 180, 260, and 690 km. The only sig-

nificance .attached to these numbers is that they are

reasonable in view of the size of the Western

Mediterranean basin.

Selection .of frequency and mode

What has been done thus far is to derive possible

horizontal scales of 
motion, both in the east-west and

north-south directions, from observed values of frequency

and vertical 
mode number. In a way, this 

procedure is

rather .involuted. A basin such as the Mediterranean

has well .defined 'resonant modes which are calculable in

principle .andi t is these that are of interest in this

chapter. .Butin' a detailed calculation, the ir,regular
.....

basin boundaries would need to be considered; the prob-

lem is then non_separable and one would have to solve

the fullthree..dimensional problem numerically...with.

frequency as an eigenvalue, requiring an enormous and

probably prohibi ti ve amount of computation.
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Precise frequency and mode calculations thus appear

out of reach~ What is done here instead is to assume a

separable geometry roughly resembling the Mediterranean

basin and to compute eigenvalues for that case. The

main point of interest is to find the spacing of the

frequency eigenvalues. Particularly we ask whether

the frequency band corresponding to the range of inertial

frequencies is well represented and, if so, whether 1 t

is particularly rich in third vertical modes . 
What

we have in mind here is that 
the surface layers of the

ocean have a .frequency response to the wind which 1s

very sharply peaked near the local inertial frequency.

If this response is the energy source for deep inertial

oscillations, then the limited latitudinal width of

the Mediterranean would preferentially select those

modes with eigenfrequencies lying within the corres-

ponding frequency band.

Accordingly, the eigenfrequencies were computed

for a basin of 600 km.in the east-west direction~

bounded in the south at 37° latitude and open towards

the north, and \.¡i th a depth of 2800. m. . Stratifìcation

was taken to ,be as shown in figure 20. Completely

separable solutions are then possible having aseigen-
functions in each direction, sine waves in the x (east-

i'
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west) direction~ Airy functions in the y (north-south)

direction 
and the special functions shown in figure 26

in the z (up~down) direction. All possible frequencies

for modes numbers one through five in all three direc-

tions have been computed. For present purposes ~ the
mode number is defined for horizontal currents as the

number of internal zeroes (not counting those at boun-

daries) for' the vertical eigensoiutions and as the

number of internal zeroes plus one for eigensolutions

in each of the two horizontal directions. Results of

these calculations are shown in Table 5, tabulated in

order of increasing period. Each digit of the three-

digi t number which accompanies each period represents

the corresponding mode numbers in x, y and z directions

res~ectiveiy. By way of reference~ we nota the inertial

period at a few typical Mediterranean latitudes:

400 18. 62 hours
39° 19.02
38° 19.44
37° 19.89

.IT ;:the:'basre.assumption is correct that the de-

tailed geometry of the Mediterranean produces spacing



Table 5

Periods in hours for the 
firs t five internal

modes in east-west, north-south, and up-down

directions

551 11' 859 2~2 17.772 1~i. 18.680
541 12'02~ ~33 17.805 525 18.683
531 12-211 322 17.831+ lt35 18.686
521 12'~30 152 17.836 155 181687
51 i 12' 707 513 17.8&5 122 18.717
..51 13.3..3 5.... 17,868 223 18. 77~

....1 13.553 3~'3 17.97~ 231+ 18.779

..31 13.790 4¡54 17' 990 2..5 18.780
1+21 141070 121 18'036 212 18.790
1+11 1~" 426 253 18.050 313 18.807
351 11+.781 232 18 - 051 324 18.833
3"1 15. 01+0 534 18.057 335 18.8..5
331 15.33~ 423 18. 061 1'+5 18.8'+9

552 151625 11+2 18.091 ~1~ 18.868
321 15 · 679 555 18 '163 134 18,887
Sl+2 15.821 l+ 1+ l+ 18.16" 425 18.887
251 16. 0 15 333 18'203 515 18_928
532 16.01+1 35~ 18.222 235 18,9ó9
311 16'12~ 153 18.223 123 18.962
522 16' 297 312 18' 224 22i. 19,015
2~1 16.318 243 18.261 135 191029
~52 161386 524 181275 325 19_01+9

'+~2 161602 5~5 181316 213 19 _123

512 16.622 455 181356 311+ 19.125
231 16166&1 ~34 18.359 124 19,126
4¡32 16.8'+1+ 222 181376 '+15 19.138
151 16.859 132 18.380 112 19-1..7
553 16.925 413 18.383 225 19-166
352 17. 032 2ö'" 18.392 125 19_237
221 17'074 3..4 18...01 315 19.304
5..3 17.111 143 18.438 214 19,312
'+22 17.128 323 18-1+70 113, 19_317

141 17 '196 535 18-486 215 19. 425
342 17 i 265 151+ 18.1+96 114 19,426
533 171319 233 1811+98 115 19.498
,+53 17' 389 355 18.509
412 17.i+87 ~45 18.512-
252 17,526 514 18.549
332 17,528 244 18.575
523 17.660 424 18.585
131 . 17.680 331+ 18 . 602
443 17.586 255 18.620
211 17.602 111 18.627
554 17,699 31+5 18.668
353 17.769 133 181680
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of the frequency eigenvalues comparable to 

those computed,

it follows that 
the observed dominant 

frequency and

mode have no special significance as eigensolutions.

One can argue that the spatial distribution of forcing

might preferentially excite certain modes but it is

difficult to see how this can 
be extracted from weather

observations" without more detailed calculations of the

modal structure. As previous ly noted, another pos-

sibili ty is that the observed distribution of phase

and amplitude with depth is a superposition of many

higher modes which happen to be 
in phase. Disti-n..

guishingbetween these alternatives must await still

more extensive measurements.
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The technique which has led to these results has

proved very useful for the data under discussion here

owing to the very high ratio of inertial signal to noise

(everything other than inertial signal). Such stable

estimates of frequency do not arise from a corresponding

analysis of the Site D data, although it is not clear

whether this is an inherent difference between the two

locations or due to limitations of our technique in the

presence of strong signals at other frequencies at Site D,

such as tides.

We have sought to account for the above facts in

the light of both ray and normal mode theory, a duality

which pervades much of wave mechanics. It should be

pointed out that these two approaches are not mutually

exclusive. There is no reason why the data cannot show

some features' from each theory; both are linear and one

can imagine the two superimposed. Although not an

inherent part of the theory, our attitude in the case of

the ray analysis is that the motion is traceaóle to

some localized or identifiable forcing region such as

at the surface, and that it may be transient. For

normal mode theory, forcing is not considered explicitly

and the motions are treated as free oscillations) the

structure of which is determined by the geometry of the



Medi terraneanBasin.

A discussion of the ray paths along which inertial

energy propagates, taking into account the full 
three-

dimensional properties of these paths, reveals two

noteworthy features. First, the arrival time of energy

from discrete sources cannot be calculated without

knowledge of a certain parameter (essentially the

verti cal wavenumber) which is not available . Although

the spatial paths along which energy travels are de-

termined, travel time along these paths is not ~ Secondly,

it is found that a coast, such as the Algerian coast,

can cast a shadow with respect to that part of the

inertial energy which originates at the ocean surface

and which arrives at the observing site without havirig

undergone reflection. Existence of a shadow was found

to depend upon details. of how energy is' dissipated and

how it is reflected from the coast. The interest in

such a hypothetical shadow arises from the fact that

its shape is independent of the unknown travel.-time of

the oscillations. Its detection would give strong sup-

port to the hypothesis that deep inertial oscillations

are generated at the surface.
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Precise shape, of any such shadow would be critically

frequency dependent. Rays having lower frequencies do

not reach the observing latitude at all, being constrained

to propagate southward of it. But rays of higher fre-

quencies can propagate not only through the observing

site, but into the shadow region as well to an extent

determined by their frequency. A ray of frequency 2%

or more higher than inertial and originating at the

surface could in fact reach all depths at the mooring

location (see figure' 25) . Although the frequency in-

crease over inertial of 3% observed at the deep

locations is sufficient to permit energy to have pene-

trated directly from the surface, we do not find the

gradual increase of frequency with depth which would

follow from broad-band excitation at the surface and

neglect of energy reflected from the coast.

With respect to transient generation of inert~al

motion, consider in more detail the flow of ~nergy

destined to go through the observing site at a depth

of, say, 1700 meters. The higher frequency components

would arrive first since they have the higher group

veloci ty, with other frequencies nearer to inertial

arri ving later. Thus what one would expect from such

a storm is that there would be a signal with freq~ency
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tending slowly towards inertial. It has already been

noted that there is a hint of this effect during the

beginning. of the 200 meter record, but it is very clearly

not present in that at 1700 meters.

If we persist in interpreting our data by ray

theory and surface generation, there seems little al-

ternative to the random superposition model described

by Munk and .Phillips. This involves energy of approp-

riate frequencies traveling along their respective ray

paths, possibly including reflections, but having very

long residence timeS near the northernmost extremes of

their travel, typically on the order of weeks or longer.

At any given time at the observing site there would

be an assortment of frequencies' wi th . energy associated

wi th various meteorological events and wi th travel

times well "randomized" by the slow, varying travel

times of the various constituents. Thus at any given

depth we have a variety of frequencies near inertial

but not directly relatable to any particular storm. .
There could however be a trend towards higher frequen-

cies with increasing depth, and at i 700 meters this

change wo.uld be at least 2%, consistent with that

ob served.
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Persistence and bandwidth estimates are also inter-

esting in this context. For the complex current UCt)

(=u(t) + ivCt) with u and v east and north co:mponents

of current), one can write

00

U(t) = J ACw)e-iwt dw
_00

much as was done in the discussion of complex demodu-

lation in Chapter II. Since U and A are Fourier
transform pairs, there. are a 

number of analytically

specified, realistic, choices for A which yield ap-

propriate expressions for U. If A is chosen 

to

have a magnitude with a peak near w = f, then U will

be a slowly modulated signal with frequency near f~

Considering various choices of. transform pairs, the

general statement can be made that the persistence of

the signal (as measured between times when B(t) has

dropped to half its maximum value) is roughly the

reciprocal ,of the bandwidth Cas measured between the

frequencies where A has 
dropped to half its maximum

value) .

Wi thout knowing the horizontal scales involved,

it is not possible to say whether persistence is con-

trolled by the bandwidth of the process or 
by advection.
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regions so that, whetheradvected or not, energy is trap-
ped within the basin.

Ray theory, which is the basis for much of the.

above discussion, is 
rigorously applicable as a short-

wavelength _appro~imation. But since we do not know

what wavelengths predominate in inertial oscillations,

the observations were also compared with normal mode

theory. The modal theory summari zed by Munk and

Phillips has been adapted to the present geometry by

approximating the Mediterranean with a basin of

uniform depth bounded in the south by a 
vertical wall

as is suggested by figure 24. Gi ven the known strati-

fication near the observing site (figure 20), the

vertical structure 
of horizontal currents satisfies a

classical Sturm~Liouville problem, giving rise 

to a

.
f:.

discrete family of possible vertical dependencies, the

firs t few of which a-re shown in figure 26 .Comp 'lrison

wi th depth dependence actually observed either in the

basic series (figure 4) or in the complex demodulates

(figure 18) shows a structure during the first 3 weeks

of observations which strikingly resembles the third

vertical mode. This conclusion 
was supported by direct

fitting of the observations by normal modes. It is of



co'..:-::.:~ ::ct pcssit:e to ê.;.al~'ze fully the vertical struc-

t',;:-': ,d.::: ::;::!y :-i'/e ;:01::: ','è:,t1cal sar:pling. \.Jhat ap-

r('~:';3 ::.:::-.:: :0 be 2. Si::.;:è ':e:,tical :-,ode could in fact
~~ one 0:' =c~e hig~e:' =2jes, in a manner similar to but

::0:'(' cc::,plicated than the usual aliasing of high-fre-
quency oscillations which is familiar from spectral

analysis.
In addition to discrete vertical modes established

by boundary conditions at the ocean surface and bottom,

modes in the horizontal are established by the southern

wall and the condition that all inertial oscillations

decay SUfficiently far northward. (If this last. con-
di tion is replaced by' a northern wall at,' say, the
lati tude of the Riviera, the solutions remain essen-

tially unchanged.) As might be expected from the slow

change in Coriolis frequency with latitude (about 2%

per degree in the Mediterranean), horizontal modes~

unlike those in the verti cal, are highly frequency

dependent. With this caveat, we see in figure 28 the

three possible horizontal modes corresponding to the

apparent third vertical mode and observed frequency

of i. a 3 times inertial. We find no inconsistency with
the assumption of a third vertical mode since any of

these three horizontal modes gives appreciable

131
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ampli tude at the observing latitude. Furthermore, the

east-west scales associated with each mode are quite

reasonable in view of the dimensions of the Medi terran-

ean basin.
In conclusion, it is reiterated that the appli-

cation of ray theory in the Mediterranean to inertial

oscillations points to their not being relatable to

particular, local events at the ocean surface; measure-

ments of frequency do not show the characteristic

variation of frequency wit~ time which such a generat-

ing mechanism would produce. Normal mode analysis

yields more positive results in this case. The

apparent dominance of a third vertical 
mode through-

out much of the data is an important conclusion, rep-

resenting a much simpler vertical structure than 'has

been heretofore supposed.
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Appendix I

The effect of neglecting the horizontal comoonent of

earth rotation on rays having near-inertial frequency

I

I

I

I

The paths followed by rays of inertial frequency are to

a certain extent dependent upon whether or not the horizontal

component of the earth's rotation is included in 

the basic

equations. In order to measure this extent, use is made of

the fact that the Hamil ton-Jacobi equation, which leads to

the ray paths, is separable when the stability N is constant

both with and without the additional horizontal rotation

terms. Both cases are worked out here and the difference

between them gives a qualitative measure of the difference

to be expected for the more general case when N is not

constant.
A related ray analysis for inertial oscillations which

retains the horizont¡3l component of rotation and uses

spherical geometry has been carried out by ~ug?es (196 4) for

the case of constant N. His analysis was carried far enough

to derive expressions for the components of group velocity,

but the final quadrature to give the ray paths explicitly

was not done nor was any account given of the effect of the

horizontal rotation components. Hughes' approach, which is

L .. ,~:
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more exact than that given here, is not followed due to the

extensi ve algebra involved.
The equations of motion may be written in the following

form

ut fv + hw = -p
- x

vt + fu = -p
y

wt hu = -p - N21; AI-l
z

ux + vy + Wz = 0

w = 1;t

where h :: h + CJy f = f + ßy
0 0

h = 2Q cos8 f = 2Q sinS
0 0 0 0

CJ =-2Q sin 8 /R ß = 2Q cosS /R
o e o e

and all other variables are as defined in Chapter III. Here

h is the horizontal component of the earth's rotation. SinCE,

its effect can be removed in the final results -by setting

h = 0, both cases of interest can be obtained by working witl

the single system of equations above.

The argument of Chapter III can be repeated for these

equations to yield the corresponding Hamilton-Jacobiequatiæ

for the phase function ~

(~,2+~ 2)(N2_~t2) + (f~+h~)2 _ ~t2~ 2 = o.X y Z Y z AI-2
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~or the case N = N (z) and h = 0 it has previously been shown

that this equation has separable solutions. For the case

h = ho + ay now being considered, separation is possible

only if N is independent of depth. Solutions can then be

found in the form

~ = kx + mz - wt + Q ( y ) AI-3

where, k, m, and ware constant and Q satisfies the equation

1:
Q~ = (-fhm t £h2a2_ f2m282 + a282l2J/(h2 + 62) Ai-4

with a2 = m2w2 _ k2 (N2_ w2)

82 = N 2 _ w2.

Since f and h are know functions of y, the integration for Q

is readily carried out for any given values of k, m and w.

Hence Q +' Q(y; k, m, w) =
jY Q' dy'

i
AI-5

where y i is an arbitrary value for y which will,. f"or con-
venience, eventually be taken as the starting latitude for a

ray point.

Following again the derivation of Chapter III ~ the



136

equations for the trajectory of a ray point are found, namel

x = Xl Qk

z = zl - Qm
Ai-6

t = ti + Q .w

T:ie first two of these equations determine the spatial path
a ray point and the third its travel time. Three more con-

stants, Xl' zl' ti' have been introdu~ed. It is easy to SE

that the ray point will have coordinates Xl' Y l' zl at time

ti' hence one can assume Xl' zl' and ti to be zero so that

rays will pass through the point (0, Yl' 0) at time t = 0,

which is taken as the origin for all rays.

Rewri ting equations Ai-6 more explicitily by using Al-

and Ai-4, one finds after carrying out the indicated

di fferentiations

x = :ta.ô2 (
Yi

¡,,
¡

1

((h2+Ô2)(W2_a.2Ô2) - f2ô21-~ dy

z = (
Yi

(fh~( (h2+ô2 )w2_f2ô21( (h2+ô2) (w2~a2ô2 )_f2Ô:

.(h2+ô2J-i dy



ryt = -2wm
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(h 2 + Ô 2 J - 2 ( fh + t (h 2 + Ô 2 ) (w 2 _ ~ 2 Ô 2 ) - f 2 Ô 2 ì 2 J dy

AI-7

:twm (
Yl

((h2+ô2)(I+~2) + f2_w2+~2ô2J

'(h2+Ô2J-l((h2+ô2)(W2_~2Ô2) - f2ô2J-~ dy

where ~ = k/m and a and ô are as previously defined.

A number of points can be made at this time. Ray paths

are symmetric about the x = 0 plane corresponding to the

choice of sign in the first of AI-7, but. are not symmetric

about z = 0 unless h = o. Note that the negative sign must

be chosen in order that the rays lie wi thin the ocean. As

was the case for h = 0 and N variable, the ray geometry

depends, for a given frequency, only on a single parameter ~

defined in the present case as ~ = k/m. Travel time however

depends not only upon ~ but upon an additional parameter, in

this case the vertical wavenumber m, to which it, is propor-

tionaL. Qualitatively, these results do not differ appre-

ciably from those found in Chapter III.

The integrands in equations AI-7 are well-behaved

functions of y and are easily computed numerically for any

specified values of w and ~with the simple dependence on m

implicitly assumed. Figure 29 shows the results of these
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calculations. The rays are plotted in a horizontal plane as

radiating from a point source at latitude 35° and for fre-

quency corresponding to inertial frequency at latitude 40°.

Trajectories of the rays in the horizontal are independent

of whether or not h = 0 to within plotting error, so that the

same set of curves suffices for both cases. The same holds

true for travel times which are not shown in the figure.

There are two families of depth curves which intersect the

rays, solid curves for the case h = 0 and dashed curves for

h = h + ay. Thus the essential feature of including theo

horizontal component of rotation is to decrease the depth to

which the rays penetrate by 10 or 20 percent.
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Appendix II

Airy-function structure of inertial oscillations deriv

from a local beta-plane 
approximation 

The basic equations of motion admit separable solutio!

both in spherical geometry (Munk and Phillips, 1968) and

in a locally-valid ß-plane, Cartesian geometry (Blandford,

1966) . These correspond to the two sets of equations III-"

and III-2 respectively both of which have 

been used in the

present work. The Munk-Phillips solutions to the spherica

equations yielded an Airy-function structure in the region

where the wave frequency is close to the local inertial

frequency. In view of the remarks made in Chapter III in

defense of the simplified equations III-2, it seems reasor

able that they should have comparable behavior under sim-"

ilar circumstances. This will turn out to be the case,

although exact solutions (to 
the approximate equations) ~'

found to be parabolic cylinder functions. Thus,' although

some of the results of this appendix have been anticipatei

the fact that they can be 
derived from simplifiedequatio

reinforces the arguments used in defense of the simplific

tions. In addition, since both sets of equations III-l a

III-2 are in common use, the appendix providesaframev-jor'

for intercomparing results derived by alternate methods.

f,
, "h

...-
,-
-
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Rather than separate the equations in their usual

form, which requires some assumptions about the character

of the solutions to be practicable, several of the vari-

U~tt - fVzt - (N2+a 2/at 2 )wx = 0

fUzt + Vztt - (N2 +a 2/at 2 )wy = 0
AII-2

ux + v y + w z = 0

Finally u can be eliminated using the last of these with

each of the first two, again without differentiating f

with respect to y or N with respect to z, to give

I

i
,

;
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d2/dZdt (fd/dX + d2/dYdtJV

+(d2/dX2 (d2/dt2+N2) + d!¡/dZ2dt2JW = 0

d2ldZdt (fd/dY - d2/dXdtJV

AII-:

+(d2/dXdY (d2/dt2+N2) + fd3/dz2dtJw = 0

It is not possible to eliminate either of the remaining.

dependent variables. At this point, solutions are sought

in the form

v = exp i (kx - wt) v 2 (y) v 3 (z )
AII-

w = e xp i (kx - wt) w 2 ( y) w 3 ( Z )

substitution of these forms into AII-3 leads to

v2v3z w(w2_f2) + W3(fkW2+WW2y) 
(N2_W2) = 0

v3z w(fkV2-Wv2y)' - w2(k2 (N2-w2)W3 + W2W3zz =0

""

AII
Î
;i

i

Each of these equations is easily rewritten as a sum of

two terms, one a function of y only and the other a functic
of z only so that each term must be a constant. Denoting

by Ci and C2 the two 
constants which thus arise, one finds
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v3z + Ci (N2_W2 )w3 = 0

v3z - C2k2~N2-w2)W3 - C2W2W3ZZ = 0

Aii-6

fkw2 + ww2y + Civ2 w(f2_w2) = 0

w2 - C2w(fkv2 - WV2y) = 0

thus giving four equations for the four unknown functions.

Between the first two of equations Aii-6, v3 is easily

eliminated to. give the vertical equation

w + (k2+ C2) (N2_ w2 )/w2w = 03zz 3 AII-7

where C2 = Ci/C2.

This together with boundary conditions at the ocean 
surface

and bottom, define an eigenvalue problem for w3 with C as an

eigenvalue. The equation holds uniformly for all frequencies

but the case of interest here is for W "'f so" that N2::::W2.
0

For the special. case N constant, AII-7 has solutions of the 

form w 3
'" imz leading toe ,

C2 = m2w2/(N2 _ w2) _ k2 Aii-8

-----i

L
f ~
E-~

'~-';
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which will be of use later on. Typical values of the par-

ameters involved are N2 = l. 0 cph, w. = f 0 = .05 cph,

m = l. 0 cycle/km. and k == .Ol cycle/km. ~ from which it

follows that C = 0.7 cycles/km.

Similarly w2 can be eliminated from the last two of

the equations Aii-6;

V2yy - w-2(f2k2 + wßk - C2(W2 - f2)Jv2 = 0
AII

If now, after having been differentiated, f is taken as
. iiy

constant, AII-9 has solutions v 1 ~ e so that

(k2+i2) (N2_W2) _ m2 (w2_f2) + ßk(N2-W2 )/w = o. AI:

This dispersion relation encompasses both the inertio-grav:

and Rossby waves, reducing to the usual case III~5 for

inertio-gravity waves when variation in f is neglected

(ß = 0), and to the case for barotropic Rossby waves when

m == O.

Of central interest here is equation AII-9 alone sine

it contains all the information concerning variation of

horizontal velocity with latitude. With f taken as a

simple linear function of y, the equation has the form

v 2yy + (py 2 + qy + r) v 2 = 0
A:
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where p = _ß2 (C2 + k2 )/W2

q = -2f ß(C2 + k2 )/W2o

r = (wßk - f02k2 + C2(W2 - f02)J/w2.

Since p is negative, this in turn can be written in the real

cannonical form

v 2nn - (l n 2 + a)v 2 = 0 AII-12

where a and n are the non-dimensional quantities

a = ~(ßk/w + C2)(C2 + k2)-~ w/ß

n = (y + f /ß) (4ß2(C2 + k2)/W2J1/4.o

It will be of value to note magnitudes of a and 11. in

the present situation. Taking ß = 10-5 cph/km. and 

other

parameters as previously estimated, one finds a ~ -200 and

n ~ 15, with the value of y having little effect on the

value of n for y on the order of hundreds of kilometers.

In the notation of J. C. P. Miller (l96~), solutions

to equation AII-12 are the parabolic cylinder functions

U(a,n) and V(a,n). The V(a,n) solution increases exponen-

tially for large, positive values of y while U decreases

.."
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exponentially. Thus the second or V solution can be ignore

unless there is a coastline only slightly northward from th

observing latitude, y = O.

From the defining equation, it can be seen that n, the

non-dimensional latitude, is referred to a pseudo-equator

,.
,..
.
,.
~,

defined by n = 0 or y = -f /ß ~ -5000 km. The distanceo

from the observing site to this equator is great compared

with the distance to the, southern boundary under the cir-

cumstances of interest here. Since the parabolic cylinder

function must have a zero at that coast and since its zero~!

are quasi-uniformly spaced, the zeros of interest will be

of high order, and these are riot well tabulated~ Thus an

approximation is introduced to bring the solutions into a

more tractabie form. The approximation is applicable in

the vicinity of the observing latitude, y = O.

According to J. C. P. Miller, the following holds in

the present case where a is large and negative and n

positive

U(a,n) = 2-114 - i/ia r(l - ~a)(t/(ç2_l)J1/4 Ai(t) AT

1

where ç ( )-~ (ç " 1)= n -a

t = (_4a)2h T

T = _(38/2)213



147

e = li co s - i ~ - ~ ( I - ~ 2 ) ~ ì

and Ai is an Airy function in the usual notation.

But since for the parameter range of interest, ~ is very

close to unity, one can introduce the smaii quantity $ by

~ = cos $ ~~~i

, '
so that ~2 ~ 2 (l-~), by a Taylor series expansion of cos ~.

S. il I d. e. t f ~ yi. elds 8 n. i~ 3.im ar y expan ing in erms 0 ~ 'v 0 ~ Hence

8 ~ l (2 ( 1- ~ ) J 3/2 Aii-14

and so

t ~ _2(1_~)(_a)2/3 AII-15

Thus, except for the very slowly varying coefficieat

(t/(~2_I)Ji/~.~ (2(_~)2/3/(i+ç)Jl/4-

¡

~'.

r

the essential behavior of the solutions are given by

v 2 ~ Ai (t) Aii-16
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Finally expressing t in terms of the original parameters,

after taking w = f , we have to a good approximationo

1
a '" -- C f / ß2 0 i - 1; '" -yß/fo

sot ha t

t '" Y /L
AII-l

where L is the length scale for the Airy argument t given

by

L = (2C2 ß/w)-i/3
AlI-l

This is the same scale as found by Munk and Phillips when

their result is converted to the present notation.
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