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ABSTRACT

Measurements of ocean currents were made by the
author in the Western Mediterranean Sea at five depths
for two months during early 1969. In terms of the dom-
inant and persistent preserice of inertial oscillations,
circularly polarized currents having perlods of a half
pendulum day, the data are among the most. strlklng ’
ever collected.

Two contemporary theories have been adapted for
interpretation of this data. On the basis of a ray or
short—wave—length theory, energy arriving at the obser-
ving site 1s found to fall into two categories, that
making direct arrival from the surface where it is.
assumed to have been generated; and that which under-
goes one or more reflections. To the extent that the.
former dominates, it is found that the Algerian Coast
about 130 km. to the south would cast a shadow to the
- north, the precise shape of which would be highly.
dependent on small varlations in frequency.. The nature
of this frequency ‘dependence implies a gradual increase
in frequency with depth at the. observing latitude.
Although the data show a measurable. shift (about 3%)
towards higher frequencies, which is roughly the
required amount, the lack of progressive frequency
change with depth does not support the. shadow
hypothesis.

In addition, the data is interpreted in terms of
normal mode theory, where the nearby coast is seen to
force a discrete modal structure to the solutions.
The observed variation ‘0f current phase with depth
indicates that a single internal mode dominates over



a large portion of the data, while variations of both
current amplitude and phase with depth are consistent
this being the 'third internal vertiecal mode. Existence
Oof a normal mode is also consistent with the long time,
on the order of three weeks, for which the oscillations
were observed to persist and with the dimensions of

the Mediterranean Basin. '
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Chapter T Introduction

Inertial oscillations are defined for the purpose of
this investigation as horizontal ocean currents in which
the current vector rotates in a nearly circular,-clock—
wise sense (counter-clockwise in the southern hemisphere)
with period of about a half pendulum day. It is now
~generally .believed that such oscillationé are commonly,
if not universally, found in the deep oceans of the world
away from equatorial latitudes. They have been observed
independently by lowered and moored current'meters, by

current

neutrally buoyant floats, and by eledtromagnetic-
measurements. Webster (1968) recently has made an ex-
tensive survey of the published data which.shows_evidence
of inertial oscillations, listing some 23 sites, all-in

the northern hemisphere, where observations have been

made, sevéral of them includingvmore than one series of
obsefvations.

Most of the long duration,; high-quality measurements
which form the basis for much of what 1s now known about
inertial oscillations in the open ocean have been collected
intermittently from a single site near 39° 20'N 70° 00'W,
usually called Site D. They have been partly summarized

by Webster and Fofonoff (1965, 1966, 1967). Chief features
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of these méasurements'are their relatively extensive
coverage in the vertical, duration for typically two
months per record and rapid sampling in time. Several
of these are accompanied by surface wind data.

Other significant recent observations of inertial
motion have been made in enclosed or semi-enclosed basins
such as the Sea of Japan where Nan-niti, Akamatsu, and
Yasuoka (1966) have reported observations made with
neutrally buoyant floats. This technique was devised
for a study of steady drifts and is not partlcularly
well suited for periodic motions since it usually in-
volves ‘a small number of infrequent observations.
Extensive current measurements in the Great Lakes have
been made, primarily in connection with pollution
‘studles, and these generally show strong'inertial-period
motion (Verber, 1966; Malone, 1968), especially during
periods when a thermocline e€xists. ‘Finally in the
Meditérranean itself, a continuing French program has
made numerous simultaneous measurements of winds and
currents'from thelr manned buoy, the Bouée Laborat01re
(Gonella, Crépon, and Madelain, 1969), located about
100 km. south of Nice. Their current measurements
have so far been limited to the upper 100 meters of

the ocean due to operational difficulties (the buoy is
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on a slack mooring, requiring large drift corrections).
From this body of data, a consistent pattern of
properties of inertial motion has.been established. By
the nature of the observations, time variations are most
easily resolved. One finds nearly circular, clockwise
currents having periods within a few percent of the local
inertial peribd or half pendulum day. These are super-
imposed on a broad spectrum of other processes but are
usually quité noticeable in the data and cffen are the
most energetic constituent present, dominating even the
mean curreht. Howe&er, the motions are transient, per-
sisting for a few days at most; indeed, the persistence
is generally'for only a few cycles. ‘No systematié cbr—
relation between amplitude and duration of the bursts of
inertial energy has been found nor is any asymmetry be-
tween the rise and decay apparent. Vertical persistence
(that is, separation in the vertical across which inertial
currents do not differ—appreciably) is likewise 1imited.
‘The authdr has recently examined"most‘of the largely un-
published data .collected at WGH.O.I._by~computing co-
herencies between contemporaneous palrs of current meter
records. No records separated by more than 100 meters
‘showed significant coherence, a single pair bf instruments

separated by 80 meters showed moderate coherence (0.6)
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at inertial period only, while a pair of instruments only
2 meters apart sthed almost perfect coherence. Since
suitably close instrument epacing is available only in
the upper part of the ocean, the possibility of there
being larger scales of vertical coherence in the deep
water must .be left open. Measurements suitable for es-
timating horizontal scales of inertial oscillations_are
sparse indeed owing to theidifficulty and expense of main-
taining two or more moorings at the same time. We know
of only two such sets of measurements made in the deep
sea which simultaneously take into account the demons-
tratedly important depth dependence; both were made by
Fofonoff and Webster. In the first of these, two in- ..
struments at 620 meters depth, near 29°N 68° 30'W and
Separated by. about 65 km. showed no cohereénce even though
there was a strong inertial signal at one of the instru-
ments. The second pair of measurements was made near
Site D with a horizontal separation of 3 km. and with
current meters at 88 and'98-meters. Appreciable coher-
ence was found (& 0.7) and part of the coherence loss may
have been due- .to vertical separation instead of horlzontal.
The features of inertial oscillations which requlre eX—~
planation are thus persistence in time of a few days, in
the vertical of several tens of meters and in the horizon-

tal for a few tens of kilometers.




It has .been understood for some time that any dis-
turbance of the ocean with a broad spectrum of input
energy will give rise to ineftial oscillations; e.g.
Cahn (1945). Since the group velocity of these motions
becomes vanishingly small as frequencies approach
inertial, this effect is easy to understand; all other
constituents of the initially induced motion disperse
relatively rapidly. Determination of the preclse nature
of the forcing has proved elusive however. Hendershott
(1964) considered, in a statistical sense, forcing
of the ocean induced by tidal interaction with the ir-
regular ocean bottom. We now know tﬁat tidal forcing,
which should be important only near latitude 30°, is not
the only source of inertilal period curfents since they
have often been found at other-latitudes. Nevertheless,
Hendershott's theoretical treatment of the problem an-
ticipates much of what is now known.

Most recent studies involving forced mction have
dealt with wind-induced motion. The Great Lakes measure-
ments have been treated in this respect by Csanaday (1968
and by Birchfield (1969) and the Bouée Léboratoire data
in a series of papers by Crépon (1969), the most recent

of which is referenced here. These studies show that

qualitatively inertial currents of the magnitude observed

near the ocean surface can in fact be established by

14
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fluctuations of the wind. With regard to the Site D
data, Pollaﬁd’and Millard (1970) have demonstrated how
the wind, acting as a driving body force in simplified
equations of motion, excites inertial-period motion in
the mixed surface layer which strongly resembles that
observed..

A more complete treatment of how energy near
inertial period propagates was given by Blandford
(1966). This was summarized and extended in a major
contribution by Munk and Phillips (1968) who worked
out the structure of inertio-gravity waves in regions
where the wave perliod nearly equals the loéal inertial
period. Aftér finding detailed solutions for the
relevant equations, they were able to estimate coherence
and persistence scales on the basis of;a model involv-
ing aséumptions about how energy is distributed among
the various frequencies and‘anenumbers. Doing this,
Munk and Phillips found reasonable values for both -
horizontal and vertical coherence scales, but the cor-
respondihg persistence was about 100 days whiéh is much
too large. However, their calculations neglected the
possibility of slowly propagating inertial waves be—
ing advected away by mean currents, thus reducing persis-
tence. A second model which they considered assumes the

énergy arises from a single, discrete source. It is
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argued that .such a source would imply very large co-
herence scales; although it is not clear how this can
be reconciled-wlith the very slow propagation rate of the
waves and the fact that this rate is different for
Various constituents of the waves. We will return to
these important points later. For the moment we simply
argue against excluding either model on the basis of
existing .data.

The general plan of this thesis 1is to present new
evidence of a type which will bear more directly on the
problems outlined above. A truly.comprehensive ex-
periment, .which will probably be done someday, would
involve a.sufficiently large numbef of instruments to
permit traeing the flow of energy within a suitably
large region:  Such an experiment is beyond the scope
of a thesis experiment and, due to limited instrument
reliability, may not even be technologically feasible A
at this.time{..instead, it was decided to exploit the
profound effect which a.coasﬁline ean have on»inertial
oscillations and which can help explain their:broperties.
It is clear.et:once that the effect must“be cehsiderable
since the horizontal component of current velocity, which
is by far the.largest component in inertial motion,

must vanish at the coastline. If the coastline is
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chosen to run east-west and be southward (or more generally

equatorward) of an observing site, its effect is par-
ticularly useful for interpretation of the resulting
data. These effects can be viewed in two ways; in terms
‘of ray theory, or in terms of normal modes, both of
which will be explored in succeeding chapters.

In more detail, the thesis will proceed as follows.
Chapter II will describe a series of current measurements
made in the Mediterranean during January, February and
March of 1969. The site was chosen so that effects of
the Algerlan coast, which is one of the few coasts in
the world having the desired properties, could be in-
terpreted most easily. Chapter III discusses the
Mediterranean observations on the basis of a ray theory
of propagation, the chief effect of which is to prbhibit
energy of exactly inertial frequency which originétes
in the surface layers from penetrating below a certain
critical depth providing that certain conditions- at- the
coast are satisfied. Normal modes are considered in
Chapter IV. 'The‘presence of the coast is found to force
a2 particular structure to the inertial motion; the wave-
number spectrum nust be discrete instead of continuous.
Finaiiy;'é‘éenérélmdiécussion bf'feéulks éndrébﬁclﬁéions

are given in Chapter V.
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Chapter II Observations

Description of site and mooring

During the period from January 22 to March 12, 1969,
current measurements were made in the Mediterranean Sea at
38° 01°N 5° 00°E, about 120 km. north of the Algerlan
coast. The mooring was set and recovered by the R/V
Atlantis II during cruise number 49, Interest in this
" region was aroused by the properties which theory pre-
dicted should be imparted to oscillations of inertial
period by the long east-west coastiihe'south of the obser-
ving site. In particular, a ray theory for the propagation
of such oscillations had raised the possibility of as-—
soc1at1ng them w1th motions induced in the surface layers,
perhaps by storms. A more complete description for the
motivation for these measurements is deferred until the
next chapter when; at the same time, the data can be
interpreted in terms of ray theory

Topography of the Western Medlterranean Basin 1sr
shown in figure 1. Note particularly the straightness
of the Algerian coastline and flatness of the bottom
near the observing site, where the water depth 1s
generally within a few hundred meters of 2800 meters
(v 1500 fathoms). These features together combine to

simplify greatly the calculations which will later be
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Figure 2 Schematic diagram of mooring configuration. The
drawing 1s not done to scale. ‘
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made in connection with interpretation of the data.

Figure 2 shows schematically the mooring configuration
and depths at which each of the five current meters were
located. The design is basically an adaptétion of that
developed at the Woods Hole Oceanographio Institution for
similar applications. A subsurface float, equipped with

beacon light and radio transmitter which operate only

when the float is at the surface, was used for reasons

of reliability and security; there is a great deal of
shipping through the area. Recovery of the mooring was
achieved through the acoustic release, which released

the anchor upon receiving a coded acoustic command A
number of glass spheres were located 1mmed1ately above
the release in order to float the instrument packages

to the surface in the event that the mooring line parted,_
which did not occur. For the mooring line itself, wire |
cable was used except towards. the bottom of the mooring
where braided nylon rope was used so that it could be

cut and terminated at sea to correspond to the depth of
water measured at the time. The wire cable was chosen for
brotection against fish attack which has in the past
severed a number of nylon mooring lines in the upper
several hundred meters of the ocean. However, no fish
bites were evident in the polyethelene jacket of the

cable when it was recovered.
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Depths of the instruments were determined by two
methods. The first of these was to measure the water
depth on location and cut the line to appropriate length,
taking into account the anticipated stretch of the nylon
line of about 18%. More directly, a pressure recorder
was located immediately under the primary flotation
sphere, giving a continuous record of pressure Versus time
for the whole duration of the mooring. The two depth
determinations gave the same result to within experimental
error, fixing depth of the subsurface float at 105 meters
+ 5 meters. No significanﬁ variation in depth with time
was found from the pressure record.

In keeping with conventions established'at the Woods
Hole Oceanographié Institution, where the data is kept in
archive, the mooring is designated as number 289. Data
series collected by each of the five current meters are
designated as numbers 2892 through 2896 in order of in-

creasing depth.

Instrument performance

The current meters used in this experiment. were
'Geodyne model 850 instruments with minor modlflcatlons.
In operation, the instruments record speed in terms of
‘rotor rotations and direction in terms of orientation of

a vane and of the instrument case with respect to an
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internal compass. The data are recorded internally in

digital form on magnetic tape. In the recording mode
used, the instrument 1s turned on once every fifteen
minutes. A burst of speed and direction samples are taken
at five second intervals for about two and one-half minutes
after which the instrument is shut down for the remainder
of the fifteen minute cycle. During subsequent processing,
the data are vector averaged over these 2.5 minute bursts
to give a single value of speed and directlon every 15
minutes. Consequences of this procedure in terms of
spectral content of the data have been. described in detail
by Webster (1967). The principle advantage is that it
effectively reduces the quantizing interval for the data
and thus reduces the noise level introducéd by quantizing.
The effect is not important at the frequencies of interesf
here which have periods long compared ﬁith 15 minutes.
Timing of the instruments is critical for many of
the inferences to be drawn from the data, making it essen-
tial to establish accuracy of the internal ihétrumeﬁf
clocks. Each instrument has two clocks, one to initiate
sampling a burst of data every 15 minutes and another
which only inserts a mark into the data every 12 hours.
By comparing the two clocks in each instrument, it was
determihed that each pair was running at a common rate.

Next, the absolute rate of each pair was found by
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noting the number of 15 minute intervals between two
precisely timed events inserted 1n the record, one im-
mediately before deploying the instrument and one im-
mediately after recovering it. This procedure was ap-
plied to each data series, except as noted below, showing
the time bése to have a long-term error of less than |
£ 0.1% in each case. Short term errors seem unlikely
insofar as they would have been detected unléss both
clocks experienced the same rate anomaly at the same time.
Also, past testing has shown that the .clocks normally
run at a very uniform rate in the constant thermal
enviornment of the sea.

The single exception where the absolute time could -
not be double-checked occurred in the instrument at 1200
meters depth. During récovery of this instrument, the
internal tape recorder failed so thatzit'wés not possible
to detect the event inserted at the'endrof the data
series as was done with the other instruments. On the
other hand, the two internal clocks did run at thc same
rate and the total datavlength until recovery agreed well
with the other instruments. It therefore seems reasonable
to conclude that timing accuracy for this instrument was
comparable with the others and that all clocks ran with-

in *+ 0.1% of the proper rate.



25

A variety of other instrument malfunctions occurred,
most of the effects of which were edited out during sub-
sequent data processing. A detailed description of these
would involve discussing working of the instrument at
gféater length than is appropriate here even though the
assoclated editing consumed a great deal of time. The
two most important of these intermittent failures in-
vqlved occasional failure of the instrument to turn on
for a scheduled burst of observations and occasional bit
failures in the binary output associated with the photo-
diodes and fiber optics of the direction sensors. Both
problems were easily detected and corrected by suitable
interpolation.

The final data, edited, vector averaged to give 157
minute samples, and plotted as speed and direction, are
shown in figufe 3. The figure is presented at this time
sincetit'shows two other problems with the'datazwhich
were not removed by editing. The first of th§§e‘is a
design failure rather than a malfunction. Because the
speeds at the observing site were so low, there are.
numerous instances in the data from the bottom four in-
struments where the rotorvdid not turn at all, particularly
towards the middle of the obsefving pericd. This property
of the rotor is well understood (Fofonoff and Ercan, 1967)

and is due to the magnets imbedded in the rotor being.
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attracted to the magnetically operated reed switch used
for readout. Since the direction sensors did not stall,
some information is available .during these periods, and
to make use of it, a spéed of 1.8 cm/sec, corresponding
to the stall spéed of the rotor,was inserfed when the
rotor stallea. Then when computing Cartesian components,
upon which all subsequent calculations were made, a
smooth transition across the rotor-stall pefiod resulted.
Since the data are dominated by the sum of a mean current
and an inertial period oscillation over much of its length,
other interpolations are easy to devise. For the present
purpose, however, the simple procedure outlined above
proved satisfactory and allows the reader to view the
rotor-stall problem in an undisguised form. No con-
clusion of this thesis would be altered by using a more
complex interpolation scheme for the missihg speeds.

The final instrument problem has to do with stick-
ing of the difécﬁion sensors. As noted earlier, there
are two of .these, both resembling an ordinary compass card;
measuring orientation of the case and of a vane, and
having optical read—ouf attachments. These sensors
have a history.of sticking; that is, of requiring in-
creasing torque for the seﬁsing card to change its angular
position within its frame. This 1s generally attributed

to a combination of thermal contraction in cold water
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and distortion of the instrument due to high pressure in
deep water but the causes are not well understood. In the
present instruments, the vane sensors of the three deep-
est instruments began to stick on March 1, February 25
and February 20 respectively, in order of increasing
depth. There is also some evidence of a sticking vane
during the last few days of the 700 meter record. In
all cases except for the bottommost instrument there was
only partial sticking so that a precise date of failure
cannot be assigned These faillures are particularly
troublesome to the extent that they destroy the charac-
teristic circular polarization of 1nertial currents, but
this failure was total only in the deepest instrument.
Fortunately, the only serious instrument malfunctions
- were confined to roughly the last third of the data so
that several weeks of data are avallable from all five
instruments and during‘this period the overall quality
of the data is excellent. It should be noted especially
that those malfunctions which occurred are not such as to

affect estimates of frequency made from the data.

Summary of measurements -

The basic data series have already been shown in
polar form in figure 3 and discussed from the point of
view ~f instrument performance. of more interest for

purposes of i1 ormretation and analysils are the correspond-
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ing Cartesian components which are shown in figure 4.
The topmost five traces show the east-west component of
current in order of increasing depth with the lower five
traces giving a similar presentation for the north-south.
current component. Eastward and northward flows are
considered positive with westward and southward flows
considered negative. Time is shown as days originating
at 0000 Greenwich mean time. As was claimed earlier,
assignment of a non-zero speed to the intervals where
the rotof has stalled permits data available in the
direction sensors to produce smooth values for the-
Cartesian components.

A numbef of features of the data are apparent at
once. Attention is directed in particular to the fourth
or 1700 meter dépth from the beginning of the record
until about mid-February, where a series of inertial as-
cillationé of extraordinary clarity and persistencevcan
be seen.

| Long ﬁerm trends are more clearly seen from what are
commonly called progressive vector diagrams, defined»as

the hodograph of

t

j E(T)dT

o

~
where to is the starting time of the series and u is the
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horizontal vector velocity. This guantity for each data

series is shown in figures 5 through 9. Small tick marks
along the curve correspond to 0000 GMT of the indicated
date. At the 200 meter level there 1s a mean current
towards the south until about February 10 after which it
turned towards the north or northwest. In order to show
more detail for that portion of the curve where it traces
over itself, the second, smaller curve in figuré 5 shows
part of the curve expanded by a factor of two. Pro-
gressive vector diagrams for the remaining four data series
are very similar in overall appearance, being directed’
towards the south-southwest until aboﬁt February 17 and
towards the west-northwest-thereafter. Since the direc-
tion sensors of the deepest instrument were not .function-
ing properly after February 20, the rough agreement of |
this séries with that above it after that date may be
fortuitous. The long term drifts are thus well cor-
related between the various pairs of records. All show
a sudden shift in the mean flow on about February 16,
except at the 200 meter level, where the change occurred
some six days earlier.

It is clear at once from the basic data series that
there is an enormous concentration of energy near the

inertial frequency f in all the data series. This is
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Figure 5 'Prdgressive vector diagram of currents at 200 meters
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shown quantitatively in figures 10 through 14 where
spectra of each of the data series are plotted. The
quantities plotted are the kinetic energy spectra,
defined as the average of the autospectra of east and
north current components. Spectral analysis techniques
.are well known so that the procedure used can be sum-
marized briefly. The Carteslan component of each data
series was.broken into four sections, each of which
contained 1024 samples. Each section was then Fouriler
analyzed and the resulting Fourier coefficients smoothed

according to the usual procedure

2 L
n : /g n-1 /6 n ‘/6'

with a similar formula for bn’ where an‘ is thersmoothed
~estimaté'and the a the original estimates. Such smooth-
ing provides a convolution window for the spectrum which
behaves asymptoticallyras the inverse sixth power»qf
frequency, which is sufficient to resolve most of the
high-frequency spectrum except in the immediate Vicinity
of the inertial peak.
The procedure used yields frequency resolution of

.004 cycles per hour (1/256 hours). According to the

‘usual statistical argument, the resulting spectral
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estimates would be distributed according to chi-squared

with four degrees of freedom for each data section since
there are two Fourier coefficients for each of the two
scalar series. However, since the two seriles are ncarly
perfectly coherent near inertial frequency, only two
degrees of freedom can be assumed in that frequency band.
-Hence the resultant spectrum is considered to be dis-
tributed according to chi-squared with 16 degreés of
freedom except near inertial frequency where thére are
only 8 degrees of freedom. Fof the formef case, thé
true spectral values are expected to be within a factor
of 0;45 to 1.85 of the computed values at the 95% con-
fidence levels and for the latter case, the correspond- °
ing factors are 0;30 and 2.38. Statistical stability
of the spectral estimates has been sacrificéd to some
extent to give greater frequency resoiution. Still
it is clear from the plotted results that the width of
the peak at inertial frequency is not resolved since it
is defined by only two or three estimates. |

Tt is of interest to note in passing that all
speccra show the same characteristic shape_at fre-
quehcies above inertial as do those measured at Site D
and elsewhere.. Harmonics can be seen at multiples of
inertial frequency, presumably due to.clipping'caused

by rotor stalls and leakage from the main peak.

At



. by
A different view of the spectral content of the data

is afforded by figure 15 where the same spectra have been
recomputed .with maximum frequency resolution and plotted
on a log-linear scale in the vicinity of the inertial peak. -
This can only be done at the expense of statistical
stability, .which, according to the discﬁssion just given,
results in estimates dis?ributed acpording to chi-squared
with 2 degrees of freedom. Note that'the Spectfum of

the 2200.metervmeasurements has only half the frequency
resolution of the others since the series is only ébout
half as long. The apparent structure shown near ihertiai
freqﬁgncyacan’be explained on the basis of statistical
instability,or by time varying properties of the sigﬁal,
as well as by the signal having-the_indicated structure
in a deterministic sense. One.way.of characterizing
these spectra is through their value ;f Q,vdefined as

the frequepéy width of the spectral peak divided by

its central frequency. While values of Q are:sometimes
used as an indication of the—éxtent to ﬁhich;ﬁamping is
preseht in a:highly tuned resonator, it.is'given here
only as a guide to the sharpness of the spectral peak.
The spectra of fiéure 15 show half-power bandwidths
-roughly equal to or double that imposed by the spectral

analysis, which is 0.001 cycles per hour (171024 hrs.),
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indicating -that the peaks are still not well resolved.

The corresponding estimates for Q range from 25 to 50,
which should be thought of as representing lower bounds.
The kinetic energy spectra do not indicate the

- extent to Wthh the currents are circularly polarized,
although_lt is clear from the progressive vector diagrams
that the currents corresponding to inertial frequency
have a strong rotary component in the clockwise direction.
Documentation of the circular, c¢lockwise character of
the data is provided by the following scheme which is
essentlally due to Mooers (]970 Appendix II1).

Given .series u and Vv, corresponding to east andj'
north'componenbs of current respectively, define the
complexlcurrenﬁ Uby U=1u + iv. The n-th Fourier com-
ponents Un of U may be represented as |

iw t —iwnt

Un‘= An e + A—-n e .

with complex”ooefficients An and A_, - The ourrent

iw t - - L
e ' represents a current of unit magnitude rotating

in a circularlcounterclockwisé sense andﬁin the rep- -
resentation for Uﬁ, An defines its amplitude -and phase.
Similarly, A, defines the amplitude and phase of the

circular, clockwise—rotating component of Un' The

coefficients.An and A—n are defined in terms of the
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real Fourier coefficients of the u and V series as follows:

= L - '
An 2E(aun + bvn) + i(avn bun)]
A, - 2(a, - b_ )+ 1i(a. + b )]
2 un vn vn un

where a.n° bun are respectively the Fourier cosine and
sine coefficients of series u for frequency wn,'and

avn’ bvn,.are the corresponding coefficients of seriles v.
The_valueS'aun, etc., are recoverable given An, A_n,
which shows .that the decomposition given for Un is the

most general possible. It is now reasonable to define

the spectrum of U at frequency-wn as

) = A A ¥
SUU(wn) AnAn

A A ¥

SUU(—wn) -n"-n

where the -overbar denotes ensemble averaging and ¥ denotes

complex conjpgation} Thus at positive frequencieSbSUU

measures the clockwise energy. By applying the
expressions for An and A_n,»and making use of the usual

Spectral relations
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_ 2 2
Puu(wn) =-8;n * Pin

_ 2 2
va(wn) = ay, * byn
qu(wn) = 2n bvn = %9n Pun.

where Pu are the autospectra of u and v respec-

uu’ Pov 7
tively_and,Quv is the quadrature spectrum between them,

one finds

SUU(wn) - %[Puu * Pov +.2qu]
',_. = 1 - . -
SUU( mn) “[Puu + va 2qu]'

Note that the sum of these is the kinetic energy density
at frequeney w_ . Table 1 shows ‘these two quantities
evaluated at inertial frequency for each data series.
That the,burrents are almost totally qircular,!cloqkn

wise polarized is evident.
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Table 1

Kinetic energy density at inertial frequency decomposed

into counterclockwise and clockwise constituents.

~ Depth : SHNE | Syy(-1)
meters (cm/sec)z/c.p.ho= (cm/sec)z/c,p.h.
200 12. : 2167.
700 L, L34,
1200 3. 164. .
1700 3. 6037
2206 9. 106.

In terms of spectral analysis, it is possible to
characterize to some extent the s1m11arity between the
Various records, which 1s apparent in figure 4 for»
example, by computlng coherence estimates betweenfpairs
of records. Here the coherence C between two scalar
time series, .say the east components of two current-.
vectof series, is defined by

2 2.y
(Py," + Qp57)
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where P12 and.Q12 are respectively the co- and quadrature

spectra between series 1 and 2. Similarly Pll and P22
are the autosoectra of series 1 and of series 2. (Note
that some .authors define C2 as the coherence.) The
sssoclated.phase 0 is defined as 8 = gan™t Q /P,
'We recail.thatﬁcoherence at a particular frequency
implieé acconsistent'phase relationship between con-=
stituents of the two series at that frequency over the
data series, and 6 1s a measure of that phase difference.

| ?Table;Z shows the result of computing coherence
at inertial frequency between corresponding components-
of various pairs of records. The recorde were divided
into 9 sections of 128 hours each, for which the ex-
pected coherence for an incoherent,'Gaussian pfocess

' 30 and for. which coherence greater than 0. 56 is

significant at the 95% level according to Amos and
Koopman (1963). An exception is made‘}or the pair
involving the,deepest instrumenf since  that instrument
failed after February 20. In. this‘case, there. are only
5 data pieces-and the correspondlng expected and 95% |
signlflcance Jevels are 0.41 and 0.73 respectlvely.
Also computed is the coherence between the. records ‘from

200 and 1700 meter levels since they are the two most

widely separated series for which there 1s an adequate
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signal level.

Table 2

~ Coherence .at inertial frequency between various

pairs of current records.

Inst. Depths East Components North Components

c - ] c 8
200 - 700 - 0.7 119° 0.6 1240
700 - 1200 - . 0.2 - -166° 0.2 - -lbis°
1200 - 1700 0.6 -22° 0.6 -29°
1700 = 2200 0.6 -8u° 0.6 -85°

200 - 1700 ' - 0.6 -112° 0.5 ~-113°

"All pairs show significant coherence except for the
700 - 1200 meter palr, even though both these series
clearly contain.signals of very nearly inertial frequency.
This suggests.that there is not a cohsistent“phase re—
lation between .the two series. Examination‘qf figure-4
shows in fact.that the two series have near1y the-same
phase during the early part of the data series, but .
nearly opposite .phase during the last part. It has

already been noted that there was an apparent change
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in the character of the records around mid-February.
The phase estimates are more difficult to interpret,
being angular averages which, as is clear from figure 4,
are somewhat:variable with time.

Variation of coherence with frequency is -illus-
trated in figure 16 for the east components of the
series at 200 and 1700 meters. It is fairly typical of
coherence petween the other pairs of series, decreas-
ing to thelexpected'value for an incoherept process
at frequen01es away from inertial.

The standard technlques which have been used here
do not give any insight into the variations of amp-
litude .and phase with time which are apparent in the
data series shown in figure 4. One suspects that in
view of”the“high signal strength in the records that-
other techniques are possible which weuld yieida
quantitative estimates of .these variations. A tech—_
nique .for doing this, somewhat loosely called complex

demodulation, has been devised and is now described.

For inertial waves, one can define the. complex

~eurrent U(t) = u + iv = Ae—lft. The hodograph of such

a current describes a circle 1in the complex u, V plane,
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rotating in .the clockwise direction. More generally,

we can also include a counter-clockwise rotating com-
ponent and superimpose many such currents with different

frequencies. Thus

=]

U(t) = ‘[ do A(w) e 1¥%, II-1-
Zoo

To be definite, it is imagined that the magnitude of
A'is sharply‘peaked;near w = f as is appropriate for
‘a signa}udominated-by inertial oscillations. _

Next, imagine anlidealized inertial wave e_ift'
and seek a complex coefiicient D for it which makes it
most closely resemble the given signal in a least
squares .sense ovefvsome interval of time_ZT centered
arouﬁd some specified time 1. If 2T is held fixedr
throughout . (two inerﬁial cycles in thé'case-at'hand),
then the resulting quantity D(t) 1is called the. complex
deémodulate .of .U or of u and v.! The defining criterion

is then that: - T

1 This definition of complex demodulation 1s not analy-
tically equivalent to that defined by Bingham, Godfrey
and Tukey (1967) put has the same heuristic interpretation’
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"[ | D 1Tt | y(t) |2 at = minimum TI-2
T-T
or, taking 5%*, where ¥ denotes complex conjugation,

we have at once

1+T
=

D= 5%

et y(t). at. 1I-3
=T
Substituting the ‘specified expression for U and carry-

ing out some easy integrations, we finally have

-}

D(t) = ‘[ dw A(w) W(w-f) e~ t(e=T) II-4
) -0
Here W(w) is the real amplitude window through which
the demodulate D sees the spectral distribution A of
the signél. It iSvgiven by |

sin oT

W(w) = =7

II-5

The shape of this window, which appears so often in

spectral analysis, is shown in the accompanying. sketch.
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There is also a phase shift associated with the'window;
namely (w-f)T.
As an .illustrative example, SuUppose the signal

consists of .a pure sine wave of frequency slightly dif-

ferent from f; say, A(w) = Aoé(w—f-;)-so that U(t) =

A e«i(f+e)°

o It then follows that

=]

A, f dw §(w—-f—g)W(w-F) o-i(w-1)T

- 00

il

D(T)

iet

AOW(E) e” II—S

For € sufficiently small, we have W(e) = 1, but the
phase continues to change linearly with time'at a
rate depending on the difference of the signal frequency

from the demodulation frequency.

H‘w
13
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'In practiee, the demodulation frequency was chosen
as the inertial frequency at the observing latitude,
38° 01'N, which corresponds to a period of 19.43 hdurs.
The period 2T, over which the least-square fit by this
signal’waSJmade; was -chosen as two inertial periods
and the .complex demodulates D(1) were computed for
inerements in t.of one inertial cycle. That 1s to say,
‘a portion,of;data'two inertial periods in length was
chosen. .. .This was fit by a curve of the-fofm e—ift to
glve a demodulaté"estimate D(Tl). Then the next por-
tion'of.déta.was chosen (in order of increasing time)
of equal. length and overlapping the preceding portion
by one inertial pefiodfor one-half its length. Thils
data'was,similarlyffitted to give D(T2) and so on.
Henice, each-estimate of D(1) is completely indépendent.
of all others except for the two which immediately
-precede and .follow it, and with each of these the de-
termlning portions of data overlap by half their length.
" The mean .was-also détermined for each piece at the same
time the sine=wave fit was made. A linear trend was
experimentally found as well but proved to have no

significant effect on the other guantities. .
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As a numerical example, & signal was synthesized
at 15 minute intervals consisting of white noise which
was uniformly distributed petween 0 and 80 cm. /sec.
plus 2 signal having the deéired rotary characteristic
with a magnitude or half-wave amplitude of 10 cm./sec.
and a period .of 19.0 hours. The signal was barely
discernable in the resulting series. Results of de;

modulating .this signal at 19.6 hours (3% lower fre- .

quency) in the manner described above is shown in

figure 17 as .2 magnitude and phase. Exact values for
magnitude.and pHase for the signal alone are‘shown b&r
dashed .lines. The 3% frequénd& difference appears as
a uniform drift of phase with time. For the present
case, demodulation clearly defines the signai fre-
quency to within a small fraction of one percent.

More generally, the precision to which the.signal‘fre~
quency can pbe.determined depends onvhow long it re- -
mains constant and on the structure of the spectrum“'
near its .peak, as well as on the level of nqiée pfesent.='
Noné of these fadtors can be known a priorirfor»the
data being considered here but this example indicates
that if the .spectrum is sharply peaked,'demodulation
can be expected to give a satisfactory estimate of
the frequency of the_peak'even in the presence of

substantial amounts of noilse.
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Complex demodulate of a synthetic signal
plus noise as discussed in the text. The
demodulation frequency was 3% lower than
the signal frequency. Exact values of
amplitude and phase for the signal alone
are shown by dashed lines.
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Results of the procedure when applied to the data
are shown"in figure 18 as a magnitude and phase. The
right hand.series of curves are the magnitude and the
left hand .series the phases with successive data series
giveh in.opder of .increasing depth. As -noted in the
preceding.example, a slow change in phase 1s interpreted
as a differencerbetWeen the signal and- demodulation.
frequencies. . This is embodied in the inset .at far
right which shows slope of the phase curves for various
departupesﬂof.the signal above local inertial frequency
as‘a percentage of that frequency.

It-iS'C1ear that there is a systematic departure .
from local inertlal period in the direction of increas-.
ing. frequency..‘Partlcularly noteworthy is the flrst
part of . the- ‘data at the fourth (1700 m.) level, which
was pointed.out earlier as being unusually sinusoildal
in abpearance. The phase change there is remarkably
uniform and.corresponds to a~freduency'three percent
abové inertial. A similar trend‘is:épparent in -the
other four curves during -about the first three,Weeks
of the data series. Also of interest duringlthis period
is the differeﬁce in phase between the various pairs
of curves; .the .two uppef curves have nearly the same

phase at any given time and the three lower curves



cgoaano oseud otya Jo adors JO coﬁponsh v g8 Aouanbaal TBTIIDUT TBOOT 4940
pPoAdaS(qO JO 8SBAJIOUT o8rvquooaad smoys 398Ul SYJL *gseyd pue epngirdus
g8 UMOUS SQUIUIaANSBOW JUaLAND JO SOTJ9S 8ATJ dYj3 JO Saj3BINPOUSP megEoo gT 2un3dtd

HOUVYA Advnug3 4 AMVANVE HOUVA Ayvnyg3d AYVANVP
ot gz o2 ol 2if €2 o 82 oc ol 2ig 82
..t e L I v o, .. .8 ./\l\/\/l\//r\/\r.oo
\/4\/\/\/ -0 : Lo's
— T 00
o Lo's
- -\'\/\/\//\‘(/\/\\/\ -
G 9 8O o . Toe
v 1
€ [ oss I
2! i
; Lo
0 !
L | [
/.//\7 —{-081 00
I . i
o Lo
Lot Lol
(S334930)ISYHd [
(0087 w2)

3ANLNdNY



62

also nave reughly the same phase, but these two phases
4z ffer from cne another by about 180°. Those portions
of data for which the phase estimates seem least stable
cdrrespond in general to intervals where amplitudes

are quiﬁe small.

mrus the .demodulation method gives more easily
interpretableiresults than do the spectra in figure 15
for this particular set of data. A frequency shift 1is
‘suggested in all of the spectra, but no quantitative
estimate of it 1s possible even with spectrarcompgted--
at maximum frequency resolution.

Two final points should be noted Firstly, data
from the bottommost 1nstrument cannot be used after
February 20 since directions are not available after
that time.. Secondly, the demodulation technique used

here is so successful largely because of the very sharp

single .peak .present: 1n the spectra. The spectral
window implied by the procedure is not a very good one,
at least by the standards of conventional spectral
analysis, .and so cannot discriminate well against: sig-
nals at other frequenciles. |

Some .success has been aehieved using the method

at Site D where a strong tidal peak 1s present by

adjusting the demodulation interval (2T) so that-the
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spectral .windew .(W) 'has a zero at tidal frequency when

demodulating an inertial signal. The results are not
as clean as those shown here but suggest a shift towards

high frequencies of the inertial energy.

Support ing .data

A hydrographic station was made immediately after
the mooring'was set using a Biséet—Berman STD to a depth
of 1500.metersa This has been combined with a conven-—
tional hydrog?aphiC»station (AII-1273) made a few hours
later at.&@?N 6§E: The two are shown together in_figure'l9,
with Statien 1273 having been used below 1000 meters.
Temperatuné'pbints read from the STD trace at points
betweenuwhich.thé trace was nearly linear are shown.ﬁy
solid round:dots and those from Station 1273 are. denoted
by solid.squares. Correspondingly determined values
fo?_salinitylare denqted_by_x's-and +'s. Note EEELgQQQ
- agreement .in .the régién?getween iOOO and 1500 metéfs, .
where the .two.measurements overlap.

These déta were used to comﬁute the stabilitj or
Brunt—Véisélé frequency as a function of depth shown
in figure 2Q.. The plot is made on a displaced
logarithmic scale in the vertical so that details may

be seen in the surface layers. Open circles indicate
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hours later. ,
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depths at whiech temperature-salinity pairs were tabu~-
lated for .the stability computation. They are useful
primarily .in the deep water where the constancy of the
stability .prevents the tabulated depths from belng
apparent; the uniformity of the deep stratification 1is
not due to any lack of depthwise resolution in the
observational .data. Depths corresponding to current
meter levels.are marked by an X. Stability was com-.
puted from.the equation of Hesselgerg'and Sverdrup
using'Ekman'sﬁequation of state for seéwaterv(F6fondff,
1962). Since it depends on gradients, the stability

is determined. as a piecewisé constant function between
‘tabulated .depths. The stabllity freqﬁéncy'plays an
important role in the dynamical-argumgntsmwhich follow,.
aﬁd,itris'unfortUnate that additibnal determination
of it .could-not have been made. This was due to
scheduling .of .ship and persoﬂnel, whose primary.com;-
mitment lay.in exploring ﬁhe_hydrographic;properties
of ‘the Mediterranean water much fhrthefnﬁorth, around
latitude 42°N; As a result of this activity, it is

known thatJthere'Were significant changes in the
stability of this northern fegion both in space and time,
believed to.be.associated with wintertime formation of

deep water in the Mediterranean basin. These changes were
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confined to the northern part of the pasin however and
historical data (W.H.O.TI-. archives) show no significant
variation of stability within the obsefving region,
changes being evident only in the near-surface levels
over the months during which the current measurements
were made. ‘It is therefore reasonable to accept the
computed stébility to be a fair representation over the
area of interest.

Figure 21 shows wind measurements as‘speed and
direction throughout the obserVing'period, These were:
obtained as geostrophic winds computed from the 12
hourly pressure data at selected grid points available
through the Environmental Sciénce Service Administration
and interpolated to the observing site.® The grid points
involved in this scheme were rather widely-separated, being
at 35°N 05°E, LOON 00°E, U5°N 05°E, and 4o°N 10°E. It
can be argued both ways about the adequacy of this grid,
depending upon whether one ‘believes deep. inertial oscil-
1ations to be generated by the wind, if theyuafe'at.all,

through either local or large scale forcing.

! The author is grateful to Christopher Welch for making

available his computer programs for carrying out these
computations.
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Two posslbly important features of the wind data
are pointed out, namely the storms which took place
around January .l4 several days before the mooring was
deployed and the stormy period in mid-February. It
is possible that the latter is related to the change
in the mean current or to the change in the charécter
of the inertial oscillations which were observed dur-
ing the same period. The former might similarly have
been responsib%e for the large inertial signal ob-.
served throughout the first three weeks of

observations.
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Chapter III A ray theory interpretation

Techniques for fracing the flow of energy through
a slowly varying medium have evolved into. a fairly stan-
dard formalism as outlined, for example, by Whitham (1960)
and the approach used here follows quite closely that of
Eckart (1960), except that emphasis here is oniiééal
rather than glbbal features of the solutions. Our
attitude is similar to that of Blénfoﬁd (1966) who ex-
amined, however, only horizontal paths of propagation.
One feature inherent in moored current meter-déta is
sparse sampling in the vertical. Ygt it is sufficiently
dense to'require that account be kept of depths at which
inertial-period energy may be found. .. Hence, our at-
tention is fixed on vertical as well>as horizontal com—-

ponents of wave propagation.

Basic equations R L e o

We begin by writing the equations of motion for a
rotating, stratified, incompressible fluid in spherical
coordinates where the Boussinesq approximation - has been

made:
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u, - fv = - pk/(a cos ¢)
v. + fu= - p_ /a
t ¢ III-1
- _ N2
W, = - p, N°g
W=Ct
W, + [uk + (v cos ¢)¢]/(a cos ¢)

where
f =2 Q@ sin ¢ is the coriolis frequency,
2 is the earth's rotation rate, |

¢, A, 2 are latitude, longitude and elevation
(measured upwards) respectively,

u, v, w are respectively east-west, north-south,
and up-down components of velocity,

p is pressure variation about hydrostatic
: divided by the mean density,

z is vertical particle displacement from
equilibrium,

a is the radius of the earth, and

N - 1s the Brunt-Vdisild frequency, defined by
N* = -gp,/p -

with p = p(z) the in situ density and g thé,acceleration
of gravity. The horizontal component of earth's rotation
1s neglected here, an approximstion which is discussed
later in this chaptér and more ful%y in Appendix I.
‘These are essentially the equations used by Munk and
Phillips, for example, except that we will retain the

term Wy in the third equation. It is possible to use
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them in this form and it is essential to do so if one is
interested in solutions valid over a wide range of
l1atitude. But for our purposes, where the range of
latitudes is limited, significant simplification 1s
possible.

Define local Cartesian coordinates x, y with re-
spect to some reference point ¢O, ko by

x = a(x - AJ) cos &5 ¥ = a(¢ —’¢o).

Then making the approximations (all in the

continuity equation)

n

cos ¢ cos ¢o

R

sin ¢ = sin ¢

and Vv tan ¢o << vy

the equations become

utv— fv + Py = 0

vy + fu + py =0

w, +p, t NZ; =0 III-2
Ceg — W =0

Uy + Vy + w, = 0.

Finally, so that f may have a simple dependence on y,
we may make a Taylor expansion of f about ¢o which for
'small values of y leads easily to

£ = f(y) = fo + By 111-3
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where £, = 2Q sin eo, B = 2Q cos Bo/a. These are sub-
stantially the same equations as used by Blanford (1966)
“and constitute what may be called the non-equatorial beta-
plane approximation. |

Another way of viewing the approximation is that
the chief neglect is of the convergence of the meridians
towards the poles. At the latitudes of interest (~ 38°)
the meridians converge only by about 1% per degree of
latitude, again indicating that the approximation is
satisfactory. More important is that the latitudinal
dependence of Coriolis force is retained since_this-
variation determines behavior of the solutions having

' near-inertial frequency, as will be seen.

The phase function

We seék solutions of the form

(u, v, W p, T) = (U, V, W, P, 2)el® ' ITI-4
where U, V, W, P, Z, and the phase function ¢ are'all,
in general, functions of x, y, z, t. Note that if £ and
N are constant then U, ..., Z may be taken as constants
so that ¢ has the simple form

® = kx + 8y + mz + wt.

Substitution into the original equations then gives the

familiar dispersion relation for inertio-gravity waves

(k% + 22)(N? - w?) = m®*(w? - £2). III-5
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Of interest here is the more general case f = fo + By
and N = N(z). Nevertheless, to the extent that f and N
are not rapidly varying, we suppose that U, ..., Z vary
only slowly in space or time compared to ®. Thus we
neglect derivatives of U; ..., Z with respect to thoSeh
of.¢; .85
4 = [U. + 1007 e1® = 1ve_et?, ete. ITI-6
T ¢ X X X : _
This_approximation; known as the WKB approximatibn,
is the standard one in ray theory. Quite recently,
attention has been drawn to the fact that in the case of
inertial period motions there is necessarily a region,
the size of which depends on the parameters involVed,
where the approximation breaks down. Approximation III-6

is essentially a short wavelength assumption, while, re-

ferring to the dispersion relation III-5, we see that as

e R TR SRS

f approaches w, corresponding to a wave group travelling
northward, it follows that the horizontal scales become

unbounded. Or, in terms of the phase function, @, and @y

vanish, invalidating III-6. . The extent of the region
where this difficulty.appears qlearly depends.on“something
like the ratio (k? + 22)/m? which cannot be estimated

at this time. Since there is no hope of delimiting-the

region in which ray theory is valid without some knowledge
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of the spatial scales involved, the issue is not pursued

further. Instead, the theory is assumed valid over a
sufficiently large region for present purposes.

next chapter, a quite different approach is followed,

not depending on the approximation III-6.

Now substitution into the equations III-2 yields

ive, - £V + iPe_ = 0

1V¢t + fU + 1P§y = 0

iwe, + 1Pe_ + N?Z = 0
: Z

ue, + V@y + We, =0

iz,t - W = 0

In the

IIT-7

In keeping with the foregoing discussion, we hold that

U, ..., Z change slowly and treat the above equations

as a linear system for those variables.
solutions to be non-trivial, we require

following determinant vanish:

10, -f 0 o, 0
b l@t 0 @y 0
0 0 ie, e, N?Z

o oy | 9, 0 0
0 0 -1 0 io

Hence for:

that the
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This is entirely analogous to the derivation of the dis-
persion relation and reflects the hypothesis that the
waves are locally comparable to plane waves correspond-
ing to the local values of f and N.

Expanding the determinant we have?

(2,2 + 0 2)(N? - 0.%) - @ 2(a.? - £2) = 0. III-8
This is of course comparable to the dispersion relation
except that N and f are no longer constant and the equation
is treated as é partial differenﬁial equation for ¢ called
by Eckart the Hamiltcn—Jacobi equation. Although nonlinear,
the equation is only first order and hence\soluble; Fortu-
nately, we can spot separable solutions of the form

¢ = kx + wt + Q(y) + R(z) ) _ ITI-9

and the indicated dependence in x and ¢t couidrhave beén
assumed at the outset. |

If the horizontal component of rotatioq is retained
in the original equations, separable solutions are not
possible unless, for example, N is constant. This is

not an interesting case in terms of interpreting our data,

but can be used to explore juantitatively the consequences

! A spurious factor of ¢ has been dropped in ITI-8. In.
a more exact treatment, “this factor is associated with
Rossby waves. ' '
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of neglecting horizontal rotation. Carrying out the
relevant calculations in Appendix I, we find the con-
sequences to be negligible and we are amply justified in
our approximation by the enormous simplification which
results.

Upon substituting III-9 into III-8, we find the

following equations for Q and R;

|
o

£,2 (k2 +Q72) - 52(w? - £2) =
ITI-10

and fozR‘z - 82(N? - w2) =0

where s is a separation constant of dimensions 1l/length.
The first of these can be integrated analytically since
f has such a simple dependence,oﬁ y (£ = £, o+ By) but

the second must be done numerically since N(z)_is given

only in tabulated form. For the'moment thiis quadfature

T

is simply indicated and the phase function ¢ is taken

as known;

y
—_— 1

Q= Q(y; w, k, s) = % j’ [s2(w? - £2) fo 2 - k%1% ay

I

ITI-11
Z
U

R = R(z; w, s) = # J[ [s2(N? - w?) £ 212 dz
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where y,, 23 are essentially arbitrary constants which

we will eventually take to be the origin of a ray path.

Ray paths

Knowing the phase function, construction of the ray
paths is straightforward, proceeding in the manner des-
cribed'by Eckart (1960). The rays will have the pro-
perty of béing everywhere parallel to the group velocity
and so have the interpretation of being the lines along
which energy propagates.' By proceeding from first
principles it is possible to arrive at simple analytical .
expressions for the rays,

Consider the sum of two wave-like constituents of
the motion having slightly different values for their

governing parameters; thus, for example,

u = U{?xp 1[k“x+0 t+Q(y;w”,k”,s”)+R(z;0",57) ]

+ exp 10k"x+u"t+Q(y;0",k",s")+R(z30",s") I}

where we have assumed that the amplitude U is not -strongly
dependent on the parameters w, k, s, and where k“ = k + 6k .
k" = k - 8k, etc., for some suitably small values of &k,

Sw, and §s,
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We may then write by Taylor's theorem

» » - a a BQ
Qlysw”,k™,s )=Q(y;w,k,s)+a—%5w+-a—%5k+.a_s_as

and similarly for R, neglecting higher order terms.

Substituting these into the expression for u we find

é—R—)cs%]
S S

. €Xp i[kk+wt+Q(y,w,k,s)+R(z,m,s)]. III-12

u=2Uoos[(%%+x)6k+(§g+35+t)6w+(

18

oW JWw

€
(3]

Thus the result resembles a wave having properties of

the mean frequency and wavenumbers, but modulated by a
carrier which is a slowly varying function of space and
time. This is entirely analogousito the usual derivation
of group velocity, except that the phase function is some-
what more cémplicated here, having other than linear de-
pendence on the y and z variable;. Energy 1is effectively_
trapped within its envelope and hence moving with the
envelope. From the final expression III-12 for u, the

envelope is seen to move according to:

99 _ _

k- 1~ %
3, R _ _
9, By, III-13
3Q , 9R _ _
T RS B

e o A T
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Wwith Q(y) and R(z) known, the first two of these deter-
mine a surface in X, ¥y, % space in which the energy must
travel and the third the travel time. Here X;, 21 and
-ty are constants which are chosen so that the energy
passes through a given point at a given time.
' Carrying out the indicatedrdifferentiation-qva and
R, one may write more explicitly
y 1i
_ - + 2 _ p2 20 279772
X Xq _rfo 'J’ [w f r fo ] dy
Y1
Yy \
= 2 _ p2 2 _ p2 _ p2 p 2 -2
ll tl/fo J’ (w f2)lw f r fo 1 dy
Y1
III-1!
7
- 1
+1/F, f (N2 - w2177 dz
21
: y . .
- T 2 _ p2 _ p2 21~%
t -ty = +sw/fo j' [w | f r® £, ] dy
I1
Z
-~k
tsw/f -[ [N2 - w?] % dz
21
with r = k /s . We see from these that any ray, cor-

responding to a specified value of r and s, will pass

through the point Xys Yy Zq at time tl if 21 =0
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which we now assume. The two integrals in y can be car-

" ried out analytically:
-k -
ﬁmz -2 - r?2fr 172 dy = = sin" ! [f (w?

-1
and j}wz - £2)[w? -f% - r2f02] 2 gy

1
_ .20 23\7%
rfo) ]

ITI-15

' - -y
= L(w? + rzfoz)/B sin M f (w? - rzfoz) 2]

. _ L
+ ;éf/B [(1.)2 - erc_)Z - fZ]Z

Geometry. of the rays is determined entirely by the

first two of'the equations III-14, which depend only on

the single parameter r. Thus for each value of r, there

are in géneral eight curves which pass through
source X, yq, %3 corresponding to the various
of sign. Four of these increase in z as x and
away from the origin and so are rejected since

origin is taken to be at the sea surface. The

the ray

choices

y

increase

~the ray

remaining

four curves are symmetrical about the plane x =

ducing to a pair of lines lying in the plané X

r = 0.

X

-xl when

s Te-

Each ray has a northernmost limit which is charac-

terised by vanishing of the radical in the expression:

ITI-15, corresponding to a latitude above which waves
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of the prescribed frequency cannot propagate. This extremum
‘is given by

1
3

Vege = L[E(w? - rif ?)* - £ 1/8. ITI-16
The negative sign yields extreme or turning latitudes having
very 1argé negative values for y. These correspond to south- '
ward-bound rays which would reach turning latitudes in the
southern hemisphere if it were not for the Algerian coastline
from which they are reflected ﬁorthwards in the present case., -
For the moment, these rays are ignored and we concentrate on |
the northward-bound rays which can arrive at the observing
site without ﬁndergoing reflections}

Since the two northbound rays are symmefrical, it suf-
fices to plot only one of them. This is done for a»singie
frequency w = fo and various values of r in figure 22. The’
solid lines emanating from the chosen origin'are.the rays :
which may of course be shifted east or west Without-changeoféi-
shape corresponding to a different choice of origiﬁ. Note -
that r acts as a steering parameter determining the ray direc
tion. Solid lines interseqting the rays are.lines of constan
depth as indicated. Thus energy input at the chosen point:

can be expected to-spread out along this surface, with:dif-

ferent values of w corresponding to different surfaces and
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values of r determining direction within each surface. &4

Also shown in figure 22 are dashed lines intersecting |
the rays. These are determined from the third of the equa—“
tions III-14 and are proportional to travel time from the
origin. Noﬁe the crowding of these lines near their northe
most limit, especially for r very small. Such crowding
corresponds to a bunching up of the energy in the'oorrespon '
ing region; hence the case r = 0 is of particular interest{ 
Although a ray point moves increasingly slowly as it moves"
northward, the travel time to its turning latitude is not
infinite, even for the cése r-= 0 when the group vélocity»
vanishes at the northern limit. Réther, the energy travers
the path in a finite time and is eventﬁally reflected south
ward again. |

Ambiguity in the travel time is apparent in the govern
ing equation, for it depends not only on the parameter r
which defihes a ray for a given frequency, but also upon tkl-
‘separation constant s. In fact,-travel'timeoﬁare propor-
tional to s, which we do not know how to estimate. 'Hénce-e
deep inertial oscillation which arrives from the ocean
surface without having undergone reflections can be traced
back to a fairly well defined region of the surface
(depending upon how accurately,its frequency can be deter- '
mined) but we cannot know_how long ago it originated. there

This is a severe handicap for the ray theory, which prevent
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establishing a direct relationship between deep 1lnertial
currents and meteorological processes.

The speclal geography of the Mediterfanean 1s poten-
tially quite important at this point, for the Algerian
coastline places a limit on how far to the south the
inertial energy can be genefated. Thus there is a maximum
depth to which energy arriving at the obserVing site
directiy froﬁ the surface (without reflection) canareaeh."
Below this depth there is a shadow with respect to direct.
arrivals from the surface daet by the coast, below which
energy can arrive only by.having undergone one or more
reflections. Of the rays with near-inertial frequency
originating at the surface, those which do not travel
northwards will intersect the coast and be reflected back -
into the hypothetieal shadow zone, perhapé,having.been
attenuated. This possibility is now explored.

That energy flow into the regilon of interest 1iIs possible.
through reflections of rays ffom tﬁe coast‘caq"be seen
geometrically. Neglecting the east+west component of wave-
number k in the dispersion relation III-5, the.expreesion>

can be rearranged into the form

M= t[(N2-w?)/(w?-£%)17 = tan o
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where 6 is the angle of the wavenumber vector with respect to

horizontal. From the observed frequency and the value of f

corresponding to the latitude of the coast, we have w/f = 1,05_K“7

Then if N = 1.0 cycle per hour, the corresponding value for @
is 89°; i.e. the wavenumber vector is about one degree from
vertical. Thus for the particular frequencies chosen, the
dispersion diagram in the &,m plane is "X" shaped (or double
cone-shaped in-three dimensions) with a sharp vertex. It 1s
apparent that as w increases towards f, the vertex becomes
increasingly sharp and 6 approaches 90°. Hence since the
group velocity 1is the gradient in wavenumber space of the
curves corresponding to constant frequency, it is directed.
perpendicularly ,to the constant-w curve and with a componeht
towards the m axis. i

In figure 23(a) a line OB having the;same‘angle ¢ as
that of the coast, estimated to be about é°, is drawn
through the origin in %,m space. (The angles drawn are
exaggerated for illustrativé purposes, but their'qualitative
interrelationship is correct.) Also shown are,phe loeci
satisfying the dispersion relation for frequency w. The
short arrows at the extremities show the “direction ‘of the
group velocity appropriate to each branch of the dispersion
curve. A perpendicular to OB is constructed through‘the

point K.. In order that incident and reflected waves cancel
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on the reflecting boundary, they must have the same frequenc:

and their vector wavenumbers must have the same projection
onto the iine OB. Hence if OKi is the incident vector, then
OKr must be the reflected, account being taken of the associ
ated group veloclty directions. Rays directed'southward fro
.the surface and reflected at the coast are thus directed dow
ward after reflection. Incident and reflected rays form equ
angles with respect to the horizontal rather than with respe
to the normal of the plane reflecting surface. This situati.
holds unless the normal to the coast is more nearly vertical
than the wavenumber vectof, in which case, the reflected
energy is di;;gggggagﬁards. In the present case, this does
not happen unless the frequency exéeeds about 0.1 cycles/ho
In appraising the relative importance of energy arrivir
by direct arrival from the surface and by indirect arrival
after having undergone one or more reflections, it 1s necesg1
sary to consider dissipation, dispersion and posslble absor
tion during the reflecting process. The first two of these -
are increaéingly effective as the distance inzreases which -
ray must travel before its critical latitude is reached.
Dissipation, say by viscosity,; will be more effective throu -
the increased travel time and will be particularly effecti{
for motions with high wavenumbers and hence large shears.
this'respect, it is significant that the typical’reflectioh

case considered in figure 23a results in a reflected wave
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with wavenumber higher than that incident. The increase in
magnitude of the wavenumber vector is given by —~cos (¢-8)/
cos (¢+6) which, for g = 89° and ¢ = 5°, amounts to about 1.5.
For reflection from the deep bottom where the slope is about
0.2° a similar elongation takes placé, peflection being about

the vertical. Hence for downward prooagating rays, the first.

‘reflection 1s always such that the wavenumber vector 1s
iengthened, although not by a very large amount. For unstrati-
fied fluids, a similar effect has been examined in detail by
" 0.M. Phillips (1963).
A related phenomenon 1s shown in figﬁre 23(b) where it is
seen that the incoming parallel rays reflected from the coast
have the spacing between them reduced, corresponding to an
increase in the local energy density. The increasé in energy ?
density is glven by the same factor as before, being_abcut
1,5. VA‘striking4example of this mechanism in the non-rotating
"case in the laboratory has been reported by Sandstrom (1969).
Dispersion'through spreading occurs in two ways, firstly
because energy constituents traveling along a ray may havé
different travel times and secondly, if the genérating region
is localized, there will be roughly radial soreading of enefg}
away from the source. Both effects will contribute to lower
the energy level at the observing site due to energy arrival
from a pvarticular sourcg of a particular time and can pre-

ferentially discriminate against reflected arrivals. However,
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if energy introduced near inertial frequency persists suffi-
ciently long for it to travel without substantial_attenuatiol
between boudnaries defined by the coast, critical latitude,
and ocean top and bottom, dispersion will not play a signifi-
cant role in lowering energy levels at great depths. Energy
would in fact be dispersed throughout the water volume,
having undergone repeated reflections from the bounding
surfaces. It is this possibility which raises doubt about
the reality of a shadow zone and even about the appropriate-
‘ness of the ray approach. No.definitive theoretical argumer

either way appears within reach.

The final possibility mehtioned above for,raysvreflecte
from the coast is that they will be attenuated there»in tﬁe,
sense that the reflected energy is less than the incldent.
The ratio of transmitted to incident energy can be conven-"
iently described as the transmission coefficient of the

surface. Recently, Longuet-Higgins (1969) has evaluated th

reflection properties of various kinds of non;p;anarabound—;-"

aries, showing that the transmission coefficient is an
extremely complicated function of the geometry of_the
reflecting surface and that even small irregularities in

the surface can produce large changes in the transmission

coefficient. Although Longueﬁ—Higgins'_resultS'are'derived
for the case of no rotation, his technique is applicable tc

the present case and similar conclusions hold. But applics.
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tion of the theory to a particular irregular bottom would be
difficult at best, and in any case, our knowledge of fhe
Mediterranean bottom is not sufficiently detailed to carry
out such a program. | |

Thus the conclusions to be drawn about énergy propaga-
tion along rays purely from theory are a rather mixed lot.
The possible existence of a shadow has been pointed out,
depending on dissipation rates for inertial oscillations and
on the detailed shape of the Algerian slove from which rays
must reflect in order to reach deep water at’the observing
site. In a recent paper Larsen (1969) has pointed out that
the existence of a pure shadow zoﬁe in which there is no
energy at all is not tenable from the voint of view of
energy flux éven_though such a shadow 1s implied by ray
theory. This is because in order to synthesize the shadow
exactly by a normal mode expansion one must includé moaes
propagating in from infinity towards the assumed source
" region, thereby violating the radiationvcondition. Neverthe-
less, Larsen's solution, found for a non—rotating,;ﬁniformly
stratified channel of constant depﬁh (except for a thin
barrier) and synthesized from the first 300 normal modes,
does not differ qualitatively from that obtainéd by the much
simpler ray approach. 1In particular, the laboratory experi-
ments of Sandstrom (1969) mentioned éarliér do not permit one

to distinguish between the two theories.
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We next turn to an examination of the data in the light

of what has been said about ray theory.

Aoplication of ray theory

There are two complications in interpreting the data on
‘the basis of ray theory which have 50 far been glossed over.
These correspond to inadequate_knowledge of w and r. It is
to be expected that the rays will be quite frequency depen-
dent since a small change in frequenéy corresponds to a
fairly large change in turning latitude; at Mediterranean
latitudes, a 2% change in frequency corresponds roughly to a
1 degree changevin turning latitude. Tor the special case
r =20, corresponding to rays traveling due north, figure-2u
shows rays of various frequencles originating near the
Alger#ian coast as computed from the measured stratification
shown’earlier in figure 20. Recall that!thesé mark the limit
below which ohe does not expect to find energy at inertial -
frequency, at least for the caseﬂf = O, which has arrived
directly from the ocean surface. They are labe%ﬁed accordingr'
to the turning 1atitude for a ray of givén frédﬁency and alsc
according to the percent Dby which this frequency is greater
than inertial. For this particular case (r = 0) we find thaf
energy of the observed frequency of 1.03 inertlal would not

penetrate to the 1700 meter level where it was in fact
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observed. The case r # 0 is therefore considered next.

Unless r = 0, a ray having frequency exactly corre-
sponding to inertial frequency of the observing latitude
cannot reach the observing site. This can be seen'éither
from figure 22 or equation ITII-16.  Hence the case of
interest involves taking w > fo and r # 0. Suppose one
‘then plots the ray for a specified frequency (> fo) which
has its turning point at thevobserving site as shown in"
figure 25.T We see at 6nce that these rays penetrate more
deeply than.do those for r = 0. The vaiue of r chosen 1is
in faét the largest possible for which a ray of the speci-
fied frequency will reach the observing latitude. The ray
thus defined_also reaches the gréatest depth at the observi
site. From the figure it can be seen that a frequency shif
of 2% or moré permits energy to pfopagate to all depths
where measurements were made. Waves of higher frequenéy ca
~also pass through the site, so that 2% is the minimum fre-
quency increase required forvdirect>§brm arrivals at the
deep instruments, but any higher frequency will dg. Again
it is argued that those rays closest to inertia1 frequency '
are the ones with which the largest amplitudes afe associat
by virtue of their slow propagation rate near the turning
latitude. Consequently, what one expects to see as a resul

of direct arrival from the surface is a band of frequencies
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of 1.02 fo and higher, but weighted towards the 1.02 £ limit.

In a gross Sense, this is what the data shows; there is
a small frequency shift near 200 meters depth of about 1%,
at least on a long-term basis, and a larger shift of about 3%
at greater depths. The percentage shift above inertial fre-
quency is slightly larger in both cases than might Ee expected
if one were observing 2 band of frequenciles centered around
fo at the upper instrument and 1°02-fo at the lower ones.
Also, the very low amplitudes characteristic of the deepest
instrument might be considéred as due to the hypothesized
shadow zone. But there are also some disturbing:discrepan-
cies between observation and ray theory. There seems no
evidence for a slowly increasing frequency with depth which
might be expected from theory; the data at 700 meters shows
as much of a frequenéy shift as the deepest instrument and
even at 200 meters the early part of the record suggests a
comparable shift. As pointed out previously, frequencies
this high are not excluded by the theory, but if the;excita—v>
tion were broad-band in frequehcy, which seems most reason-—
able, the observed signal would consist of a band of
frequencies, the mean of which would change slowiy towards
higher frequency as the observing deoth increased.

Ray theory thus gives some insight into how inertial
energy may propagate in .the ocean and it partially exolains -

the observed increase 1n frequency with depth. In the hope
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of undefstanding additional aspects of the data, such as the

variation of phase with deoth, normal modes are next investi-

gated.
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Chapter IV Normal mode analysis

Solutions to eguations III-1 or I1III-2 have so far
pbeen forced into a particular form so that the flow of
energy could be traced. The form of the solutions was
seen to correspond to a short-wavelength approximation
and, consequently, the existence of boundaries did not
affect the solutions except to block the flow of energy.
into certain regions. Solutions .investigated in this
dhapter have quite a different nature, depending in an
essential way on the shape of the basin in which they
exist.

Equations TII-1 have separable solutions. of the.

form

ei(SA - “t)u2(¢)u3(z)

etc.
with a correspondlng separation for equations.III 2.
This fact combined with the simple boundarles of the
Mediterranean region where the observations were taken,
make it particularly”simple to explore effects-of these
boundaries. With reference to figures 1 and 24,
reasonable approximations'to’the irregular boundaries
are seen to be a vertical, east-west wall along ¢ = 37°

and a flat (z = constant) sea floor 2800 meters below
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the surface. Under these assumptions, the boundaries
fit naturally into the separation scheme outlined above
to make the problem completely-separable.

A particularly elegant and complete separation of
the equations of motion in spherical geometry (III-1)
has been reported by Munk and Phillip%%ﬁgggéhervthan go
through a complete derivation here of the corresponding
separation for the beta-plane approximation used 1n
Chapter IIT, thgtmg§§en by Munk and Fhillips isrused..
That both approaches yileld basically the same result is
shown in Appendix II inasmuch as both yield the.samé
Alry function‘dependence in the north-south direction
in the vicinity of the critical latitude. Thus a unify-

ing link between investigators using spherical and beta-

plane geometries is provided by'the appendix.

Vertical structure

For reference purposes, the Munk-Phillips analysis
is briefly summarized. With omission of the term W in
equation III-1, solutions in the following.sepéraﬁed_form

are sought

u cos ¢ | u(e)

v cds Y= QaRe Z(z) exp i(sx - wt){ iV(¢)

b QaP (o)
IvV-1
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= QaRe W(z) exp 1(sA - wt) P(9)

5 | 1/

where the variables U, V, W, P, Z define variation of
the indicated variables in either the vertical or
latitudinal directions. An equation for W is then found
to be

W, + (YN/2aQ)* W =0 : Iv-
where y 1s a dimensionless separation constant.

Boundary conditions on W at the free surface and bottom

are respectively

W, —.g(y/2a9) W

1
(@]

—

<
1

and W= 0.

The analysis here departs from that of Munk and
Phillips in that instead of making a WKB or short-wave-
length approximation in solving the equatioﬁ for W, 1t
is solved numerically with values of N(z) as given in
“figure 20, This reflects the primary concern of this
chapter with lower modes. Solutions to IV-2 and IV-3

are not possible for arbitrary~values of vy, but only
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for discrete values y = Yoo B = 1, 2, ___, each cor-
responding to a different solution wn(z) and thus iden-
tifying the n-th mode. This much is known from classical
Sturm-Liouvillé theory. Once a particular Wn is known
which describes the vertical dependence'of w on z for

a particular mode, then the corresponding vertical de-
pendence Zn of u, v, and p can be found from

g dwn
Z = - — —. Iv-4

n oy? dz

As a practical matter, N(z) is known only as a
piecewise constant functilon. Hence, in an interval where
N is constant, IV-2 has sine and coéine solutions, the
coefficients of which can be related to those of the pre-
ceding layer by requiring that W and Z be continuous a-
cross the common interface of the two layers. This cor-
responds to continuity of vertical displacement and
pressure respectively across the interface. With two
coefficiehts in the top layer related through IV-4 but
otherwise arbitrary; IV-2 can be integrated in this
fashion from top to bottom. This procédure is repeated
for various values of y until a valué is found %ér which -
the bottom boundary condition is satisfied. Then Iv-4
can be solved for Z, again giving trigonometric solut-

ions in each layer.
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The results. of fhis calculation are shown in figure
26, in which .vertical structure of horizontal currents
are plotted .for the first five modes; that is Zn(z),
n=1,...5, 5. .Accompanying each of these curves are.
five horizontal iine segments at depths corresponding
to the five observing depths. Hence the length of
each line éegment within a given mode represents the.
maximum .horizontal velocity reached relative to that -
at a different.depth. Comparison between modes is not
possible .since each may be multiplied by an arbitrary
scaling.factor. In the figure, the curves have been
normalized to.have the same maximum amplitude, not the

same total energy.
Table 3

Vertical“separation'cénstanﬁs Yy corfespondingrto the
first few vertidal modes.
mode Y
0 5.

539.
957.
1314,
1728.
- 2170.

U o= Ww
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Values.ﬁound for the vertical separation constant y
for these .modes .plus the barotropic mode (n = 0) are
shown in Table 3. The dimensionless quantity vy is a
measure of .the vertical wavenumber m which for the
case of .constant N is given exactly by m =-yN/2aQ.
With N = 1.0 c.p.h., we note that the barotropic mode
yields m =.130 km~L. The vertical wavelength is
thus much .greater than the water depth, corresponding to
the fact‘that.the horizontal velocities for this mode
are essentially constant over the water column. Such
a large .value .is admissible and in fact required by
the free.surface. However, referring to the dis--
persion .relation III—S; one finds'that for-w = 1.03f,
the corresponding horizontal wavelengthiis-on the
o:r:'der.’.of.lOLl kilometefs. It -therefore seems.doubtful_
that the barotropic”mode plays a significant role in
the present,situation.

"For data:sufficiently denéelyisampled inLthe
vertical, it is .possible to make a fofhal'decom—
position.oﬁ.the:observations‘into modes by using the
fact that the modes are orfhogonal; that is, after:

being suitably scaled, they have the property



0 lifn=nm

-[zn(z) Zm(z) dz =
-h 0 otherwise

where h is the ocean depth. But in the present case,
there 1s not a sufficient number of instrument levels
to carry out this procedure. High order modes (high
compared with the fifth say) cannot be distinguished
from lower modes. Nevertheless, comparing predicted-
amplitudes .and phases ét the five observation depths
for the .third mode with those given Dby either the
Cartesian.components (figure L) or the complex de-
modulates (figure 18) shows a very suggestive cor-
relation. ' Particularly noticeable is the phase re-
versal between 700 and 1200 meters during the first
nalf of the data series.” That the ﬁrequency.at each
of the bottom four depths appears nearly the same, at
least on average during the first half df fhe-series,
also suggests a single process in effect at those‘
depths. |

The observations at 2007meters do not fiﬁ'par—

ticularly well into this simple scheme since amp-

litudes there are someWhat higher than expected on the

basis of the third mode alone. One possibility 1s that

105

many high order modes are superimposed on a basic third
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mode structure. Since these tend to vary with depth

as N%, the 200 meter depth, where N is about double that

at the other depths, would tend to have amplitudes about

40% higher from these modes than would the other depths.
From a .completely different point of view,; an

argument for the dominance of a single vertical mode

whether or not it is the third can be made from the .

observed relationship between phases of inertial os- .

’ cillations:af the several observing depths. Aé

previously noted, the difference in phase of oscillations

between.any.paif'of depths tends to be either . 0° or

180°, at ieastlduring the first portion of data when

amplitudes are large. But suppose two modes were pre-

sent so that the oscillations at any depth were the

sum of two vectors. Amplitudes of the two vectors

would be different functions Bffdepth, each varying

with -depth in a manner characteristic of its mode and

in generalhreversing phase several times within the

‘water column. At any particular instant;\thé"sﬁm of

the two vectors at one depth would thus noﬁ in general

lie in the same plane with that aﬁ another. Hence the

'difference.in phase between the two depths, which can

“be thought of.aé,the difference .in the resultant direc-

tions at some instant of time, will not in general be
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either 0° or .180°. This is a compelling argument con-
sidering..the many pairé of depths involved. It is now
restated more . analytically.

Suppose-two modes are present with depth depéndence'
al(z) anddaz(z), not necessarily the first and second
modes, and.have .the same frequency w. We then may write
for the.complex current U = u + iv at each of twérdis—

tinct-depths»zl and z,

| 14 1¢ -
R T 165 é} .
| U(zj) =U; =e -{élje tage °f §=1,2

where a3y = ai(zj)

and ¢l and ¢2;are_phases of modes with depth dependence
a, and.a2 respectively. Rewriting this as amplitude

and phase, we have in obvious notation-

i(wt + ej) ) :
U, = a, j = 1,2
IR b J ’
with a,? = a, .2+ a,,?
J 1j 2j
and tan ej = {aljsin¢l+a2j51n¢2)/(aljcos¢l+a2jcos¢2).

We now ask .under what circumstances the phases 61 and
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6. at the two. depths could differ by 0 or 180°, that -

2
is tan 61 = % tan 62, Clearly if one mode dominates,
say a4 >> 2855 thls will happen. It -also happens 1f
¢y - ¢, = nT for integer n, so that the modes them-
selves are either exactly in or out of phase.

It is possible to analyze the observations
directly in terms ef normal modes. The,procedure selec-
ted for doing this is based on analys1s of the complex
demodulates. Resolution of the data 1s much better
in time than in depth, and it is appropriate to analyze
first in %the time variable. Since the time.variability
is known to be on the: order of several cycles and the
signal frequency is typically near 1.03f, demodulates
were recomputed for 10 inertial periods and 2 demodu-—
lation frequency of 1.03f. The longer time interval
gives more stable amplitude estimates and better fre-
quency resolution. Interpreting the demodulates as
the current vector corresponding to the demedulatioe
frequency at some particular time, given.for example
by east and north components, there then remalns the
problem of approximating these components as a llnear
superposition of the normal modes shown in figure 26.
The same mode will in;general'heve a different amp-

litude in each of the two Cartesian components and sO
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has a phase and magnitude of its own. Phases for each
mode are thus to be interpreted as the orientation of
the plane in which lie current vectors describing the
particular mode at the time when the demodulates des-
cribe the direction of current. Because of the way in
which the normal mode values. are normalized, the mag-
nitude of each mode can be interpreted as the maximum.
speed attained by that mode within the water column.
Finally, the particular modes used in the approx-
imation and the number of them must be chosen. In -
principle, one could pick any five modes and construct
a linear combination of them which would pass exactly
through,the"currenfs (as measured by their demodulates)
at each of*thé observing depths. However the result-
ing equations do not appear sufficiently well con-
ditioned to permit this. For when it-wés tried with-
the modes 0 through 4 or 1 through 5, the modes were
found to have unreasonably large magnitudes |
(~ 90 em/sec) but the same phase, indicating the ten-
dency to cancel one another at the observing depths.
This difficulty was removed by requiring a least-squares
fit by only U4 modes. 1In that casé,‘the modes do not
give an exact representation of the demodulates and

have ‘a residue corresponding to the difference between
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.the observed current and that synthesized by the normal
modes.

Tables 4a and U4b show the results of analyzing
the demoédulates for modes 0 through 3 and 1 through 4
respectively to find amplitudes a; and p ses ei for.
each of 4 modes. Since sound theoretical arguments
have been given for believing that there is no barox -
tropic mode (mode 0) in the Mediterranean, it is:
noteworthy that such a low amplitude is given for it
by the analysis. The three modes which the two tables
have in coﬁmon are very much the same, giving some
confidence in the stability of the procedure used.
In neither case do the residues referred.to above
exceed 1.5 cm./sec. Lack of a phase drift with time
for the third mode indicates that the,demodulatioﬁ
frequency chosen 1s the correct one for that mode.
What appears to be a consisteﬁt rate of phése change
in modes .1 and 2 suggests a possibly higher frequency
for these modes. While it is not possible to adequat-
ely assess the reality of these small frequency shifts,
we will see later on that a similar effect follows
theoretically; that is, each mode will be found to have
its own characteristic frequency. Note that the“moaal

decomposition could not be continued beyond mid-February

et o T SO
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due to failure of direction sensors in the bottommost
instrument.

With a single point in the horizontal, nothing
can be said about nhorizontal structure of the currents
from an observational standpoint. Nevertheless, the
long eastewest‘coastline exerts a dominant effect which
can be determinéd‘theoreticaliy, thereby providing some -
insight into what scales of motion might be possible.

The following section explores this possibility.

Horizontal structure

In a manner similar to the derivation of the ver-
tical dependence, Munk and Phillips;derive the follow- .

ing equation which describes the latitudinal structure:.

av o
c a s sing V Iv-5 -

d2v + 82V = v20 cos 2% sin ¢

au? a2 —,%ng,z, cos?¢

where ﬁ is a north—sbuth Mercator coordinate

¢

.vu =f sec ¢ d¢, §%2 = 'Ychssz(%‘—cz—sin?—cb)_(2S/O.>)cosz¢____sz’
0 o

and o is the non—dimenéional frequency 0 = w/SQ. Again

a WKB solution is possible since the variable coefficients
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of the equation are generally slowly varying. But it

is found .that near the latitude where the wave frequency
approximates the local inertial frequency, the épprox-
imation breaks down. Careful balancing of terms in

IV-5 then leads approximately to the Airy equation

2
g——v _nV:O
dn? IV-6
¢ - ¢ o - 2sin ¢,
where n = —p— + (oL)* - g5
=70
¢ = w/Q
L = (y? sin 2:1;0)"1/3
a = s/cos ¢0 (or o = ka with k the east-west wave-

number) and ¢0‘is a reference latitude, taken here &s
that of the .observing site. Solutions thus are given

by the Airy functiohs and so - Lo
V(¢) = A Ai(n) + B Bi(n).

But Bi increases exponentially towards the north while

Al decreases exponentially. Hence, since at any northern
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poundary it must be that V = 0, the Al and Bi terms can-
cel there .which requires that A >> B if the boundary is
sufficiently far northward. Consequently, the Bi term
can be safely neglected here. Thus the following boun-

dary conditions are appropriate for IV-5:

Vv > 0 for ¢ >> ¢O

V-7
V=20at¢=0¢)

when-¢l is the southern boundary.

Existence of therBalearic islands somewhat clouds
the simple sifuation presented above, particularly since
observations suggest a frequency corresponding to a:
latitude of .about 40°. The fact is-.that-to treat nor-
mal modes in detail for a basin .of general shape is a
formidable problem and beyond the scope bf this thesis.
But the inteht here is only»to_gainusome~insight,into
variation of amplitude with latitude and not to make a
detailed comparison with observations; so that thé-great
simplification which results would seem to Justlfy the
liberties taken with the northern boundary condition.

.At the :southern boundary, V(n) =0 and.so n:mﬁst

take on the value of one of the zeros of the Airy function
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Ai‘there, say n = Ng- With each value of n thus specified-
for the southern boundary latitude (37°) and frequency
fixed at 1.03 f, the second of equation IV-6 determines
a relationship between y and a or between y and k, the
east-west wavenumber;' Then with permissible values of
y known from the vertical equation-IV-2, corresponding
discrete values for k can be found. The situation is
summarized in figure 27. Curved lines show the relation-
ship between y and k correspondiné to the first five
zeros of Ai with N defining the m-th horizontal mode.
Broken,horizéntal lines, corresponding to the firét
few values of y, that is, to the first few vertical
modes, intersect the curved lines, thus giving per-
missible values for k. It is seen that there are n
possible horizontal modes corresponding to the n-th ver-
tical mode. For the case n = 3, the three possible
latitudinal dependences are shown in figure 28, corres-
ponding to,the,observed frequency, 1403 timesrine#tial
frequency .ef the observing latltude. Since eé&h-ﬁos-
sibility shows appreciable amplitude at the observing
site, the hypothesis of a dominant third vertical mode
is tenable.

Horizontal structure is completely determined by

vertical and horizontal mode numbers and the frequency;
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it remains to seé whether the possibilities available
for the third vertical mode and observed frequency are
consistent .with geometry of the observing region.

With reference again fo figure 28, the three possible
wavelengths .are 180, 260, and 690 km. The only sig-
nificance .attached to these numbers is that they are
reasonable in view of the size of the Western

Mediterranean basin.

Selection .of freguency and mode

What has been done thus far is to derive possible
horizontal scales of motion, both in the. east-west and
north-south directions, from observed values of frequency
and vertical.mode number. In a way, this procedure 1s
rather .inveluted. A basin such as the Mediterranean
has well defined’ resonant modes which are calculable in
principle.aﬁd.it is these that are of 1nterest.in this
chapter. But in a detalled calculatlon, the irregular
basin boundaries would need to be considered; the prob-
lem is then non—separable and one would have to solve
the full three-dimensional problemvnumerically;with
frequency as :an eigenvalue, requiring an enormous and

‘probably prohibitive amount of computation.



119

Precise frequency and mode calculations thus appear
out of reach. What 1is done here instead is to assume a
separable geometry roughly resembling the Mediterranean
basin and to compute eigenvalues for that case. The
main point of interest is to find the spacing of the
frequency eigenvalues. Particularly we ask whether
the frequency band corresponding to the range of inertial
frequencies 1is well represented and, if so, whether it
is particularly rich in third vertical modes. . What
we have in mind here is that the surfacé layers of the
ocean.have:a;frequency response to the wind which 1is
~ very sharply peaked near the local inertial frequency.
If this response is the energy source for deep inertial
oscillations, then the limited latitudinal width of

the Mediterranean would preferentially select those

modes with eigenfrequencies lying within the corres-
ponding frequency band. |

Accordingly, the eigenfrequencles were computed
for a basin of 600 km. -in the east-west direction,
bounded in the south at 37° latitude and open towards
the north, and with a depth of 2800 m. Stratification
was taken to .be as shown in figure 20. Completely
separable solutions are then possible having as elgen-

functions in each direction, sine waves in the x (east-
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west) direction, Alry functions in the ¥ (north-south)
direction .and the special functions shown in figure 26
in the z (up-down) direction. A1l possible frequencies
for modes numbers one through five in all three direc-
tions have been computed. For present purposes, the
mode number 1is defined for horizontal currents as the
number of internal zeroes (not counting those at bounf
daries) for the vertical eigensolutions and as the
number of internal zeroes plus one for eigensoiutions
in each of the two horizontal directions. Results of
these calculations are shown in Table 5, tabulated in
order of increasing period. Each digit of the three-
digit number wﬁich accompanlies each period represents
the corresponding mode numbers in X, ¥ and z‘directions
respectively. By way of reference, we ncte the inertial

period at a few typilcal Mediterranean latitudes:

Loe° 18.62 hours-
39°  19.02
38° 19.44
37°  19.89

“I7 - the ‘basic “assumption is correct that the de-

tailed geometry of the Mediterranean produces spacing
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541
531
521
511
451
b4
431
421
411
354
341
33}
552
324
542
251
532
311
522
241
452
w42
542
231
432
151
553
352
221

543

422
141
342
533
453
812
252
332
523
131
W43
211
554
353

Table 5

Periods in hours for the first five internal
modes in east-west, north-south, and up-down

directions

11859
122024
12+211
122430
12707
139343
13+553
13799
142070
1hob26
14781
15040
15¢333
150625
15+679
15+821
16+015
16+041
162123
16297
162318
160386
160602
164622
160664,
16844
16859
164925
17032
17074
17+111
17128
17196
174265
170319
179389
170487
179826
17+528
17+560
17580
17+586
17+602
170699
17769

242
433
322
152
513
B44
343
454
i24
253
232
534
423
142
555
4bh
333
354
153
312
243
524
545
455
434
22?2
132
413
254
344
143
323
535

154

233
355
445
514
24y
424
334
25%
1%
345
133

17772
17805
17 +834%
17836
179865
179868
17974
17990
18036
18050
18051
18+057
18061
18909}
18¢163
180164
180203
18+222
18223
18224
13+261
180275
180316
18356
18359
18376
18¢380
18383
18392
18401

- 18+438

18¢470
18486
189496
182498
18509

18¢512-

18549
188575
18585
18¢602
18620
18627
180668
18¢680

144
8525
435
155
122
223
23%
245
21z
313
324
335
145
414
134
425
515
235
123
224
135
325
213
314

124

415
112
225
125
315
214

113.

215
114
115

18680
18¢683
185686
18687
18717
18774
184779

184780

184790
18807
18+833
18+845
1&.8“9
18+868
18887
18.887
18+928
18¢959
18962

©19+015

19+029
19+049
19+123
19¢125

19126
- 190138

19147
19+166
19237
192304
19312
19317
19425
19426
19498
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of the frequency eigenvalues comparable to those computed,
1t follows that .the observed dominant frequency and
mode have no special significance as eigensolutlons.

One can argue that the spatial distribution of forcing
might preferentially'excite certain modes but it is
difficult to see how this can be extracted from weather
observations without more detailed calculations of the
modal structure. As previously noted, another pos-
sibility. is that the observed distribution of phase

and amplitude with depth is a superposition of many
higher modes which happen to be in phase. Distin--
guishing between these alternatives must await still

more extensive measurements.
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Chapter V_ Discussion and conclusions

Tnertial oscillations have been found throughout the
water column at a location in the Mediterranean, including
the deep water. Their general propefties, apart from
any interpretation given to them, differ appreciably
from those discussed in the introduction. We point
in particular'to the long persistence (3 weeks‘offﬁore),
large vertical coherence scale (virtually the entire
water column) and high Q of the signal (about 25 to 50
versus about 10 for the-Siﬁe D data) for the present
data series. Thérobserved oscillations are not»of large
amplitude, as compared with Site D, for example, although
they are sometimes larger than the mean current.

The first 3 weeks of data at 1700 meters show an
unequivocal frequency shift of very nearly 3% above
local inertial frequency, at least in the sense that
the measured frequency represents the mean of a narrow
frequency band. Less clear, although still.bonvincing,
is the evidence for-a similar shift in frequency at
the 700, 1200 and 2200 meter levels. The topmost
instrument, at 200 meters depth, shows what may‘be a
comparable shift during the first several days, but

later appears to have frequency within about 1% of f.



124

The technique which nas led to these results has
proved very useful for the data under discussion here
owing to the very high ratio of inertial signal to nolse
(everything other than inertial signal). Such stable
éstimates of frequency do not arise from a corresponding
analysis of the Site D data, although it is not clear:
whether this 1is an inherent difference between the two
locations or due to 1imitations of our technigue in the
présence of strong signals at other frequencles at Site D,
such as tides.

We have sought to account for the above facts in
the light of both ray and normal mode theory, a duality
which pervades much of wave mechanics. It should be
pointed out that these two approaches are not mutually
exclusive. There is no reason why the data cannot show
some features-from each theory; both are linear and one
can imagine the two superimppsed. Although not an
inherent part of the theory, our attitude in the case of
the ray analysis is that the motion'isbtraceable to
some localized or identifiable forcing region such as
“at the surface, and that 1t may be transient. For
normal mode theory, forcing is not  considered explicitly
and the motions are treated as free oscillations, the

structure of which is determined DY the geometry of the
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Mediterranean Basin.

A discussion of the ray paths along which inertial
energy propagates, taking into account the full three-
dimensional properties of these paths, reveals two
noteworthy features. First, the arrival time of energy
" from discrete sources cannot be calculated without
knowledge of a certain parameter (essentially the
vertical wavenumber) which is not available. Although
the spatial paths along which'énergy travels are de-
termined,'travel time along these paths is not. Secondly,
it is found that a-éoast, such as the Algerian coast,
can cast a shadow with respect -to that part-of-the'
inertial energy which originates at the ocean surfacé
and which arrives at the observing site without having
undergdne»reflection, Existence of a shadow was found .
to depend upon details - of how energy isidissipated and
how it is reflected from the coast. The interest in
such a hypothetical shadow arises from the fact that
its shape is.independent of the unknown travel~time,of
the oscillations. Its detection would give strong éupF
port to the hypothesis that deep inertial oscillatlons

are generated at the surface.
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Precise shape  of any such shadow would be critically
frequency dependent. Rays having lower frequencies do
not reach the observing latitude at all, being constrained
to propagate southward of it. But rays of higher fre-
quencies can propagate not only through the observing
site, but into the shadow region as well to an extent
determined by their frequency. A ray of frequency 2%
or more higher than inertial and originating at the
surface could in fact reach all depths at the mooring
location (see figuré~25). Although the frequency in-
crease over inertial of 3% observed at thé deep
locatiéns is sufficient to permit energy to have pene-
trated directly from the surface, we do not find the
gradual increase of frequency with depth which would
follow from broad-band excitation at thersurface’and
neglect.of energy reflected»from the coast.

With respect to transient generation of inertial
motion, considef in more detail the flow of gnergyr
destined to go through the observing site at a depth
of, say, 1700 meters. The higher frequency components
would arrive first since they have the higher group
velocity, with other frequencies nearer fo inertial
arriving later. Thus what one would expect from such

a storm is that there would be a signal with freguency
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tending slowly towards inertial. It has already been
noted that there is - a hint of this effect during the
beginning of the 200 meter record, but 1t is very clearly
not present in that at 1700 meters.

If we persist in interpreting our data by fay
theory and surface generation, there seems little al-
ternative to the random superposition model described
by Munk and Phillips. This involves energy of approp-
riate frgguepcies'traveling along their respective ray
paths, possibly including reflections, but having very
long residence times near the northernmost extremes of
their travel, typically‘on the order of weeks or longer.
At any giveﬁ-time at the observing site there would
be an assertment of frequencies-with'energy associated
with various meteorological events and with ﬁravel
times well "randomigzed" by the slow, varying travel
times of the'varidﬁs’constituents. Thus at any‘given
depth we have a variety of frequencies near dinertial
but not diréctly relatable to any particular storm.
There could however be a trend towards higher frequen-
cies with increasing depth, and at 1700 meters this
change would be at least 2%, consistent with that

observed.



128
Persistence and bandwidth estimates are also inter-
esting in this context. For the complex current u(t)
(=u(t) + iv(t) with u and v east and north cemponents

of current), one can write

o

u(t) = f Aw)e 19 qw
-0

much as was done in the discussion of complex demodu-
1ation in Chapter II. Since U and A are Fourier
transform.béifs;’fhere~ére a number of analytically
specified,_realistic-choices for A which yield ap-
propriate expressions for U. If A is chosen to
have a magnitude with a peak near w = f, then U will.
~be a slowly modulated signal with:frequency near f.
Considering various choices-of-transform:pairs, the
general statement can be made that the persistence of
the signal:(as measured between times when U(t) has
dropped to half its maximum value) is,reughly the
reciprocal .of the bandwidth (as measured betweegiéhe
frequeneies where A has dropped to half its maximum
value).

Without knowing the horizontal scales involved,

it is not possible to say whether persistence is con-

trolled by the bandwidth of the process or by advectlon-
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of energy through the observing site. Qualitatively
nowever, advection can be expected to lower the per-
sistence time so that corresponding estimates of band-
width will tend to be larger than would be found if
advection were not important. Bearing this in mind,
the observed persistence of about 20 days yields_an.
upper limit for the bandwidth of 0.05 cycles pef day
as was also found from the spectral estimates.

A comparable theoretical argument was gi#en by
Munk and.Phillips for the open ocean case. They worked
out the extent to which each inertialﬂconstituent was
peaked with latitude. By assuming energy distributed
amongdthoselconstituents corresponding to reasonable
values of horizontal and vertical wavenumbers, a band-
width corresponding to persistence of about 100 days
was found. This is too long to fit observations, per-
sistence in the open ocean being on the order of a few
days at most. Either advection of energy or transient
forcing can be invoked  to account for this discrepancy.

In earlier observations, it is possible to find
persistence on the order of 20 days only in thése made
in the Baltic, especially those by Gustavson and
Kullenberg (1933). Presumably the connection here is

that both data are from relatively small enclosed
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regions soO that, whether advected or not, energy is trap-
ped within the basin.

Ray theory, which is the basis for much of the
above discussion, 1s -rigerously applicable as a short-
wavelength .approximation. But since we do not know
what wavelengths predominate in inertial oscillations,
the observations were also compared with normal mode
theory. The modal theory summarized by Munk and
Phillips has been adapted to the present geometry by
approximating the Mediterranean with a basin of
uniform depth-bounded in the south by a vertical wall
as is.suggested,by figure 24. Given the known strati-
fication near the observing site (figure 20), the
vertical structure of horizontal currents satisfies a
classical Sturm~Liouville problem, giving rise to a
discretérfamily of posSible vertical dependencies, the
first few of which are shown in figuré'26;-‘Comparison
with depth dependence actually observed either in the
basic series (figure 4) or in the complex demodulates
(figure 18) shows a structure during the first 3 wéeks
of observations which strikingly resembles the third
vertical mode. This conclusion was supported by direct

fitting of the observations by normal modes. It 1s of
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fully the vertical struc-
ture witih ocnly filve foint vertical sampling. What ap—.
2 vertical mode could in fact

sy mcre nigrer modes, in a manner similar to but
more complicated than the usual allasing of high-fre-
guency oscillations which 1s familiar from spectral .
analysis.

In addition to discrete vertical modes established
by boundary conditions at the ocean surface and bottom,
modes 1n the horizontal are established by the southern
~wall and the condition that all inertial oscillations
decay sufficiently far northward. (If this last?con-
dition is replaced by a northern wall at, say, thé
latitude of the Riviera, the solutions remain essen—-
tially unchanged.) As might be expected from the slow
change in Coriolis frequency with latitude (about 2%
per degree in the Mediterranean), horiiontalfmodes,
unlike those in the vertical, are highly freqd;ﬁéy-
dependent. With this caveat, we see in figure 28 the
three possible horizontal modes corressponding to the
apparent third vertical mode and observed;frequency
of 1.03 times inertial. We find no inconsistency with
the assumpticn of a third vertical mode since any of

these three horizontal modes gives appreciable
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amplitude at the observing latitude. Furthermore, the
east-west scales associated with each mode are quite
reasonable in view of the dimensions of the Mediterran-
ean basin.

In conclusion; it 1s reiterated that the appli-
cation of ray theory in the Mediterranean to inertial
oscillations points to their not being relatable to
particular, local events at the ocean surface; measure-—
ments of frequency do not show the characteristic
variation of frequency with time which such a generat-
ing mechanism would produce. Normallmbde analysis
yields more positive results in this case. The
apparent dominance of a third vertical mode through-
out muchrof the data is an important conclusion, rep-
resenting a much simpler vertical structure than has

been heretofore supposed.
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Appendix I

The effect of neglecting the horizontal component of

earth rotation on rays having near-inertial freguency

The paths followed by rays of inertial frequency are to
a certain extent dependent upon whether or not the horizontal
component bf the earth's rotation 1s included in the basic
equations. In order to measure this extent, use is made of
the fact that the Hamilton-Jacobi equation, which leads to
the ray paths, 1s separable when the stability N isrcbnstant
both with and without the additional horizontal rotation |
terms. Both cases are worked out here and the difference
between theﬁ gives a qualitative measure of the differénce
to be expected for the more general case when N is_nptl“
constant. |

A related ray analysis for inertial osciilationsbwhich.
retains the horizontal component of rotation and uses
spherical geometry has been carried out by Hugpés k196U) for
the caée of constant N. Hisianalysis was carried far énbugh
to derive expressions for the components of gréup velocity,
but the final quadrature to give the ray paths exolicitly
was not done nor was any account given of the effect of the

horizontal rotation components. Hughes' approach, which is
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more exact than that given here, is not followed due to the

extensive algebra involved.

The equations of motion may be written in the following

form
U - fv + hw = -p, )
vt + fu = “Py
= —2 -
W, - hu b, Nt AI-1
Uy + v+ w, = 0 H
W=Ct
where h = hO + oy £ = fo + By
ho = 2Q coseO ' fo = 2Q sineo
o ==28 s:Lneo/Re g = 2Q coseo/Re

and all other variables are as defined in Chapter I1III. Here

h is the horizontal component of the earth's rotation. Since

its effect can be removed in the final results by Setting
h = 0, both cases of interest can be obtained by working witl
the single system of equations above.

The argument of Chapter III can be repeated for thése

eguations to yield the corresponding Hamilton—Jacobi~equatia;_

for the phase function ¢

(¢X2+q>y2)(N2—c1>t2) + (f<I>Z+h<I>y)2 - @tchzz = 0. AT-2
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mor the case N = N(z) and h = 0 it has previously been shown
that this equation has separable solutions. For the case

n = ho + ay now being considered, separation 1is possible
only if N is independent of depth. Solutions can then be

found in the form
® = kx + mz .- wt + Q(y) , AI-3
where, k, m, and w are constant and Q satisfies the equation
Q° = [-fhﬁ t {h%a? - f?mzs2 + a262}%]/(n? + 5?) AT-4

with a? = m?w? - k% (N2- w?)

§2 = N2 - w2.

Since f and h are know functions of y, fhe integration for Q

is readily carried out for any given values of.k, m and w.

y .
Hence Q + Q(y; k, m, w) = y[- Q° dy ™ . AT-5
1

where y1 is an arbitrary value for y which will, for con-
venience, eventually be taken as the starting latitude for a
-ray point.

Following again the derivation of Chapter III, the
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eguations for the trajectory of a ray point are found, namel

t = tl + Qw

e first two of these equations determine the spatial path-

a ray point and the third its travel time. Three morercon-

stants, Xys 27 £ have been introduced. It 1s easy to se

that the ray point will have coordinates xl,‘yl, 2q at time.

t1o
rays will pass through the point (o, Yq» 0) at time t = 0,

which is taken as the orlgln for all rays.

Rewriting equations AI- 6 more explicitlly by u31ng AL~

and AI-U4, one finds after carrying out the indlcated

differentiations
y 1
x = *068? f {(n?+82) (w2-a282) - £2823172 g
vy o
y .
z = J [th{(h2+62)w2—f262}{(h2+52)(m24a262)—f26’
I1

.[n2+6271°°

hence one can assume X, Zqs andﬂt1 to be zero so that P

sty



y N 137

t = -2wm f [n2+827 2 [fhF{(n2+62%) (w?-a2682)-Ff2621}7] dy
Y1

CAT-T

y
+wm J [(h2+82)(1+a?) + f2-w?+a?8?]
I1

- i
- [h2+62] 1[(h2+6?)(w2—a262) - £2§2] ? dy

where a = k/m and a and § are as previously defined.

A number of points can be made at this time. Ray paths
are symmetric about the x = 0 plane corresponding to the
choice of sign in thé first'of‘AI-7, but are not s&mmetric
about z = 0 unleés h = 0. Note that the negative sign must
be chosen in ofdér that the rays lie within the ocean. As
was the case for h = 0 and N variable, thé ray geometry
depends, for a given frequency, only on a single parameter,
defined in the present case as o = k/m. Travel time however
depends not oniy upon o but upon an additional parameter, in
this case the vertical wavenumber m, to which it-is propor-
tional. Qualitatively, these results do not differ appre-
ciably from those found in Chapter III.

The integrands in equations AI-7 are well-behaved
functions of y and are easily computed numerically for any
specified values of w and o with the simple dependence on m

implicitly assumed. Figure 29 shows the results of these
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calculations. The rays are plotted in a horizontal plane as
radiating from a point source at latitude 35° and for fre-
quency corresponding to inertial frequency at latitude 40°.
Trajectories of the rays in the horizontal are indevendent
of whether or not h = 0 to within plotting error, SO that the
same set of curves suffices for both cases. The same holds
true for travel times which are not shown in the figure.
There are two families of depth curves which intersecﬁ the
rays, solid curves for the case h = 0 and dashed cﬁrves for
h ='hO + ay. Thus the essential feature of including the |
horizontal component of rotation is to decrease the depth to

which the rays penetrate by 10 or 20 percent.
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Appendix II

Airy-function structure of inertial oscillations deriv

from a local beta—plane.approximation

The basic equations of motion admit separable solutior
both in spherical geometry (Munk and Phillips, 1968) and
in a locally-valid B-plane, Cartesian geometry (Blandford,
1966). These correspond to the two sets of equations III-
and III-2 respectively both of which have been used in the
present work. The Munk-Phillips solutions to the spherica
equations yielded an Airy-function étructure in the regilon
where the wave frequency is close torthe local inertial
frequeﬁcy. In view of the remarks made in Chapter III 1in
defense of the simplified equations I11-2, it_seem§ reasorf
able that they should have'cbmparable‘behavior under sim--
ilar circumstances. This will turn out to be the case,
although exact solutions (to the approximate equations) a1-
found to be parabolic cylinder functions. 'Thus,’although'
some of the results of this appendix have been anticipate:
the faét that they can be derived from simplified‘equatio'
feinforceé the arguments used in defense of the simplific
" tions. In addition, since both sets of equations III-1 a .
III-2 are in common use, the appendix provides'a‘frameWof

for intercomparing results derived by alternate methods.
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Rather than separate the equations in their usual
form, which requires some assumptions about the character
of the solutions to be practicable, several of the vari-

ables are eliminated first. Elimination of ¢ between the

third and fourth of equations III-2 yields

AII-1

up - fv + Py = 0
Ve + fu + py = 0
Wiy t N%w + P, = 0
Uy + vy tw, = 0

where in general f = f(y) and N = N(z).

Using the third of these to eliminate p in the first two

2 2 2 -
Uy iy = fvZt - (N* +3%/03¢t )wX ,O
_ 2 .2 2 -
fu, . + Vot (N2 +3%/3t )wy 0
u, + vy + w, = 0

Finally u can be eliminated using the last of these with
each of the first two, again without differentiating f

with respect to y or N with respect to z, to give

-AII—2

e e e e n——
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32/3z9t [fa/3x + d32/0dydtlv

+[32%/3x? (92/3t24N?) + 3% /9229t2%2]Jw = 0

32/3z3t [£9/3y - 8%/3x3tlv

+[02/9%x0y (d2/3t2+N?%) + £93%/9z20t]w = 0
It is not possible to eliminate either of the remaining-’
dependent variables. At this point, solutlons are sought

in the form

v = exp i(kx - wt) v2(y) v3(z)

ATT-
w = exp i(kx - wt) wz(y) w3(z)
Substitution of these forms into ATI-3 leads to
2 o2 A2 2Y =
VoVay w(w?-£*) + w3(fkw2+ww2y)(N -0%) =0
’ ATT

s i e -

el N 22 02V 4+ w? =0
V3g w(fkv2—wv2y) - W2(k (N4-w )w3 + o0t 0
‘Each of trese equations is easily rewritten as a sum of
two terms, one a function of y only and the other a_functic
of z only so that each term must be a constant. Denoting

by C, and C, the two constants whichﬂthus arise, one finds

1 2

ATI-T
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2 .2 -
V3g + Cl(N - )w3 = 0

2 (N2_ 2 2 =
- 02k gN - )W3 - C2w Wagg = 0

Vg
ATI-6
2 .2y —
fkw2 + ww2y + Clv2 w(f*-w ) =0

Wy - C2w(fkv2 - wv2y) = 0
thus gilving four equations for the four unknown functions.
Between the first two of equations AII-6, v3 is easily

eliminated to.give the vertical equation

2 2 2 2 2 - : _

W3y + (k24 C?)(N* - w®)/w W 0 ATI-T7
S _

where C* = 01/02. o

This together with boundary conditions at the ocean surface

and bottom, define an eigenvalue problem for W3 with C as an

eigenvalue. The equation holds uniformly for all frequencies
but the case of interest here is for w &lfo so' that N2>>w?,
For the special.case N constant, ATII-7 has solutions of the

form w3 ~ elmz, leading to

Cz = msz/(Nz - w2) - k2 AII—8
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which will be of use later on. Typical values of the par-

ameters involved are N2 = 1.0 cph, w = £ = .05 cph,

o
m= 1.0 cycle/km. and k

.01 cycle/km., from which it
follows that C = 0.7 cycles/km.

Similarly W, can be eliminated from the last two of
the equations AII-6;

—2p 02,2 2(,.2 _ p2 - ,
Voyy = [£2k? + wBk - C*(w f-f )lv, = 0 ATI

If now, after having been differentiated, f is taken aé

constant, AII-9 has solutions vy n e”’y so that
(k2+22) (N2-w?) = m?(w?-f2)+ Bk(N2-w?)/w = 0. AT

This dispersion relation encompasses both the inertio-grav.
and Rossby waves, reducing to the usua} case 1II-5 for
inertio-gravity waves when variation in f is neglected
(g = 0), and to the case for barotropic Rossby waveé when _ﬁ
m= 0. |

Of central interest here~is equation ATII-9 alone sinc
it contains all the information concerning variation of
horizontal velocity with latitude. With f taken as a
simple linear function of y, the equation has the form

2 + — ‘ AT
Voyy + (py® + ay r)v2 0 'Af
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where p = —-B2(C2 + k%)/w?

q —2f08(02 + k?2)/w?

r = [wBk - f02k2 + C%(w? - foz)]/wz-

Since p is negative, this in turn can be written in the real

cannonical form

(F n? +a)v, = 0 ~ AII-12

v
2nn

where a and n are the non-dimensional quantities

= L, (gk/w + C2)(C? + K2)7E w/p

o
il

3
]

(y + £,/8) [HBE(C? + K2)/w?1Y/%.

Tt will be of value to note magnitudes of a and n in
the present situation. Taking B = 10_5‘cph/km. and other
ﬁarameters as previously estimated, one finds a n -200 and
n lS,iwith’the value of y having little effect on the
value of n for y on the order of hundreds of kilometers.

In the notation of J. C. P. Millef (1964), solutions
to equatioh AII-12 are the parabolic cylinder functions
U(a,n) and V(a,n). The V(a,n) solution increases exponen-—

tially for large, positive values of y while U decreases
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exponentially. Thus the second or V solution can be ignore

unless there is a coastline only slightly northward from th
obsefving latitude, y = 0.

From the defining equation, it can be seen that n, the
non-dimensional latitude, is referred to a pseudo-equator
defined by n = 0 or y = -f_/B v -5000 km. The distance
from the observing site to this equator is great compared
with the distance to the southern boundary under the cir-
cumstances of interest here. Since the parabolié cylinder
function must have a zero at that coast and since its zerd;;
are quasi-uniformly spaced, thevzerosxofrinterest will be |
of high Ofdér; and these are not well tabulated. Tﬁus an
approximation is introduced to'bring the solutions into a
more fractable form. The approximation is applicable in
the v1cin1ty of the observ1ng latltude, y = 0.

According to J. C. P. Miller, the following holds in
the.pfesent case where a 1is largeland negative and n

positive

Ua,m) = 2747 /22 pd L Taype/ (et P ane) AT

where r = n(—a)—l/2 (z < 1)
t = (—4a)2/31
v = —(30/2)2/°
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6 = %{cos—lc —C(l—Cz)%}

and Ai is an Airy function in the usual notation.
But since for the parameter range of interest, T is very

close to unity, one can introduce the small quantity ¢ by

= cos ¢ 9<<1

so that ¢?2 n 2(1-z), by a Téylor series expansion of cos ¢.

Similarly expanding 6 in terms of ¢ yields 6 n %¢%f Hence
A [2(1-2)]1%/%2 . AII-1h4
and 55
& n ~2(1-7) (-2)2? B - ATI-15
Thus, excgpt for the vgry slowly varying coefficient
/@D L2 e 1
the essential behavior of the solutions are.giveﬁ by

V5 N AL(E) | AII-16
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Finally expressing t in terms of the original parameters,

after taking w = fo’ we have to a good approximation

= 1
a’\:—ngo/B l—C"‘—YB/fO

so that
t ~ y/L © ATI-1

where L is the length scale for the Airy argument © given

by
L = (2c? 8/w)" /3 | AII-1

This is the same scale as found by Munk and Phillips when

their result is converted to the present notation.
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