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ABSTRACT

A two-layer linear analzﬁié model is used to study the
response of the mid-latitude ecean to the seasonal variation
of the windstress. The mpgt important component of the re-
sponse is-a barotropic quasi-steady Sverdrup balance.

A meridional ridge such as the Antilles Arc is modeled
as an infinitely thin meridional barrier that blocks the lower
layer but does not protrude into the.upperllayer. It is found
that such a barrier has little effect on the upper layér flow
across the barrier. This result is obtained provided the fre-
quency of the motion is low enough so that free short Rossby
waves are essentially nondivergent. 1In this case there is
little coupling between the layers for energy propagating to
the east away from the barrier.

A study of the dynamics of flow over a sloping bottom
is made and the results are used to determine the effect on

seasonal oscillations of eastern boundary slopes and triangular



ridges. It is found that the presence of a slope at the
eastern boundary has little effect. A meridional ridge that
does not reach the interface may cause éubstantial scatter-
ing of free Rossby waves, but unless the ridge is steep its.
effect on the quasi-steady Sverdrup balance is minimal.
However, if the ridge height is a substantial fraction of the
lower layer depth and the width is comparable to the scale

of free short Rossby waves, the ridge will tend to block flow
in the lower layer, acting like the infinitely thin barrier.
The theory suggests that the Antilles Arc should have the
effect of a thin barrier, while the Mid—Atlantic Ridge should
have little effect on the response of the 6cean to seasonal

wind variations.

Thesis Supervisor: Henry M. Stommel, Professor
Department of Meteorology
Massachusetts Institute of Technology
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Chapter I

Introduction

The seasonal variation of the wind over the mid-latitude
oceans is comparable in magnitude to the mean wind, which is
the primary driving force of the mean ocean circulation;

What seasonal variations in the ocean circulation are driven
by the seasonal variations in the wind? This is the central
question that motivates this thesis.

Lighthill (1971) discusses time~dépendent ocean response
in general, including the reasons why it is of interest.

There are several reasons why the annual cycle is of particu-
lar importance. It occupies a point on the frequéncy spectrum.
that may be thought of as intermediate, between "climate" with
its timescales of years to thousands of years, and "weather"
with its timescales of days to weeks. The concentration of
seasonal forcing at a few discrete frequencies affords a
valuable opportunity to discover the connection between forc-
ing and response. Like tidal motion but unlike most other
time-varying motions, the regularity of the seasonal cycle
means that historical data taken at irreqgular intérvals can

be used to accurately determine amplitudé and phase of both
the forcing and the response.

As a practical matter, it is important to know the annual
cycle of ocean currents and properties in order to interpret

historical data and design monitoring programs. For example,
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oceanographic cruises may tend té be concentrated in the
milder seasons. How much bias does this introduce when es-
timating time averages of properties? Understanding the
ocean response to annual forcing is also a necessary step
in understanding the seasonal cycle of the coupled ocean-
atmosphere system, and in understanding the fluctuations of
that cycle from year to year. 1In addition, there is the
possibility that the annual cycle may lead directly to mean
transports of mass and/or other quantities.

An early study of the response of the 6cean to periodic
forcing was made by Veronis and Stommel (1956). ﬁsing an un-
bounded two-layer beta-plane model with forcing independent
of latitude and periodic in longitude they explbred the wide
range of motions from fast inertial waves to slow Rossby
waves. Their main finding relevant to the present study'was
that in mid-latitudes the barotrépic response predominates at
higher frequencies while the baroclinic response becomes im-
portant at low frequencies. Motions of annual period are
near the crossover between barotropic and baroclinic domin-
ance. In the limit of low frequency the two modes occur in
combination such that the response is limited to the uppér
layer.

Phillips (1966) developed bounded beta-plane models,
both homogeneous and two-layer, driven by forcing periodic

in time and in the meridional direction. Bottom friction
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was included so the response was in the form of damped basin
modes. At annual frequencies the barotropic response in
terms of meridional velocity was small except very close to
the western boundary. 1In the two-layer model the upper layer
meridional velocity dropped much less rapidly with distance °
from the western boundary, since the bottom friction was in-
efficient in‘damping.low frequency upper layer motion. At
periods shorter than 250 days, for which there were no prop-
agatihg bafoclinic waves, there was little difference between
the homogeneous and the two~layer results. The phase of the
response was not discussed, since Phillips was interested

in explaining thé observed power spectrum of currents near
Bermuda. Recently Leetmaa (1978) has re-evaluated both the
observations and the (barotropic) model to conclude that a
regular cycle of forcing at harmonics of the annual frequency
may indeed account for much of the observed energy at those
frequencies. .

Other studies of the response of a homogeneous beta-
plane model to periodic forcing include the analytic work of
Pedlosky (1965a) and the numerical work of Veronis (1970);
Both calculated nonlinear effects and found significant mean
flow'generation by periodic forcing. |

Longuet-Higgins (1965a) studied the effect of periodic
and localized forcing patterns on a stratified unbounded
beta-plane model. Hié main concern was the generation of

Rossby waves by stationary or moving wind systems, so he
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emphasized smaller spatial and shorter time scales than
those of interest here.

Another approach to the study of time-dependent re-
sponse is the use of forcing with a step function time
dependence. All frequencies are present so thé results are
not immediately applicable to the case of periodic forcing,
but useful insights may be obtained. 1In some casés the
annual cycle of forcing may be so rich in higher harmonics
that a spin-up model is superior to a periodic one. This
idea is implicit in Lighthill's (1969) application of a
spin-up model to the generation of the Somali Current by
the Southwest Monsoon. Since the region is equatorial, the
barotropic and baroclinic responses have comparable time
scales, in constrast to the mid-latitude situation. Spin-
up at mid-latitudes due to both wind stress curl and to long-
shore stress is treated by Anderson and Gill (1975) .

There are tWo papers that are explicitly concerned with
mid~latitude annual response. That of Gill and Niiler (1973)
emphasizes the factors involved in sea lével variations.
Scaling arguments are used to show that the barotropic re-
sponse of the ocean interior should be in accord with the
Sverdrup balahnce. White (1977) uses a reduced gravity model
to show that the baroclinic response to annual wind curl
variations consists of two parts: a displacement of the
thermocliné by Ekman pumping, and a free baroclinic wave

generated at the eastern boundary.
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All of the previous work mentioned so far (with the
partial exception of Gill and Niiler, 1973) involves models
with flat bottoms; but the ocean bottom is far from Fflat.
Hence our central questibn_of the response of the ocean to
annual wind variations leads to a second qguestion: How do
the characteristic major topographic features of.the Dceans -
the continental slopes, the mid-ocean ridges, the island
arcs - affect the dynamics of the annual éirculation?

The effect of topography on steady homogeneous flow on
a beta-plane is fairly well understood. See, for example,
Welander (1969) for calculations of the deep North Atlantic
flow that might be driven by a uniform vertical velocity in
the thermocline. The essential idea is that geostrophic flow
may occur freely along geostrophic céntours (constant £/H),
but forcing in the form of a vertical velocity or torgue is
required to allow flow to cross contours. In a model with
two immiscible layers there can be no steady vertical Veloc-
ity of the interface, so motion -in the lower layer cam be in-
duced only through interfacial friction. A model of this
type is considered by Welander (1968).

Waves in a homogeneous fluid on a beta-plane ovexr topog-
raphy have been studied by, among others, Rhines (1969). He
calculated the effect of simple step and ridge topographies
on incident Rossby waves. He found that a step reflécts waves
if its fractional height is large compared to the (nondimension-

alized) frequency. A wide ridge will also cause reflection,
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but a ridge that is narrow relative to the length scale of
the wave has littlereffect. Each slope generates vorticity
of the opposite sign, so cancellation occurs.

Waves in a stratified fluid on a beta plane over a
slope have also been studied by Rhines (1970). In a two-
layer system with a north-south slope he found that the usual
barotropic and baroclinic vertical modes are replaced by one
mode concentrated in the upper layer and a second concentrated
in the lower layer. With continuous stratification, Rhines
finds that a slope brings forth a bottom intensified mode
and a set of baroclinic modes that are influenced but little
by the slope. These wavés are investigated further by Suarez
(1971). The scattering of incident barotropic and first mode
baroclinic waves by low topography in both continﬁous and two
layer systems has been studied by Hall (1976). He'concludes
that scattering is strongest when a ridge is a fewbinternal
Rossby radii across and when the group velocity of the inci-
dent wave:' is at a shallow angle to the ridge axis.

The present investigation begins with the development in
Chapter II of scaled linear equations for periodic flow on a
beta-plane over topography. Two-layer stratification is
used. The scaling is tailored to the problem at hand: oscil-
lationé due to annual wind varations. The north-south scale
is assumed fixed by the forcing pattern, while the east-

west scale is left free to be selected by the forcing or the



19

dynamics as required. With the slope terms set to zero, a
unified theory of annual oscillations without topography is
déveloped. The model is bounded in the east and west but

is open to the north and south. Emphasis is placed on forc-
ing that is zonally uniform, but more general forcing is also
considered.

In Chapter III we examine ﬁhe effects of some simple
topographic features on the annual circulation. We start
with a model inspired by the Antilles Arc in the Atlantic and
the Ryukyu Arc in the Pacific. The model has an infinitely
thin meridional barrier that blocks the lower layer without
impeding the upper layer. 1In section B of Chapter III we
consider the properties of flow over an east-west slope.

Two types of analysis are made. The first analysis uses
consfant—coéfficient approximations of the vorticity equé—
tions to find plane wave descriptions of all the various
types of motion. The second analysis uses scaling arguments
to find approximéte ﬁorticity equations that are appropriate
to each different type of motion. This gives a better under-
standing of the dynamics, but the solutions are too compli-
cated to be used in calculating the effects of isolated
features. Accordingly, in section C we use the plane wave
solutions to calculate the effects of three tépographic
features: a sloping region at the eastern boundary; a tri-
angular meridional ridge; and the same ridge combined with

a lower layer barrier. Last, in section D we extend the thin
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barrier model of section A to a multi-layer fluid. Examples
with eight layers and barriers.of various heights are
presented.

Chapter IV is a survey of observations of the annual
dycle of both winds and currents in the North Atlantic.
The relation of these observations to the theory is
discussed.

In Chapter V we summarize and discuss the results of the

investigation and suggest areas in need of further study.
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Chapter II

THE TWO-LAYER MODEL

A. Primary model eqguations

We are interested in low frequency, large scale motions
in the ocean, and in particular, in the effects of topog-
raphy on these motions. Suspecting that homogeneous models
may be inadequate to display even some of the simplest
physics, we are led to a two-layer model as a first step in
discovering the role of stratification. The model will be
limited from the outset to small amplitude oscillations in
the ebsence of mean motion; guadratic terms in the dynamic

variables will be omitted.

1.  Scaled momentum equations

Consider a fluid of two imiscible layersvwith a small
density difference £Hp and mean density Po With the
traditiénal Boussinesqg and hydrostatic approximations, the
linearized momentum and continuity‘equations_for the ith

layer are

¢ o
Uy - FMEE - /—,} Piy * Fzm) (2.a.1a)
J ()
wie v fup = - Piog * F (2..1b)

,oz -p = j Aﬂry (2.A.1c)
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where (M[,Aﬁ) is the horizontal velocity vector in a
Cartesian coordinate system with /?, positive northward
and  positive eastward. The interface is perturbed
by the motion to lie a distance /7 from its equili-
brium pésition at ?,: —}ﬂ . The velocity components
are functions of ¢ , y, and cy . The vector

(F#%l FiQﬁ) represents the dissipative forces, due primar-
ily to turbulent motions. There is no adequate theory of
such dissipation, so we will use the traditional device of
introducing "different eddy viscosities, ¥, and Uy

in the horizontal and vertical directions:

(F. E(»;)) = (?{; v, 9% + 7, UL) (u; ) w3 ) (2.2.2)

L ]

where V2 here and elsewhere refers to the horizontal
Laplacian.
For simplicity, a rigid 1id boundary condition will

be used at the upper surface:

k3
il
S

at 9/ =0 (2.A7.3)
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This rigid lid approximation is good so long as there is
. R L3 2
a scale of the motion, L , such that L &L AK where
]
- 72 '
Ap F (3 H) /p/ is the external Rossby radius of de-
formation. A typical mid-latitude value of 7\R is
3500 km. At the lower boundary, the condition of no flow

through the boundary is

(2.A.4)
al g? = "HI"Hz(&UQQ)

The lower boundary may come arbitrarily close to the inter—-
face, but must not pierce it. At the interface between

layers, the linearized boundary condition is

Wy = Wi?”]t

(2.2.5)

al ?,=~/'/,

Interfacial friction will be neglected; we let Vs
-~ go to zero except near the top and bottom boundaries. At
the top boundary, we will specify the wind stress,

(Z'ht ?47)) .. At the bottom boundary a no-slip condi-
tion will produce an Ekman layer. For most motions we
will consider, this bottom Ekman layer is negligible.

Likewise, the lateral friction term will be significant

only in special instances.
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All variables will now be non-dimensionalized by
dividing them by appropriate scales: The meridional.
length scale, L , will be externally imposed, while the
zonal scale, VV, will be selected by the dynamics. The
ratio A‘E-MGCL will be 67({> ‘or smallexr. Since we are
interested in periodic motion, all forcing terms and de-
pendent variables can be expressed in the form
n[?(ﬂl/y,?)e‘iw{-] where ? is a complex amplitude.
The operator ;% then becomes =—(& , and the e’[a)t
factors out of each equation. The Coriolis parameter will
be approximated by a linear function of 1? : €{=.ﬁﬁ—kfgﬁ} .
Temporarily denoting non-dimensionalized variables with

primes, we set

)

W'

TN QN
Y W
t("'
0

= w"t
4 ’ —I-Wf
u; = Uu; e
AL il (2.A.6)
wiz WA M€ |

" ; —iwt A ;, _iwtl
fofobUpie ) poF
(F/gb/a)/']’e"w 5/7‘

W

3
W\

"

(W

1
.-w/‘ _'
w’[-— /7(,«}“6

H, = Hyo b (/x;/y') = H, 5§k (', n")
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In terms of these new variables, (2.A.1la-c), (2.A.3),

(2.A.4), and (2.A.5) become (dropping the primes)

~ (AT U - fp; = = piy + AF(u)
—iA T+ fu = "~ Piy +/)"' Flrz)

Pem =

M,,,+/tf,2,+o’7l’/luf}:0

W, = Wy :-f-iq al ? = =)

with the following definitions of parameters:

(2.2.7a)
(.2.A.7b)
(2.A.7¢)
(2.2a.74) |
(2.A.7e)
(2.3.7f_}

(2.A.79g)
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gz /4

f = //4/,,:/—#4:/7

b= AL/Y4 (2.2.8)
av= (ho2g)/ (470)

The friction terms are now expressed in terms of the

operator
3 ) F e P
F:[?E Ev@ t Eu{ﬂ—lé;"{’a—/;")] (2.2.9)

where EV and EH are Ekman numbers

—Vv_ 7/);4
E, = 40 ) E, = 7L (2.2.10)

Both Ekman numbers are very small. For example, if
v, = /(fgml SBC',) %o = 5x/0"% sec™ ana _H, = 500 mn
then EV_ oo /0""; and with V), =/0 m~ sec”’ , the range
of L from 107 to 10°¢ gives EH: 2x073% to
7 X /0’:'L . Hence lateral friction is of no importance in
(2.A.7a,b) except possibly in thin boundary layers where a
large value of /4—3 (meaning a small zonal- scale) can make
the product /4’3514 = 0(1) . For small A , the dominant

balance in (2.A.7a) is geostrophic, so the only potentially

A
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significant lateral friction term, found in (2.A.7b), may
be written 4'359 1[_'//9,'0“)‘0[ .

The smallness of EV ensures that the Ekman boundary
layers are thin, so the bulk of the flow in each layer is
independent of depth. Let this depth-independent wvelocity
be denoted (M %/\/’O, and let the Ekman layer corrxection
be (t:f\‘,/c‘) . Then, provided el , Ep<<l , ana
|0 h << | , a standard Ekman layer calculation (e.q.,
Greenspan, 1969) yields the bottom stress, (f'g(”)} Z'a/‘?))

:EV%(M,_I/\Q), in terms of‘ ((/,9“/1;#):

- Y .

Z%@ﬂ - (E;:F) (ldy/q - ﬂf“y) (2.A.lia)
E ,F '/1, )

z\,'3,('7) - ("{"‘) ((/l*/’r + /\r*) (2.A.11Db)

The depth-independent velocity is governed by (2.A.7a,;b)
with Ey =0 . since we restrict A& 0(’) , <L)

and .EH | , deviations frém geostrophic balance in
(2.A.7a) are small, and ot e )5”.’/97_9_, . If A is small,
there may Ibe significant ageostrophy in (2.A.7b): but 4%
in (2.A.12a,b) is multiplied by /4 » so the ageostrophic
contribution to the bottom stress from (A;’ is also small,
and we may substitute U¥ = -"F‘,}O,_,; in (2.A.1la,b) to
get expressions for the bottom stress in terms of the

pressure:
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Ev '/"' _,.. Ly

TB/M” (z?) (-"4 fﬂ?—’? - }azrx) = EV/L ng/fx) (2.2.12a)
E, )™ = £y

1,7 (‘{? (’A Pry *m) = E4EP e

Although the bottom boundary layer flux is of order
Ev}b , the flux in the surface Ekman layer is de-
termined by the imposed wind stress, (Zﬂfyi Zify)) , and
may therefore be as large as CM%) regardleés of the
value of El/ . Since the wind stress is externally im-
posed, both components, unlike the velocity, have-been
scaled by the same factor: é}s o % #, oA "8 . This
scale is chosen to balance the divergence of the Ekman

flux by vortex stretching in the upper layer, as will be
seen.

Now that the friction terms have been simplified, we
may vertically integrate (2.A.7a,b,d) over the depth of

each layer to get

~ (AU -FfV=~p, +A i (2.A.13a)
~(A e Vo + f U, = *)ﬂ,? + oA " Z’,f”’ (2.2.13b)
-3 -1
'ffq Eﬁ”'{ /%¢ou¢

(//,,,, + V;,? = - LA f;\"q (2.A.13c)
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. | - o 220G
’lﬁo/ UZ. .—1([/2 = - g 'L' }014( 'EV/ La/x) (2.A.l3d)

R T Y o

(2.A.13e)
+FAE, S$TA f"/a,_,mlx
O/z,,+ Vl'y = (A4 a—a"‘n? , (2.A.13f)
where
[
([Jp)[A ) E./r (bﬂ)/~7) ”/;y
-1
- - (2.A.14)
((/,7.)\/7,>E (“z,/";,)'fﬂ(?
_ -1-§7')

Before proceeding to the derivation of vorticity equa-
tions, let us review some of the.features of (2.A;l3a—f),
which govern the depth—integiated velocity in each of two
fluid layers on a beta plane over topogiaphy.

First, the scales have been chosen in anticipation of
a strong geostrophic balance. The frequency,va’, is small:
x0T ® for motions of annuai period at 20° N, for
example. The frequency and the meridional scale are ex-
ternally imposed, for example by a seasonal variation of
wind stress. The zonal scales (there may be more than one
zonal scale in a single region) must be determined by the

dynamics, and may be different in different regions, due,
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for example, to éhanges in topographyv. We will be consider—
ing topography that is primarily a function of /¢ , and
therefore does not introduce its own meridional scale.
Anisotropic length scaling requires anisotropic wvelocity
scaling if the geostrophic balance is to have 67(0 coef-
ficients. Hence, the scales of W7 and VQ are inversely
proportional to the zonal length scale.

Second, we specify that the eddy viscosities are
small, so friction will be important only where there are
especially large velocity gradients. The meridional scales
chosen will be too large to create such gradients, so
friction appéars only as a result of locally small zonal
scales, and therefore only in the meridional momentum
equation.

Finally, note that the coefficient on the right hand
sides of (2.A.13c¢c,f) may be written as o© z%;%ﬁf .

Thus the horizontal divergence of the flow diminishes as

the frequency or either of the length scales is reduced.

2. Vorticity equations

Through standard manipulations, (2.A.l13a-f) with
(2.2.7c) can be reduced to two coupled equations for the

pressure in each layexr. Define
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D; = U;, + V}7 | (2
_ -t
Z( = A V[,x - A (417 (2
-1 2 (r‘;) _ 2 )
Uextuz 47 5z Lo 3 T (2
, 2, 2
e+ B A Oy 9? (2
» "
I 2 A7 S T A 20 (2
Then
~to 2, +fD + bV, = aT A o x T, (2
, 5 g
+A EH f /”'a/mux
—[a'D,—-fFE’,#'L/?(/{, = '"\'}Sl/ol-fa’?l"'ﬂU_;-Z\'w(z
']"/7 'ZEH ({ —/}011)’4'4( )7

cir 2y +4D, rbty =5 [hpn), - (0 ), ]
£, % -4 2 /Z ";4..’? z
"("5_!) ['F © O )°1"-L’C waj (2
FATE TSk e )

.VA.lSa)
.A.15b)
.A.15¢)
.A.154)

.A.15e)

A.l6a)

LA.16Db)

LA.16C)

—(rD, —£2, +b AU, = -—S"[A"/L‘Vz«L +A (L V=7)77

+ Eny O‘ ,Z\:IS

1"/?"2[:',,, 5! (;Cl1 }”'zfxfrfd),;_

Elimination of #; gives

(2.

A.led)



32

-, +b(-icAu +§1,) =79,

+ /4'3514 Procwny ~ (o £, (’F‘,}olﬁfx/x)

oA A ('f 9y x T, —t'JO,-Z’.J)

(6% - )Dy +b (-icAll,+F1 ) =

(2.A.173a)

7

[o’S"[A"/A/’M,),, +A /Lm?)7]

¥ o;f"[(i«rw),y - (L}%;L,?

NN F Ay F s )

+ /4/3EH 5 {L‘/”/xaz/x’)o!

(2.A.17b)

- t'f[-Ev./q'U‘%; +/4'ZEH s/ (% }0144?4:)7]

Since ¢ is small, o ?

2
can be neglected relative to 1[ ’

and the friction and forcing terms on the right hand sides

can be neglected when multiplied by ¢g .

Assuming oA «! ,

the first term multiplied by b can be neglected relative

to the second, and from (2.A.13a,d) we approximate

‘Fl/l = Pt o ’Twoy)ﬁ 0’7\’2’

(2.2.18a)
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-1
Vo = 5 h pay (2.2.18b)
C Evi~ b )
In addition, the term (3% 5:_P1~¢ 1s small compared

to 'FLIQ , and will be dropped. With these approximations

and the use of (2.A.13c¢,f) and (2.A.7¢), we find

- [a”os"',o,-irfa’z/}q‘z(}”z'/”:)+I’I”ta: ,
: (2.A.19a)

oA A (’F Osx Ty +k Z‘,‘,{“))_;—A'BEH Pr e e
-(oh Qsipz —c’f(/?"}ai,y hy + A ey /«7)
FCAASE (Pa-p) thb oy (2.7.19b)
%’% (AMWZA '—1“7 /14()
E,,zF ,/‘L R -3
:"Sﬁif) Os pa + A EH(hIQ4W4)a
- In the special case of h=1 (flat bottom), (2.A.19b)
reduces to
;[(03y1+[JW'ZASfQ(P1UM>*bWL¢
13 Yo 2 _ :
= ,(;.z_f) Ty P +APE, P sy (2.A.20)

3. Parameters

To understand the dependence of a model on its param-
eters, it is helpful to have specific numerical examples.

The main focus of this thesis is on seasonal oscillations,



34

so for one numerical example we choose mQtions of annual
period and a meridional length scale of 1000 km. As a
second example, at the limits of validity of the theory,
we choose eddy scales: a length scale of 100 km and a
period of about three months.

The descriptive pérameters of the model must also be
given numerical values. Let the basic layer depths be
Hi =500m , H, =3500m , so that o = Y2 . a
convenient value of the reduced gravity is 3 D?§.='ZX/V%nn5e;
which could result from a temperature difference of about

10 C. As a central latitude we choose 20° N, making

- - -1 and =2x0" " see”! .
{D'S’X/o Sec /A

Now the essential non-dimensional dynamical param-
eters of the model are determined for the two examples. For
the annual oscillation, g =.4%xw"* , b=.9 , and
,2’z= 2.5 x/0% . For the eddy, o =/l-txte™? , b=_ 04 i,_
and A *=12.% . In both examples, ¢ is clearly a
small parameter. The beta parameter, é , is small for the
eddy but not so small for the annual oscillation. Never-
theless, we will sometimes be forced to treat b as a
small parameter in the latter example. The accurady of the
theory will then suffer, but it will still be capable of

giving some qualitative information.
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B. Behavior of the model without topography

In the remainder of this chapter, we will review the
theory of two—layef flow over a flat bottom, and apply the
theory to the problem of the oceanic response to seasonal
wind variations. This will provide a frame of reference
in which to devélop a theory of flow over topography.

The flat-bottom problem is greatly simplified by the
ease with which the inviscid versions of (2.A.1%a) and
(2.A.20) can be combined to give a pair of decoupled equa-
tions for the two vertical normal modes of the system.
Using subscripts T and ¢ to denote barotropic and baro-

clinic modes, and defining

pr = pi+ 5

. (2.B.1)
P = i P

linear combinations of (2.A.19a) and (2.A.20) yield

~At.cf’()‘;."/a-f-i- /’/97'4: = 0‘))"'/} G
' EV’F k" -/
"fA-‘gEh' 'offx/,xrx,,- - (7* ) Oxlfz (2.B.2a)
".ar(oslloc "7‘c—£/}{lI’C) v b Py
- -3 |
=T A tAG + A EH}OC,,K,X,X,,, (2.B.2b)

t (%f) " ort)oz

with
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. 7
Ge foxt,+hti= f ng(—f)‘ . (2.B.3)
AE AT (1+65)

In the limit E, > 0O , these equations are uncoupled.

l. Free waves

Now, with G =0 , and Ev=EL,=0 , consider the
possible free barotropic wave motions governed by the

left hand side of (2.B.2a):

—ir (A Py F A Pr) # b Py = O (2.B.4)

This can be solved exactly, setting 4=/ , by plane
waves (Longuet-Higgins, 1964b)
(. [/& 4 +4//‘-7/) . .
pr =€ / | (2.B.5)

where A anda /£ satisfy the dispersion relation
2 b / z _ 7
A=At = (0 (2.B.6)

The two roots of the dispersion relation give the zonal

wavenumbers of the long and short Rossby waves:
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Zfﬁ— ( 0’) )‘/z] (2.3.7a5
re =% [/ é - ”“)L’ ‘//2)1/"] (2.B.7b)

Subscripts Wand £ denote westward and eastward group veloc-
ities of the long and short waves, respectively. The group

velocity components are

w_ 1 20 _ b(A-4Y) _ & /")
Cg ok T o4l b -/’2“- (2.B.8a)
(~) L‘%ﬂf 24640 - g é :
Cﬁ7= oyl (ALY 5 {"’-A) (2.B.8b)

-/

The factor of o in the definition is included to make

the scale factor (é £ "L‘J, consistent with the use of
w ' rather than ﬁ; as the basic time scale.

Many of the characteristics of Rossby waves are clearly
displayed in a plot of the dispersioﬂ relation in wavenumber
space with the frequency fixed (Longuet-Higgins, 1964).
Figure 2.B-la shows the dispersion relation for barotropic
waves of annual and semiannual period. Note thaf the zonal
wavenumber is insensitive to the value of the meridional
wavenumber until the latter becomes rather large. Even
with //= /0 SO the meridional scale is 100 km, the
chord AB is almost the length of the diametef of the circle

and the long and short waves are widely separated in their

zonal scales, This difference of scales will be of central
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importance throughout this thesis. Furthermore, note that
the direction of the group velocity (AC for short waves,

- BC for long waves) is very nearly zonal if the meridional
scale is greater than about 100 km for annual motions, or
200 km for semiannual motions, This means that the effects
of an annual localized barotropic disturbance of scale
greater than 100 km will be felt at remote longitudes pri-
marily in the same latitude band as the disturbance. The
ocean at a given point gets its annual information mainly
from points due east,

Given that A/C-(D(U + the only parameter controlling
nondivergent barotropic Rossby waves is the ratio 3;2 .
When _722 = 0/0 » all the terms in (2.B.4) are important.
The zonal scale is the same order as the meridional scale,.
and the short and long waves have comparable zonal scales
and group velocities. At ezg ://ZA?/—/, the zonal compon-
ent of the group velocity goes to zero, and for f:g >/2.x/"
only zonally decaying solutions exist, These solutions are
trapped to a meridional boundary. In the opposite limit,

i% << | , the zonal scales of the long and short waves be-
come increasingly disparate. Equations (2.B,7a,b) become

approximately
* & 4122)1 )

/ér/s’b“’ér”‘[/"/’i}fz*“—) (2.B.9D)
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The first term in each of these expressions is an excellent
o ,t)
approximation for seasonal oscillations, since 5 = O(ro .
R
For long waves, the zonal scale is /?nM-’ g~ , while for
short waves it is /4TE - /42 . In dimensional terms, for
annual oscillations the short wave scale is a mere 10 km
. . 5 -, T

while the long wave scale is 10~ km, or /4rk,—-/o . How-
ever, this is much larger than the zonal extent of any
ocean basin, so in fact A4 is limited to, say, 10. This
means that the long wave balance in (2.B,4) is approxi-
mately /%Dy = O . The annual large scale barotropic long
wave is so fast that there is negligible phase change from
one side of an ocean to the other.

Baroclinic Rossby waves are slowed by the need to move

the thermocline. With CB-¢:EQ,=éi,==c> , (2.B.2b) becomes
. -/
v + A )
Feao ,pQgL?

: _ . 2.B.10
+ (V'ﬂclﬁ -le/ﬁc—f-'é/?ca,':— ( )

This equation, unlike (2,B.4), has non-constant coefficients,
so it does not admit pure plane wave solutions, However, in
the parameter range with which we afe concerned, (2.B.10)
may be replaced by approximations in which the non-constant
coefficient occurs at worst parametrically.
First, consider the case &<</( ., fThen we may treat b
o 2

z
as a small expansion parameter, with —F - /—}-2.4,7 +5 ,7 .

. .
To lowest order, f >/ , so all coefficients are constant.
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Setting A=/ and substituting plane wave solutions

- ei(A4’4-/7Jy

c ields the dispersion relation (Longuet-

Higgins, 1965b)
% _é_ /té T -
St m AL T+ A =0 (2.B.11)

The roots corresponding to the long and short waves are

\

Ao %§’z§*[(§*)l~'1(/1+a£‘)7'/’§ (2.B.12a)

)

b T 2 - %
A s %5”}’[(5") ’L’//*Rcz)]/g (2.B.12b)

and the group velocity components are

o /14_;\ ~T
. = 5 (/- c

(Az4_ z+?c,z) b ( A )

C@)Z 2 44 L . — L

9 (A rl 2.8 A

(2.B.13)

&)
The critical value of %‘ at which Cfej > O is now

- z -2\ 4
9§r”2-(// + A, ) “ . Hence for a given b and £ , the
critical frequency for baroclinic waves is lower than for
barotropic waves, often much lower, since A, can be
O (0™ -

[0 . From (2.B,10) we see that A, determines
the relative importance of vortex stretching compared to

the Cé?f part of the vorticity change. 1In the long wave,

one or both of these is primarily balanced by beta. 1In
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the short wave, the ﬂé;t term is the largest counterbalance
to beta.

It is important to note that the above approximation
making use of the smallness of & is valid only when /?3 0(’)
Neglect of the variation of the radius of deformation is
valid only so long as that variation is small over the whole
area of interest.

Figure 2.B-1b shows the baroclinic dispersion relation
in wavenumber space. The wavenunmbers clearly depend very
critically on the radius of deformation and the frequency.

At the annual period, the length of the chord AB is similar
for the barot;opic and baroclinic waves if the radius of
deformation is greater than about 40 km. Likewise, the
direction of the group velocity vector remains nearly zdnal
unless /{ is large. However, as the radius of deformation
decreases, the circle in wavenumber space rapidly shrinks
until there are no longer ény ffee propagating bachlinic
waves. The minimum radius of deformation for which free
baroclinic waves exist is 20 km at the annual périod and 40 km
at the semiannual period (with 5= 1—X/0—fcwn”5e c’y.

If the meridional length scale of the motion, L , is
large so that L approéches 1, then, for reésonable values
of layer thickness and stratification, 2%r1>) [. As was
pointed 6ut by White (1977) this means the term A/ﬂc7? can

be neglected relative to ﬂC'€4{71fQ_ » leaving
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Wavenumber vectors for barotropic .

- Rossby waves of annual period {(top)

and semiannual period

ébottom); The
length scale is L = 109 .

m.
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ANNUAL

. .L- .
A= 063 50

SEMIANNUAL ) /
£

3 ) 1
i 3 : + T ¥

-100 ~50
| A= 063 7

l-30

Figure 2.B-1b. Wavenumber vectors for baroclinic Rossby
waves. 1In the case of annual period the
wavenumbers are shown for radii of de-—
formation 63 km and 32 km.

PR
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5
- — 2z 2 _
~A IFCkoz t A 1A’F Fe t i Pex =0 (2.B.14)

which has no /y derivatives. Hence the wvariation of 'F
may be taken into account parametrically. Solutions of

(2.B.14) have the form

=q/( )e(%(?)a (2.B.15)
FPe ?y .B.

The function 4{ ) is subject only to the restriétions that

g’% 2 o) and ’g’j‘m < O(/) . With A=/ the dis-

persion relation for & is
-, b A
A+ Z A2 =0 (2.B.16)

The long and short wave roots are

) d
LS _ b [ byt m]/z
A ey ’15 = (,, “2. £ | (2.B.17a)

2 s -
SAos =2 g éé: ’[(oé:) '_‘“7‘;14’—]45  (2.B.17b)

b A ' —-2
If (C}“- > A, , the roots are approximately

/Acwg ’ﬂc’z%’{'l(/"’zc‘l(f:)zfm*— -—)

Ao ge=2(-a(F)F . .)

(2.B.18)

For annual oscillations, the first term in each of these ex-

. . . . . - Y} -2
pressions 1is a good approximation, since @A, (‘{) =2.5 x /0O
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The long waves result from a balance between vortex_stretch—
ing and beta, with the wavelength increasing as the latitude
is decreased. Therefore a line of constant phase that
starts out oriented north-south will gradually be refracted
as it travels west, taking on a northeast-southwest slant.
The short baroclinic waves are almost identicai in scale to
the short barotropic waves, both resulting from a balance
between beta and the A, part of the vorticity change.
Because of the small zonal scale, A= f?b , the radius bf
deformation is not an importanf parameter. From (2.A.13c,f)
we see that the annual short wave motion is almost non-—
divergent. Hence the layers are only weakly coupled. This
fact will be seen in the next chapter to have important

implications.

- 2. Forced motion

Now we will look for particular solutions of (2.B.2a,b)
with Ep=Ey,=0 but with G # € . Since the equations

are linear, we restrict our attention to simple forcing
il (A re
e 7e

i

patterns, G . In the absence of boundaries,
the scales of the forced response are exactly those of the
forcing. Then £ and A can be restricted to the values

+1 and -1 depending on the direction of phase propagation

of the forcing. The parameter A becomes the ratio of

zonal to meridional scales of forcing. If the forcing is
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independent of 4 , then there is no zonal scale, and the
response in the absence of boundaries is also zonally
uniform. It is found by setting the «-derivative terms in
(2.B.2a,b) equal to zero, in which case the parameter A
is common to all remaining terms and drops out of the
equation. This is the same result as can be obtained by

taking the limit of (2.B.2a,b) as A e .

a. Zonally uniform forcing

Since the patterns of seasonally varying wind
stress and stress curl are much stronger functions of lati-
tude than of longitude, they may, as a first approximation,
be taken to be independent of . Therefore we consider
first the case G=¢ ‘17_ .

The barotropic response obeys
. A A
- 0”/0.,—77 =oa e (2.B.19)
which can immediately be integrated to give

A
_ -2 . ¢
pr=-AL e 7 (2.B.20)

N
Without loss of generality, we may set / =1 . For

scales L>2100 xm, 27* 5> , so the barotropic response
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is large. All of the torgue supplied by the wind must go
into changing OL7 .

- Now, suppose there is a boundary at #=¢ and
we are interested in the flow to the west, at negative ,Q .
The boundary condition WUr=0O at x =0 can be approximated
pr = U"?\'nzf@‘:,g)d/? at x#=0 , since the only important‘
departure from geostrophy is dﬁe to the wind stress. Free
waves with group velocity away from the boundary are added
to (2.B.20) to meet the boundary condition. In this case,

the barotropic long waves with wavenumber given by (2.B.7a)

are appropriate. A complete solution is then

pr = - Z'Lc'e£[7 (/“ 6‘%1“«)

(R oy ' (2.B.21)
+JA'L/T’(7)/,76 "

For convenience, it is assumed that ,‘»(,?)~ {1[7 . Note
that there is an ambiguity in ( 2.B.21 ); the consfant of
integration is undetermined in the present model.

As we have seen, the zonal scale of the baro-

tropic long waves is /41.,.,:.?.%7 which is large compared to the

width of an ocean basin. Hence (2.B.21) is approximately

4

‘ |
pre -A “Aru K E 74 77\"'[?6’)@/7 ~ (2.B.22)



and the complete response is A/) 0(}) for 7 = 0(/)
This means the Sverdrup balance holds. The torque applied
by fhe wind is balanced by the beta effect. This result can
be seen directly from (2.B.2a) without going through the
formal procedure of adding a free wave to a directly forced
solution. The smallest zonal scale in the problem is set
by-the width of the basin, so let that scale determine A
Then, so long as Ao <« b , the relative vorticity

term is small compared to the beta term, giving the pri-

mary balance found by Gill and Niiler.(l973)
; w4 | .
bpr, © oA Ae t (2.B.23)

which can be integrated to give (2.B.22), remembering that
Tw = "6;/2 . The condition for the wvalidity of this

approximétion, Ao <<b , is, in dimensional terms,

hlh/
L >>

) =200 &4 m for annual period with W, T4#000 A m
as the width of the basin. In the Sverdrup balance, the
response is in phase with the forcing, in the sense that the
maximum northward velocity coincides in time and space with
the maximum wind stress curl. As L decreases and the “’&24/%
term gains importance, the response begins to lag behind

(WWD)/«,

the forcing. At [ = , this phase lag is half

a radian.
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Calculation of the bé:lI'OCliniC component of the
response to a forcing G= C‘ 7 proceeds aloﬁg the same
lineé as the barotropic analysis -above. However, there 1is
a major difference in the results, due to the additidnal
physical process, vortex stretching described by the
[0’7&;2A7‘:1}”L term. For L2 50 km, this term domi-
nates -(7A }%77 ; vortex stretching due to thermocline
-displacement is more important than relative vorticity
change. Vortex stretching also establishes a free wave
scale shorter than an océan's width, so the Sverdrup-type
balance can hold for the baroclinic mode only near the
eastern boundary. |

As in our earlier discussion of baroclinic free '
waves,. there are two cases to consider, depending on
whefher L is small enough to allow the approximation
-FL = | . First, consider the limit b <</ , or

L << ?{’//g = 2500 km. From (2.B.2b) we extract

-io’.(/? e “f/]/ocfn.*ﬂ Al pe )

£ (2.B.24)
'I"b/oc/x '-=AJ';]'1'€ 7
which has the solution
Y (A, % V4
LA (e e ) Y
/oc L+ A
(/icw/x (2.B.25}
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satisfying the boundary condition f = O'A'Z[Tué})’/? at

n =0 . The scale factor A4 has been set to o.ne, and /'écw

is determined from (2.B.12b). Similarly, in the case where
b= 0[/) , (2.B.2b) becomes

- - T - _ l'r(

(OA, Af P +bpe=Acarte 7 (2.B.26)

which has the solution

A .)z (} _ ei,écw(y)/x) 6[/7
‘.’{cw( ) (2.B.27)

+0‘7\’sz.~,{7},¢/’?€ 7

with /écw here determined from (2.B.18a):

2
A, = — T re (2.B.28)

Near the boundary, where //ACK,/X/<< ! ; (2.B.27) is

approximately
[z 5/'7 . z—(/})//
Po &b A xe + TATT ] b 7 (2.B.29)

In the same region, the barotropic flow, from (2.B.22), is

-
identical, since /é—ru "%
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Pr = Po as x|l —> 0O, (2.B.30)

But (2.B.1) implies

-1
}”l:(}”r"'g_’/”c)(/*gwl)
/”z:(}”-r’/c>(“'£’,)‘l

(2.B.31)

so near the eastern boundary there is no flow_in the lower
layer. 1In the upper layer, ], = pr . This means that
the upper layer alone carries the total transport required
by the Sverdrup balance. Further from the boundary the
total transport still satisfies the Sverdrup balance, but
it is no longer confined to the upper layer._

The baroclinic response, (2.B.27), can be re—

written (with fﬁ7)=267)

s, X .
_a_f:—‘)z < AR l__c{—— ‘//7
pe="L\AF/) T2 e (2.B.32)
so the phase lag is -vécw'¢/a . For annual oscillations,

this means a lag of one week at about 100 km from the
eastern boundary at 20° N. At 10° N, a one-week lag occurs

about 400 km from the coast. Equation (2.B.32) shows that
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the baroclinic response takes the form of a wave propagat-
ing at twice the free wave speed, modulated by a sinusoidal
amplitude with the same wavelength. This behavior is shbwn
in Figure (2.B.2). As one gbes west from x=¢ , ampli-
tude and phase lag increase until ﬁécw/4f:‘ﬁ' , where the
phase lag is 7% and the amplitude is a maximum. Then the
phase lag continues to increase while the amplitude de-
creases, going to zero at /Q“J07=277, where the phase lag
is 7Y . Further west, the amplitude increases again, and
the bhase lag increases from zero. Hence the phase lag is
always between zero and 77 , and the motion is greatest where
the lag is @zz . There the free wave from the eastern
boundary is in phase with the directly forced response.

This behavior of the baroclinic response to
seasonal wind variations has been described by White (1977),
who has found observational evidence of its existence in
the Pacific. Data from a grid of hyvdrographic stations
occupied monthly for 15 months near Hawaii show westward
phase propagation and a phase lag that increases from south
to north due to the decrease in baroclinic phase speed with
increasing Coriolis parameter. Earliexr Meyefs (1975), using
the same data, had shown that the average thermocline dis-
placement from its mean value lagged the wind stress curl by
about 7/2 . He concluded that this demonstrated that the
thermocline was simply moving up and down with the vertical

velocity induced by surface Ekman pumping. While this is
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Figure 2.B-2. Variation with distance from the
eastern boundary of the baroclinic
response to forcing (2.B.32).
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- true if one considers an average over an integral number of
baroclinic free wavelengths, it is not true locally. As
demonstrated by White, the free wave from the eastern bound-

ary plays an important part in the cvomple‘te response,

b. General forcing

When the forcing function takes the more general form
t[/y (A x _ )
6”—'- e € the response is a bit more complicated but is
governed by the same principles as in the case of zonally uni-
form forcing. Solutions for an unbounded ocean were found by
Longuet-Higgins (1965). Here we will briefly sketch the
theory for the case of an occean with an eastern boundary.

As previously, the barotropic response is simplest,

The eguation to be solved is

—‘[U'(A’/PT/J‘(OV +/4/97’/;77 ) - bf"l‘or v
— 0,2—1/4 - i,(,;;e (A (2.Bf33)

An exact solution with ,4’-‘-/ and /91‘-;0 at =& is

. P4 : :
—iorate "7 (etA/x (A
b

Alternatively, we can examine the scales in (2.B.33) by
. . . b '
setting £ and 4 equal to + /. Then, so long as o >>A

b - ' .
and F >7 A / » the relative vorticity term is small
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compared to the beta term. The same is true for the baro-
tropic long wave on ocean-wide scales. What is left is just

the Sverdrup balance, which can be directly integrated to

give
o _ F A A
Pre=-0g A A4 '(el —/)e_‘ 7 (2.B.35)

Baroclinic behavior is complicated slightly by the
presence of the vortex stretching term, which is generally
important and may have a variable coefficient. However,
és was shown earlier, the variability of 'Fz does not
really present a great difficulty, since whenever the vari-
ation of ft is significant, the y—derivative term is small,
and fz becomes merely a varying parameter. Using this

fact, a general approximate solution to

—[d_(/}‘lfx/x/ly f/4 ,9677 'T/_\cvzfilé? )’c) —rjo"/)'

=g atAe Ly o7 (2.B.36)

is

. . ' .y
o = —i VAT IS ST EIADY LN VY
A ; p e (2.B.37)
(Cl #p.etbé‘“ ) 6)( 7



56

The response is larger for westward propagating forcing,
since it more nearly matches the free long wave solutions.
At resonance, /4.5./€cw or /éce , (2.B.37) is no longer

valid and must be replaced by

J‘}—L(/X"&p) ‘.'écg’ w 1/7
PC/: f/’(cg Ay - | e (2.B.38)

If the resonance is at the short wavelength (/é.c,/écé;)
free short waves must be added to meet the p. =0 boundary
condition at the western, not the eastern, boundary. This
is done by making /4, the longitude of the western rather
than the eastern boundary. Resonant response is stronger
at the short wavelength; the group velocity is smaller,

so a wave has more time to gather energy while traveling

a given distance.

The dependence of the baroclinic forced response
on the direction of propagation has an interesting conse-
guence if th? forcing is a standing wave in the zonal direc-
tion: G = e"7cos/x . The response analogous to the

-3
directly forced part of (2.B.37) is (assuming A, >?>/! )

,2—7—@[/’?

Pe = Ac_q%q_ﬁ,m(é_)" (2.B.39)

b . ..
(/]"3‘- Sin x +tzcz{zcos«)
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The first part of (2.B.39) is in phase with the forcing in
time, but 90° out of phase in s ; while the second paft is
90° out of phase in time, but in phase in space. The first
term dominates as the frequency and length scales are de-
creased, and vise versa for the second term. The two terxrms
are the same size at resonance. When the first term domi-
‘nates, the zonal scale is small enough to allow a Sverdrup’
balance, between bﬁ%{ and the forcing. Although p in
this case is spatially out of phase with G} N =, is in
phase with (>. When the second term dominates, beta is in-
effective, and the wind stress curl produces local vortex

stretching.

3. The western boundary

So far, little has been said about the western boundary.
The response of the ocean interior has been calculated as
the sum of local effects and waves generated at the eastern
boundary. Thebjustification for this asymmetric development
of the theory is the anisotropic nature of Rossby‘Waves. As
pointed out by Pedlosky (1965b) , the Rossby waves generated
at the western boundary at a given frequency have shorter
wavelengths and slower group velocities than those generated
at the eastern boundary. The short waves tend to be rapidly
dissipated, and so their effects are confined to a western

boundary layer.
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In the present model, the damping can be provided by
horizontal or bottom friction, or both. We are not inter-
ested here in the details of the oscillating western bound-
ary layer, but in its general characteristics, primarily
its width and transport. Let us very briefly consider,
then, how each type of friction modifies short wave dynam-
ics at the western boundary. Of interest are large scale

motions with periods of three months and longer.

a. Bottom friction

Since bottom friction acts directly only on the
lower layer, the normal modes in the vertical are no longei
the simple barotropic and baroclinic modes. If therfric—
tion is small and the layers are closely coupled, the short
wave solutions will differ only slightly from inviscid
short waves; but if friction is larger and coupling is weak,
the short wave solutions will consist of an essentially un-
damped wave concentrated in the upper layer, and an inde-
pendent damped wave in the lower layer. These types of
behavior can be demonstrated by a couple of simple perturba-
tion expansions.

From (2.B.2a,b) with EH:'O and A= % chosen
as the scale appropriate to short waves, we have

approximately
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b Prgg AP + L (p-pa) = 0 | (2.B.40a)

A Pogre t P A S i Papi) ¥ F) Py = 0 (2.B.40b)

agfy? "‘)z{'t‘, [ EF % -I‘ |
where Ff(ba) s/,»"ﬁ’/—/' and FvE (T ® o . Con-
sider first the case ['= 0(0 , F,4¢1l . Then solu-

tions of (2.B.40) can be sought in the form

{ A&
pr= €
, 2 (A2 (2.B.41)
PZS(/&ZD*FV}%"-FV ,9;+>€
with s /4.0+ F\,/’é"'”— - - For the modified baro-
tropic mode, we find
t Fv 2
PZT: / - /1(/+5~) O(Fv ,)
(2.B.42)

A= —1 e 0(RY)

and for the modified baroclinic mode
iF, ALCS A
Poe= = 8~ rn(1+5) +0(F")
. o .
R (k,CF, S .
= ) + 0 F
o= At [i1-vr(1+s)]™ (1+5) )

(2.B.43)

"

/4: ,?_i[;,u ( I-f'—lf‘(|+.3‘))'/”‘]
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- To lowest order, the solutions are just damwped barotropic
and baroclinic short waves, decaying to the west. The
" barotropic decay scale is CMF}) while the baroclinic
scale is C>(FLS) ; not surprisingly, the damping is weaker
for the barcclinic mode, with its smaller bottom velocity.
The first order frictional correction to the lower layer
velocity is in each case 90° out of phase with the zero-
order velocity. Note that the correction varies as f’—',
and so the expansion is valid only for EZ%'ii I .

Now, suppose /'<<! and F, = 0(’) . Then we
find that there are two solutions, one with no zero-order

flow in the lower layer, the other with no zero-order flow

in the upper layer. These can be expressed in the forms

¢ AR
p.=€
"’("y 1% "/A“/x
e C( ot ofr )> e (2.B.44)
)
A==t v+ (105 )+ 0f?)
and
p) = ?P[—z 4—,% (l—th)]-r O(Fl)} e‘ﬁbm
CAL o | (2.B. 45)

pa= €

S, = (—/+1F,,) (/+FU1)—/+ O(F)
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The first solution is a short wave that is heavily concen-
trated in the uppervlayer and is damped only at C)Oﬂf) .
The lower layer velocity is 90° out of phase with the upper
layer. The second solution is a heavily damped wave concen-
trated in the lower layer. Bottom friction has detuned the
two layers so that they act almost independently. Because of
the small scale of the motion, the coupling between layers via
interface deformation is weak, and energy in the upper layer
is lost to bottom friction only very slowly. In fact, this
energy loss decreases as the friction parameter FL is in-
creased, since J»«(/iq)'z hiﬁ?;. This type of behavior has
previously been found by Foo (1976) and Rooth (1978).
For oscillations of annual period, with E;V::/O'V , we
find Fvy *-2% and /'©-04 , yhile at a period of three |
months F, > .06 and f’ﬁ'f63 .  Thus the three-month oscil-
lations can have a western boundary layer governed by (2.B.42)
and (2.B.43), whereas the annual oscillations are in the
parameter range for which (2.B,44) and (2,B.45) are appro-
priate. For the annual oscillations, then, thé upper and
lower layers are only weakly coupled at the western boundafy,
and the short waves in the uppe? layer are free to propagate
energy eastward with minimal damping. In order to damp these

waves, we may invoke lateral friction.

b. Lateral friction

Lateral friction does not cause any direct coupling

between barotropic and baroclinic modes, so the appropriate
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o

equations, taken from (2.B.2a,b) with A=7%  and E, =0
are
“Praw t Pra = Fu Procosn = ©
(2.B.46)
e 4 Pcﬁ(oc -I’fCA, ‘f‘([qc Pc_“ F;.; chfx,x?, =0

) =
with Pc':—‘ }an) and FHEE o

# o *. For small FH » the
effect of the friction term is to introduce a damping of
order F;-, in the short waves, and to introduce a new and

smaller scale motion that‘decays rapidly.

Substituting
(AR N
Pec = € in (2.B.46b) gives
. 2 o ‘
A f/l)~FH/4 =0 (2.B.47)
The damped short wave solution is
o 4 '
iAg 2
o -
Ay =hg = b 24541 g O(F;’ )
N y (2.B.48)
4 2
_/éir""z[l'f‘[/“q/qc) ]

and the other solution that decays to the east is

b L | %
A. = F, Y T+ O(FH ) (2.B.49)

N



- 63

The solutions for the barotropic mode are obtained from
those above by setting Fr_ =0 .

When lateral friction is present, an additional
boundary condition is needed. The no-slip condition im-
plies [p, =0 at the boundary, since the flow along the
western boundary is very nearly geostrophic. Furthermore,

since the zonal scales of the boundary layer flows are much

-7

. g~
smaller than those of the interior solution for 'Zf‘ié A,

the no-slip condition can be applied to the boundary layer
solution alone with little loss of accuracy. This deter-
mines the ratio of the two solutions (2.B.48) and (2.B.49),

so the lateral friction layer becomes

N _(-AE/,\’ /’él-: ; g
(e ¢ (2.B.50)

p=pe

with only the constant ;a to be determined by the interior
solution to satisfy the condition df no normal flow at the
boundary. _

If 4e | bt FL >>/ , the two solutions
of (2,B.47) that decay to the eaét‘will have dé =<9(%;’%7
as in the steady western boundary solution of Munk (1950);
so the zonal scale increases slowly as the horizontal
friction increases. Fof annual oscillations with
V=l m sec”! | F, .5

14

. With this value of F, ,

the boundary layer is not very accurately described by the

small 54 expansion, but the main physical processes are
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indicated: The short waves that are added to the inteiior
solution to satisfy the condition of no flow through the
boundary are damped by friction, and a rapidly decaying
frictional layer is added at the boundary to satisfy the
no-slip condition.

If both lateral and bottom friction are important
in the boundary layer, the structure becomes more compli-—
cated but the essential features remain. The layer is al-
ways barotropically non-divergent, and as the frequency is

decreased it becomes baroclinically non-divergent as well.

c. Matching the interior solution

The conditions W= 0 at the boundary are, from
(2.A.13a,b,d,1)

—c'éff";?;,, -bF £ 'p

Pi e e
iy o < e el
(2.B.51)
'iéf’l};\;fx - b Fu 'r'//;;m/x/.e +bE, fo‘;'x
'f;Z»? t fﬁﬁz;;nz O
The tilde denotes boundary layer variables, the subscript I
interior solutions. Use has been made of the condition
A= q>¢' << If b is taken as a small parameter,
then the boundary condition to lowest order is ‘a balance

between geostrophic and Fkman interior flow into the bound-

ary and geostrophic boundary layer flow in the opposite
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direction. The friction and acceleration terxrms enter as

O(é) departures of the boundary layer flow from.geo-

strophy. These terms can be simplified with the help of
the boundary vorticity equations, similar to (2.B.40)

but with lateral friction included:

"2/2;,)(,,(-#/’97,),-#[15(}2 ) - Fu ;’T/J!/xa/y =0

(2.B.52)

(/014,“ 4—/%06 -/—FL(/O-,, /’/)S /a'bofom-fo(

.b—.' Fvldzo‘o‘:o-

Integrating once from «=¢°, where /’5’ and its derivatives

are zero, to =0 , the western boundary, gives

(iﬁy*ﬁrﬁ/xacm>l¢:o :Fll,;—,o
+Fi£= (Pi=pn) o (2.B.53)

[(l'f )}""erf ”/Olﬂ(r)z,;g]] -—}Z’lw o
10si [ GFiP ol

Substituting these in (2.B.51) gives, at «= 0O,
I":
LEre ] CFy o) A o foy(F)
Fleiy * TP (2.B.54a)
2 /P
S R 14 5 (F)

(2.B.54Db)

’f'l”zz,y =0,
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Since the meridional transport in the boundary layer is
geostrophic, f”qi% is just the total boundary layer
volume flux. Also, f&iy'/% is the geostrophic interior
flux into the boundary layer. Hence, (2.B.54a;b) merely
state that the geostrophic and Ekman influxes into the
boundary layer go to change the transport and the volume
of the layer. To the extent that [ is small, the layer
is baroclinically non-divergent, and the change in trans-
port in each vertical layer can be computed from the
influx into the layer. Equations (2.B.54a,b) can also be
derived by integrating the continuity equations
(2.A.13¢,f) and substituting geostrophic approximationé

for (U;, V;).

For the barotropic mode, (2.B.54a,b) become
ﬁ; + ,@ﬂ -
f%? (f + }”r'r,? = oA, (2.B.55)

This implies that, with T3ﬁ9=£7 , the point of maximum
boundary current transport is displaced to the north of
the point of maximum interior geostrophic transport.
However, if the interior transport is governed by the
Sverdrup balance and driven by some (Z;?’ Z;fvj) ,

)
then

(P
, :(—0: féf {7(10 Xg)"'(/x -f'cf;\’sz?)
perg = (12) 5 (£ 003 .5.56)
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Substituting this in (2.B.55) yields, after minor

manipulations,
o - a \* - |
;/(Tg [V”’f'F(;;\) fof)““' ’/’)‘] =0 (2.B.57)

where we have kept /?:”%: , and the integration is from
one side of the basin to the other. Thus, to within a
constant of integration, the barotropic western boundary
current transport is determined solely by the curl of the
wind stress integrated across the ocean. The'compbnent
of wind stress along the boundary does not affect the
transport except inséfar as it contributes té the curl of
the stress. 1In other words, local forcing does not pro-
duce significant barotropic western boundary current
transports at low freguencies. The meridional wind stress
is balanced by a pressure gradient at each coast. The fast
barotropic long wave causes this pressure gradient té
propagate rapidly across the ocean, so there is everywhere
a geostrophic barotropic transport egual and opposite to
the Zonal Ekman drift, résulting in zero net barotropic
transport.

Calculation of the baroclinic response of the
western boundary current is much more difficult than cal-
culation of the barotropic part. In the first place,

the divergence terms in (2.B.54a,b) depend on the
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detailed dynamics of the boundary region. In the second
piace, even if the divergence terms are negligible (which
they may often be), it is difficult to determine F—,f%z
the interior geostrophic flow into the boundary. Due to
the slowness of the baroclinic long waves, information
from the eastern boundary may take years to reach the
west. The phase of a wave then depends critically on
details of the geometry and hydrography of the basin.

Subtracting (2.B.54b) from (2.B.54a) gives

LEr (05)i [ R o o f 5y ()
’ (2.B.58)
Jr)?rc,; = 0’/"1’["5’?)

w

K -
If pr.=0 and [M<¢< | , then (f)/; ~ oA F i zonal

-Ekman flux at the coast supplies the baroclinic boundary

current. As in the barotropic case there is a balance

at the coast between wind stress and pressure gradient,
but in the baroclinic case this balance does not exist
uniformly across the ocean. At the eastern boundary it
generates a baroclinic long wave, and at the western
boundary it generates a boundary current. The baroclinic
long wave upon arriving in the west will itself generate
a boundary current, but the phase of this contribution is

uncertain.

? ’
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The part of the baroclinic western boundary trans-
port due to the wind stress curl in the interior, ignoring
the wave from the eastern boundary, can also be calculated
in the limit /'4</[ , For example, if Q¢ X (z""/—)‘) is
a function of latitude only, then from (2.B.2b), (2.B.3),
and (2.B.27) the directly forced part of pr¢ is approxi-
mately - (/1" S) V¢ X(ZZ/-F) . Use of ‘(2',B.58) then gives the

result
3 Zl‘ | . )
ch—w‘(/‘rf)f [jc O;*(?/) C’y (2.B.59)

This reiterates the increasing importance of the baroclinic
mode as one goes towards the equator (Lighthill, 1969; 6ill
and Niiler; 1973; White, 1977); the response in terms of
transport goes as 57"L , while the barotropic transport is
independent of 'F.

In the calculation of both baroclinic and.baro—
tropic western boundary responses, we find that there is
. a constant of integration that is not constrainea by the
model. The model is valid only over a restricted range
of latitudes, but it has not been closed off by zonal
boundaries. The undetermined constants of integration
represent boundary current transports through the region
of validity of the model due to processes outside that

region, or of a scale for which the model is invalid.
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Another shortcoming of this model is its neglect
of méan currents and dynamic topography. Qualitatively,
a mean flow toward the western boundary will aid boundary
layer formation by slowing the short'wave radiation of
energy away from the boundary. Similarly, a mean flow
away from the boundary will widen the boundary layer or
prevent its formation entirely. This may limit the ap-
plicability of our simple model to regions where the zonal
component of mean flow is small or to the west, say from
the southern edge of the North Equatorial Current to Cape

Hatteras, for example.
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Chapter III

' FLOW OVER TOPOGRAPHY

A. The two-layer barrier problem

In the last chapter we saw how short Rossby waves, Or
their counterparts modified by friction, are generated at the
western boundary to satisfy the condition of no nofmal flow
into the boundary. Now we ask, what happens if the condition
of no zonal flow is applied only in the lower layer? If the
lower layer is blocked by a meridional ridge, but the upper
layer is unimpeded; does a boundary layer form in the upper
layer as well as in the lowex? i

These questions are motivated in part by conéideration of
the topography of the North Atlantic. The Antilles Arc, sep-
arating the Caribbean from the Atlantic, has a maximum sill
depth of less than 2000 m, and an average depth of far less
than that. The Mid-Atlantic Ridge is less extreme, but still
representé a sizeable barrier to deep zonal flow. Instead of
modeling the Antilles and the Mid-Atlantic Ridge as infinites-
imal perturbations to an otherwise flat bottom, one may go to
the other extreme; suppose a meridional ridge extends close
enough to the interface in the two-layer model to completely
block flow in the lower layer. If realism in modeling the
horizontal direction is sacrificed by making the barrier an

infinitely thin wall, the problem can be simplified to the

point where a closed form analytic solution is possible.
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Since the value of this model lieé in its simplicity
rather than its realism, let us keep it stripped to its
essentials. Explicit lateral and bottom friction will be
ignored, so free waves will be used to meet matching and
boundary conditions at the barrier. This allows the vertical
structure of the solution to be represented by normal modes.
Furthermore, in order to have equations with constant coef-
ficients, we will consider only the lowest order solution in
an implicit expansion in the beta parameter, b. This yields
the usual beta-plane approximation in which the Coriolis
parameter is considered constant except where differentiated.
Since we also restrict attention to low frequencies, the lowest
order momentum equations contain only the geostrophic balance.

The vorticity equations under these conditions are
(2.B.4) and (2.B.10) with '{=‘l and A=71 . fhe geostrophic

balance in terms of velocity (not transport per unit width) is

U, = '-/0[/?

VA PV

(3.A.1)

This with (2.B.31) gives the relation between layer velocities

and mode amplitudes:

—)

U,

1)

(}+S")"(c2}+ S7'a, )

(3.A.2)

i

., (’*S\’)'I((;;T—E()
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Let there be an infinite meridional barrier in the lower
layer at =0 , dividing the plane into two regions (Fig.
3.A-1). 1In both regions there is an initial flow, denoted by
subscript I, that could exist alone if the barrier werxe ab-
sent. The initial flow might be any coﬁbinatidn of free or
forced solutions of the barotropic and baroclinic vorticity
equations, and is continuous at « = € . If the barrier is
present, then free wave solutions of the wvorticity equations
(2.B.4) and (2.B.10), denoted by the subscript B, must be
added to the initial flow in order to bring the lower layer
zonal velocity to zero at the barrier. The appropriate free
wave solutions are those that either have a zonal component of
group velocity away from the barrier, or decay away from the

barrier. To the east of the barrier these are the short

i/l_r,;/)f (Aeg X
waves, [Pgre € and  Pgep € _ ; and to the west, the
{ Ao X { ACLJ”
long waves, Vs rw € and  Pger, € . The common factor

‘2. -éT ‘ : ’
€ ?’e is omitted. The wavenumbers are determined by
(2.B.7) and (2.B.12).

There are four matching conditions at the barrier that

determine the amplitudes of the four free waves:

U, =o T  x=0" - | (3.A.3a)

N
~
1)
<
)
rs\,
R
1)
o
\

(3.A.3b)

M’lzx—o* - M‘I/x:o—' ' (3.2.3c)



75

;| = il (_3.A.3d).

x=pt

The first two conditions are the obvious requirements of no
flow through the barrier, and the third condition is the
equally obvious condition of flux continuity over the barrier.
The fourth condition is equivalent to saying that there is no
singular source of vorticity in the upper layer. The barrier
does not penetrate into the upper layer, so it cannot cause
a vorﬁex sheet there. Note that the third and fourth condi-
tions are satisfied independently by the initial.flow, since
it is assumed continuous at the barrier. Therefore only the
initial zonal velocity at &= 0 enters the matching
conditions. | |

If the initial lower layer pressure is Jo, (#) e‘—f/’?e'lf ,

then the matching conditions become

(Vrsrrg “ Pece) (1#57) + pra(0) = 0 (3-A.4a$
(/’arw - /ozxcw)("'“g—') * Pra(o) :‘0 (;'S.A.4I;))
Pore T S Poce T Parw t g.—/)ﬂucw' - (3.A.40)
Serg Porg + 8 ' Acx }”Bcr% |  (3.2.44) |

= /ATW FBTW +'S“4/Acw chu
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The first three conditions say that the pressure is the same
on either side of the barrier in both layers, so the ampli-
tude of each mode must be the same on either side. The solu-

tion for the amplitudes is
' PBTE = }oﬁ’rw

-1
= P (o)(/+s”)-f§(" (14 "5‘) | (3.2.5a)

Poeg = Pocw  (3.A.5b)

Pra (o) (1457) (H%)',

4

where

2
hee-Aow | 1-H(E) (221 47)

= : (3.2.6)
/47’5 '/41'“/ / - L/(fg’f)q—

—_—
—
—

The upper layer pressure at 2 = (O is therefore
-1
-/ < .
}oﬂ,:/ﬂl.z(o) S (/1‘ é") (/*-/{) (3.A.7)

which goes to zero as K goes to 1. This means that if

K =~ | , the waves induced by the barrier sum to zero in

the upper layer at /X =0 . The barrier in this limit has
no effect on the flux of upper layer water across the barrier.

The limit K -> | occurs when Ace - ,/{TE , which means that |
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the baroclinic and barotroPié modes to the eaét of the bar-
rier will change their relative phases only very slowly. If
Plfk() at the barrier, thén p1 % 0 for many short wave-
lengths east of the barrier, If the short waves are dissi-
pated within a few wavelengths, then for A >0 thé effect of
the barrier is entirely confined'to the lower layer.

In order to show the effect of dissipation without
adding undue complexity we may introduce a Rayleigh friction,
proportional to velocity. If J is the dissipation parameter

then the dispersion relations (2.B,6) and (2.B.11) become
2. b T .

a fL 2 g -t
A 4—(&,4_@(’ + oy A FO

with g; = o ( /*-Zcf)

: -1
Note that is a barotropic spindown time nondimensionalized

by the time scale of the wave,

Figure 3,A-2a shows the pressure in each layer due to a
barotropic long wave ( W=/, = 3 Cos (/QTR,AY +X{?-f) ) inci-
dent on the barrier. The wave is of semiannual period and
has a 200 km meridional scale. With av63 km radius of de-
formation this implies kl='«?(, which is not very close to

the limiting value k::'/ but provides a clearer picture of
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the structure of the solution than would a more extreme ex-—
ample. Note the slow oscillation of the upper layer short
wave amplitude due to the difference in wavelength of the
barotropic and baroclinic short waves.

figure 2.A-2b is perhaps a more realistic picture of
the flow. Everything is the same as in the previous ex-
ample except that dissipation with d=.2¢ has been added.
Since the short waves have large particle velocities and
small group velocities, they are damped within a short dis-
tance of the barrief. This short distance is insufficinet
for a large transfer of energy from the lower layer to the
upper, so the upper layer is only slightly disturbed east of
the barrier. West of the barrier the flow is nearly the same
with and without dissipation. Most of the energy is in a
baroclinic long wave, which accounts for the diagonal
phase lines. Waviness of the upper layer pﬁase lines and
the closed pressure contours in thé_lower layer are due to
interference between the baroclinic and barotropic long
waves, ‘

-2 (g
This limiting case /K = | occurs when A, >;>4/ and
20 \* o \=

(’5’;;) ¢</ 5o that K =1-2 (Z;c) Physically, these con-
ditions mean that the short wave scale, f?? » is small com-
pared to the radius of deformation. The stretching term in
the short wave vorticity equation is then small compared to

the vorticity change term, and the layers become decoupled.
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Since the barrier is in the lower layer alone, it can affect
the upper layer only to the extent that the layeré are dy-
namically coupled by the waves that radiate away from the
barrier, Although the short waves may involve little coup-
ling between the layers, in long waves the layers are Strong—
ly coupled, so the barrier has a substantial effect on both
layers to the west. The barotropic and baroclinic long waves
from the barrier sum to zero at /= ¢ in the limit J¢ =/ ,
but they soon get oﬁt of phase to the west.

As the frequency of the oscillations increases, K de-
creases to zero and then becomes imaginary. As K  decreases,
the baroclinic waves become more important and the baro-
tropic waves dimiﬁish. This has the effect of shifting the
initial lower layer zonal transport to the upper-layer. When
K =0 ,rthe total zonal transport at the barrier is exactly
what it would be if only the iﬁitial flow were present, bu£
it is all carried in the upper layer. When K is imaginary,
phase shifts occur between the initial flow and the waves.

The parameter )X can be defined in terms of the circle-
diagrams of the Rossby wave dispersion relations, Figures
2.B-la,b. It is just the ratio A'B'/AB of the chords of the
wavenumber circles for baroclinic and barotropic waves, re-
spectively, at a given frequency and meridional wavenumber.
Hence the limit K=/ requires that the radii of the wave-

number circles in the diagrams be similar, and that the
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meri;iional wavenumber not be too large. The restriction
on /( is more severe as the radius of deformation decreases
and the baroclinic wavenumber circle‘ shrinks.

The group velocities of the free waves are predomin-
antly zonal when K=t , but become iénreasingly meridional
as K decreases. At KT the baroclinic groﬁp velocity is
purely meridional, and when K iS'imagin.ary the baroclinic
waves are trapped in thé zonal diréction. These factors
limit the usefulness of the model as K decreases. The model
has assumed periodic solutions in 4 but is valid only for
7,’-" 0(’) , or for /77 {</ ., The quel should therefore de-
pend only on conditions local ih /? , and not on energy that
propagates in along the barrier from /?- =% | However,
since the solutions depend in no way on the sign of /',
zonal boundaries could easily be added to the model, say at
/7 =%+ ( , with the initial flow and all solutions propoitional
to sin ’n’ffy . Then the trapped baroclinic waves would be
able to reflect back anid forth be_tWeen the zonal boundaries
without adding or removing energy from the system.

As was seen in the previous chapterr, the condition
(L “¢4/ is satistied b 1 oscillati k=

boe 1s satisfie Yy annual osci atlons, so the /(——/
limit iS applicable. Values of K as a‘function of o and
Ac¢ are shown in Fig. 3.A-3. Since the radius of deform-
atio‘n decreases with increasing latitude, ¢ is restricted

to smaller values at higher latitudes if the limit ,I<=/ is
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required. For annual oscillations kK=~1 is a fair approxima-
tion as far as 40°N, but for semiannual oscillations the ap-
proximation breaks down around 20°N. With a doubling in
frequency, K changes from about .87 to zero; hence for mbst
of the frequency range over which.propagatiﬁg barotropic

and baroclinic waves exist, K is near its limiting value

of one. At the eddy scales of L =100 kﬁ, there is no
baroclinic zonal propagation at periods of 3 months at 20°N,
so K is imaginary.

If the initial flow consists of a free wave, then it is
instructive to recast the solution (3.A.5) in terms of inci-
dent, transmitted, and reflected waves. Suppose, for example,
that the initial flow is a barotropic long wave. Then the
incident wave is the initial flow east of the barrier. The
transmitted wave is the sum of the initial flow and the
baerropic long wave induced by the barrier to the west of
the barrier. The reflected wave is the barotropic short wave
induced by the barrier. The baroclinic waves contain energy
scattered from the incident barotropic wave. The energy flux
of the baroclinic short wave can be added to that of the baro-
tropic short wave to give the total reflected energy flux,
and similarly for the long waves and the total transmitted
energy flux.

The average energy densities of barotropic and baroclinic
waves (Longuet-Higgins, 1964a) are proportional to ]l;—(/kTii

e o~/ K (2 -t .
and P § (,écs +4 + 2, , respectively. The factor of
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S—ﬁ in the baroclinic energy density is due to the way in
which the vertical modes are normalized. The energy fluxes

are defined as the.energy densities times the group velocities.
Using the expressions (2.B.8a) and (2.B.13a)} for the group
velocities, along with the dispersion relations (2.B.7) and
(2.B.12), it follows that the magnitudes of the zonal energy
fluxes are proportional to }%}—(/équ'/415> and P:1§”1645k,24c5)

for both long and short waves.

Table 3A-1 gives the energy flux ratios for incident.baro—

tropic and baroclinic long waves, computed from (3.A.5). When
K=t , all ratios are primarily depéndent on the wvalue of
) , the ratio of the upper to lower layer depths. If this
is small, then barotropic energy will be mostly blocked and
baroclinic energy transmitteé, Of the total enexrgy trahs—

: mitted, most will be baroclinic, and of the total reflected,

| most will be barotropic. When K is small, the opposite is
true; baroclinic energy is blocked and barotropic energy 1is
transmitted.

Away from the limiting case of K=/ , the behavioxr of
the barrier model depends on the details of parameters and
dynamics, so the specific predictions of the model may be mis-
leading if applied to a physical situation. The main accom~
plishment of the barrier model is its illumination of the
limiting case of low frequency motion, in which the scale dif-

ference between long and short Rossby waves leads to model

behavior that is not sensitive to details. 1In this limit,
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Table 3.A-1

Energy flux ratios for Rossby waves incident on

lower layer barrier.

total transmitted
incident

total reflected
incident

transmitted baroclinic

transmitted barotropic

reflected baroclinic
reflected barotropic

Incident
Barotropic
Wave

K, -1

(1'Fg)

o] '

=lo

Incident
Baroclinic
Wave

K)“l

X
sll+s

K

~1
(l'Fg)

o =R

Rlor .
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the weak coupling of the layers with respect to short waves
implies that the ﬁpper layer does not feel the presence bf
the ridge to the east of the ridge. In the previous chapter
we saw that lateral friction of reasonable magnitudes does
not substantially increase the coupling between‘layers,
while bottom friction tends to decouple the layers. Hence,
the omission of explicit friction in the barrier model seems

unlikely to have seriously affected the low frequency limit.
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B. Theory of flow over a sloping bottom

In this section we will consider the'dynamic effects of
a sloping bottom on the sorts of motion discussed‘in Chapter
IT. We will restrict our attention to the case of constant
slope, with parallel isobaths running ﬂorth—south. Two dis-
tinct types of analysis will be used. The first is the plane
wave analysis of the type used by Rhines (1970) , based on the
approximations h=1 and 4:;/ except where differentiated.
This leads to vorticity equations with constant coefficients.
These admit plane wave solutions which we will later use for-
calculating the flow over more cdmplicated topography. Al- '
though all the solutions take the form of prlane waves, some
of them (the lower layer long waves) are not reaily waveliké
ih their dynamics. This is made clear in the sedond type of
analysis which begins with a careful scaling of the full vor-
ticity equations. Consistent approximations and perturbation
expansions are then found for various parts of the parameter
space of interest. This illuminates the dynamics of the types
of motion found in the simpler plane wave analysis, as well
Ias showing the types of error that result from the approxima-
tions h=1 ana F=1 .

Consider a region of constant slope so that

h= 1+ sSYApw | | (3.B.1)
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I\

bl

) d/ﬁ) /ﬁ{m/
$ = 77/ A

, 3 -
where }ﬁ_and 7% are dimensional.

(3.B.1)

A very steep slope in the
ocean might be /‘,Hﬁﬁkﬁ“/ﬁ-/ , @ rise of 1 km in 10 km., A

rather small value might be 107>, a rise of 1 km in 1000 km.

For L = 106m (annual scale) and H2 = 3500 m, this range of

slopes means a range of Y from 30 to .3. The same slopes
with L = lOSm (eddy scale) produce a range of ¥ from 3 to

3 X 10_2. The parameter S takes the value +1 if the slope
is down to the east and -1 if down to the west.

With h' defined as in (3.B.1), the lower layer vorticity

equation (2.A.19b), becomes
~lrh Og p, = iFYS VPan
,H'o’a’LS/}f’L(/”z-' 7
t bhp, +»FX$/H%7

...,S(EL{)AO"'}%. (,3>.B.2)
+ E,A7° (L *3/5/‘?9102>

We will assume that the friction terms are small except pos-

sibly when A approaches the short wave scale.

The two terms in (3.B.2) involving }/ are -—zﬂ'ySfaﬁ.and

f¥sA Proy

zonal velocity component and the slope, while the first term

The second term is the product of the geostrophic
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is approximately the ageostrophic zonal velocity times the
slope. The second term is always the most important for low
frequency motion, and will usually be referred to simply as
the slope term. The first term, referred to henceforth as
the ageostrophic slope term, is 167(”j4~) relative to the
second term. Hence at low frequencies it will be negligible

unless the zonal scale is very small.

1. Onset of the slope effects

The first questions to ask are, what is the smallest
slope that significantly perturbs each of the free and forced
motions of interest, and what is the nature of the perturba-
tions? Let us begin with barotropic long waves.

The barotropic long wave balance is characterized by
P 'x/al and /‘} ’é/a’ . The ratio of slope to beta terms is
then c/a’, so slope will become important as this approaches
0(1). At the annual scales, this occurs with a bottom slope

>, at eddy scales, 429’::/ for a slbpe of about

of only 10~
.5 x 10_3, sOo again even the smallest sldpes are important.
The baroclinic long wave balance is characterized by
}alcrﬂ'g/obb and A = é/;fﬂ’z. This gives a ratio of slope
term to beta term of K)é’9’t which equals one at a slope of
about 3 x 10_3 for annual scales and about lO_'3 for eddy
scales. Hence baroclinic long waves are less sensitive to

slopes than are barotropic long waves, but still only a small

slope is sufficient to alter the lower layer vorticity balance
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Short wavés at low frequencies have a scale A"'fsi R
for which the ratio of slope to beta terms becomes unity at
slopes of abou£ -1 for annual scales and about .05 for eddy
scales. Hence, short waves are quite insensitive to slopes.
As we will see, however, this conclusion is not quite cor-
rect. Although a moderate slope has little effect on the
scale of short wave motion, it has a considerable effect on
~the vertical mode structure of the waves.. Indeed, a given
slope produces exactly the same vertical mode structure for

both long and short waves; as will be seen.

2. Plane wave solutions

Equations (2.A.19a) and (3.B.2) cannot be solved di-
rectly as they are. The main obstacles are the nonconstant
coefficients h and 4?. 1f b and YA are small, then for
/K  and 7 of 0(l) the approximations h 2/ and ,{/_;—/ are
appropriate; that is, the coefficients are locally constant.
This permits plane wave solutions and the coupled differen-
tial equations are reduced to algebraic equations. The
solutions obtained by this method are useful even when the
approximation of constant coefficients is poor. Although
gquantitative accuracy is lost, qualitative information of the
scales and dynamical balances is still present. In fact,
the procedure of approximating constént coefficients,'sub-
stitutiong plane wave solutions, and then solving the alge-
braic dispersion relations, is equivalent to performing a

scale analysis.
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With ’F%/,A%/ , EV;EH»':'O , and the ageo-
strophic slope term neglected, the vorticity equations
(_2.A.19a) and (3.B.2) can be written

>4 Fi (/72 ’/7)) =—( G (3.B.3a)

Z P T S (/% "/’1) uls 5//% =0 (3.B.3b)

where

- . - . < e
L= (iran) /(’.”7'05 +L§;g)

3, (3.B.4)
[/{}
A meridional dependence € with /::t/ has been assumed

for Yy, pP. , and the forcing, G .

Now we can find the vertical structures of the modes of
oscillation by setting }az—,k/,, , where K is a constant
for each mode, so that both layers have the same zonal as
well as meridional and temporal variations. The operator -
can then be eliminated from (3.B.3a,b). With G=0 a quad-

ratic equation for K results:

R +r (S -1+ash) -5 =0 (3.B.5)
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Hence }E depends only on & , which is the ratio of the steep-
ness of the slope to the strength of the coupling between .
layers, and on the product of the sign of the slope and the
meridional wavenumber. These are externally imposed param-
eters in our problem, so the vertical mode structure expressed
by R is independent of. the zonal wavenumber. This convenient
simplification results from our alignment of the /y coordi-
nate, for which the wavenumber is specified, parallel to the
isoba{:hs. Neglect of the ageostrophic slope term is also re-
quired. However, the restriction of the slope.to east-west
is not essential. If the coordinate axes were rotated along
with the slope so that north were at an angle é to the /y,
axis, the only difference in (3.B.3) and (3.B.4) would be the
replacement 'in the latter of b Yx by b coso 7%.; - b4 Sl'hééa%
in the operator Z . Since (3.B.5) does not involve & , the
values of K would be unaffected. Hence (3.B.5) is really
the same as (2.8) in Rhines (1970) ; which was derived for the
case of two-layer flow over a slope oriented north-south (with
isobaths running east-west).

In the limit of no slope, &L =¢ , we recover the baro-
tropic and baroclinic modes of (2.B.1): KT:/ y Kc.:— S

For small slopes the perturbed values of # are

st

BRISE

Ry = =7 +s

A sA (3-B-6)
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Note the dependence on the product S,{, which is typicail of
the slope term. A wave with northward phase propagation on

a slope down to the east is affected by slope in the same
way as a wave with southward phase propagation on a slope
down to the west: lower layer flow is induced in the oppo-
site direction to the upper layer flow. Thus if S/) o
then the barotropic mode is enhanced in the uppér layer while
the baroclinic mode is enhanced in the lower layer. The
situation is reversed for S_,((D .

Equation (2.B.5) can, of course, be solved in general:

Krcég1»S»o«S/+[(/v5-A5,€)1+H57%§

(3.B.7)

2 '/'1—
Kcaégl-’5-—&5[’[(-("5'0(5/) —f"'fs] %

The variations of Ky and R with oL for both cases SA >0

and S€<o are plotted in Figure (;3.Bj-l) . The most important
feature of (3.B.7) is that each depends monotonically on

oL . Thus in the limit of large &, the barotropic mode be-
comes confined to the upper layer for S/)o and the lower
layer for SA< O . The baroclinic mode becomes confined to
the lower layer for s >0 and the upper layer for sAo .
Of course, the designations "barotropic" and "baroclinic" are
no longer entirely appropriate but are used as a convenient

means of specifying the modes in which upper and lower layer

\
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motions are in phase, and 17 radians out of phase, respect-
ively. As we shall-see, for large oL the barotropic wave
with 5/{7>6> is dynamically similar to the baroclinic wave
with SA<0 » and both will be identified as "upper

layer waves." The same is true for "lower layer waves."

The vertical mode structure derived above for two-layer
stratification has a counterpart in a continuously stratified
fluid, Suarez (1971) considered in detail the motions of a
fluid with constant Brunt-V3isdld frequency (N) on a beta-
planevover a sloping bottom. The vertical mode structure is
found by solving a transcendental equation resulting fromrthe
bottom boundary condition. When 5/(>69 (in the notation of
this thesis), all the modes go as cos m z. The lowest, or
"zeroth"_mode has no zero-crossing within the fluid. It has
a maximum at the surface and correspondsrto the ‘'barotropic’
upper layer wave in the two-layer fluid. The first mode has
one node within the fluid and corresponds to the 'baroclinic!
lower layer wave. There is also an infinite set of higher
modes that have nobcounterparts in a two-layer fluid. When
sh<o » the lowest mode goes as cosh m z; it is bottom
trapped, or decreases exponentially away from the bottom.
This corresponds to the 'barotropic' lower layer wave. All
the higher modes go as cos m z. The first has one zero-
crossing and corresponds to the 'baroclinic® upper layer wave.

The higher modes again have no two-layer counterparts. Note
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that the analogy betweeﬁ modes in the conétant—N and two-
layer cases must not be carried too far. With constant N
the nodes move up or down depending.on the slope and wave-
number, with two layers the node is of course fixed. With
large slopes the two-layer modes becdme almost entirely
confined to the upper or lower layer; thé constant-N modes
are, with the single exception of the bottom—trapped.wave,
restricted by their sinusoidal form. There is no. exponen-
tially decayihg "surface-trapped wave." Instead, the node
simply shifté toward the bottom as the slope is increased.
Having found R we can now set ) = 6‘./60{6 {-/7,
}%’: k el/é4{€1(/67

or (3.B.3b) with G =0 will yield a quadratic dispersion

. Substitution in either of (3.B.3a)

relation for Aé for each value of R . Since we are not using
scale analysis here to eliminate terms, we set A= .

The two equivalent dispersion relations are

/4.1*’3:-"( ,u,(t—r_;l’l(/—f{)"'o (3.B.8a)

. N . " ]
A +E 4 A A 2[5(""2 )+ast]=0 (3.B.8b)

The roots of these equations as functions of A are shown in
Figure (3.B-2). The vorticity balances leading to these waves
will be considered shortly, but first let us find the response

of (3.B.3) to forcing.
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We will consider only zonally uniform forcing. Since
the coefficients of (3.B.3) are constant, the response is
. v . /L
also zonally uniform. Substituting G = (& 17 '

[.,{7 . [/? . . .
Pr=Pie € ' /97, “ Ve € in (3.B.3) gives simul-

taneous equations for YFie and P

(/17\1+/)}0,F ~Pare =7
(3.B.9)

- Spe ? (/(17\1‘}‘5‘*&5/)/@2,&:0

Solutiéns are shown in Figure (3.B-3). The main feature
is the enormous reduction in respdnse as_the slope increases.
Only a small zonal velocity perpendicular to a slope is
sufficient to produce a vertical velocity at the bottom
equal to the Ekman velocity imposed by G . Very little
of the torque of the wind stress curl goes into acéel—
erating the fluid, unlike the barotropic forced response
(2.8B.20).

Now let us consider the vorticity balances that con-

trol the various free and forced motions.

3. Vorticity balance

a. Long upper layer wave

We saw in the plane wave analysis (Eig. 3.B-2) that

regardless of the slope there is a wave with scale Aa-=fg;,»
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Since this scale results from a balance between beta and
vortex stretching in the ﬁpper layer, we will refer to it

as the upper layer scale, The vorticity equations (2.A.19a)
and (3.B.2) with /}7/4(,, , E\/;Eu =6 = 0 , and the

ageostrophic slope term omitted since /4u¢7'<< / , are

—¢( [7'1/”/’?7 *’*.Za“;)l /"mw']
- (3.B.10a)
A p-p) = O
.,[L.[ﬂm/?q_,?,? 1"(5)1/9%&9:] |
| (3.B.10b)

(4575 (/7,, —-/0,)+A;a14,+—f5x,v,? =

All the terms involving the slope parameter Z are in the
second equation. If f%_<<./h , then these terms are
unimportant for the system as a whole and the zonal scale
of the motion is insensitive.to the magnitude of the
slope. |

The first two terms in each equation, the relative
vorticity terms, are both about ,4 for eddy scales. Al-
though they do not invalidate the /4:74u scaling, they

do dominate the dynamics by preventing the upper layer wave
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from propagating zonally. At annual scales, on the other
( 01 )
hand, these terms are very small C)(/O ) and can be

neglected leaving

.,
—( % (/91 —/7,) +Pra = O (3.B.11a)

S pu-p) Fhpag t fokS/ﬂzg =0 (3.B.1lb)

Although this system with its nonconstant coefficients
is too difficult to solve in general, it is possible to
final approximate solutions by expanding the dependent vari-
ables in powers of A if A <</ or in o~ if XS] .
In the first case we find modifications of the baroclinic
long wave by small siOpes, and in the second case we find
the structure of the upper layer wave over steep slopes. In
the second case the variation of h = ﬁf£°<$¢'may be 0(1);
there is only a weak restriction that lh must not get too
small.

If AL [ we may assume a solution of (3.B.11) of

the form
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= exp i[ ¢0(4,7)+o< ¢'//r,/7)+-..7

- [on (ai/x),?)‘}'a(/?z'(d/x/?)f'-,,] /,,.‘ o
Substitgtion in (3.B.11) yields to 0(#(5 :

U(oz")»:' £ (pe-1) v g =0 o

Sﬁ//h"ff)*‘f P Bp =0 @G

O(x'): - £ p gy =0 (3.B.

W -ipun v (p o rps 6] G
FSE e, o Fs %: |

The lowest order solution is '

| (3.B
:’1CL ( 1+ x/« +;(7) |

12)

.13a)

.13b)

13c)

.134d)

.14)

This is just the ordinary baroclinic mode with the local value

of the lower layer thickness determining the local ratio of

upper to lower layer pressure. Explicit effects of slope are

found in the CDG*) terms:
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!

pl= ) (50)7 s e (- f 43)
4 = %"L poda. - (3:5:25)

These C%&) corrections contain three parts.
FPirst, if one sets ?//2) 2/? (so that the lowest
; .
order meridional dependence is € 7 ) .and takes the lowest

order terms in an expansion in L, the result is
i

_Sst

! - e . '
pl~ Tres t (3.8.162)

~ 53/
¢~ s (rc-m,) + ...

(3.B.16Db)

These are the Oéi) corrections to the baroclinic plane wave.
Equation (3.B.l16a), which matches (3.B.6), gives the lower
layer enhancement for S/) O and: the reverse for Sa(( 0.
Along with lower layer enhancement (diminution) gbes an increase
(decrease) in zonal wavenumber.

, ,
Second, there is a contribution to k& from the integral

in ¢,7

" .
) S | |
/oz’f»z:sé 7\‘[ (/+’[)a(/x + ... (3.B.17)

7

-

This is due to the refraction of the wave by the variation in

-F . Refraction tilts the lines of constant phase relative
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to the slope, adding a positive meridional component to the
local wavenumber as the wave propagates west. The contribu-
tion of (3.B.17) is then just a correction to (3.B.16) due
to the altered meridional wavenumber. It is the seéularity
of this term that limits the range of X and therefore of k
over which the expansion is wvalid, The (3.B.17) correction

and the variation of h are both 0 (0(/’0().

Third, there is an imaginary term in (3.B.15):

~(sSh

P~ 5L (sth) - |
* (3.B.18)
A oFf T
¢ o f-CSS/of Ll(§+l\) + ...
%o

This term describes the upslope decay of the upper layer
;‘5 pressure as the upper layer does work on the lower layer td
increase the relative velocity of the latter, as required
by (3.B.14). For a wave propagating downslope the process
is reversed. The lower layer decelerates downslope as the
upper layer accelerates.
If the slope is large, oA > , a solution of the

form

P =exp [ ¢o(”$7) + o ¢,M3’7) 4 7

(3.B.19)

y)

poe (7P a e )
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is appropriate. Substitution in (3.B.1l1l) gives, to O (o&'l)

o). £+ @5 =0
o). -$°p' + @, =0 (3.B.20)
-SEY + 'FS()”,,’ ¢,; ’[,az'y) = O
The lowest order solution is a wave confined to the upper

layer with phase
¢o:’7czfx *?/7) | (3.B.21)
The 0(0(") corrections are
( § —¢ ¢o ¢ ¢o '
/92’ = 5 € f’F{ “/? (3.B.22a)

’

)]

£ z[}”zl o x | (3.B.22b)

The integrals are difficult to evaluate exactly so we will let

?/7) = /7 , expapd in L_), and neglect 0/[)7 to get

s A ; |
P = Sl (“C + 37—4{ + é,(?i) T O(At) (3.B.23a)

3 b b 2
&l: S'/(’F/x + :p' (ﬂl"/)lol)-/’i:?—/x)’f’ 0(6) (3.B.23b)
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The firét term in (3.B.23a) is, except for the factor of
-f , the same as the lower layer pressure found in the plane
wave analysis for large ® . Note the usual dependence on
the sign of 5/( i upper and lower layers are in phase if
sA >0 , opposed if sA<0O . The second term is the cor-
rection to the first due to the alteration of the local merid-
ional wavenumber by diffraction. The third term is imaginary,
hence Tai out of phase with the other terms, and comes from
the factor of 'F inside the integrél in (3.B.22a); it pro- .
duces an imaginary contribution to ¢I'which gives growing he-
havior upslope and decaying behavior downslope. This is the
opposite of the behavior in the small & expansion. Here,~r;
is independent of _A ; instead of a decrease in p, and an in-
-crease in py as h decreases, J. stays the same and p increasés.

Energy is transferred from the lower to the upper layer.

b. Long lower layer waves

The'uppér layer waves we have been considering are so
called because their zonal scale is determined by the upper
layer vorticity balance and is independent of the slope. 1In
contrast, there is a set of motions for which the.zonal scale
is determined by the lower 1ayef vorticity balance and for
which the slope is critical. For small slopes these motions
are essentially barotropic and for large slopes they are highly
concentrated in the lower layer. For convenience they may all

be referred to as lower layer waves,
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For very small slopes, X<<(, the barotropic long wave
scale /f‘n/—'? l’/d’ is appropriate and the effect of slope is
small and uninteresting. However, When Y 2, ¢, a new and
important scale becomes dominant. This scale is /4&. = é/)/
and results from a balance between beta and slope terms. In
the low frequency limit, lower layer flow in quasi-steady along
geostrophic contours (hence the subscript G ) defined by |

constant ‘F/I« if the slope is large or 'F/d\* S) if the slope

B IS T

is small. As slope increases, /"c,, decreases until
A»&/:/I,—E;_ 3% , the short wave scale. For still larger_
slopes, both the long waves and the short waves are replaced by
motions with a characteristic scale ALS = <‘7-/X) l/?

For our present investigation the most important part of
this progression of scales is that of the geostrophic contour
scale, /4& . With ASA'C, and £, =F, = (;r::O} (2.A.19a) and
(3.B.2) become

T ¢ )‘717«? ™ 70 Pian
~F T e, =) tPix T O

(3.B.24a)

\ (f—’ ¥ - Y
—'CLL ¥ /z.?/?+ 191'/”7"/9;) ’(Sa—f/yz.¢
(3.B.24Db)

+( Sa"ft&,/.;,) + AP +{'5/ﬂ17 =0

This scale is appropriate so long as both of the relative vor-
ticity terms are less than unity. For eddy scales this re-

quires slopes between 3X /0% and S xrn”7 , so the
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/4G_scale prevails only over a narrow range of small slopes.
Even there it is evident that the relative vorticity terms
are not generally negligible. For annual scales on the other
hand, the range of slopes for which /46, pfevails is wide:
from /67¢ to over so07!

Over most of this range both relative vorticity terms
are small. Since' b < | , the ageostrophic slope term is

smaller than the /Qg“. vorticity term and will therefore be:

neglected. Then (3.B.24a,b) reduce to
! £ ) =0 (3.B:25a)
—(A }"1”%1 "‘//4&" _ T

(S " (fpo-t)) + B Pon -/—.1‘5}«7,,7 = O (3.B.25b)

These are the same, except for the scaling, as thebupper layer
wave equationé (3.B.11la,b). The difference‘in scaling empha-
sizes the dynamical differences between the two types of
motion so long as & is either large or small. When &= 1
the two sets of equations are identical and the distinction
between upper layer waves and lower layer waves is lost.

As in the case of the upper layer waves, (3.B.25a,b) are
not easily solvable as they stand. If the coefficients -
h=1(+5s b ana £ =/+4 7 are appréximated by constants,
the results are essentially those of the earlier plane wave

analysis. Note that the variation of both coefficients is
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CD(b) , so if the finite variation of one ié taken into.

" account, that of the other must be included as well. The
effects of the variable coefficients can be calculated in
the limiting cases of small and large o by using & and
0(—, , respectively, as expansion éarameters.

Wwhen & <<l (the slope is small), solutions to

(3.B.25) can be sought in the form

Po T €xp i[ﬁo(/x,g) + & ¢//4’,7}+-- J

[ | (3.B.26)
- L !
pr L P /46/;;)—* 2P /4;7)*'“-“] 28
Substitution in (3.B.25) gives the immediate result
o , '
F' - ) ) _ (3.B.27)

and the sequence of equations
0 .
(SH«) ¢:< + £5 ¢? = O (3.B.28a)

Fm/”,' r ¢, =0 | (3.B.28b)
(S+4) ¢;{ +F€s ¢f7
+§(/o,’¢; f('/a,;):O

The lowest order equations, (3.B.27) and (3.B.28), specify that

(3.B.28c)

the lowest order pressure is independent of depth and constant
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along geostrophic contours based on the total depth, that is
contours of constant ‘F//(SH”A) . Since this barotropic
motion has a'component perpendicular to the slope, there is
a vertical velocity at the bottom which decreases linearly.to
zero at the surface. The vertical velocity moves the inter-
face, producing slopes and therefore thermal wind. This CDét)
shear produced by the 00) barotropic flow is specified in
(3.B.28b). BAs we have seen, the shear can augmenf flow in
either the upper layer or the lower, depending on the>productb
of the signs of the slope and fhe meridional phase propagation.
If upper layer flow is enhanced, lower layer flow is reduced,
and therefore the effect of the slope on the vertically in-—
tegrated vorticity balance is also reduced. Then, instead of
adhering strictly to geostrophic contours, the flow is along
lines a bit closer to latitude lines. If it is the lower
layer flow that is enhanced, the integrated effect of the slope
is strengthened. Then the flow must follow lines more nearly
parallel to the geostrophic contours of the lowér layer alone,
lines of constant -f/ék . These effects are described by
(3.B.28c) |
Equations (3.B.28a-c) can be solved exactly. It is help-
ful to replace the coordinates (o(,gy) by new coordinates

(3, %) defined by

T = x | (3.B.29a)

25-: A(S+A) (3.B.29b)
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Let ¢ :/7 and h=1! at X = (0, so the lowest order

P4
pressure goes as el 7 at w=0 .

With this initial con-
dition the solutions of (3.B.30a,b)

and (3.B.28b) are

0=t (s5+1) -17']
L0 55 -]

(3.B.31a)

!

5

il

%{A—S_‘[J*)(S'f‘l')’y[z—\g',[ ’/(57‘-/)7 (3.B.31b)
52 (501)(504) ”[2 bsen)i-ttse)]
o, = 77'@31)/S+A);3§’

, (3.B.31c)
é§(§+d(5fbrz .

V

The solution can more easily be visualized if the phases are

expressed locally as linear functions of ¥ and

/y , SO the
. (‘//? A :
solution takes a local & form:
KZE:Q ( )
¢ ¢ (/Xa//yo) + Sth /? /; (3.B.32a)
_ /S‘F(f+l) [ 4 )
(S+k)*

P = ﬁ?wo ,) + SLs*® ($+1)° @+ZJ (x-x,) (3.B.32D)
—(h
‘jj:: (e (s+4)7"

[s s%ox_m) . (m)/yﬁ;,)]
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where h and 'F are to be evaluated at ( /&, . 170) . The re-
sults of our earlier plane wave analyéis can be obtained from
these expressions by setting b =0 so that h=4=1 .
Note that this eliminates the imaginary part of ¢,; which is
C%%) . This term is required only when the finite varia-
tions of -f and }1 cause finite variations in the ratio of
p, to Po - The primary effect of the finite variation of
'% and h is geometric rather than dynamic. That is, the
flow is quasi-steady in either case, but the streamlines are
parallel if Ll:'£ = , and have slopes that decrease towards
the equator if A and £ vary. This variation of slope of the.
geostrophic contours produces a convergence of contours in
the upslope direction and a consequent alteration of meridional
scale.
When A& OS>/ (the slope is large) all O(ﬂ) flow in the

lower layer wave mode is in the lower layer, and solutions to

(3.B.25) can be found in the form
po=expl (¢°{/y,7) +o! ¢'M§y}+ )
(3.8B.33)
,./ -1 -t o ) )
pr7 (27 p o) wam (g ) P

Substitution in (3.B.25) gives

h ¢ooz +fs ¢«; =0 (3.B.34a)
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| . (4 . 2 '
pra tCOup/ -cf =0 (3.B.34b)

ho+ £5 0yt 547 =0 (3.8.340)

The first equation states that the lowest order flow is along
the geostrophic contours of the lowexr layer, contours‘ of
constant '7C/I‘t . In the second eguation, an upper layer
meridional flow of O(ﬂ—') is needed to balance the upper
layer stretching due to the 0(’) lower layer flow. In the
third equation, the stretching term in the lower layer due
to the tDO) lower layer flow produces CDﬂx‘V flow across
geostrophic contours. |
Equations (3.B.34) are similar to (3.B.28) and can also
be simplified by a change of coordinatés. Hefe, however,

define

w
0

e

L : (3.B.35)
Lh

w
{1

so that \§ now labels geostrophic contours of the lower layer.

Then (3.B.34a,c) become

ﬁ; = O (3.B.36a)

¢,3 =-§ (/0’\ f).z * (3.B.36b)
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Again requiring ¢0:/? and h=/ at =0 leads to

the results

o -~/
¢ :,}(;(2 -} ) (3.B.37a)
£ o)
- - - "/
(T
Sb 2, '
! e
@ == ;5 % A (3.B.37b)
. s N
- -2
254
5 (L5 _(_gfl_:_{ . |
/gilg.,{ e PR |e A - " (3.B.37¢)

For small L the leading behavior of this last expression is

-—

LEF . bA . | :
ple s [{ - 20 g 7 O(A )] (3.B.38)

The effects of finite variation of 'f’ and h here are
essentially the same as in the solution for small &t | .Again
the major effect is to make the geostrophic contours converge
upslope. A minor difference between the small and large &
cases is that for large & the phase correction, ¢5', is reai
and' }%' is.complex, while the reverse is true for small .

As the slope increaseé and the scale of lower layer motion
deéreases, the relative vorticity term grows until it can né

longer be neglected. Simultaneously the layers become
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increasingly decoupled, so let us consider the case
A< YT/ L4 | . 1In this limit the coupling be-
tween layers is negligible, so we need work only with an equa-
tion for the lower layer pressure. Deviations from simple
flow along geostrophic contours are caused by the f%uy rela-
tive vorticity term which is of order ¢ = Xfr/ﬁéi , a small
parameter in powers of which the solution can be expanded.'
Since we are now concerned with rather small zonal scales,
bottom friction may be significant and wiil be included in
the dynamics. Likewise, the ageostrophic slope term must
now be included.

Under these conditions and with A=A, ana E,=6G=0,

(3.B.2) becomes approximately

£
. £ . bs (3.B.39)
'f'S[(’("rFIB I )VQ—’)‘Q’ - ¢ L\, Vz_,y :O

{
. 2 @)/1 . S
where F% = o 2 is a bottom friction parameter. If a

solution of the form

Po=eExp t'(¢5°+$.¢/+...) (3.B.40)

is substituted we see that to lowest order the pressure is con-
stant along geostrophic contours. As in the expansion in
S , the coordinate change (3.B.35) is helpful and leads to

[~
(3.B.36a) for ¢5 . If we again pick (3.B.37) as the lowest



order solution and substitute it in the 0{{) balance of

(3.B.39), we find
By =as 475 L (i-03)
AL LAYy A3 Y B

The effect of the ageos£r0phic slope term in this equation
is solely to reduce by half the first of the four terms on the
right hand side. This imaginary part of 46; leads to growth
of p, to the west along geostrophic contours i£ A(7>0 and
to the east if A< © . The function of this term is to
produce a contribution fo (1, that cancels the ageostrophic
CD(S) contribution from ¢50. The resuit is that in.spite
of the substantial ageostrophy of U, , in the absénce of
friction p. and Uz are exaétly P radians out of phase
to CD(E) , so energy flux muét arise from higher order correc—.
tions. The imaginary term-in.(3.B.4l) due to friction alwaYs
leads to decay of [j2, to the west, consistent with the west-
ward component of group velocity of the wave.

Integration of (3.B.41) gives

_ L
db,:: ~-sftfFl * (Z'— 4 b )
O£ (3.B.42)

2 3 -3
+§’Fb/s’f/q'l\ '(2+ h b
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Differentiating to find the 065) correction to the local

zonal wavenumber gives
/—Q’ Q/‘FA’3[(2-(‘4’3/7CZ\—')
FAu (vt it £17)]

(3.13.43)
The first real term, due to the f%a vorticity term, is always
positive, so the zonal scale is decreased if A/S'> 0 and
increased if x/S < O . Lines of constant phase are ro-
tated counterclockwise from geostrophic contours if '4/7>C> .

clockwise if .X/< (9] .

c. Large slopes and short waves

As the slope increases, we have seen that the }%Qx rela-
tive vorticity term gains importance; but it is this term
that is also crucial in short wave dynamics. Therefore, it is
appropriate to consider short waves and steep topography
together.

Until the topography gets very steep, that is, until /45
approaches /4n¢ , the only effect of slope on annual short
wave dynamics‘is to change the vertical mode structure. As
we have seen in the plane wave analysis, thé vertical mode
structure depends only on the slope, and not on whether the
motion consists of short or of long waves. The reason slopes

have little effect on short wave scales and dynamics is that

\
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the flow in short waves is predominantly meridional, along
the slope; it is only the component of flow normal to the

slope that produces vorticity changes.

with G =0 ana /43/47A/ » (3.B.2) becomes approximately

_("‘A+F[-3‘Fl/z>)”z¢¢ |
' (3.B.44)

FiSals £° (- p, )
t(h-isbs) Pr %—Fss//fz,;

: Fi ('L ra’74;¢4z 4’{jé’s_f2~k<x4k>

where f;,z ézEb,/%fg is the horizontal friction parameter
and h =1+ €hsx. rLet us immediately take the limit of
large & so that the lower layer can be considered independent
éf the upper. With this simplificatioﬁ the equation is still
too complicated to solve. 1In particular, the variation of
bottom friction with latitude due to the factor of f.z'adds
greatly to the difficulty. To make the problem tractable,

let us neglect lateral friction entirely and restrict bottom

friction to be of éD(f) . We are left with
. FAY |
(/+( Fe 7"“) Prsey (3.B.45)

+(f+525>)”1¢ *z’{sl:')%_ = 0.

7



A solution of the form
pL=exp i (¢”+ z¢5’+--.) (3.B.46)

can be found with

p = 7‘/7 | (3.B.47a)

b
&; = 5/*{‘ rilhs + fés -Zf- ) (3.B.47b)

: To lowest order we find, of course, a plane short Rossby
wave unaffected by slope. At C>(£) there are three correc-
tions to the local zonal wavenumber. The first term in
(3.B.47b) is due to the slope term and shortens thé zonal

- wavelength if sA 5o , lengthens it if SAL<C O . The
second term comes from the ageostrophic slope terﬁ and pro-
duces an upslope growth in amplitude such that the prodﬁct
of ki and the amplitude is constant to ©0(s) . The third
term represents the decay to the east produced by bottom

friction.

When the slope is so large that < >/ , & new scale
dominates for both long and short waves. A balance between
the P vorticity term and the slope term leads to the

= %
scale /45 = (0;/}) . With this scale and with G = o
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(3.B.2) is approximately

,('A/'%Wx - (S (o*k)lt/oz,x + e, Vo
+1‘S/927 ria” S £ (py-p,) (3.B.48)
MY/ YA - .
= o ’(T) 5/02,%, t+ Vo zEk(Z‘PLMW)y

)'/.,_

with h ;'/f’éTY' Sox . If all but the two principle

terms are small then the lowest order balénce is
TR Prnn F F 5Py =0 . B.B.49)
with h=/¢ ana {hy /  this has plane wave solutions

/&c=e béﬁ'ezﬁﬂy

each /2 ; long and short waves concentrated in the lower layer

Note that there are two values of /( for

now have the same lowest order balance. Both zonal wave-
numbers are imaginary if 1/5 > ¢© , one root giving deéay to
the west, one decay to the east. If x?s'<.c> . both roots
are real and the behavior is oscillatory. The other terms in
(3.B.48) will of course modify the behavior but the sign 6f>
A?S remains the most important gualitative factor. 1Its effect
is clearly seen in the plane wave analysis in Figure 3.B-2.
At the large, slow scale of the annual oscillation the
As scale does not enter until the slope reaches about .13.
‘Since the As scale is so small, we may expect lateral fric-
tion to be important. Neither the ageostrophic slope term

nor the beta term can be neglected, and the scale of variation



of h is comparable to ;45 . Under these conditions the plane
wave analysis is highly inaccurate and a more complete analysis
would be difficult. Fortunately, the major topographic fea-
tures of the oceans have average slopes smaller than .1, so

the 145 scale is not relevant to the large scale aspects of
annual oscillations in the oceans.

For smaller meridional scales of motion a smaller slope

is required to bring in the ,45 scale. The minimum slope
occurs at ¢ =/ ; at eddy scales this implies a slope of about
3)(/0'3 , or ¥=/0"" . 1In this case the plane wave

analysis is quite good, since (d’k)kL 2= _ 0% . As the

slope increases, the importance of the beta term diminishes
while that of the ageostrophic slope term increases. When
the slope is .1 both are of 0(.2),

d. Forced motion over a slope

We will restrict our attention to zonally uniform forc-
ing and to large scale annual motions. Then the only zonal
scale is that of the topography, so if the relative change
in lower layer depth, oh , is C>(') then it is appropriate

~to set 4':’)"/ . In the plane wave analysis, with h':/
and 4?;( , the absence of a zonal scale in the forcing im-
mediately implied that the response was aléo zonally inde-
pendent aﬁd the value of A arbitrary. Here, however, we must
consider the possibility that the zonal variation of the coef-
ficient A =+ S may result in zcnal variations in the

response.
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With friction and the ageostrophic slope term neglected

L@?

and with G=e¢ , (2.A.19a) and (3.B.2) become

’i‘f(vyl}alnmz -f—}a,??) +‘.r7"L‘FL(/ﬂl’F7-)
1"/)3//&’“ _ Xez{ﬁ/ | (3.B.50a)

. [ 3 . -1 z
~(T h (Y | P *ﬁz/?,?» — (T A 'F g(fl "/"z)
(3.B.50b)
+b¥k;o?_/y+br¥5,bz?=0 .
Unless WY, % p, , the vortex stretching terms are much larger
than the /9,?7 vorticity terms so the latter can be neglected.
Then the only term with coefficients varying in »X involve
differentiation with respect to £, so zonally independent

solutions may be found:

4 X
) 2 S (S)’)’I//‘F e 76(7 - (3.B.51a)

-1

~ F (loat ) 6617
,ﬂ, -~ /02_ (3.B.51b)
In the upper layer, the torque applied by the forcing is
balanced by vortex stretching, In the lower layer, stretch-
ing is balanced by 2zonal motion up or down the slope. In

other words, fluid columns in the lower layer do not change

their length but just slide up and down the slope as the.



interface is moved up and down. The steeper the slope,
the less the columns have to move to conserve their
length. As we see in Fig. 2.B.3a for & >! the lower
layer flow is relatively small, so the geostrophic shear
associated with the interface displacement results in

an upper layer flow that is insensitive to the slope.

For A £l , the lower layer flow becomes comparable to
the upper layer flow, and the same gebstrophic shear may
result in any of a range of upper layer responses depend-
ing on the magnitude of the slope and the sign of Sze .
1f SACO anga o= 5§+ LA » the upper layer pres-
sure response vanishes entirely, although there is still
an Ekman transport in the upper layer, of course. For
very small values of &4, say o < .p§, the response be-
comes largely barotropic, with Fi > P . Then the }077
term can no longer be neglected and (3.B.51) is invalid.
However, the slope is so small that <A is small for any
reasonable topographic feature, and the limit h~%~l ﬁsed

in computing Fig. 2.B.3 is valid.

4. Summary

The vorticity equations in terms of pressure for two-
layer flow over a bottom with constant slope in the zonal
direction are too complicated to solve in general, Inpar-

ticular, they have coefficients h and -F_that vary in the
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zonal and meridional directions. If the ranges of varia-
tion of these coefficients are not too large, the approx-
imation h ;'§': [ is appropriate. The simplified
equations then have free plane wave solutions regardless
of the magnitude of the slope. The vertical modal struc-
ture and wavenumbers of thesé solutions are easily found,
especially if friction is neglected. They are shown in
Figures 2.B.1,2. Similarly, the response to zonallyvuni—
form forcing can be found in a simple form, shown in
Figure 3.B.3.

Although the vorticity eguations with nonconstant
coefficients cannot be solved in general; it. is possible-
to find approximate solutions over substantial parts of
the parameter range of interest by expanding the solutioﬁs
and equations in powers of various small parameters.. Theée
solutions illuminate the dynamics of the flow by showing
whiéh terms in the vorticity equations control.the response.
They also indicate the quantity and quality of error in-
volved in the simpler plane wave theory.

The conclusion reached by comparing the plane wave
theory with the perturbation expansion solutions is that
the former accurately determines the scales and general
characteristics of the motion even when the actual varia-
tions of h and f are 0(0 . Some significaﬁt qualitative

features, such as the refraction of baroclinic or upper
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layer waves, are lost in the plane wave description.
However, this is a small price to pay for the simplicity
of the description. It is this simplicity that will
allow us in the next section to calculate analytically
some effects of topographic features on annual
oscillations. | |

It is perhaps worth noting that the approximation
h=1 corresponds to a physically consistent, if un-
realizable, model. The model has a flat bottom, so layer
depths are constant, but the bottom is porous énd acts as
a source or sink of lower layer fluia. The strength of
the source is proportional to the zonal component of lower
layer velocity.

Before proceeding to the calculation of flows éver
complete topographic features, let us briefly review the
characteristics of flow over a constant zonal slope.

The vertical modal structure depends only.on the
parameters X, S , and SU( ;, and is the same for short
and long waves. As oL increases, the barotropic mode be-
comes enhanced in the upper (lower) layer if st >o
(S«(<:C>> . and the baroclinic mode does the opposite.
For A > | one mode is almost entirely confined to the
upper layer and the second is nearly confined to the lower

layer.
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The baroclinic long ane_for small & and the upper
layer long wave for large‘0k are characterized by a bal-
ance between upper layer vortex étretching and beta. The
slope has little influence other than determining the
ratio of £he pressures in the two layers.

The barotropic long wave for small ol and the lower

layer long wave for large & are characterized by a bal-

ance between beta and slope terms. The flow is not
i. really wavelike in its dynamics, but is quasi—steady along
the appropriate geostrophic contours.

Short waves are characterized by a balance between
beta and Py, Vorticity change terms. Except for the
determination of the vertical structure, slope has little
effect until it is so large that fhe lower layer wave
scale approaches the short wave scale. Then thé two types
of wave become increasingly similar, eventually being
distinguished only by the direction of the group veloc-
ity if SAL <0 or by the direction of decay if sA > O

The directly forced response to zonally independent
forcing is itself independent of longitude. As long as
there is a reasonable slope, larger than about one part
in ten thousand, the vertical velocity is constant below
the Ekman layer, The response then coﬁsists of a lower
layer zonal motion sufficient to make the bottom vertical

velocity equal to the Ekman pumping, and a vertical motion



of the interface that is also the same as the Ekman
pumping. The known lower layer motion and interface
slope allow calculation of the geostrophic upper layer

motion.
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C. Two-dimensional topography

In this section we will use the results of the last
section and of Chapter II to improve our model‘of the fe—
sponse of the mid-latitude ocean to seasonal wind varia-—
tions. We are concerned not so much with the details of
the response as with the major integrated features that
determine the western boundary transport. Some questions
of interest are: (1) What effect does a-slope at the
eastern boundary haﬁe on the guasi-steady Sverdrup response
and on the baroclinic wave generated at the eastern bound-
ary? (2) Is the highly idealized barrier model of Section
ITII-A useful in predicting the effect of a more realistic
ridge? (3) What is the effect of a-lower, broader ridge

such as the Mid-Atlantic Ridge?

1. Method

Topography that varies only in the zonal direction can
be modeled as a series of segments each with constant
slope. In the region over each segment the flow consists
of a directly forced part plus four free waves, as discussed
in the previous section. The amplitude of each of the four
waveé in each region is determined so as to satisfy match-
ing conditions at each junction between regions. There
are four matching conditions at each junction; both velocity
components must be continuous_in each layer. 1In addition

there may be either rigid wall or radiation boundary



conditions to the east and west of the topographic

feature.

The procedure of matching solutions at the junctions

requires that all the solutions have the same meridional

dependence. Therefore we are restricted to use of the
plane wave theory obtained by approximating h = f = 1.
Determination of the complete flow over the topography
then requires only the solution of a system of linear
algebraic equations in the free wave amplitudes. The
solution is easily found for any numerical example with

the aid of a computer.

The geostrophic approximation for the velocities is

consistent with the plane wave theory, so matching the

velocities is equivalent to matching the pressure and its

zonal derivative. For any component of the motion, the
amplitude of the zonal derivative goes inversely as the

zonal scale. The phase of the zonal derivative depends

whether the motion is a propagating wave, a damped wave,

on

or a purely decaying motion. As was shown in the previous

section, the plane wave model yields the correct scales

and general character of motion even when the actual

changes in h and f are substantial. Therefore this model

can be expected to give a reasonable indication of the

effect of rather large topography eventhdugh it is inade-

quate in its details.
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The plane wave analysis as given here neglects fric-
tion entirely. However, we know that friction is impor-
tant for the short waves. Their group‘velocity is so slow
that a small amount of friction will dissipate them within
a few wavelengths. A model.that depends critically on in-
formaﬁion carried many short wavelengths by the short waves
is therefore unrealistic. The inclusion of either béttom
or lateral friétion in the plane wave model would result in
a considerable increase in complexity, so instead we may
use the simple, if unrealistic, Rayleigh friction that was
introduced in Section 3.A in the context of the thin barrier
model. This form of dissipation has little effect other
than to make all the free waves decay. Eguation (3.B.4)

becomes
_ "f/ . “ o
Xz ((7a /U (-9 Y +b54) (3.c.1)
and the dispersion relations (3.B.8) become

)Q *’”‘ ﬁé-kx( + Ei A~ (/ /2) (3.C.2a)

. 2 _ .2 )
/é + %/é '/"/ ’f’g}' A [S(/*/e )7(7(5/(];0(3‘C-2b)
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where

ol 1-¢ c/) (3.C.3)

g

dJ

W

as before.

Calculations of flow over topography were made with
d =0, .1, and .5. Differences among the three cases
were at most a few percent in all of the eastern boundary
slope calculations, so only the results with d = 0 will be
presented. 1In a few of the ridge calculations dissipation
had a moderate but significant effect, so some calculations
with d = .5 will be presented for comparison with those with
d = 0.

The unimportance of dissipatioﬁ in most of the calcﬁ—
lations is due to the decrease in amplitude of the short
waves with increasing width of topography. When the slopes
are gentle, the long waves in adjacent regions have compar-
able scales so oﬁly small amplitudes of short waves are
needed to match v at the junction. For most of the calcu-
lations to be presented, the short wave amplitudes are
one to two orders of magnitude smaller than the long
wave amplitudes. On the other hand, when slopes are short
and steep so that short wave amplitudes are comparable to
long wave amplitudes, then the waves are not greatly dis-

sipated within the width of the slope.
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2. Eastern boundary

It was shown in Chapter II that the response of the
ocean interior to zonally uniform forcing can be calcu-
lated as the sum of a directly forced solution and two
:waves generated at the eastern boundary. Furthermore, we
have seen that the presence of a sloping bottom profoundly
alters both the directly forced solution and the free waves.
The question naturally arises, then, whether the presence
of a sloping region at the eastern boundary mighf signifi-
cantly affect the response of the ocean interior to large
scale annual forcing.

To address this question, consider an ocean basin
divided into two regions; a semi-infinite flat bottom region
to the west, and a strip with constant bottom slope at the
eastern boundary (Figure 3.C.1). The height of the topoq~
raphy as a fraction of the lower layer thickness in the flat
region is Ah , and the nondimensional width of the topog-
raphy is >< . Then Y’:‘ﬁh/ﬁx and A 1is ﬂeterﬁined by
(3.B.4). For the annual scale motion in which we are inter-
ested, 67'}\'1‘;/ so A= e . Since the slope at the
eastern boundary is up to the east, the parameter S takes the
value -1.

Let superscript S denote variables in the slope reéion.
Absence of a superscript denotes variables in the flat

region. Both regions experience the same zonally uniform
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G = [x%? : |
forcing, =€ , so the response will also be propor-
tional to CCX&? . The motion in the slope region consists
of the directly forced motion in each layer with ampli-
tudes fﬁi’ and %f; determined by (3.B.9%), and four
ffee waves with complex amplitudes /”rxw ’ }”1—55 R Pci, .
and ff; . In the flat region the directly forced motion
has amplitudes Je and J2g from (3.B.9) with A=0 |
There are two free waves, with amplitudes Jrw and Pew
since the radiation condition in the west eliminates the
two waves with eastward group velocity. The Vertical‘struc—
tures and zonal wavenumbers of all the waves are determined
by (3.B.5) and (3.B.8) with A =O for the fla£ region.

The conditions of no flow into the boundary and con-
tinuity of velocity at the junction lead fo six simultan-—
eous linear equations for the six unknown complex wave

amplitudes, 1In matrix form these become
/qil ”05 :'#:L : | (3.C.4)

The elements of these matrices are given in Table 3.C-1.

| The solution of (3.C.4) in terms of the six pressure
amplitudes in ﬂ%‘ is not immediately informative, so we
will use it to calculate two indices of the overall effect
of the topography. Let the solution of (3.C.4) for the

case of zero slope in both regions be denoted by the



Table 3.C-1la

Elements of the matrix Aijwhere Xyp = ©XP (1kMDX)

1 2 3 4 5 6
1 1 1 1 1 -1 -1
2 R,?, R,?, Rg R(S: “R,, R,
{ ' 3 kiw k’iE kcszw k(SIE “Kpyg “Kew
> X'?‘W X'?’E ng X?:R © ©
6 R'ixfiw R'?'X'?‘E R(S;ng Rcszng 0 0
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Table 3.C-1b

Elements of the column vectors Pj and Fj

Jj Pj Fj

1 Pgw —PiF * Pip
2 PgE _PgF * Pop
3 P 0

4 PgE 0

> Pow —PiF

6 p -p5

CwW 2F



superscript H. Then the ratio of the interior baroclinic
wave amplitude with a slope at the eastern boundary to

that in the absence of a slope is

I;c = Few //,Pgi (3.C.5)

The ratio of the total barotropic response with a slope

to the approximate Sverdrup balance that occurs without

topography is

/6,7‘&/ “f/{fw 4'{1.'
| + — ¢
I..= Pre (3.C.6)
ST (AR, g T

where /¥; is the distance from the eastern boundary at

which the ratio is evaluated. We will take K =Y

14

SO0 as to measure the effect of the eastern boundary slope

4000 km west of the boundary.

Equation (3.C.4) was solved, and the indices ISC
and IST were calculated, for numerical examples with
oh = .1, .5, and 1.0 ; with slope widths X = .05,

-1, .2, .4, .8, and 1.6; and with meridional wave

number,{ = 1 and -1. The results are given in Table 3.C-2

and Figure 3.C-2,
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Table 3.C-2a

Effect of eastern boundary slope with Ah = .l1. For
each value of X, the firstrow is for £ = 1 and the
second is for % = -1. The indices Igp and Igc are
given in complex polar form relf® with 6 in radians.

: daH,
IST ISC dx'’!
X r G r 3 x 102 o
.05 1.000 .00 1.000 .00 .7 2.0
1.000 -.00 1.000 -.00
S .1 1.000 .00 1.000 .00 .35 1.0
' 1.000 -.00 1.000 -.00
.2 .999  -.00 1.000 .00 .175 . .5
1.001 .00 1.000 -.00
4 .996 -.00 - 1.003 .00 .0875 .25
1.004 .00 .997 -.01 ’
.8 .988  -.01 1.019 .01 .0438 .125
} 1.012 .01 .982  ~-.01
1.6 .976  -.03 1.044 -.03 .0219 .0625

1.021 .04 .951 .03
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Table 3.C-2b

Effect of eastern boundary slope with Ah = .5.
dH,
ST ISC dax!

r 8 r 6 x 10% -
1.000 .00 1.000 .00 3.5
1.000 -.00 1.000 -.00

.999 .00 1.001 = .00 1.75
1.001 .00 1.000 -.00

.995 .00 1.004 .01 .875
1.005 .00 .997 -.01

.984 .00 1.019 . .02 .4375
1.015 .01 .994 - -.02

.938 -.01 1.091 .01 .022
1.046 .05 .919 -.08

.856 -.15 1.172 -.16 011
1.080 .19 .713 .13

Qa

10

2.5
1.25
.625

.312
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Table 3,C-2c

Effect of eastern boundary slope with Ah = 1.0.

1.000
1.000

.999
1.002

.994
1.007

.970
1.026

.888
1.063

.693
1.070

I

ST

.00
.00

.00
.00

.00
.01

.01
.02

.00
.11

-.19
.39

1.000
1.001

1.002
1.003

1.009

I

1.006

1.043
.995

1.162
.912

1.234
.362

SC

.00

.00

-.00

.01
-.01

.02

-.22

dH,
dx*

x 102

7

1.75

.875

4375

.2188

20

i0

1.25

.625
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The most obvious conclusion to be drawn from these
results is that a slope at the eastern boundary has little
effect on the response of the ocean basin to annual forc-
ing. A slope of 400 km width or less has no appreciable
effect in this model. The effect of the 800 km slope is
under 10% with Sh = .5 and under 20% with Sh = 1. The
widest slope has a major effect on both the barotropic
and the baroclinic modes with Oh = 1, but its effect is
under 20% when ¢ h = .5, T7The maximum phase change of the
barotropic response is .4 radians, or less thaﬂ one month.

There are two reasons for the unimportance of the
eastern boundary slope. First, near the eastern boundary
the ocean's response to annual forcing is a Sverdrup bal-
ance confinea to the upper layer. With no flow in the
lower layer, the topography has no effect. Second, a slope
at the eastern boundary bends the geostrophic contours to
the south but does not close them. Any zonal flow in the
interior implies a flow across geostrophic contours some-
where in order to complete the gyre.. This requires a supply
of vorticity, which in the case of the Sverdrup balance is
the windstress curl. There is no additional net source of
vorticity in the eastern boundary slope. ‘The vorticity sup-
plied by downslope flow in one place must be removed by
equal upslope flow somewhere else. This means, however, that

there can be a transfer of potential vorticity from one
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latitude to another, and it is this that produces what
small deviations from Sverdrup balance thefe aré.

" The barotropic flow is increased (II%TJ'> 1) and
the baroclinic wave is decreased OIQCJ < ’) when Lo .
The reverse is true for A >0 . This is consistent with the
character of the directly forced motion ovef the slope.
Since 34 0 for the eastern boundary slope, the case
/(<10 involves a directly forced motion (Figure 2.B.3a)
that is'barotropic'in the sense that the upper and lower
layers move in phase. Similarly, in the case of j(:>c> ’
the directly forced motion is 'baroclinic' in the sense
that therlayers are 7V radians out of phase,

The phase of the index I is generally negative for

ST
X >0 and positive for Ao , sO0 the barotropic re-
sponse is shifted to the north in both cases. The reason is
simple. The barotropié response is lérgely due to the in-
tegral of the forcing along each geostrophic contour.

Since the slope bends the contours to the south, the flow

at a given latitude in the interior responds to an average
of the forcing at that latitude and at latitudes to the
south. 1In a barotropic model this phase shift (and sliéht
reduction of amplitude)‘due to the crossing of latitude
lines by geostrophic contours would be the only effect of
the slope and would be exactly the same f@r',(==l as for

K =-]. Baroclinicity disrupts the symmetry and adds new

effects but the essential mechanism remains.
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3. Ridge

The thin barrier model developed in the first section
of this chapter represents t0pography‘that is extreme in at
least two senses; it is infinitely steep, and it cdmpletely
blocks the lower layer. The first condition.can be relaxed
by putting a regiqn of constant slope on each side of the
barrier, which then rises from the crest of a triangular
ridge. The second condition can be relaxed by removing the
barrier and leaving the triangular ridge. These configura-
tions, shown in Figure 3.C-3, will be called the ridge-
barrier and ridge models, respectively.

There are four regions of constant slope in each model,
and four free wave amplitudes to be determined in each regién.
Application of the radiation condition in each of the two
flat regions removes four of the waves from consideration,
leaving twelve amplitudes still to be computed. There are
two conditions on the velocity in each layer at each of the
three junctions, for a total of twelve conditions, On both
models both components of the velocity are continuous in
each layer at » =+X and in the upper layer at K =0 .

In the ridge model the lower layer velocity is also continuous
at ~X =0 . 1In the ridge-barrier model the zonal component
of velocity is zero at =0+ and at & = O—- . The meria—

ional component is unconstrained.
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RIDGE MODEL
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In order to determine the effect of the ridge and the
ridge-barrier on annual oscillations, three sets of calcui »
lations are made. First, zonally uniform forcing (é}:e:h(?)
is applied and there are no free waves incident on the
topography. Second, forcing is zero but‘there is a long
barotropic wave of unit amplitude incident from the east,
Third, forcing is again zero but thereyis a long baroclinic
wave of unit amplitude incident from the east. As usual,
all motions have 6('[7 meridional 'dependence and /( takes
the values 1 and -1. The effect of topography in‘a basin
with an eastern boundary will be found by combining the re-
sults of the first two sets of calculations: the response
to direct forcing and to an incident barotropic wave.

The amplitudes of the free waves are determined by the
same linear equation (3.C.4) as in the eastern boundary siope
calculation with the elements of .%hj for the ridge model given
in Tables 3.C-3a. For the ridge-barrier model all but two
of the rows of c¢kj are the same as in the ridge model. The
two rows that differ are given in Table 3QC-3.B{ The right
hand sidé of (3.C.4) for each of the three sets of calcula~-
tions is given in Table 3.C-3c. The elements of P ‘along
with the notation used in these tables are given in Téble 3.C-34.

Solutions of (3.C.4) were calculated for ridge half-
widths X = .05, .1, .2, .4, .8, and 1.6, with topographic

heights o h - .1, .5, and 1. Tables 3.C-4 through 3.C -9



153

and Figure 3.C-4 givé the results in terms of the wave energy
fluxes, radiating away from the topography. The energy
fluxes are defined so as to make the flux of a barotropic

wave of unit amplitude equal to one:

E}-s /fr/l

(3.¢.7)

E(,” /PC/Q-SK

where K is defined by (3.A.6). (The difference between E;c
as defined here and in the barrier calculation is due to a
difference in the normalization of the mode amplitude.) 1In
the first set of calculations, where the motion is due to
forcing, the wave amplitudes have been normalized by the
amplitude of the barotropic directly forééd motion over the
flat regions. For the second and third sets of calculations,
with incident barotropic and paroclinic waves of unit ampli-
tude, the amplitudes and phases of the transmitted waves are
given in Tables 3.C.10,11; an incident barotropic wave
QZAR)A” will produce a transmitted barotropic wave Tr e (.’ém%
to the west of the topography, and similarly for - the baro-
clinic wave. The values of 7} and 7; are indépendent of the

sign of 17, whereas all the other reflected and scattered

wave amplitudes (and energy fluxes) depend on the sign of L.
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Table 3.C-3a

Elements of the matrix A;; for the ridge model. Each
term has the subscript j equal to its column number;
the subscripts are omitted for compactness. For ex-
ample, Ag5 = -Rskgxg. The subscript identifies the
region, wmode, and type of wave, as given in Table
3.C-3d. '

Aj 1 2 3 4 5 6
1 X X -X -X -X =X
2 Ry Ry -Ry -Ry -Ryx =Ry
3 ky ky ~ky -k -kx -ky
4 Rky Rky -Rkyx -Rkyx -Rky -Rky
5 o 0 1 1 1 1
6 o} 0 R R R R
7 o} 0 k k k k
8 0 0 Rk Rki Rk Rk
9 o} o} 0 0 o o}
1.0 0 o) o o 0. 0
11 o) 0 0 0 o 0

12 0] 0] 0 0 O o)



Table 3.C-3a

(Contd)
;\j 7 8 9 10 11 12

1 o o} 0 0 | .o o]

2 o} 0 0 o 0 o)

3 0 0 0 0 0 0

4 0 o) 0 0 0 0

5 -1 -1 -1 -1 o] o]

6 -R -R -R ~-R o) 0

7 -k -k -k -k 0 o]

8 ~-Rk -Rk ~-Rk -Rk 0 o]

9 X X X X X X
10 Ry Ry Rx Ry -Rx -Ry
11 kx k¥ ky kx -kx -kx
12 Rkyx Rkyx Rky Rky -RkYy -Rky
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Table 3.C-3b

Elements of rows 6 and 8 of Ais for the ridge-
barrier model. All other rows are the same as
in Table 3.C-3a.

;\3 1 2 3 4 5 6

6 o) o R R R R
8 0 0 0 0 0 o
, ;\3 7 8 9 10 11 12
6 0 0] O O o 0]
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Table 3.C-3c

Right hand sides of 3.C.4 for rid%e agd ridge-
r

barrier models: elements of F%, F

Fj corres-—

ponding to direct forcing, incoming barotropic
wave, and incoming baroclinic wave, respectively.

T ' o

3 ' Fg F F

1 'é;1+P;i ~Xow “Xcw

2 'P;2+P;§ ~Rep Xy - "ReXew
3 © KXoy ~KewXew
4 © Ry Xopyg “ReXewXew
5 ~pp veoT 0 0

6 —P;§+P;§I 0 0

7 0 0 0

8 0 0 0

9 —P;{I+P§¥ 0 0
10 —P;§I+P;¥ 0 o
11 0 0 0
12 ) 0 0



Table 3.C-3d

Elements of P.: for ridge and ridge-barrier
models, along with interpretation of R,

k4, and X4 in previous tables. For example,
k3 = kig refers to the wavenumber of the
'barotropic' long wave in region II.

) P5 Ry ) X

1 P R, Kom exp(ikTE X)

2 PéE R, kéE exp (ik p X)

3 péé Ry Koot | exp(ikéé X)

4 P%é R%I k;é exp(ik£§ X)

5 Pé£ RéI ké; exp(ikéé X)

6 péé RéI kéé expgikéé X)

7 Péél RéII k%él exp(-ikéél X)
8 Péél RéII kéél, _exp(—ikééI X)
9 P(I:VIVI RéII k(I:quI exp (—ikéquI X)
10 Pgél RéII kéél exp(—ikéé; X)
11 Péx Ry Koug exp(—ikTW X)
12 Péx RC kCW exp(—ikCW X) -
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Table 3.C-4a

Ridge model, wave energy fluxes due to

.000

direct forcing, Ah = .1.
X Epg Ecr
.05 .002 .000
.002 .000
.1 .002 .000
.002 .000
.2 .001 .000
.001 .000
.4 .000 .000
.000 .000
.8 .000 .000
.000 .000
1.6 .000 .000
.000

TW

.000
.000

.000
.000
.000
.000

.000
.000

.000

.000

.000
.000

CwW

.000
.000

.000
.000

.002
.002

.006
.006

.013
.013

.003
.003



Table 3,C-4b

Ridge model, wave energy fluxes due to

direct forcing, Ah = .5.
X Erg Ecr Erw Ecw
.05 .396 .062 .171 .030
.424 ~.051 .171 .015
.1 .033 .005 .056 .013
.037 .003 .056 .011
.2 .003 .001 .027 .035
.004 .001 .027 .034
.4 .005 .000  .020 .125
.005 .000 .020 .125
.8 .000 .000 .026 .275
.000 .000 .022 .279
1.6 .000 .000  .009 .065

.000 .000 .007 .067
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Table 3,.,C-4c

Ridge model, wave energy fluxes due to

direct forcing,

X

.05

Erg

.719
.780

.516
.606

.064
.087

.002
.008

.000
.005

.000
.000

Ah =

Ecr

114
.089

.096
.058

.012
.002

.003
.002

.002

.000.

.000
.000

1.

W

.560
.559
1.045
1.044

.375
.374

.259
.254

.267
.249

.086
.073

Ccw

.091
.058

.128
.077

.071
.059

.300
.300

.718
.732

.283
.296
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Table 3.C-5a

Ridge-barrier model, wave energy fluxes

due to forcing, Ah = .1.
X E E
TE CE ETW ECW
.05 .741 <117 .749 .118
.757 .110 .749 -.109
.1 .736 ..119 .751 .121
.765 107 .751 .105
.2 .728 .122 .752 .126
.774 - .103 .752 .100
.4 .702 .133 .754 .141
.796 .093 . 753 .088
.8 .681 .141 .758 - .154
.815 .085 .755 .078
1.6 .713 127 .750 .132

177 .103 .743 .099
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Table 3.C-5b

Ridge-barrier model, wave enerqgy fluxes

due to forcing, Ah = .5,

X B E E E
. TE CE W cwW
.05 .728 .122 .749 .126
.767 .106 - .749 .103
% 1 701 .133 .754 .142
N .795 .094 .753 .088
»% ) .624 .162 .772 .190
: .857 .066 - .769 .056
.4 .540 .190 .818 .250
.923 .036 .812 .027
.8 .400 .226 .885 .360
.975 .012 .871 .008
1.6 .459 .213 .679 .273

.799 .098 .652 .076



Table 3.C-5c

Ridge-barrier model, wave energy fluxes
due to forcing, Ah = 1.

X E E E E

TE CE TW CcwW

.05 .738 .117 .767 L122
.789 .096 .766 .093

.1 .706 .131 .783 .141
’ .819 .083 .781 .077

.2 .601 .170 .826 .205
.873 .059 .823 .049

.4 .387 .233 -998 .363
.968 .015 ~.988 ,009

.8 .146 .239 1.172 .579
.949 .026 1.149 .011

1.6 .118 .224 .549 .552

.770 .113 .515 .045
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Table 3.C-6a

Ridge model, wave energy fluxes due to

incident barotropic wave, Ah = .1.
X Erg Ecr Eqw Eow
.05 .002 .000 .997 .000
.002 .000 .997 .000
.1 .002 .000 .997 .000
.002 .000 - .997 .000
.2 .001 .000 .997 .002
.001 . .000 .997 .002
! .000 .000 .994 .006
.000 .000 .994 .006
.8 .000 .000 .987  .013
.000 .000 .987 .013
1.6 .000 .000 .997 .003

.000 . 000 .997 .003
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Table 3.C-6b

Ridge model, wave energy fluxes due to

incident barotropic wave, Ah = .5,

X Erg Ece Erw Ecw
.05  .399 .063 .508 .030
. .426 .051 .508 .015

.1 .033 .005 .949 .013
.037 .003 .949 L011

.2 .003 .00l .961 .035
.004 .000 .961  .034

4 .004 .000 .870 ©,125
.005 .000 .870 .125

.8 .000 .000 .721 .278
.000 .000 .721 - .278

1.6 .000 .000 .933 .067

.000 . 000 .933 .067
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Table’3.C—60

Ridge model, wave energy fluxes due to

incident barotropic wave, Ah = 1.

) X ETE ECE ’ ETW ECW
.05  .725 .115 .068 .092
.784 .089 .068 - .058

.1 .520 .097 ©.254 .129
.609 .059 .254 .078

.2 .065 .012 .852 .071
.088 .002 .852 .059

4 .002  .003 .690 .303
.008 .002 .690 .299

.8 .000 .002 .267 .731
.005 .000 .267 .728

1.6  .000 .000 .713 . .287

.000 .000 .713 .287



Table 3.C-7a

Ridge-barrier model, wave energy fluxes

due to incident barotropic wave, Ah = .1.
X Epg Eer Erw Ecw
.05 .746 .118 .017 .119

.762 L1111 .017 .110
.1 .741 .120 .017 L122
.770 .107 ,017 .105
.2 .733 .123 .017 . -.127
779 .103 - .017 - .100
.4 .708 .134 .017 .142
.801 .094 .017 .088
.8 .686 .142 - .016 .155
.820 .086 .016 .078
1.6 .720 .129 .018 .134

.780 .103 .018 099
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Table 3.C-7b

Ridge-barrier model, wave energy fluxes
due to incident barotropic wave, Ah= .5.

X Erg  Ece  Erw Ecw
.05 .733 123 .017 2126
.772 .106 017 .104
.1 .706 .134 .017 .143
.800 1,094 017 .089
.2 .630 .163 .015 .192
.861 .067 .015 .057
.4 .546 .192  .010 .252
.927 .036  .010 .027
.8 .406 .229 .004 .361
.976 .012 .004 .008
1.6 .469 L217 .034 .280

.794 .097 .034 .075
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Table 3.C-7c

Ridge-barrier model wave energy fluxes
due to incident barotropic wave, Ah= 1.

X E E E E

TE CE ™  CCwW
.05 .743 .119 .015 .123
.794 .097 .015 .094
.1 711 .132 .014 .142
.824 .084 .014 .078
.2 .607 .172 .014 .207
.877 . 060 .014 .050
.4 .392 .235 .006 .337
.970 .015 .006 .010
.8 .150 .244 .017 .590
.946 .026 017 .01l
1.6 .122 .232 .084 .562

.759 111 .084 .046
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Table 3.C-8a

" Ridge model, wave energy fluxes due to

incident baroclinic wave,

X

.05

FrE

.000
.000

.000
.000

.000
.000

.000
.000

.000

.000

.000
.000

Ecr

.000
.000

.000
.000

.000
.000

.000
.000

.000
.000

.000
.000

Ah =

Erw

.000
.000

.000

. 000

.002
.002
.006
.006
.013
.013

. 003
.003

1.

CwW
-.999
2999

.999
.999

-998
.998

.994
.994

.987
.987

.997
.997
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Table 3.C-8b

Ridge model, wave energy fluxes due to
incident baroclinic wave, Ah =

X E

TE

.05 .063

.051

.1 .005

.003

o .2 .001
! .001
.4 .000

.000

N .8 .000
‘ .000

1.6 .000

.000

E

CE
.010
.006

.001
.000

.001
.000

.000
.000

.000
.000

.000
.000

E

TW
.015
.003

.011
-013

.034
.035

.125
125

.278
.278

.067
.067

CW
.912
.912

.984
.984
.964
.964

.875
.875

.722
122

.933
.933
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Table 3.C-8c¢

Ridge model, wave energy fluxes due to

incident baroclinic wave, Ah = 1.

X Erg Beg Erw Ecw
.05 .115  .018 ,058 .808
.089 .010 .092 .808

.1 .097 .019 .078 .807
.059 .006 .129 .807

.2 .012 .002 .059 .927
.002 .000 .071 .927

.4 - .003  .003 .299 .694
.002 .000 .304 .694

.8  .002 .002 .728 .269
.000 .000 .731 .269

1.6 .000 .000 .287 ,713

.000 .000 . 287 .713
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Table 3.C-9a

Ridge-~barrier model, wave energy fluxes
due to incident baroclinic wave, Ah= .1.

X ETE ECE ETW ECW
.05 .118 .019 .110 .754
J111 .016 . .119 .754
.1 .120 ©.019 .105 .756
.107 .015 .122 .756
) .123 .021 .100 .756
.103 .014 .127 .756
4 .134 .025 ° .088 .753
.094 L011 . .142 .753
.8 .142 .029 .078  .750
.086 - .009 .155 .750
1.6 .129 .023 . .099 .749

.103 .014 .134 -749
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Table 3.C-9b

Ridge-barrier model, wave energy fluxes

due to incident baroclinic wave, Ah= .5.
X Erg Ecg Epw Ecw
.05 .123 .021 .104 .753

.106 .015 .126 .753
.1 .134 .026 .089 .752
.094 .011 .143 .752
) .162 .043 .057 .737
.067 .005 .192 .737
L4 .192 069 .027 .711
.036 .001 .252 L7111
.8 .229 .136 .008 .627
.012 .000 - .361 .627
1.6 .217 .097 .075 .610
.097 .013 .280 .610
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Table 3.C-9c

Ridge-barrier model, wave energy fluxes
due to incident baroclinic wave, Ah=1.

X E
TE
.05 .119
.097
.1 .132
.084
.2 .172
.060
.4 .236
.015
.8 .244
.026
1.6 .232
.111

ECE ETW ECW
.019 .094 .768
.012 .123 .768
.025 .078 .765
.009 .142 . .1765
.047 .050 . .730
.004 - .207 .730
.136 .010 .618
.000 .367 .618
.363 .011 .382
-001 .590 .382
.415 .046 . 307

-019 .562 .307
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Table 3.C-10a

Ridge model, transmitted wave amplitudes Tp and

Tc in complex polar form rele, with d = 0.

T T

1 c
X r 0 r- 6 Ah
.05 .999 . .02 1.000 .00 .1
712 .36 .955 .03 .5

.261 .26 .899  —.02 1

1 .998 .01 .999 .00 .1
.974 .24 .992 .01 .5

.504  1.37 ©.898 .01 1

.2 .998 .01 ©.999  -.00 .1
 .951 .16 .982  —.03 .5

.923 .64 .963  ~-.10 1

.4 .997 .01 .997  —.00 .1
.933 .13 .935  —.07 .5

.831 .53 .833 -.26 1

.8 .994 .00 .994 .00 .1
.849 .03 849  =.00 .5

.517 .22 .518  -.09 1

1.6 .999  -.00 .999 .00 .1
.967 -.09 .966 .10 .5

.844 -.27 _ .844 .34 1



Ridge model transmitted wave amplitude with d = .5

.05

.986
.706
.353

. 994

.853

.476

. 997
.919
.718

.996
. 905
.721

T

T
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Table 3.C-10b .

.01
.21
.27

.01

.21
.62

.01
.15
.58

.00
.12
.51

.998
. 855
.909
.999

.975
.924

.999
.975

.942

. 997
.934
.839

.00
.01
-.01

.00
-.00
-.03
-.00
-.03

=211

-.00
-.07
~-.26

_Ah

-1

.5

.1
.5

i §

.5

.1
-5
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Table 3.C-11la

Ridge barrier model transmitted wave amplitude

with d = 0.

T T .-
X Y T 6 r c 6
.05 .131 .01 .868 -.00
.132 .08 .868 -.01
.122 .11 .877 -.02
.1 .130 .01 .869 -.00
.130 11 .867 -.02
.120 .34 .875 -.06
.2 .130 .00 .869 -.00
.122 .19 .858 -.03
.119 .68 .854 -.11
.4 .129 .01 .868 -.00
.099 .30 .843 -.05
.075 1.53 . 786 -.17
.8 .127 -.01 .866 -.00
.066 -.45 .792 -.04
.129 -2.21 .618 ~-.23
1.6 .133 -.01 .869 .00
.186 -.20 .781 .08
.290 -.35 .554 .29



Ridge~barrier model, transmitted wave

with 4 = .5.

.05 131
.129
.126

.1 131
.129
122

.2 .130
.122
.114

.4 .129
.096
.080

184

Table 3.C-11b

.03
.09
.16

.03
.14
.34

.03

.870
.871
.874

.869
.867
.873

.869
.861
.858

.868
.842
.805

amplitudes
0 Ah
-.00 .1
-.01 .5
-.02 1
-.00 .1
-.02 .5
-.05 1
-.00 .1
-.03 .5
-.10 1
-.01 .1
-.06 .5
-.19 1
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A general characteristic of all of the results is that
the lowest topography has almost no effect. The ridge model
produces little scattering while the ridge-barrier model acts
like the thin barrier model. By way‘of comparison, T} =.132
and 1},: .¥6Y for the barrier model, virtually identical with
values for the fidge—barrier model with <Sh=.1.

"Effects of the higher topography are significant. 1In
the ridge model the greatest effect comes from the narrow
- ridges. In the most extreme case of oh=t ng X =.05 the
ridge behaves much like the barrier in spite of the fact that
the ridge model does not directly block flow in the lower
layer across the crest of the ridée. Note that as the riage
width is decreased, more and more energy is found in short
waves and the flow is increasingly blocked. In the ridge-
barriér model, narrow slopes have little effect, indicating
that the esséntial'behavior df a narrow, high ridge is ade-
quately modeled by thé simpie barrier model. 'As the slopes
widen, however, some new effects are found. Both the phases
and the amplitudes of 7}* , and to a lesser extent 7}; , are
altered in a somewhat irregular manner, Since the calculations
with dissipation show the same behavior, we may conclude that
it is due to the interaction of the topographic and long waﬁe
scales and does not depend critically on the Short waves.

The phase of T} is generally positive; the barotropic wave

‘is delayed slightly by the ridge or ridge-barrier.
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For X2.2 the short wave fluxes are small. At each‘
junction between regions of different slope the long waves
available on either side of the junction have comparable
scales, so only small amounts of short waves are needed to
match both velocity components, The junction is then just
a-place where a motion that is composed of one pair of ver-—
tical modes on one side is translated into a different
linear combination of a different pair of vertical modes on
the other side. Each mode then propagétes at its character-
istic speed to the next junction where the resulting motion
is again translated into still another pair of waves. It is
the difference in phase speeds of the various waves that
accounts for the scattering of energy by the topdgraphy. For
example, suppose a barotropic wave is incident on a ridge.

At the east side of the ridge the motion in the upper layer
will produce an upper layer wave traveling across the ridge
with the baroclinic long wave phase speed. The lower layer
motion will be a quasi-steady flow along geostrophic contours.
At the west side of the ridge, the upper layer motion will
arrive after some delay due to the finite phase speed of the
wave, but the lower layer will experience no significant net
phase change (so long as the basin has the same depth on
either side of the ridge), Hence the upper and lower layérs
are out of phase at the west side of the ridge and will there-
fore produce both barotropic and baroclinic long waves in the

western flat part of the basin.
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An example of this type of flow is shown in Figure
3.C-5, which is a contour map of the.pressure in eéch layer
when a barotropic wave is incident on a ridge with X=.%
and 4J\?'§”. In this case & =.62% go the modes over the
slopes are not heavily concentrated in either.layer. Never-
theless, the baroclinic wave aspect of the upper layer flow
is clear, as is the domination of the lower layer by geo-
strophic contours,

Rhines (1969%9a) calculated the effect of a triangular
ridge on incident Rossby waves in a homdgeneous Fluid.
Applying his calculations to the examples of interest here,
we find that the effect of a narrow ridge is similar in the‘,'
homogeneous and two-layer cases. For example, with X=.0%
and sh= 5 the homogeneous energy transmission coeffi-
cient is .527. With two layers, é;Tb’ is .508 and £§CA,'
is .015 or .03 depending on.,/, so the same amount of energy,
most of it barotropic, is transmitted as. in the hoﬁogeneous
case, With X=./ and &h=.§, the homogeneous trans-
mission coefficient is .955. Just as in the two-layer case,
there is little reflection unless the riage is so steep that
the zonal scale of flow along geostrophic contours over the
‘slope approaches the short wave scale.

As the ridge width increases beyond 400 km or so,
scattering of barotropic incident energy into baroclinic long

waves occurs in the two-layer model, but not, of course, in
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the homogeneous model. This scattering was studied by Hall
(1976). 1In the examples he considered, Hall stated that
the scattering was most efficient when the ridge width was
comparable to the Rossby radius. However, in the presént
calculations we find that the scattering is greatest when
the ridge width is comparable to a baroclinic long wave-~

length. Although the Rossby radius and the baroclinic wave-—

-length are comparable in some parameter ranges,in the case of

annual oscillations the baroclinic wavelength is around
2000 km at 20°N, while the Rossby radius is around 60 km.

A comparison of Tables 3,C-4-5 with 3.C-6,7 shows that
the energy fluxes due to forcing are, with the exception of
E&w, almost identical to those due to an incident barotropic
wave, This suggests that where both types of motion are pre-
sent, as in the quasi-steady Sverdrup balance, the wéves may
tend to cancel each other. This is indeed the case.

To measure the net effect of the topbgraphy on annual os-
cillations in a basin with an eastern boundary we will define
two indices. Suppose the topography is centered a distance
45;42 from the eastern boundary and we wish to measure the ef-
fect of topography at a distance Xr=4 from the eastern bound-
ary. Let WPy, be the amplitude of the barotropic long wave
due to forcing over the topography. In the notation of Table

F F
3.C.3, /Prrw-~ ’hﬁ/ﬁorp with J,) calculated using. the first
of the three vectors /j; . Then an index of the effect of

the topography on the barotropic motion in the basin is
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| — Tr e—‘ATwA(I * Prrw C*‘A-’wwr/z

'/ e (A 1y Xr (3.C.8)
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The denominator is the quasi-steady Sverdrup response that
would exist in the absence of topography. The numerator is
the sum of the directly forced response, the transmitted por-
tion of the barotropic wave from the eastern boundary, and

the barotropic long wave generated by forcing over the topog-
raphy. The barotropic wave due to scattering of the baro-
clinic wave from the eastern boundary has been omitted for
simplicity.

| In addition to measuring the effect of the topogiaphy

on the barotropic flow in the western part of the basin, we
wish to measure its effect on the upper layer zonal velocity
at the crest of the ridge or ridge-barrier. As in the case

of the index Tgpy we will consider the directly forced flow and
the ba;otropic Wave from the eastern boundary but will neglect
the baroclinic wave from the eastern bbundary. The upper layer

pressure fﬁk(o) at the crest of the ridge or ridge-barrier is

then
i 4
R Pie i F
P, (0) = + T jz ¥
Pre Fre j=32
6 ’ R x’r (3.C.9)
T —JIATM =
- 2 ri e >
373 '

where superscripts F and T denote the amplitudes due to
forcing and to an incident barotropic wave, respectively. 1In

the absence of topography the upper layer pressure would be
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The desired index of topographic effect is then

P5 (o)
pY (o)

—

(3.C.11)

Both indices can be computed for the barrier model as
well. The barotropic index is again defined by (3.C.8)

. &<
IK(BT) =53/ e '*

and has a numerical value of
The barotropic response is delayed slightly and reduced al-
most by half. Using (3.A.2), (3.A.5a), and (3.A.7) we find

that the index corresponding to Leru is

@ A o) (1-k)

—— i — e et

ra = 1t Pty (S+K) (3.¢.12)

where

—fféNQ/yL/ﬁ_ -1 P =/
+ § ;—f)(lﬂ"’) (3.C.13a)

pi(0)= (/’C

—(A Xr/2 _ PceE =/
/02(0):(1’6 i /Tr:)(/ng ' (3.C.13b)
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Substituting the numeriéal values for the usual example of .
large scale annual oscillations yields Jjég)is [.Ol'¥ e'—'ogc_
Upper layer flow over the barrier is very slightly increased
in amplitude and advanced in phase.

| Amplitudes and phases of Ik'r and Ir{q for the‘ ridge
and ridge-barrier models are given in Tables 3.C-12 through
15 and Figure 3.C-6. Again we see that slopes with oh=.1
have no appreciable effect.

With narrow slopes the ridge—barrief modél acts like the
thin barrier, and with steep narrow slopes the ridge model
also has similar behavior, although it is unable to block
the lower layer completely and is therefore less effective
in reducing the barotropic flow. Both models tend to reduce
the Sverdrup flow and shift the phase to the north. The
reason for the phase shift is the same as in the case of the
eastern boundary slope. Geostrophic contéurs are howed to
the south over the ridge, so the Sverdrup flow at a given
latitude is due in part to forcing at a more southerly lati-
tude with its consequent difference in phase. This averaging
of the forcing over a band of latitudes feduces the ampli-
tude of the response as well. Another process that reduces
the amplitude is the scattering mechanism mentioned earlier.
The ridge-barrier model adds these processeé to the lower
layer blockage so as to reduce the barotropid flow even more

than does the thin barrier.
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Table 3.C~12a

Ridge model, Ah

IRT

1.001
1.001

1.000
1.000

.999
.999

. 997
.998

.995
.995

. 997
.996

.01
.01

.00
.01

-.01
.01

-.02
.02

-.04
.04

-.08
.08

.1,

.998
1.004

1.007
.996

1.019
.988

1.041
.967

1.085
.927

1.090
.916

-.02
.02

-.02
.02

-.03
.03

_.04
.05

-.04
.05

-.01
.02
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Table 3.C-12b

Ridge model, Ah

.867

.865

.993
.993

.984
.986

.944
. 950

.889
.895

.922
.909

I

RT

.17
.19

.10
.15

.04
.13

.16

.23

-.44
.37

v 5,

1.041
1,012

1.070
.994

1.145
1.007

1.263
.936

1.465
. .809

1,465
.685

RU

-.05
.08

-.08
.08

-.09

12

-.12
.27

—006
.36

.07
.30



Table 3.C—12¢

Ridge model, Ah =1, 4 = 0.

I ' I

RT RU
X Y 5] r 0
.05 .631 .14 1,067 -.02
.632 .17 1.05 .07
.1 .662 .47 1.195 ~.00
.655 .53 1.107 .08
.2 . .910 .25 1.331 ~.04
.916 .38 1.117 .21
.4 .815 .10 1.542 -.03
.847 .40 1.068 .40
.8 .618 -.27 1.855 .10
.663 .51 1.023 .67
1.6 .729 -.92 1.846 .27

.665 .69 .726 .76
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Table 3.C-13a

Ridge model, Ah

.994
.994

.998
.998
.998
.998

.997
.997

I

RT

.01
.01

-.00
.01

-.01
.01

-.02
.02

1.005
.998

1.009
.996

1.020
.987

1.044

.966

-.01
.01

-.02
.02

-.03
.03

-.04
.05
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Ridge model,

.862
.861

932
.931

.953
.955

.931
.937

I
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Table 3.C-13b

RT

11
.13

.09
.13

.03
.12

-.03
.16

Ah = .5,

1.051
1.008

1.085
1.015

1.151
1.000

1.281
.950

-.04
.05

-.06
.09

-.09
.15

-.10
.27
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Table 3.C-13c

Ridge model,

.681
.680

.727
. 725
.819
.824

.767
.798

I

RT

.14
.17

.23
.29

.20

.33

.09
.38

Ah

1.080
1.035

1.164

1.068

1.314

1.094

1.552
1.105

-.02
.06

-.02
12

-.03
.23

-.00

.42
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Ridge-~-barrier model, Ah

.571
.572

.570
.571

.570
.571

.567
.572

.563
.573

-.563
.577

I

Table 3.C-1l4a

RT

.14
.14

.13
.15

.13

<15

.12
.16

.10
.18

.05
.22

= .1,

1.019
1,011

1.026
1.004

1.034
.993

1.061
.975

1.101
.933

1.105
.924

RU

Il

.04
.01

.04
.01

-.04
.00

-.06
.02

-.06
.03

-.03
-.01
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- Table 3.C-14b

Ridge-barrier model, Ah = .5, d = 0.

I : I

RT RU
X r S r 6
.05 571 .14 1.063 -.03
.568 .16 1.013 .00
1 .566 .14 1.079 -.06
.569 .17 1.011 .04
.2 .555 12 1.156 -.11
.567 .21 .985 .13
.4 533 .10 1.285 .10
.554 .26 .936 .23
.8 .485 .04 1.471  -.06
.537 .34 .804 .38
1.6 .509 .33 1.490 .05

.571 .51 .667 .26
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Table 3.C-l1l4c

Ridge-barrier model, Ah =

.565
.561

.558
.548

.534
.538

.457
.499

. 342
422

412
.486

I

RT

0
.14
.16

.15
.20

.17
.28

.13
.40

-.21
.53

-.78
.79

1, d

1.069
.998

1.176

1.016

-~ 1.318

1.067

1.562
1.055

1.877°

.992

1.868
.702

-.01
.03

.01
.08

-.02
.20

-.02
.43

.11
.67

.27
.76
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Table 3.C-15&

Ridge-barrier model, Ah = .1, d = .5.
Ipp ' Tru
r 6 r ¢]
.573 .14 1.032 -.02
.573 .14 . 1.021 -.01
.573 .14 1,036 -.03
.578 .15 1,017 -.00
.572 .13 1.048 -.04
.574 © .15 1.008 .01
.570 .12 1.072 -.05

.574 .16 .987 .03



.05

Ridge-barrier model, Ah = .5,
IRT

r 9 r
.571 .14 1.064
.570 .16 1.021
.569 .14 1.104
.570 .17 1.013
.559 .13 1.173
.567 .21 .994
.533 .10 1.304
.556 .26 .941

208

Table 3.C-15b

-.03
.02

-.05
.05

-.08
.12

-.09
.24



Table 3.C-15c

Ridge-barrier model, Ah = 1, 4 = .5.

I I

RT RU
X r 6 r 6
.05 .567 .15 1,079 -.01
.567 .17 1.033 .04
.1 ~ .558 .15 . 1.158 -.01
= .558 .20 , 1.045 .10
| .2 .533 .16 1.307 -.02
.541 .27 1.065 .21
.4 L4611 .14 1.550 .01

.499 .00 1.077 .42
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The upper layer response as indicated by :[R“ is alf
most identical in the ridge and ridge-barrier models. 1In
general /IRMI is smaller for /(2 -/ than for L=7 ,
and when the slope is moderate /1;2;/< / for ,(: -/ .

This can be explained in terms of the scattering mechanism.
Since short waves are of little importance over the ridge
(unless the ridge is very narrow);rthe flow at the crest
of the ridge is controlled by conditions to the east, Since
s=/ for the eastern slope, A=1 implies that the upper
layef wave is 'barotropic' and the lower layer wave is
'baroclinic,' The barotropic part of the motion in the flat
region to the east excites these two waves such that their
upper layer motions are 180° out of phase but their lbwer
layer motions are in phase (see Figure 3.C-7). West of the
junction the relative phases of the two modes will change due
to their differing phase speeds. Since the upper layer com-
ponents were initially opposite in phase, any change in rela-
tive phase must increase the ﬁet upper layer flow while re-
ducing the lower layer flow. When A(=’1 the reverse occurs:
upper layer flow is reduced and lower layer flow is increased.

The phase of L gy shows two tendencies: the average
of the phases for A=/ and for f=-/ is positive, so
there is a general time lag introduced by the topography; and
the phase for /(=-'/ is greater than that for ¢(=>/ . The

first tendency is due to the finite westward phase speed of the
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'Barotropic’ 'Baroclinic® Barotropic

u, ] —

"

W4

v [ '  —

|

Figure 3.C-7

Sketch of the translation of a barotropic flat-bottom
mode into a sum of 'barotropic' and 'baroclinic' slope
modes.
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upper layer waves_that carry much of the upper layer flqw
over the slope. The second tendency is a bit more compli-
cated. The upper layer flow in region I is the sum of two
parts of comparable magnitude and a phase difference of

ﬂﬂ/z . One part comes from the Sverdrup balance and £he
second part comes from the baroclinic directly forced motion.
(We are neglecting the baroclinic wave from the eastern
boundary in these calculations.) The baroclinic part is
relatively unchaﬁged over the slope, while the Sverdrup.

part is-increased in amplitude when A(:;/ and decreased
when A(s‘V as explained‘in the previous paragraph. The addi-
tion of a larger Sverdrup component at roughly zero relative
phasé to a constant baroclinic component with phase Tr/z
gives a sum with an earlier phase than if the Sverdrup com-
ponent were smaller. Hence the phase of Ikc4 is earlier for
x(=J than for. AV:-/. This explanatiqn-neglects'other‘
factors, such as the larger value of Vi F for’019=-/ than
for A=~/ , that- may also affect IRM .

Comparison of Tables 3.C.-12 with 13 and 14 with 15
shows that even the large amount of dissipation repreéented
by J==.5 has almost no effect on leu and little effect on
Irt . The phase of Ter for ©4L =y .and X = .1 in the
ridge model is reduced by dissipation to be more in line with
the phases for other ridge widths. Elsewhere there are no

significant differences.
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4. Summary

The main points of this section can be given in the
form of answers to the three queStions asked at the beginning
- of the section.

The model of a slope at the eastern boundary indicéfes
that the slope plays little role in determining the overall
response of the basin to large scale annual forcing. The
oﬁly slopes that were found to havé an appreciable effect
were those of X = .8 and 1.6, akh =7;5 and 1. Even in
these examples the maximum phase changevof the barotropic
response was .4 radians, or less than one month.

Comparison of the barrier model to the riage aﬁd ridge—
barrier models shows that the simple barrier model is quite
good for ridges with a half-width of about 200 km or less.
The effects ofbthe slopes become increasingly important for
wiaer ridges. A wide slope may nearly double the upper layer
flow at the crest of the ridge, but the phase change in the-,
most extreme case (fbr which flow over the ridge is decreased)
is less than a month and a half, For more realistic ridges
the changes are insignificant,

The ridge model with & A = .5 and X = .8 is a.reasonable
first approximation of the Mid-Atlantic Ridge. 1Its effect on
the barotropic response is under 15% in amplitude and under

two weeks in phase,
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D. The eight-layer barrier problem

The thin barrier model developed at the beginning-of
this chapter is highly idealized. In the previous section
we saw that making the model more realistic by adding slopes
of moderate width has little effect on the behavior of the
model. In this section we Qill return to the thin barrier
but will consider the effect of more realistic stratifica-
tion. The mathematical structure of the two-layer problem
can immediately be generalized to treat any number of layers
with a barrier extending to any of the interfaces. Hence we
can use a multi-layer model to approximate a continuously
stratified fluid with a barrier of any height.

The multi-layer model used here is that of Lighthill
(1969). All variables in this section will be dimensional.
Superscripts will label layers, subscripts will iabel modes.
Suppose there are N layers with densities and thicknesses /0;
and Hi respectively, with the laYers numbered starting with

(=] at the top. Define the matrix

A A J .
A, = ™ p // A < (3.D.1)
yA T A . . T
H S 2]

Then the eigenvalues //[ are the "equivalent depths" and the
eigenvectors, when arranged as the columns of the matrix Cj[j ’

specify the vertical normal modes of the system. Mode vari-

ables are related to layer variables by
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-l
Pc :Z C‘.j pi (3.D.2)
- J=o -

For convenience the modes are ordered by decreasing value of
H; , starting with the barotropic value H, = i; Ffj,

| As in the two layer problem, the velocity i; related
to the pressuré by the geostrophic balance, all variables
are proportional to eﬂzwt, and the limit &/ ¢<{ is
.taken. The lowest order beta plane model then gives the
familiar vorticity eqguation for each pressure mode,

-

—(w (0?—/9“ - A, 1/05) rﬁ)ﬂ,&‘ =0 (3.D.3)

-2 2 [/4545 L(g;'
with A; = {/ﬁ H;. plane wave solutions p=e€ €

are governed by the dispersion relation

2% YA - ' |
Aj 4 _f/é“ +j + R:, ;:0. ) (3.D.4)

Subscripts W and E will again distinguish long from short
waves. |

The milti-layer barrier problem is solved in exactly
the same way as the two-layer problem. Suppoée that at the
barrier at 4 = O there is some initial flow expressed as

a superposition of vertical normal modes . [Pr; . Let the
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barrier extend to the interface between layer M and layer
M+ , 80 there are M layers that are above the

barrier. The matching conditions applied at X =C are
continuity of U and A~ above the barrier and =0 on
both sides below the barrier. Hence there are 2 A/ condi-
tions determining the amplitudes of Z A free waves. How-
ever, as we saw in the two-layer problem, the pressure émpli-
tudes must be the same on both sides of the barrier, so we

are left with only N conditions on A/ amplitudes:

M-I | |
Z Fegi Cij DA =0, 1L ¢ L M (3.D.5a)

3=o

L A=l
| Z Pay C(J =7 Z Pr; 55;} M<cLc4& N (3.D.5b)
j—‘:o J=o ]

where

DAy E e A (3.D.6)

!
= TA) - (w27 )]

Note that A Aj<0 if A is real, but ﬁu(/»/é\;)>0 if A
is imaginary. The linear algebraic equations (3.D.5) are
easily solved for any numerical example, and (3.D.2) can then

be used to determine the flow over the barrier in each layer.
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For all numerical examples we chooée /V::?' and a totai
depth of 4000 m. There are four types of stratification con-
sidered (Figure 3.D-2): 1) linear stratification, with both
the layer thicknéss and the density difference constant; 2)
exponential stratification, with constant layer thickness
but larger density jumps toward the top; 3) exponential
stratification, with constant density differences but thicker
layers toward the bottom; 4) irregular stratification, with
constant layer thickness every&here, but with a small constant
density difference at the lower five interféces, a large dif-
ference at the éixth interface from the_bottom, and an inter-
mediate difference at the top intefface, just below the free
surface. The normal modes for each type of stratification
are shown in Figure 3.D-1 and the equivalent depths and values
.of O AR are in Table 3.D-1. Not surprisingly, the details of
the stratification are most evident in the higher modes. 1In
particular, note that when expdnential stratification is
achieved through variable density jumps, the higher modes are
bottom intensified, while the reverse is true when layer
thickness is varied.

The barrier problem was solved with each type of strati-
fication, with the barrier extending to each interface in turn.
In one case the initial flow had a first_baroclinic mode struc-
Vture; in all the others a barotropic initial flow was used.

All computations were made with a 1000 km meridional length
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Table 3.D-1

Hj in meters and Akj in 10-4m~1 for each ex-

ample of stratification.

Linear Exponential-Density
j Hy bky Hj bk |
0 3998 -0.992 . 3398 -0.992
1 1.309 -0.906 1.347  -0.909
2 0.3404 -0.595 0.3476 -0.606
3 0.1615 0.5861i 0.1675  0.544i
4 0.0996 1.081i 0.1049 1.029i
5 0.0722 1.409i 0.0722 1.409i
6 0.0587 1.633i 0.0488 1.8461
7 0.0519 1.773i 0.0307 2.449i
: Exponential-depth Irregular
| 3 Hj Akj Hy Ak 4
0 3997 -0.992 3997 -0.992
1 1.279 -0.904 ~1.980 -0.936
] 2 0.3361 -0.589 ~0.3412  -0.597
3 0.1602 0.595i 0.2145 0.124i
4 0.0995  1.082i 0.0968  1.110i
5 0.0725 1.405i 0.0494 1.8331
6 0.0575 1.658i 0.0331 2.3441

7 0.450 1.944i 0.0267  2.656i
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Figure 3.D-la. Normal modes of eight-layer
system with linear stratification.
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Figure 3.D-lc.
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Normal modes of eight-layer
system with exponential strat-

-ification, equal density

differences.



SRR e s

T

--———.

o)}

Figure 3.D-1d.

222

I

Normal modes of eight-layer
system with irreqular
stratification.
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Motion induced by barriers of various height
due to an incoming barotropic wave. Heavy
(light) horizontal lines are the pressure _
amplitudes in each layer induced by the bar-
rier in phase (90° out of phase) with the in-
coming wave. A heavy line to the right augments
the incoming flow. The heavy (light) vertical
lines are averages of the in-phase (90° lead-
ing) flow over the barrier induced by the '
barrier. The number to the side is the number
of layers above the barrier. Stratification:
is linear.
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Figure 3.D-2c. Eight-layer barrier, exponential-
density stratification, baroclinic
incident wave.
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scale, annual period, and a central latitude of 20°N. The
results of the computatlons expressed in terms of pressure in
each layer due to the barrier, ]ﬂg , are given in Figure
3.D-2. The average pressure induced by the barrier on the
layers over the barrier is also shown. This is a measure
of the overall effect of the barrier in the zonal flux over
its crest.

Figure 3.D-2 shows that although there is considerable
barrier induced flow above the barrier, its average is
rather small, usually less than a fifth of the initial flow.
In most cases the average in-phase component augments the
initial flow (if barotropic), while the'out-of—phase component
produces a phase lag. In other words, the barrier increases
and delays the flow above the barrier. This is the same sort
of behavior as was found in the two-layer model. There the
flow was increased with no phase change so long as k was‘real,
while a phase lag was introduced when K was imaginary. 1In
the multilayer problem the solution is composed of low
modes with real &4 and high modes with imaginary &4 ,
the net result is both a phase lag and increased flow. How-
ever, when the initial motion is baroclinic and the barrier is
lower than the zero crossing of the mode, a phase lag and de-
creased flow are found. This is to be expected, since the part
of the initial flow that can influence the solution is the part

below the barrier, which is opposite to the shallow flow.
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- Comparison of the results for differéﬁt stratifications
shows that the barrier has the least effect when the strati-
fication is linear, and the most when itnis irregular. This
bseems reasonable 'in view of the larger'maximum‘layer veloc-
ities in the higher modes with irregular stratificatioﬁ, but
the precise explanatibn is unclear.

In conclusion, the main result of the mﬁlti—layer bar-
rier model is a confirmation of the tWo—iayer result. Except
when the barrier blocks all but the topmost layet; the flow
inauced by the barrier tends to average out to a small frac-
tion of the initial flow. For the most part, the water column
is sheared off by the barrier; the lower part is blocked but
the upper part proceeds as if nothing had happened, at least

in the immediate vicinity of the barrier.
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Chapter 1V

OBSERVATIONS

A. North Atlantic Winds

The theory presented in the pPreceding chapteré re-
lates primarily to motionsfbrced.by annual wind variations.
We have assumed that these wind variations have a meri- |
dional length scale much larger than the internal Rossby
radius of deformation, are fairly uniform inlthe-zonal
direction, and are of sufficient amplitude to be worth
thinking about. To confirm the validity of these assump-
tions, let us briefly survey the characteristics of the .
annual cycle of wind stress in the mid-latitude North
Atlantic. fhis will enable us to make specific.predictions
of some of the annual current variations forced by the
winds.

The best currently available calculations of windstress
are the work of Bunker (1976). He used a drag coefficient
depending on wind speed and air-sea temperature difference
to compute wind stress. Wind speed data came from ship re-
ports collected by the National Climatic Center from 1941-
1972. Monthly means were computed for an irregular grid of
subdivisions of North Atlantic Marsden squares. Thevgrid
was designed to maximize resolution in regidns of high
gradient such as the Gulf Stream, and to reflect the varia-

tions in density of observations in different areas. Over
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most of the area from 10°N to 40°N the grid consists of
rectangles 2° latitude by 5° or sometimes 10° longitude.
The errors involved in computing wind stress curl from

these data are discussed by Leetmaa andiBunker (1978) .

The annual cycle of wind stress curl was computed
from.Bunker's stress values through simple hand processing.
Interpolation and averaging was used where necessary [in-
terpolation being needed mostly east of 40°W between 10°
and 30°N) to obtain monthly stress values on a regular grid
of boxes 2° latitude by 10° longitude. Sine and cosine
transforms of the monthly values yielded annuai and semi-
annual harmonics. These were then smoothed meridionally
using the filter t;' = ZIZ (T"-L + Z'[n,) + # (T[-: "“'z'a-u) 7‘% C;
where i is incremented for each 2° of latitude. A simple
two~-point difference was then used to compute the ”T%
component of the curl, which accounts for mos£ of the total.
The Z;? component of the curl was computéd as an integral
across the width of the ocean and added to the sum of the
~Z“?9 components to get‘the total zonally averaged curl.

Some results of these calculations are shown in Fig-
ures 4.A-1 through 4. Comparisoh of Figure 4fA—1b with
4LA—3a,b shows that the amplitude of the annual harmonics
of stress curl is typically about half of the mean. The
semiannual harmonic is comparable to, but generally smaller
than, the annual. It tends to be of greatest importance

between about 28°N and 14°N. We see that although there is
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someVZOnal variation in the mean stfess and the annual and
semiannual components, the general characteristics are in-
‘dependent of longitude. Note in particular the amplitude_
minimum of both the annual and semiannual harmonics of

both £ % ana t}; at around 20?N. The tradewinds are indeed
remarkably steady. This feature is increasingly prominent
toward the west, reéching its greatest intenéity in the
Caribbean. |

In spite of the changes in amplitude,.the phase of the
annual component of Zj; is nearly cons£ant over the entire
North Atlantic from about 12° to at least 36°N. The annual
forcing has a standing wave meridional structure with two
main length écales: the larger scale of perhaps 1000 km
over‘which the phase is constant; and the smallér scale of
about 350 km over which the amplifude varies.

The results ovahapters IT and IIT indicate that east
of the Antilleé the barotropic response of the ocean should
be in accord with the Sverdrup balance. The annual cycle
of Sverdrup trénsport calculated from the averaged'stress
curl (Figure 4.A-4) and the width of the North Atlantic is
shown in Figure 4.A~-5. The maximum southward interior trans-
port oécurs at roughly the same time, late Febfuary to mid-
March, over the entire range of latitude fof which the
calculation was made. The amplitude varies from a maximum
of 16 Sverdrups at 32°N to a minimum of 4.6 Sverdrups at

20°N. These are sizeable transports, but since they are
\
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barotropic they represent only small speeds. In the in-
terior, 16 Sverdrups distributed over 4000 km width and

4000 m depth implies a mere 10—3m sec"l meridional séeed.

At the western boundary, if the scale of the variable.
boundary current were lO'km, the short wave scale, speeds

of .4 m sec t would be found. ‘However, it must be em-
phasized that the linear theory considered in this thesis
cannot be expected to accurately predict the characteristics,
other than total transport, of thé periodic western boundary
flow.

The predictable part of the baroclinic response to the
wind stress curl is the thermocline deformation due to Ekman
pumping. In Figure 4.A-6 we see the zonally averaged ampli—
tudé and phase of the annual Ekman pumping. The phase of
thermocline displacement is three months later than the
phase of w. Hence the thermocline is deepest everywhere in
late May to early June. However, the amplitude increases
southWard from 20°N, so the maximum predicted»strength‘of.
the North Equatorial Current down to 12°N is.in late Novem-
ber to early.December. The amplitude of the current speed
predicted at 15°N is .8 x 1072 m sec™l. This amplitude in-
creases rapidly to the south and gquickly becomes negligible
to the north. Indeed, since the thermocline displacement
at 20°N is only about 2 m, it is clear that this baroclinic

response is of no importance there. South of 15°, where the
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response becomes»substantiai, the baroclinic free wave
length becomes_comparable to the ocean width, So the free
wave is an important part of the completé baroclinic re-
sponse to the wind variations.

| The barrier model of Chapter III applied td the Antilles
Arc implies that the barotropic flow indicated in Figure
4.A-5 is not the transport one should expect to find in the
Florida Straits. The transport of the Florida Current must
equal the transport of primarily warm water over the Antilles
Arc. The barrie; modei predicts that.this transport-should
have the same phase as the Sverdrup transport but should be
reduded to a quarter or less of ité original amplitude.
Furthermore, since the northernmost major passage into the
Caribbean is the Windward Passage at about 20°N, it is the
upper layer transport at this latitude that can be expected
to pass through the Florida Straits. Hence we expect the
annual cycle of North Atlantic windstress curl to result in
a Florida Current transport cycle with anvamplitude of the
order of one Sverdrup and a maximum northward flow in early
March. In the deeper water outside the Antilles Arc we ex-
pect to find an annual western boundary transport of up to
ten Sverdrups below the thermocline with the same early
March phase. ©North of the Florida Straits we expect the
depth-integrated annual transport amplitude to reach as much

as 16 Sverdrups with essentially the same phase as elsewhere.
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This transport should be distributed uniformly with depth
but might occur in different places at different depths
due to topography, mean currents, and nonlinearity.
Having used wind observations and theory to predict
annual current cycles, let us survey the observations of

annual North Atlantic current variations.

B. North Atlantic Currents

The only direct observations of the annual cycle of
western boundary current transport are the work of Richard-
son, Schmitz, and Niiler (1969) and'Niiler and Richardson
(1973), with additional more recent measurements by Brooks
(1977). Transport of the Florida.Currént was measured
directly by the free-drop method (Richardson and Schmitz,
1965) at 13 stations on a transect from Miami to Bimini.
Niiler and Richardson (referred to as NR) analyzed 75 such
transects made from 1964 to 1971 in which enough stations
were successfully completed to allow calculation of the

total transport of the Florida Current. The mean value was

29.5 Sverdrups. The least-squares fit to the annual harmonic

yielded an amplitude of 4.1 Sverdrups with a maximum north-
ward transport in early June. The transport variation was
largely barotropic, although the variability was somewhat
smaller in the thermocline than above or below it.

In Figure 4.B-1 we see the measurements of NR combined

with those of Brooks (detided, taken from Figure 18 in

A
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Wunsch and Wimbush, 1977). Monthly averages are also shown, -
along with the mean, annual, and semiannual harmonics cal-
culated from the monthly means. The addition of the Brooks
data, which fill a summer gap in the NR'measurements, makes
no significant difference in the calculated annual cycle.
Here the cycle has amplitude 4.35 Sverdrups and phase 2.76
radians from 1 January, compared with NR's stated phase of
2.7 radians. :

During most of a 26 month period from late 1972 to
late 1974, a deep current meter mooring was maintained in
the Florida Curreht near the edge of the Miami Shelf, due
east of Miami. Diing, Mooers, and Lee (1977) computed a
least-squares fit to the annual component of variation of
meridional speed from this time series, and found an ampli-
_tude of 4.5 cm/sec with a maximum in late April. This is
about 7 weeks earlier than NR's transport maximum, both for
the current as a whole and for NR's statién 5, which is
near the current meter mooring. The phase difference might
be due to the shortness of the current meter records; the
time of maximum transport may vary widely from year to year.
Error ﬁay have been introduced by variatioﬁs in the depth
and location of the mooring, which was reset 8 times during
the experiment. On the other hand, there might be real
phase differences within the current. The moored current

meters were in the main thermocline where the annual current
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speed variations are at a minimum,.so a differeﬁt phase
there might have little influence on the phase of the total
transport.

The work of Fuglister (1951) gives a Valuable picture
of the annual cycle of surface currents in various pafts
of the Gulf Stream System. Fuglister used ship drxrift re-
ports to calculate monthly average surface currents in each
of ten regions. Table 4.B-1 gives the mean and the annuai
and semiannual harmonics of the séeed for each region.
Figure 4.B-2 shows the phases of thé harmonics with 80% and
95% confidence limits (calculated using Student's t distribu-
tion with the totalrnoise variance estimated from the sample
variance at periods shorter than semiannual). The location
of the regions are also indicated in Figure 4.B-2.

The surface current variations form a rather coherent
pattern. In most of the regions the annual amplitude is
about 10% of the mean, a bit less than the 14% ratio found
in the Florida Current transport. The exceptions are the
Guiana Current, with a 31% ratio, and the Antilles Current,
with a very small mean and a probably insignificant annual
variation. From the Tradewind region outside the Caribbean
to the area south of Cape Hatteras the maximum occurs in
early summer. With the exception of the Tradewind region,
the phase becomes progressively later downstream from the

Guiana Current to south of Hatteras. Measuring distances
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along thé stream, we find phase speeds of about 40 km/day
from.the Guiana Current to the eastern Caribbean, 120 km/day
from there to the Florida Straits, and 60 km/day to south

of Hatteras. The meridional phase speed between the Carif
bbean and the Florida_Straits is also 60 km/day. Progressing
from south of Hatteras to north and south of the Azores, the
phases become earlier again. These phase differences, to

the extent that they are real, could arise in any of a number
of ways: they could represent lécal response to a traveling
forcing pattern; local forcing in one region could produce

a wave-like disturbance propagating away from the source; or
two large-scale responses with different phases ahd varying
amplitudes could be summed to give a.varying phase.

Since ship drift estimates are not ideal measures of
surface currents, one might question the significance of
Fuglister's results. As was pointed out by Fuglister, there-
is some correlation between the downstream wind component
and the current speed in the Tradewind and Caribbean regions,
although not in most of the other areas. However, the
annual wind amplitude is about the same on either side of
the Antilles, while the surface current amplitude is larger
by a factor of three in the Caribbean, and the mean current
is larger by a factor of two. Hence the ship drifts cannot
easily be attributed to the windage of the ships or similar
errors, and must be supposed to represent the actual surface

currents.
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Table 4.B—l

Mean, annual, and semiannual components of Fuglister's sur-
face currents, with phase measured in radians from Dec. 15.
Speed in miles/day (1 mile/day = 2.14 x 102 n sec—1) isg
K + A1 cos(wt—el) + A2 cos(2wt—62) where w = 271/1 year.

Region A Ay 94 A, 8y élléz élég
1 7.6 0.65 =3.0 0.72  0.82 0.9 0.09
2 16.6 2.04 2.69 0.66 1.52 1.2 0.12
3 59.0 6.51 3.07  2.91 1.93 2.2 0.11
4 43.2 5.19 =-3.02 1.82 1.26 2.9 0.12
5 22.2° 1.56 2.57 0.57 0.36 2.7 0.07
6 12.1 0.97  2.21 0.63 2.35 1.5 0.08
7 3.8 0.30 1.57  0.13 0 2.3 0.08
A 22.2 6.86 1.95  2.27 -0.84 3.0 0.31
B 4.4 0.17 2.84  0.24 1.11 0.6 0.04

C 4.2 0.39 1.49 0.70 0.36 0.6 0.09
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Another indication of a seasonal cycle in the Gulf
Stream System is the variation in path léngth of the Loop
‘Current reported by Maul (1977). Sometimes the Loop
bulgés nearly 1000 km into the Gulf and at other times
it flows almost directly from Yucatan Sﬁrait to the Florida
Straits. Shortening of the path length is often accom-
plished through the detachment of a warm eddy that drifts
west into the Gulf. Eddy formation has been observed at
various times during the year. However, on the basis of
historical data and a one year series of measurements Maul
suggests that on the averagé the eddy formation is part of
an annual cycle that is in phase with the Florida Curfent
transport variation. The maximum growth rate of the area
enclosed by the Loop is concurrent with the maximum Florida
Current transport. Furthermore, Maul calculates that the
excess flow of warm water into the Gulf through ﬁhe Yucatan
Strait required while the Loop is growing is about 4
Sverdrups. Since the sill depth of the Florida Straits is
800 m while that of Yucatan Strait is 2000 m, one would
expect the compensating cold water outflow to go primarily
into the Caribbean. HoWever, part of it may go northeast
through the Florida Straits, accounting for NR's observation 
of increased annual transport variability below the
thermocline.

The currently available observations of the Loop Current

are inadequate to establish the phase of the annual cycle
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with any certainty. It is important to note that the
growth and decay of the Loop Current canaffectthe tem— -
perature distribution of the Florida Current outflow, but,
given some particular flow through the Antilles into the
Caribbean, the Loop cannot affect the total transport of
the Florida Current. In other words, at annual periods
the western boundary current system is barotropically non-
divergent; but features such as the Loop Current can lead
to divergence, and consequent phase changes, in the barxro-

clinic boundary transport.

C. Relation of Observations to Theory

The general picture that eﬁerges from thé observations
discussed in the previous section is of an annual current
cycle that is fairly similar over a large portion of the
Gulf Stream System. The amplitude of the fluctuations as
a fraction of the mean is roughly constant, and the‘phase
varies slowly from place to place. The maximum anti-
cyclonic circulationvoccurs in late spring to eafly summer.
The fluctuations are observed in the surface currenﬁs and
must be largely confined to the warm water; at least in
the latitudes south of Cape Hatteras the surface currents
in deep water would imply enormous transports if they were
barotropic.

The theory that has‘been presented predicts a baro-

tropic western boundary transport varying from 4 to 16
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Sverdrups with maximum.anticyclonic circulation in late
winter to early spring. The surfacé currents and Florida
Current'transport implied by this barotropic flow are
modest. Hence, the observations neither confirm nor re-
fute the thebry. Some fraction, perhaps 20%, of the ob-
served currents might be due to the predicted barotropic
transport. With the data now available there appears to
be no way to test this idea. It is consistent, however,
with the observation that the phases of FUglister's.surface
currents become earlier downstream of Hatteras as thg pre-—
dicted Sverdrup transport increases.

Although we discussed (in section 2.B) the physics
of baroclinic western boundéry current generation by long-
shore windsfress, we are unable to make a definite predic-
tion based on this theory. A crucial constant of integration
cannot be determined, and there is also an unknown contribu-
‘tion from a baroclinic free wave. However; thé theory
suggests that western boundary transport generated by long-
shore windstress must eventually leave the coast as Ekman
transport. Now, the annual amplitude of meridional wind-
stress in the North Atlantic is about .05 Pascals, so
‘with a mean f = .7 X‘10_4sec—l, a coastline of 5600 km would
be required to distribute the annual transport variation of
the Florida Current, Therefore, although meridional wind-

stress may play a role in forcing the observed seasonal
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variations, it seems unlikely that it can directly account

for all of the Florida Current transport cycle.
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" Chapter V

Conclusion

In the introduction we stated that this thesis was con-
cerned with two related questions: the annual cycle of.cur—
rents driven by the annual cycle of the winds, and the
influence of major topographic features on this annual cycle
of currents. Let us now review the progress we have made
toward answering these questions. |

In Chapter II we developed a consistent set of scaled
equations for a linear two-layer model with topography.
These equations were then solved for the special case with-
out topography. The model reproduces the quasi-steady baro-
tropic Sverdrup response predicted by.Gill and Niiler (1973)
and the forced and free baroclinic response found by White
(1977) . It is shown that the western boundary current pro-
duced by frictional damping of short Rossby waves is of suf-
ficiently'small zonal scale to be nearly nondivergént hori-
zontally in each layer, .This implies that the transport in
each layer depends only oh the interior zonal transport into
the boundary in that layer. However, as we noted in Chapter
IV, this may not always be true in the ocean; indeed the Loop
Current is a counterexample in which the complications of
geography, nonlinearity, and mean flow lead to behavior far
from the predictions of our simple theory.

In the first part of Chapter IIT we present a simple

model of a high steep ridge. We find a striking result in
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the limit of low frequency: the lower-layer barrieridoes
not affect the upper layer flux across the barrier. This
is due to the properties of short Rossby waves. At low fre-
quencies their zonal scale becomes so short that the vorti-
city equations are dominated by a balance between the beta
effect and the relative vorticity term. The coupliné term
is relatively small, so the upper layer east of the barrier
does not "feel" the presence of the barfier.i

Section B of Chapter III is devoted to the dynamics of -
flow over a constant east-west slope. Wé find that the ver-
tical mode structure is the same for both long and short
waves of a given frequency and meridional scale. As slope
increases, the barotropic and baroclinic modes evolve into
upper layer and lower layer modes. When the slope is down to
the east, the barotropic mode becomes.an upper (lower) layer
mode if phase propagation is to the north (south). The re-
verse is true if the slope is down to the west. The upper
layer_mode acts much like a baroclinic mode over a flat
bottom. The lower layer mode acts 1ike homogeneous flow
with total depth equal to £he lower layer depth; in the lower
layer long wave the flow is quasi-steady along geostrophic
contours.

In Section C of Chapter III we model topographic'féa—
tures as sequences of regions of constant slope. The appro-

priate free waves are used to meet matching conditions at the
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junctions. Unhless the slopé is very steeé, so that the

lower layer undergoes an O(b) change in_thickness in a
distance comparable. to the short wave scale, the amplitudes
of the short waves are small. At each junction the long waves
are translated from one set of modes to another but continue
to travel as long waves. Scattering of barotropic enexgy
into baroclinic energy and vice versa can result from the

different phase speeds of the different types of long waves.

On the other hand, when the slope is steep and short waveé
are excited, a junction reflects wave energy. A steep ridge
therefore can act as a lower layer barrier even if it does
not extend to the interface. |

Section D of Chapter III consists of a straightforward
extension of the two-layer barrier model to a multilayer
fluid. It is found that a barrier extending to an intermed-
iate interface produces a small inqrease in amplitude and
lag in phase in the average flow over the barrier due to a
barotropic incident motion. Hence, the behavior found in
the two;layer model is also found with more general strati-
fication, with minor modifications.

The models of topography suggest that outside the
island arcs the predictions of the simplest flat bottom the-
ory are adequate. Neither the eastern-boundary slope nor
the mid-ocean ridge model makes a significant difference.

The barrier model, on the other hand, implies that only a
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small fraction of the interior annual Sverdrup transport
should be returned through the Florida Straits. This pre-—
diction serves to make the theory moré nearly consistent
with the Florida Current observations: the predicted trans-
port variation of a Sverdrup or less, with maximum in March,
could be part of the observed four Sverdrups with maximum in
June. The overall conclusion to be drawn from a comparison
of theory and observations is that although the theory may
be correct as far as it goes, it does not go far énough. It
is inadequate to explain the observations. The inadequacy
may be of two sorts. It may be that a better model of the
circulation driven by the wind is needed; or it may be that
the observed current cycle is driven by something other than
the winds, presumably thermohaline forcing.

Let us survey the limitations of the theory that has
been presented:

Some of the calculétions of topographic‘effects were
done by'stretching the approximation of constant coéfficients
-beyond its validity. However, we argue that although the
calgulations are inaccurate in detail they give ﬁseful quali-
tative information. Note also that in the case of the eastern
boundary and ridge-barrier models, the place where the approxi-
mation of constant h is worst is near the boundary and near
the bérrier, respectively. But there the lower layer upslope
flow goes to zero anyway, so the error introduced by the

approximation is reduced.
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The model is linear. This simplification should lead
to no significant errors in the interior regions where the
zonai scales are those of long waves or of topogrpahy such
as the Mid-Atlantic Ridge. The particle velocities due to
annual oscillations in the ocean interior are-of the order of
.5 cm sec-l, so advective effects there are minimal. On the
other hand, in the western boundary region the zdnal particle
velocities would be of the same order as the zonal phase
speed of the short waves, so nonlinearity would play a role
in the dynamics. In regions of steep slope and at a lower
layer barrier, where short waves are generated, nonlinearity
would likewise be'expected. However, the main result of the
lower layer barrier model depends on the scales of the short
waves rather than in the details of the dynamics. As ldng as
that scale is small compared to the radius of deformation,
the upper layer will be only weakly disturbed above and im-
mediately to the east of the barrier. It remains to be de-
termined whether realistic nonlinearity would so drastically
alter the short wave scale as to alter the behavior of the
barrier model.

" There is no mean flow. A mean flow would not alter the
physics of the essential interior response. It might be
important at the barrier and at the western boundary. Note,
however, that a mean weétward flow over the barrier would .

heip prevent short wave "information" from propagating east
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in the upper layer, so the behavior of the barrier model
should remain about the same.

The modelvis periodic in the north-south direction,

It cannot take very large-scale phenomena into account, and
there is no equatorial region. The seriousness of this
limitation is unclear.

The effect of.longshore winds cannot be calculated ex-
plicitly. There is some indication from.numerical experi-
ments (Anderson, 1978; Bryan, 1978) that meridional winds
may account for the surface currents observed by Fuglister
(1951), although we have argued that they prdbably cannot
account for the Florida Current transport observations.

The stratification is two-layer rather than continuous;
This limitation is probably not very important. BHall (1976)
has shown that scattering by topography is similar in con-
tinuous and two-layer systems: and the momentum and vortic-—
ity equations for the barotropic .and first baroclinic modes
without topography are identical in continuous and two—layer:
systems. |

Only one class of topographic effects has been . considered.
The effect of rough topography needs further investigation.
Also, the flow in regions of closed geostrophic contours such
as the Azores may be qualitatively quite different from the
regime in regions of open contours that have been considered

here. We argue, however, that due to the predominantly zonal
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~group velocities of annual Rossby waves, the remote effects
of the circulation in closed contour regions should be'largely
confined to the latitudes of the closed contour regions.

The geography is highly idealized. "There may be impor-
tant effects of the actual.configuration of the Antilles,
the Caribbean, and the Gulf of Mexico,

There is no fhermal forcing. In view of the large
seasonal heat flux in the decay regioh of the Gulf Stream,
this may be ﬁhe most important limitation of the theory.

The above list of limitations of the present theory
serves also to suggest areas where work might be done in
the future. Many areas will be accessible only through nu-
merical modeling., Examples are realistic géography and
topography, and probably nonlinearity. Some aspects of the
effects of mean flows and rough bottom topography may be
found analytically. Progress may also be possible in ana-
lytic modeling of the effect of thermohaline forcing in the
Gulf Stream decay region. Such work should include a theory
of the propagation of annual disturbances along the western
boundary in the presence of mean flow.

There is one prediction of the present theory that may
be subject to observational verification. The deep oscillat-
ing western boundary transport, both outside the Antilles and
along the continental slope, could involve substantial veloc-

ities (over .1 m sec™ %) and might be detected by a
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monitoring program lasting many years. The velocities would
be large only if this current were of small lateral dimensioﬁ
(as it is in simple linear theory) in which case the placement
of current meters becomes critical. Hence we canndt expect

to see this observational test of the theory in the near

future.

e B A sl apeyen
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