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ABSTRACT

A high resolution acoustic navigation system for ocean use
is being developed at the Woods Hole Oceanographic Institution.
The system can yield navigation fixes with respect to a bottom
"moored reference net with accuracies (on a fix to fix basis) of
a few centimeters. 1In order to use the system to best advan-
tage a survey is required to determine precisely the relative
positions of the net elements. Each element combines a pulse
transponder with a continuous wave (CW) beacon. Accumulated
phase (Doppler shift of the CW beacon) between survey points is
measured as well as acoustic travel times between survey points
and transponders. Non-linear regression techniques are employed
to develop a maximum likelihood estimator for net element
positions based on these phase and travel time measurements.

An approximate error covariance matrix is generated and an
optimum choice of survey points is indicated. The combined
system, using these selected locations for performing the survey,
can yield reference mooring coordinates with error of #l1 meter.
Improved precision appears to be limited by inaccuracies in the
pulse and Doppler measuring system.
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I INTRODUCTION

There are many methods currently used to position ships,
submersibles, buoys or submerged instruﬁents in the deep ocean.
Broadly speaking they can be divided into two types. The first
- method positions via electromagnetic transmission from a shore
station or satellite whose position or:orbit is precisely kﬁown.
Such systems operate at long ranges but are limited in aceuracy
to about 100-200 meters at best.. Fﬁrthermore, these systems
require above surface antennas and are therefore of little use
in positioning entirely submerged vehicles. The second method
positions via acoustic transmission from a set of transponders
or beacons, usually moored to the oceaﬁ bottom, Whose relative
positions are preéisely known. When operated in the pulsed or
transponder mode, position inaccuracies of an acoustic system
can be as small as 10-20 meters in 5 km water depths. When
operated in a continuous, or Doppler mode, the accuracy can
abproéch 3-4 centimeters. The range of acoustic systems is
usually severely limited by a number of factors, the most im-
portant of which are acoustic refraction and attenuation of
sound in sea water due to spreading aﬁd absorption in the ocean.
Current acoustic systems have ranges of about 10 km.

A navigation system utilizing acoustic beacons (Fig. 1)

which operate in both a pulse and continuous wave mode is being

developed. This system capitalizes on the attributes of both
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the pﬁlse and Doppler modes and will be capablé of positioning
a platform with respect to an array of reference beacons to an
accuracy of 1-2 meters and of repositioning a platform within
10 centimeters of a previous position. To make full use of the
system capabilities a survey is required to accurately deter-
mine the relative positions of the reference beaconé. The pur-
pose of this investigation is to develop an accurate survey
vtechnique. Algorithms for estimating the beacon positions and
the errors in-those positions are derived. Performance is
predicted using computer models. The estimation method used is
a straightforward extension of the pulse system technique des-

cribed by Hunt. et al. (1974).

l) Description of System

Pulse (transponder) navigation systems measure the travel
time of an acoustic pulse to esfimate the slant range to a
transponder. Shipboard processing equipment interrogates the
bottom moored transponders and measures the time of arrival of
the reply pulse from each transponder. Sound velocity correc-
tions and corrections for fixed system delay times are applied,
and travel times are converted into estimates of slant range to
the transponders. The accuracy of the measurement is depen-

dent upon the pulse bandwidth and the signal-to~noise ratio in

the received pulse. Systems of this type are widely in use in
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oceanographic research, submerged rescue operations and commer-
cial enterprises in the ocean (Boegeman et al., 1972; Cestone
and St. George, 1972; Van Calcar, 1969).

A continuous wave (CW) beacon system has been developed
at the Woods Hole Oceanographic Institution to accurately
track the position of ship—mounted and ‘submerged hydfophones
(Porter et al., 1973). The system measures the frequency
change of a continuous tone due to hydrophone motion. Hydro-
phone velocity and displacement are derived from the beacon

signal Doppler shift which is given by

Af = £, - ffy = —fB(V/c),

where N is the Doppler shifted beacon frequency due to a
hydrophone velocity v, fB is the beacon frequency and c is the
speed of sound in water. Doppler shift is proportional to
beacon frequency. Hence the accuracy of the measurement‘is
dependent on the beacon frequency and the signal-to-noise
ratio in the narrow band that encompasses the maximum Doppler
shift. Because the beacon frequency ié‘much greater than the
pulse bandwidth of transponder systems the Doppler system can
measure fange changes much more accurately than the pulse

system assuming that both systems have the same signal-to-

noise ratio. 1In the present implementation of the system,
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accumulated phase change @(t) = 2 mn(Af)t is measured by digital
techniques and hydrophone displacements of a quarter wavelength
can be resolved. A waveiength for 13 kHz (a typical beacon
frequency) 1is ,X = 11.5 centimeters, so that resolution is
about A\ /4 = 3 cm. Phase changes due to inhomogeneities and
fluctuations in the water column are negligible over the range

of the system. We discuss this in Section III. 2.

2) Previous Survey Techniques

Several investigations have been conducted to develop an
optimum technique for determining the coordinates of ocean
bottom acoustic transponders. No satisfactory sufvey has been
developed previously for an array of bottom-moored CW beacons.

Surveys of acoustic tranqunders generally fall into wo .
categories: baseline crossing and iterative techniques. The
baseline crossing technique, described by Haehnle (1967) and
Hert (1967), is often referred to as the conventional or class-
ical transponder survey method. The method requires that the
depth of the transponders be previously determined from inde;
pendent measurements. The baseline length, i.e., the horizon-
tal distance between two transponders, is determined by steaming
across a baseline and measuring the slant range to the two

transponders during the traverse. This requires accurate ship

~11-



positioning and large ambunts of ship time to yield accurate
results. More recent iterative techniques are based on or are
similar to that describea by vanderkulk (1961). vanderkulk
showed that for three bottom transponders and six co-planar
survey positions whose depths are known, the positions and
depths of the transponders can be found by solving six linear
equations. A unique solution exists when the survey positions
do not lie on a conic section. When more than six survey posi-
tions are used theladditional equations result in an over- |
determined situation for which minimum least squared error
techniques have been successfully applied, (Lowenstein, 1965;
McKeown, 1974; Mourad et al., 1972; Heckman and Abbott, 1973;

Hunt et al., 1974).

3) Pulse-Doppler Survey Technigue

The pulse-Doppler survey consists of making measurements
of travel times of acoustic pulses and accumulated phase
changes of CW signals at various survey points. These are con-
verted to slant ranges and slant range differences, respect-
ively. The pulse-Doppler survey can yield more accurate results
than the pulse survey alone due to the higher resolution -of the
Doppler system measurement.

The slant range (SR) between a transponder and a survey

point is equal to the travel time (TT) multiplied by an
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effective sound speed, Ve:

SR = Ve - TT
The effective sound speed is a function of the sound velocity
profile, the depths of the transponder, and the survey point
and varies with the amount of acoustic refraction (Vass, 1966).
For m survey points there are m measurements of'slanf range
for each transponder.

The change in slant range, DSR, between a beacon and two
survey points is proportional to the change in accumulated
phase, ﬁ(tz) - ﬁ(tl) and the wavelength of the signal, ) = c/f_:

DSR = [ @(ty) = F(tq)] A /2w
The received signal,

s(t) = A(t) exp { -j2 = th } .
where fD = fp +va/c is the Doppler shifted frequency, can
be written as

s(t) = A(t) exp { -j [2 = th + J(t) ] }-

where the phase variation due to a finite receiver velocity is

g(t) 27 fpt v/c (Porter et al., 1973). 1In general v is a
“~

function of time, v = v(t). However, we assume that the

sampling interval is short enough to consider v constant. In

practice, an interval of .1 sec is used so the assumption is

valid. Measurement of accumulated phase change provides
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velocity and displacement info;mation along the beacon-survey
point vector, i.e., the displacement is the change in slant
range. For m survey points there are m - 1 measurements of
slant range differences for each beacon.

The measurements of travel times and phase changes may
be made at the same or different survey points. Only the case
where the measurements are made at the same points will be
discussed in detail since this technigque is more efficient in
practice. The method of solution for the transponder coordin-
ates is the same in either case but the associated errors will
be different.

Non-linear regression methods as outlined by Draper and
Smith (1966)‘are used to analyze this survey problem. Under
the assumptions given in the foilowing section the maximum
likelihood estimator for the beacon positions is found. 2n
approximate covariance matrix for the estimates and a pro-
cedure for optimizing the choice of survey points is developed.
The sources of error and their effect on the estimates of the

beacon coordinates are discussed.
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IT PARAMETER ESTIMATION

The problem of parameter estimation can be briefly des-
cribed as follows: given a system from which information can
be received and whose state is characterized by a set of p
parameters, make some estimate of the state of the system from
the information received. The information, which will gener-
ally be perturbed by noise, may be measurements, a ﬁessage, or
some other observations on the system.

The following definitions are used:

8' = [64, 92,...,9p] = true parameter wvalues

é' = [él, 52,;..,ép] = estimated parameter values

EF' =FE'(B) = [fl’fz""fn] = noiseless message

Y' = [Y1'Y2'---'Yn] = message (observations perturbed

" by noise)

F, and Y denote column vectors and (') denotes

where 8, é,
transpose (Manasse, 1960).

When a noiseless message F(g)is received, the information
is sufficient to determine 8 exactly if the number of measure-
ments n is not less than the number éf»barameters p. When
n=p the problem is called the MINIMUM DATA case. When n > p

it is called the REDUNDANT DATA case.
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1) The Maximum Likelihood Estimate

When the observations Y are received, some criteria must
be used to>determine an optimum estimate é since Y differs
from F due to the presence of noise. One often used decision
rule is based on the maximum likelihood principle. $his
principle prescribes that the observer choose the é_which
renders the observations Y most likely; that is, it maximizes
the conditional probability density P(Xl 8). When expressed
as a function of ¥ and 8 this is called the likelihood function
and is sometimes written L(¥;8). When the a priori probability
density P(8) can be considered to be a constant over the
region of interest then the maximum likelihobd estimator also

maximizes P(QJX). This can be shown by the use of Bayes

Theorem to express the a posteriori probability density

P(8|Y) in terms of P(Y | ) and P(8):

P(Y|8) P(8)
P(B|Y) = = CP(Y]8) (1)
P(Y)
where P(Y) = fP(X_‘_Q_) P(8) de

(Note that P(Y) is not a function of 8 and can be treated as a
constant of proportionality).
The estimate é_which maximizes the likelihood function

L(Y:8) must satisfy the equations

-16-—



=0 i=12,...,p

for the p different parameters.
We now consider some properties of the maximum likelihood

estimator and the special case of additive Gaussian hoise.

2) Properties of the Maximum ILikelihood Estimator

It is desirable that an estimate be both consistent, and
unbiased. An estimator is consistent if the estimate, é,
converges in probability tq the true value 6. This is an
asymptotic property because it concerns the behavior of an
estimator as the number of measurements tendé to infinity. 2n

estimator is unbiased if the expected value of.the estimate is

equal to the true value, i.e.,
E(B) = 8
where E(x) = I x p(x) dx

In general the maximum likelihood estimator is not unbiased
~but it is consistent when the measurement errors are small.

The variance of an estimate,

vi) =E{[8-£8®) 1°7 ,

is a meaéure of the fluctuation of an estimate about its mean.

-17-



Small variance is a desired préperty. An asymptotic measure
of this property is efficiency. An estimator is said to be
efficient if the asymptotic variance of.the estimate is no
larger than the asymptotic variance obtained using any other
estimator. The maximum likelihood estimétor, when it is con-
tinuous and the first and second derivatives exist and are
absolutely integrable, is efficient. It can be shown that
maximum likelihoqd estimates are asymptotically normally dis-
tributed with mean 6 and variance l/Rz(Q) where

dlog L 2

R2(§)= E —_—— (Kendall and Stuart, 1967),
In the case of additive Gaussian noise the form of the

likelihood function can be determined and expressions for the

variance of the estimates can be developed.

3) The Maximum Likelihood Estimate in the Case of Additive

Gaussian Noise

The message is assumed to be perturbed by additive
Gaussian noise, e, so that
Y=F(8) +¢e ' (2)
where g‘is characterized by an n X n moment matrix M;

M=©E{ [Y-F][L-E ) = E(ee')

~-18-



The multidimensional Gaussian distribution of the error can

be expressed as

Ple) = Cy eXP{-l/-?[s'Ad_'l_e_] }
or

P(x-F) = ¢ exp{-1/2[y - 2]'wl[x - g] )
where C, is a positiQe constant (see, for example, p. 151
Davenport and Root, 1958).

From equation (2) it can be seen that the probability
density of Y given F is equal to the probability density of
the error; that is

P(Y[F) = P(e) = P(¥ - E)
and since F is a function of 8 this density is also the proba-
bility density of ¥ given 8. The likelihood function, there-
fore, is equal to the probability density function of the
error, namely a multidimensional normal distribution, that
is,
L(Y;8) = P(¥[8) = P(XY - E(9)),

Thus

e
Irs
@
I

c2 e 1/2[x - x] Wiz - 2]} @)
The likélihood function is a maximum when the magnitude of
the expongnt, [X - E]' MflEX - EJ:,‘is a minimunm.

When the noise e has zero mean and the error in each

measurement is statistically independent of the errors in the

-19-



other measurements the moment matrix M is diagonal

~ 2'
a-
2
M=Eee) = | * g O
O 0;12
I~ 2 - _'_-
G 2
1/(5
v.‘ 2
amawt-| o
(742 ) . th
where denotes the variance of the error in the k measure-

k

ment. The moment matrix, M, can be written in terms of weight-
ing factors w; and the standard error 0 . The matrix of

-1
weighting factors is denoted by V .
‘l/
w
ll/ O 2
W2

and
- [ (4)
2

where W, = O’/O’

I<
Qo

The maximum likelihood estimate in this case is the weighted
least squares estimate since the magnitude of the exponent
in equation (3) is proportional to the weighted sum of squared

exrors:

~20~



n
1/2 Y—F(e)]' m-1 Y—F(GV) =—-l—— Z y; - £1(8))2 w

(X -z@] wix - £@)] = 55 55 i - £i(@)% v
When the variances of the errors are equal then the weighting
factors, w;, are equal to one, and the maximum likelihood

estimate is the familiar least squares estimate which minimizes

the sum of squared errors SS(8):
: 2
ss(e) = ), (y; - £;(8))7,

i=1

Assume that a rather accurate estimate of 8 has been
obtained and that F(8) can be approximated by a first order
Taylor series

E(8) = E(B8) + X 48,

o | |
where X = . is an n x p matrix of derivatives with ijth
08 e
element Bfi/ and the errors e = ¢ - é are assumed small.
06.
J

When this expression for F(8) is substituted in equation (3),
and when the a priori probability density P(8) can be consider-
ed to be a constant over the region of interest, the probability
density of 8 given ¥ can be shown to be a multidimensional

‘normal distribution with moment matrix [:;

P(ely) = Cg exp{_

1/2 Ne’ r_llle}

-21-



-1 _ !, -1
M =xw k=5 ®v n, (6)

where

The moment matrix l:_is known as the variance-covariance
matrix since it consists'of the variances (diagonal terms) and
covariances (off-diagonal terms) of the estimates. It is also
kpown as Fisher's information matrix (Van Trees, 1968). Specif-
ically, under the conditions of uncorrelated, zero mean Gaussian
noise, the variance of the estimates can be expressed as

2 -1
0. = l—-‘. = 0’ Z/ (39' ) Wl .
1

i .
1 1 i=1

This estimate is approximately equal to the asymptotic

variance l/Rz(g) is close to 8.

4) Application of Parameter Estimation Technigues to the Survey

Problem

The pulse-Doppler navigation system makes measurements
which are characterized by a set of unknown parameters. The
unknown parameters are the geometrical coordinates of the
beacons and the ship positions at which the measurements are
taken. The measurements consist of slant ranges and slant
range differences.

An orthogonal XYZ coordinate system will be used in which
the beacon coordinates are (0,0,Zl),,(Xz,O,Zz), and (X3,Y3,Z3)
as shown in Figure 2. .(Only the 3 beacon survey problem will

be considered here; the .method can easily be extended to more

-22-
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than 3 beacons). The depth of the ship hydrophone is assumed
to be a known constant, zS. Simultaneous measurements of slant
ranges and slant range differences are taken at m survey points
(XSi,YSiI ZS) .

The unknown parameters, that is, the beacon and ship posi-
tion coordinates,‘can_be expressed as a column vector 8, with
transpose

| B
e [91,92,...,9p]

=[x2,x3,Y 1Z11%,,%4,XS,¥S

37%11%9 XSm,YSm]

llooo,
where p = 2m + 6,

The "noiseless measurements" are the exact geometrical slant

ranges and slant range differences. These can be expressed as

_ _ v 12 _ 2 _ 2 ,1/2
SRiy = SRy (8) = [(X8;-X,)% + (¥8;-v5)? + (25-2)% ]
where Xy =Yy = Y2 = 0 i=1,2,...,m
5 =1,2,3

Similarly, the slant range differences between two survey points

i and ii and the jth beacon can be expressed as

DSRij (Q) = [(Xsii—xj)z + (YSll"'YJ)z + (ZS—Zj)z ] 1/2

2 1/2

[}

These functions can be expressed as a column vector F(8)

with transpose,

F'(8) = [ SRy1+SRy5,SRy3,5Ry1,.:.,DSR17,DSR 1.

DSR

12’ 13°°°°

For m survey points F(8) has_dimensions 3m + 3(m-=1) = 3 (2m-1).
If F(8) could be measured without errors then some minimum

Y
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nunber of measurements would be sufficient'té determine 8
exactly. 1In this case the slant range differences are linear
combinations of the slant ranges and the minimum data case, as
- shown by Vanderkulk (1961), requires 18 slant range measurements:

S&j@L i=1,2,...,6, j=12,3
of equivalently, 3 slant range measurements and 15 slant range
differences

>Sle(_Q), 5 =1,2,3

DSR..(8), i =1,2,...,5, j=1,2,3 .
If only slant range differences can be measured then 24 measure-
ments,

DSRij(Q), i=1,2,...,8, j=1,2,3
are sufficient to determine 8 exactly provided one has reasonable
initial estimates of the parameters. This condition is a result
of the linear approximation used to solve the ﬁon—linear equations.

The observations Y differ from F(8) due to the presence:

of noise. Slant range observations from the transponder system
can be expressed as

Sij = SRy () + Eij
where errors, €ij' are assumed to be independent identically
distributed normal random variables with variénce 022. Obser-
vations of slant range differences from the Doppler system can

be expressed as

DSij = PSRij(g) + 6;j

-25~



where the erxrrors, ¢§j:, are assumed to be independent identi-
cally distributed normal random variables with variance (732.
The errors for the complete system can be expressed as

=[%] - [z - r®)] .

1f the errors € and é are independent of each other, than e

o

is characterized by the moment matrix
P - 2
M=yvo? =[0’g2 O ai* - *
e g
O On i=1,2,...,3m
012
$

i= 1,2,...,3(1'(1—]_)

2
U§m+i

5) Gauss—-Newton Method of Non-linear Least Squares Estimation
We have seen that the maximum likelihood estimator under
conditions of additive, uncorrelated, Gaussian noise with zero
mean is equivalent to the weighted least squares éstimator and
that this estimator is consistent and efficient. The weighted
least squares estimate is the é_which miﬁimizes the residual

sum of squares

ss(@) = e'vle =[x - E(®) ]‘

Y v

Y - E(@)] . (7)

In general the estimate 8 is the solution of the p normal
equations
0 SS(8)
—_——— = 0 i=l’2'..-’p
0 i

assuming that the solution is interior to. the parameter space.

When these equations are linear they can be solved directly.

-26—



When the normal equations are ﬁon—linear as they are in this case
an iterative technique must be used. A number of technigques
exist; for example, quasi-Newton, conjuéate gradient, etc. A
brief réview of numerical techniques for fitting non-linear
models is given by Chambers (1973).

The method used to find the estimate § is based on a modi-
fied Gauss-Newton procedure. The Gauss-Newton procedure consists
of linearly approximating the function F(8) and applying standard
linear least squares techniques.

One linear approximation of F(8) about an initial estimate
§O is a simple Taylor series

A

F(e) = F(8g) + X As

o F
where X = — | A is an n x p matrix of derivatives with
- 2818, . -'
: A
elements x;+ = 3fj4 and Z&e =8 - B8 1is a column vector
] =L —_— = =0
. g
363 90

of length p. Choosing the new variable Z = Y - Eféo) we have
the linear model

= X Ao + e.

N

The linear approximation to the residual sum of squares is

) A
s5(8) = e'Vle = [2-x Ao J'v T [zX Ae]= s8(g)) .
The Gauss-Newton step A8 is obtained by linear regress-

ion techniques on this linear residual sum of squares

-27—



(Draper and Smith, 1966):
Ao = g nTh vz

A new estimate él = @O 48 can be formed and the process

repeated, until a given convergence criteria is reached.

6) Modifications of the Basic Gauss-Newton Procedure

Modifications of the basic Gauss-Newton procedure can be
made to insure that the step A8, will reduce the residual sum
of squares and avoid singularity problems in thé K'Mflg
matrix. A complete discussion of the modifications used,
based on stepwise regression techniques, is contained in
Jennrich and Sampson (1967). A summary of that discussion is
presented here.

One important modification of the basic Gauss-Newton
procedure is the use of partial steps, 72£Lg,.in place of the
full step A6 when the full step results in ah increase in the
residual sum of squares SS(@). This frequently occurs when
the linear approximations upon which the method is based fail.
The proportion 7zto be used is obtained by trjing the arbitrary
sequence of values 1,1/2, 1/4, 1/8,..; until the residual sum
of squares is reduced. It can be shown that a sufficiently
small step in the direction of A8 will always reduce the

A
residual sum of squares unless 6 is already a minimizing value.
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Another modification of the basic Erocedure is dictated
by the possibility tﬁat the g'y’lz_matrix is, or is hearly,
singular. Step-wise regression techniques are used where the
.parameter selected at a given step is the one which makes the
greatest reduction in the residual sum of squares. If there
is a singularity problem then only a subset of the pérameters
is used. This also provides a convenient way Eo‘handle bound-
ary restrictions on the parameter values. A parameter is
modified only if the new parameter value is within or on the

parameter boundary.

7) Iterative Technigue

In summary the procedure used consists of the following
steps:
1) The value of the function F(8) and its derivatives X

are calculated using an initial estimate éO'

1

2) The X'V "X matrix is formed and the residual sum of

A

sguares SS(QO) is computed.
X

'yflz matrix is inverted in a step-wise manner

-1 =1

and the step size 4 6 = (X'V X) ~ X'V "2 is formed.

4) A new estimate él = éo + A8 is formed and the new
residual sum of squares SS(él) compu#ed. If Ss(él) is larger
than SS(ao) then the step size is halved until Ss(al) < 55(80)
or until R = (1/2)10.
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5) This cbmpletes an iteration. The pfocess is repeated
until the solution converges. -Convergence is determined by
the reiative change in the residual sum of squares, i.e..the
solution has converged when the relative change is less than a
sEecified criterion, C,

A A
SS(8pn+1) - SS(8y)

= = C'< C .
55 (Bpe1)

6) In practice we require that 4 successive iterations
result in C'<¢ C in order to accept the hfpothesis of conver-
gence. In some cases the algorithm may fail to converge to a
minimizing solution (e.g. when it converges to a local, rather
than a global, minimum). A plot of the parameter estimates
and examination of the residuals will usually provide some

indication of this.

8) Error Estimates

We‘have seen that maximum likelihood estimates are
asymptotically normally distributed with known variances and
that these variances are. the diagonal.elements.of the variance-
coVariance matrix [j. For a process ﬁerturbed by uncorrelated
Gaussian noise with zero mean this matrix is given by the

expression

l: = (X'M‘yg)—lcfz where yfl = C)’.'w .
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The (g}yflg) matrix is called the correlation matrix and its
inverse will be denoted by A.

The standard error in estimating the ith parameter, O;
i

is the square root of the ith diagonal element of the variance-
covariance matrix l::

To, = TVay | S | (8

th

where a; is the i diagonal element of the A matrix

_ n oty 2 -1
a; = | 7. 5o | . W i (9)
SRS

The terms on the right hanq side of equation (8) are indepen-
dent. The standard error, Cf, erends upon the accuracy with
which the slant ranges and slant range differeﬁces can be
measured. An estimate of the standard error can be obtained
from the residual sum of sqguares

1

e = ss(8)
n-p

where SS(§) is defined in equation (7).

The other term, “f_;;, is sometimes called the error
magnification factor and is a function of the survey geometry.
The magnitude of the error magnification cén be obtained by

evaluating equation (9).
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The approximate errors in estimating the beacon coordin-
ates
é’ei = &va; i=12,...,6
can be reduced in two ways: 1) improvements in the measurement
accuracy and 2) a suitable selection of the survey coordinates.
In the next section, we will consider in detail how this may

be accomplished.
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JIT MINIMIZATION OF ERRORS

1) Measurement errors (pulse system)

Slant ranges and slant range differences are measured by
two different systems for which the magnitude and sources of
error will in general be different. A discussion of these
errors requires a complete description'of the system operations.

The pulse system is designed to measure round trip travel
time of an acoustic pulse between a ship-mounted or ship-
suspended transducef and near-bottom transponders. When an
acoustic pulse is transmitted from the transducer, digital
counters in a shipboard receiver begin measuring elapsed time.
The transponders receive and recognize the tfansmitted pulse
and generate a "reply" pulse at a specific frequency. When
a return pulse is detected by the shipboard receiver at a
given frequency the corresponding counter is stopped and the
elapsed time is displayed and transferred to a digital com-
puter for processing.

There are fixed time delays associated with this process;
e.g. signal recognition timé,_transpéndér turn around time
and signal processing time. Accurate calibration of the system
can reduce the uncertainties in each of these delay times to
approximately +.5 milliseconds (msec). Foé most applicgtions

these timing errors can collectively be considered to be normally
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distributed with zero mean and standard error of 1 msec. Two
of these timing errors, signal recognition time at the trans-
ponder and at the ship are functions of the signal-to-noise
ratio and the pulse bandwidth. For example, the errors in
recognition time increase to approximately .8 to 1 msec for a
signai—to—noise ratio at the pulse receiver of 27 dB; This
signal-to-noise is typical of a range of 10 km in sea state 3
for the system'presently in use (source level: 189 dB, re:

1 ppPa pulse length: 10 msec). For ranges greater than about

11 km (for the present system configuration) signal recognition
is erratic and the errors can be assumed infinite. For fixed
bandwidth, timing errors can be reduced by increasing signal
power or they may be acounted for by some appropriate weighting
of the data.

Another source of error in the measurement of travel times
is ship motion. The error in round trip travel time due to
horizontal ship motion is given approximately by the expression

€ =TTV COS &/c
where T, = measured round trip travél £ime
® = angle from the vertical between the transponder and

ship transducer

<
I

horizontal component of ship speed away from the

transponder
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T = average sound speed
For ship speeds of 1 knot and measured travel times of 6 to
12 seconds (typical in deep ocean applications) the round trip
travel times will be in error by approximately 2 to 4 msec.
This error can be reduced by taking measurements while stopped
or by reprocessing corrected data once’ the approximafe ship-
positions and speeds are known. Other ship motion such as
heave, pitch apd roll cannot easily be accounted for but when
a large number of measurements are used their effect can be
considered as an uncertainty in transducer depth equivalent to
a timing error of approximately 1 msec.

A summary of these errors is present in Table 1. To achieve
these errors in measured travéel time of a few milliseconds
it is essential to use an accurately calibrated system and
make the measurements while stopped. These errors can be
assumed to have zero mean for a large number of measurements.

To obtain geometric slant range from corrected travel
time the velocity of sound must be known. Although the sound
velocity has spatial and temporal vafiéﬁions, horizontal and
temporal variations can be assumed negligible. Sound velocity
variation over depth, however, is commonly on the order of
50 meters/sec for 5 km deep water. fhe structure of this

variation, the sound velocity profile, can be determined from
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Table 1, Sources of errors in measurement of Travel Time

Source of Error Cf(msec) Cf(meters)
Recognition Time 1.0 1.5
Miscellaneous Timing Errors 1.0 1.5
Horizontal Motion (Vk«(l/z knot) 1.0 1.5
Other Motion 1.0 1.5

Total = (Y r2)L? 2.0 3.0
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historical data or direct measurements. Historical data can
be expected to be in error by 2.5 m/sec or more, whereas
present measurement techniques have an accuracy of about
.25 m/sec. For a precision navigation system the use of direct
measurements is strongly preferred. When the sound velocity
profile is known the travel time of an acoustic signal between
two points can be determined and an effective sound speed, Vs
can be calculated.
Ve = SR/TT

When the travel time is measured using a pulse navigation
system the effective sdund speed is not known since it depends
upon the positions of the transponders and ship transducer.
The slant rahge, however, can be determined approximately by
using a calculated range R, equél to the corrected one-way
travel time TTc multiplied by the arithmetic mean sound
velocity ¢:

SR~ R = CTT
C

1 yASS
where C = ————— /éf c(z)dz
Zi - ZS :

1

The depth of the transducer ZS is usually known and errors of
less than 50 meters in the estimate of transponder depth, Zj,

have a negligible effect on ©. The arithmetic mean sound
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velocity can therefore be coﬁsidered a known constant.

The ratio of slant range,. SR, to calculated range R = ETTC,
can be expressed as a function K(ve):

K(ve) = SR/R = ve/E
Epr a given sound velocity profile and depths ZS and Zi the
effective sound.speed, ve, is a monotonically increasing
function of the geometric angle between the transponder and
the survey point measured from the vertical (Vass, 1966) (see
Fig. 3). Since the calculated range, R, is also an increasing
function of the geometric angle, K(Vg) can be expressed as a
function of R and approximated by a second order polynomial
K(Ve) = K(R) =~ ag + ajR + a2R2.

The coefficients, a;, are found by calculating the range R
and the ratio SR/R for various angles and applying a second
order curve fitting subroutine. Pravel times are computed
using standard ray acoustic techniques (Officér, 1958). A
description of program ARCOR which performs these computations
is contained in Appendix A. fhe error in using the relation-
ship SR = R is usually iess than l.5lme£ers but can be as
great as 3 or 4 meters for angles greater than 80°. When the
relationship SR = R(aO + alR + a2R2) is used the errors in

slant range estimates are less than .l meters. When the sound

velocity profile is accurately known, errors caused by acoustic
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refraction are negligible compared to timihg and transducer

motion errors. .

2) Measurement Errors (Doppler system)

The Doppler system in its present configuration (Fig. 4)

consists of three bottom-moored CW beacons each separated by
50 Hz, a phase detector for each beacon and a real time com-
puter processor. Each beacon contains a crystal oscillator
with a frequency stability of 105 Hz and has a nominal source
level of 166 dB (ré +1 Pascal @ 1 m). The beacon signal after
being processed by its phase detector is recorded on analog mag-
netic tape and is fed to a digital computer for real time pro-
cessing. The phase detector output consists of two base-band
outputs one proportional to the sine of the input phase angle,
the other proportional to the cosine of the phase angle. Phase
variations due to a finite recei§er velocity v (t), can be written
as @F(t) = 27Tthv(t)/c. If the input signal is represented by

s(t) = A(t) exp {—j[zwat - Q’(t)] }
the phase detector outputs are given by

sl(t) = A(t) cos g (t) L

and sz(t) = A(t) sin @(t) .

The instantaneous phase of the beacon signal can be determined
from the ratio

s2<t)»/sl'_(t) = tan g(t) -
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In practice the gquadrant into which the phase ahgle falls is
determined simply by examining the signs of sl(t) and'sz(t).
Phase differences between phase detector samples are computed
and accumulated in quanta of A./4 ~ 3 cm at 13 kHz. The
accumulated phase difference after T seconds is of the form
N - . .

Pr= L EICRIEN-ICNE I I - A
where fs is the sampling frequency of the phase detector out-
puts (10 Hz) (?orter et al., 1973).

The distance, DSR, travelled toward or away from a beacon
in time T is the accumulated phase ﬁT multiplied by the wave-
length >\of the signal:

DSR = fo A
The error in measurement of accumulated phase depends upon the
number of samples N = Tfs and the signal detection probabili-
ties of the receiver. Since the samples can be considered to
be independent measurements the variance of the accumulated
phase is the sum of the variance of the individual samples
5 N 2 2
CTb ) %;_ o ) NC%’
T n ﬁn n

ana Ty *: {(B,)

where Pe is the probability of error in the nth

sample. The

probability of error is a function of the signal-to-noise
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ratio at the phase detector (sée Appendix B). Table 2 shows
Some representative values of Pg in a .1 sec interval for
various signal-to-noise ratios encountered in practice. The
associated errors (j&n and O%E(T = 1 hr) are also given in
both number of quadrants and meters. A quarter wavelength of
3 cm is assumed. Nominal horizontal range is calculated for
a source level of 166 dB (re: l/xPa) and a noise level of
44 AdB/Hz (re: 1 HPa) assuming transmission losses are due only
to spherical spreading (20 log r) and attenuation (1L dB/km) .
Sample calculations are'given in Appendix C.

| Random phase fluctuations can be caused by multipath
interference and forward scattering. The root mean square
phase fluctuations from these scurces has been esﬁimated to

be about .13 gquadrants (Porter et al., 1973). When compared

with the errors due to ambient sea noise shown in Table 2
they have little effect (about 5-15% increase in OBT) and
can be considered negligible.

Slant range difference is obtainéd.from accumulated phase
change by multiplication by a scaling factor: the wavelength
of the signal. Errors in wavelength )\ = c/fB are caused
primarily by errors in sound velocity'(the instability of the

beacon frequency is negligible). When the arithmetic mean

—43~



TABLE 2. Doppler Errors vs Sigﬁal—to-Noise Ratio
10 log S/N P O%n O&T(l hr) X
(dB) (quad) (quad) ~vw(me£;;;;-~?£;;—
33 .023 .217 41 1.2 0
30 .031 .253 48 1.4 3.7
27 .042 .293 56 1.7 5.5
24 .055 .341 65 1.9 7.5
21 .072 .393 75 2.2 9.2
” .695_ mergggiw_wmwé;uwwh““_ 5:6 il;i<_
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sound'velocity of an accurately measured sound velocity pro-
file is used, the standard error in wavelength will usually
be less than 1 meter. This can be reduced further by using
the average sound,

é = length of travel path/travel time,
once the approximate survey positions are known.

In sﬁmmary, when operating above the pulse system thresh-
old, slant ranges can be measured by the pulse system with an
accuracy of 3 to 5‘meters. Under the same conditions slantr
range differences can be measured with an accuracy of 1.2 to

2.5 meters for measuring intervals of 1 hour.

3) Selection of Survey Coordinates

The error in estimating beacon coordinates also depends
on the error magnification terms of the beacon coordinates,
Mi='dai, i=l,2,...,6

where the a; are the ith diagonal elements of the A = (X V ~X)

-1

matrix. These terms are dependent upon the number and relative

locations of the survey'points.b In deneral the error magnifi-
cations will vary inversely with the degrees of freedom which
increase with the number of survey points above a certain
minimum. For example the slant rangé difference equations
require at least 9 survey points for a solution to exist, and

the degrees of freedom for this set of equations is equal to
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the number of additional survey points. Comparison of survey
techniques should be based on the same number of degrees of
freedom. For example a pulse survey of 7 points (1 degree of
freedom) should be compared to a Doppler survey of 10 points,
and a pulse survey of 10 points should be compared to a pulse-
Doppler survey of 10 points.

A measure of "good" survey locations is the trace of the
beacon coordinate covariance sub—matri#, that is, the sum of
the squares of the error magnification factors of the beacon

coordinates:
S .6 9 6
TRACE = ). M;" = ). aj.
i=1 =1

The trace is a function of the beacon and survey location
coordinates, i.e. the parametér;vector 8, and will be denoted
by TR(8). For a given number of survey locations there will be
a set or sets of survey locations for which the trace is a mini-
mﬁm. -A typical deep ocean deployment of the pulse-Doppler
navigation system will be discussed for illustration.

The most commonly used 3-beacon acoustic navigation net
is ideally an equilateral triangle. The baseline length, i.e.
the length of the sides of the triangle, are typically on the
order of the beacon depths: about 5 km. For this configura-

tion of the net the covariance matrix was evaluated for several

sets of survey locations, each consisting of 10 survey points.
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A few examples are given in-Figures 5A through 5E. The value
of the trace of the beacon covariance matrix for each arrange-
ment is listed in Table 3. The trace for the corresponding
survey with only pulse data is given for comparison. A more
;igorous technique for determining "optimum" survey locations
was also used. Powell's algorithm to find a (local) minimum
of a function of several variables was applied to a function
G(8) = TR(8) + C(B), where C(8) is an arbitrary function added
to the trace to constrain the survey locations within the
maximum range of the system (Powell, 1965). No significant
improvement to the starting value of G(8) = 3;6 was realized

although several survey geometries were tried.

4) Computer Simulation

A computer program called PDSRV was developed to solve
the survey problem using the parameter estimation techniques
discussed. It is a modification of a Biomedical Computer Pro-
gram (BMD O7R) (see Dixon, 1973). The program requires pulse
data from at least six survey points and/or Doppler data from
at least ten survey points. 1In addition to the data, the
user must input the average sound velocity and the acoustic
refraction coefficients found by program ARCOR. The beacon
frequencies, the depth(s) of the transducer and initial

estimates of the beacon positions must also be provided.

b
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TABLE 3. Comparison of the Trace of the Beacon Covariance Matrix

for Pulse/Doppler and Pulse Surveys

Figure # Trace Trace
Pulse & Doppler Pulse Only
SA : ' 3.6 '6.8
53 4.0 8.3
5C 4.3 10.4
5D 17.0 . 58.2
SE 138 325
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Maximum and minimum values for the beacon coordinates are
constrained to provide more rapid convergence. The constraints
are set as follows:

X. = X, #2000 m

J ]

Y. =Y., 2000 m
] J

Z. =2, 1000 m
J J

where (Xj, Yj’ Zj) are the initial estimates of the jth beacon
coordinates. Other parameter bounds may be specified if desired.
Although it is unlikely, even with the most rudimentary primary
navigation system, that initial estimate errors will exceed

those specified above.

The program consists of three main sections: (1) initiali-
zation and data input; (2) minimization of weighted sguared
erxror; (3) determination of the'approximate error'covariance
matrix of the beacon positions. For convenience the program
ig divided into 7 subroutines as illustrated in Figure 6.

A description of each subroutine is given in Table 4.

Two additional subroutines were used to simulate survey pro-
blems. Subroutine READ calculates déta-for a given set of survey
locations and beacon coordinates. Subroutine NORMA generates

Gaussian distributed numbers with a specified mean and standard

deviationé. These are used to simuléte data with errors.
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TABLE 4.

Description of Program PDSRV

E
|

. Survey position estimates (optional)
. Bounds of Survey position (optional)

Reads input data from specified device(s)
Calculates slant ranges (SR) from travel

Calculates changes in slant range (DSR)
Computes the mean squared error (EE)
from the weighted sum of squared errors:

Checks that EE is less than previous
value; if not the step size is halved

- -1
Computes the elements of the X V = X

Name of Description
| Subroutine
Reads the following user inputs:
1. Transducer depths
2. Convergence criteria
MAIN 3. Bounds for beacon parameters
! 4. Beacon coordinate estimates
i 5
6
1.
2.
DINPT times
3.
from accumulated phase ¢hange
1.
{ A
EE = (1/DOF) s5(6)
MINIZ 2.
3. Checks convergence criteria
1.
matrix
XPRMX 2.

Calculates the weighted sum of square
errors:

n
g

Ss(8) = =, (yi_fi) Wi
. i=1

-56-



TABLE 4. Continued

‘Name of T . -
Subroutine _ Description

l. Calculates values of the slant range
and slant range differences (fi) using
latest estimates of beacon and ship
_ . positions
FUN 2. Calculates the elements of the X matrix,
i.e. the derivatives of the slant ranges
and slant range differences:

. 25

Xi. A
J des | ©

1. Inverts the g,yl
STEP fashion - :
' 2. Computes the step sizes A 6

"X matrix in a step-wise

Computes and outputs the following
1. Final. estimates '
2. Correlation matrix for Beacon Positions
3. Root mean square error (standard error,d )
OUTPT ! 4. Error magnification terms of the
covariance matrix
5. Residuals and standard errors of each
measurement (optional)
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Typical output of a simulated survey problem is shown in
Tables 5a through 5d. Table 5a lists the beacon and survey
coordinates used by subroutine READ and the errors in data
generated by subroutine NORMA. Table 5b lists the simulated
data which is input to brogram PDSRV. The final estimates,
correlation matrix, error magnification factors apd étandard
errors of the beacon coordinates are also shown in Table 5b.
Similar information for the survey locations is listed as
illustrated in Table 5c¢. The residuals,

SR(observed) — SR(estimated) and
DSR(observed) — DSR(estimated)
can be compared with the estimates of standard error of each
measurement. This output, labeled SURVEY ERRORS, is optional
and is shown in Table 5c.

After each iteration of the minimization process the mean
squared error and latest estimates of the beacon positions
can be output as shown in Table 5d. The number of the iteration
and the number of times the step size.was halved is also
included.

Survey problems with measurement errors of more than 750
meters have been simulated. The minimization process convergéd
in every case and the beacon coordinéte estimates were ﬁearly

normally distributed about the true values with the standard
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error magnification factors and estimated standard errors..

(2) Residuals of slant range measurements (1-10) and slant - .
range difference measurements (2-10).
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de&iation approximately the samé as that predicted.

Single simulations with meésurement errérs of 5 to 800
meters were made to determine the stabiiity of the estimates
of standard error, 6/, and the approximate error covariance
matrix. Table 6 lists some e#amples showing the simulated
measurement error, b’; the estimated standard error,E% R and the
estimate of the TRACE of the beacon error covariance matrix.

The stability of the trace indicates the linearity of the model
in the region around 8.

The stability of the trace has another important implica-
tion: suppose some "optimum" set of survey points have been
determined for a particular navigation net; the aétual survey
points used might differ from the optimum by hundreds of meters
due to navigation errors while conducting the surVey; the
resulting errors in the estimates of beacon coordinates, how-
ever, would not be very different. The primary geometric factor

which affects the errors of the estimates is the distribution

of the survey points not their exact location.
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TABLE 6.

o é} Trace

5 48 3.96

50 478 3.95°
500 ‘513 4.76

- 600 640 3.92
700 751 3.98
800 820 4.35
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IV _DISCUSSION

Using'the parameter estimation technique and the procedures
described, the relative bositions of acoustic navigation beacons
can be determined with an accuracy of 1 meter.

A non-linear model is developed for a combined pulse-Doppler
navigation system whose‘measurements of travel time and accumula-
téd phase are perturbed by additive zero-mean Gaussian noise.

The maximum likelihood estimation for the beacon coordinate-.

is found. The numerical technique used to solve the non-linear
estimation problem is a modified Gauss-Newton method. This method
consists of approximating the non-linear model with a linear
expansion and iteratively éolving the linear-model using standard
least squares estimation techniéues. An‘approximate error co-
variance matrix is found from which errors in the beacon coordi-
nate can be estimated. Computer simulation has shown this
technique to be stable for measurement errors within (and beyond)
the range of errors encountered in practice.

Many sources of error are present in the survey problem.

The preceding sections detail the severél steps to be taken in
order to achieve an accuracy of *1 meter in the beacon estimates.
These can be generalized as follows:

1. Sound velocity should be determinea with a precision

instrument, for example, a Conductivity-Temperature-Depth (CTD)
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probe (see Gregg and Cox, 1971). Errors in thermeasurement of
sound velocity will usually bias the estimates but will not
affect their variance.

2. Corrections should be applied to the measurements to
account for acoustic refraction. When these corrections are
applied, the errors due to acoustic refraction can be consi-
dered negligible.

3. Travel time measurements should be made while the
surveying platform is dead-in~the-water, or nearly so, to
eliminate errors due to horizontal platform motion. This is
a potential source of large errors in the pulse system, although
it does not affect the accuracy of the Dopplér system measurement.

4. The time interval between selected Doppler survey points
should be less than 1 hour since errors in the measurement of
accumulated phase increase with time. Intervals of approximately
1/2 hour each are recommended.

5. Survey locations which will minimize the error magnifi-
cation factors of the beacon coordinate estimates should be
used. The choice of survey locations ié critical to obtaining
accurate estimates and can also affect the ability of the
estimation technique to converge to a global rather than a
local minimum. Several examples of éood sﬁfvey point sélections

are given in Section III. 3 above.
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6. Pulse and Doppler measurements should be made simul-
taneously at no less than 10 sﬁrvey locgtioné. The use of
more than 10 survey locations will, in general, reduce the
errors in the beacon estimates. For example, the use of 40
survey locations can reduce these errors by a factor of 1/2.
In most cases the capacity of the processing compute; will limit
the maximum number of survey locations which can be used

practically.
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APPENDIX A

DESCRIPTION OF PROGRAM ARCOR

Pulse navigation s?stems calculate the distance between
two points from the measured time of travel of an acoustic
pulse between those two points. This distance can be approxi-
mated by multiplying the travel time by an average sound
velocity. This is an approximation siﬁce the sound travels
in a refracted path rather than a straight line. The purpose
of Program ARCOR is to improve the approximation by accounting
for the refraction of sound in water. For a given sound
velocity profile and the depths of a sound source and receiver,
this program uses standard ray-tracing techniques (Officer,
1958) to find the time of travel, TT, of an acoustic pulse
between the two points is the travel time TT multiplied by the

arithmetic mean sound velocity c:

The actual distance, SR is given by the expression

SR = (x2 + 22)1/?

+ Z
where X is the horizontal distance traveled and Z is the verti-
cal distance between source and receiver. The ratio between
the actual distance and the approximate distance, Ky = SRi/Ri’

is calculated for several travel times. The set of approximate

distances and their ratios (Ri'Ki)' i = 1,N, are fit to a
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Figure 7. Notation used for Program ARCOR.
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 second degree polynomial using standard least squares re-
gression:

2

R

K= —— = 3 +alR+a

0 2

where the a; are the acoustic refraction coefficients. The
actual distance SR can therefore be calculated when the
approximate distance R = CTT is known:'
SR = R(a, + a;R + a R2)
0 1 2 .

The set of approximate distances and their associated
ratios are generated by calculating the necessary parameters
for various angles 8, at which sound leaves the source (see

Fig. 7). For each angle 90 there is a constant given by

Snell's law

sinBg ' - 8indi
= p(constant)=
o c;
where Cy = sound velocity at the source and ci = sound velo-

city at interface i. This constant and the sound velocity

gradients

determine the travel time and the distance an acoustic signal
must travel to reach the receiver depth, assuming constant
gradient in each layer. The angle at which sound leaves a

layer is
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0, = sin~1 (pe) .

The travel time for each layer is

1 ’ tan Gi/2
t= — 1ln (—m—).
g tan ei_l/z
The horizontal distance traveled is
1
X, = — (cos8. ] — cos8 ) (Officer, 1958).
1 pg a 1

For each starting angle 90 the total travel time and horizontal
distance traveled are found by summing the above quantities
for each layer. We then have

Total horizontal distance: X = iji

Vertical distance: Z = sourée depth-receiver depth
R b
Total travel time: ™ = Z,t
' 2
Distance between source and receiver: SR = (Xz + Z )l/2
Approximate distance: R = CTT
Ratio: K = SR/R

Tﬁe pfogram computes the first starting angle by defining an
angle, ¢ = 90° and setting the departure angles equal to

90° - 4. Each successive X is reduced by a factor, for
example .95, and a new departure anglé is computed. The values
of K and R are fitted with a second degree polynomial to pro-
duce the coefficients, a.. A typical output is shown on page

73. A listing of the program begins on page 74. The pro-

gram was originated by W.M. Marquet of the Woods Hole Oceanographic
-71-



-Institutioﬁ and includes calculations of coefficients for the
case of a receiver at the same depth of the source. This
particular computation is not used in the survey problem and
is not discussed here. The original version of this program
was called Program SETUP and written by Mary Hunt and Roger

Goldsmith of the Woods Hole Oceanographic Institution.
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ARIIHMETIC MEAM SOUND VELOCITY = 15127344
X SR 7 THETA K R
88 4e45.00 3.8709 .28 «99991 UeyS5.n3
287443 4652+88 347768 3.60 +999n1 He5N 432
5065638 4e79.28 3.8935 Te 86 *»999qg1 bp7%e72
825,94 471962 3.12@2 1637 +99991 429,05
11h g, 83 477366 3.1559 13.56 + 99991 hz7n.1@
1361.593 4eyfgen3 3.2801 16,62 . 299991 4gnh.gz
1619438  491g.1lp - 3.2521 119055 499951 4919.5%
18/5.24 588g¢28 3.5117 22.37 9991 g%, /0
2190, 31 511221 3.57g4 " 254,87 99950 5118.gh
2385,55 5221-68 3.4521 27:67 +99992 5p02,.18
264 1,14 534337 3,542% 3Be17 *«99992 53423479
259856 BHT75.08  3,6196 32:5p *99992 547549
310 7.62 561664 3.7132 34,06 *+99943 5617 .44
3ylg. tp 5767+94 S 3,8132 27.%6 +990ni3 S76R.33
36t L4 Dg 5928.91 2.9196 39,18 *+9gQay $92%.2G
3gv 3,23 6799¢51  4,B320 41,21 +5999y £899.08 . o
4oe5.98 6279+ 73 4,151% 4316 «9gQ 5L, -3 v
513,24 6H6G56h_ B 2789 us,. 8y £99948 ELES.R8 —
485,97 666932 4.ligg LG, &y +399% 06 E65L0e31
bEI2. /5 6E78«1l . u 5H74 he.be <9994 ER70 .4
5365.L9 759695 46916 SR22 + 9967 787 17
Spbhe2l. 722548 helBL27 51.83 _ __+99S98 __732%.66 .
5959,47 7563477 S5¢Hgpl 53.3y +9g99g 7563.8¢
62 Fa 1l 751185 Sel6ll _ Shel 1 29990 _ 7ajl.or e
658,42 876972 5.3345 .‘6. 1 aﬂr'u 869,71
6gc 3, 61 R4 Z7.41 5,511 [ “6 LGP o R37 D
7295, St14-9p 5. 6048 58¢66 610472
754 L. 25 BOHE2e17  5.8840 €Pedl  1eiigB 7 951.89 e
79! 5. 23 Gige17 6 MQET £1.36 1«08 04 S198.7°
823,60 gkfﬁzg; 60,2835 €£2,45 1.38¢ ¢  G5Eh,.32
8624« 24 FEPIRY: 604925 63,55 1e2g6:27 ag2l.y?
9H7 2. 04 13147 81 675177 64,61 1+33% g8 17106.9
93%7¢93 1BUR2«LD 6eG292 65.03 1 +B8%1:  1i481.79
97! Te Y3 1_55.?:2 ()_:_9 iy 7.18 6“ 66 ? . AR 1 _] P?_f_: .7.‘. P
1Bi16g T 1118851 743896 67.54 1 BEd13 11176,54
DEEP TO SHALLOW ( 4ebB.89 TO 5«48 )
ASKU 1) = .999f1pFE+gH
ASK( 2) = =,5%62598E=39
ASKL 3) =  ,2213737E=-11

—_— e e e ———— -

Output of Program ARCOR. X=Horizontal distance between source and

racelver;— SR="Slant range; ~TT = Travel time;— THETA = Angle of
departure fron source; K =SR/R; R =TIT = approx1mate slant range.
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PAGE 8a@1 XDOS = FORTRAN IV COMPILER

Bgbl
fpn2

FTNsL

PROGRAM ARCOPR

BpY3
gavry

C
c

DOUBLE PRECISION VERSION FOR HP
HP _DOS VERSION BY MARY HUMT & JAMES DURHAM AUG_ 74

BaY 5
Baveo

c

FINDS RAY EENDINMG COEFFICIENTS
DOUBLE PRECISION PIsXTsXFsXDsXMAX9XCoSK DK THESTH

ggn7 DOUBLE PRECISICN THB2sTH2sTTsARGYAL PH AL PHTsRFAC

Bl g _DOUBLE PRECISIOM XS3sTSsCSHAL2IRTPASNIXT -RACT Pyl S | e
Bghg DIMENSION R(SgG) 4DX(58)

ggl 3 DIMENSION DTIDC!3)sDTSCL3) __
ggli DIMENSION Z!5d}1sCl5a)?

Agl2 DIMENSION G'5F)s CB(S8) e —

i3
pgaly

DIMENSION COEF(353)
DIMENSTION. SAVE'3)

gpl s
#El 6

EQUIVALENCE (COEFY1,1)sDTDC)s FCOEF (14523 ,0TSCI» (COLF {193y .6/ yE)

PI = *.1415%265300H

¥g17 C SET UNIT CLvICE COCES

npig NI =2 e

24619 NO = 1

L S
Bpsl C 4+ PAUSE FOR SENSEF SWITCRES

842 C — e e et e

BEC 3

gpes

BELL

16z

WRITE (pC 1pé2)
FORMAT (' PRCGFAM RCGIs HP VERSION®/" SET SENT  TwITCHLS

A% SSK 1 OM - SevEl PROFILF LISTEL ON ~UTF & (CVICE'/

iv SSW 3 0N - DEEP TO DEEP CALIULATICN SKiPpeo!
1" SS¥ 7 ON ~ RAY BENLILG CALCULATICH S¥IFRLD
11 SSW 14 OM = SeVEL PROFILE AND COPFRS QUTE f Ct: PARLTR T

1¥#03
AvEy

1¥1y

_FORMAT(:1)

WRITE 'MOsLp?P3)
FORMAT (/T ALL INPUTS ARE FREE FILLDT /" FEACY <)
READ (I s2284) IaNS
WRITEINOY g1y T T
FORMAT(/Y 13IST DEVICE? "}

g3
BEO1
BEa2
T HB23
8psy
PR
3696

&*F%u“

“g28

pg39
fgah

READ(MIs+) LP - T T
DO 21 = 1,3 T
COEF(1,1) = 1,¥ SR
COLF(2yI) = @g.F¥

= P

COEF (21!

e 1

ppas
Bath

Chgts

%N 6

L dpte

2
¢
C ¥

. C

CWRITE'HOs1p¥E)
195 FORMATIY Se VELe INPUT GEVICE? =1)

b7

_ rpus.

B9

1706

CONTI(.UE

T INPUT SOUND VELOCITY PROFILE

REAQUET ) 16V(
WRITE!MO1(V6)
FORMAT (' INPUT PRCFILE™/" LEPTH(N }aSavEL (/000
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PAGE vgpe ARCOR XDOS - FORTRAN IV COMPILER

pgo6 1% ENTCR NEGATIVE NUMBER WHEN DGONE!')
gEol I=8 R —
Bg>2 5 CONTINUE
BB23 1 =1 +1
gp24 READLISVCs%) 201)C(I1)
Bgs5 IF‘\ZLT1)) 12%8+8 - [
gpo6 8 CONTIHUE
BEDT7 _C : —
gguvg ¢ NO MORE THAN 58 ALLOWED
8pc9 ¢
gt IF{T = sB) De31433
ggtl 12 CONTINUE _ U
ggo2 1 =1 =1
gpe3s ¢ R SN
gpey C )
Babs € ** INITIALYZE VARI?BLES N e e e
ppee  C SET X INITIAlL®* TERMINAL AND IMCREMENTAL VAL UES
gpey  C o B .
ageg 3 CONTIHUE
Epb9 NSV = 1 . e o
ggri IFLISSwtl))Y 3122+ 322
Garl 31 WRITEWWLP*3E20) . : e e et e e = £mtirem e
Bar2 32505 FORMAT(/Y I Z ch/)
G573 WRITE'LP2EM1) (192(7)sCII1yI1sNSV] § e
gely 3¥3) FORMATIISW2F12+4)
BeIS 32 IFYISSw(T)) 263u,3n,00 o e e
E@al6 34 CONTI.UE
agr7 XI = Z.¥DR R S
gurs XF z 2GBA " «IDY

__8¢f9 X0 =z 2gFs.e08 -
vat MOREG = 2
ppgrl _MORD1 = MORC + 1 e _
ggt2 5 CCOMTIi:UE
Ept3 ITER = =1
ppény  C INPUT TYPICAL DEEP CEPTH
HEES  WRITE'NOsuG¥E) e e
gpte 4¥EF FCRMAT (' BEACON CEPTH® ")
gat? T READINIs*Y z2Z - S -
ggtg C INPUT SHALLOW RECEIVER DEPTH
ApgH9g WRITE!NOY4P1E)
BpY 4¥1g FORMAT(" DEPTH OF RECEIVER 12 a'm}
apy1 READINIs*) ZR S B
vgy2 ¢ . .
Bgv3 € 4%+ START DEEP TO CEEP PROCESDSING
ppYy - C
ggY¥s  C FIND AVERAGE VFLOCITY AT TYPICAL DEEP [IPTH o
Weve 7¢ CONTILUE

_#pu7 IFLISSWI(RY)Y L1G¥d,75,75
ppYsg 75 CONTIHUE
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/ 'DSTNUTHES) 71 COSITHED

PAGE ¥g@83 ARCOR " XDOS = FORTRAN IV COMPILER
B8pv9 CBAR = YP(ZBsZsCsNSV)
giva ¢ FIND THE DIEP DEPTH STARTING LAYER
piv1 DO 112 II = 1,sNSV
giv2 IF (28 = Z(II)! 11541155114@
Bi»3 118 CONTIMNUE
givy II = NSV
girs 115 CONTINUE
gi1ve ¢ . L N
B1b7 ¢ FING GRADIENT OF SCUND VELOCITY AT DEEP DEPTH
girg GIII) = (c(IT) = CHII~1))/'2011) = Z(11=1))
givg ¢
8113 ¢ IF GRADIENT 1S NEGATIVEs DEEP WATER ANALYSIS (S SKIPPFG
g1l IF (GUII)) 125%138,135
Bii2 125 WRITE (MNOs9lg2) S S e
B1L3 912 FORMAT(S3H NEGATIVE GRADIENT ~ DEEP TO DEEP PROCESSING BYPASSED)
11y GO TG 15%g
8115 120 WRITE (NO»s9181)
B1le 91f1 FORMAT(4Z2H GRACIENT = 8 FOR DEEP 70 DEEP PRCOCESDSING /7
5147 + 26H K = 1405 FOR ALL X !
5118 GO TO 168G . -
4119 ¢
212 ¢ CALCULATE ©O L0OOP PARAMETERS
511 ¢
¥1e2 135 ConTIRNGLE . e N
513 IE = IXF = XI)/XD + £o.@El1Da '
__Big4 C _ __SET 0O LGOP _TO VARY X FOR DEEP TO DEEP = e e
5125 WRITE (LPsgifs)
U146 3185 FORMAT(/// /75Xy M s 1AX K s 10X s1ik=100)
B1<7 DO 488 1 = 1,ILC
G128 FI = 1 i o
TTBE1Y9 T T TTTXE T T E NI 4T FIiYD T - T ’
#12a IF (XC) 175s1%%,175 L L o
TUALSITTCT T T UUUSET THETAG FOR X e T T '
plop 158 CONTINUE
%103 DK = -1.6D0
_ 4124 RMI) = g.8 - e e R
2195 GC TG 358 ’ T
126 € CALCULATE THETAZ _ - e
TE137 175 ConTIfWE ~ 77
p1o8 THE = 2.BACBAR/(XC+G!T11))
#1579 THE = DATANITHY)
B € CALCULATE ANGLE TH _ - o - -
#1411 . 2@ CONTINUE : .
b2 o TH = PI - TH& ‘ ' e U -
g1483 € FIND HALF ANGLES '
By g ’ THH2 = THB/2.000
H145 THZ = TH/2.¥DB
ke € CALCULATE TIME T o .
SR TT = 'DSIN(TH2!'/0C0STHS)) > 1)



PAGE 4¢84 ARCOR XDOS_~ FORTRAN IV COMPILER
Bi1v8 TT = DLOG(TT)/GIII)
gi1%9 ¢ CALCULATE APPARENT DISTANCE TRAVELLED
B1>0 RACT = CBARTT
gio1 R{I) = RACT
giv2 ¢ CALCULATE RATIO K
B153 DK = XC/RACT
#154 358 CONTIHUE
#i°>s DXYT) = DKk = 16D
6126 WRITE (LP»sg1g6) XCoDKsDX(I)
B1h7 4G CONTIHUE
Bidg ¢ FIT POLYNOMIAL WITH X AND K TO GET COEFFICIENTS
129 CALL HCRET!(RsDX>»IiTDCHIEMORD) ——— S
gibs ¢ OUTPUT CURVE FIT COEFFICIENTS
_B1b1  __DILCH1) = pIncCfl) 4+ 1.0 ; - P
aie2 WRITE (LPs9gl1@33) Z¥,(I:DTDC!I)sI = 1s5MORDL!
#1163 ¢
Biey +4 DEEP TO SHALLOW CALCULATIGNS
Bie s : ’
gike 1EG8 CONTINUE
_B167 €S z R.E08 — - — el
108 C FIND STARTING DEPTH AND L AYER
BLibg FIMD LAYER GRADIERKT ANC AVERAGE SOUND VFLOCITY
B1sl DO 1188 J= 1,NSV
LBXLr o IF (28 - ZJ)) 115@8,t188.330@ . N
#4172 1458 CONTINUE
_BAfs 0 J = omMsv 1 e R e . _
15y 1152 COMTIiUE
H1/75 K = J
#1’e 2yl = z2ty-11
JBaf7  _CEAR = YPU(ZRsZsC,NSV) e -
6178 ZJS = 2(J)
Bif9 ______CJS = Cty) e e
piv JS = U
gi61 Z(J) = 28
Bt 2 Cty) = CuAR .
B3 G{J) = (CBAR = C(J=11)/%2(J) = 2J1)
Bity CEVYY) = {CRAR * Cly=1))/2.0
B1¥5 GO TO 125p ~
Bivte C FIND LAYER GRADIENT AND AVERAGE VELOCITY
glu7 118g JS = J .
gitg 1263 291 = z(y-11).
__ 6159 12FS5 CONTIIUE S X
B1vi K = J
_bi¥y O IF (Z1y) = ZR) 13¥6,13@¥s12€8 . —
4392 188 IF (2U1 = ZR) 121E41238+1238

8193 1¢18

CONTINUE

CRAR

T YP(ZR229C NSV

_B195 GlJ) = (CLS) = CEARI/ZLZEY) = ZR)
Bi“6 CBYY) = CPAR Y CYUN /245
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8197 K = 1
givs Z2J1 = ZR

Biv o9 GO TO 1258
gab i 1236 GlJ) = (C(J!) ~ Clu=1tystzty) =~ Z2J1)

Bori TCRUJY = tCtJT F Clta-1))72.¢
_B2v2 1458 CONTINUE

B2v3 €S = ¢S *+ CBUJI*(Z(J) =~ ZJ1)
_p2rh K Z_Kzd - - -

gebs J = K
p2re IFty=1) 13p¢4,1275+12¢3

Bol'7 1275 zJl = -pegrBil
B2¥s8 GO TO 1285

Bobg 1388 CS = CS/'z28 =ZR)
B214 WRITE!LP*91¥g) CS

Mol 13286 CONTIILUE
212 ITER = ITER + 1 -
Bb2i3 C SET STARTING ANGLE = ¢ DEG
_Beiw ALPH T BaSD®_ L — e
215 ALPHT = PI/2.600
_B2le C __SET_ARRAY INCEX ____._ ) e e -
4217 I =2
5218 REAC = +4B0O: ) N L
9219 WRITE tNOY92¢1) : ]
__Bpd.~ 9ZA1 FORMAT(" EMNTER DECREMENT FACTOR BETwsFN @ ANC 1 ')
foc1 READI{IiIs?) RFAC
_B2e2 o WRITENO92¥2) e _
B2 3 Q732 FORMATI(Y ENMTIR MAX FORIZOMTAL RAMGE ™)
22y XMAR T APET .- Ll — ) e e

225 READ (NIs*) XMAX
62¢6  WRITE!LPs9ib7)

5207 C ELGIN RAY TRACE

_#2¢8  AMME CONTIVUE S
a2¢9 ¢ INITIALTIZE SUMS
g2 X5 =z ¥.6C2 -
gosl - TS = .60

k222 S eelC® B

L2323 PEBSIN(ALPHI/C s T
b224 _THETA = ALPHRIFD.fDR/PI

82235 J = Js

o226 K = J

257 1428 201 = z{u~1!

_B258 1425 CONTILUE T

#5229 CJ1 = cly-11! :
weli CIFYZGY) = ZR) 1SpEE1583 1428

g9t 1628 IF'zJl = ZR) 143g014ugs 140
_A%2  143% CONTILUE

pau3 K =
_goun ZJl = 7R
w2l 5 CJdi 2 CIAR

[
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FORTRAN JV _COMPILER

8246
gpu7 _C

1448 CONTIMUE

FINC _ANGLE RAY LEAVES LAYER

p248
B249

ASN = CJl1+P
IF _(ASM = 1-8D8)

14518,1850

1628

Boo s
B221 ¢

1458 CONTINUE
TH = ASINULASN!

o5 2 ARG = ASN/DSQRT(1+GD¥ = ASN*ASN)

yov3 TH. Z DATANCARG! N .

g2o 4 IF{GIJ))  14eP 1U8Es14680

£2%5 1460 _CONTINUE

¥2»6 ¢ FINGC TIME

p2>7 THZ = TH/2.8DB o e

g2b8 ALZ = ALPH/2.602

b2v9 IF'I=1) 1478,1484214786

p2o . 1476 CONTIMUE
el ¢ 1T = CTARITRH2)/DTANLL2!
a2 TT = {DSIN(TH2!)/0COS TRL)) /7 IDSINGAL2Y 70COSUALZ) )

__Bgb3 TV = I=fLOGlITIN/GCSY I .
savl RT & '=1.308)/'paGlU?))

_B2t5  XT = fDCOSHALPHI-GCOSITHIMI*RT . —
Hete Al = UTH-ALPH)*RT
figt. 7 GO T 1u%

Wocg CALCULATE LAYER VALUES
f2bg 11RZ CONTINUE

FOR STRAIGHT UP OR G =

#CASE

gerv ¢ XT = (2{u)-

Bpre Moz XT
1203 T =

(20w ZUIVACTANISLFH]
YZUJ)= ZJII4DSINCALPHI /LCOS(ALPETY

LSORT '"(Zig)=s Z2yl)4(Ztyr~ 201) + XT#3)/7CkH'di

1896 CONTI1I.UE

fele ¢ SUM X CISUTANCE T o o -
Fel? XS = XS 4 DABS!XT)

g2rg C SUM TRAVEL TIME

219 TS = 7S * DARSITT!

Gatl SUM ARC LEMGTH

E?“l__ G = S + AL ’ o o

TRESET ENTRY RAY
ALPH = TH

FOR NEXT LAYER

gaty ¢ RESET INDEX AND CHECK
pavs K = K=~1
g2b6 J = K
gy  IF (g = 1) 15gH,149591020 _ I S
poEg 1495 Z2J1 = =@e@ @1 ’
_bat9 GO TC¢ 1425 S
Govs C . STORE TOTALS
oY1 1588 CONTIt.UE
pav2 RACT = XS*¥S + (Z@8=ZR)Y4(2g~7ZR]
R ek RACT = DSEPTIPACT) .
S~ LA REI) = (S4T5
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XDOS - FORTRAN IV COMPILER

B2v5 SK = RACT/R'I)
B2Y96 _WRITE!LP391Kg) XSsRACTI»TS*THETAISKRI(TI) e
BoY7 G1lP8 FORMAT(F1He29F10e2sFlOeld aF1e2yF1G.59F16.2)
p2yg DX'I) = SK = 1.0DY
goY9 ¢ REINITIALIZE ANGLE AND INDEX
@Bz g 1 =1 +1 ) o
B3vi ALPHT = RFAC*ALPHT
8312 ALPH _=_P1/2.80Y = ALPHT e
B33 IF'XS = XMAX) 1550 sl6dids16845
g3ny 1558 COMNTILUE . -
B35 CHECK THAYT IMCEX DOES NOT BECOME TQO GREAT
a306 _IF (I = u48) 14PG,14G",160840
G397 165 1 = I =~ 2 .
_B3%g ¢ FIT POLYNOMIAL WITH X AND K COEFFICIENTS
$izng 1658 CONTIHUE
B3l CALL HCRETIRsDX 1 TSCI1sMORD) -
5341 ¢ ' CUTPUT CURVE FIT COEFFICIENTS
_B3r2 0 DTSC(Y) = OTSCUL)Y 4 3B et _
B33 WRITE (LPs9lfig) ZE9ZR:(IIs0TSCI(ITI)»1Iz1sMORDYL)
_ 83 IFLUSTER) S58017¥0p,2 a8 e L -
#zls 1766 COMTI(.UE
H3ig GO 25 12153 i B}
8347 SAEVE(TI) = RTSCLI)
_23'8 25 CONTILUE _ . S

g3 9
G-

CWRITENCHESE)Y
L4ves FORMATL/D! LCEPTH OF PECEIVIR 270/

1 i CENT: R MEGATIVY MNUMETR IF ANOTHER SET OF™
-2 MOCCEFRS TG MOT CHESIRED) -7) —_ -
"3 READINIs*) ZR
4 IFLZRY 195,11 281003 i
<5 1956 CONTYi:UF
5326 ... DIscli) = 1«3 S B
5327 DTSCI2) = 243
#3238 DISCL3) = Heg _
8379  2¥3F CONTIfUE .
@35 IFLISSwWily)) 2817 "Es7: ¥ L
B351 2818 CONTINRUE
o B3r2 0 IF'ZB =~ ZUJS)) 2BI4,L81 sz
£333 2812 CONTINUE .
B354 Z21JS) = 2JS -
#3955 C(JS) = CJS

L

33357

__B328

£359
13

"5HAE FORMAT(I5)

2vly

CONTIHUE
NPT = 4
WRITE!NPTs5EEB) NSV

DO 45 T1=1,4MSV

34l
prup
0343

18]

"~

Cl1) = Ctr)71gvg.
WRITEYNPTs5¥4G) Z1T)sC(I)
FORMAT (cF1¥ ey
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B34y 4% CONTIMUE
_ B35 57460 FORMAT(3E2L+1:) _
P36 WRITEINPT»S¥68) (SAVE(J) 9JU2143)
B347 WRITEINPT 58608 (DTSC(J!sJZ1435)
p3ug WRITEINPT»5%68) (DTRC(J)sU=1,3
3419 7808 CONTINUE —
B30 SToOP
A3s1 9163 FORMAT (///28H CEERP TO _CEEP DEPTH = sFlBe.2/ e

B352
Bz>3

1 ISH ADK(sI2+3H) =sElt.7) !
9316y FORMAT(///21H CEEP TO SKHALLOW ' sF1@e293H TQ3F18e2s7H 1/

B30y
8395

4 (SH ASK(2I2»3H) =z»gl14,.,77)
9186 FORMATI(3E12.5) _— e e e e
137 FORMAT(///5Xs1HX 39K +2HSR 19X s 1HT s X, EHTHETASX s 1K OX s 1HR)
9109 _FORMAT( /" ARITHMETIC MEAN_SOUNMD VELOQCITY = "» Fi2-4) _. .

g35g END o
_rs  NO_ERRORSY _ ) ) ) -
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PAGE ©p@l XDOS = FORTRAN IV COMPILER
gpr1 ¢ CURVE-FITTING SUBROUTINE FeKeKEYTE (WeH.04Is) 12TH MAY 19gh
Pgh 2 SUBROUTINE HCRFET (X Y3CsMsMCURV) L
ppv3 ¢ VERSION FOR HEWLLTT - PACKARD
gguy ¢ THIS IS A CUT-DOWN VERSION GF SUBROUTINE CRVET
gpus ¢ DONE TO SAVE ROOM
Bagve ¢ DONE _BY Me HUNT MARCH 1g/4
gav DIMENSION X!1)9y(1),C(1)
sge g DIMENSION A'SHE), AP {246}
dg¥g ¢ M IS COEFF INDCTRS L=1 1§ SPCL ROUTE INDCTR FOR Y= cl1) onLy
G.gl M= 3
pEly MC = M + 1
ggi2 ¢ M_IS ORDER OF COEFFICIENT MATRIX _ o
8813 ¢ MC IS J NUMBER OF Y Col UMmN
_Bell € ZERO_ALL _ARR:iYS - _ . -
AEls DO 2 1=1M
rplé clry=¢,.5
Epl7 DO 2 J=z=19uC
_Lgis . A(IsJdlzp.ed e
iig 2 AP TsJ) =5
Z 0 N - o - o
A IS COFFFICIFMT MATRIX
AP LA _PRIME! IS AUXILIARY MATRIX —— -
Cld)yJz1sM ARE COEFFICIENTS OF A'TIsd)s ANC COF THE INCEP. V/RISGLE
_ 1,7-_1[“CR_?,','_J . . - e e e e
B0 18 Uz M i o _
IXF = U4 INCR

B0 18 JuTisn
18 A(I’UJ:“I»J)DX(J')+*IXP
CGANNOT IRCLUDE J=1 SINCE MY ZCRO TG _pE_Z.PO MiT ALLOWEL
DO 19 I‘/’“

CINCRzIMNCR+L e e e
< DO 19 gzi1,pm
ﬁapu IXP=U+* INCR o
fipgds DO 19 JJdz1lsp
w:f’ﬁ e A AT AT Y)Y X (V) A TXP -
gp=7 DO 2d Juz1i,yN
JBE2B 28 ALISMC)zAL1aMCI+Y ) e
ggl29 DO 21 I=z25M
gpH L IXpo1=-1
pad DO 21 UJdsilsh
Bpt2 21l A(I,“C)-A(I'MCJ+Y(JJ’*X(JJ’**IXP, o o ’
“au3 c THIS FILLS ARRAY. MOW SOLVE FCR C(J’ Ey CROUT RELUCTION
JBEYG 0 DO 22 1214M e B i
#ghs 22 APIIS1)=A(Is1)
Hpi 6 DO 23 J=2sMC _
aguz 23 APY1,J) = AUl Ul/Al11)
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ppghis DO 28 J=Z2sMC .
_Bp49 DO _28 1z2.M_
gpo g G-=B.8 : L
_Bg>1 IF _(I=J) . 26324224 e
ago2 24 MA = J-1 -
gags3 DO 25 Kz1sMA
Bp-y 25 S=S+AP(IK)PAP K eJ)
Bps s APVTIsg) = AlIsJ) = S
gpo6 GO TO 28
. Bpgo7 26 MA = 1=1
gp>8 DO 27 Kz=1lMA
ggnag 27 SzS+APLTIKIAAP K J)
ppob APYIsJ) = (A(IsJ) =S)/AP(INT)
_gpel 28 CONTIIIVE - :
ppe2 CI{M)=ZAP (M MC)
_bpb3 DO 3B _I=2sM

o ﬁh q 5 = Gael
£peh MASt =1%2
get6 MEZMA=]L
_bgt7 .. D029 KzMAsL e T -
aJRe8 29 S=S+AP(MBKI+CK)
B CMRY I AP UMHE e ) T S e e .
RETURN
ENLC
4 NO ERRCHGH
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YPe1 )
INTERPOL ATION FUNCTIOM

WRITTEN BY HANK PERKINS

FUNCTION YPIXP3XsYsN!

DIMENSION X'1)sv (1)

YO!XCGex 1Y ix2sY2) = (Y2*{X0Q=X1)=Y1%(X0=X2))/(X2=-x1)
IFIN~1) 1Ps13°20 .

CONTINUE

YP = Y(1!

RETURN
CONTINUE

IFYXP=x{1)) 2ZBe3744b

CONTIMUE ‘

YP = YOIXPax(11sY!1)ax(2),Y(2))

RETURN
 CONTILUE - et e et e
IFIXP=X(N)}) 63357 95F
COMT.ILUE
YP 2 YQUXPsX(N=1)3Y(N=1)sXIN)sY(N))
LGRETURN e = S

CONTINUE

DO 78 I=laN___ U UV o
IFIXP=X (1)) 8g¢enis7~
75 COMTI:UE

85 COMTIIUE

J = 1

L

5

& _J_E _— N
7 YR 2 YO XPsX(J=1) oY (U=1) Xt y)sY (J))
8

]

Ty T e

HEANE SN NN N AN

_5BE8 L RETURN ———
iz s END

_*4 NG ERRORSH e - . .
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APPENDIX B

DETECTION PROBABILITIES OF WOODS HOLE OCEANOGRAPHIC INSTITUTION

CYCLE COUNTER

The detection probabilities of the Woods Hole Oceanographic
Institution cycle counter can be calculated by considering the
problem of detecting a sine wave in the presence‘of Gaussian
noise. This treatment is sufficient because the estimate of
phase is not based on the optimum estimator

59 (t)

sy (t)
where sl(t) and s2(t) are the quadrature components of the
input to the phase detector; the estimate of phase is based
on the signs of sl(t) and sz(t). The detectioﬁ probabilities
of the sine component will be developed for illustration.
The corresponding probabilities of the cosine component can
be developed in a similar manner with identical results.
Consider a sine wave in the absence of noise
s(t) = A(t) sin g(t). -
The amplitude A(t) varies slowly compéred with the phase #(t)
and can be considered a constant. The phase can be assumed
uniformly distributed

p(@) =1/2w ,|g] < ™
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The probability density of the signal p(s) is therefore given
by the expression:

‘p(s) =

The phase detector output in the presence of noise will be

denoted by z(t) = s(t) + n(t) where the noise is normally
distributed:
2
1 —n2/2 dn
p(n) = e 6; = r.m.S. noise voltage.

V2w o,

The probability density p(z) may be found by the convolu-
tion of p(s) and p(n) assuming statistical independence of the
two processes. This leads to the following integral for p(z):

2
1 —n?/2 OI: 1

e

1 .
= —— 5/
\ET O w [L- [ an

p(z)

This integral has several representations (see 01l'shevskii,
1967) but is approximately a constant near z = 0 for AAj;>> 1.

Figure 8a illustrates the shape of this probability density

N

as a function of the parameter q2 = '5%?2 .

o]

The probability of error is a weighted sum of the proba-
bilities of false alarm P(FA) and false dismissal P(FD). The

cycle counter decides that the signal is positive when the

voltage exceeds some threshold Vip > 0.. Similarly the decision

-86-—



that the signal is negative occurs when the voltage is less
than some negative threshold -Vp < 0. A "false alarm" occurs
when the signal is below the threéhold and the signal plus
noise exceeds the thresholds:

|z(t)|'> VT given ls(t)l < Vo
The probability of this event, P(FA), is approximately the same
as the probability that the noise will exceed the thresholds

in the absence of signal. This is represented by the shaded

area in Figure 8b and is given by the expression

oo 0

P(FA) =~ 2 p(n)dn = 2 —_exp (=x%/2) dx .
V _VT V2TT _
T /O’n

A false dismissal occurs when the signal is above the
thresholds but the signal plué-goise is below the thresholds:
Iz(t)l < Vg given |s(t)|> Vp. The probability of this event
P(FD), is approximately the same as the probability that the
signai rlus noise is below the thresholds for any signal. This
is represented by the shaded area in Figure 8c and given
by the expression

VT
P (FD) Qﬁv/r p(28z.

—.VT

In the region of interest p(z) can be approximated by a constant

Pl2) s == AL, Vg

<< 1,
A A .
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plz) oy

O

pln) oy

p(z) oy
NN
|

/P(FD)

I/N |

-8 -6 -4 -2\ 0 /2 4 6 8 z/0,
iV-l-/O'n

Figure 8. Probability Densities of Signal Plus Noise
p(z) and noise p(n).
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The probability of false dismissal can then be found

5 2 (Vgp/ O p)
P(FD) ~ VT/ = - .
TR /0

It can be seen that an increase in the threshold voltage-
to~-noise ratio VT/CT'n will increase the probability of false
dismissal and decrease the probability of false alarm for a
given signal-to-noise ratio. Since the losses assigned to
these errors are approximately equal, the optimum threshold
setting for a given signal-to-noise ratio will satisfy the

following equation:

P(FA)
=1
P(FD)
or eguivalently » .
by -X /2 Vv (T .
f Leme  ax = —LZR (10)
\ ™ (A/00)
T/CB n

Tbe expression on the left hand side of equation (l0) is a
tabulated function of VT/th and can be solved by trial-and-
error for various values of the signal power-to-noise ratio
S/N = A2/2CT52 (see Table 7).

The probability of error Pe in determining the sign of the
signal is given by the following expression for the optimum

threshold'setting:

P, = 1/2 [P(FD) + P(FA)} = P(FD). (11)
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TABLE 7

' 2
10 log S/N % P
og S/ T /O; o O;‘n
12 1.40 .158 . 366
18 1.67 .095 .208
24 1.92 .055 .116
30 2.16 .031 .064
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An error in the cycle count, i.e. the number of quadrants
of phase change between two successive cycles can be caused by
an error in either or bofh of the quadrature components. When
an error (false alarm or false dismissal) occurs in only one
componen£ the éycle count will be in error by 1 quadrant.

When an error occurs in both componeﬁts the-cycle count will be
in error by +2 quadrants. The following probability of cycle
count error can be calculated from the probability of error P,
previously determined by equation (11):

P(e=0) = (1-p,)?

P(e=+1) = 2P_(1-P,)

2

P(e=%2) = Pe ,

The variance in the nth sample can be calculated as follows

2
T

2 2

il

p(e=0) (0)2 + P(e=+1) (1)

2
= 2P, (1-P_) + 4Pg° = 2P (14P,).

+ P(e=%2) (2)

The variance of error in the measurement of accumulated phase
change @y after T seconds is
2 2

N
2
EARPAARLT A

n=1 n

Tf

Il

where fg is the sampling frequency. For a sampling frequency
of 10 Hz and an interval of 1 hour = 3600 seconds the standard

error in the measurement of ﬁT is O, ~ 190 T, .
. gT : gn
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Table 7 lists the values of Pe’ Céﬁf and the optimum
threshold-to-noise ratios for various signal-to-noise ratios
typically encountered in practice. The variance is calculated
assuming that the bias is zero or negligible. This assumption

is valid when the velocity relative to a beacon is small.
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APPENDIX C

SAMPLE CALCULATION OF SIGNAL-TO-NOISE RATIO

In general the signal-to-noise level will decrease as the
range between a sound source (e.g. cw beacon) and a receiver
(e.g. ship transducer) increases. A sample calculation is
made to demonstrate the realtionship between signél—to—noise
ratio at»ﬁhe source (S/N)slthe range between souxrce and receiver
R, and signal—ﬁo—noise ratio at the receiver, (S/N)r. The
signal level of the CW beacons in the present configuration of
the pulse-Doppler system is 166 dB (re: 1vPa). A typical
- ambient sea noise level in sea state 3 is 44 dB/Hz (re: 1 sza)
or 54 dB/10 Hz (see Urick, 1967). The signal-to-noise level in
a 10 Hz band is therefore 112 dB. Transmissioﬁ losses are
assumed due to spherical spreading and attenuation. The loss
due to spherical spreading is 20 log R where R is the range in
meters. The attenuation of a 13 kHz signal is approximately
1 dB/km. The signal-to-noise level at the receiver (S/N)r is
therefore: 10 log(S/N)r = 112 dB - 20'1log R - R x 10—3. For
a horizontal range of 10 km and water depth of 5 km the range

between a bottom-moored source and a surface receiver is

approximately
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1/2 X lO3 = 11.2 x lO3 m

R = (52 + 102)
The (S/N)r in decibels is therefore

10 log(s/N), = 112 - 81.0 - 11.2 = 19.8 dB.
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