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Abstract 

The initial water impact of a free-falling object is primarily related to the fluid forces on the wetted 
surface of the object. The shape-dependent added-mass coefficients express the fluid forces integrated 
over the body, and thus physically represent the additional inertia of water accelerated with f ie  body. The 
field of hydrodynamic impact has been primarily concerned with estimating the added-mass coefficients 
of various types of bodies for different water impact types, such as seaplane landings, torpedo drops, and 
ship slamming. 

In this study, a numerical model has been constructed to estimate the hydrodynamic impact loads of a 
EMUS dropped in free-fall from a helicopter in a low hover. Developed by von Alt and associates at 
Woods Hole Oceanographic Institution, the REMUS (Remote Environmental Monitoring Units) is a 
small, man-portable, torpedo shaped Autonomous Underwater Vehicle (AUV) that is normally operated 
from small boats for a variety of scientific, industrial, and military applications. Finite-element method 
software and computer aided drafting tools were used to create a simplified model of E M U S  without 
fins, propeller, or transducers. This axisyrnmetric REMUS model was cut by a flat h e  surface at various 
pitch angles and submergence values, and a panel mesh of the wetted surface of the vehicle was created 
using an automatic mesh generator. Surface boundary conditions are enforced for the fiee surface by 
reflecting the body panels using the method of images. Each panel mesh was evaluated for its added- 
mass characteristics using a source co~loeation panel method developed by Dr. Yonghwan Kim, formerly 
of the Vortical Flow Research Laboratory (VFRL) at the Massachusetts Institute of Technology 
Experimental impact tests were conducted with a specially-instrumented test vehicle to verify the initial 
impact accelerations. 
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Chapter 1 

Introduction 
1.1 Statement of Problem 

This study aims to calculate the accelerations associated with the initial water entry of the 

REMUS (Remote Environmental Monitoring Units) Autonomous Underwater Vehicle (AUV) 

following a free-fall drop from a helicopter in a low hover. The initial stages of water impact in 

this regime are dominated by the effect of momentum transfer fiom the impacting body to the 

water. Added-mass coefficients describe the effect of entrained water accelerated in response to 

body acceleration. This is a potential flow effect due to the body obstructing the flow. For a 

hydrodynamic impact problem, the wetted body changes with submergence, so the geometry and 

the added-mass are not constant, as in filly submerged motion problems. The effective impact 

force is thus a result of body acceleration, body velocity, and the added-mass coefficients and 

their derivatives. 

I. 1. I Background 

The Autonomous Underwater Vehicle is a valuable platform for ocean exploration. 

A W s  can be engineered in almost endless configurations to perform many diverse tasks. Free- 

swimming vehicles can perform many useful tasks, such as performing precise surveys of bottom 

bathyrnetry or hovering to take photographs of interesting features. A W s  perform repetitive 

tasks with precision and speed, maneuvering in ways that towed or tethered pIatforms cannot. 

A W s  are particularly usefbl in unfiiendly environments that are unsuitable for human divers. 

Modular A W s  use a common platform which can be configured to meet a variety of 

different mission parameters. One such platform is the REMUS A W ,  developed by von Alt and 



associates at the Oceanographic Systems Laboratory at the Woods Hole Oceanographic 

Institution (WHOI). R E W S  was designed to be lightweight, low-cost, and man-portable. 

These attributes make REMUS attractive to a broad spectnun of workers in the scientific, 

commercial, and military communities. More than 50 REMUS systems have been operated in 20 

different configurations by nine universities, three U.S. Navy laboratories, one British defense 

laboratory, and three branches of the U.S. Navy [3]. 

The U.S. Navy uses the REMUS primarily for mine countermeasures (MCM), where its 

100-meter-depth capability is well-suited to the Very Shallow Water (VSW) missions that are 

common in littoral operations. The vehicles are operated by specialized units, such as Naval 

Special Clearance Team ONE (NSCT-I), which consists of Navy SEALS, EOD divers, Marine 

Corps Force Reconnaissance divers, and marine mammals. While NSCT-1 and its predecessor, 

the Very Shailow Water Detachment, have been evaluating REMUS since 2001, the first 

wartime operational deployment of the instrument took place in 2003, when it proved to be an 

essential tool for performing surveys of the waters around Umm Qasr during the early stages of 

Operation Iraqi Freedom [3]. 

1.1.2 Motivation 

Current U.S. Navy users deploy REMUS from small boats such as Combat Rubber 

Raiding Crafts. This mode of operation limits REMUS use to potential mine danger areas that 

are readily accessible by small boats. REMUSYs torpedo shape and its small size suggest that It 

could be successfully deployed by dropping it from a helicopter in a low hover in a procedure 

similar to that used dropping a rescue swimmer. This requires the helicopter to hover at an 

altitude of 15 feet during the drop. Rapid deployment of REMUS vehicles fkom helicopters is a 

capability that will increase the range of operations from the base unit and reduce transit times to 

the objective areas. A single helicopter could support multiple AUVs to reduce search time for 

large objective areas. 

REMUS was not originally designed to meet the criteria for this type of deployment, so a 

study of the impact dynamics is an appropriate start for an evaluation of this use. For this 



method to be viable, predicted impact forces must be small enough to permit routine use without 

compromising vehicle integrity. This requires the maintenance of watertight integrity and that 

no control surfaces or internal components are damaged. The vehicle should be able to start up 

and execute its mission file as in any other deployment. REMUS was designed for criteria such 

as precision navigation, instrument payload, and mission range. These considerations create a 

vehicle less rugged than a torpedo weapon, which is deployed at higher speed and altitudes. 

Further tests will be required to determine whether the construction, control surfaces, and 

instrumentation are suitable for routine helicopter deployment. 

1.2 Previous Work 

The fundamental paper on the subject of hydrodynamic impact is von Karman's 1929 

study of pressure on seaplane floats during landing [13]. This analysis considered the effect of a 

two-dimensional wedge impacting a horizontal fi-ee surface of water. During the impact, the 

initial momentum of the descending wedge is distributed between the wedge and the water, 

where the added-mass models the effects of the water. Von K m a n  approximated the added- 

mass of the wedge as a function of depth to be one-half the flat-plate added-mass for the width of 

the wedge at the waterline. He was able to calculate accelerations for wedges of various dead 

rise angles, and fi-om these, forces and pressures. His maximum pressures agreed well with 

experimental results obtained from pressure gauges in landing floats. 

Subsequent work suggested additional corrections to von Karman's technique. Wagner's 

1932 research [14] added the effect of additional wetted area due to local increase in water 

elevation. Excellent literature reviews of the subsequent work have been written by many 

authors, including Szebehely [12] and May [4]. Payne's 198 1 paper I l l )  suggests that von 

Karman's original formulation agreed more closely with later, more reliable experimental data 

than that of Wagner and subsequent authors who based their work on his corrections. Boef s 

papers on the impact of fiee-fall lifeboats El, 21 reviewed theory, provided detail using von 

Karman's method for horizontal impact of circular cylinders, and developed a method for 

computing the two-dimensional impact forces and trajectories for a free-fall lifeboat with three 



degrees of fteedom. Finally, there exist numerous analytical studies of simple geometries, such 

as Miloh's work on the added-mass characteristics of a sphere impacting a free surface [6,7, and 
9 

81. Such studies are usefhl as a validation for numerical techniques which can handle more 

complicated geometries. 

1.3 Overview of Thesis/Scope of Work 

This thesis describes the development and validation of a numerical model to predict the 

accelerations associated with the initial water entry of a REMUS A W  vertically dropped fi-om a 

helicopter in a low hover. Chapter 2 will describe in detail the theory behind and development of 

the numerical model. Chapter 3 will describe the validation of the model against known analytic 

solutions and present numerical results for the REMUS shape. Chapter 4 will describe the 

experimental setup, the characteristics of the REMUS test vehicle and a comparison of numerical 

and experimental resuIts. Chapter 5 will present summary, conclusions, and recommendations 

for further work on this topic. 

Performing live helicopter drops of an actual REMUS vehicle as a proof of concept or to 

collect data about the impact is beyond the scope of this thesis. This work intends to perform an 

initial analysis for the purpose of better defrning its dynamics prior to any official Navy test 

program to qualify this deployment method. 



Chapter 2 

Numerical Modeling 
In this chapter I will show the development method for calculating the water impact of a 

fiee-falIing REMUS. This technique uses the momentum formulation of the generalized von 

Karman method with the heave added-mass coefficients calculated numerically using a source 

collocation panel method. A method is demonstrated to automatically generate panel meshes 

using FEMLAB. 

2.1 The Generalized von Karman Method 

Von K m a n  was the frrst to propose a method for calculating the forces associated with 

the impact of water entry. His 1929 paper [I3 J Iooked at the specific case of a seaplane Ianding, 

simplified as a two-dimensional wedge in a flat impact. He then applied conservation of 

momentum to the body mass and the added-mass to calculate the maximum pressures associated 

with the impact. The generalized von Karman method appIies these principles to other shapes, 

without the corrections added later by Wagner El41 and subsequent authors. There are several 

reasons to exclude the successive corrections. First, it has been suggested by Payne [1 11 that 

these corrections are incorrect and cause an increase in the error of the predicted forces. ' second, 

regardless of their merit, the methods proposed by Wagner and the subsequent authors add layers 

of complexity that are difficult to execute for the more complicated geometries that will be 

addressed here via numerical methods. 

Von Karmm developed a formula for the added-mass of a wedge shape by using a simple 

analytically understood shape, the two-dimensional flat plate. The width of the flat plate 

increases with submergence due to the angle of inclination of the under surface of the float. The 



determination of the added-mass of the wetted portion of the shape as it proceeds into the fluid is 

the most important problem in this technique. The problem of computing added-mass near the 

free-surface is a much more complicated problem than added-mass fblly submerged and far fkom 

walls or other interfaces. The fiee-surface adds an additional boundary condition with the effects 

of waves and splash. The von Karman method considers large impact effects, so a fust order 

approximation replaces the free-surface with a constant equipotential flat surface. Splash effect, 

incoming wave diffraction, and wave radiation are considered higher order effects, which are 

neglected. 

2.1.1 Momentum Considerations 

The dynamics of the impact of an arbitrarily-shaped body are governed by momentum 

principles. Unless otherwise specified, the coordinate system for the following discussion is a 

right-handed Cartesian inertial system (x, y, z) centered on the free-surface with z positive 

upward as defined in Figure 2.1. In the equations of motion, z refers to the position of the lowest 

point of the body according to this system. The indicia1 notation wiH also be used as needed, 

where dots denote time derivatives: 

Figure 2.1 : Vehicle referenced to inertial coordinate system 

U3: Heave 



The following subsection is after Boef El], with new notation. He states, "Hence by 

treating the impact at water entry as an elastic collision between the entering body and its added 

mass, we can derive its motion without cumbersome fluid-dynamical calculations." The initial 

momentum of the body just prior to impact, mio, is at subsequent time-steps divided between the 

body and the fluid: 

where m is the body mass, io is the initial vertical impact velocity, and a33 is the heave added- 

mass coefficient of the body in the presence of the free-surface, derived below; see subsection 

2.1.2. The momentum transferred to the water during impact is a& the hydrodynamic inertia 

felt by the body during immersion. The force associated with this momentum transfer is 

which can also be expressed as 
. 

*a33 F~~ ( t )  = - ( ~ ~ ~ 2 )  - (ci33i) = -a33= --(is . 
dz 

This force is the primary force at work during impact. The effects of gravity and buoyancy are 

neglected, as by von K m a n  in his original treatment. The generalized equations of motion for 

the fiee-fall hydrodynamic impact can be expressed 

mi' = -mg, ~ ( t )  > 0 (2.1.6) 

It follows that the acceleration of the body following impact is 

and the total impact force experienced by the body is 



2.1.2 The Definition of the Added-Mass Coefficient 

Large impact problems are dominated by inertial effects; therefore, it is appropriate to 

treat the fluid as ideal (inviscid) and irrotational. The following is a summary of chapters 4  and 

6 in Newman's Marine Hydrodynamics [I 01, which deal with potential flow and the defmition of 

added-mass in an unbounded fluid and in the presence of a fiee-surface. Equations in this 

subsection are from that text, expressed in my notation. 

Newman's Chapter 4 describes potential flows, or ideal and irrotational flows in which 

the velocity field is expressed as the gradient of the scalar velocity potential 4: 

Velocity potentials must satisfy the Laplace Equation, 

which expresses continuity, or the conservation of fluid mass. The simplest potential flow is a 

uniform stream with velocity components (U, V,  v, represented by 

Another simple yet important potential flow is the source, which is called a singularity because it 

satisfies the Laplace Equation at all points in the domain except at its location. The following is 

the equation for a source of strength q located at source point (& q, 0 at radius r fiom field points 

(x, y, z) in a three-dimensional fluid domain: 

4 # = - - = -  4 (2.1.13) 
4nr 4 s ~ 5 - x ) ' + ( ~ - y ) 2 + ( s - s ) l  

Since both the source and the uniform stream independently satisfy Equation 2.1.1 1, adding them 

together also provides a solution, in this case a Rankine half body. The half body has a dividing 

stream surface which separates the outside fluid domain from the inside domain, The inner 



domain contains the source singularity where the Laplace Equation breaks down. The external 

domain represents the flow of fluid of a uniform stream around a body obstructing the flow. The 

Rankine ovoid is a simple closed body that can be represented by the addition of another source 

downstream and inside the inner domain, with equal strength but opposite sign (a sink) to the 

fist  source. In the limiting case as the distance separating the sourcelsink pair goes to zero, the 

resulting ovoid approaches a sphere. The sourcelsink pair becomes a new singularity, the dipole 

or double source, 

4n (x2 + t2 + z2) i  
in the limit as the distance a between the sourcelsink pair goes to zero (in this case along the x 

axis) while the product of their strength and the distance between is kept constant, so that 

SinguIarities of varying strengths may be combined in a volume to represent flow past more 

complex body shapes. Details of the external flow can be calculated from this composite 

velocity potential, along with the resulting forces and pressures acting on the body. 

Newman's Chapter 4 presents the derivation of the added-mass coefficients in terms of 

hydrodynamic pressure integrated over the general body surface and an unbounded ideal fluid 

domain. Bernoulli's equation is written in terms of q5: 

Where p is the density, p is the pressure, and the summation convention for repeated indices 

applies. Equations for the force and moment on the fully submerged body are written in terms of 

integrals over the body surface using Bernoulli's equation: 



where SB is the surface of the body, r is the position vector, and n is the outward normal vector 

on the surface of the body (directed into the fluid domain). For a reference fkame in which the 

body is moving in an unbounded fluid, these equations are cast in the form 

 ere E ~ W  is the alternating,tensor and the indicia1 notation applies for the velocity vector U and 

the rotation rate vector !2 

and 

is the six-by-six symmetric added-mass matrix for a generalized three-dimensional shape fully 

submerged in an ideal, inotational fluid far &om boundaries. The importame of this derivation 

for the present work is not the equations for force and moment, but the concept of added-mass, 

which represents the weighted integration of fluid particles accelerated with the body in response 

to body motion [lo]. Thus, the added-mass coefficient is a generalization that expresses 

potential flow effects of interaction between a body and the surrounding water purely as a 

fbnction of body geometry. 

Newman's [I01 Chapter 6 derives force and moment equations similar to those above, 

accounting for the effects of hydrostatics and surface wave difiaction and radiation near a fiee- 

surface. The parts of interest to the impact problem are the force and moment which are 

proportional to body acceleration and velocity. 



The added-mass coefficient, a ~ ,  and damping coefficient, by, are functions of the wave 

frequency, w. The added-mass coefficients a g  and mu are different but can be related. The 

impact problem involves impulsive motion, so the free-surface boundary condition becomes 

as inertia forces dominate gravity in the limit as o + a. In this high frequency limit, the 

potentials must be odd in z, and the vertical modes, heave, roll, and pitch, will correspond to a 

rigid double body in which the wetted portion of the body is reflected about a fixed horizontal 

plane using the method of images. The double body is then evaluated as for the fully submerged 

added-mass coefficient, mg, and the desired free-surface coefficients are 

and 

The remaining ao, id = 1,2,6 are not related to the double body, and will not be calculated in the 

present work, This analysis uses only the heave added-mass coefficient, a33, in its calculation of 

forces and accelerations due to impact following vertical fiee-fall. Since the wetted portion of 

the body changes as a function of submergence and orientation as it enters the water, the double 

body and the coefficient a33 must be calculated at each step of the process. 

2.2 The Collocation Source Panel Method Formulation 

Added-mass coefficients are analytically known for a small number of body shapes. 

Analytical solutions are generally limited to simple geometries, although solutions are sought for 

complex shapes such as the present case. Two-dimensional shapes have proven useful, such as 

the flat-plate in von Karman's original solution. Strip theory has been a popular tool in naval 

architecture when the body is slender and the two-dimensional added-mass coefficient is known 

for the slice of the body represented by each strip. A fully-submerged REMUS vehicle could be 



so represented, but the technique fails for the complex double body shapes that result from 

intersecting the body with the flat free-surface at a range of pitch angles and submergence 

values. Another method is needed to calculate the hydrodynamic effects of complex body 

shapes. 

Complex double-body shapes representing free surface penetration require a similar but 

more intricate treatment. The previous section discussed a method of expressing a closed body 

as a sum of elementary velocity potentials, with the singularities separated from the exterior flow 

by a dividing stream surface. A better method is to cover the surface of the closed body with a 

continuous distribution of singularities of varying strengths. This is the approach taken by a 

collocation panel method, which divides the body geometry into a number of panels in order to 

discretely solve a system of equations and frnd the strength for the distribution of singularities on 

each paneI. The panel method used for the present work was written by Dr. Yonghwan Kim of 

the Seoul National University, formerly of the Vortical Flow Research Lab at the Massachusetts 

Institute of Technology. The description of the method is courtesy of notes provided by Dr. 

Kim, with additional insight provided by class notes from Professor Jerome Milgram's course 

13.024 Numerical Marine Hydrodynamics at the Massachusetts Institute of Technology [ 5 ] .  

The problem is set up as follows: a body enclosed by the boundary SB exists in an 

unbounded fluid domain with field points defined by the coordinate x = (x, y, z), and points on SB 

are defined by  the coordinate 5 = (r, 7,r). The normal vector, n, points into the body (out of the 

fluid). Flow in the fluid domain is characterized by the total potential 0, consisting of a uniform 

flow of velocity Uplus a perturbation potential 4, caused by the presence of the body. 

Elementary source singularities 

are distributed on SB with strength a@, such that 



where q5(x) is the velocity potential of the fluid as a result of the presence of the body. If the 

body is then divided into N panels and the source strength is assumed constant over each panel, 

the discrete form of Equation 2.2.3 is 

where oi is the constant sohce strength of the Zh panel. 

a4 
The normal derivative of the fluid velocity,x, is known fiom the no-flux body boundary 

condition, which states that no fluid passes through the surface, so the normal velocity must be 

zero on the surface: 

where is the unit vector in the x direction. The discretized boundary value problem can be 

written as 

This condition is enforced at the N collocation points, chosen as the centroids of the panels and 

resulting in an N x N system of equations that can be solved for the sources strengths oi. 

Once the values of Ui are known, properties of the fluid flow can be calculated at any 

external location by summing the contribution of each panel. The added-mass coefficients are 

easily calculated this way, where Equation 2.2.8 replaces Equation 2.1.23 in the discrete case: 

The output of the panel code provided by Dr. Kim is a six-by-six matrix of added-mass 

coefficients in units of L ~ ,  L4, and L', where L is a length unit. These are converted to units of 

mass and products and moments of inertia by multiplying by the density of water, p,, resulting in 

units of M, ML, and MZ2 (where M is a mass unit). Each bracketed expression in Equation 2.2.9 

is a three-by-three dimensionally-homogeneous block. 



2.3 Panel Generation for Generalized Body Shapes 

The development of the panel method above was justified by the complexity of the 

double body shapes needed to model hydrodynamic impact. However, before these methods can 

be used the body shapes must be accurately transformed into panel meshes. The generation of 

panel representations of various shapes is one of the primary tasks of the present work. 

2.3.1 Properties of a good panel mesh 

Prior to the discussion of how mesh generation was accomplished, it is necessary to 

review the properties of a good panel mesh. These properties result from the requirements of the 

panel method in use. In this case panels 

1. may be defined by either three or f o u ~  nodes, 

2. should have a fairly uniform size (large size discrepancies result in numerical errors), and 

3. should have an aspect ratio near unity (long, thin panels result in numerical errors). 

~ddi t ioial  properties are necessary in order to represent double bodies as appropriate for an 

impact calculation by the generalized von Karman method; panels 

4. should cleanly represent the surface cut by the free surface, 

5. should take advantage of body symmetry, especially about the free d a c e ,  and 

6. should be automatically generated as a function of submergence. 

The last property was added because a large number of panel meshes are required to resolve the 

relationship between a33 and submergence and apply the equation of motion derived above. 



In order to satisfy these guidelines, the author used a combination of the commercial 

software packages MATLAB and FEMLAB to generate panel meshes and run the panel code. 

FEMLAB is a finite eIement method program that interfaces with MATLAB to extend 

MATLAB7s differential-equation solving capabilities to three-dimensional partial differential 

equations. FEMLAB was not used in the finite element method sense for which it was designed. 

It merely provided a useful tool for generating high quality panel meshes in a form compatible 

with MATLAB, in which all other programming was performed. 

2.3.2 Modeling technique using FEMLAB 

FEMLAB uses a Graphical User Interface (GUI) that aIIows the user to define geometry 

for solving partial differential equations models in one, two, or three dimensions. For three- 

dimensional geometries this is a boundary modeling technique in which a solid is defined by its 

boundaries. Models may be created using a variety of Computer Aided Drafting (CAD) tools 

within the FEMLAB interface. There are a number of simple geometric objects, such as blocks, 

cones, cylinders, ellipsoids, and spheres, which can be manipulated and combined using Boolean 

operators to create composite solid objects. These tools were particularly useful for numerical 

validation of the panel code results for simple geometries like the sphere or spheroid for which 

analytical results exist (see section 3.1). Additionally, other objects can be created by 

manipulating curves and line segments on a two-dimensional work plane and extruding or 

revolving the two-dimensional shape to create a solid object. A combination of  these techniques 

was employed to create the necessary double body geometries. 

The construction of the REMUS model wilI be described to show the genera1 process 

used to create panel meshes. Other geometries can be handled in a similar way. The E M U S  

model was created by drawing a curve on a work plane to represent an offset table of the hull 

radius fiom the longitudinal centerline, then revolving about the centerhe to create the basic 

torpedo hull shape without any of the protruding fins or transducers. The REMUS shape consists 

of the following sections: a spheroid nose, a cylindrical parallel midsection, and a tail section of 

Myring-B shape [9].  Figure 2.2 shows the profiles of these three sections. The eHiptica1 nose 



- - 

and rectangular midsection profiles were simply created, but the tail section (highlighted in gray) 

presented a greater challenge. 

Figure 2.2: FEMLAB work plane showing REMUS profile in parts 

The Myring-B shape is defined by an equation of 2nd- and 3rd- order in the longitudinal 

variable, with coefficients determined by the maximum hull diameter, length of the tail, and the 

tail semi-vertex angle. It is not possible to create a curve parametrically in the CAD 

environment, so a number of points were plotted and a 3rd- order rational Bezier curve was used 

to create a continuous curve approximating these points fiom the midbody section to the end of 

the tail. The 3rd-order Bezier curve is the highest order curve available in the FEMLAB CAD 

environment. Once the entire profile is created, the parts are combined using the Boolean union 

operator. The next step is to revolve the profile about the longitudinal axis to create a solid 

geometry object, as shown in Figure 2.3. Note that the resulting body is divided into a number 

of subsections. There is an edge dividing the nose-, mid-, and tail-sections, and each of these 



sections is subdivided into four quadrants. These subsections are important both due to their 

symmetry and because they are related to one of the failure modes, (see subsection 2.3.3). 

Figure 2.3: FEMLAB 3-D solid model of REMUS 

If fhe model construct is translated such that the origin coincides with the body center of 

mass, the resulting panel mesh can be input to the panel code to calculate the six-by-six 

symmetric added-mass matrix for the fully submerged body in the body-centered coordinate 

system. However, the goal is to automatically generate panel meshes for surface penetration, 

which is more complex. Free-surface effects can be modeled by performing additional 

operations prior to mesh generation: the body can be moved or rotated in the three-dimensional 

environment, and Boolean operations can be performed on the solid models. A block of 

appropriate size can be defined with a top surface at z = 0 to represent the constant flat fiee- 

surface assumed by the von Karman method. The body can be rotated to the desired impact 

angle and translated to the position of desired submergence. The wetted portion is isolated by 

performing an intersection operation on the body with the block representing the mass of water 

below the fiee-surface, as shown in Figure 2.4. It is possible to continue the manipulation in the 



FEMLAB environment to produce the ~equired double body. Because the body is axisyrnmetric, 

a double body may be created by rotating a copy of the cut portion and merging it with the 

original. This method tended to cause numerical errors in FEMLAB's handling of the object 

boundaries and internal mesh routine, so it was abandoned in favor of manipulation in 

MATLAB. 

Figure 2.4: FEMLAB model of REMUS at -45 degrees, partially submerged, before and after intersection 

The body is cleanly cut by the flat fkee-surface, and eight of the original twelve 

subsections remain, plus one additional subsection for the plane of the fiee-surface. FEMLAB 

can create a mesh of the submerged portion of the model representing the wetted surface of the 

body. The author used the predefined mesh sizes available fkom the Global tab of the Mesh 

Parameters menu in the GUI. The predefined mesh sizes control the following parameters: 

maximum element size scaling factor, element growth rate, mesh curvature factor, and mesh 

curvature cut 08 These parameters control how element size changes from one element to 

adjoining elements in response to local curvature. The reader with access to FEMLAB is 



referred to the section "Creating Meshes in 3 D  in the s o h a r e  documentation. For three- 

dimensional objects, FEMLAB creates a volume mesh by distributing vertices within and on the 

surface of the boundary model. The vertices are connected to fill the volume with tetrahedrons. 

FEMLAB attempts to optimize element quality, a measured of how close the elements are to 

equilateral. The surface manifestation of the internal volume mesh is a continuous distribution 

of nearly equilateral friangles, shown in Figure 2.5. This panel mesh meets the first four desired 

properties. 

Figure 2.5: Initial FEMLAB panel representation of partially submerged REMUS 

The mesh can be exported to MATLAB as a structure array that contains fields with the 

essentiaI information about the object. The example shown here was created using the "Coarser" 

setting, which is the third of nine predefined mesh sizes. This produced a mesh with 455 surface 

vertices and 648 boundary elements that can be extracted fkom the structure m y .  Each vertex 

is an (x, y, z) coordinate, and each panel is defined by a set of three vertices. This mesh can be 

manipulated in the MATLAB environment. 



The fifth property of interest is the symmetry of the panel mesh. Close inspection of the 

panels shows that the model divisions (see above) were respected by the panel generation, so that 

the panels of each subsection can be handled separately. Thus it is possible to take advantage of 

port-starboard symmetry as well as symmetry at the free surface. Half of the panels were 

discarded and replaced by a mirror image about the y = 0 plane. Next, the panels on the &ee 

surface cut are discarded and all the remaining panels are reflected across the z = 0 plane. Figure 

2.6 shows the resulting double body, consisting of 1088 panels. 

Figure 2.6: Symmetric double body 

From this point, the panels are translated to a reference h e  centered at the center of 

mass of the body, but otherwise aIigned with the previously described axes. The center of mass 

is a constant point determined by the mass distribution of the actual REMUS vehicle, so the 

origin of this coordinate system is often external to the volume enclosed by the panels, especially 

for small submergence values, as shown in Figure 2.7. 



Figure 2.7: Small submergence double body with origin at E M U S  center of mass 
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The sixth desired property is automatic panel generation for specified variable, such as 

pitch angle and submergence. This is possible for the above technique because FEMLAE? is 

designed to interface with MATLAB. FEMLAB 3.0 is the fvst release that does not require 

MATLAB to m, but the connection is still important. All of the FEMLAB operations shown 

above were originally completed using the Graphical User Interface. However, FEMLAB is 

capable of creating an m-file script to reproduce the steps performed in the GUI. The script can 

be edited in MATLAB, where specific values of submergence, pitch angle, and parameters like 

mesh size can be replaced by variables. Another m-file is written to specify these variables in for 

loops and run the mesh generation script and the added-mass panel code for a large number of 

variations. 

2.3.3 Known problems with the meshing technique 



Only one m-file script should be necessary for each body shape. However, this is not the 

case due to internal errors within FEMLAB that may occur when the body is intersected with the 

block representing the water mass. The script fails, and no solid model is created. Failures occur 

for very small submergence values if a block is specified large enough to fully enclose the body 

at full submergence for any pitch value, as is necessary for a general script. Specifying smaller 

block sizes for specific pitch angle and submergence values solved this problem. For each 

desired pitch angle, two or three files are created to cover the full spectrum of submergence. An 

example is listed in Appendix 14.2 for a REMUS at a pitch of -45" (nose below the horizon) for 

submergence between 10 and 46 inches, measured fi-om the lowest point of the body. It is 

necessary to call different mesh scripts using if statements, as shown in Appendix A.1. 

Appendix A 3  provides the script for manipulation of the initial mesh &om FEMLAB and for 

running the added-mass panel code. 

The second failure mode for this technique is related to the previously discussed model 

subsections (see subsection 2.3.2 above). This mesh generation technique was developed so that 

a panel mesh could be automatically generated for a specified pitch angIe and submergence. For 

any given angle, if the submergence values are spaced closely enough, at certain steps the solid 

model will be positioned such that very small portions of one or more body section will be left 

after the intersection operation with the block representing the water mass, as shown in Figure 

2.8. In this instance, one of two errors may occur. First, FEMLAB can have an error processing 

the intersection command, which causes the mesh generation script to fail in a way similar to that 

described above, where no new object is created. Alternately, a new shape may be created, but 

the resulting panel mesh may be unacceptable. Panels may not cross the edges that define the 

body subsections, but the element growth rate defines the rate at which panel size can vary 

between adjacent panels, even if they touch across a subsection edge. Thus, if a body subsection 

is too smaI1, the pane1 mesh wiI1 have smaIl paneIs in that section and grow to the specified 

maximum element size far fiom that subsection, as shown in Figure 2.9. This panel mesh has 

more panels, but because they are neither uniform in size nor uniformly distributed, they do not 

lead to a better representation of the body. This mesh violates the requirement that panel size be 

fairly uniform, and therefore causes numerical error when the mesh is input to the added-mass 

panel code. 



Figure 2.8: Body intersected too close to subsection edge 

Figure 2.9: Resulting mesh with unevenly-distributed panels 



When a subsection boundary failure occurs, no panel mesh is produced, so added-mass 

data is missing for this submergence value. The second type of error does not cause a script 

failure, so added-mass data exists for this value, but may be inaccurate. A third type of error 

occurs when a panel mesh is created that is flawed due to incorrect panel placement in areas of 

the body with high curvature. Sometimes the panel generation connects the panel vertices 

through a region of high cbrvature such that these panels cut Into the internal volume of the body 

(see Figure 2.10). Again, inaccurate added-mass data exists for this point. Visual examination 

of the panel meshes permits identification of the second and third types of error and the 

exclusion of outlying data points related to these errors. 

Figure 2.10: Flawed panel mesh 



Chapter 3 

Numerical Validation and Results 
In this chapter I 'will show the added-mass coefficients calculated by the source 

collocation pane1 code with panel meshes created by the FEMLAB mesh generation technique. 

Numerical results are compared to analytical solutions that exist for simple shapes. Results for 

REMUS are presented for several pitch angles at the end of the chapter. 

3.1 Validation of Added-mass Coefficients 

Chapter 2 showed the development of a numerical method to calculate added-mass 

coefficients for bodies of arbitrary shape. It is necessary to compare these coefficients against 

anaIytica1 results prior impact acceleration predictions based on the coefficients. Analytical 

solutions exist for simple three-dimensional solid objects, such as ellipsoids, spheroids, and 

spheres. These objects are easily modeled using the FEMLAB/MATLAB meshing technique 

detailed above. 

3.1.1 The Fully Submerged Sphere 

The simplest three-dimensional geometry is the sphere. Due to symmetry, the non-zero 

added-mass properties can be expressed by a single coefficient: 



Figure 3.1 : Four panel representations of a sphere, with 64,320, 1284, and 3784 panels respectively 

The author's goal is to demonstrate the convergence of the three numerically-calculated added- 

mass coefficients with increasing number of uniformly distributed panels. Figure 3.1 shows a 

progression of sphere panel meshes generated by f o u  of the predefined mesh sizes in FEMLAB. 

Symmetry was maximized by reflecting the panels fiom one quadrant of the initial FEMLAB 

panelization of the sphere across the three equatorial planes. Results are nondirnensionalized 

with respect to the displaced volume of a sphere and the added-mass coefficients converge to a 

value near one half (see Figure 3.2). The value for the largest number of panels (3784 panels) is 

0.509, an error of approximateIy two percent. This error is assumed to be due the discrete panel 

solution method, but it is not known how much the error could be reduced by the addition of 

more panels. Note that in the momentum formulation of the equation of motion, the dominant 

term is the effect of the spatial derivative of the added-mass. If the discretizing error is steady 

with submergence, it will have a minimal effect on the calculated impact force and acceleration. 

Figure 3.2: Convergence of added-mass coefficients of a sphere vs. number of panels 
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3. f .2 The Fully-Submerged Spheroid 

Newman presents results for the added-mass of the fully submerged spheroid, or ellipsoid 

of revolution. A spheroid can be oblate or prolate depending on the axis of revolution. Figure 

3.3 shows a range of oblate and proIate spheroids. Figure 3.4, reproduced fiom Newman's text, 

shows the three distinct nonzero added-mass coefficients as a function of the ratio between the 

semilength of the axes, nondirnensionalized respectively by the mass and moment of inertia of 

the displaced volume. Figure 3.5 shows numerical. results for the same range of spheroids, 

generated by FEMLAB using the ' 'C~arser~~ setting. Note that for these fifteen objects, the 

number of panels varies from 232 to 1560 panels. This is because more panels are required to 

accurately portray the change in curvature near the ends of the long, thin prolate spheroids than 

for the nearly spherical bodies on either side of b/a = 1. More panels are also required at the 

opposite extreme, where the oblate spheroid tends toward the flat plate. 

Figure 3.3 : Panelizations of various oblate and prolate spheroids 



Figure 3.4: Analytical added-mass of spheroid fi-om Newman [I 0 J 

Figure 3.5: Numerical added-mass results for spheroid fiom FEMLAB tests 



3.1.3 The Sphere as a function of Submergence 

The examples above demonstrate that it is possible to accurately calculate the added-mass 

coefficients of hlly submerged bodies. A more important test is whether or not the method can 

calculate added-mass as a function of submergence. Miloh analytically solved the horizontal 

added-mass of a sphere penetrating the free-surface by representing the double spherica1 bowl 

with toroidal coordinates [6, 7, and 81. In his formulation, b(t) is the absolute submergence of 

the lowest point of the sphere, and z is nondirnensionalized by the radius R: 

Miloh uses two different terms for the nondirnensional vertical added-mass coefficient: 

Note that these equations mix 

The term output33 refers to 

notation h r n  several of Miloh's papers with that defmed above. 

the heave output of Dr. Kim's added-mass code. In these 

expressions, ;lr is defined with respect to the submerged volume of the sphere. 

The next two figures show the comparison of the analytica1 and numericaI solutions for 

the coefficient A2. Numerical results were calculated for 100 evenly-spaced submergence steps. 

Note the two highlighted data points in Figure 3.9. These are the two points for which Miloh 

gives exact solutions. The point z = I is the sphere half-submerged in the free surface, 

corresponding to the entire sphere fully-submerged. This result, show earlier, is 3.6 % off the 

exact value of '/z (a smaller number of panels was used that in subsection 3.1.1, resulting in 

greater error). The point t = 2 is the fully-submerged sphere with top surface tangent to the fiee 

surface. The numerical result differs from the listed exact value of 0.35523 14 by 2.4 %. 

Figure 3.7 is displayed to show the slight noise in the coeficient C2 that was not visible 

in Figure 3.9. This noise is a non-physical result, and is assumed to be the result of representing 

the body by discrete panels. While the results may be consistently accurate within about four 

percent, this fine-scale irregularity from one point to the next can be a problem in the calculation 



of the first derivative of the added-mass coefficient. The first derivative determines the 

dominant term in the momentum-based equation of motion, expressed in Equations 2.1-2.7. The 

derivative of C2 with respect to the nondirnensional submergence is shown in Figure 3.10 fi-om 

[8] (with an error of a factor of two from [6])  and again in Figure 3.1 1 as calculated two ways. 

The noisier curve is the result of taking the fxst difference of the C2 data. The smoothed curve is 

the result of approximating C2 with an eleventh-order least squares fit of the data, accomplished 

using the MATLAB "polfit" function. The function "polyder" produces the tenth order 

derivative. 

Figure 3.6: Examples of double spherical bowl meshes 

Figure 3.7: Numerical results for coefficient C2 



Figure 3.8: Analytical results for coefficient /I2 fiom Miloh [83 

Figure 3.9: Numerical results for coeff~cient 122 



Figure 3.10: Analytical results for derivative d C 2 h  fiom Milah [8] 

(note that this in this figure dC2/dr is two times the vaIue fiom a previous pubIication [6] ) 

Figure 3 -1 1 : Numerical results for derivative dC2/dr 
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This technique performs a smoothing function that does not give undue weight to 

outlying data points. Second, it expresses the added-mass data as a continuous function (with a 

smooth derivative) over the interval of interest. This function can be evaluated at any valid 

submergence value at extremely low computational cost, compared to alternate techniques, such 

as table look-up (interpolation) methods. This is important when the data are incorporated into 

the equation of motion model, then integrated using a standard Ordinary Differential Equation 

solver like MATLAB's ODE45 function. Third, added-mass data with uneven submergence 

intervals can be used, such as when the mesh generation fails for certain submergence values, as 

described above. The major weakness of this technique is that the user must make a judgment 

about which order polynomial best fits the data. There is no theory which predicts the form of 

these added-mass curves for complex bodies lacking analytical solutions. An attempt was made 

to use the lowest order that accurately reflected the entire data set, birt fd particularly well at 

small submergence vaIues, where the majority ofthe impact effects are feIt. 

3.2 REMUS Numerical Results 

This section presents numerical results for REMUS at various pitch angles in terms of 

heave added-mass and its spatial derivative, and also in terms of integrated acceleration. 

3.2.1 REMUS Heave Added-Mass and the Derivative da33/dz 

The author calculated the REMUS heave added-mass for several values of the pitch 

angle, which is assumed to remain constant throughout the impact. Figure 3.12 shows the added 

mass for a nose-down verticaI entry pIotted against the nondirnensional submergence r, 

Z r = -  (3.2.1) 
z,, 

where z is the displacement of the lowest point of the body below the fiee surface and z,,,, is this 

displacement at h l l  submergence (when the highest point of the body is tangent to the free 

surface). Calculations were made at 100 evenly spaced points, but 14 of these points were 

rejected due to poor panel mesh properties, causing the gaps at several locations in the curve. 



The REMUS profile is shown as a reference for the different regions of the graph, The 

largest slope occurs during the nose impact at the left of the figure at small values of the 

nondimensional submergence. The added-mass curve levels while the parallel midsection is 

entering, then increases in slope once more as the tail section narrows at around t = 0.75. This 

phenomenon is caused by the increasing energy required to for flow to follow the body contour 

as it contracts and then expands again on the double body shape. This is a non-physical result 

caused by the breakdown of the assumptions of the von Karman method. The fiee surface was 

replaced by a flat equipotential surface represented by the reflected image body. As more of the 

body penetrates the f!ree-surface, the assumption of the equipotential plane with zero normal 

velocity fails, resulting in predictions of non-physical behaviors. Further results are displayed 

for small submergence values only. 

Figure 3.12: REMCTS added-mass at pitch -90 degrees, with reference profile 

These data are intended for use in an equation of motion model to predict heave 

acceleration (see subsection 3.2.2), so it is useful to define the position of the REMUS model by 

its center of mass relative to the previously defined coordinate system (see Figure 2.1). The 



variable z, refers to the displacement of the center of mass fkom the fkee surface. Initial contact 

occurs at z = 0 at a positive value of zcg and proceeds to full submergence at a negative value of 

r,. An ilm-order polynomial is fit to the data to provide a smooth curve for a33 and its 

derivative for positive values of z,, (see Figures 3 -1 3 and 3.14). 

Figure 3.13: E M U S  added-mass for small submergence at pitch -90' with 11~-order po1ynomiaI 

L'a 

Figure 3.14: I 0"-order poIynomia1 derivative for pitch -90" 



The results fiom the nose frrst (-90" pitch) impact are the limiting case in which the body 

orientation is most streamlined to the flow for vertical impact. The author expects impact effects 

to be the smallest for this case. Figures 3.15 and 3.16 present results for the other limiting case, 

the flat impact (0" pitch). Two factors make this case the maximum impact. First, the added- 

mass is greatest in the direction of the most flow obstruction. At z,,= 0, compare a value of a33 

(-PO0) = 0.9063 to a33 (0°) = 16.783. Second, for flat impact, this higher value is reached in a 

smaller vertical distance. These two factors combine to cause the higher values of the spatial 

derivative%, and thus the maximum acceleration (see subsection 3.2.2). 
& 

Figure 3.15: REMUS added-mass for small submergence at pitch 0" with 5"-order polynomial 
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Figure 3.16: 4"-order polynomial derivative for pitch 0' 



The resuks vary between the two extremes for intermediate pitch values. Figures 3.17 to 

3.20 show results for two other angles. Note that there are more data points missing in these 

figures. This is due to mesh generation failures discussed in subsection 2.3.3, which are more 

common at angles which cause the body subdivisions to intersect the free surface plane at other 

than a right angle. 

Figure 3.17: REMUS added-mass for small submergence at pitch -45' with 6'-order polynomial 
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Figure 3.18: 5"-order polynomial derivative for pitch -45' 
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Figure 3.19: REMUS added-mass for small submergence at pitch -75O with 7&-order polynomial 

% 

Figure 3.20: 6&-order polynomial derivative for pitch -75' 

3.2.2 REMUS Heave Acceleration 

The polynomial representations of the REMUS heave added-mass and its spatial 

derivative are used to calculate fiee-fall heave acceleration via the equation of motion (see 



Equation 2.1.8). The MATLAB ODE1 13 function was used at default settings to perform the 

numerical integration of the ordinary differential equation with initial conditions of velocity and 

position. Appendix A.4 contains a function for the evaluation of the equation of motion. 

Acceleration was computed by taking the first difference of the output velocity data. Figures 

3.21 and 3.22 show the results of fiee-fall fkom rest at starting heights of five meters and ten 

meters. Five meters is approximately the typical height of rescue swimmer casts from a hovering 

helicopter (see section 1.1.2), and ten gives a safety factor of two. 

Figure 3.21: REMUS motion at -90' fiom starting height of 5 meters 

time 

Assuming free-fall fkom rest, the relationship between starting height and maximum 

acceIeration is linear impact at a constant pitch angIe (see Figures 3.23 and 3.24, where heave 

acceleration is nondimensionalized by gravitational acceleration). For a specified starting height, 

the largest acceleration is for a flat impact (0°), as expected (see Figure 3.25). However, the 

smallest maximum acceleration is for impact at - 7 5 O ,  not at the expected value of -90". The 

relationship between pitch angle and maximum acceleration is not clear from the data, but a 

range of pitch angles fkom -90" to -65O result in maximum acceleration of less than 2 g's fiom 5 



meters. Chapter 4 will show the correlation between numerical and experimental results for 

selected initial conditions. 

Figure 3.22: REMUS motion at -90° fiom starting height of 10 meters 

time 

Figure 3.23: REMUS maximum accelerations (g) at -90" from various starting heights 
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Figure 3.24: REMUS maximum accelerations (g) at 0' from various starting heights 
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Figure 3.25: REMlFS maximum accelerations (g) from 5 meters at various pitch angles 
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Chapter 4 

Experimental Analysis 
I conducted REMUS fiee-fall impact experiments at the Woods Hole Oceanographic 

Institution during the month of July 2004. This chapter wiI1 demonstrate how these experiments 

were conducted and correlate the results with the numerical predictions discussed in subsection 

3.2.2. 

4.1 Experimental Setup 

4.1 -1 REMUS Specifications 

REMUS is a small streamlined body of torpedo shape (see Figure 4.1). Table 4.1 shows 

the geometric and inertial vehicle parameter important to the impact problem. 

Table 4.1 : REMUS parameters 

I Weight in air 1 37 kg t 

Parameter 
Vehicle Diafrteter 
Vehicle Length 

Specification 
$9 cm 
160 crn 



Figure 4.1 : Test vehicle 

4.1.2 Test Vehicle Setup 

The test vehicle differs fiom REMCTS is several important ways. The test vehicle is built 

on a bare chassis, so lead ballast is positioned to simulate the inertial properties of the batteries 

and missing circuit boards. REMUS has an Acoustic Doppler Current Profiler (ADCP) section 

aft of the flooded nose section and end cap (see Figure 4.2). This section has four circular 

cutouts on the top and bottom for transducers, and is replaced on the test vehicle by a straight 

ballasted section of slightly longer length that also provided though-hull fitting for the wet- 

mounting serial data/power cable. The test vehicle also lacks fins, propeller, and the long- 

baseline navigation transducer under the nose. 

Figure 4.2: REMUS ADCP section 



The test vehicle was assembled specifically for these tests and contains only two 

instruments. The fvst is an internal pressure sensor used to verify hull watertight integrity prior 

to drop tests. The second is a Crossbow DMU-AHRS (Attitude and Heading Reference System), 

located at the vehicle center of mass (see Figure 4.3). The Crossbow is powered externally 

through the serial dadpower cable, and reports real-time attitude and acceleration data via an 

RS-232 serial link to a laptop computer equipped with data-logging software provided with the 

unit. The Crossbow sensor will be described in further detail in subsection 4.1.4. 

Figure 4.3: Crossbow DMU-AHRS in ballasted test vehicle chassis 

4.1.3 Test Vehicle Launcher 

A vehicle launcher was built on the Eel Pond dock next to the Redfield Laboratory at 

WHO1 (see Figure 4.4). The launcher consists of four ten-foot sections of PVC tubing supported 

by an external frame capable of varying the pitch angle. Three trap-doors are installed at various 

positions along the frame as starting gates. The test vehicle is loaded Into the PVC track, 

positioned at the desired angle, and then dropped by releasing the trap door. The 50 foot cable 

trails the test vehicIe through the launcher, aIlowing for real-time data acquisition and providing 

a tether for vehicle recovery. 



Figure 4.4: Test vehicle launcher, with assistants Dave Stuebe and Alex Apotsos 

4.1.4 Crossbow DMU-AHRS 

The Crossbow DMU-AHRS is a nine-axis measurement system that combines a three- 

axis accelerometer, a three-axis rotational rate sensor, and a three-axis magnetometer in order to 

measure stabilized roll, pitch, and yaw in a dynamic environment. The sensor was operated in 

angle mode, in which the sensor acts as a steady-state vertical gyroscope/artificial horizon with a 

directional gyroscope heading reference. The analog rotational rates and accelerations are 

sampled and converted to engineering units and other calculations are performed internally to 

perform the stabilizing functions to output roll, pitch, and yaw referenced to gravity and 

magnetic north. These data are output digitally at 80 Hertz. 

The acceleration channels are the important data for this study, but these are referenced to 

a right-handed Cartesian coordinate system centered on the body center of mass, with x/positive 

forward (along longitudinal axis), y 'positive to starboard, and z/positive downward (see Figure 



4.5). Roll, pitch, and yaw angles are related respectively with the x! y:  and z'axes in the sense 

that the fmgers of the right hand will curl in the positive direction if the thumb is oriented akmg 

the associated axis. Angular data is necessary to convert between the body coordinate system 

and the inertial coordinate system. 

Figure 4.5: Body centered coordinate system 

The angle output was generally good while the unit was stable, but not so during motion. 

There is noise in the rotational rate data that creates an error when the signal is integrated. This 

is similar to the slow drift error fiom precession of aircrafi flight instrumentation, (this unit is an 

inertial guidance system suitable for such use). Internally, the unit corrects itself using the 

vectors of gravity and magnetic north to eliminate this error. However, one of the channels of 

the magnetometer was inoperable, affecting the stabilized angle output fi-om the unit during 

motion. AngIes can be calculated in post-processing by integrating the angular rate fiom the 

initial angles. There is non-zero-sum noise that integrates to erroneous angles when the unit is 

stationary, and this can be suppressed by artificially zeroing those channels during the times 

prior to the start of motion. Once the motion starts there is no way to quantify the error, so the 



angles become suspect as time elapses, and therefore the coordinate transformation is also 

suspect. 

The Crossbow unit was not an ideal instnunent for reasons other than the lack of 

stabilized angles due to magnetometer malhction. The unit is intended as a motion-sensing 

package, and thus the accelerometer range is +2g, smaller than would ideally be available to 

conduct a range of tests. Also, the impulsive and step response transient behaviors are not 

known. The vehicle experiences a step function in acceleration as the trap door is released. At 

80 Hertz it is possible to see an underdamped response in the acceleration data. It is desired to 

know the physical stimulus separate from the physical system used to measure it. Tests were 

conducted by allowing the unit to undergo a one-g step function as it is releasing into fiee-fall. 

A systems engineering approach can be taken for removing this response and the sensor can be 

represented as system, g(t), that transforms a known input, r(t)into a measured output, c(t): 

If the Laplace transform is used to transform from the time domain, t, into the frequency domain, 

s, the system is expressed 

where R(s), G(s), and C(s) are the transformed input, system, and output. The system G(s) is 

known as the transfer function, 

For a general underdamped system, the output can be expressed 

C(s) = (4.1.4) 
s(s2 +2g0, +d)'  

where w, is the natural frequency and c is the damping coefficient. These parameters can be 

quantified by measuring the rise time and overshoot of the response. The step response can be 

written in terms of a, and c: 



To remove the step response from the data, a vector is created at the same sampling rate (80 Hz) 

to represent the pure step response. This vector is deconvoked fiom the response to recover the 

step function (see Figure 4.6). This is not a perfect step function, but it is an improvement over 

the original response in that the overshoot is removed and the steady state value is reached more 

quickly. 

Figure 4.6: Crossbow response to -1 g step, before and after treatment 

time js) 

The transfer function represents the transformation of the physical stimulus into the 

digital data output. When the effect of the transfer function is removed, the data better conveys 

the physical quantities being measured. In this case, the three axes of the accelerometer are 

identical in response, so this transformation is performed on all three channels before any fiutl-ier 

manipulation is done. 

4.2 Test Vehicle Experimental Results 

Test drops were conducted at pitch angles of -go0, -75", -60°, -45O, and -30" using the test 

apparatus described in subsection 4.1.3. The following steps were used to convert the raw data 



into usable form. Data were logged as ASCII text files and read into MATLAB. When not In 

motion, the Crossbow reads the vector components of gravitational acceleration. After the 

transfer function is removed, the three channels are normalized to gravity for the portion of the 

data record prior to motion. The noise in the rotation rates is also zeroed before motion begins to 

eliminate an initial drift error fiom the initial conditions for the integration of the rates into roll, 

pitch, and yaw angles. Figure 4.7 shows the data for -90' after these steps have been performed. 

Note that these data are in body coordinates, such that an x' acceleration of lg occurs when the 

body is stationary In the launcher with the longitudinal axis straight down. When the trap door is 

released, the body free falls, then the impact is from Og to about 1.3g. These data do not account 

for body rotations, so additional steps are required. 

Figure 4.7: Test vehicle 3-axis accelerations in body coordinates 

Body angles are calculated, and then the components of gravity are removed from the 

data at each time step. Finally, a rotational transformation is performed to convert the 

acceleration components into the inertia1 coordinate system (see Figure 4.8). This resuIt is for a 

drop fiom a height of approximately two meters, referenced as previously to the body center of 

mass. It is comparable to the numerical results discussed in Chapter 3, and reproduced in Figure 



4.9. The experimental result is an initial rise fiom free-fall to positive 2.99 m/s2, as compared to 

the numerical result, an initial rise from free-fall to 4.74 m/s2 .  

Figure 4.8: Test vehicle 3-axis accelerations in inertial coordinates at -90' 
- .  

Time (s) 

Figure 4.9: Numerical Heave acceleration at -90' 



Figures 4.10 to 4.13 show examples of experimental results for the other angles. All of 

these results are for a drop fiom the lowest trapdoor, placing the test vehicle center of mass at 

approximately two meters regardless of how the frame is rotated (see Figure 4.4). 

Figure 4.10: Test vehicle 3-axis accelerations in inertial coordinates at -75" 

Figure 4.1 1 : Test vehicle 3-axis accelerations in inertial coordinates at -60" 



. - 

Figure 4.12: Test vehicle 3-axis accelerations in inertial coordinates at -45' 

Time (s) 

Figure 4.13: Test vehicle ?-axis accelerations in inertia1 coordinates at -30° 

Time (s) 

The design of the launcher itself changes the way in which the test vehicles enter the 

water. The angles listed are the starting pitch of the test vehicle in the launcher. Friction 



opposes the acceleration in the x'direction as the vehicle slides down the rails, and a component 

of the gravitational acceleration accelerates the body in the x direction for angles other than 

vertical. Therefore the vertical velocity is smaller than for fiee-fall from the same height and 

there are acceleration components other than vertical. Also, the closer the angle is to horizontal, 

the more the pitch ehanged between leaving the launcher and Impact, becoming more vertical as 

the nose dropped out of the rails while the tail was still supported. This abo introduces rotation, 

which was not modeled numerically. 

Experimental results were limited to a total of nine data points for five angles (see Figure 

4.14). The three results at -30' show good repeatability, though they are farthest fiom the 

numerically predicted value. This may be related to either of the launcher problems discussed 

above, both of which would lead to smaller accelerations. Additional experiments were 

conducted, but data was either corrupted by noise or did not contain usefbl data due to the 

instrumentation performing a reset at the moment of impact. 

Figure 4.14: Comparison between numericaI and experimental results 
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Chapter 5 

Conclusions 
5.1 Summary 

The goal of this thesis was to numerically model the REMUS AUV to determine 

maximum impact accelerations as reIated to the suitabiIity of helicopter air-drop deployments. A 

technique of numerical modeling was developed which accounts for the f~st-order effects of 

momentum transfer fiom a rigid body to the water using the generalized von K m m  method, 

which makes use of the concept of added-mass. Added-mass is a property based soIeIy on body 

geometry that quantifies the additional inertial effects experienced by a body undergoing 

acceleration while immersed In a fluid that is assumed to be ideal and irrohtional. Added-mass 

is calculated using a source collocation panel method with panel meshes generated by FEMLAB 

using MATLAB scripting- A continuous smooth curve is generated for added-mass and its 

spatial derivative by fitting polynomials to the calculated data points. These polynomials are 

used to integrate the second-order equation of motion to determine impact accelerations. The 

method of added-mass calculations was verified against analytical solutions. Experiments were 

conducted to verify the maximum impact acceleration calculations, a d  good agreement was 

found for the nearly vertical values of pitch at which the experiment and the model accurately 

represent the same physical processes. Other data points do not agree as well, but are within a 

factor of two. 

5.2 Discussion 



The model developed in the present work effectively predicts the maximum impact 

accelerations for REMUS in a vertical free-fall at constant pitch. Calculations were performed 

for a range of pitch values and a range of starting heights. The relationship between pitch and 

maximum heave acceleration is nearly the intuitive result. Minimum accelerations occur when 

the REMUS enters the water in a streamlined fashion similar to a diver presenting minimal 

surface area. It is not only the straight vertical enfry that benefits, but a range of about 30" &om 

vertical where the accelerations are fairly low. This is potentially good news for manually 

dropping a REMUS from a helicopter, since the vehicle can be dropped vertically without fear 

that slight pitch changes in midair will result in much greater forces. The angles near horizontal 

are much different, with the greatest being an order of magnitude larger than the smallest 

accelerations near vertical. This case is intuitively similar to the "belly-flop." 

The rerationship between height and maximum heave acceleration is even crearer. This 

relationship is clearly linear for a given pitch angle. Given these data it is possible t6 extrapolate 

an approximate value of the maximum acceleration for starting heights higher than those 

presented. The heights shown here were chosen to be reasonable aItitudes at which a helicopter 

might hover to drop a REPvZUSI For these values, the accelerations for the range of pitch near 

vertical seem reasonable, although no data are presented about possible failure modes or the 

range of safe acceleration values. 

5.3 Future Work 

A great deal more work is necessary to determine if REMUS may be routinely and safely 

deployed from a hovering heIicopter. The chief concern is the questions of the failure modes and 

how much force is required to cause any of these failures. This deserves more work, because the 

acceleration data presented in this thesis have no meaning unless referenced to a failure mode. I 

have considered several possibiIities, falling naturalIy into the categories of catastrophic failures 

or mission failures. A catastrophic failure may entail the loss of a vehicle, such as the loss of 

watertight integrity. Mission failure may be the breaking of fins, or the failure of internal 

moving parts like hard drives. 



Further work would also be valuable to verify this model with more experimental results. 

I desired to do more tests, because I was not able to do experiments at a range of heights. A 

better sensor is recommended due to the problems with the Crossbow motion package, which 

was clearly out of its element. Its maximum range of f2g would prohibit much higher tests at 

nearly vertical angles, as we1 as nearly any tests to verify the numerical results of the nearly flat 

drops. A better experimental setup could be used for the flatter drops, which would beaer 

simulate vertical fiee-fall. The test vehicle could be suspended at the chosen angle using rope 

and hose clamps around the body. Free-fall and easy recovery could be accomplished by 

releasing the rope over a pulley. 



Appendix A 

MATLAB Code examples 
A. 1 MATLAB script to setup mesh generation variables for 
R E W S  model 

The following script m-file contains the outer loop structure which varies the pitch in five 

degree increments fiom minus ninety to plus ninety degrees and the inner loop structure which 

varies the submergence value for each angle in one-hundred increments fiom zero to full 

submergence; these variables are stored in the file pitchsubtable.mat. For each set of values, a 

FEMLAB meshing script is called like the example listed in Appendix A.2. When called fiom 

MATLAB, the mesh is generated and exported to the workspace. The script m-file listed in 

Appendix A.3 then operates on the mesh as described in Chapter 2. 

% MeshProcess.m 
% Stephen M. Roe 
% 7/8/2004 

clear; close all; clc 

load pitchsubtables 

for angle = 1:37; 
offset = Offset(angb); 
for subcounter = t100 

sub = Sub(subcounter,angle) 
pitch = Pitch(ang1e) 
if sub -= 0; 

if pitch == -90; 
if sub <= 9; m90degl t9; 
elseif sub > 9 & sub <= 63; m90deglOt63; 
else; m90deg64t99; 



end 
elseif pitch == -85; 

if sub <= 9; m85deglt9; 
elseif sub > 9 & sub <= 63; m85degtOt63; 
else; m85deg64t99; 
end 

elseif pitch == -80; 
if sub <= 9; m80degl t9; 
elseif sub 7 9 & sub <= 63; rn80deg10t63; 
else; m80deg64t99; 
end 

elseif pitch == -75; 
if sub c= 9; m75degl t9; 
elseif sub > 9 & sub <= 62; m75deglOt62; 
else; m75deg63t99; 
end 

elseif pitch == -70; 
if sub <= 9; m70degZ t9; 
elseif sub > 9 & sub <= 60; m7OdeglOt60; 
else; m70deg6lt99; 
end 

ekeif pitch == -65; 
if sub <= 9; m65degl t9; 
elseif sub > 9 & sub <= 58; m65deglOt58; 
else; m65deg59t99; 
end 

etseif pitch == -60; 
if sub <= 9; m60degl t9; 
elseif sub > 9 & sub <= 56; mfiOdegIOt56; 
else; m60deg57t99; 
end 

elseif pitch == -55; 
if sub <= 9; m55degl t9; 
elseif sub > 9 8 sub <= 53; m55deg I O W ;  
else; m55deg54t99; 
end 

elseif pitch == -50; 
if sub <= 9; m50deglt9; 
elseif sub > 9 & sub <= 49; m50degIOt49; 
else; m50deg50t99; 
end 

elseif pitch == -45; 
if sub <= 9; m45degl t9; 
elseif sub > 9 & sub <= 46; m45deglOt46; 
else; m45deg47t99; 
end 

etseif pitch == -40; 
if sub <= 9; m40deglt9; 
elseif sub > 9 & sub <= 42; m40deglOt42; 
else; m40deg43t99; 
end 



elseif pitch == -35; 
if sub <= 9; m35deg2t9; 
elseif sub > 9 & sub <= 38; m35deg 1 0t38; 
else; m35deg39t99; 
end 

elseif pitch == -30; 
if sub <= 7; rn30degZt7; 
elseif sub > 7 & sub <= 33; m30deg8t33; 
else; m30deg3499; 
end 

elseif pitch == -25; 
if sub <= 6; m25deg2t6; 
elseif sub > 7 & sub <= 28; m25deg8t28; 
else; m25deg29t99; 
end 

elseif pitch == -20; 
if sub <= 5; rn20deg2t5; 
elseif sub > 5 & sub <= 24; m20deg6t24; 
e tse; m20deg25t99; 
end 

elseif pitch == -15; 
if sub <= 19; ml5degttl.9; 
else; m15deg20t99; 
end 

elseif pitch == -10; 
if sub <= 15; mlOdeg05tl5; 
else; m 1 Odeg t6t99; 
end 

elseif pitch == -5; 
if sub <= 72; m05deg05tt2; 
else; m05degl3t99; 
end 

elseif pitch == 0; 
if sub <= 8; m00deg05t8; 
etse; mOOdeg9t99; 
end 

MeshProcess2 
end 

end 
end 



A.2 FEMLAB mesh generation script file for REMUS vehicle 

% FEMLAB Model M-file 
% Generated by FEMLAB 3.0 (FEMLAB 3.0.0.181, $Date: 2004/01/29 19:04:14 $) 

flclear xfem 

% Ferntab version 
clear vrsn 
vrsn.narne = 'FEMME3 3.0'; 
vrsn.ext = "; 
vrsn.rnajor = 0; 
vrsn.build = 181; 
vrsn.rcs = '$Name: $'; 
vrsndate = '$Date: 2004101129 19:04:14 $'; 
xfem.version = vrsn; 

% Geometry 2 
g5=eIlip2(1.5,1.5,'base','center','pos',[l.5,2.25]); 
g~re~t2(5.5,2.25,'base~~~wrner'~~pos',[0,0}); 
g7=rect2(4, I .5,'base','corner','pos',[l.5,2.25]); 
g8=geomcomp({g5,g6,g7}~tl~'~~El'~'R2'~~R2'},'sf E l  +Rl +R2','edge','all'); 
g9=rect2(33.564,3.75,'base*l'~rner'l'p~~lf5.51O~); 
carr={curve2(139.064139.736~,[3.75,3.7381[ll~), ... 
~urve2([39.736,40.516],[3.738,3.7139}~[1, I}), ... 
curve2([40.516,41 .dl 6],[3.7139,3.6779),[1 ,?I), ... 
curve2([41.416,42.412],[3.6779,3.62983,[1 ,I]), ... 
curve2([42.4 1 2,42.4 1 2],[3.62Q8,O],[l, I]), . . . 
curve2([42.412,39.0~,[0,0~,[1,11), ... 
cu~e2([39.064,39.064]~[0,3.751,11 ,I})}; 

g l  O=geomcoerce('sotid',carr); 
carr={curve2([42.412,43.504],[3.6298,3.5577],[1 ,I)), ... 
curve2([43.5Q4144.6921,f3.5577,3.4615]l[l ,I}), ... 
cu rve2([44.692,45.9521,[3.4615,3.3293],[, I]), .. . 
curve2([45.952,47.284],[3.3293,3,149],[1, I) ... 
cu~e2([47.284,48.688],[3. l49,2.92O7]JIl 1 I), .. . 
curve2([48.688,48.688],[2.9207,0],[1 ,I)), ... 
~urve2([48.688,42.412],[0~0]~[1 ,I)), ... 
~urve2([42.412,42.412],[0,3.6298]~[1,1])]; 

911 =geomcoerce('solid',carr); 
carr={curve2([48.688,50.152],[2.92O7I2.62O2]l[lll]), ... 
curve2([50.152,51.664],[2.6202,2.2716],[1 ,I I), ... 
curve2([51.664,53.212],[2.2716,1.8269],[1, I]), ... 
curve2([53.212,54.796),[t.8269,1.3101),[1,1]), ... 
curve2([54.796,56.392],[1.32 01,0.7091],[1], ... 
cu~e2([56.392,57.~4],[0.70% ,0.4327],[1 ,I]), ... 
curve2~57.004,57.172],[0.4327,0.408~,[1, TI), ... 
curve2([57.172,58}, [0.4087,0.40873,[1, I}), . . . 



curve2([58,58],[0.4087,0],[3, ?I), .. . 
curve2([58,48.6881,Co,0l,[ll 1 I), .. . 
curve2([48.688,48.688~,[OI2.9207],[1 ,I])}; 

gl2=geomcoerce('sotid',carr); 
carr={curve2([39.064,44.692,51.664,58],[3.75,3.7139,2.9207,0],[1,1,1, I]), ... 
curve2([58,51.664,47.284,39.064]l[O,O,O,O]I[l,1,1,1~), ... 
curve2([39.064,39.064,39.064,39.064],[0,1 .3?01,2.6202,3.75],[7,1,1,1])]; 

g 13=geomcoerce('solid',carr); 
clear g10 
clear g 1 1 
clear 912 
ctear g9 
g16=rect2(37.564,3.751'base','corner','pos',1 .5,01); 
clear g8 
clear g16 
g 19=rect2(37.564,3.7500000000000004,'base','corner','pos',[1.5,0}); 
g20=rect2(1.5,2.25,'base','comer','pos',[0,0)); 
g21=ellip2(1.5,l.5,'base','center','pos',[1.5,2.25]); 
g22=geomcomp({gl3,g1 9,g20,g21},'n~',('CO5','R1','R2'~'E1'},~sf ,'CO5+R1+R2+El','edge','aIl'); 
flclear fem 
clear s 
s.objs={g22}; 
s.name=('COI1); 
s.tagsqg22'); 

flclear fem 
fem.sdim = ('x','y','z'); 
xfem.fem{l) = fern; 

fem=xfem.fem{2}; 
fem.sciirn = ('x1,'y'}; 
xfem.fem(2) = fem; 

% Muttiphysics 
xfem=multiphysics(xfem); 
% FEMLAB Model M-file 
% Generated by FEMLAB 3.0 (FEMtAB 3.O.O.'t81, $Date: 2004t01/29 19:04:t4 $) 

% Geometry 2 
g2=rect2(56,3.75,%ase','corner','pos',[4,0~); 
g3=geomcomp({g22,g2},'n~',('C02','R1'),'sf ,'COl*R1','edge','all'); 
g4=ellip2(9,3.75,'base','center','pos',[4,0]); 
g5=rect2(9,3.75,'base','corner','pos',[-5,0~); 
g6=georncomp({g4,g5),'ns',('El ','Rl'),'sf ,'El*Rl','edge','aI!'}; 
g7=geomcomp({g3,g6),'ns',('C02','C01 '),'sf ,%02+COl ','edge','ali'); 
g7=rnove(g7,[5,0]); 
fem=xfem.fem{2}; 
clear s 



fern.draw=struct('s',s); 
xfem.fern{Z)=fem; 
% FEMlAB Model M-file 
% Generated by FEMLAB 3.0 (FEMLAB 3.0.0.181, $Date: 2004/01/29 29:04:14 $) 

% Geometry 2 
g?=revolve(g7,'Angies', fO,6.283185307? 79586],'Revaxis',[O 1;O 01, w~kpIn',[O 0 9 ;O 0 0;O -I 01); 

% Geometry 1 
fem=xfern.fem{l); 
clear s 
s.objs={g I}; 
s.narne=('REVI?; 
s.tags=('g 1'); 

fem.draw=sfruct('sr,s); 
xfem. fem{l )=fern; 

% Geometry 2 
fem=xfern .fem(2}; 
clear s 
s.objs=(g7); 
s.narne=('C03'); 
s.tags=('gT}; 

fern.draw=struct('s',sZ; 
xfern .fem{2)=fem; 

% FEMLAB Model M-file 
% Generated by FEMtAB 3.0 (FEMLAB 3.0.0.181, $Date: 2004/01/29 19:04:14 $1 

% Geometry 1 
g l  =rotate@l ,0.78539816339744831[01-1 ,0],[0,0,0J); 
gl=rnove(gl ,[O,O,offset]); 
g2=block3('50','1 O','5O','base','center','pos',('-23','(rl'-25L},'axi~',~O'1'(rl'l '),'rot','O'); 
g1 =move(gl ,[O,O,-sub]); 
g3=geomcomp({gl ,g2),'ns',('REVl','BLKl '),'sf,'REV1*BLKl','f~e','none','edge','atl'); 
fem=xfem.fem{l]; 
clear s 
s.objs={g3); 
s.narne={'COI '1; 
s.tags=('gY); 



% Initialize mesh for geometry 1 
fem.mesh=meshinit(femJrhmaxfact',~.5J'hcutoff J0.02J ,., 

'hgrad',I.5,'hcurve',O.5); 
xfem.fem(t)=fem; 

% Geometry 2 
fem=xfem.fem(2); 
clear s 
s.objs={g7); 
s.name=('C03'); 
s.tags=('g7'); 

fem=xfem.fem(2); 
fem-sdim = ('xS,'y3; 
xfem.fem(2) = fem; 

% Mulfiphysics 
xfem=multiphysics(xfem); 



A.3 MATLAB script to manipulate the panel mesh and evaluate 
added-mass 

% MeshProcess2.m 
% Stephen M. Roe 
% 9/09/2004 

ctose a1 t 

fern = xfem.fem{l); 

mesh = [getfield(fem,'mesh')1; % mesh 
nodes = [getfield(mesh,'p')]'; % nodes 
bdry = [getfieId(mesh,'ef)J'; % describes which nodes define panels 
panels = bdry(:,l:3); % only first three columns needed 
clear bdry 

for a = 1:3; 
b = find(abs(nodes(: ,a)) <= 1 e-6); 
nodes(b,a) = 0; 

end 

npanels = tength(panets); 

% flatten any error panels that are above the free surface (z = 0) 
for r = :lengttr(nodes); 

if nodes(r,3) > 0; nodes(r,3) = 0; end 
end 

figure; clf , 
trisurf(panets,nodes(:, 1 ),nodes(: ,2),nodes(:,3)) 
axis equal 
h = gcf; 
set(h,'Renderer','zbuffer','RendererMode','manual+) 
colormap(gray) 
xlabel('X1) 
ylabel('Y') 
zla bel('Z') 

% prior to rotation, shift nose to origin 
nodes(:,3) = nodes(:,3) + sub - offset; 

% rotate coordinate frame of nodes to Remus nose down 
Rpitch = [cos(-(90+pitch)*pi/180) 0 -sin(-(90+pitch)*pi/l80);0 I 0; sin(-(90+pitch)*pi/l80) 0 cos(- 
(90+pitch)*pi/180)]; 
for e = I :length(nodes); 

nodes(e,:) = [Rpitch*nodes(e,:)l'; 



end 

% get rid of panels with y>O, so they can be replaced by a mirror image 
% across y=O plane for better symmetry 
for f = I :npanels; 

ysign(f, I ) = sig n(mean([nodes(panels(f, I ),2) mdes(panels(f,2),2) mdes(panels(f,3),2)})); 
% adjust panel order to make normals correct direction 
if nodes(panels(f,l)) > 9 & nodes(panels(f,l)) < 44; panels(f,:) = fliplr(panels(f,:));end 

end 
ypositive = find(ysign(:,l) == I); 
panels = panels(ypositive,:); 
npanels = length(pane1s); 
% y positive half body 
Body = zeros(4*npanels + 1'3); % 'body' is in format of addedrnass.dat input to addechnass.exe 
m = l ;  
for n = 2:4:4*npanels; 

Body(n,:) = nodes(panets(m,l),:); 
Body(n+l ,:) = nodes(panels(m,2),:); 
Body(n+2,:) = nodes(panels(m,3),:); 
Body(n+3,:) = nodes(panels(m,l),:); 
m = m + l ;  

end 
% mirror image about y = 0 to give whole body 
M y  = length(E3ody); 
Body(lbody+l:Z*lbody-1,l) = flipud(Body(2:lbody,l)j; 
Body(lbody+l:2*lbody-1'2) = -flipud(Body(2:lbody,2)); 
Bocty(lbody+1:2*lbody-1,3) = flipud(Body(Z:body,3)); 
npanels = 2*npanels; 

% rotate back to original coordinate system 
for g = 2:length(Body); 

Body(g ,:) = [Rpitch'*Body(g,:)'r; 
end 
CG = [Rpitch'*[-0.75 0 301')'; % (in) Center of Gravity position 

% calculate the center of buoyancy (center of displaced volume) 
panelcenter = zeros(npaneb,3); 
p =  1; 
for q = I :npanels; 

a1 = p + l ;  
b l  = a1 + 1; 
c l  = a1 + 2; 
p=4*q+  1; 
panelcenter(q, I )  = mean(EBody(a1, I )  Body(b1 ,l ) Body(c1, I)]); 
panelcenter(q,2) = rnean([Body(a I ,2) Bocty(b t ,2) Body(cl,2)]); 
panelcenter(q,3) = mean([Body(al,3) Body(bl,3) Body(cl,3)]); 
ABC(1,I ) = sqrt((Body(b1,l )-B0dy(c1,1))~2 + (Body(b1,2)-Body(cl,2))"2 + (Budy(b1,3)- 

Body(c1,3))"2); 
ABC(1,2) = sqrt((Body(a1,l )-Body(c1 , l))"2 + (Bod y(a I ,2)-Body(c1 ,2))"2 + (Body(al,3)- 

Body(c1,3))"2); 



ABC(1,3) = sqrt((Body(a1,l )-Body(b1 ,I ) r 2  + (Body(aI.2)-Body(bI,2)p2 + (Body(a1,3> 
Body(b1 ,3)IA2); 

AngleAB = a~os((ABC(1,1)~2 + ABC(1,2)"2 - ABC(1 ,3)A2)121ABC(1, 1 )IABC(1,2)); 
panetarea(q, 3 )  = ABC(t, 1 )*ABC(t ,2)*sin(AngteAB)/2; 

end 
rCBNose(1 ,I) = mean(panelarea(: , I ). *panelcenter(:, 1 ))lmean(panelarea); 
rCBNose(l,2) = mean(panelarea(:,l).*panelcenter(:,2)j/mean(panelarea); 
rCBNose(l,3) = mean(panelarea(:, ?).*paneIcenter(:,3))/mean(panelarea); 

% move back down to free surface 
Body(:,3) = Body (: ,3) - sub + offset; 
Nose = [O 0 -sub + offset]; 
CB = rCBNose; 
CB(t,3) = CB(l,3) - sub + offset; 
CG(1,3) = CG(1,3) -sub + offset; 

% flatten any free surface panels (again) 
a = find(abs(Body(:,3)) < 0.001); 
Body(a,3) = 0; 

% remove the z = 0 (free surface) panek prior to copying for the image 
c =  I; 
for b = 2:4:length(Body); 

if Body(b,3) == O & Body(b+?,3) == O & Body(b+2,3) == O & Body(b+3,3) == 0 
d(c,l) = b; 
d(c+l ,t) = b+f ; 
d(c+2,1) = b+2; 
d(c+3, I) = b+3; 
c = c + 4 ;  

end 
end 
if c -= 1; Body(d,:) = 0; end 

% free-surface mirror image 
lbody = length(Body); 
Body(1body + t:2*lbody-1,1:2) = (Body(2:lbody, 1 :2)); 
Body(lbody + 1 :2*lbody-1,3) = -(Body(2:lbody,3)); 
npanels = (iength(Body>l)/4; 

% move body to CG 
Body(:, I ) = Body(:, I) - CG(1, I); 
Body(:,2) = Body(:,2) - CG(1,2); 
Body(: ,3) = Body(: ,3) - CG(1,3); 
CB(:,1) = CB(:,1) - CG(1,l); 
CB(:,2) = CB(:,2) - CG(1,2); 
CB(:,3) = CB(:,3) - CG(1,3); 
Nose(:,l) = Nose(:,l) - CG(l ,I); 
Nose(:,2) = Nose(:,2) - CG(1,2); 
Nose(:,3) = Nose(:,3) - CG(1,3); 



Center = [CB(l ,I )/2 CB(l,2)/2 -CG(3,3)]; 

Body(1 ,I :4) = [npanels Center]; 

figure; clf 
plot3(O10,0,'k.'); hold on 
plot3(CB(I ,f),CB(I ,2),CB(1,3),'.') 
plot3(Center(l ,I ),Center(ll2),Center(1 ,3),'g.') 
n =2; 
for o = l:(length(Body)-l)/4; 

plot3(Bodyf n:n+3,1),B0dy(n:n+3~2)~Bodyfn:n+3,3)~~~'), hold on 
n = n + 4 ;  

end 
axis equal 
title(sprintf('mesh plot at submergence = %I .4gW and angle = % I  -49 degl,sub,pitch)) 
xlabel('X') 
ylabel('Y') 
zlabel('Z') 
legend('0rigin: Mass Center','Buoyancy Center','Syrnrnetry Center') 
grid on 

save addedmassdat Body -ascii -double 
dos addedmass4.exe; 
fid = fopen('addedrnass.out'); 
AddedMass(:,:) = [fscanf(fidlr%g %g %g %g %g %g1,[6 6nr; 
Volume = fscanf(fd,'%gl,[l]); 
VotumeCenter = fscanf(fid,'%gl,[t 31); 
status = fclose(fid); 

if pitch <= 0; savefile = sprintf('m%gm%g.maf',-pitch,subj; 
else; savefile = sprintf('p%gm0/0g.mat',pitch,sub); 
end 
save(savefile,'AddedMass','Body','CB','Nose',l/olume','offset','pit~h'~'su~) 

clear ABC AddedMass AngleAB Body CB CG Center Nose Rpitch Volume VotumeCenter 
clear a a1 ans b b l  c c l  carr d e f fern fid g glg13 g l 9  92 g20 922 922 
clear g3 94 95 96 97 h lbody m mesh n nodes npaneb o p panelarea panelcenter 

clear panels q r rCBNose s status vrsn xfem ypositive ysign 



A.4 MATLAB function defining heave equation of motion 

The following function evaluates the equation of motion for one of the MATLAB 

ordinary differential equation solvers, such as ODE45 or ODE1 13. Polynomial descriptions of 

added-mass and its spatial derivative are saved in separate -mat files for each pitch angle and 

called by a funetion like this one. The matrix y contains values of vertical displacement and 

velocity. The if, elseif; and else statements define the second order system conditionally based 

on the vertical displacement relative to the fiee surface. 

function dydt = remusimpact90(t,y) 

% function to evaluate the water impact of REMUS at -90 deg 

load rn90deg 

m = 82.2*0.4535924; % (Ib -> kg) 

a33 = potyval(pa,y(l)); % (kg) 
da33dz = polyval(k,y(?)); % (kglm) 
dydt = E W ;  

( - da33d~*y(Z).~Z)/(m + a33)]; 
else 

dydt = Ey(2); 
01; 

end 
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