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EXECUTXVE SUMMARY 

On May 8 and 9, 1989, a consultation of experts was convened at the Woods Hole 

Oceanographic Institution to discuss the possible link between natural biotoxins and recent mass 

mortalities of humpback whales and bottlenose dolphins along the eastern coast of the United 

States. The focus was on the possible role of dinoflagellate toxins in these events. The objectives 

of the meeting were to review and assess the existing evidence and to recommend research 

priorities and needs. 

Hum~back Whale Mortalities 

As a result of the humpback whale deaths and the many chemical analyses of mackerel 

(Scomber scombrus ), a major food source of humpbacks in Massachusetts Bay in late 1987, it is 

now clear that living mackerel can contain the neurotoxin saxitoxin, predominantly in the liver. 

New evidence indicates that other derivatives of saxitoxin are present in mackerel liver at certain 

times of the year, and that virtually all Atlantic mackerel tested from the northeast region had 

detectable levels of the toxin in their viscera. The body burdens of toxin are in the range measured 

in other fish species taken from natural kills. Calculations suggest that whales feeding on toxic 

mackerel could have obtained doses in the range that might cause either direct mortality or partial 

incapacitation leading to mortality. At present, circumstantial evidence supports this scenario, but 

other explanations should not to be ignored. 

Dolphin Mortalities 

No single pathological disorder could be identified as common to all dead dolphins. A 

compound equivalent to, or at least structurally and functionally similar to, the dinoflagellate 

neurotoxin brevetoxin was found in the livers of some dolphins that died during the 1987 mortality 

event. Analyses of several specimens of wild-caught menhaden and specimens from dolphin 

stomachs also contained a brevetoxin-like compound. One hypothesis is that brevetoxin in food 

fish instigated the mass mortality by reducing dolphin physiological fitness and thus increasing 

their susceptibility to secondary microbiological insults. Evidence for this scenario is 

circumstantial and other explanations are possible. No clear alternatives have yet been proposed. 
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Seafood Safety 

All evidence indicates that fish contamination by either the saxitoxins or the brevetoxins is 

confined to viscera and that flesh is consistently non-toxic. Thus the only seafood safety concerns 

would be related to human consumption of whole fish or particular internal organs (as is the 

custom among certain ethnic groups), or perhaps in seafood products such as fish meal or oil. 

However, because of the processing methods used, the dilution by other non-toxic fish tissues, 

and the historical absence of unexplained mortalities at zoos and aquaria, it is unlikely that these 

products pose a health risk to humans or other animals. 

Recommendations 

The information presently available has sufficient implications with respect to marine 

mammal mortalities, commercial fisheries, and public health to justify further investigations into 

the impact of dinoflagellate toxins on higher trophic levels. A series of research and monitoring 

programs is suggested. 



I INTRODlJCTION 

Marine mammal mortalities generally occur as isolated, individual events. Occasionally, 

large-scale mortalities occur. There have been several reports of large-scale seal mortalities 

associated with viral infections (Geraci et al., 1982; Laws and Taylor, 1957; Osterhaus and 

Vedder, 1988). There also have been two reported incidents of major mortality events associated 

with biotoxins; one involving the Hawaiian monk seal (Gilmartin, 1987) and one involving the 

Florida manatee (O'Shea and Rathbun, 1982). To date, however, there have been no reports of 

large-scale cetacean mortalities other than those associated with the as yet unexplained mass 

stranding phenomenon of certain species of odontocetes (Geraci, 1978). 

Two events in 1987-88 involved unprecedented mortalities of humpback whales and 

bottlenose dolphins, species that have never been associated with typical mass saandings. 

Moreover, the features of these events did not resemble recognized epizootics of infectious 

diseases in other marine mammals. The mortality of dolphins that began in the summer of 1987 

along the Atlantic coast of New Jersey and continued along the Atlantic seaboard for 1 1  months 

was an unprecedented event with respect to the number of animals that eventually died (at least 

740) and the lack of a single pattern of illness that could be associated with a known pathogen 

(Geraci, 1989). The humpback whale group mortality in late 1987 in Massachusetts and Cape Cod 

Bays (14 animals in less than 5 weeks) was also a unique event with respect to the number of 

whales recovered in such a short time span. The unusual characteristics of these two events were 

such that standard protocols for examining stranded animals were expanded to include analysis for 

dinoflagellate neurotoxins that have in the past been associated with mass kills of fish and other 

marine animals. 



I1 DINOFLAGELLATE TOXINS: SOURCE ORGANISMS AND FOOD WEB 

TRANSFER 

A .  Northeast Region 

Along the northeast U.S. and Canadian coastline, the dominant toxin-producing organisms 

are the closely-related species Alexandrium fundyense and A .  tamarense (formerly called 

Gonyaulax tamarensis or Protogonyaulax tamarensis ). These organisms occw from the Gulf of 

St. Lawrence south to Long Island. In southern localities (from Cape Cod to Long Island) the 

toxic blooms are largely confined to small estuaries and coastal embayments and are virtually 

absent from nearshore coastal waters. These localized blooms in the south presumably have little 

or no impact on commercial finfish and thus will not be discussed funher. 

Alexandrium fundyense and A. ramarense produce a family of neurotoxins collectively 

called the saxitoxins (STX). The predominant problem associated with these toxins is paralytic 

shellfish poisoning (PSP) which occurs when shellfish filter the dinoflagellate cells from the water, 

accumulating the toxin to levels which are dangerous to human consumers. Another problem that 

is less severe within the region is that of fish kills, which have been linked to the presence of 

saxitoxin in zooplankton (White, 1984). It is commonly assumed that toxin exposure comes 

primarily through direct ingestion of either the dinoflagellate or its zooplankton predators by 

shellfish and fish, although the ecological significance of toxin that leaks into the seawater or that is 

present as an aerosol is not known. 

The geographic distribution of Alexandrium spp. can be conveniently described with 

reference to three regions: 

The Gulf of St. Lawrence. The bulk of the information from this region is in the form of 

shellfish toxicity records (Prakash et nl., 1971) although studies describing the dinoflagellate 

distribution are now appearing (Therriault et al., 1985; Cembella et al., 1988). Shellfish toxicity 

typically has one major annual peak in July, August or September (Prakash et al., 1971). 

Outbreaks occasionally occur as early as June or as late as October. The western edge of the 
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region of toxicity extends well into the St. Lawrence Estuary to the Manicouagan and Aux 

Outardes Rivers. To the east, toxicity follows a pattern that traces the plume of these rivers as it 

joins the Gaspe current and travels to the east along the southern shores of the St. Lawrence. 

Toxicity has been detected in shellfish on Newfoundland; the geographic distribution there 

suggests that this originates from localized dinoflagellate populations around the island. 

Bav of Fundy. Shellfish toxicity is widespread within the Bay of Fundy, but the 

dinoflagellates seem to be most abundant in the south-central and southwestern portions of the Bay 

(Martin and White, 1988). As in the St. Lawrence region, toxicity usually has an annual peak in 

July, August or September, although outbreaks are possible somewhat earlier and later on 

occasion. 

Gulf of Maine. Shellfish toxicity within this region extends along virtually the entire coast 

of Maine, New Hampshire and northern Massachusetts. PSP monitoring programs operate from 

April through October, with outbreaks being most common in early to mid-summer as in the above 

regions. Spring and fall outbreaks also occur. The dinoflagellate populations are abundant in 

estuaries as well as in coastal waters, possibly associated with offshore frontal systems 20-30 km 

from shore. These offshore blooms have not been well-studied and represent an important 

potential source of toxin for fish. 

Toxin Composition 

An important aspect of toxin production by dinoflagellates in this region is that different 

strains of Alexandrium produce different combinations of saxitoxin (STX) and its derivatives. 

The suite of toxins contained in an isolate is referred to as its "toxin composition". When 

determined by high pressure liquid chromatography (HPLC), toxin composition provides a 

fingerprint to identify particular strains or populations. Within the northwest Atlantic region, it has 

been shown that northern strains of Alexandrium contain primarily carbamate toxins, whereas 

those to the south in Connecticut and Long Island contain sulfamate toxins. Since these toxins 

differ significantly in potency, northern isolates are far more toxic than those from the south 

5 



(Maranda, et al., 1985). Accordingly, the concentration of dinoflagellates needed to produce 

dangerous levels of toxin is lowest in the north. 

Toxic dinoflagellates in the genus Alexandriwn are widespread imhe region between Long 

Island and the Gulf of St. Lawrence. In northern waters, these dinoflagellates bloom 

predominantly during the summer months, but spring and fall outbreaks are also possible. 

Shellfish toxicity records document the nearshore distribution of the cells, and some limited field 

studies suggest their existence 10-50 km offshore as well. Where available, field data indicate 

localized, high-density accumulations of cells (such as at fronts), as well as more widespread 

distributions such as those seen throughout the Bay of Fundy. Since outbreaks occur virtually 

every year within this large region along the northwest Atlantic, many different fish populations 

would be exposed to these toxins, although that exposure would be restricted to certain times of the 

year. It is of note that relatively little PSP toxin was detected in shellfish along the shores of the 

Gulf of Maine in 1987 prior to the whale mortality, although no information is available on 

Alexandrium bloom occurrences offshore. Toxins were present in shellfish from the St. 

Lawrence Estuary of Canada however. 

B. Southeast Region 

Florida red tides caused by the dinoflagellate Ptychodiscus brevis can cause discolored 

seawater, shellfish toxicity (Neurotoxic Shellfish Poisoning), fish kills, and a toxic seaspray 

aerosol that can irritate the eyes, nose, mouth, and throat of people in the immediate vicinity of the 

spray (S teidinger and Baden, 1984; Pierce, 1 986). Ptychodiscur brevis is a gymnodinioid of 

restricted Atlantic distribution, but with conspecific representatives in the Pacific. It is known from 

the Gulf of Mexico (Florida, Texas, and Mexico), the North Atlantic (Florida, North Carolina, and 

South Carolina), the Gulf Stream, and possibly the Caribbean. P. brevis red tides in the eastern 

Gulf of Mexico and southeastern U.S. waters originate off west central Florida about 10 to 40 

miles offshore. Initiation of red tides near shore i s  associated with oceanic intrusions onto the 

shelf (Steidinger and Haddad, 198 1). They can be entrained and transported from the west coast 

of Florida to the east coast by Loop Current waters, which enter the Florida Straits as the Florida 
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Current and eventually merge with the northerly moving Gulf Stream. Such transport is known to 

have occurred in the fall months of 1972 (Steidinger and Haddad, 198 1 ), 1977 (S teidinger and 

Haddad, 1981), 1980 (Steidinger and Haddad, 1981), 1983 (Roberts, pers. comm.), and 1987 

(Tester et al., 1988). 

Ptychodiscus brevis red tides are typically seasonal in that they usually begin off the west 

coast of Florida in late summer/early fall and last until or through January. It takes about four 

weeks for an offshore red tide to develop concentrations that can cause fish kills (Roberts, 1979). 

In addition to transport of blooms around the Florida peninsula, Lackey (1969) and Marshall 

(1 980,1982) have reported P. brevis in very low concentrations (a ml-1) in the Gulf Stream off 

the southeast US. coast. Driftbottle releases in waters off central west Florida from 1965 to 1968 

(Williams et al., 1977) and their subsequent returns, document that surface transport from central 

west coast offshore and coastal waters to Florida east coast sites can be completed in as shoit as 7 

days and often in less than one month. Also, returns of bottles from North Carolina and South 

Carolina in summer and fall were made in as little as 31 days during that period. Therefore, P. 

brevis , a flagellate that produces neurotoxins (Baden, 1983), can co-occur with Atlantic coast 

coastal and offshore dolphins. Along the west coast of Florida, reported dolphin mortalities 

coincident with red tide events (some lasting up to 11 months) are few (Gunter et al., 1948; 

Steidinger et al., 1973) and are not more numerous than dolphin mortalities over the general area of 

the Gulf of Mexico, e.g., 1986 and 1987 (Pierce, pers. comrn.). 

C. Food Web Transfer 

It is now well recognized that the toxins of certain dinoflagellates (paralytic shellfish toxins) 

are routinely taken up by a variety of marine organisms during blooms and transferred to others, 

with mass kills of marine fish resulting in some instances. On occasion this contamination of fish 

has led to kills of seabirds (Adarns, 1978; Nisbet, 1983), other fish (Nisbet, 1983) and, in at least 

one instance, of humans (Adnan, 1984). In this context, it would seem plausible that marine 

mammal monalities could occur when toxic dinoflagellates and the mammals' food items overlap in 

time and space, as was suggested several years ago (White, 1984). Indeed, a mass kill of seals off 
7 



the coast of South Africa in the early 1800s appears to have been related to red tide toxins in fish 

(Wyatt, 1980). 

Paralytic shellfish toxins have been detected in an array of marine organisms during and 

following Alexandrium blooms. These organisms include filter-feeding molluscs, carnivorous 

molluscs, crabs, starfish, barnacles, tubeworms, various zooplankton (tintinnids, copepods, 

cladocerans, pteropods, etc.), planktivorous fish and squid (Jonas-Davies and Liston, 1985; 

White, 1981a; J. Hurst, pers. comm.). In terms of their potential to serve as vectors of the toxins 

to marine mammals, zooplankton and planktivorous fish (such as menhaden, sand lance, hemng 

and mackerel) are prime suspects (shellfish would be the main food web link to walruses and 

otters). 

Zoc,pl ankton 

Zooplankton have been shown to acquire the toxins on a routine basis during the annual 

Alexandrium blooms in the Bay of Fundy, with toxin levels often reaching about 60 w STX 
equiv./g wet weight plankton (White, 1984). The toxins appear to remain in the zooplankton 

community for only a few weeks (White, 1979), but during this period there can be repercussions 

in the food web. In 1976 and 1979, massive kills of adult herring occurred in the Bay of Fundy 

during Alexandrium blooms as a result of toxin transfer through zooplankton (White, 1980). 

Similar events, involving Alexandrium toxins, zooplankton and kills of sand lance occurred in 

England in 1968 (Adams et al., 1968) and off Cape Cod in 1978 (Nisbet, 1983). (Incidentally, as 

in the whale kill off Cape Cod in 1987, there were no inshore indications of an Alexandrium bloom 

occurring prior to or during the 1978 sand lance kill off Wellfleet). In 1979, a menhaden kill 

occurred in Maine during an Alexandrium bloom (J. Hurst, pers. comm.); in this instance, 

however, the toxins were likely transferred directly from the dinoflagellates to the fish, which are 

phytoplanktivores. Calculations based on oral dose responses of marine fish to the toxins suggest 

that at 60 pg toxins/g zooplankton as little as 1 gram of zooplankton would constitute a lethal dose 

for a 100-g fish (White, 1981b). Experimental studies show that ingestion of zooplankton 

containing much less toxin than this cause mortality of marine fish larvae (White et al., 1989). It 
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should be noted that zooplankton retain the same complex of toxins as in the dinoflagellates, i.e ., 
major conversions of the toxins do not take place (Hayashi et al., 1982). 

To translate toxin levels in zooplankton to potential effects on whales, we need information 

on the sensitivity of whales to the toxins, which of course is lacking. The LD50s for terrestrial 

mammals (mice, rats, rabbits and cats) range from 200 to 600 pg/kg (Evans, 1972). Humans, 

however, appear to be much more sensitive than this; rough estimates of the minimum lethal oral 

dose for humans are as low as 7 to 16 p e g  (Schantz et at., 1975). One would expect that lethal 

levels for aquatic mammals may well be lower than for terrestrial mammals because aquatic 

mammals must orient properly to breathe, i.e ., moderate symptoms of poisoning may lead to 

drowning of aquatic mammals. There are no data on the effects of long-term, sub-lethal doses of 

STX in humans or other animals. 

Using the conservative figures, if we assume that the sensitivity of whales to the toxins is in 

the 200-600 kg/kg range, then a 30-ton whale would have to eat about 90 to 275 kg of 

zooplankton (wet weight, and containing 60 pg STX equiv./g) to obtain the LD50 dosage. This is 

well below the estimated amount of food that baleen whales eat daily, i.e ., about 4% of their body 

weight (Sergeant, 1969) or about 1,100 kg in this case. 

Fish - 
Studies with herring, pollock, flounder, and salmon show that these fish are sensitive to 

Alexandriurn toxins (White, 198 1 b). Their oral and intraperitoneal dose responses to the toxins are 

similar to those for warm-blooded animals. The oral LD50 is 400-750 p@g; the i.p. LD50 is 4- 

12 pgkg. Symptoms of poisoning (disequilibrium and swimming on sides) appear within minutes 

of exposure to the toxins, with death occurring after 20 to 60 min. Some fish recover from the 

poisoning and resume normal behavior after a few hours. 

In terms of seafood safety, it is fortunate that fish, like warm-blooded vertebrates, are highly 

sensitive to paralytic shellfish toxins in their muscle tissues (White, 198 1 b). This means that fish 

are unable to accumulate the toxins in their flesh; they die before the toxins reach levels unsafe for 



consumers. This is corroborated by the fact that assays of flesh of fish killed by Alexandrium 

toxins in nature show either undetectable or very low levels of toxins (White, 1984). 

However, the toxins can occur in substantial amounts in fish viscera. Toxin levels as high 

as 1400 pg toxins/lOOg viscera have been reported (White, 1984). Past experience has shown that 

toxin levels in the viscera can be high enough so that ingestion of whole fish can cause kills of 

seabirds (Adams, 1968; Nisbet, 1983), carnivorous fish (Nisbet, 1983) and humans (Adnan, 

1984). During a Pyrodiniwn red tide in Indonesia in 1983,4 people were killed and 191 became 

ill from "paralytic shellfish poisoning" after eating whole planktivorous (clupeoid) fish taken alive 

from the red tide area. Similar human poisonings, without deaths, have been reported during other 

red tide episodes in Borneo and the Philippines (Maclean, 1989; White, 1984). An interesting note 

in this connection is that since the time of the Romans a paste prepared from fermented mackerel 

innards, called "Gentlemen's Relish," has been eaten in the United Kingdom (T. Wyatt, pers. 

comm.). 

Toxin analyses of Atlantic mackerel caught during the humpback whale kill in late 1987 

showed a mean toxin concentration of 153 pg/100 g in the livers and a total body burden of 80 

pg/kg (Geraci et al., in press). Similar levels of toxins, 40 to 209 pg1100 g, were found in the 

livers of live mackerel from the Bay of Fundy in 1988 (Haya et al., 1989). In the former case, for 

which a figure for total body burden is available, the toxin level is within the range reported for 

whole, dead specimens of hemng, sand lance and menhaden taken from kills, 23 - 970 pg/kg 

(White, 1984). Yet, the mackerel were apparently not affected -- at least not killed. This suggests 

that mackerel may have different sensitivity to the toxins, as perhaps does Japanese puffexfish 

(Fugu ) which can contain STX and tetrodotoxin in its liver and gonads (Nakamura et al.. 1984). 

Virtually nothing is known about the fate of toxins in, or consequences to, fish when provided at 

sublethal levels over a period of time. Under these conditions, fish may be able to accumulate and 

store the toxins in certain organs. 

How much toxin is a whale likely to acquire from eating contaminated fish? Using the 

figures of 23 to 970 pg STX equivJkg (White, 1984) for total body burdens of paralytic shellfish 
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toxins in fish, and assuming a whale consumes 4% of its body weight per day, calculations 

indicate that consumption of fish at this toxin level would provide a whale with 0.9 to 39 pg 

toxinkg. This is considerably less than the 200-600 pg/kg oral LD50 reported for mice, rats, 

rabbits and cats (Evans, 1972), but it is in line with the estimated minimum lethal oral dose for 

humans, 7 to 16 pg/kg (Schantz et al., 1975). 

Conclusion 

The information available points to the feasibility of Alexandrium toxins being transferred 

through zooplankton and/or planktivorous fish to humpback whales. Assuming that whales have 

similar toxin sensitivity to other mammals, it appears that zooplankton (at least in the Bay of 

Fundy) reach toxin levels sufficient to present a danger to the whales. The data available on the 

toxin content of fish indicate levels that are high enough to provide tantalizing, but not compelling, 

circumstantial evidence that whale kills may result from eating fish. The fact that toxin-containing 

fish have caused kills of seabirds, other fish and humans lends credence to the notion that they can 

also affect whales. 

To help unravel the impact of dinoflagellate toxins on marine mammals, we must know 

more about exposure of mackerel and other fish to sub-lethal levels of the toxins, sources of the 

toxins (unobserved offshore blooms, bacteria, etc.), levels of toxins that can be accumulated in 

living fish, whether other dinoflagellate toxins follow similar food web routes as for paralytic 

shellfish toxins and whether intoxicated fish may be more susceptible to predation. Investigations 

of marine mammal mortalities should include analyses for dinoflagellate toxins, as soon as possible 

after the events are observed. 

I11 MARINE MAMMAL MORTALITIES 

A. Whales 

1. Epidemiology and Pathology 

During late fall, humpback whales (Megaptera novaeangliae ) typically feed on sand lance 

(Ammodytes sp.) on Stellwagen Bank off the Massachusetts coast. However, in the fail of 1987, 



sand lance stocks were largely absent on the Bank, and humpbacks moved south towards Cape 

Cod, where they apparently fed on Atlantic mackerel (Scomber scombrus ). 

Between November 28,1987 and January 3,1988, 14 humpbacks were found dead along 

the beaches of Cape Cod Bay and northern Nantucket Sound. During the previous 10 years, a 

total of only 3 humpbacks were found by an organized stranding recovery network in this area. 

The whales evidently died acutely in robust physical condition with ample fat reserves. No 

common significant pathological lesions or infectious agents of disease were found in 12 whales 

examined postmortem. However, in 6 of 9 whales, partially digested fish, later identified as 

mackerel, were found in the stomachs, a comparatively rare finding in stranded dead whales which 

usually have empty stomachs. Extracts of kidney, liver and stomach contents from the whales 

contained a potent toxin activity with properties similar to saxitoxin in mouse bioassy. 

2. Toxin Assays 

The saxitoxins are a family of compounds based on the parent compound saxitoxin (Schana 

et al., 1975). Those known from the source organisms, the dinoflagellates Alexandrium spp., 

Gymnodinwn catenatm, and Pyrodiniwn bahamense, include derivatives formed by the addition 

of N-l-hydroxyl, 11-hydroxysulfate, and 21-sulfo groups (Hall and Reichardt, 1984). These 

toxins act by selectively blocking the influx of sodium ions through excitable cell membranes, 

effectively intempting the formation of an action potential (reviewed by Shimizu, 1987). 

Methods. Toxic compounds in fish and whale samples were detected using the standard 

mouse bioassay (Adams and Meiscier, 1980), liquid chromatography (Sullivan et of., 1985) and 

single channel pharmacology (S. Hall, pers. comm.). Isolation of toxic components was 

performed by column chromatography using activated charcoal followed by Biogel P-2. The toxin 

was identified by thin layer chromatography, electrophoresis and mouse neuroblastoma cell assay 

(Kogure er a!., 1988). 

Results. After extensive analyses with all of the above methods, saxitoxin has been 

unequivocally identified in mackerel. The toxin was universally present in viscera, especially liver, 

of mackerel caught at the time and place the whales were feeding, and in others collected in the 
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region north and south of the study area. Only STX was detected, and not any of its 11 

derivatives. In a study by Geraci et al. (in press) five analyses of composite tissues from 17 fish 

collected near the time of the mortality event showed STX in liver at a mean concentration of 153 

pg/100 ug. Average concentration in four fish was 52.3 pg SSTX/100 g of viscera (range 40.2- 

7 1.2 pg/100 g), equivalent to a mean total body burden of 80 pg STX/kg fish. No toxin was 

detected in fish muscle. Pacific mackerel, Scomber japonicus, tested as a control, contained no 

STX. 

Subsequent analyses of mackerel from a wider area (Rhode Island to the Bay of Fundy, 

Canada) in 1988 showed that nearly every fish tested contained some STX, with highest 

concentrations of over 600 pg/100g liver (B. Learson, Y. Shirnizu, J. Hurst, pen. comm.). 

Mackerel collected throughout the Alexandriurn fundyense bloom period in the Bay of Fundy 

contained similar amounts of toxin to those measured at the time of the whale mortality event (40- 

200 pg/100 g liver, Haya et a[., 1989). Analyses of these fish by HPLC revealed saxitoxin as well 

as several of its derivatives (B2, GTX II, GTX 111, and NEO). In general, saxitoxin was the 

major toxin in the livers whereas GTX II, III were the major toxins in the intestines. 

Extracts from 3 of 8 humpback whale kidneys, 4 of 7 livers, and the contents from 7 of 9 

stomachs (macerated flesh, bones, fluid) caused mice to die with signs characteristic of saxitoxin 

poisoning. Control liver samples (n=21) from 4 cetacean species that died unrelated to the 1987 

mass mortality showed no such toxicity. One each of the positive kidney and liver samples from 

the whales were re-tested by means of tissue culture assay for sodium channel blockage and shown 

to be positive (Y. Shimizu, pers. cornm.). However, HPLC analysis showed no STX peak in 

these whale tissues (Geraci et af ., in press). 

Geraci et al. (in press) calculate that whales feeding on mackerel prior to their southward 

migration could have received a daily dose of saxitoxin of 3.2 pglkg body weight. This is in a 

range similar to the minimum lethal oral dose estimated for humans ('7-16 pg/kg; Shantz et al., 

1975). Other factors that must be considered when evaluating the possible effects from this dose 

of saxitoxin are that the toxin might only need to incapacitate a marine mammal to have lethal 
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results (i.e. loss of equilibrium, respiratory distress leading to drowning) and that the mammalian 

diving reflex will shunt toxins away from excretory and detoxifying organs (kidney, liver). 

It is of note that metabolic processes in at least some accumulating organisms can remove the 

N- l -hydroxyl and 1 i -hydroxysulfate groups and the carbmte  and sulfamate side chains from the 

saxitoxins (Proctor et al,, 1975; Shimizu and Yoshioka, 198 1; Sullivan et al., 1983). The 

demonstration of toxin conversion within shellfish tissue (Shimizu and Yoshioka, 1981) is relevant 

to the whale poisonings in that the only toxin detected by HPLC in mackerel liver during the 

mortality event was saxitoxin, despite the presence of many other saxitoxin derivatives in 

Alexandrium cells from that region (see section I1 A). This suggests that a conversion occurred 

within the mackerel tissues, there was selective retention of only saxitoxin by those tissues, or the 

toxin source was not Alexandrium . Subsequent HPLC analyses of Canadian mackerel tissues 

(Haya et al., 1989) revealed toxins in addition to saxitoxin, possibly related to the short time 

between fish capture and the ingestion of toxic food items by those fish. 

Decarbamoylation of the toxins by shellfish (Sullivan et al., 1983) is noteworthy in light of 

the lack of saxitoxin peaks in HPLC analyses of whale tissues, despite the strong signs of 

saxitoxin-like poisoning in mice injected with those extracts and the positive results from tissue 

culture assay. Decarbamoylation reduces toxin potency only slightly, but does make the cornponds 

difficult to detect by the HPLC technique now in common use. 

3. Potential Interactions 

The two main food sources that would expose marine mannnals to paralytic shellfish toxins 

are zooplankton and planktivorous fish (see Section 11 C). Since Alexandrium blooms are annual 

late spring and summer events throughout northern New England and eastern Canada, these 

organisms would contain the toxins seasonally at least (as shown for Bay of Fundy zooplankton) 

and perhaps in some instances year-round (as is suspected for Atlantic mackerel). The current 

evidence that the dinoflagellates contain more potent toxins in northern waters than southern 

(Maranda et al., 1985) suggests that zooplankton and fish feeding in these northern areas may 



acquire greater toxin loads than elsewhere in the region or may become toxic more frequently. 

They also might be less sensitive to the toxin as a result of this increased exposure. 

Concerning the zooplankton route of toxin msvection, the only baleen whale in this region 

that is known to feed primarily on zooplankton is the right whale. There is a population of right 

whales that resides in the southern Bay of Fundy in the summer, overlapping the period of toxic 

dinoflagellate blooms and the period when the zooplankton community becomes contaminated with 

high levels of the toxins. Despite the apparent plausibility of whales being poisoned from eating 

toxin-containing zooplankton, no mass mortalities or unusual behavior of right whales have yet 

been reported. However, right whales have not been investigated in regard to this specific 

question, and studies here would seem worthwhile. 

Shifting the focus to fish as transvectors of the toxins, Atlantic mackerel is the species of 

chief concern because of its implication in the 1987/88 humpback whale mortalities and because the 

toxins have been found in mackerel over the entire northwest Atlantic region. There is ample 

evidence (from literature reviews of food habits derived from stranded animals and animals taken 

incidentally in fisheries operations) that mackerel would interact on a temporal and spatial basis 

with the following marine mammals: 

large whales: 

minke whale . 

humpback whale 

finback whale 

small toothed whales: 

pilot whale 

bottlenose dolphin 

harbor porpoise 

white-sided dolphin 

common dolphin 

&reY grampus 



harbor seals 

grey seals 

The Atlantic mackerel is a highly migratory fish. Information on its general distribution and 

migratory patterns may shed some light on where this stock acquires its toxin load. Atlantic 

mackerel are distributed between Labrador and North Carolina. There are two major spawning 

components of this population, a southern group, which spawns primarily in the Mid-Atlantic 

Bight during April and May, and a northern group, which spawns in the Gulf of St. Lawrence in 

June and July (Sette, 1950). Both groups overwinter between Sable Island (off Nova Scotia) and 

Cape Hatteras in waters generally warmer than 70C, with extensive northerly migrations in the 

spring and southerly migrations in the fall to and from spawning and summering grounds. After 

spawning, the southern group continues through the Gulf of Maine and summers there and in the 

Bay of Fundy, where fish could acquire high levels of dinoflagellate toxins. The northern group 

summers in the Gulf of St. Lawrence, where fish could also acquire the toxins. On their return 

migration in the fall, both groups pass through the waters off Cape Cod and may encounter 

humpback whales feeding in the that area prior to their annual migration to the Caribbean. 

Besides mackerel, there are other planktivorous fishes in the Northwest Atlantic that are 

among the prey of marine mammals. They include sand lance, Atlantic hening, capelin, butterfish, 

and silver hake, as well as squid. These animals are not as migratory as mackerel. All but sand 

lance display a seasonal shift in distribution within the northeast region, but not the extensive 

north/south migration characteristic of mackerel. Sand lance occur as resident populations on 

Georges Bank, Stellwagen Bank, and along the southern New England shelf. Hemng and sand 

lance are known to acquire saxitoxins; the toxins have been found in them after mass mortality 

events (see Section I1 C). Whether these and other fish can, after chronic sub-lethal exposures, 

retain the toxins in their internal organs, as apparently mackerel do, remains to be determined. 

Nothing is known about whether toxins can be present in capelin, silver hake or butterfish. The 

toxins have also been detected in menhaden and squid during toxic dinoflagellate blooms off Maine 



(J. Hurst, pers. comm.). Menhaden does not appear to be a preferred food of marine mammals in 

the northeast, but squid (both short- and long-finned) are often eaten by mammals in that region. 

4. Implications 

Based on: a) the average body burden of saxitoxin in mackerel over a large geographic 

region (80 pg per fish); b) the presence of large quantities of mackerel in whale stomachs; c) the 

unusual and rapid whale mortality; d) the presence of a saxitoxin-like compound in whale tissues; 

e) the estimated dose of toxin to the whales from ingestion of mackerel; and f) the probable 

increase in susceptibility of marine mammals to neurotoxins that affect equilibrium and respiration, 

it is reasonable to hypothesize that the humpback whale mortality was caused by dinoflagellate 

toxins accumulated in mackerel. While support for this hypothesis is circumstantial, it is offered 

as the most likely scenario, in view of the absence of plausible alternatives (Geraci et al., in press). 

Other implications of these analyses and results are that: 

mackerel stocks probably contain saxitoxin over a wide range in the northwest Atlantic; 

mackerel probably retain toxin for extended periods of time, possibly converting an 

initial mixture of the saxitoxins into the parent compound saxitoxin h u g h  time; 

since the whale mortality occurred during a year with relatively low shellfish toxicity in 

the region, unrecognized offshore blooms of Alexandrium may be sources of toxin to 

fish and whales; 

the long history of PSP in the region combined with the absence of conspicuous whale 

mortalities in the past suggests that a series of relatively rare events must co-occur to 

cause a mortality of this type (e.g. decline of sand lance populations, increased 

mackerel abundance, co-occurrence of dinoflagellates, zooplankton, and planktivorous 

fish). Frequent repetitions of whale mortality events at this scale are unlikely; 

The presence of toxins in living fish may represent a limited seafood safety risk 

(discussed below). 



B. Dolphins 

1. Epidemiology and Pathology 

During the spring and early summer, the inshore migratory stock of bottlenose dolphins 

(Tursiops truncatus ) apparently migrates from its wintering area east of Florida and Georgia 

northward to the coastal areas between New Jersey and North Carolina. The dolphins return south 

in the fall. In June 1987, unusual numbers of dolphins began dying and washing-up on beaches in 

New Jersey. Between June 1987 and February 1988, over 740 dolphins were found dead along 

their southern migratory route as far south as Florida (Scott et al., 1988). These deaths represent 

an unknown fraction of total mortality because many other carcasses likely drifted out to sea or 

were scavanged. Most of the dead dolphins exhibited a wide range of chronic pathological 

processes typical of those associated with chronic physiological stress. These pathological 

findings and the distribution of dolphin deaths were not consistent with a primary infectious 

epizootic disease and no known specific primary infectious pathogen was consistently isolated 

from dolphin tissues submitted to various laboratories (Geraci, 1989). 

Levels of some organic contaminants (PCBs, DDT, trans-nonachlor) in some dolphin 

tissues were among the highest recorded in cetaceans, but in many animals that died, the levels 

were in the range found in reference control tissue from aquaruim dolphins that died unrelated to 

this episode (Geraci, 1989). 

Livers yielded extractable substances that were fatal to fish in bioassays (Appendix 3c). 

These compounds had chemical properties similar to brevetoxins of dinoflagellate origin. In one 

such dolphin that died off the coast of Florida, the stomach contained menhaden with similar toxic 

activity in its viscera. 

2. Toxin Assays 

As described in more detail in Appendix 3c, three types of samples were examined to test the 

hypothesis that Florida red tide brevetoxins can transvect to dolphins: (i) dolphin livers (which 

must contain demonstrable brevetoxins); (ii) stomach contents from moribund dolphins (which 

must contain prey adulterated with brevetoxins); and (iii) live-caught prey species (which must 
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contain brevetoxins). Thirty-four samples of (i) were examined, one suitable sample of (ii) was 

analyzed, and limited numbers of eight species of type (iii) were tested. 

Samples were prepared by extraction/homogenization in solvent, followed by sequential 

flash chromatography, multiple thin-layer chromatography, and reverse phase high performance 

liquid chromatography. For a single subsample of (i), Fourier transform i n h e d  specaometry and 

brevetoxin radioimrnunoassy were performed. Procedurally, following each chromatographic 

step, Gambusia affinis fish bioassays were performed to assess each subfraction for potential 

toxicity. Work-ups were terminated if bioassays ceased to be positive. Only positive fractions 

were carried to the subsequent step in the purification scheme. HPLC fractions were compared to 

reference standard brevetoxins, on the basis of retention times and co-migration (i.e. mixing of 

resolved peaks from the suspect fractions with authentic brevetoxin and re-chromatography). 

Fractions not reaching the HPLC stage were classified as non-brevetoxin, as were samples which 

did not demonstrate brevetoxin-type HPLC peaks. 

By the criteria listed above, eight of the 17 samples of (i) tested positive for brevetoxins 

compared to negative results for 17 submitted control samples of (i). The single sample of (ii) 

tested positive, and samples of menhaden viscera but not other species from (iii) also tested 

positive. 

Sample WAM-280, which tested positive by all criteria, was subjected to Fourier transform 

infrared spectrometry and was compared to standard brevetoxin. Spectra of the two compounds 

were indeed very similar but were not identical. This was the only spectrum analysis which could 

be obtained due to sample limitations. Brevetoxin radioirnmunoassay was also performed on this 

sample, using aitiated brevetoxin PbTx-3 as a ligand probe and brevetoxin-specific goat polyclonal 

antibody as the binding component. A calculated IC50 (concentration necessary to displace 112 the 

labeled toxin from the antibody) for WAM-280 HPLC-resolved "brevetoxin" is 7.3 nm (- 900 

MW), compared with an IC50 for PbTx-3 of 2.5 nm. Thus, the resolved WAM-280 sample 

appears to be recognized by an tibrevetoxin antibodies. 



3. Potential Interactions 

Toxic, lipid-soluble extracts from menhaden viscera and dolphin liver had physical and 

chemical properties equivalent to brevetoxins using the above methods. If biotoxins are being 

transferred via food chains, what then are the potential implications of such events to seafood 

product safety and health of higher carnivores or omnivores? Because bottlenose dolphins from 

the 1987-88 mortalities contained brevetoxin-like substances (83 to 15,820 ng/g liver tissue) 

(Geraci, 1989), it is probable that they came in contact with the toxic organisms directly in the 

water column, or indirectly through the food chain. Direct contact is unlikely to cause 

accumulation of toxins in liver tissue and has apparently not caused mass mortalities of dolphins 

off the west coast of Florida, where P. brevis red tides can be intensive (concentration of 

>180,000 cells ml-1) and of long duration. Toxicity through the food chain is much more plausible 

because dolphins consume fish whole, and if prey items have toxic viscera, dolphins could be 

killed or possibly be compromised to the point of nonfeeding, modification of behavior and 

orientation, and/or irnmunoincompetency. Several synergistic factors other than biotoxins could 

have been involved in the 1987-88 mortalities, and caused physiological stress and debilitation. 

Hersh (1987) characterized the seasonal occwrences of bottlenose dolphins as the following: 

1) North Carolina to New Jersey in summer, 2) Carolinas to Florida in fall, with a concenlration in 

northeast and central Florida coastal waters in winter, and 3) a northerly migration in spring. Scott 

et a[. (1988) diagramed the 1987-88 east coast dolphin strandings starting with the summer 

mortalities between New Jersey and North Carolina (see Figures 1 and 2). Dolphin strandings 

correlate with known seasonal occurrences and timing of migrations. 



Figure 1 (Scott  -- et a l . ,  1 9 8 8 ) .  a) Dis tr ibut ional  range of bott lenose dolphins along the U . S .  
Atlantic coast. b) Areas of major concentrations of coas ta l  migratory stock of bo t t l e -  
nose dolphins during summer and winter. 





Several of the dolphin prey species have the same distribution and occurrence patterns along 

the Florida and northeast U.S. coast; this has been revealed by tag-and-recapture studies and data 

on seasonal fishery landings by area. Dolphins feed on menhaden and other clupeid or herring-like 

fishes. Atlantic menhaden tagged in northeast Florida nearshore waters in April were recapturd in 

North Carolina in May/June and menhaden tagged in North Carolina in early spring have been 

returned from Chesapeake Bay in May and New Jersey and New York in July (Dryfoos er al., 

1973). These data may be misleading, however, as tag returns from processing plants are not 

always indicative of area of harvest. These distribution and migratory patterns are probably 

associated with water temperature changes and other cues, e.g., availability of food. The toxic 

menhaden from dolphin stomach contents was not identified to species; the live menhaden caught 

off Vero Beach, Florida was thought to be B. smithi . However, all menhaden are planktivorous 

and could conceivably be toxin vectors, as could other coastal fishes such as Spanish mackerel and 

striped mullet, which are also food items of coastal dophins. It is possible that predator and prey 

travel the same routes at approximately the same times, or that they at least occur in the same area at 

the same time. 

Confounding the apparent relationship between coastal bottlenose dolphins and brevetoxins 

is the occurrence of other potential toxin-producing planktonic flagellates. Tursiops and toxic 

flagellates are present in both the Atlantic and the Gulf of Mexico regions of Florida. If east coast 

dolphins were affected by brevetoxins, as has been proposed (Geraci, 1989), the lack of previous 

observations of similar catastrophic dolphin mortalities in the Gulf of Mexico would need to be 

explained. Several possible explanations for this apparent discrepancy are discussed below as 

hypotheses. 

The first documented case of coincidental P. brevis red tide and mass marine mammal 

mortalities in the Gulf of Mexico occurred in 1982 when 41 West Indian manatees died between 

February and April in Charlotte Harbor (0's hea and Rathbun, 1982). Although brevetoxins were 

certainly suspect, they were not confmed in tissues. Toxic substances were found in filter- 

feeding tunicates that were collected from the same vegetated area where manatees were feeding. 
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Tunicates were also found in the gastrointestinal tract of dead manatees. Eight distressed manatees 

exhibited neurological signs of dysfunction, e.g., disorientation, inability to submerge, flexing of 

the back, listlessness, and labored breathing; one of these manatees died and several were revived. 

S uch signs are suggestive of brevetoxin intoxication. 

4. Implications 

It is clear that a brevetoxin-like compound was present in livers of some dolphins that died 

during the epizootic in 1987 and in ingested and wild menhaden. The seafood safety concerns of 

these data are discussed below. The detection of these toxins, combined with knowledge of the 

geographic occurrence of dinoflagellate blooms off southern Florida and the migration patterns of 

dolphins and their food fish, suggests one scenario in which the dinoflagellate toxins initiated the 

mortality event (Geraci, 1989). This possibility, which led to much discussion, was the only one 

offered that was consistent with the range of available data regarding the die-off. Futhermore, it is 

supported by the same lines of evidence used to implicate STX in the whale mortalities. The major 

difficulties in assessing this possibility include: 

the lack of documented direct temporal and spatial coupling between blooms of the 

dinoflagellate P. brevis and the initial dolphin deaths along the mid-Atlantic coast 

most dolphin deaths apparently were caused by a variety of different pathogens, 

requiring that the effect of brevetoxin would have to be limited to a non-lethal 

physiological insult 

dolphins in the Gulf of Mexico inhabit an environment subject to frequent brevetoxin- 

containing red tides. If the above hypothesis is true, these dolphins must be either 

resistant to brevetoxins in their usual food-fish, or they avoid specific fish species or 

regions at times when the risk is high. 



XV SEAFOOD SAFETY 

A. Summary of Dinoflagellate Toxins in Fish 

After the fust discovery of toxin in mackerel liver and the confirmation of saxitoxin, the 

question of public health became an important issue. Personnel from the Massachusetts 

Department of Public Health, Maine Department of Marine Resources, and the National Marine 

Fisheries Service, Northeast Fisheries Center (NEFC) immediately began sampling other species 

of fish and edible tissues to determine if the toxin problem in mackerel livers was indicative of a 

more general seafood safety problem. In December 1987, the Massachusetts Department of Public 

Health issued a health Advisory recommending that consumers riot purchase mackerel. After 

futher study, it was determined that toxins were only found in livers and not in muscle tissue. The 

Advisory was accordingly updated to state that there was no risk of saxitoxin exposure from 

consumption of mackerel flesh. 

From December 1987 to May 1989 the NEFC Gloucester Laboratory continually sampled 

Atlantic mackerel over the entire geographic range of the species from the mid-Atlantic to the Gulf 

of St. Lawrence. During this period, over 100 discrete samples of mackerel (individual as well as 

composite samples) have been analyzed by the AOAC mouse bioassay test (Adarns and Meiscier, 

1980). 

Mackerel livers demonstrated toxicity with toxin levels ranging from less than 40 pg to as 

much as 600 pg/100 g of liver. No toxin was found in edible muscle tissues or in other Atlantic 

mackerel products including canned mackerel pet food and mackerel roe. Additionally, liver and 

some flesh samples 60m 23 other species of fish and shellfish were screened for the presence of 

toxins. These included sea urchins, northern shrimp, groundfish species such as cod, haddock 

and pollock, skates and dogfish, flounder species, hakes and related scombroid species such as 

bluefin tuna and king, frigate and Pacific mackerels (Lemon, pers. comm.). To date, no evidence 

of toxins in either livers or edible portions has been found in any of these species. Independently, 

personnel from the states of Maine and Massachusetts examined edible tissues or products from 



similar species and other products such as canned Maine sardines and dolphin (fish) with the same 

negative bioassay results. 

Other studies in Canada, the Pacific Ocean and, most recently, the south Atlantic have 

demonstrated the presence of dinoflagellate toxins in mackerel, hemng (dead), sand lance (dead), a 

variety of planktivorous fishes from Southeast Asia, and menhaden. Again, there is no evidence 

that toxins are present in any muscle tissues or edible roe. 

Although there is no evidence of PSP-type toxins or brevetoxins in edible muscle tissues 

from finfish, sampling should be con tinued on filter- feeding species and their predators during and 

after phytoplankton blooms. Analysis should include screening for PSP toxins as well as for 

domoic acid which has recently been implicated in human illnesses related to shellfish 

consump tion. 

The only other potential food safety problem associated with bioaccumulation of PSP toxins 

or brevetoxins in filter-feeding species would be in the production of fish meal and oil. 

Insufficient information is available at present to ascertain whether a danger exists with these 

products, but the dilution of toxic tissues by the more abundant non-toxic portions during 

processing or the use of caustic soda during processing (for menhaden oil) should minimize 

problems. 

B. Human and Animal Concerns 

1. Whole Fish Uses 

All available evidence points to fish viscera being the only potentially hazardous material. 

The consumption of whole fish, including viscera, may therefore present an increased risk to 

individuals, usually members of certain ethnic groups, who include such items in their diet. The 

consumption patterns of these special population groups are not known. Future seafood 

consumption surveys should be designed to provide information on species of fish used as well as 

the size and frequency of meals. 



Atlantic mackerel and squid, both of which have exhibited toxic viscera, are among the 

species to be considered. Squid viscera are often discarded, but the ink, the toxin content of which 

is not known, is frequently used in food preparations. 

In the case of animal feeds, potential sources of contamination are toxic, whole fish supplied 

to zoos or processed into pet foods. Heat processing is known to significantly reduce levels of 

certain toxins such as PSP toxin in the finished product (Prakash et al., 1971). 

2. Other Fish Products 

Available information on toxicity levels, as well as historical data on product safety, 

suggests that consumption of fish viscera, or products derived from or including fish viscera, 

under most circumstances would not be toxic to the ultimate consumer. Products which fall in this 

category range from major commodities such as fish meal and oil to speciality food items such as 

"Gentlemen's Relish", a condiment prepared from mackerel viscera 

Fish Meal and Oil: The major source of raw material for this industry is menhaden (both 

Gulf and Atlantic species). Menhaden, like many other fish species are apparently sensitive to red 

tide toxins and do not survive intoxications. It is assumed, reasonably, that healthy fish caught 

and processed are free of toxin. Also, if brevetoxin were present in the viscera of the menhaden at 

levels sub-lethal to the fish, it would be effectively destroyed in the subsequent heat processing 

operations leading to the meal and oil products. Similar considerations would apply in the case of 

meal and oil products derived Erom Atlantic herring and mackerel. 

V RESEARCH AND MONITORING PRIORITIES 

It is convenient to discuss the research needed to address the marine mammal mortalities in 

the context of hypotheses and the data needed to test them. It should be noted that the workshop 

participants agree that these are valid hypotheses, but disagree on the liklihood of their being 

correct. 



A. Whale Mortalities 

Hypothesis 1. Whale mortalities in 1987 were caused by consumption of mackerel containing 

the natural biotoxin saxitoxin. 

Rationale: This hypothesis is not rigorously testable. Should such a mortality event occur 

again, information on the following would be necessary for addressing the related hypotheses 

descn bed below: 

Information Needs: 

toxicity information on mackerel, sand lance and other prey items of humpback whales 

throughout the region and over time, including but not limited to times and places 

where unusual mortalities occur. 

appropriate analyses of whale tissues and stomach contents should be performed as 

quickly as possible after mortality events (See Appendix 2). 

toxin pharmacokinetics (see below) 

Hypothesis 2. Mackerel process the saxitoxins differently from other fishes. 

Rationale: The effects of chronic exposure of fish to low levels of toxins are unknown. 

Mackerel are of special interest because they can cany substantial levels of toxins in internal organs 

in a range similar to body burdens known to kill other fishes. A logical approach would relate to 

the food web, beginning with plankton feeders (menhaden, hemng, sand lance, etc.) and 

progressing to carnivores. 

Information Needs: 

pharmacokinetics of the saxitoxins in various fishes. (Rates of toxin uptake, 

accumulation and release; tissue distribu dons and bioconversions). 

responses to chronic, sub-lethal doses 

Hypothesis 3. The source of toxins in mackerel is the dinoflagellate Alexandrium (formerly 

Protogonyaular ). 



Rationale: In this region, all PSP episodes are typically linked to Alexondn'wn species, 

although there is a suggestion in the recent literature that bacteria might be capable of producing the 

saxitoxins. 

Information Needs: 

dinoflagellate and zooplankton population dynamics, distribution, and toxicity 

(emphasizing offshore occurrences) 

evidence of bacteria that might produce the saxitoxins in fish. 

Hypothesis 4. The saxitoxins are converted in whale tissues. 

Rationale: Exrracts from whale tissues were toxic upon bioassay but showed none of the 

saxitoxins under HPLC analysis. Decarbamoylation or other conversions are suspected. 

Information Needs: 

model animal studies of chronic, low-level exposure to saxitoxin. 

whale tissue analyses (from suspected biotoxin mortality events) for decarbamoyl 

toxins using HPLC and single sodium channel analysis. 

use harbor porpoises taken incidentally in Bay of Fundy and Maine fisheries along with 

the Joint Venture Mackerel Fishery in the mid-Atlantic as a source of samples to 

determine toxin distribution in marine mammal tissues and the modes of toxin 

acquisition. 

B. Dolphin Mortalities 

It has been hypothesized that dophins were poisoned by brevetoxin, a neurotoxin produced 

by the Florida red tide dinoflagellate Prychodiscur brevis, and were subsequently affected by a 

host of bacterial and viral pathogens (Geraci, 1989). The design of strategies to test this 

hypothesis is restricted by the inability to examine these phenomena in controlled experiments 

using marine mammals. Futhermore, at this time the weight of the evidence is too weak to justify 

direct feeding studies on dolphins. A strategy can be developed to test the hypothesis indirectly by 

the following steps. 

Hypothesis 1. Brevetoxins can be acquired in filter-feeding fish and other prey items. 
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Rationale: Toxic compounds were unequivocally detected in menhaden, although the final 

chemical identification as brevetoxin is not complete. 

Information Needs: 

pharmacokinetics of brevetoxin exposure to various fishes. 

Hypothesis 2. Tursiops in west-central Florida are not exposed to or do not ingest food 

containing brevetoxins. 

Rationale: Despite a long history of toxic red tide and Tursiops co-occurrences in the 

Tampa region, there are no records of high dolphin mortalities there. 

Information Needs : 

collect and analyze dolphin prey items for toxins in and near areas inhabited by 

dolphins 

lavage animals and test stomach contents 

collect and test tissue samples and stomach contents from beached dolphin carcasses 

Hypothesis 3. Florida east coast dolphins can ingest food containing brevetoxins. 

Rationale: East coast dolphins were those involved in the mortality event. Liver analyses 

of many dead animals were positive for brevetoxin-like compounds. / 

Infomation Needs: 

seasonal analyses for brevetoxins in fish from locations when the unusual dolphin 

mortality occurred 

tissue analyses (for brevetoxin) of animals taken as part of the incidental catch in east 

coast fisheries and found stranded along east coast beaches. 

Hypothesis 4. Chronic exposure to sub-lethal doses of brevetoxins is physiologically damaging 

to dolphins. 

Rationale: This hypothesis is testable directly only through live animal experiments. Tests 

on live dolphins probably cannot be justified at this time. Exposure testing on other model 

mammals may provide insight into its validity. For example, thereis evidence from animals used 



to produce antibodies that sublethal inoculations with brevetoxin can result in eventual death from 

secondary causes, not from the toxin directly. 

Information Needs: 

Physiological studies of sub-lethal brevetoxin effects using animal models (not marine 

mammals). 

Hypothesis 5. The source of the toxins in menhaden and dolphins is Ptychodiscus brevis or 

other gymnodinioids. 

Rationale: A variety of assays and analyses demonstrates the presence of brevetoxin-like 

compounds in fish and dolphin tissues. 

Inforrnation Needs: 

NMR, spectroscopic analysis of toxin extracts from experimental and wild fish and 

mammals 

C. Seafood Safety 

Since the fish shown to contain saxitoxin or the brevetoxin-like compounds are part of the 

east coast commercial fishery, concern has been raised as to the implications for seafood safety. 

Hypothesis 1. Dinoflagellate toxins linked to marine mammal deaths do not contaminate fish 

flesh. 

Rationale: All evidence from field and iaboratory studies indicates that fish are sensitive to 

dinoflagellate toxins and die before they accumulate detectable amounts in their flesh. 

Information Needs 

monitoring (by bioassay) of flesh from fish of chief concern during blooms. This 

would be conducted most expeditiously within the context of the newly-established 

national seafood monitoring program (NOA A/FD A). 

feeding studies on fish 

Hypothesis 2. The consumption of viscera contaminated with dinoflagellate toxins or of 

products using those viscera may present a human health risk. 



Rationals: Certain ethnic groups do consume whole fish, including the internal organs. 

Human mortalities from PSP through this route have been documented in Southeast Asia. 

Information Needs: 

monitor toxin levels in viscera of fish (national seafood monitoring program) 

develop specific, reproducible, rapid, quantitative methods for detecting dinoflagellate 

toxins (especially brevetoxins) in seafood 

feeding studies withfish 

toxin stability studies in different product forms (meal, oil) 

VI RECOMMENDATIONS 

In the preceding sections, a series of hypotheses have been listed, along with strategies for 

testing them. The workshop participants recommended that the proposed studies be given high 

priority in future research. All of the issues are important, with no items having higher priority 

than others. 

In addition, the participants recommended the following: 

The protocol for the examination of beached animals given in Appendix 2 be adopted 

by stranding networks. 

Funds be allocated for the chemical analyses and assays needed to ascertain the 

presence or absence of dinoflagellate toxins in the tissues of beached marine mammals. 

Given that the weight of the current evidence linking the brevetoxins to dolphin 

mortalities is circumstantial, direct feeding studies on dolphins are not justifiable. 

Present shortages of certain toxin standards be alleviated by the preparation and 

distribution of ~ D D ~ O V ~  materials. 
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APPENDIX 2 

Beached Animal Protocol 

Tissue samples must be collected as soon as possible from beached marine mammals to 

establish the extent and frequency of their exposure to algal toxins. For the most part, these 

samples can be collected as pan of existing stranding recovery networks in place along most of the 

U.S. coast. The networks should be instructed to: 

Collect and freeze (on dry ice if possible) 1 kg samples of liver, and representative 

samples of stomach contents (first compartment in cetaceans) from any marine mammal 

examined within 2-3 days after death. Stomach fluid (up to 1 L) should also be 

collected. 

Collect and freeze (on dry ice if possible) 500 g samples of blubber, kidney and milk 

from any freshly dead marine mammal. 

E a carcass is old, only liver and stomach contents should be collected. 

Where possible, plankton tows using a 30 pm mesh net should be made in the vicinity 

of the mortality event. Plankton material should be cenaifruged, and the pellet acidified 

with an equal volume 0.2 N HC1. 

A central repository for such samples needs to be established. The Smithsonian 

Institution may serve this function. Samples need to be stored and transported frozen. 

Pertinent biological data, presently obtained as part of stranding programs, should be 

noted. These include species, location, date, total body length, and sex. 



APPENDIX 3 

Technical Contributions 

Some participants were asked to prepare short papers in their area of expertise. Some of 

these have already been directly incorporated into the text of this report. Others have been used 

only partially. Since they contain much useful information, they are appended here in their 

entirety. We emphasize that these contributions reflect the views of their authors and not 

necessarilly a concensus of the workshop participants. 



APPENDIX 3a 

Isolation and Identification of Saxitoxin from the Atlantic Mackerel, 
Scomber scombrus L. 

Yuzuru Shimizu, Claudia K. Walker, and Ronghua Wang. Department of Pharmacognosy 
and Environmental Health Sciences, College of Pharmacy, The University of Rhode 
Island, Kingston, RI 02881 

In November, 1987, a dozen humpback whales were found dead on the beaches of Cape 

Cod. The investigation of the deaths of the whales has been conducted by a team of specialists 

assembled by the New England Aquarium and the Woods Hole Oceanographic Institution. The 

test of the whale stomach contents pointed to mackerel as the possible culprit. At the request of the 

group and also the State of Rhode Island Health Department, we undertook the isolation of the 

toxic principle in the mackerel caught in Rhodc Island water. 

Experimental Section 

Isolation 

About 40 kg of mackerel caught off Block Island, RI, in December, 1987 were opened, 

and their livers were taken out. The livers (300 g) were homogenized in 900 ml0.1N HCL and 

centrifuged. The supernatant was examined for mouse toxicity according to the standard 

procedure. Toxicity of 2 mouse units per gram (total ca. 600 mouse units) was detected. The 

death symptoms in mice were identical with those of paralytic shellfish poisoning or tenodotoxin. 

The supernatant was treated with 400 rnl of active charcoal in water, and the charcoal was 

washed with distilled water and extracted with 100 ml of methanol. The methanol extract was 

evaporated to an oily residue (ca. 400 mouse units). The residue was then dissolved in distilled 

water, and after the pH was adjusted to 7.0, charged on a freshly prepared Biogel P-2 column (300 

ml). The column was first washed with distilled water (1 I), and then washed with 0.05 N acetic 

acid (1 1). The evaporation of the acid solution eluate gave a small amount of residue, which 

contained a total of 147 mouse units of the toxin. TLC examination of the fraction indicated the 

presence of saxitoxin besides a large amount of impurities. The fraction was further purified on a 



Biogel column (90 ml). The column was washed with distilled water (100 ml), and then with 0.5 

N acetic acid solution. Each fraction was collected and checked by TLC. The fractions which 

showed saxitoxin spots on TLC were combined, evaporated and used for the following 

identification. 

Identification 

1. TLC 

Solvent systems: Pyridine: ethyl acetate: H2O: acetic acid 25:9:7:5 Plates: Art 5631, 

HPTLC, Fertigplatten Kieselgel G. and Whatman HP-K High Pedorrnance Gel. Both sample and 

standard saxitoxin gave identical Rf and fluorescent spots upon spraying of 1 % H20 and heating. 

2. Electro~horesis 

Electrolyte buffer system: 0.08 M Tris acidified to pH 8.7 with conc. HCI. 2.5~18 cm 

cellulose acetate membrane strips (Schleicher and Schuel#2500). 200 v, 0.5 rnA. Both sample 

and saxitoxin showed an identical mobility and co-migrated. 

3. Bioassay with Cultured Mouse Neuroblastoma Cells Kogure's Method) 

Both pure sample and crude fractions prevented the rounding and death of the blastoma 

cells caused by veratridine. The action is typical of sodium channel blockers such as saxitoxin, 

gony autoxins and tetrodotoxin. 

Discussion 

There is no question that the mackerel livers contained saxitoxin as a toxic component. The 

less than 100% recovery rate of the purified toxin (25%) precludes a definitive conclusion if 

saxitoxin was the only toxin in the mackerels. However, a poor recovery is not unusual for a 

dilute sample with overwhelming impurities. The isolation was also done with a different batch of 

mackerel using Amberlite IRC -50 purification at the second step. The outcome was similar (150 

mouse units of saxitoxin from 800 mouse units). 

If indeed the sample contained only saxitoxin, it differed considerably from other PSP 

samples, which nonnally contain gonyautoxins, neosaxitoxins and other sulfated toxins as major 
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constituents. The only exception is Alaska butter clam. This also makes it difficult to assign the 

east coast Gonyaulax as the source of the toxin. Most strains of the organism contain saxitoxin 

only as a rather minor component. Unless substantial bioconversions occur in the mackerel or its 

prey, the other toxins should become the major constituents. There are other findings which also 

cast a serious doubt on the theory that dinoflagellate blooms are the source of toxin. We have been 

analyzing mackerel samples caught at different times and places. Interestingly, all the samples of 

S. scombrus analyzed have shown almost identical levels of toxicity (ca. 2 mouse units& liver). 

They include a frozen sample caught off New Jersey in April, 1987 (from Dr. L. Buckley, NMFS) 

and several samples caught in December, 1988. The mackerel's prey, sand lance, Ammodytes 

arnericanus, from New England waters did not show toxicity. Two Pacific specimens of S. 

japonica caught in Japan were completely devoid of the toxicity. These findings seem to point to 

an endogenous factor specific to the species as the origin of the toxin. We have been examining 

the toxin production by microorganisms isolated from the mackerel livers, but have not reached 

any conclusion. 

This research was supported by NIH grants, GM28754 and GM24425. 



APPENDIX 3b 

- Identification .of Paralytic Shellfish Toxins in Mackerel from Southwest 
Bay of Fundy, Canada* 

K. Haya, J. L. Martin, B. A. Waiwood, L. E. Bmidge, J. Hungerford* and V. Zitko. 
Department of Fisheries and Oceans, Biological Station, St. Andrews, N.B., EOG 2x0, 
Canada. *Department of Human Services, Food and Drug Administration, Seattle, WA 
98 174, U.S.A. 

During July to September 1988, Atlantic mackerel, Scomber scombrus, were sampled from 

10 locations in the Southwest Bay of Fundy, New Brunswick, Canada. Intestines and livers were 

extracted by the AOAC procedure for paralytic shellfish toxins. Intraperitoneal injections of the 

liver extracts were lethal to mice and the observed symptoms were typical of paralytic shellfish 

poisoning (PSP). Toxin concentrations ranged from 40 to 209 pg saxitoxin (STX) equivalents per 

100 g of liver. Intestines sampled from mackerel with the most toxic liver extracts had toxin 

concentrations corresponding to 57 pg STX equivalents per 100 g of intestines. None of the other 

extracts from intestines were lethal to mice. 

Analysis of water samples collected during the same period indicated that a small bloom of 

Gonyaulax excavata occurred mid-to late July. Highest concentrations of G. excavata cells (7.4 x 

103 cellsb) were observed in surface waters from an indicator sampling station at Head Harbour in 

the Bay of Fundy. Another sampling site located at Deadman's Harbour had a maximum of 4.8 x 

103 ceUs/L observed during rnid-hly with cell numbers decreasing to zero by mid-August. During 

the same period and at the same site, the toxin concentrations in mackerel livers sampled decreased 

from 209 to 65 pg STX equivalents per 100 g of liver. 

Some of the tissue extracts from mackerel were analyzed by HPLC. Only B2, GTX II, 

GTX m, neosaxitoxin and saxitoxin were detected in varying relative amounts. Since the HPLC 

technique is more sensitive than the mouse bioassay, toxins were detected in more than one 

intestinal extract. The highest concentration of toxins in the intestines was 26 pg STX equivalents 



per 100 g. In general, saxitoxin was the major toxin in the livers whereas GTX I1 and GTX I11 

were the major toxins in the intestines. 

"Abstract of paper to be published in : Toxic Marine Phvtoplankton. Proceedings of the 

4th International Conference on Toxic Marine Phytoplankton. Graneli, E., D. M. Anderson, L. 

Edler and B. Sundstrom (eds.) Elsevier, NY. 1989. 



APPENDIX 3c 

Breve toxin Analysis 

Daniel G. Baden, Ph. D. Rosenstiel School of Marine and Atmospheric Science, 
University of Miami 

Introduction 

Brevetoxins are potent polyether neurotoxins produced by Florida's red tide dinoflagellate 

Ptychodiscus brevis . These toxins interact in a specific manner with site 5 associated with 

voltage-sensitive sodium channels [I]. Binding of brevetoxins to this specific locus results in 

repetitive discharge of nerves resulting in neurotransmitter depletion in nerve termini [2], 

contractile paralysis of peripheral muscles 131, and death due to respiratory arrest [4]. The 

principal environmental consequences of Florida red tides are fish kills, neurotoxic shellfish 

poisoning, and human respiratory difficulties resulting from exposure to seaspray containing lysed 

P. brevis cells 151. 

C Evidence for toxicological consequences other than those listed above are not abundant. 

However, circumstantial evidence implicating brevetoxins and Florida red tide in manatee deaths 
. 

was complied in 1982-1983. The unusual mass lethalities of 41 West Indian manatees (Trichechus 

manatus ) occurred in Lee County, Florida in February, March, and April 1982. Gross necropsy 

of moribund specimens revealed full stomachs, indicating recent feeding and, hence, assumed 

health. Atypical findings were: watery consistency of the contents of the cecum and or large 

intestine; hemorrhage or congestion of the brain; and the presence of ascidians in the G.I. tract. 

The former two observations are consistent with muscarinic stimulants and hemolytic agents, both 

of which are properties or characteristics of brevetoxins. The latter observation of ascidians in 

stomach contents is consistent with biotoxin accumulation via ascidian filter-feeding of toxic 

dinoflagellates and subsequent manatee transvection via inadvertent uptake during grazing on 

seagrasses. Subsequent demonstration of brevetoxins in ascidians from the area, and historical 

data which placed a red tide bloom in the area prior to the deaths, both indicate a positive 

correlation between manatee deaths and red tide brevetoxins'[6]. 
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This past year, a major P. brevis red tide bloom occurred off the coast of Texas and 

required the closing of shellfish beds for a number of months. This, according to most, was the 

most severe red tide experienced in Texas in recent years. Also last year, a pre-formed Florida red 

tide was swept out of the Gulf of Mexico by the Gulf loop current, and was entrained up the 

eastern coast of the United States to North Carolina, where it was maintained and continued to 

proliferate. The bloom was recognized in North Carolina in late October, toxic shellfish were 

identified a few days later, and the bloom continued until early March 1988. It is the presence of 

this bloom on the eastern coast of the U.S., coupled with observed dolphin deaths, which 

prompted an evaluation of dolphin food sources for potential brevetoxin accumulation [7]. 

Rationale 

Three questions require investigation: (1) Can P. brevis toxins accumulate in the food 

sources of dolphins?; (2) If the answer to (1) is yes, which toxins accumulate and .how much is 

present; and (3) Are brevetoxins present in dolphin tissues? In order for brevetoxins to be 

transvected to dolphins, a food chain progression needs verification. The food chain hypothesis 

requires demonstration of brevetoxins in stomach contents and tissues of moribund dolphins, and 

also requires demonstration of brevetoxins in food supplies of the dolphins. 

Brevetoxins in Stomach Contents of Dolphins 

Can P. brevis toxins accumulate in the food sources of dolphins? We began by examining 
' stomach contents of dead dolphins for the type of fish species and for toxicity of identifiable fish in 

the stomach contents. Stomach content samples were both small in mass and in number. Of those 

preliminary observations made, one specimen each of menhaden and weakfish were examined in 

detail. We treated each of the two samples with 1 volume of chloroform and extracted in a Virtis 

tissuemizer until homogeneous. The slurry was filtered by suction, the filtrate was flash- 

evaporated, redissolved in minimal methanol, and the methanol solution was tested for toxicity 

using Garnbusia fish bioassay. Both samples were toxic, and initial observations indicated that 

the menhaden sample was more toxic than was the weakfish. However, both samples were 



obtained from the same stomach contents and we anticipated considerable cross-contamination in 

the two fish samples. 

Further purification using silica gel thin-layer chromatography (ethyl acetate/petroleum 

ether solvent, 70/30), followed by visualization of the developed plate under ultraviolet light, 

yielded several uv absorbing bands, each of which was scraped from the plate, extracted with 

acetone and methanol, reduced in volume using a stream of nitrogen, and bioassayed using 

Gambusiu fish. Each fish sample was again demonstrated to be toxic, and from the observed 

migration on thin-layer plates, likely was brevetoxin(s). 

To cofirm the presence of, and quantify brevetoxins in the samples, the remaining extract 

in each case was separated using HPLC (C- 18 reverse phase, 85% isocratic methanol, uv detection 

at 215 nm) and compared to standard brevetoxins. The results are indicated in Table 1. The 

authenticity of the peaks obtained from HPLC was further ascertained by co-migration, i.e. 

authentic brevetoxins were mixed with fish extract and were injected together on the HPLC. 

Elution as a single peak affirms the identical n a m  of the sample and the standard. 

Brevetoxin in Fresh Fish 

Upon demonstration of toxins in fish samples from stomach contents, we proceeded to 

examination of fresh fishes for brevetoxins in viscera, and if positive, in flesh. Samples of fresh- 

caught fish were provided by the Florida Depamnent of Natural Resources and were transported to 

Miami from Vero Beach. Individual specimens w'ere eviscerated in preparation for a two-stage 

evaluation. Viscera were used fresh, and flesh samples were flash frozen and held until assay. 

(Flesh samples were subsequently found to be not-toxic). 

Using similar protocols for extraction as have already been described, we homogenized 

viscera with solvent, filtered, and retained the filtrate. The filtrate was reduced in volume in each 

case and each was subjected to Gambusia bioassay. These results are indicated in Table 2. 



TABLE 1. HPLC detection of brevetoxins in stomach contents. 
Toxin Weakfish Menhaden* 

C41 
P bTx- 1 - + 
PbTx-2 - + 

L 

PbTx-3 +(?) + 
PbTx-5 ** - - 
PbTx-6** - - 
PbTx-7 ** - - 
PbTx-8*** - - 

*sample is unstable and decomposes to material of highly polar nature which is still quite toxic. 
**lirni ts of detection 0.1 pgrarn. 
***has never been demonstrated in situ. only from laboratory culture. 

TABLE 2. Bioassay Results of Extracted Viscera 
Fish Catch Date Toxicity 

Lethal Time to Death 
Silver Trout 2/20/8 8 (-1 --- 
Silver Trout 2/28/8 8 (-1 --- 
Menhaden 2/28/8 8 (+) 20 rnin 
Menhaden 2/20/88 (+I 2 h  

Spanish Mackerel 2/28/8 8 (4 --- 
Spanish Mackerel 2/29/8 8 6 )  --- 
Spanish Mackerel 2/20/8 8 (-) --- 

Menhaden viscera were subjected to purification procedures appropriate for brevetoxins 

which included in sequence: silica gel dry column chromatography using CHC13/MeOH/HAc 

(100:lO:l) as eluent; ethyl acetate/petroleum ether (70:30) silica gel preparative thin-layer 

chromatography; and high performance C- 18 reverse phase liquid chromatography using isocratic 

85% aqueous methanol as solvent. 

A toxic fraction isolated from menhaden viscera was shown to contain both PbTx-2 and 

PbTx-3, as adjudged by lethality in Gambusia bioassay and Rf in TLC. HPLC migration and 

lethality confmed the likelihood of brevetoxins in the samples. Menhaden PbTx-2 was purified to 

homogeneity using HPLC, and was mixed with equimolar authentic P~TX-2: HPLC of the 

mixture indicated a single peak migration, indicating the homogeneity of the mixed sample, i.e. the 

likelihood that the toxin isolated from menhaden viscera was indeed brevetoxin PbTx-2. 



Brevetoxins in Dolphin Liver Sam~les 

Thirty-four samples of dolphin liver were submitted for analysis, identified by number 

only. About one-half were control samples. The samples were individually treated using identical 

protocols: frozen specimens were dehydrated by steeping in 2 volumes of anhydrous acetone for 

10 hours, followed by vacuum filtration; dehydrated samples were homogenized twice in 

chloroform solvent, and the solvent removed by filtration; acetone and chloroform filtrates were 

combined and the residues discarded; filtrates were flash-evaporated, resuspended in 20-25 mL 

90% aqueous methanol, and solvent partitioned between methanol and petroleum ether; methanol 

fractions were adsorbed to dry silica gel and were used for flash chromatography employing 2 

volumes of anhydrous acetone. 

Samples were rechromatographed on dry columns using 100 mL CHC13/methanol/acetic 

acid (100: 10: 1) and eluted samples were flash-evaporated. Two sequential preparative silica gel 

TLCs were performed, first using acetone/petroleum ether (30:70) and the second plate employing 

70:30 of the same solvent mixture. All fractions were bioassayed at each step in the purification 

scheme, terminating purifications when, and if, toxicity ceased to be evident. 

Samples were finally evaluated using reverse phase HPLC and detecting eluted materials at 

215 nm. Concentrations and identity of individual brevetoxins were determined by peak height, 

retention time, and comigration using brevetoxin standards. Fourier transform infrared 

spectrometry was performed on extracts of WAM-280 against authentic brevetoxin as further proof 

that the isolated toxins were brevetoxins. 

Twenty-six of the 34 samples submitted for analysis were negative for brevetoxins; eight 

tested positive through the entire evaluation protocol. Of the twenty six negative samples, 17 were 

later revealed to have been control samples taken from captive animals, animals out of the 

geographic range of the incident, or animals not within the time sequence of the event. Seven 

additional samples were toxic throughout the entire protocol, but could not be correlated with 

brevetoxins in HPLC and were thus denoted "negative" with respect to the study. 



The remaining samples contained between 0.083-15.82 pg toxin/gram of original liver 

sample. Correlations of geographic area versus toxin content are treated elsewhere in this 

conference. 

Conclusions 

It is our conclusion that, under very specialized circumstances, brevetoxins can: (1) appear 

in food sources of dolphins; (2) be transvected through tainted food sources to predatory species 

like dolphins; and, (3) accumulate in dolphin liver in surprizingly high concentrations. 
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APPENDIX 3d 

Actions Necessary to Assess the Possible Impacts of Marine Biotoxins on 
Marine Mammals 

Robert J. Hofman. Marine Mammal Commission, 1625 Eye St., NW, Washington, DC 
20006 

In the last nine years, there have been at least four cases of unusual marine mammal 

mortalities that were, or may have been, caused by marine mammals eating organisms containing 

biotoxins of marine origin. These were: (1) the mass mortality of Hawaiian monk seals 

(Monachus schauinslandi ) on Laysan Island in 1980 thought to be caused by ciguatoxin poisoning 

(Gilmartin, 1987); (2) the die-off of manatees (Trichechus manatus ) in the area around Fort 

Myers, Florida, in 1982 thought to be caused by manatees eating tunicates containing brevetoxins 

from a "red tide" (OIShea and Rathbun, 1982); (3) the mass mortality of bottlenose dolphins 

(Tursiops truncatuc ) along the mid- and south-Atlantic coasts of United States in 1987-88 thought 

to have been caused or initiated by dolphins eating fish containing brevetoxin from a red tide 

(Geraci, 1989); and (4) the die-off of humpback whales in Cape Cod Bay in December 1987 

thought to be caused by eating mackerel containing saxitoxin from a phytoplankton bloom further 

north (Geraci et al., in press). In addition, there is empirical evidence (Kvitek, et al., in prep.) 

suggesting that paralytic shellfish poisoning may be a factor influencing the distribution of sea 

otters (Enhydra lutris ) in Alaska. 

Although there is good circumstantial and, in some cases, empirical evidence to support the 

view that the referenced monk seal and manatee mortalities, and some aspects of sea otter 

distribution in Alaska, are attributable to biotoxin poisoning, there are questions as to whether the 

referenced dolphin and humpback whale mortalities were in fact caused or initiated by biotoxin 

poisoning. That is, it has not been demonstrated unequivocally that the dolphins and humpback 

whales that died could have been exposed to biotoxins and/or that the exposure levels would have 

had the observed effects. Also, if saxitoxin and brevetoxin poisoning were in fact the cause of the 

observed humpback whale and bottlenose dolphin mortalities, one wonders why such mortalities 



have not been observed in the past. This in turn raises the question as to whether there has been a 

change in the distribution, frequency, size, or dynamics of biotoxin-producing phytoplankton 

blooms (due to natural or anthropogenic factors) which are resulting in greater numbers of marine 

mammals being at risk of biotoxin poisoning. 

To resolve uncertainties concerning the pathways, risks, and effects of possible biotoxin 
/ 

poisoning, at least three things must be done. First, samples form representative species of fish 

and marine mammals that inhabit areas where they possibly can be exposed to biotoxin-producing 

organisms should be collected periodically for several years and analyzed to determine the likely 

frequency and levels of exposure to biotoxins. Samples of fish for these analyses probably can 

best be obtained by randomly sampling commercial fish catches in and near areas where biotoxin- 

producing plankton blooms are known to occur. Marine mammal samples probably can best be 

obtained lkom animals taken incidentally during commercial fishing operations and/or from animals 

that are found washed up on beaches in or near areas .where biotoxin-producing phytoplankton 

blooms are known or are thought to occur, 

The second task is to establish programs to monitor (a) the information and dispersal of 

biotoxin-producing phytoplankton blooms, and factors, such as water temperature and currents, 

responsible for formation, transport and dispersal of such blooms, and (b) the levels of biotoxins 

present in fish and marine mammal species most likely to be exposed to potentially hazardous 

biotoxins. These are critical tasks and presumably will be major topics of discussion at this 

workshop. 

The two preceding tasks will provide information necessary to determine the possible 

pathways, frequency, and quantities of biotoxins to which marine mammals may be exposed. 

They may not indicate how different types and levels of biotoxin exposure affect various species of 

fish or marine mammals. To determine probable cause-effect relationships, it may be necessary to 

conduct controlled feeding experiments to document how representative fish and marine mammal 

species respond to and are affected by exposure to different types and levels of biotoxins. In this 



context, it is important to recognize that certain types or levels of biotoxin poisoning may affect the 

behavior of intoxicated fish in ways that would make them more enticing or vulnerable to predation 

by marine mammals and thus increase the probability of marine mammals consuming intoxicated 

fish. 
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APPENDIX 3e 

Implications of 1986-87 Ptychodiscus brevis Red Tide and 1987-88 Mass 
Bottlenose Dolphin Mortalities 

Karen A. Steidinger. Florida Marine Research Institute, Department of Natural Resources, 
100 Eighth Ave. S. E., St. Petersburg, FL 33701 

Introduction 

Between June 1987 and March 1988, over 740 bottlenose dolphins, mainly of the mid- 

Atlantic coastal stock, were stranded between New Jersey and Floridal. The strandings of dead or 

dying dolphins started in June in their summer grounds between North Carolina and New Jersey. 

Most subsequent strandings were coincident with the southerly migration of Tursiops in coastal 

waters. ~ e r s h 2  documented the seasonal occurrences of coastal Tursiops truncatus as the 

following: 1) North Carolina to New Jersey in summer, 2) Carolinas to Florida in fall, with a 

concentration in northeast and central Florida coastal waters in winter, and 3) a northerly migration 

starting in spring. 

In a report entitled "Clinical investigation of the 1987-88 mass mortality of bottlenose 

dolphins along the U.S. Central and South Atlantic Coast," Geracif synthesized and reported data 

and infomation gathered by a team of investigators. Geraci, in his introduction, stated ''This 

report describes how the investigative process evolved, and the evidence implicating a biological 

toxin as the proximate cause. The dolphins apparently were poisoned by brevetoxin, a neurotoxin 

produced by the dinoflagellate Prychodiscus brevis, Florida's red tide organism. The dolphins 

were eventually infected with a host of bacterial and viral pathogens which produced an array of 

beguiling clinical signs." Liver tissue from seventeen freshly dead dolphins (August 1987 to 

February 1988) were tested for the presence of brevetoxin(s); eight livers contained brevetoxin as 

determined by HPLC procedures and brevetoxin standards. In addition, one liver extract positive 

for brevetoxin was tested using Fourier transform infrared transmission spectrometry , which 

verified the presence of PbTx-2. All other dolphin liver tissues used as controls (17) were negative 

for brevetoxin. 



Brevetoxin was also found in the viscera of menhaden, Brevoortia sp., taken from the 

stomach of one stranded dolphin off Florida; however, liver tissue from the dolphin as well as 

other fish in the stomach contents, i. e., weakfish, did not contain brevetoxin. Also, fresh-caught 

ye110 w fin menhaden, Brevoortia smit hi, collected off Vero Beach, Florida, in February 1 988 

contained brevetoxin in the viscera. All of the testing for brevetoxin was done in the laboratory of 

Dr. Daniel Baden, University of Miami. The above data demonstrate two important points: 1) 

brevetoxin can be accumulated in planktivorous fishes, and 2) bottenose dolphin can encounter 

brevetoxin, presumably through the food chain. 

Ptvchodiscus brevis Red Tides and Marine Mammal Mortalities 

Red tides are natural phenomena that have occurred in the world's seas since biblical days 

(Exodus, 7:20-21). Such phenomena are usually caused by high concentrations of microalgae, 

most often flagellates, in the water column. Although many red tides are not red and are not 

associated with tides, they can be visibly detected when sea surface discoloration is caused by high 

concentrations of organisms or when dead fish are observed. Other signs of red tides are indirectly 

revealed by human illness and mortality from eating toxic seafood, usually filter-feeding bivalve 

mollusks. 

Florida red tides caused by Ptychodiscus brevis, a dinoflagellate, can be associated with 

discolored seawater, shellfish toxicity (Neurotoxic Shellfish Poisoning), fish kills, and a toxic 

seaspray aerosol that can irritate the eyes, nose, mouth, and throat of people in the immediate 

vicinity of the jet spray4.5. Ptychodiscus brevis is a gymnodinioid of restricted Atlantic 

distribution, but with conspecific representatives in the Pacific. It is known from the Gulf of 

Mexico (Florida, Texas, and Mexico), the North Atlantic (Florida, North Carolina, and South 

Carolina), the Gulf of Stream, and possibly the Caribbean. P. brevis red tides in the eastern Gulf 

of Mexico and southeastern U.S. waters originate off west central Florida about 10 to 40 mi 

offshore, and initiation of red tides is associated with oceanic intrusions onto the shelff? They can 

be entrained and transported from the west coast of Florida to the east coast by Loop Current 



waters, which enter the Florida Straits as the Florida Current and eventually merge with the 

northerly moving Gulf Stream. Such transport occurred in the fall months of 19726, 19776, 

19806,19837, and 19878. 

Ptychodiscus brevis red tides are typically seasonal in that they usually begin off the west 

coast of Florida in late surnrner/early fall and last until or through January. It takes about four 

weeks for an offshore red tide to develop concentrations that can cause fish kills? In addition to 

transport of blooms around the Florida peninsula, Lackey 10 and ~arshal l l lJ2 have reported this 

species in very low concentrations (c2 ml-l) in the Gulf Stream off the southeast U.S. coast. 

Driftbottle releases in waters off central west Florida from 1965 to 196813 and their subsequent 

returns, document that surface transport from cental west coast offshore and coastal waters to 

Florida east coast sites can be completed in as short as 7 days and often in less than one month. 

Also, returns of bottles from North Carolina and South Carolina in summer and fall were in as little 

as 31 days during that period. Therefore, P. brevis, a flagellate that produces neurotoxinsl4, can 

occur with Atlantic coastal and offshore dolphins, but along the west coast of Florida, dolphin 

mortalities coincident with red tide events (some lasting up to eleven months) are few15~16 and are 

not more numerous than dolphin mortalities in the Gulf of Mexico, e.g., 1986 and 198717. 

The only previous coincidental data implicating P. brevis blooms in marine mammal 

mortalities concerns the West Indian manatee (Trichechus manatus latirotris ) mortalities in 

Charlotte Harbor, Florida, in 198218. In this outbreak, red tide was thought to have been 

introduced through the food chain and was noted to cause behavioral changes and stress. An 

unusual set of circumstances existed in that live P. brevis cells are usually limited to waters of 

salinities >24O/m, and manatees usually feed in the upper reaches of the estuary at lower salinities. 

In 1982, however, there was a drought, and manatees were feeding on seagrasses in higher 

salinity areas. In 1982 there was also an abundance of tunicates (e.g., Mogula spp.) in these 

seagrass beds, and M. occidenralis and M. manhatrensis were found in the stomachs of dead 

manatees. Tunicates are filter feeders and can concentrate biotoxins from phytoplankton. In 



Japan, tunicates have been documented to accumulate saxitoxin, a water-soluble dinoflagellate 

toxin, and become toxic for human consumption1? Baden analyzed tunicates collected from 

Charlotte Harbor after the manatee mortalities and found toxic compounds but could not verify the 

presence of PbTx in tunicate tissuel*. 

Because bottlenose dolphins from the 1987-88 mortalities contained brevetoxin (83 to 

15,820 ng/g liver tissue)3, it is probable that they came in contact with the toxic organisms directly 

in the water column, or indirectly through the food chain. Direct contact is unlikely to cause 

accumulation of toxins in liver tissue and has apparently not caused mass mortalities of dolphins 

off the west coast of Florida, where P. brevis red tides can be intensive (concentrations of 

>180,000 cells ml-1) and of long duration. Toxicity through the food chain is much more plausible 

because dolphins consume fish whole, and if prey items have toxic viscera, dolphins could 

possibly be compromised to the point of nonfeeding, modification of behavior and orientation, 

and/or irnmunoincompetency. Several synergistic factors could have been involved in the 1987-88 

mortalities, beyond biotoxins, in physiological stress and debilitation. 

Dolphins are not the only pelagic coastal animals that have a seasonal coastal migration 

pattern between Florida and the northeast U.S. coast. Several of their prey species have the same 

distribution and occurrence; this has been revealed by tag-and recapture studies and data on 

seasonal fishery landings by area. For example, Spanish mackerel (Atlantic stock), a prey item for 

dolphins, are concentrated off Florida's east coast in winter and their most southward extension is 

the Florida Keys, where Gulf of Mexico and Atlantic waters meet. Spanish mackerel, 

Scomberornorus macularus, are landed in Florida in winter, in the Carolinas in April, in 

Chesapeake Bay in May, and in Rhode Island in ~ ~ 1 ~ 2 %  Dolphins also feed on menhaden and 

other clupeid or hening-like fishes. Atlantic menhaden (Brevoortia tyrannus ) has a similar 

migratory pattern. Atlantic menhaden tagged in northeast Florida nearshore waters in April were 

recaptured in New Jersey in July21. These distribution and migratory patterns are probably 

associated with water temperature changes and other cues, e.g., availability of food. Although the 



toxic menhaden from dolphin stomach contents was not identified to species and the live menhaden 

caught off Vero Beach, Florida, was thought to be B.  smithi, d l  menhaden are planktivorous. 

Therefore, B. tymnnus, Atlantic menhaden, could conceivably be a vector as well. 

It would appear that predator and prey are traveling the same routes at approximately the 

same times, or they at least occur in the same area at the same time. It is not uncommon in nature 

for predators to move from one feeding ground to another based on seasonal food availability, nor 

is it uncommon for predators to co-migrate with prey. Spanish mackerel, a food item of dolphins, 

is also a predator of menhaden. These mackerel are a siginificant predator of large schools of 

clupeid fishes in surface coastal waters of the ~.S.20*22. 

Coastal dolphins feeding on coastal Spanish mackerel that have fed on coastal menhaden, 

or coastal dolphins feeding directly on herring-like fishes, could become ill and debilitated if their 

prey had biomagnified biologically active compounds, such as dinoflagellate toxins. The question 

then becomes, how did the prey become toxic. 

Historical data on distribution patterns puts potentially toxic clupeids and a predator, 

Spanish mackerel, off the Carolina coasts at the time of a Ptychodiscus brevis bloom in coastal 

waters (October-December 1987)*. Dolphins were dying off the Carolinas in June, August, 

September, October, November, and December. The above scenario would not account for deaths 

off the Carolinas prior to mid-October, when a warm water intrusion containing P. brevis caused a 

red tide in North Carolina, unless prey fishes were toxic prior to the North Carolina event. The 

question then becomes, "Could prey items, such as clupeid-fishes and Spanish mackerel become 

toxic in south Florida waters in winter or spring of 1987?" To address the question of toxicity in 

fishes, we first have to ask if there was a P. brevis red tide in south Florida in winter/spring 1987. 

Also, could it have been transported to the east coast of Florida in winter or spring, February to 

May, or did toxic prey migrate from the Gulf to the east coast of Florida. 

A 1986 Florida west coast red tide, that was first detected in September continued into 

198723. In January 1987, it was offshore in the Tampa Bay area and inshore in Charlotte and Lee 



Counties, in southwest Florida. By February, inshore P. brevis counts were increasing again and 

Florida Marine Research Institute staff, with the aid of the U.S. Coast Guard, sampled offshore 

waters on February 17; at 15 miles off Stump Pass, surface counts for P. brevis were 47 ml-* and 

at 15 miles off Sanibel, cell counts were 3.7 ml-1. On March 6 at approximately the same distance 

offshore, cell counts were 1 rnl-1. However, on April 23, one fisherman reported dead fish along 

the 30 fm line from the Florida Keys to just south of Tampa Bay, about 70 miles offshore. On 

April 27, another fisherman reported surface water discoloration along the same location. On a 

May 12- 15 offshore cruise between Cedar Key and the Dry Tortugas, water samples, from various 

depths out to 180 mi, did not contain P. brevis . This information puts P. brevis at 15 miles off of 

a known transport point for Gulf waters to the east coast in mid-February and gives anecdotal 

evidence of a bloom in the Florida Keys. Drift bottles, from releases off southwest Florida in 

winter and early spring during 1965-1967, were recovered from Florida east coast locations in as 

little as 18 days; several releases made it to Fort Pierce, Florida in 25 days13. This suggests that P. 

brevis could have been along the Florida east coast in March and April of 1987. 

Having established a plausible mechanism of intoxication, via the food chain, and having 

demonstrated the mechanism to put P. brevis in the same place and at the same time, as east coast 

clupeids and Spanish mackerel, the next question is why didn't P. brevis, which is known to kill 

fish, kill the clupeid fish or Spanish mackerel. For fishes to accumulate dinoflagellate neurotoxins 

rather than succumb from respiratory failure probably means that they were exposed to low 

concentrations in the water column, e.g. 5-50 ml-1 and less than 100 rnl-1 to 1000 ml-1 since these 

concentrations are known to kill certain fishes in acute exposures. This is not an uncommon lower 

level (5-50 cells ml-1) in Florida Current/Gulf Stream waters from Miami to West Palm Beach 

when P. brevis is transported, e.g., in 1972 and 1977. The unusual event was that transport 

would have occurred in February to May. Southwest Florida does not usually have red tides at 

that time of the year. All documented P. brevis red tide events (toxic aerosol, fish kills, toxic 

shellfish, etc.) off the southeast U.S. coast occurred in fall (1972, 1977, 1980, 1983, 1987). 



What this means is that P. brevis in low concentrations probably is more common in the Gulf 

Stream than previously thought and at all seasons. 

It should be emphasized that although fishes through predator-prey interactions could 

become toxic, the toxicity (analyses to date) is contained in the viscera and not the flesh. Cultural 

customs in the U.S. are such that fishes for human consumption are typically gutted and filleted; 

they are usually not consumed whole. Dolphins consume fish whole. One fish that can be 

indirectly consumed whole by humans or domestic animals is menhaden, i.e. fish meal. Geracits 

report3 points out the necessity to test menhaden products if they are potentially collected form a P. 

brevis red tide area for supplements to domestic animal feed or human food. No human illness, 

with the typical brevetoxin symptoms, from eating any fish collected in red tide waters has ever 

been reported or documented, and red tides or their effects have been documented in Florida since 

the mid 1800s. The Bonaventura and Bonaventura article, which Geraci3 cites as unusual human 

intoxications from eating toxic fish caught off Carolina in summer of 1987, is related to ciguatoxic 

fish fillets. 

The 1987-88 bottlenose dolphin mortalities and the 1982 manatee deaths in Charlotte 

Harbor suggest that the manatee deaths and the dolphin deaths were rare events due to unusual 

timing and environmental conditions. If not, manatees and dolphins in waters from Cedar Key to 

the Ten Thousand Islands would be continually dying during west coast red tides, which have 

occurred for varying durations, at varying coastal locations, and at varying concentrations for 

many years. One protection for such populations is that mid and upper reaches of west coast bay 

systems, because of lower salinities in these areas, do not usually support red tides once they are 

transported inshore from their offshore origin. The local dolphin population could find relief in 

these areas, by avoiding many of the effects of red tides. There have only been a few reported 

dolphin strandings and deaths during west coast Florida red tides and cause of death was not 

investigated. 



It is possible that those dolphins from the Carolinas to Florida with brevetoxins in liver 

tissue were debilitated by chronic exposure to such a biotoxin. The earlier reports in 1987 of 

dolphin deaths off northeast states in summer do not have supporting documentation of 

brevetbxins in tissues and the food chain scenario for Virginia to New Jersey dolphin mortalities is 

only plausible speculation, based on known migratory information of coastal fish stocks. 

Recommended Research 

Obviously, further research is needed to determine the extent of brevetoxin(s) in fishes and 

stranded marine mammals, to pursue a food chain hypothesis. Also, acute red tide events can 

debilitate or kill birds that feed on toxic shellfish24 or possibly whole toxic fish, which means that 

P. brevis cell concentrations above background levels have the potential to impact vertebrates that 

feed on toxic prey, either through acute or chronic exposure. This dinoflagellate, at concentrations 

above 100 cells ml-1, can kill certain fish via respiratory failure. At lower concentrations, it is quite 

possible that planktivorous fishes can bioaccumulate brevetoxins and thus impact higher predators. 

Future research should address the following points: 

Determine the effects of chronic exposure to sublethal levels of brevetoxins on finfish,. 

e.g., accumulation of toxins in viscera and rate of natural detoxification (R. Pierce, 

Mote Marine Laboratory, currently pursuing). 

Assess the impact of toxic prey on marine mammal diseases and mortality, e.g., 

stranding of dolphins, whales, and manatees, using immunocompetency tests and other 

available techniques. 

Determine bioaccumulation of brevetoxins through food webs. Identify whether there 

are potential public health problems. 

Conduct offshore sampling programs (Florida) to determine red tide initiation 

requirements, prepare a model for prediction, and anticipate transport to other national 

waters (FMRI, University of South Florida, and Mote Marine Laboratory, currently 

formulating). 



Stimulate research collaborations on a national and international level to investigate 

worldwide toxic microalgae phenomena and possible common denominators in bloom 

development, toxin production, and mass mortalities. 
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