PROPAGATION AND ATTENUATION CHARACTERISTICS
OF MULTILAYERED MEDIA

by
STEPHEN PATRICK KOCH

B.S.E., Purdue University
(1974)

SUBMITTED IN PARTIAL FULFILLMENT OF THE
REQUIREMENTS FOR THE DEGREE OF

OCEAN ENGINEER
at the

WOODS HOLE OCEANOGRAPHIC INSTITUTION
and at the
MASSACHUSETTS INSTITUTE OF TECHNOLOGY
and
MASTER OF SCIENCE IN OCEAN ENGINEERING
at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

1979

Signature of Author... .5..%. . E

Joint Program in Oceanographic Engineering, Woods Hole
Oceanographic Institution — Massachusetts Institute of
Technology, and the Department of Ocean Engineering,
Massachusetts

itute of Technology

U
Certified Dyeeeccoeeas ...........JL‘X

LRI BT B I I I B N I S O Y B B A

Thesis Supervisor
Certified by....f...P.E%gg

oo-Ooﬁl.'.o'0-0Qoooloooooo.no.o.o.to

Thesis Supervisor
Accepted by....f...... ;aép
Chairman, Joint Committe

0000800300000 000000000000000000000s

for Oceanographic Engineering,Woods
Hole Oceanographic Institution - Massachusetts Institute of
Technology

IR

0 0301 00?5599 7

=

&y armmrns™



PROPAGATION AND ATTENUATION CHARACTERISTICS
OF MULTILAYERED MEDIA
by
STEPHEN PATRICK KOCH
Submitted to the Department of Ocean ﬁngineering in partial fulfillment
of the requirements for the degrees of Master of Science and Ocean

Engineer.

ABSTRACT

An algorithm is proposed to numerically integrate the inhomogeneous
depth-separated wave equation using a state variable technique. The solu-
tion obtained for two simple shallow water models is shown to agree well
with the known exact solutions. Integration grid density is discussed and
a minimum required density specified.

The use of complex sound speeds to simulate bottom attenuation is
reviewed. A numerical instability inherent to the technique that arises
during the use of complex sound speeds is investigated.

The algorithm is also applied to a deep ocean profile, and the solution
characteristics discussed. Sensitivity problems that arise when modelling
the seafloor as a layered elastic medium are analyzed.

Thesis Supervisor: Arthur B. Baggeroer
Title: Associate Professor of Ocean Engineering

Thesis Supervisor: George V. Frisk
Title: Assistant Scientist, W.H.O.I.



ACKNOWLEDGEMENTS

Deep thanks to all my friends in Cambridge, Fort Wayne, and Woods Hole
for the encouragement, interest, and alcohol that helped finish this work.

Special thanks to my mother for encouragement in getting it started.



Abstract. .

TABLE OF CONTENTS

Acknowledgements. . . . . . . . . . . 0 . 4 .. e .

Table of Contents . .« ¢ ¢ ¢ ¢ o« 4 e o & o o o « o « =

List of Pigures . . .« ¢ v v ¢« 4« 4 4 e e e e e e . .

Introduction.

Chapter 1 ==

Chapter 2 -~

Chapter 3 --

Appendix I

Derivation of State Variable Algorithm .

Specification of the Ocean Model . . . .
Derivation of the State Equations. . . .
Continuity Conditions. . . . . . . . . .
Phase Plane Representation . . . . . . .

Confirmation of State Variable Algorithm
Single Layer Ocean Exact Solution. . . .

Single Layer Ocean Solution Comparisons.
Integration Grid Density Requirement . .

.

-

.

Two Layer Ccean Exact Solution and Comparisons

Attenuation and Deep Ocean Model . . . .

Single Layer Ocean Bottom Attenuation. .

Complex Sound Speed Numerical Instability.

Deep Ocean Model Considerations. . . . .

- Definition of Terms . . . . « . . « « .

Appendix II - Description of Computer Program . . . .

References.

-

Page No.

~N U W

125



LIST OF FIGURES

The General Ocean Model. . . . . . . . . .
Snell's Law Relationships. . . . . . . . .
Continuity Conditions. . . . . . . . .

Phase Plane Relationships. . . . . . . . .
Single Layer Ocean Description . . . . . .
Sound Speed Relationships. . . . . . . . .

0.066 m * Single

1t

Response Function for Vv

il

Response Function for Vv = 0.061 m-l Single

Response Function for V 0.059 mml Single

i

Response Function for V 0.055 m_l Single

il

Response Function for Vv 0.062 m—l and NA
Single Layer Ocean . . . . « « + o « o « =

t

Response Function for V 0.062 m-l and N

Single Layer Ocean . . . . « « « « + « = %

0.062 m * and N

I

Response Function for Vv

Single Layer Ocean . . . . + « « o « o« = %
Response Function for Vv = 0.062 m—l and NA
Single Layer Ocean . . . « +« « « o« o o +

Response Function for Vv 0.062 m—1 and NA
Single Layer Ocean . . « . « o o o « o « =

Response Function for V 0.058 m~l and N

Single Layer OCan . . « o« o« &« « o o + = %
Response Function for Vv = 0.058 m—l and NA
Single Layer OCean . . . + s « o« « o o o« &

]

Response Function for Vv 0.058 m‘—l and NX
Single Layer Ocean . . « « « « « o o o o &

Two Layer Ocean Description. . . . . . . .

Ocean

Ocean

Ocean

Ocean

. -1
Response Function for Vv = 0.065 m Two Layer Ocean. .

Page No.

17

28
34
38
40
45
46
47
48

51

52

53

54

55

56

o1

58
61
65



3.1.6

3.1.7

337
AIT~1

0.064 m-l Two Layer Ocean

il

Response Function for V
Response Function for V = 0.061 m_l Two Layer Ocean

0.058 m_l Two Layer Ocean

Response Function for V

Response Function Magnitude Comparisons for Single
Layer Ocean With_and Without Bottom Attenuation
V=0.0664959 m . . ... ... ... ...

Response Function Magnitude Comparisons for Single
Layer Ocean With and Without Bottom Attenuation
v =0.0651205m™t. . ... ... L. L. ...

Response Function Magnitude Comparisons for Single
Layer Ocean With and Without Bottom Attenuation
V=0.0622079 m™t. L . L. L. .. L. .. ...

Response Function Magnitude Comparisons for Single
Layexr Ocean With and Without Bottom Attenuation
v=0.061m 1. L L. L. Lo oL oo

Response Function Magnitude Comparisons for Single
Layer Ocean With and Without Bottom Attenuation
v=0.059mL. . ... ...

Phase of Response Function for Two Laver Ocean with
V=0.0622979m™ . L. L. L L. oL Lo

State Phase of Response Function for Two Layer Ocean

with V. = 0.0622979 m~1 . . . . . . . . .. .. L.
Simple Deep Ocean Model. . . . . . . . . . . . . .

Response Function for Deep Ocean Case with
v=0.0053m" Y . .. ...

Response Function for Deep Ocean Case with
V=0.00469 m . ... L L L.

Response Function for Deep Ocean Case with
v=0.003m . . ...

Multilayered Deep Ocean Model. . . . . . . « +v .+ .
Hultilayered Hodel Integration . . . . . . . ..

Stress Sensitivily Bxemple « o o o - - . . . . .

-

Computer Program Block DIiGLTaE o o« o o o o o o o o o o

67
68

73

74

75

76

7T

78

19
87

389

30

9L
92
94
95
104



INTRODUCTION

Since Pekeris's study of shallow water sound propagation(l), considerable
effort has been directed toward developing a better understanding of the
interaction of oceanic acoustic waves with the seabed. This effort has occurred
in two disciplines, seismology and ocean acoustics.

In seismology, primary interest in wave propagation below the ocean-
seabed interface. Such information as layer depths and crustal structure is
desired, with the goal being to confirm seismic models through the generation
of synthetic seismograms. Mathematical extensions of ray theory are usually
used to construct the solution to the inhomogeneous wave equation(2,3,4,6,7).
Ocean acoustics, on the other hand, is concerned with the seabed as a lossy
and dispersive medium which influences the structure of the acoustic pressure
field in the ocean. Construction of the sdlution via an expansion of the
eigenfunctions associated with the homogeneous equation is most common(9,10,
12), although several recent methods obtain the Green's function solution
to the inhomogeneous equation directly(13,14). The advantages and disadvan-
tages of the most important analysis techniques that have evcolved in each
field will be discussed in the following.

SEISMOLOGY

The most basic approach to elastic wave propagation in the seismic
literature is the Thomson-Haskell method(2,3). It considers a medium of
parallel, isotropic layers which have constant elastic parameters and sound
speeds. A plane elastic wave at specified wave number is propagated at
oblique incidence through the stratified media. Matrices which express the
boundary conditions for each interface are written. The properties of the

wave in the Nth layer are obtained in terms of the same properties in the



ISt layer via a recurrence relation which involves the product of N
matrices(2).

This matrix product is a major problem with the Thomson-Haskell method
and prevents its more widespread use. Accurate modeling of the medium often
requires a large number of layers(due to the restriction that each layer
must have constant physical properties) and computation of the product of a
large number of matrices is both time-consuming and inaccurate. The solution
contains both positive and negative exponential terms and may suffer from
numerical instability. This instability results from the loss of that arises
as the exponentially growing term increases through the profile.

As an example, the Thomson-Haskell method has been applied to the
special case of low-frequency sound propagation in the Arctic Ocean(22,23).
In this application the upward-refracting sound speed profile required the
division of the fluid into layers of constant speed overlying an infinite
half-space. The half-space was taken to be either a high-speed fluid{22) or
a so0lid(23). The calculation of the transmission matrices required the use
of double precision arithmetic and limited depths to approximately 1 kilometer.
These restrictions prevent the apllication of the method to more general
deep ocean models.

The method of characteristics(4,5) can be used to solve the wave equation
since it is a second order hyperbolic differential equation. The character-
istics are the natural coordinates of the differential eguation and are
roughly analogous to the natural coordinates used in multidegree of freedom
vibration systems. In application of the method to wave propagation problems,
an initial wavefront is assumed on which the velocity potential and all first

order derivatives are known. The characteristic egquations, which represent



propagation paths forward of the initial wavefront, can be derived from
the inhomogeneous form of the original differential equation. A second

set of eguations, the conditionals, are then derived from the inhomogeneous
equation. These two sets of equations are eguivalent to the boundary value
problem.

Numerical calculation of the solution is straightforward. The charact-
eristics form a grid forward of the initial wavefront. By using the known
initial conditions to begin integration of the conditionals, the solution
is sequentially determined throughout the region.

Since the conditionals are usually integrated numerically, an advantage
of this technique is that all elastic properties and sound speeds can vary.
Discontinuities in the initial conditions are also acceptable and will
propagate along the grid.

The main problem with the method of characteristics is similar to the
instability problem of the Thomson-Haskell method. The propagation paths
represent increasing and decreasing amplitude terms. As the solution is
computed, the increasing term tends to swamp the contribution of the decreasing
term, causing a loss of precision and numerical stability.

Finite difference techniques are most commonly implemented in both the
integration and the approximation of the appropriate boundary conditions,‘The
errors due to these procedures require high grid density and a resulting
increase in computation time. The sequential nature of the solution is also
a direct cause of long computation times.

Two Fourier transform technigues that have become important in the
siesmic literature in recent years are the ray-theoretical and reflectivity

methods. Both methods consider an earth model consisting of an oceanic



liquid layer overlying a solid medium of plane, homogeneous, isotropic,
elastic lavers and an elastic half-space.

The ray-theoretical method requires the calculation of the step function
response of the earth model for a point source and receiver in the ocean
layer. The step-function response involves using generalized reflection
and transmission coefficients to obtain an integral representation of the
acoustic field. Next, a source transfer function is written which describes
the nature of the pressure field due to the underwater explosion that acts
as the acoustic source. The synthetic seismogram is then obtained by convol-
ving the step response with the time derivative of the source transfer
function(6) . The initial step of the reflectivity method is the numerical
integration in the horizontal wave number domain of the plane wave reflection
coefficient (reflectivity). This procedure is repeated for each horizontal
phase velocity and the seismogram is obtained by the inverse transformation
of the product of the source spectrum and the reflectivity(7).

Since it includes multiple reflections and converted waves, the
reflectivity method provides highly accurate synthetic seismograms. However,
it suffers from long computation times if the reflection response has a long
duration(7) . The ray-theoretical method does not have a dependence on response
duration but instead has a computation time which is directly related to the
number of multiple reflections and conversions that are included(6). For any
particular application, the choice must be made between the error resulting
from omission of these waves and the computation time resulting from their
inclusion. Common procedure is to use the ray-theoretical method to obtain an
overall seismic picture , and the reflectivity method to study specific

details of the profile under consideration(7).
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OCEAN ACOUSTICS

In the ocean acoustic literature, emphasis has been on the application
of various numerical techniques to the integration in the water column of the
depth-separated wave equation. In addition, various computer programs have
been developed which obtain solutions for those ocean models in which the
sound speed can be written in terms of specified mathematical functions.
Finally, Fourier transform theory has been used to study acoustic propagation
for given source and receiver configurations.

The Naval Research Laboratory{NRL) programs FLUID and SOLID are examples
of the direct application of finite difference techniques to the solution of
the homogeneous wave equation(l0)}. The primary goal in each is the determin-
ation of the eigenvalues and eigenfunctions of the normal mode form of the
solution. The physical model considered is a fluid layer with a specified
sound speed profile that overlies a half-space which is either fluid of solid.
The elastic parameters of the half space are constants. The iteration proced-
ure employed involves integration té obtain a trial eigenfunction for an
estimated eigenvalue and adjustment of the estimate depending on the error
obtained between the value of the eigenfunction at the surface and the surface
boundary condition. This procedure is repeated until the error at the surface
is within a prespecified bound.

Expression of the differential equation and the boundary conditions in
finite difference form is straightforward. For multilayvered work the particu-
lar form of the boundary condition approximation is important both with
regard tc the accuracy of the solution and with regard to the nature of the
compressional-shear coupling in the elastic medium. The elastic multilayered

model would require consideration of this topic. It is likely that the
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extension to the more complex model would also cause a substantial increase
in computation time.

The Applied Research Laboratory at the University of Texas has developed
a normal mode program which also obtains the eigenvalues and eigenfunctions
of the homogeneous equation(l2). It employs numerical integration as well as
a parallel shooting technique for efficient computation of each mode and such
of its properties as group velocity and attentuation. Parallel shooting
involves parameterizing the velocity potential by introducing an independent
variable, and dividing the depth coordinate intosubintervals(31). The
differential equation is then written as a first order system where each member
corresponds to a particular subinterval and the coupling of the eguations is
expressed by the appropriate continuity conditions. Using an assumed
eigenvalue, the system is integrated towards the sound channel. The secant
method is used to improve the estimate and reduce the error between the upward
and downward integrated terms to within the desired bounde. Although
reasonably efficient in its present application, the technique suffers from
the same drawbacks that influenced the NRL programs, when applied to the more
complex model.

The parabolic wave equation method(1l3) is a technique of solving the
inhomogeneous wave equation that is particularly useful for studying long
range propagation in the ocean. It allows both depth and range-dependent
sound speed profiles. The two-dimensional parabolic wave equation is obtained
from the elliptic wave eguation by replacing the velocity potential with the
product of a Hankel function and an envelope function, and assuming that:1)
the receiver is in the far field, 2) only small angles to the horizontal are

to be considered, and 3) motions are uncoupled in azimuthal directions. The
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integration is then performed by using a finite difference Fourier algorithm.

Since the parabolic equation is valid only in the far field, its solution
must be matched with a near field solution, which is known for simple sources.
The upper boundary condition is specified through the use of an image source
out of phase with the actual source. The bottom outgoing wave boundary condi-
tion is obtained by introducing a large artificial absorption term which
prevents the backscattering of waves into the ocean. The validity of this
assumption is still in question(13).

Inaccuracies arise from the small angle approximation and at discontin-
uities in sound speed and density. Characteristically, the technique has
long computation times, although recent versions have seen substantial
improvement (13) .

The Fast Field Program (14) is an application of Fourier transform
technigues to the solution of the inhomogeneous wave equation. The acoustic
potential is considered the output of a linear system and is the result of the
transform of the product of the transfer function of the medium and the
transform of the source waveform. The transfer function of the medium is
itself a Fourier-Bessel transform and contains all information about the
environment. These integrals are evaluated using the fast Fourier transform.

Computation time is the major problem with the FFP. The Green's function
solution must be obtained either by numerical integration or by restricting
the sound speed profile to situaticons for which known solutions are available.
In the latter case, recurrence relations must be evaluated to obtain the
Green's function. These recurrence relations suffer from numerical instability
and are time-consuming to evaluate.

Green's functions obtained by numerical integration are usually sensitive

13



to round-off errors and also substantial computer time. They are constructed

by integrating the homogeneous equation for two solutions that independently
satisfy the surface and bottom boundary conditions( a similar procedure is

used in section 2.1 to obtain an exact solution for a simple shallow water
ocean model) . The emphasis of this thesis will be on obtaining the Green's
function through a state variable representation cf the wave equation. This
solution technique will be shown to be numerically superior tocthese:ztwo
procedures. In addition, when combined with a new technique of evaluating

the Hankel transform(1l5), a substantial improvement in computational efficiency
is expected.

A variety of other normal-mode related programs exist which do not fall
in any of the above classifications. These include the works of Bucker(9),
Stickler(16), and Mckisic and Hamm(17). The first two authors specify the
sound speed profileas mathematical functions for which the solution is known.
Mckisic and Hamm have applied a new method of solution of eigenvalue
problems to the depth-dependent wave equation. The method assumes exponential
solutions where the functions in the exponents are specified by Riccati
equations. The exponent functions can be obtained by an iteration procedure
on the Riccati equations. The additional complexity of the elastic multilayered
model is such that the use of any of these techniques in a computer program
would be time-consuming and tnefficient.

This thesis will study a new technique for evaluating the Green's function
solution to the inhomogeneous depth-separated wave equation. The technique
involves the use of a state variable representation of the original differential
equation that was originally proposed by Baggeroer (18) to obtain the

eigenvalues of the homogeneous or normal mode program. Emphasis will be on
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the study of the technique and its potential in the solution of acoustic
propagation problems. The numerical advantages of the representation will be
apparent for the oceanic model that includes shear wave propagation in the
bottom.

Chapter I will present the mechanics of the state variable system and
introduce the continuity conditions required at the boundaries of each layer.

Chapter II will compare the state variable solution with known solutions
for two simple shallow water models.

Chapter IIT will discuss the use of complex sound speeds to model
bottom attentuation and investigate an associated numerical instability. It
will conelude with a discussion of a deep ocean profile application and a
sensitivity problem that arises when the bottom is modelled as a layered

elastic medium.
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1. DERIVATION OF STATE VARIABLE ALGORITHM

Certain assumptions and definitions are required to simplify the
ocean model. These are presented in Sec¢tion 1. The depth-separated
wave equations are then derived and state variable theory used to
obtain the state representations. Surface and basement boundary
conditions are specified in Section 3, along with the continuity
conditions required at the interface between any two layers. Finally,
Section 4 introduces a magnitude and phase representation of the state

equations that is numerically superior to the linear state equations.

1.1 SPECIFICATION OF THE OCEAN MODEL

For the purpose of this discussion, the ocean is assumed to be an
compressible fluid media of constant depth. The seabed is modeled as
an elastic medium consisting of a specified number of horizontal, homo-
geneous isotropic layers in which both compressional and shear waves
can propagate. The sound speed of the ocean can vary in the vertical
direction. All elastic layers are restricted to have constant sound
speeds and elastic properties. Compressional and shear speeds C and
Cs are defined in terms of Lame's constant A, rigidity u, and density o
as follows:
2
A+ 2u =<
2
/u::eCS
(all variables are defined in Appendix I). It should be noted that the
technigue to be described requires constant elastic parameters only in
that the standard derivation of the wave equation for elastic media makes

this assumption (19). The final requirement of the model is that coupling
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between compressional and shear waves occurs only at the interface

between layers. This coupling is specified by the continuity of vertical
and horizontal velocity and normal and shear stress. Figure 1.1,1 depicts
the ocean~seabed model.

For convenience, a Cartesian coordinate system is employed, The
depth-separated equation that results is identical to that resulting from
the use of a cylindrical coordinate system (32). Therefore, the potential
of the technique for use with the FFP or with the Hankel transform
algorithm of reference (15) can still be evaluated. In addition, the
problems associated with expressing the continuity conditions between

elastic layers in cylindrical coordinates can be avoided.

1.2 DERIVATION OF THE STATE EQUATIONS

Consider the general form of the acoustic wave equation for a

compressional velocity potential é-CX/ }’, 8, 7‘)

1 J*Z o T
vy - C2cE 12 = J( )ﬁ 1.2.1

Assuming harmonic time dependence and horizontal plane wave propagation

(the far field) the substitution

Jam ( VX~ FF)
Pz ) =¢ P2 1.2.2

reduces 1.2.1 to

a;ri@ @;?2 _@nV|pc= Fee-g)

Following the same procedure for a shear velocity potential gives the

result

18



2 2 2
e[S -erfre=e

1.2.4

It is useful to define normalized sound speed and horizontal wave

number functions as well as a depth parameter that is normalized by the

longest wavelength of the sound speed profile (18). The resulting forms

of the differential equations are

Compre551ona1
a’dif - [7c0- j¢(r> z FCE-5)
= 1.2.5
{ = z;; S
g°cf) =@ (I~ Z7)
r: = (277‘)2C/'~ Z:]/z

=Ff z== e
Cos
' 2

— z 2 2
g = (zm)= (/ 2o U )
Note that the depth parameter has been normalized by two different
wavelengths corresponding to the compressional and shear maximum wave-
lengths, respectively.

This is necessary because the normalization

process requires that
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D)

27t --(277‘%.)7~ = - ( 2,5 ¢ f,)" V;Q) 1.2.7

<, C5)

(BT - @r) = - (DT

Had a single normalized depth parameter been used, both of equations
1.2.7 could not have been satisfied. This becomes clear upon the
substitution of 1.2.5 ¢ & d and 1.2.6 ¢ & 4 into 1.2.7. Since it is
preferable to scale 1.2.3 and 1.2.4 into a form which retains their
mathematical similarity (i.e., 1.2.5a and 1.2.6a), the independent
depth parameters are introduced. Further considerations regarding
the use of the two depth parameters will be discussed in Section 1.4.
At this point, it is important to state the relationship between
the horizontal wave numbers V and Vs' Consider the case of a plane
compressional wave incident from a fluid onto an elastic solid as is

depicted in Figurel2.l Potential expressions for the various waves are

¢, (x, z) = exp[z’.,gl CX Sy r zca,q,._)]

Efr- CX, 2>: eXP[:/:J@ICXS/Pﬁ- — R Cos 2_27

§T CX/ Z> = €X/D[/'.4€2 CX S/ a. * 2 Cos &}.j
:{Zr— X, z) = exF[/,,@, CX5/»6 + ELlos 6,J

By Snell's law, the wave number parallel to the boundary must be the

same for all waves. Hence,

,A% S/ C%' _4é'-5}~' .,X? Ssa & 33_4éL,J§};z &,

20
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Since

rd
27y, = 4 s e,

it follows that V = Vs'

2l = _44% S &

Representation of systems in state form is common in the control
theory literature (20,21). The general objective is to model the
particular process by a system of first order ordinary differential

equations of the form

5 <Ol T4 ¢y A, c)][%D (v o)
d - J + [ 1.2.8

b | |
r ) |
%o (D] | 4, (5D -~ A DX, O G ()

]

where X (f) are the states of the process and U (§) the control inputs.

Since control processes of this form have been well studied, representa-
tion of the acoustic wave equation in state form is straightforward.

The first step in the derivation is to define two state variables.
The velocity potential, gﬁ(j) , being of prime importance here, is
specified as the first variable. The second Variable,f’(f), has no

direct acoustic significance. The state system is

scod] [aco A, [¢ed] |4 <o)
= +
P | B, (D A O|pen) |4 D] T

where the dot refers to the derivative with respect to f .
The coefficient matrix A is determined by matching 1.2.9 to the
original dépth—separated wave equation 1.2.5. This is done by taking

the derivative of 1.2.9%a with respect to f and substituting in 1.2,9
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for all first order derivatives. The second order equation that results

Gy =[A,c0 0 A1) ¢ A8, ] $C5)
+[ By OB, 5D+ B, DA, (D + 4 (DIPDr2s0

+ A DY)+ Ocs)

Matching the coefficients of 1.2.10 with those of 1.2.5a, three equations

are obtained for the six unknowns of 1.2.9.

6+ BRCE) # A DA, (1) = gD =TT
ﬂ” (f)”z, (f) + /?2/ (O /922 49, +h,, (f>: e 1.2.11

A CDGED + g = 2, FCH-1,)

Exact values of the coefficients Aii( f) and Ui( ;) can be chosen in
any manner that satisfies all of equations 1.2.11. Particularly

convenient is Alz(f ) = 1 and Ul( ;) = 0, which reduces 1.2.11 to

;j”(;) F AICE) # A, CE)= BN - 2
/4”({> = --/922 Cf)

b, (5 = 2, ICE1)

1.2.12

The well-known Riccati equation can be obtained from 1.2,12a by

the substitution f(;) = —All(g).

FCo = FCD + A, ()= 7°CH) » TF e
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The above derivation is a repetition in greater detail of reference (18),

which also discusses the choice of A2l( f), That choice is.
2
)= -7
A, Cf

$C)| _ ~Fce) NIR24) ¢ O(({’{>
peo| | mrr Feof| PV RS e

%C;) = "Fz(f>" 52(5) 1.2.16

Notice that the Riccati equation is a function of the sound speed profile
only and is independent of wavenumber. Riccati equations have been well
studied and 1.2.16 can be numerically integrated. The coefficient matrix
in 1.2.15 is determined by the Riccatl solution and the equations can
then be integrated to obtain the velocity potential.

"0t _[-f> ¢Ci)
L) | -nt KB |A )

FCL) = F1C5)~ 8,°CF)

At this point, the advantages of the state representation are probably

1.2.17

not obvious. They become more apparent as the state equations are
implemented in a computer program. The simplification from a second

to a first order system allows the use of numerical integration tech-



niques which are easier to apply than those for the second order system
and for which approximation errors are less crucial. The state systems
also allow the analysis of sound speed profiles which are more representa~
tive of the real ocean. Finally, the analogy to the FFP is apparent,

with the extension to long~-range propagation applications theoretically

straightforward.

1.3 CONTINUITY CONDITIONS

In general, continuity of nine gquantities is required at the inter-
face between two elastic layers. Velocity components comprise three of
the quantities and stress components the remaining six. The velocity
terms follow from the definition of compressional and shear velocity

potentials, which is
vV = C“x‘fw> = Vg * VXY 1.3.1

For a homogeneous media in a Cartesian coordinate system with wave
propagation occurring only in two dimensions, the "V" velocity and all
Y terms can be neglected. The remaining horizontal and vertical velocity

terms, neglecting the exponential of equation 1.2.2, are

w= 5L - G2 = iV - S

J({) ' 1.3.2
w'—’%":}%: 7/_0 j{ +;27rl/5//({,>

Since equations 1.2.5 and 1.2.6 were scaled using different normalized

depth variables, notice that ¢’ and 9b are functions of ? and gs'
respectively. The integration size for 49 and 90 will in general be

different. However, the coupling at each interface requires that they
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be expressed in the continuity conditions with respect to the same

coordinate. Since

ﬂ_éﬁd?zlg/_g{é
o

Iz a;?i“

this has in fact been done in 1.3.2.
For an isotropic media, the six stress components can be written
in terms of two elastic parameters: the rigidity p and the Lamé constant

A. The stress expressions, written in terms of the velocity components

and the dilation & , are

The assumptions of the model reduce the above six expressions to
the normal stress Tzaand the tangential stress {__ . Expressed in

ZX
potential form, they are Yor L ﬁl 5//

?C/'ZFVD-"gb(i)-/— z;i/”'i/zf?) ,4‘_‘___,___/;

;YU 0/919() IR A4S R
N i M G /;zj

It is important to note that the reduction of 1.3.1 to 1.3.2 and 1.3.3

to 1.3.4 is possible because of the use of an X, Y, Z geometry and the
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homogeneous, isotropic media assumption (33). Extension to a cylindrical
geometry, as may be desirable for future applications, will reguire
reconsideration of the velocity and stress equations.

The result of these simplifications is that there are four gquantities
that must be continuous across the interface between any two elastic
layers. The formal expression of these continuity conditions, as shown

in Figure 1.3.1, is
«; ¢ )= 4., € #.)
Wy CH) = Wy, CHD
Ve, CH )= Vaasy € /,I,)
Tax, € H)= Texjey CHD)

At the interface between the ocean and the uppermost elastic layer,
a simplification of these conditions is in order. First, since the fluid
is not allowed to hold shear, the tangential stress in the solid must
vanish. Second, continuity of horizontal wvelocity is not required since
slippage can occur. The formal expressions are
“/ (/';> = “2 (/%)
Fr\zz, CH )= FTS <H) 1.3.6
O = Tax, CH,)
The boundary condition at the ocean's surface is that the normal
stress must vanish. From 1.3.4a and 1.2.5a, the expression for this

condition is
¢(0) = 1.3.7

The bottom boundary condition can take either of two forms. For an
th .. .
N layer bounded by a rigid surface, both velocity components must

vanish.
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Pigure 1.3.1
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For an Nth layer bounded by a propagating, infinite elastic half

1.3.8

space, constrained motions are required.

/47(;)4/74@ §—> o0
| V(5] « ¥ c@ ¢ S
5
The boundary value problem has now been completely specified

except for the exact nature of the solution. The homogeneous shear
state equations are excited at the ocean bottom by the coupling of qb(i)
and ?QQD, expressed by 1.3.6,and the shear solution consists solely of
the integration of 1.2.17 satisfying 1.3.6 and either 1.3.8 or 1.3.9.
The compressional state equations are inhomogeneous and their solution
must consist of some combination of homogeneous and particular terms

which satisfy 1.3.7 and either 1.3.8 or 1.3.9. Formally, the solutions

Compressional: ¢({> = # ({> * éy (f)
PCS)= B (D + £ CF)

Shear: (//(;D = % ({’>
LD = £, L)
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The boundary conditions for the particular solution depend on the
integration direction. Baggeroer (18) discusses the convenience of

integrating up the profile, and the resulting choice of

<)
PP ( H"/7_0> = g 1.3.12

These initial conditions result in a particular solution that is identically
zero below the source.
Equations 1.3.12 allow expression of the bottom boundary conditions

solely in terms of the homogeneous potentlals For the rigid bottom case

12771/@( /;o>~*i; 0/;&;{/,2”) = J

e 0/#/(#0/20) ~ /277'V >___
A

For the propagating basement model, the assumption of constant sound

1.3.13

speed allows an analytic solution to be obtained. That solution is

¢”(7’ [47(7) /a’ﬁ/( )]—r:'}" k)
3[4 ) "’&‘)J reh 32
( ) [ (71,, r‘/ 0,51};:'3’ ~r(h” 7.:)

=

! 9 ( 0_.’.__._?.'3_) r(f;ﬂ”)
705 yf e
From 1.3.9

bo) + FECRD

r
0/5/) C%s.) _ 1.3.15
Cf 7ku’:> 5/£3 = &

1.3.14
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Both 1.3.13 and 1.3.15 contain four unknowns and therefore have two
apparently arbitrary constants. As integration proceeds upward, however,
these constants are specified by other requirements of the model. 1In
particular, equation 1.3.6c, which must be satisfied at the ocean-sediment
interface, determines the third unknown by expressing the required
relationship between the compressional and shear fields. The final
unknown is specifiéd by the surface boundary condition. Recall that
the particular solution can be integrated using 1.3.12. Therefore,

from 1.3.7,

4,co) ==& C2

1.3.16

and the boundary value problem is completely specified.

Since the boundary conditions 1.3.6c, 1.3.7, and 1.3.13 or 1.3.15
are split (that is, evaluated at different points in the depth profile),
it is useful to consider the general step-by-step procedure to be
employed in solving the boundary value problem. First, the particular
solution is obtained. For the initial conditions of 1.3.12, ¢¥.C{)and

ﬁ,(f) will be non-zero from the socurce point to the surface. Second,
two unknowns are chosen from the four in 1.3.15 (for a propagating base-

ment) and given unit amplitude. For example,
o
&, 7)==/
fm N =
§€; Cr ?Qn’j> /

For simplicity in satisfying 1.3.6c, the third step is to integrate

1.3.17

upward using only the compressional field in the basement as the initial

condition (assuming for the moment zero shear at [t’ ). Compressional
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and shear fields will be excited in all elastic layers and integration
will proceed to the uppermost interface of the profile where 1.3.6c will
not in general be satisfied. Next, the shear field is used as the initial
condition at Hn (with a zero compressional field) and integration again
will proceed upward to the uppermost interface.

At this point, two independent solutions will have been obtained
for the elastic layers, neither of which satisfies 1.3.6¢. The linearity
of 1.2.15 and 1.2.17 allow superposition of these solutions in such a
manner as to satisfy 1.3.6c. This superposition amounts to a scaling of
the shear solution to insure that the tangential stress at Hl vanishes.
This procedure specifies the third constant as was discussed earlier.

Equations 1.3.6 a & b are used to obtain the appropriate compressional
field quantities in the ocean and integration proceeds to the surface to
obtain 4%.C?Q The superposition used earlier determined the relationship
between the compressional and shear fields but not the absolute magnitude
of either (the fourth constant) and in general 1.3.16 will not be

satisfied. Scaling of the entire compressional and shear solutions by

?, (2
4%,, (0) 1.3.18

will insure that the surface boundary condition is satisfied.

the constant

-

The compressional and shear solutions are

bC)= b (- jii X420,

1.3.19
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= - #’ (0> i
(P(i) @ (0> ;fr ( ’> 1.3.20

This completes the specification of the boundary value problem.
The equations can now be programmed and solutions obtained for any
ocean and seabed parameters. It has been found, however, that a
representation independent of absolute magnitude is more convenient

numerically. This representation will be presented in Section 1.4.

1.4 PHASE PLANE REPRESENTATION

The state equations of Section 1.3 can be integrated to obtain the
solution for any given ocean model. However, the exponential nature of
the solution causes large amplitude terms to arise, especially in deep
ocean examples. Baggeroer (18) introduced a magnitude and phase
represehtation of the state equations which is numerically preferable.
This representation allows integration of differential equations which
are independent of the absolute magnitude of f( f) and {” ( !;) . As shown

in Figure l.4.1, the respective variables are defined
PCSED
ECY) = Thw ( )

M= Fin[ ¢+ PR

¢
YCL) = Tae (s”a)

1.4.1

1.4.2
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exp[N(f)J PPC{)

8(s)
¢Cs)

exp[¥(5,)] P (Y

Y(5.)
Yy

Phase Plane Relationships

Tizure 1l.4.1
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sy =[P e )],

Under this transformation, the state equations can be derived to be

s i) = 2FC5) Cos ECF) Siio OC5)
§(> ~7T2CostECs) - 5—/;"255;>

M) = FCO[5ioc)~ Cos?ocs)] e
+ C1~72) Siw &C5) Cos SCE)

Y (fs) =2+ CfJCasb’(f>5/yB/(f> L.
2 Cos X(f) S~ X(f)

IEEDEES (f)[i/,u yor) = Cos*¥CHY] B
b Cle LR SwYCH,) Cos ¥ Fs)

The surface and propagating basement boundary conditions become

=
RN
8]

oY
~J

BN
fe0)

/8
e o) = 2 1.4.9

ﬁC"‘“) Tonr [‘FC”'"> e %)"_27410
Y(ﬁ” T he [F(;z,,) f("*) J

The rigid bottom boundary conditions 1.3.13 and 1.3.5 and 1.3.6

I_I

1

do not transform into convenient magnitude and phase expressions. When
they are required, the simplest procedure is to return to the linear

plane, obtain the desired result and transform back to the phase plane.



Implementation of these equations is straightforward. The particular

solution is integrated in the linear plane. The homogeneous solutions

are obtained in the phase plane and the total solution is given by
V4

fs)
oY= e 7 Cosvch)

(a) MR
¢({> = () ”(d>6596¢’)€ (05 67({)1.4.13

1.4.12

Notice that the scaling constant of 1.3.18 has been included in 1.4.13.

In the following chapter, these equations will be integrated for

two specific ocean-seabed models and compared with known Green's function

solutions.
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2. CONFIRMATION OF STATE VARIABLE ALGORITHM

At any given wavenumber, the Green's function solution to the wave
equation is equivalent to the superposition of an interfering set of
up and down travelling plane waves. Construction of the solution by
an appropriate combination of plane waves will provide an accurate test
of the theory of Chapter I. In Chapter II an endpoint method of construct-
ing the Green's function will be used to obtain the exact solution of the
wave equation for two simple shallow water oceanic models. The state

variable solution will then be compared to the exact solution.

2.1 SINGLE LAYER OCEAN EXACT SOLUTION

An exact solution of the inhomogeneous depth-separated wave equation
can be written for the simple model of a constant sound speed fluid layer
overlying an infinite elastic half space. Figure 2.1.1 depicts this
model, which is commonly referred to as the generalized Pekeris wave-
guide.

The assumption of a pressure release surface at z = 0 reduces RS,
the surface reflection coefficient, to the value -1. The remaining three
coefficients do not in general reduce to such a convenient value, and must
be written in terms of the appropriate elastic parameters and wave numbers.

29 £ |

For a fluid with Kl = ps , the horizontal and vertical wave numbers
1

are defined in terms of the angle of incidence &, as follows:
ArF = K S 6
Azy = K Cos 8

The corresponding expressions in the bottom are
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ATl = Kz S &, 2Tl = K

KZ: = /(fz Cos &, /(zzs:: Kpe Cos Xz

The angles 5, R 92 , and b’z are measured from the z-axis to the

respective propagation vectors as shown in Figure 2.1.1. Brekhovskikh(25)
writes the reflection and transmission coefficients in terms of the
impedances z:,L of the media. His expressions are:
2, Cos 3%, + 2 _ sy, - =
Vi = A 2 25 2
3! 2, Cos?2Y, » B,, S/&2ay, + 25 U

/

e, 2 22 Co:QYz

D= - 2.1.2
. 2
Co B, Cos?ay, + B, S5/u72¥ * 2,
p=-25 2 Zsa S/e20z 2.1.3
2
61 21C059‘2b£ *+ Z,s Sk 23; *+ Z,
2 = € C, > 62 c_'z _ €, C532.1.4
! Ces g 2 Cos & T2 Cos¥
The common oceanic model has C2 > Cl. The magnitude of the reflection
coefficient V21 can be characterized by considering the various wave number
domains that occur for C < C, and for C > C. (C < C.}.
s, 1 s, 1 S, 2
For the case C < Cl < C2, Figure 2.l1l.2a, the magnitude of V21 is

S
2
less than 1.0 for all real incident angles 91 , since from Snell's law

XZ is also real and the resulting shear wave in the bottom is propagating.
The presence of a propagating wave, compressional or shear, in the bottom
signifies energy lost from the water column and hence lvzll < 1.0. When

<
/

=~/
6, z 9: - 5""’ C:{ , the compressional wave in the bottom is
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inhomogeneous and the shear wave propagating. For 91 < 90 both waves

are propagating.

For the case C. < C < C2, Figure 2.1.2b, total internal reflection

2 <
IVle = 1 occurs for 6, > Sk . - Both the compressional and the shear
>
L~ < o =1 <
waves in the bottom are inhomogeneous. When 5/V < z 0; 75:',4/ “"‘c ’
2 2
. -1 <
]Vzll < 1 and shear propagates in the bottom. For 9, & S, 2-1 both

2
waves again propagate and IVle < 1. Typical plots of the reflection

and transmission coefficients are given in (25) and (33).

In general, for the differential equation
2
d 6 2

2.1.5

the solution obtained via the endpoint method (24,30) has the form

-/
G (C238)=W U CB)U2.) o222,
6(’%‘?,)::

6y (2 B)= W &, (DU z ezscy

where W is the Wronskian

I &Y Sy )

W)= &£, (&) oz 73 74 CE‘) 2.1.7

Ua(z) and Ub(z) ;, which satisfy the upper and lower boundary conditions
respectively, are linearly independent solutions of the homogeneous

equation . The compressional and shear solutions in the lower half
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space satisfy the equations

2
Compressional: 6/ C;Z 2

o 23

+

A
D\
]
Q

N
\V
BN

C”/Q'C%Ls 2
0/2-?' +/’€?zs 625

Shear:

I
Q
.
o

and can be written as

G (g a)= Wz caye, =

2.1.10
ZZH

-/
(2 2)=W & (), C=)

2.1.11

2 24

U2(z) and Uzs(z) are solutions of 2.1.8 and 2.1.9 that satisfy the

boundary condition at z = H and the radiation condition as z - «©. Note

that the solutions 2.1.10 and 2.1.11 are not, strictly speaking, Green's

functions. The notation 62 and G2S has been employed for convenience.

For the single layered ocean of Figure 2.1.1, the various expressions are

~ik,2 44 =
_ 2 /
aer. (o= g -e O £2 SR 2.1.12

(-4
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4, 2 2/ R, H ik, ?
Uy ¢y = ™% v i, T T

/'.44 z
W, ced= De £z

BN

I

N
b

Uy, Cad= P’ ®

RN
in
0

1.

G, (32)=-2/5 i, - _ -/
) 20) 2/5/‘»(.&,2)[6 Z,?v,..vzleﬁ'—&/fa ihe) 2o [ L 2.1.

o0 £z =4 Eo
v . ' 2/ -/ -
Gb Ca, 2‘,) = -2/ {”J(-g'é/ E)[e""e!/ ?* v e /nga, //6 /.ﬂa’ W / 2.1.

Z/

Z, &£z Ly 4

G, C&,2)= =27 5 ey D D W lg s ¥ iy Cz—//)] 2.1.
z 2 H

Gs C22)=-2/52CHh,, E,D[Pw':s"“g” ”e"”g”’ Ce"”_)] 2.1.
z Z A

! __ . . .
w = 2”821[5’;’*&, Z, Cel'ﬂ*’ el iy eﬂl"e"”éé""g"’?)z.l.

2/

' ‘hy, 2 : ,
+ / Coszl -2' Ce 2/ " Uzl 87./.[3/ ”e“l_&, 2)]

4%

.13

.14

15
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Equations 2.1.16 through 2.1.20 comprise the exact solution for the
model of Figure 2.1.1. As was discussed earlier, the compressional and
shear waves in the bottom are either propagating or exponentially decay-
ing (inhomogeneous) depending on the incident angle 91. It should also
be noted that the Wronskian is identically zero at discrete mode wave-
numbers and therefore the Green's function solution diverges in those
cases. Perfectly trapped discrete modes occur when C. < §_ < C_ and are

1 2 2

limited to the wavenumber domain where ]V = 1.0. Section 2.2 will

21l

compare the above solution with the state variable solution.

2.2 SINGLE LAYER OCEAN SOLUTION COMPARISONS

Realistic values of sound speeds and elastic parameters for Figure
2.1.1 can be obtained from the geophysical literature. Hamilton (28,29)
suggests this model as common in continental shelf areas. The table
below details the information to be used in this section. These para-~
meters correspond to an ocean bottom of sand or silty-sand of unknown

depth.

Frequency 100 hz
Source Depth 30 m
Cl 1500 m/s

-5 2
Al 2.25 « 10 dynes/cm
C2 1675 m/s

-5 2

A2 4.80125 « 10 ~ dynes/cm
82 450 m/s
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u 0.405 -'lO_5 dynes cm2

Depth 100 m

The water .and bottom wave numbers for this example are

-1
Vv, = 0.0667 m
V. = 0.0597 m *
B
V. = 0.2222 m t
BS :

Solutions to 1.2.5 for wave numbers V such that VW > B > VB will consist
of sinusoids in the fluid layer and decaying exponentials in the bottom.
As discussed earlier, there are no perfectly trapped discrete modes for
this model, since the parameters and sound speeds correspond to Figure
2.1.2c. The shear contribution is so small, however, that the response
functions, when computed at the modal wavenumbers of the eguivalent two
fluid case, will appear unchanged from the mode shapes. A discontinuity
in the slope of the response function will occur at the source for all

other wave numbers. For wave numbers V < VB a propagating compressional

wave will be excited in the bottom. Since VBS > VH or 2 propagating
2

shear wave will be generated in the bottom.

Figures 2.2.1, 2.2.2, 2.2.3, and 2.2.4 display the response functions
obtained from the two techniques for the horizontal wave numbers V = 0.066,
0.061, 0.059, and 0.055 (the term response function is defined as the
response of the given ocean model at the horizontal wavenumber V to a

source at depth z_  and is synonymous with the term Green's function.)

0
Agreement between the two solution techniques is guite good in all cases.

Notice a slight decrease in accuracy as V decreases. This phenomenon
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is coupled with the integration grid density and will be discussed in

the next section.

2.3 INTEGRATION GRID DENSITY REQUIREMENTS

Section 2.2 showed that the state variable technique does produce
accurate results. To determine the efficiency of the algorithm, the
integration grid size that is required to produce these solutions must
be investigated. Minimum computer time will occur when the number of
integration points is minimized.

The Nyquist sampling theorem of communication theory states the
relationship between the sampling perioa of a process and the minimum
period present in the data to be sampled that is required to enable
exact reconstruction of the data. A comparable relationship for this
application would be one which specifies the number of integration
points required per spatial wavelength to insure solution accuracy.
Defining the vertical spatial wavelength As as

2
-V 2.3.1

4?‘2
3
S

f’Ls = C‘z’rjl

the number of integration points per wavelength is defined as

Ay My
V2 = y

.4

where NI is the total number of integration points and HN the basement

depth.

A simplified version of Figure 2.1.1 will be used to study the
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variation of solution accuracy with grid size. The ocean bottom will

be assumed fluid with a sound speed of 2000 m/s and Lamé constant of

6.0 ¢ 10—5 dynes/cmz. Source depth and horizontal wave number will

be held constant at 30 m and 0.062 m—l. Brief comments will be made

shortly on the effect on solution accuracy of varying these parameters.
Figures 2.3.1 through 2.3.5 are the response functions obtained

by integrating with the values of N, ranging from 33.25 down to 2.1,

A

as is noted below each figure. Notice that excellent results are

obtained for NA = 33.28 and only slight degradation in accuracy visible
for Nk = 16.6. More substantial error is noticed for NA = 8.4 and
entirely unacceptable solutions obtained with NA = 4.2 and NX = 2.1.

Repeated computation for a variety of bottom parameters and source
depths has shown that the value of NA = 16 is the minimum for which
accurate solutions can be expected. In a few individual cases, values
as low as 12 or 13 produced acceptable results but these cases were
not common. Nor did any unigque characteristic exist which would enable

the a priori knowledge that N, = 12 was acceptable. Similarly,

A
increasing NA above 16.0 did not uniformly increase solution accuracy
except as a function of horizontal wave number, which will be discussed
below. Therefore, the value of NA = 16.0 appears to be most appropriate.
Decreasing the horizontal wave number V, which decreases the
spatial wavelength As, does have an influence on solution accuracy.
Consider Figures 2.3.6 , 2.3.7, and 2.3.8 . The ocean model is
identical to that used above except that V = 0.058 mﬁl. The wvalues
of NA are 17, 34, and 51. The error for NA = 17 is greater in Figure
2.3.6 for V = 0.058 m.-l than in Figure 2.3.2 for V = 0.062 m—l. Also,
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there is little difference between 2.3. 7 and 2.3. 8, as there was

’

between 2.3.1 and 2.3.2 for the equivalent change in N In fact,

il

3"
convergence to the exact solution does not occur for Vv = 0.058 m
until NX = 51, which is a very high grid density solution (1056 inte-
gration points in a 100 meter channel). Continued use of the algorithm
has shown that in some situations gradual convergence to the solution
occurs as NA increases, and in other situations there is a region of
variation in NA where the error remains constant, as was the case
above. No apparent difference exists between these two cases which
enables prediction of the type of convergence to expect as V decreases.

To conclude, equation 2.3.2 provides a valid means of selecting
the optimal integration grid size. For the wave number domain
corresponding to the higher wave numbers (lower order modes), NA = 16
is sufficient. For the lower wave number region (higher order and

continuous modes) it appears that increasing error can be expected

and NA should probably be increased accordingly.
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2.4 TWO LAYER OCEAN EXACT SOLUTION AND COMPARISONS

Application of the endpoint method to more complicated models of
the ocean is straightforward, providing the required reflection co-
efficients can be written. As a second test of the state variable
technigue, the exact solution for the two layered ocean of Figure 2.4.1
will be written. This model, also proposed by Hamilton (28), is common
in continental shelf areas where deposition of silts occurred as the
sea level rose. TFor convenience, the second layer will be assumed a
fluid. This is realistic, as silts generally have very low shear speeds.

Brekhovskikh's reflection coefficient expressions are again most
convenient. The reflection, transmission, and shear conversion co-
efficients at the lower interface have the same form as Equations 2.1.1,
2.1.2, and 2.1.3. The reflection and transmission coefficients for the
upper interface are compound expressions, taking into account the
influence of both of the lower media. They are:

Y = Vay + Vg exp (Ridsy CHim H) s

/ + W, VBQEXPC’J%EICI/; ”:D

D / + Va:
/ ’ \él VBQ eXPCQ’;'ez:z CHy- /é)

ZQ—Z,
] ZQ+Z,

2.4.3

2

60



7./: 2.340 9 N Z,

c, = 1530 s

v Compressjonnl
Re¥lection
H=%0m,
) Campre.s'ﬂ;po/
7,7. 3, a8 \ D Trmv.wnl":lsﬂ

e, = 1520"%s

\/ V;,-z Cempressiomy/
Ha= loom, Re¥lecton

A3 35095
- ”,
<z = 1s%0 s D s/xeﬂr
M= 2,273/ D 23s E'xc/fnflé.v
_ a3

C53 = Yo ~/‘$ Ce, :

mMPresSsonmnl
7¢pn SMissen

Two Layer Ocean Descriptiomn

Figure 2.4.1 L and M have waits :3._*fz1e<.=-,_/<:rc¢2.l()"5

61



The expressions for each term in the exact solution are

-1/
GQ (zl Z’) = W “¢ Cz)aé (2¢> O£Z ézo 2.4.4

Gy (2 2,) = W*Itéa (B )UyCB) =7 <=2

[

in
G~

2.4.5

Ga Cz,zo): W"”az(i‘,)(,{a(z) Hezs H, 246

-]
63 CZ'IZ,,):: W “QCEJC(B (z) /7’2 £ ZF 2.4.7

-)
GBSCZ,zo)z\,\/ Uy CB)U (2D H &2 24

where W is the Wronskian defined in 2.1.7.

The linearly independent solutions to the homogeneous equation are .

_ ik, Z b, Z
U, (z) = e 7 — e ® OE2E Z, 2.4.0

iR, 2 25, K -
ab (2)=¢€ o VC u@z, ,6 iRa) 2 B2 22K 2410

. P )
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U, @)= De et oiHna®, | skt ik

32 2.4.11
H sz = ”2
= gy 2
(,(3 (Z') DDRBC 23 Hz ¢ z ) 4is

C(Bf (z) = 0023 eljZB-SZ H £ Z 2413 |

2

The resulting solution is

. R M . . -/
G‘z ( Z, 2,) ==-2/S5/n (-462, Z)[Q 2. * Veahp” ﬁéﬁ'}"' ﬁ\d/l‘l-l‘l

Gb CZ, 20) = -2/, /;/@Z y 2‘0) [e""efl Z-+ Veil'.ﬂa. He-»,"ia ﬁ \/\/ -]

2.4.15

Ga (il 20) = - 2 I' 5’:“'@21 2‘0>[€I'£2‘2 2,’_ ‘42 ezl:"eaz”ie"':ﬂi2_z] ’
. DW-,al'”‘ (_ﬂz"’ézz> 2.4.16

Gy (2,2)=-2/5u (h, 2,)D D, W ,C 4, K,

* 2.4.17

e/iz, CH,- 14)6,;823 Cz-4)
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635 Cz’ 2,) ==2/ S/ (%.3, 2’,) D ng W“Ie"’ﬂa/ ”, ., 2-4.18
e’jzz (”z“ﬂ)el;@as Cz-—//,)

== . . ‘. ; 2.4.19
R R
| Cos (.4@2[ 2,)( e g, Bo \/ 61"-»@2/ H e"/—o@z/z)]

Figures 2.4.2 through 2.4.5 are the solutions obtained from Equations
2.4.14 through 2.4.19 and from the state variable algorithm. Integration
step size was chosen to satisfy 2.3.2 for NA > 16. The respective
horizontal wavenumbers are V = 0.065, 0.064, 0.061, and 0.058 m"l. As
in the single lavered ocean results, these figures show that accurate
results are again obtained by the state variable algorithm. Further
study of this two layered ocean proves that, as in the single layer case,
solution accuracy is not a function of any oceanic parameters other ‘than
vertical wavenumber. The same characteristics of the solution were found
for the two layer ocean as were found for the single layer ocean with
regard to the value of NA in 2.3.2.

The state variable technique can be used to obtain accurate solutions
of the depth-separated wave equation. The solutions are stable with
regard to all oceanic parameters. Reqguired grid density has been

specified by 2.3.2. 1In Chapter 3 the technique will be used to study

the effects of including complex sound speeds to model attenuation.
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3. ATTENUATION AND DEEP OCEAN MODEL

Chapters 1 and 2 introduced the state variable technique for
obtaining solutions to the inhomogeneous depth separated wave equation.
By incorporating complex sound speeds, the technigque can also be used
to study the influence of bottom attenuation on the solution. Section
3.1 will consider the single layer ocean of Chapter 2 with bottom
attenuation. Section 3.2 will discuss an instability that arises during
the integration process when complex sound speeds are included and the
influence of that instability on the resulting response function's
accuracy. Section 3.3 will conclude with a general discussion of the
use of the algorithm on a deep ocean model. The complex sound speeds
will, in general, cause the response functions to have real and imaginary
components. Consequently, both the magnitude and phase of the complex
response function will be discussed. The phase state variable

will also be presented with and without attenuation.

3.1 SINGLE LAYER OCEAN BOTTOM ATTENUATION

Shear and compressional wave attenuation in marine sediments has
been reviewed by Hamilton (34, 35). Experimental data indicates that
compressional attenuation coefficients have a dependence on the first
power of frequency, i.e., ac = k£l (34). The coefficient k is largest
for sands, smallest for silty—sands,'and intermediate for silt-clay
muds. Véry little data is available on shear wave attenuation. Relating
the shear attenuation coefficient a to the compressional attenuation

coefficient a is most conveniently done by defining the logarithmic &
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as

a5 Cs (74

s £ 4, = F

D
|

where g and Cc are bottom shear and compressional wave speeds and f
the frequency. The ratio of ﬂc to ds has been found to be 0.3
for sands and 0.1 for silt-clays (35). Until more thorough experimental
data is available, the best method of obtaining ag is to determine a,

from reference 34 and use

A(_ d‘ C< 0.3 sand

QS c s 0.1 silt-clay

to compute the best estimate of shear attenuation.
When attenuation mechanisms are present, the horizontal wavenumber
becomes complex, i.e., V +id. Horizontally propagating plane waves then

consist of a product of two exponentials.

,'27r(v+id‘)>(__ [2mVX 2w I
e - € e

The second exponential provides the decay with distance due to attenuation.
When bottom attenuation is the only loss mechanism to be considered,

a slightly more convenient method of including attenuation uses complex

sound speeds in the propagation constant Kc = 2'rrf/cc for the bottom.

Recall from Section 2.1,

ATV = == S/» g

<
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Writing the bottom sound speed as cc - icc', Kc becomes

p = arf  _ _2mTe ; 2w Fc
— - 4 — 2 ) z 2 Y
¢ &iC <A+ ct+cl?

S

27T _ QW'FCS . Q']r‘FC”

Similarly for cg - ic

k5~C—1'C' 24 -2 1 2 7
s | S Cs C, <, +Cs?
Therefore, ,
a = 27 Fc,
c 2 /
c*+c’?
3.1.3
Y
z = 2rF e,
S 2 t 2
C;. *‘C;,

Notice that the imaginary sound speed term has a negative sign.
This insures that Equation 3.1.2 does in fact have a decaying exponential.
Representative values of the attenuation coefficients can be obtained
from the literature (34, 35). At 100 Hz, for example, experimental

data gives the following limits on ac and ag

-4 2

7010 <a_ < 1-10

2.1072 < a_ < 2.107%

For sand, a typical value from reference 35 is a, = 0.0056. Using 3.1.1
and 3.1.3, the sound speeds that result are
1675 - 125

450 - i22.4
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Figures 3.1.1 through 3.1.7 display various facets of the solution.
On each of the first five, the magnitude of the response function
evaluated both with and without bottom attenuation is plotted. Figures
3.1.1, 3.1.2, and 3.1.3 correspond to the first, third, and fifth modes
of the comparable Pekeris wavequide. For the Pekeris case without bottom
attenuation, infinite response wou}d result at modal wavenumbers. In
this case, the shear acts as a loss mechanism and the response function
is finite. The fourth and fifth are for wavenumbers on either side of
the critical angle, which occurs at V = 0.0597. Figure 3.1.6 plots the
phase of the complex potential for the fifth mode. Figure 3.1.7 is an
example of the variation of the state vériable 9 ( {) with depth for
Vv = 0.0651205.

The first three figures exhibit characteristics that are predictable.
The magnitudes for the attenuated cases are all smoothed compared to the
unattenuated cases; that is, the maxima are smaller and the minima larger.
The propagating shear wave, formerly of constant magnitude, now exhibits
the expected exponential damping. The inhomogeneous‘compressional wave
in the bottom shows a slight decrease in amplitude from the unattenuated
case. Finally, increased coupling to the bottom as wave number decreases
is apparent via the increasing proportion of shear wave generation.

Decreasing the horizontal wave number further to V = 0.061 and
V = 0.059 produces an unexpected effect on the response function. On
the first three figures, all lobes of the magnitude were uniformly
attenuated. This characteristic is not evident as V decreases. In
particular in 3.1.4, the upper two lobes are only very slightly smaller,

while the lower four are more noticeably attenuated, as was the case
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earlier. 1In Figure 3.15. the upper two lobes have substantially larger
magnitude in the attenuated case than in the unattenuated case. The
remaining lobes continue the uniformly reduced amplitude trend.

Note that the source depth for this case is 30 meters, and it
becomes clear that the larger magnitude region is above the source.
This tendency was investigated for various source depths and held true
in all cases. The region above the source is slightly amplified and
that below slightly attenuated as the horizontal wave number V decreases
below critical. Unfortunately, the numerical instability discussed in
the following section became apparent for V below 0.059 and this
phenomenon could not be investigated further. It is, however, believed
to be an accurate description of the influence of attenuation on the
response function and not a product of the numerical technique.

A typical plot of the phase of the complex potential is given in
Figure 3.1.6. The only effect of attenuation is to shift the phase by
approximately 200. Without attenuation, the phase is initially -175°
and remains constant until 22 m depth, where it jumps to about 50. it
then decreases to nearly 5400. All values are plotted on the primary
branch of -1800 to +180O so the phase at 63 m jumps up to +1800. Withv
attenuation, the phase is initially —195o (plotted at +1650) and tracks
the unattenuated phase throughout the profile. No variation in the phase
occurred as a function of wave number, as was noticed in the magnitude
figures.

The phase state wvariable ‘{{} for V = 0.059 is shown in Figure
3.1.7. The complex sound speed shifts é;CTjknrnearly 180° and, as with

the phase of the complex potential, has no other influence. The plots



are otherwise exactly identical. This characteristic was consistent
throughout the wave number domain.

- Stability problems with the technique arose in certain profiles
and wave number domains; The source of these problems will be discussed

in the next section.

3.2 COMPLEX SOUND SPEED NUMERICAL INSTABILITY

Reference 18 includes a thorough discussion of the numerical
stability of the solution of the Riccati and phase differential
equations. While investigating the use of complex sound speeds to
model attenuation, instability during the integration of the phase
differential equation occasionally occurred which prevented a solution
from being obtained. Although a specific expression defining the
limits within which the solution, with attenuation, converges was not
found, a discussion of the cause of the problem is in order.

Consider the phase differential equation:

ECE) = F(1)Sin20CH) ~ 72Los 8CT) = SinROCE)  3.2.1

Given an ocean model with pure real sound speeds, the solution of
3.2.1 can be obtained. Including complex sound speeds in the basement
will alter initial conditions for upward integration of é (8-

To study the change in 69(7), it is convenient to use a perturbation

method. First write

6ct) = (i) + edOCs) 3.2.2
FCi)= £ (0 + e FFCD o

where the first term on the right hand side of each equation is the

8l



unperturbed,without attenuation, solution. The second term is a
first-order variation on that solution due to the inclusion of
attenuation. To obtain the first order'linearized equation for

Ja(f), expand the right hand side of 3.2.1 about Q’(f) by a

Taylor series.

In general, if

§¢)=F(8C5) 1, 5C T3

3.2.4

then
6,¢0) +F6CN) = F(aD vJoc) [T, (N +dFes, v2)
=Fa ) (RO, rD + L8 oty
+ :,T;/o J‘F(f) * /u',‘er erder fgrm3‘2.5

Ly
The equation of first variation is
- ZF JF
Féct) = 95/ Jeci) + FFCe) 3.2.6
< i
where the partial derivatives are evaluated using unattenuated values

(4
of all parameters. Notice that the variation in 59(f) is a function of

the variation in both @ (f) and {T(g). Therefore an equation of var-
iation for the Riccati equation must be studied before continuing with
the analysis of equation 3.2.6.

Equation 1.3.16 is of the form

.F(() = 2 (-{—‘Cf)/ a(f)) 3.2.7
The equation of first variation is obtained as follows:

F () + Jé(i); 2 (K 8,¢1) +;j§/, I¥cs) f%éfﬂf)
JECE) = 7_}%/’ FTCE) + %/ﬁ (fﬂ(f>
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FFCO)=2R)IFCE) - 25.¢0) Fg¢s) 328

Equation 3.2.8 was obtained via a locally stationary analysis. That is,
the solution to 3.2.8 is wvalid only in a particular neighborhood of f(f).
The neighborhood is specified by that region of ? in which f({) is

approximately constant. The solution to 3.2.8 is

_ aha)as 9.CF) FgC§) 3.2.9
ch:(ffj> € * ii <:ii>

Equation 3.2.9 describes the changes in the Riccati solution that

result from a change in the initial conditions. Notice that for integ-
ration upward through the water column 43{ Z 0.0 and therefore 3.2.9
has a stable solution. The conclusion is that the second term on the
right hand side of 3.2.6 is not the source of the numerical problem
and the first term must now be considered.

The equation of first variation for 3.2.3 is

Fec)=[C1-r2)Sivag ¢sy- 2k () cos26,¢5)] Jo %)
+ Sin26C5) FFCF)

To study the instability which arose during the integration of the

3-2-10'

phase differential equation, the feedback term of equation 3.2.10
(the coefficient of d%?(;)) must be studied in conjunction with equa-—
tion 3.2.1.

Before examining 3.2./@in detail, it is useful to recall a result

of Laplace transform theory(37). For the differential equation

XCF) = AXCE) XCo)= )

with transform

X{so= s—/A
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the stability of the solution can be analyzed by considering the location
of the pole at A. Stable solutions, in the bounded-input bounded-output
sense, are obtainable for A<0 and integration down the profile(pole

in the left half plane) or for A>0 and integration up the profile(pole
in the right half plane). In both cases, the solution is a decaying
exponential.

Now reconsider 3.2.10, which has a pole at

A= Cl-v2) S 26¢8) — 25 C5) Cos 26 ¢5) 3.2.11

Note again this is a locally stationary amalysis. The solution of
3.2.10 will be stable for integration up the profile if A2 0.

Therefore, the local requirement is that

2%,¢5)
[—7?2

1f stable solutions of 3.2.1 can be obtained such that 3.2.9 is

Tav 26,¢5) Z 3.2.9

satisfied, then the use of complex sound speeds to model attenuation

would be acceptable. If not, however, then the numerical instability

will result. A discussion of the critical points of 3.2.1 is now in order.
Baggeroer(18) discussed the importance of the equilibrium points

of equation 3.2.1. In general, the iarger of the two roots of 3.2.1,

given by

Tanw 6C5) = "F;(O -’-"\/%Q(;)-voﬂ ‘F;Cf> 77t

is stable for upward integration. Modes form when,at some point,
2 ?
nE o, CF)

and the equilibrium points disappear. In this case @ (§)<0.0 and

@ (f) is continually decreasing up the profile. Note, for example,
figure 3.1.7 where G(j) has been plotted modulo 360.
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The source of the instability is now clear.4AsV;Qincreases, the
lower boundary on the region for stable solutions of 3.2.10, as given by
3.2.12, increases(the denominator becomes more negative, therefore 6%(?)
must approach zero from below the origin). However, the solution of 3.2.1
tracks 6%({) in the opposite direction- by continually decreasing. At
some point, 3.2.12 is no longer satisfied and A becomes less than zero.
It is important to note that the solution to 3.2.10 is unstable in this
case at the same time that the solution to 3.2.1 is stable. If the
solution to 3.2.1 were not stable the entire analysis would be meaningless.

This unstable solution is not solely the cause of the breakdown of
the numerical technique. It means simply that the perturbed solution
diverges from the unperturbed solution in these regions of the depth
profile. As A becomes increasingly more negative, the solution becomes
relatively more unstable. In other words, 6?({) in equation 3.2.2
diverges from 6%(5)-

The conclusion is that the region of convergence of the solution
with attenuation is controlled by the sound speed profile through f,(f),
the horizontal wave number through F'Q; and the amount of attenuation
throﬁgh f@(?). The ability to study the attenuation characteristics
of any given ocean model must be determined to a large extent by trial

and error since the technique has this inherent instability.

3.3 Deep Ocean Model Considerations

The thesis to this point has dealt entirely with shallow water ocean
models. This section will begin with a discussion of a simple deep ocean
model that consists of a fluid layer and a thin sediment layer assumed to

act as a fluid. The basement is allowed to be elastic. It will conclude
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with an investigation of the technique for ocean models in which the bottom
is a multilayered elastic medium.

A simple deep ocean model is depicted in figure 3.3.1. The seafloor,
characterized as young oceanic crust, consists of a thin sediment layer
that separates the ocean from the elastic basement. The sediment is assumed
fluid since typical shear speeds are generally small and resulting shear
waves of negligible amplitude. The shallow water models of chapter 2 are
proof of this assumption. In both of those cases the basement shear field
had substantially smaller magnitude than the compressional field.

The sampling density requirement that N;?16 was derived from the study
of a simple constant sound speed shallow water model. A question that
arises is whether or not this density is wvalid for the more complex model.
Since the exact solution cannot be written, another method of verification must
be found. Reconsideration of figures 2.3.1 through 2.3.4 suggests the method.
Notice that as the sampling density is increased, the state solution
approaches the exact solution in steps of decreasing size. For example, in
figure 2.3.4, the state solution has approximately one-half the magnitude of
the exact solution. In figure 2.3.3, the ratio is about nine-tenths and in
figures 2.3.2 and 2.3.1, the difference is almost negligible. By varying the
sampling density and computing the response function for figure 3.3.1, this
asymptotic tendency can be used to study the validity of Nz=16 for the
deep ocean model.

The result of this study is that szl6 is valid in general. Accurate
solutions can be expected for all profiles in which this criterion is sat-
isfied. As with the shallow water study, values below 16 appeared occasion—
ally to be acceptable. These occurrences were infrequent and unpredictable

however.
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Study of the deep ocean profile for decreasing wavenumber V gave the
same results as was obtained earlier for the shallow water cases. Nz.should
be increased as V is decreased, especially in the continuous mode region.
Good procedure would involve selecting several typical horizontal wave
numbers and computing the response of each for N2f12, szié, and szZO.
Study of the results should then aid in selecting the optimal sampling
density.

Figures 3.3.2, 3.3.3, and 3.3.4 are typical response functions for
figure 3.3.1 where an eight hertz source is at 400 meters. The horizontal
wave numbers V=0.0053 and V=0.00469 are near the fifth and seventeenth
modes of the 18 mode profile and V=0.003 is in the continuous region.

Notice that the basement shear waves, which are plotted at full value,
are on the same order of magnitude as the compressional waves. In all
cases shear has the larger magnitude, substantially so for V=0.003. This
is to be expected for the dense, high speed basement. The excitation of
shear is a much more important attenuation mechanism than in any of the
models comsidered earlier. In addition, the propagating shear wave present
in the basement for V=0.003 appears to have a strong influence on the
compressional wave response function below the source. This is a good
example of the type of phenomenon that can be easily investigated using
the state variable algorithm.

A more complex model of the same ocean region is shown in figure 3.3.5.
Shear propagation is allowed in the sediment layers and the basement is
divided into two elastic media. Most of the listed parameters and sound
speeds are assumed from laboratory experiments and field data(33,38). The.
remainder of the section will discuss the application of the algorithm to

this model.
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From section 1.3 and figure 3.3.6 recall the method of solution for
this model. Two independent integratioms of the state equations will occur.
The first will use ¢8(f) as the initial condition and the second %(@'
The principle of superposition will then be used to combine the two solu-
tions in a manner that satisfies equation l.4.6c. This superposition
amounts to a scaling of ¢’(§) and ‘};(55) such that the total tangential

stress at H is zero. In particular
Vax,, = 005 Texge * A Texy s 3.3.1
where A,is the appropriate scaling factor. This procedure determines the
relative magnitude of the total shear field to the total compressional

field and specifies one of the unknown constants of equation 1.3.15.

Equation 1.3.6a and 1.3.6b are then used to obtain ﬁ,(H!) and integration
proceeds to the ocean surface. The remaining comnstant of 1.3.15 is then
determined and the entire solution scaled to satisfy equation 1.3.7.

This theory breaks down upon implementation however. Enough precision
cannot be retained during the computation to insure that Vi"zr does in fact
equal zero. Referring again to figure 3.3.6, the apparent cause of the problem
lies in the relative magnitude of l?c ), Z/(i), @({), and Wf(i’)' 9)’,({,)
is generally half an order of magnitude smaller than q: ({’). 4: ({’) in turn
is generally at least two orders of magnitude smaller than g({) and

Q({). The result is that the constant A, in equation 3.3.1 is strongly
dependent on ¢c ({) and @,(;) and weakly dependent on z(fs) an& Z({s)'
Difficulty then arises in keeping V‘axz_r=0.0. Figure 3.3.7 depicts this
sensitivity problem. For convenience, the shear field and the bottom elastic
layers are not drawn. As was discussed earlier, a total compressional field

is computed for the ocean bottom. The correct solution requires that the

tangential stress at H' equal zero. In this case, the appropriate continuity
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conditions are used to calculate the compressional field in the water
column, and integration continues to the ocean surface. However, the
relative magnitudes of the potentials cause difficulty in controlling the
exact value of the tangential stress, and in general the stress has a small
nonzero value, depicted as 6, and €4 in figure 3.3.7. Notice that although
the bottom compressional field is not influenced by the stress error, the
water column compressional field is extremely sensitive to the error. As

a result,the correct water column compressional field could not be computed.
No other criterion exists for determining the correct magnitude of the
compressional field above H,. The possibility of using double precision
arithmetic was precluded by the requirement of complex variables. The
conclusion is that further analysis of the state variable algorithm is
required before being useful in the study of oceanic models of multilayered
media.

To conclude, an accurate and efficient technique for computing the
Green’s function solution to the depth~separated wave equation has been
presented. The technique has no inherent limitations when sound speeds
are real quantities. The use of complex sound speeds to simulate attenua-
tion is limited. In most cases attenuation is acceptable and solutions
for wavenumbers corresponding to the discrete mode region. Study of the
continuous mode region is limited.

The technique can be applied to both shallow and deep ocean sound speed
profiles. The basement can be modelled as elastic and one or more sediment
layers assumed to act as fluids are acceptable. Sensitivity limitations do

not allow the modelling of the basement as a multilayered elastic medium.
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APPENDIX I

C(z) = Compressional Sound Speed

C0 = Compressional Sound Speed Minimum

Cs(z) = Shear Sound Speed

CSO = Shear Sound Speed Minimum

D = Transmission Coefficient From lst to 2nd Layer

> - -iwt _ _ _ -iwt
6(r-ro)e = §(x xo) Sy yo) 6(z zo) e

Harmonic Sound Source At (xo, YO' zo)
A = Integration Step Size
£ = Frequency
£(8) = Riccatti Parameter
Gu(z/zo) = Green's Function Solution Above Source at ZO
GL(Z’ZO) = Green's Function Solution Below Source at zO
Hi = Depth of ith Layer
k = Radian Wave Number 2mf/c
ks = Shear Radian Wave Number 27rf/cS
kz = Vertical Radian Wave Number in ith Layer

i
. . . .th
kzs = Vertical Shear Radian Wave Number in 1 Layer
i

2 . th
Ai = Lamé's Constant; i Layer
AO = Maximum Compressional Wavelength ko = f/cO
AOs = Maximum Shear Wavelength xOs = f/cOs
M(&) = Magnitude of Compressional Potential In Phase Plane
N(E) = Magnitude of Shear Potential In Phase Plane
U = Rigidity of ith Layer

97



ij

it

Transmission Coefficient of Shear Wave in 2nd Layer Excited
by Compressional Wave in lst Layer

Stress Component, Convention Related to 3-D Cube, i Referring
to Direction of Face On Which Stress Is Acting and j Being
Direction On Which Stress Is Acting

Compressional State Variable

Shear State Variable

Compressional Velocity Potential-

Normalized Compressional Sound Speed Parameter
Normalized Shear Sound Speed Parameter

Surface Compressional Reflection Coefficient
Density ith Layer

Shear Velocity Potential

Normalized Compressional Vertical Wave Number
Normalized Shear Vertical Wave Number

Phase of Compressional Potential in Phase Plane
Phase of Shear Potential in Phase Plane
Direction of Plane Wave Propagation in ith Layer

. . . . .th
Direction of Shear Propagation in i Layer

94 , v, W _ 4ijatation
dx  dy 9z

(u, v, w) Velocity Vectox
Horizontal Wave Number

A .th
Reflection Coefficient for Wave in jth Layer Off Of i

Interface
. . .th
Acoustic Impedance in i Layer

Shear impedance in i Layer

th
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i

Normalized Compressional Depth Parameter

Normalized Shear Depth Parameter
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APPENDIX 11

The implementation of the algorithm of Chapter I for the HP 2100
computer consists of a main program "SMAIN" and four subroutines "SWBC",
"RNSV'",'SCSPH", and 'SSBC'. "SMAIN" asks a series of questions which com-
pletely specify the ocean model to be studied. Table AII-1 lists these
quantities. This profile is then displayed on the console for review by the
operator before calculation begins.

The four subroutines are called at various times during calculation of
the response function. "SWBC" implements equations l.4.6, given the poten—
tials in the second layer. "SSBC" implements equations 1.4.5, given the poten-
tials in the lower layer. "RNSV" computes the transformation of equations
1.5.1,1.5.2,1.5.5, and 1.5.6. "SCSPRE" integrates the differential equations
1.5.3,1.5.4,1.5.7, and 1.5.8 upwards in any layer.

The calculated compressional and shear potentials are stored in disc files
for later use. In addition, printed output of most important quantities is
provided. Table AII-2 lists those quantities.

Figure AII-1 is a flowchart of program "SMAIN". It can be divided into
several gemeral calculation sections. The first section contains the input
sequence as well as the computation of the normalized sound speed parameters
q( {) and q’( {‘) and Riccati parameters £(§ ) and fs( {s). It also contains the
integration of the linear state equations for the particular solution.
Initialization of the potentials as discussed in.f1.4 then occurs.

The decision block titled "interface number"” requires explanation. Each
interface is numbered, with the fluid-sediment interface(the uppermost inter-
face) number 1. Integration starts at the lowest interface. Therefore, for a

one layer model, the interface number is one and the program jumps to "SWBC".
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For two or more layers the superposition principle of‘fl.é is required and

= 0.0 as discussed earlier.

.

"SMAIN" continues to "SSBC', after setting qz =
The trio of subroutines then computes the field in the layer up to the next
interface. If this interface number is greater than one, the procedure is
repeated. If not, the program continues with the calculation of the shear
excited field in a completely analogous manner.

Once the fields due to compressional and shear excitation have both
been calculated, the correction factor of equation 3.3.2 can be computed and
the total field in the elastic layers obtained by superposition. The
next sequence of subroutines then calculates the homogeneous compressional
solution in the water column, which is cgmbined with the particular solution
in the following step. Finally,the basement solution is computed.

The numerical integration technique used throughout "SMAIN" is a third-
order Adams~Bashforth method(27). This method provides the same accuracy
as the more common Runge—Kutta techniques, and is more straightforward to
use in the desired application.

Notice that this program has been organized to accomodate any desired
ocean model, including those which were found not solvable in Chapter 3.
This allows further study of the problems which these models have presented.

"SMAIN" stores all information in fifteen binary data disc files, and all
computations are done in groups of 32 integration steps, which is the
maximum number of complex quantities that can be stored on one sector of the
disc. Consequently, the disc file length in sectors should be

S > ”Nf} /

— —————  ®

2% 32

where A z is the unnormalized integration step size and Hﬂ*, the depth in
the basement to which the solution is to be calculated.
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FRQ
ZBS
CMN
SCMN
NDZ
KBT
CSSP(1)
SSSP(i)
ZBT(1)
NLAYS
JPB
MU(3)
LAM( 3)
LDEP( j)
CCBS
SCBS
VP

S

SS

1

i

i

]

TABLE AII-1

Complex Sound Speed

Basement Depth

Minimum Value of Compressional Sound Speed(real number)
Minimum Value of Shear Sound Speed(real number)

Number of Integration Points

Number of Sound Speed Transition Points

Complex Compressional Sound Speed at Transition Point i
Complex Shear Sound Speed at Transition Point i

Depth at Transition Point i

Number of Layers

Basement Type; =1 if propagating, =0 if rigid

Rigidity in Layer j

Lame’s Constant in Layer j

Depth of Layer j

Complex Compressional Basement Speed

Complex Shear Basement Speed

Complex Horizontal Wave Number

Depth of Source

Strength of Source
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TABLE AII-2

The following data is printed out only when the appropriate sense

switeh is on.

Switeh 1 Sound Speed Profile Data
Switch 2 Riccati Data

Switch 3 Particular Solutiom
Switch 4 RNSV Data

Switeh 5 SCSPH Data

Switch 6 Superposed Total Solution

The following data is printed out only when the appropriate sense
switch is off.
Switch 7 Total Solution Above Basement
Switch 8 Total Solution In Basement
When switches 7 and 8 are off and switch 10 is on, data for each
integration step is printed out. If 10 is off , a number of steps are
skipped between each step that is printed out; the interval equal to
NDZ/32.
Switch 11 must be off to use the batch input mode.
Switch 12, when on, prevents calculation of the basement solution.
Switch 13, when on, prevents calculation of sound speed and Riccati
information and is useful when information stored in disc files from pre-
vious computation will remain unchanged.
Switch 14, when on, prevents calculation of particular solution and
is useful when information stored in disc file from previous computation

will remain unchanged.
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o~

Program SMAIN

AMAIN T=0CO8% IS ON CROOZ2 USING 66824 RLKS R=9608

age1 FMu

8882 C TO COMPUTE THE SOLUTION TO THE INHOROGENEQUS HELRHOLTZ EQUATION
8003 C FOR A FLUID OCEAN OYERLYING R LAYFRED ELRSTIC POTTOM FREQUENCY
8884 € HORIZONTAL MAVE NMUIPBER BRD FLL SOUND SPEEDS 8°F COMPLEX LAME
8095 € CONSTANT AMD RIGIDITY RRE USED YD DESCRIPE THE FLASTIC MEDIR £N
@806 C ARE RERL NUMRFRS. SOUND SPEED PROFILE IS DESCRIBED BY STRAIGHT
8897 C LINE SEGMENTS DRAMN RETWEEN TRANSITION POINTS JHICH GCCUR AT
8888 C AL CHANGES IN SLOPE OF THE PROFILE.

@689 ¢

2818 C THE TOTAL NUMPEROF GRID POINTS MUST BE DIVISIBLE BY 22

g8l C

6312 C THE NUMRER OF GRID POINTS MUST EE SELECTED QUCH THAT R POINT FR
8943 C ON EACH INTERFACE DETWEEN LAYERS. TRANSITICH FROM ONE LAYER TO
8014 C NEXT MUST OCCUR EXACTLY AT THE DEPTH OF THE IMJERFRCE.

8615 PROGRAM MAIR

89816 COMPLEX CFRDH, SFABH, XLMS, ALMS2, ¥R

o1y COMPLEX W, W2, KB, W4, TAY, KEQ, PPB, PSR

eai8 COMPLEX FRQ CSSP, S559, CLES, SCBS, ML CXRL S¥R, CS, 55, CFRX, SFOX
8819 COMPLEX CFQP, SFOP, CDFQ, SDFQ, COFQP, SDITQP, SPR, CFR, SFQ

2228 COMPLEX CCL, SCL, CCU, SCU, CFEBS, SFRES, D2, ¥S, VP, SFL SF2, OFL (F2
6e1 COMPLEX TH, 1 6A, N THDOT, MDOT, GFDOT, KDOT, PH, PHDOT, PP, PPDOT
aez2 COMPLEX ST, SIDOT, PS, PSLAT, 5165, SIGP, RP, RS, THD, GRP, YBF, ZBF, PH
883 COMPLEX PHII, PRIT, DPHI, DPRI, PHL, PRI, DPRII, DPHIL, RP4, RSL, SIB
8824 COMPLEX COR, RL A2, A2, B4, WS, W6, W7, U8, YP, DZS, SF3, CF2

8825 COMPLEX BL R2, B3, B4, BS, B6, BT, B8, SWED, YP2, Y52, ¥2

6826 COPLEX R ®E G, F, H €, D Y4 Y2, Y3, Y4, DS, DE, DY, B8, D4 D2, D, D4
8a2? DIMENSION WH.(32), H2(22), BR(32), K4{(32), HO(32), R6(32), WP {32)
028 DIMENSION WB(32), YP(32), YBF(32), ZBF(32Y, XBF (320, ZRT{25), LSSP
2829 DIMENSION SSSP(23), MUCA5), CHR(32), RUR(R2), SFAX(32), CFER(R2)
8030 DIMENSION RLAN(LS), LBEPCAS), IF4C2), IF2(2), IFR(R), IF4¢3H IFS(
o831 DIMENSION IF6(R), IF74RY, IFB(2), IF3(R), IF18(3), IF11(2), [F12QR
a3 DIMENSICN IFA2(3), IF14(3), IF45(3). DNCAS)

833 REFL. MU, LDEP, MG, HAGS, MAGE

a8 DATR PT, JAY, IN/2. 1415706, (6.8, 1. ), 1/

2835 TFLC)=2HN

2336 IF1C2)=211

847 IF2(1)=24DH

8038 F2(2)=212

aa39 IF3(1)=2

8048 IF3(2)=21%

2841 IF4(1)=2HDM

8342 IFAQ)=214

8243 IFS5C1)=2HDR

0844 IF5(2)=2H5

0845 IF6(1)=2HDl

0846 IF6C2)=2H6

847 IF7C)=2H4

6048 IF7(2)=247

0845 IF8¢L)=2HDM

8858 IF342)=248

851 1FI(1)=24Y

8852 IFIQ)=24p

8853 IFL8CL)=218Y

g 1F10(2)=2H2F

6855 IF1A€1)=2HD2

8856 IF14(2)=2HEF

a7 IF12¢1)=2HDC

2852 IF12(2)=2HxR

8259 IF13(1)=2BD5

2868 TFA3{2)=2H4R

8861 IF14¢1)=2tDC

anen R{T R Faeh¥e & 4]
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N

8371
8a72
LTS
8874
8a7s
8876
ea77
0378
es7e

aaa3
2384
@sas

0387

8118
8119
8128

122
R
8124
8125
#4126
27
a0

AF AYNG /oW
TF14£3)=2HY
TF15¢4)=2H05
IFA5(2)=24Q
TFA5(0=24%
IF1(3)=H
IF2(3)=2H
IF3()=4
IF4(2)=H
IFS(3)=a8
IF6()=2H
IF7()=H
IF3(2)=24
IF9(3)=2H
PPz ©
IF8()=2K
TFA()=2H
IF12()=2H
IF13(3)=2H
PI2=PIa+2
TFCISSHAL)) 99,98
8 =2
99 CONTIME
TPISR=TPIH2
C
CINUT
c
S KRITE(1, 109)
109 FORMATC"TYPE COMPLEY FREQUENCY, MUMEER OF GRID POINTS *
1° AND NUMBER OF SOUND SPEED TRANSITIONS™)
RERDCIN, #) FRQ, NDZ, KBT
CH=10909. 9
SCY=10800. B
D0 182 J=4. (BT
WRITE(L. 183> J
183 FORMAT(*TYPE COVPLEY. € AND § SPEEDG AND DEPTH AT TRANSITION®
REFDCIN, %) CSSPLT), SSSPLIY, ZBT(H)
TF(CH GT. RERL (CSSPLI))) CRN=RERL(CSSPCIY)
TF(SCIN, GT. PERL(SSSP(J)). FiD. SSSP(J). NE. 8. 8) SCIM=REFL (SS5P¢
182 CONTINUE
IFCSCIL EQ 18099, 8) SCHN=CMN
YRITE(L, 185)
185 FOPMAT("TYPE & OF LAYERS D 1 (R B IF PROPRGATING OR RIGID"
PERDCIN, %) KLAVS, JPR
MM AY-1
00 166 J=1.M.
WRITE(L187) T
167 FORMAT('TYPE YISCOSITY, LAE RMD DEPTH OF LAYER = I3)
186 PEADCIN %) MUY, ALRRCT), LOEPCT)
285+ DEP(NL)
IFCIPE BB B) 60 10 152
WRITE(L, 184)
184 FORMATC*TYPE COMPLEX BRSEMENT C PND S SPEEDS, COMPUTRTION "
1"DEPTH, YISCOSITY AIND LRME®)
READCIN, #) CCBS, SCBS, LIFPGLAYS), MUCNLRYS), RLECHLAYS)
153 WRITE(L 199)
109 FORMATCTYPE COMPLEX HORIZ. MAVE NUMBER, SOURCE DEPTH ®
1°RND SOURCE STRENGTH™
RERDCIN #) ¥P, 5,55
t
C DISPLAY PROFILE PRRFETERS
¢
HRITE(L, 46@) FRQ NDZ, VP, §
168 FORMATCFREQUENCY *. 2F6. 2, /"MIMPER OF GRID POINTS * 17,
1/7*HRIZ HAVE NREER ", 2F18. 8, /*SOURCE DEPTI", F6. 8)
DO 169 J=L M.

460 LDTTT(4 47N T MICTY O OMS TN I DEDZ T
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@15
@216
€17
8218

a2zl

8233

8241
8242
8243

8245

GO0

441 NP=NDZ/22
442 CONTINUE
D0 €48 J=L MLAYS
648 DHOD=LDEP(TRIDZ/ (785432}
WRITECLP, 641) {DNCI), J=1, RLAYS)
641 FORMAT(5F18. 3)
WDEP=| DEP(1)
IFCMUC2). EQ 0. 82 WDEP=LDEP(Q)
COR=CHMPLY(1. 0,6, 8)
HRITECLP, 218) ¥LM, ¥LHS, SIGR, SIGS, DZ, DZS
220 FORMAT(ALM=", 2F10. 5, " 5=, 2F18. 5./
1"S16P=", 2F18.5, * SIG&=",2F18.5,/
2°DZ=", 2F18.5, " DZ5=",2F18.5)
KR=t ¢
CCL=C9P(L)
SCL=558P(1)
-0.8
L= mRx
IF(ISSH(13)) 191,198

CRLCULATE SOUND SPEED PROTILE NORMALIZED FUNCTION
STORE ON DISC FILES DS¥Q AND DCXG

199 1-8
1=8
00 59 J=1, N2
I=1+1
CS=CMPLY(B. 6,8. 8
SS=CHPLX(A. 6, 8. @)
CXUI)=CIHPLY(D. 6, 8. B)
SXADH=CIPLY(B. 6,0, 8)
Z=FLOAT(J-1 *ZBS/FLORT(HDZ)
DO 48 K-KA, KBT
IF(ZBTC(K). GE.2) €0 TO 41
2=78T¢K)
CCLACSSPK)
SCL=555P(KY

40 CONTIME
CCU=CCBS
SCU=SLRS
2U=78S
G0 T0 42

41 CONTINE
CLU=CESPIK)

SCU=SSPKY
2U=Z2BT(K}

42 CONTIMUE
CS=COL4((COU-CCL) (ZU-ZL) y%(2-2L )
S8=5CL+({SCU-SCLY/ CU-2L) »*(2-2L)
WAD=C8
W2(1)=5S
CXRCI)=TPISQHFRA24 (L. /TP~ /CS)R2)44 12
SKQCI=TPISMFRAZH(Y. /SCIH2-(4. /SS)H2) 4L ME2
XBF(I)=Z
IF(55.ER. 6. 8) &(1)=0. 8
KR=X

S52 IF{1.LT.32) GO T0 58
CALL EXEC(45, 1838, C¥0, 428, IF12, 1)
CALL EXEC(15, 1038, SXR, 128, IF13, L)
1=8
L=+
TF(I5SH(4Y) 51,50

51 DO 55 JX=1, 32, MP

55 WRITECLP, 154) XBFC(JIR), WLCTXY, HRCIXK), CRRCTX), SARCIX)

154 FORMATCFD. 4, 2X, 2€F7. 2, 24, F6. 4, 2%), 4CF6. 4, X))
Sa rWTHAE
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191 CONTINUE
I=1
LMRs=L
CS=CSSP(KRT)

§5=5SSP(KBT)

CRO¢L)=TPISRHFRAZK(L JCIN2=(1. /CS)R2) %ML M2
SROCL)=TPISRHFROZK (. /SCAND-{1. /S5) 2451 HED
IF{SS. £R. 8. 8) S¥R{1)=9. 8

JFCISHCL)) 583,582

503 WRITE(LP, 154 785, C5, 65, CHR(LY, S¥A(L)

502 CYR(=TPISRWFRAZH(L /OMNP~(L. /CCBE o242
SHR(2)=TPISOAFRAZI(L. /STHR-(1. /SCRS YR IR G2
PA=SRACD) -

IF(SCES. EQ CHPLY(A. B, . 8)) SHR(2)=CHPLXCD. 8,6, 8)
2786541 8
IFCISSN(1)) 585, 564
585 IFCIPR. ER 1) HRITECLP, 154 Z, CCBS, SCBS, CHAC2), SYR)
564 CRLL EXEC(1S, 1638, CX@, 8, IF12,1)
CRLL EXEC(15, 1038, ¥R 8, IF13.1)

RICCATI PROPAGATING PASEMENT INITIRLIZATION

IFUPR.ER 4) GO TO 17
CFOBH=TPIsFRASCSERTCL /CNI~(1. /CSSPLKET) 142 kLN
SFOBHETPIFRAHCSART (1. /SCHBR=(L. /SEGP(KRT) Mk HKLHG
TFCSSSP(KRT). G 8. 8> SFOBH=0. @
CFOX(1)=CFRBH
SFRR(L)-FaRH
CRLL EXEC(1S, 1838, CFAR, 4, TF14, 1)
CALL EXEC(45, 4038, PGS, 4, IF15, L)
CFQ-CFORH
SFa=GFaEH
=L
NS=t
IFCISSH(2)) 586,16
566 RITECLP, 152) ZES, CFAX(L), SFEX(L)
GO TO 46

RICCATI RIGID BOTTOM INITIALIZATION

17 CFARS=TPT+FRCSORT(L /THN2-(1. ZCCBS) 204X H
SFOBS=TPI#FRUCSERT(1. /SCIB2-(1 /SCBS)+=2)0LIS
TF(SCRS. EQ CMPLX(B. 8, 8. 8)) SFEBS=CHPLX(9. 4,8, 0)
CFEX(2)=CFQRS
SFRR(2)=5FaBS
N
H=32
CFa=CFaBS
SFR=5FORS
IFCISSH(2)) S87,16

587 HRITE(LP,152) 2, CFEX(2), SFAX(2)

16 D0 475 J-L 2

475 P-CHPLYCE 8, 8. 80

RICCATI INTEGRATION-——RDRIHS- BASHFORTH METHOD
STORE ON DISC FILES DCFEX AMD DSFRX

COFG=CMPLX(0. 6, 8. 8)
SOFQ=CHPLY(D. 8, 8. 8)
SOFRP=CHPLX(A. B, 0. 8)
COFEP=CHPLY(B. B, 8. 8)
SFRP=CMPLX(8. 0,0, 8)
CFOP=CIPLY(6. 8, 8. &)
IF(ISTH(AR)) 152,492

192 DO 68 J=4, W
| LT .
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8347
8348
8349
8358
8351
8352
9353

8372
0374

a376
6377
8378
8373
6288
6381

0383
6385
6386
a337
8388

3%

a7

[ST.2 T N

CALL E¥EC{44,1838, C¥Q, 128, IF12, 1)
CALL EXECC14, 1638, SXQ, 128, IF13, LK)
DO 63 I=NS, 22
R¥=33-1
CFOX(NX)=CMPLK(B. 8, 6. 8)
SFR(NXM=CMPLY(0. 8, 8. B)
CFOP=CFR-DZ+CDFQ
SFOP=SFQ-DZS+SDFG
COFEP=CFOP+#2-CXR(NK}
SDFEP=SFRP+#2-3XB(HR)
CFR=CFO-. SHDZ*(CDFR+COFOP)
SFR=GFQ-. SHDZS*(SDFHSIFQP)
COFG=CFRe2-CXOND
SOFE=SFQ%x2-S7R(NK)
CFEX{RX)=CFQ
SFRX(RX)=SFQ
Z=FL ORT(NX-1#L Ne32)4ZRS/FLORTCNDZ)
IF(Z LT. WDEP) SFRM(I)=CHPLYAB, 0,0, 8)
IF(NY NE@ 1) GO T0 58
CALL. EXEC(45, 4838, CFOX, 428, IF14, LK)
CALL EMEC(4S, 1638, SFEX, 128, IF15, L)
474 CALL EXEC(15, 1838, YP, 128, IF3, LN)
NS1=NS
o=
473 TF(15SW2)) 61,68
61 DO 65 JY=NS1L 22, N
J%=33-7¢
2=FLORT( Y -1+ N¥22)47R5/FLOAT(NDZ)
65 WRITECLP, 152) 2, CFRX(JIX), SFRA(TRY
152 FORMAT(F10. 3, 4(F16. 6, 24))
68 CONTINUE
192 CONTINUE
c

€ INTEGRATE PARTICILAR SOLUTION USING LINERR EQURTIGNS

€ STORE ON DISC FILE DYP
C
IFCISSHC14)) 194,195
195 CONTIIUE
PHII=CHPLY(3. 8,6.8)
PRII=CIPL (0. 0, 8. 8)
DPHEI=CMPLR(Q. 8, 8. &)
DFRII=CHPLR(2. 9, 0. 8)
DPHI=CIPLX(A. 9, 8. 8)
DPRI=CMPLX(8.8,8.8)
PHI=CHPLX(G. 8,8.8)
PRI=CHPLX(8.8,8. @)
LS=NA/22
NE={ MRR+1
IF(ISSH(Z)} 581, 568
561 KRITE(LP, 62)
62 FORMATC/"PRRTICULAR SCLUTION™
588 NA=(LS+1)432-40
DO 13 J=1, WA
43 YP(32-DD=(IPLX(8.8,6.8)
PRII=~8, SaZaSD it
DPRI=STXLH
LS=LS+
NA=Nft
DO 12 I=LLS
LT=5-1
CALL EXEC(44, 21638, CFQ, 128, IF14, LT
DO 12 J=NA, 32
Ny=33-J
PHI=PHIT-DZ2DPH]
PRI=PRIT-DZ3DPRY

NUT T = PEOW O DUTLD0T
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333
a34
@395
8397

8399

6458

adsQ

c

VT SIA LT UL ASWT ST TR N
DPRY I=~SIGPAPHI+CFAR(NY +FR]
PRII=PHII- S4DZ*(LPHIHDPRIT)
PRII=PRIT~ S#D2+(CPRIHDPRILD
DPHI=- CFAX(NYAPHIT+PRIT
DPRI=-SIGR*PHI I+CFRX(NYIAPRIT
TFCISSHI3)) 176,173

176 Z=(LT*220-1 M*ZBS/FLORT(HDZ)
WRITE(LP, 152) 2, PHII

175 YPINY)=PHIT
IFQJLT.Z2) G0 T0 12
CRLL EMEC{15,163B,YP, 123, IF,LT)
NA=1

12 CONTINUE
194 CONTINUE

C PROPRGATING PRASEMENT INITIALIZATION

c

¢
c
c

PS=CMPLY(0. 8364, 8. 9)
IF¢YS. EQ CHPLXCA. @, 8. 8)) PS=(IPL(0.8,08.8)
€82 PP=CMPLX(B, 2061, 8, 8)
RP=C3ORT(CFRRSH2~SIGP)
RE=CSART (SFRBS##2-51G5)
RPA=CFERS-RP
RS1=SFGRS-RS
PH=PP/RPL
PHDOT=-{FRBSHPHIPP
IF(YS. EQ CIPLX(B. 8,8, 8)) G0 T0 681
SI=PS/RSY
SMPR=CRLIR(RL~SIGS)/ (4, AP TSP TS24 KL M)* JRYAP
NX=MLAYS~1
IF(HUCRX). NER 0.8) GO TO 681
NA=HLAYS-1
IFCMUCHK). KEQL B. 8> G0 TO €81
PHDOT=-SPReST
PH=PHDOT/(RP1-CFERS)
PP=PHRP1
681 CONTINUE
IF(JPR.£& 85 GOTD 814
SIDOT=-SFABS*S1+PS
KRITE(LP, 398)
930 FORMAT(//"PROPAGRTING BASERENT"/)
218 FORMAT(/4F13. 6)
624 FCRIAT(//AFI2 6, /7)
PHB=PH
SIB=51
PPE=PP
PSB=PS
SCL=PHIOT
CCU=SIDOT
=1
KRITE(LP, 248) PH, PHDOT, 51, SIDOT
814 IF(JPB.EQ 1) 60 70 204

RIGID POTTOM INITIRLIZATION

PS=CHPLX(2.8,8.8)
SI=CHPLY(B. 0,8 8)
PP=CFOBS
PH=CMPLX(1. 8,0.8)
PHDOT=-CFORHAPHPP
SIDOT=-SFORH¥S]4PS
WRITECLP, 994>

991 FORMAT(//*RIGID BOTTOH//)
HRITECLP, 248) PH, PHDOT

PHB=PH
G DUt
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20

P
0450
8461
8162

8473
8474

8476

@512
a513
8514

816
8517
8518
@519

8522

ar24

¢

SIB=3I

CeU=51pOT

JK=NLAY3

NF=2

NK=1

CRLL EXECC14, 1638, CFOX, 4, IF14, LMAXD
CALL EXEC(14, 1038, SFEX 4, TFLS, LX)
SFR=SFRX(L)

CR3=CFOX(L)

JK=JK-1

IR EQ 4) GO TO 382

G0 T0 262

C COMPRESSIONAL. POTENTIAL EXCITATION
C USE INTERFACE EQURTIONS TO GBTAIN POTENTIAL RECYE INTERFRCE
C  INTEGRATE MAGNITUDE RMD PHASE EQUATICNS UPKARD

c

281 JK=NLAYS

SI=CMPLX(B. 8, 0. 8)

SIDOT=(IPLX(B. 6, 6. 8)

PS=CMPLX(8. 6,8, @)

NF=32

CRLL EXEC(14, 1638, O30, 8 IF12, LIMAX)
CALL EYEC(14, 1838, SX0, & IF13, LHAX)
SF1=583(1)

SF2=5%3(2)

CF1=Cact)

(F2=Cxa2)

CALL EXEC(44, 1838, CFGY, 4, IF14, LHAX)
CALL EXEC(14, 1038, SFGX, 4, IFLS, LHRX)
SF2=GFar(1}

CF3=CFRX(1)

L=

N5=1

WG9, 8

WRITELLP, 767

787 FORMAT(/*COMPRESSIORAL EXCITATION-PH PHDOT, 5L SIDOT"/)
280 JK=JK-1

IFUK ER 1) €0 70 288

W.=JK

MM=JK+L

CRLL SSBCIML ¥S, VP, SFL SF2, CF4, CF2, YL, MU, RLAN, STGS, SIGP,
1PH, PHROT, ST, STDOT, LP, B, XLISY

262 CONTINGE

CALL PM5V(SF3, CF3, LP, SIGS, SIGP, PH, PHDOT, SI, SIDCT, TH, THDOT,
1M, MDOT, N, NDOT, GR, GRDOT)

IFEHUGL). NEQ 6. 8) GO TO 27

GADOT=CHPLX(B. G, 8. &)

NOOT=CrPLY (8. 8, 2. 8)

GR=CI1PL(8. 6, 8. 8)

SIGS=CMPL.X(8. 8, 8. &)

SI=CIPLX(6. 6.8.®

SIDOT=CHPLX(8. 0, 8. 8)

R=CIPLX(8. 6,0.8)

27 CONTINUE

IFCIK NER. (HLAYS-1)) 60 T6 418
Wi(1)=TH

W=7

WR(1)=GAR

W=7

M=PH

D=5t

D3=PHOOT

D4=S100T

CALL EXEC(15,163R, W, 4, IF1, LHAXD

FOEL CVER /AR 4Q70 11 4 TE9 1 mOVY
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[PV

8523
8526
527
8523

8538
ac
8533
8524

45

a57s

asre
8573
goge
a581
ase?
6584
asgs
9586
acs?
2588

ases
a50a

WL LA\ Ad) AT ey T4 AT 3 LWV

CRLL EXEC(AS, 182R, W2, 4, IFZ, 1R

CALL EXEC(AS, 2838, W4, 4, IF4, LFRK)

418 CONTINUE
FHEDHCTIO-DROIK-1)

CRLL SCSPH(SFOX, CFR, LR, NS, NF, ZB5, D2 NOZ, SI6P, SIGS, i, W2, 12,
1TH, THDOT, GR, GAROT, 1%, FDOT, N, HDOT, PH, PHDOT, PP, PPDCT, SI, RIDOT,
2PS, PEDOT, DZS, PN, L, IF4, IF2, IF3, IF4, TF14, IF1S, NAG)

EETT

IFCNF.NE. 320 14

CALL EXEC(14, 1038, CXG, 128, IF12,14)

CALL EXEC(14, 4638, S8R, 128, IF13, LD

CALL EXEC{44, 4038, CFRY 128, IF14, L)

CALL EXEC(14, 1638, FF0K, 128, IF15, L4)

SFL=SXR(32-N+1)

SF2=5XR(2-N5+2)

CFI=CHR(2-NE+LD

CF=CXRC2-NE+2)

SFR=SFAX(X2-H5+1)

CRI=(FARC2-HS+L)

IFNS. RE 1) NS=IGH

66 60 T0 268

388 CONTINUE
IF(HAYS. EQ 2) G0 TO 28
TF(MUCKLAYSY. EQ 8. 0) SI=CHPLX(E. 6. 0. 8)

c WRITECLP, 218) HRG :

IFOMUCHLAYS). ER B.9) GO TO 782

¢

€ SHEAR POTENTIAL EXCITATION

£ INTEGRATE MAGNITUDE AND PHRSE EQUATIONS UPHRRD
€

YRITECLP, 786)

786 FORMAT(/"SHEAR EXCITRTION-PH, PHDOT, ST, SIDOT"/)
QPR=C(SF2-SIAS AL (4. #PIRAMO2) +P TRV R(IRY/YP)
COR=PHDOT+SIPRAS]

¢ WRITE(LP, 218) PH, PHDOT, SI, SIDGT, SMPR, COR, SF2

781 JK=NLAYS
PH=CIPLR(O. 8, 0. 8)

PEDOT=CMPLY(B. 8.2, @)

PP=CHPLY(0.8,8.8)

SI=SIR

SIDOT=CCY

PS=PSR

WF=32

CALL EXEC{14,103R, CXQ, & IFL2 LMD

CRLL EXEC(14, 2638, S¥Q 8, IFAZ LA

SF1=5K3(1)

SF2=540(2)

CF1-CAR(L)

CF2-(XR(2)

CALL EXEC(14, 1628, CFOL 4, TF14: LRRXD

CALL EXEC(14, 163, SFOR, 4, IF1S, LMAY)

FARFUULD

CF3=CFRX(4Y

L= FRK-2.

Me=t

PAGS-9. 0

'FOJPR.EQ B GO TO 782

708 JK=JK-1
IFCER 1) GO TO 782
M=K
M=JK+L
CRLL SSPCMLL VS, VP, SF4, SF2, CF4, CF2, XA, MU, ALAM, STES, SIGP

1PH, PHDOT, S1, SIDOT, LP, 11, XLAS)

GO TQ 718

783 CONTINUE

V=TV A
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(et [NV,

gset IFCKER 40 G0 TO 782

=32 =X

8593 748 CONTRME

7594 P RHGY(SF2, CF2, LP, SIGS, SIGP, PH, PHDOT, SY, SIPOT, TH, THDOT,
#5as M, MDOT, 1 40T, G GRDOT)

9596 IF{MUCHL). NE. 8. 8) GO TG 29

ase7 EADOT=CHPLY(D. 6, 8. 8)

8538 MDOT=CIPLNCO. 8,0, 8)

0593 GR=CIFLY(O. 8, 0. 8)

g0 SIGS=0MPLY(D. 8,8, 2)

2581 SI-CIPLY(2. 0. 8. 8)

2602 SIDOT=CMP1X¢B. 8, 0. )

663 N=CHPLX(0. 8, 8. )

8664 29 CONTINUE ¢

@605 TFCIK HEQ (NLRYS-1)) GO TO 704
4506 W5(4)=TH

687 W=7

0603 WP (4)=6R

9509 W7

f618 D5=PH

851y D6=51

gs12 D7=PHDOT

es13 re=S10aT

ag14 CALL EXEC(45, 1038, U5, 4, IFS, LMD
#615 CRLL EXEC(15, 182 W6, 4, IFE, LIAR)
8616 CRLL EXEC(AS, 1628, 47, 4, IF7, LA
8617 CALL EXEC(15, 1838, K8, 4, IFS, LIAXD
8618 784 CONTINUE

8519 EN=DHCJIO-DNCIK-1)

2628 CALL 5CPHCSFUL CFRS LP, NS, NF, ZRS, DZ, NDZ, SIGP, S165, U5, W6, 17,
621 1TH, THDOT, GR, GADGT, M, 10T, 1 KDGT, PH, PHOCOT, PP, PPOOT, 51, SIDGT,
8522 2PS, PDOT, D25, PN L IFS, IF6, 1F7, IFS, IF44, IF4S, MRES)
R U=t

8624 IFCNF. XE. 32) 1A=L,

#625 CALL EXEC(A4, 4828, CX0, 128, TF12,1.4)
#€265 CALL EWEC(14, 1828, SXML 129, IF13, L1}
8627 CALL EXEC(14, 103R, CFOX 128 IF14, 11D
ese CALL EYEC(44, 1878, SFOY, 128, IFS, 11)
8629 SF1-SYRC2-H5+)

8638 SFR=5H0CT2-H54D)

2631 CFA=CYRZ2-NE+1)

a2 CF2-CNRC4E+2)

8632 SFR=SFQN(I2-1541)

8624 CF2=(FRR(22-15+4)

#4635 IFONG, NE. 1) NS=NG#1

8636 63 70 760

8637 702 CONTRAE

8638 C

#6329 C COMPTNE CALCULATED SOLUTIONS TO SATISFY TARGENTIAL
8648 C STRESS AT WATER-SEDIMENT = ZERD CONDITION

Be4t €

42 . KRITECLP, 218) PH, PHDOT, S1, SIDOT, SHPR: COR
8642 C0R=-COR/ (PHDOT+ENPRAST IHEXP (MAG-HAGS)
8644 IF(MIONRAYS-2). EQ 8. 8) COR=CIPLX(L 0,8.8)
2645 IF(MUCAYS). ER 8. @) COR=CMPLI(O, 8, 8. 8)
8646 PRITE(LP. 212) COR

8647 242 FORMATC2FAS. &)

0648 MAG=AIAYL(MAG, FAGS)

2643 PMRG-NAG-7

[ N =CNCHLI+2-DROLD

BESt JR=INCLD

8652 fZ=pN(1)-J3

8653 IF/AZ.EQ 8.8 N=R1-1

8c54 f7=1 A2

8655 LMy

acse MC=
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oY

[Tt

8653
8659
868

8654
8655
8e58
as67
8568
BE53
2678
8571
8572

2718

ar12
8714
@713
076
8nz
6718
8719
a728
8721

[N

T g,

W=

D0 758 =L

CALL EXECCA4, 1638, Wi 128, TFL, 1)
CALL ENEC(14, 1038, W2, 128, IF2,1)
CRLL EEC(14, 1038, 43, 128, IF2, L)
CALL EXEC(14, 1638, W4, 128, IF4,1)
CALL EXEC(14, 403R, WS, 128, IFS, L)
CRLL EXEC(14, 1078, M5, 428, IF5, L)
CRLL EXEC(14, 1028, W7, 128, IF7.1)
CALL EXEC(A4, 103R, K3, 128, IFB, L)
CRLL EXEC(44, 1038, CFO 128, TF4, L)
CALL EXEC(44, 1638, SFRY 128, IF15, L)
M0 705 JNS, ME
N¥=33-J "

SRF N Y=L DAT (N~ 4L 2224785 /FLORTODZ)
BA=CLOSCH (M)

R2=CSINCNLCNED)

B2=CCOSCIB(HAD)

IFLSFARCI). EQ CIPLYCO. B, 8. 8)) BR=CIPLY(E. 8,0, 8)
BA=CSINCRCND)

VEF (LO=RISCEP GO0 -MRG)

TOE (=R EP(RANYY-MAG)

RO =C-LRR2CRRD BT +ER MCERP (2 (O -HAG)
HA(HY=(~SFER L 4R2 454 HCERP (3 () -HAG)
IFOMICILAYS). EQ. 8. 8) 60 T0 755

BE=CLOSIUSNK))

BS=CSINUSEND Y

B7=CLOSCHT D)

TFLSFANCNGD. FQ. CMPLY(A. 6, 8. 8)) B7=CIPLX(E. 0,0, 8)
BE=CSTHOT (D)

YRR CNA)="1RF (NX)+CORMBSACEXP (U6 () -HAG)

ZBF (0)=TRF (M) +CORABTHCERP (MBI ) -HAG)

WRCHY=HR NI+ ~CFRK (N HB5+86 AL ORKCENP (HE (N4~ HAG)
HACHD=HACHX)+{ ~-SFRX(NKY¥R7+B8)+CLR#CEXP (B NX)~MAG)

795 CONTINUE
IFCL MEQ LEAY) 6O TO 756
YBF {1)={ D +CORMIS NP (-HRG-7)
D1=YBF (L)
ZBF{1)=(D2+CORYDE MEXP (-1G-7)
D2=7pF (1)
HR{12=(D3+CORHDT YHEXP(-HAG-7)
D2=42(1)
HA{4 y=(D4+CORHDEY KNP {-HAG-T)
Dd=a(1)
756 CORTIMUE
IFQEUNE 1) 60 TO 785
CRLL EXEC(135, 1038, YOF, 128, IF16,L)
CALL EXEC(15, 182B; ZBF, 128, IF1L L)
LA-1
751 TFCISSHOR)Y 768, 798
769 00 705 JY=H6, NF, WP
J¥=33~-J¢
702 WRITELP, 745) YBF(IN), YEF(JE), ZBFIX)
715 FORMAT(FS, 4, 4F45. 8)
728 K5=1
NF=32
IF(L EQ N-1). AND. A2 NE 1 @) MF=fZ«22
785 CONTINUE
IF(HF.LE. 8) GO TO V52
799 CONTINE
752 CONTINUE
TFCISRHCED) 509, 283
509 IFCHF. LT. 22) WRITELLP, 745 (XBF (R2-J), YBF (33-T1),
1ZBFR2-T03, JH=NE, NF, NP
588 PH-YRF (L)
CT=7PC Y
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723
8724
8725
8726
8727
a728
8725
8738
9771
82
8733
o734

8736
737

8res
o763

871
a2
a3
8774
e77s
8776
777
arrs
8773
n7ee
8781
6782
@783
8784
735
0736
ars?

a7

Car B 4r B or ]

A TeaM NS
PHNOT=HR O
SIDOT=H (XD
YoM 2+ (PHDOT+SMPRAST)
HRITELLP, 218> PH, PHXOT, S1, SIDQT, Y2, SPR
NS=KF+2
=32
N¢=Rx-1
798 FORMATCFA. 8, 2. 8F8. &)
IF(RZ. KE. @, 8) CRLL EXEC(1S,182R, YOF, 123, [F18,L)
JFCRZ NE @ @) CALL EXEC{4%, 4838, 2F, 423, [F4, 1)
IF(NS. EQ 24) RS=2

INTEGRATE PHGNIT};'DE AND PHASE EQUATIONS IN THE HATER COLUMN

281 CONTINUE
JFQE EQ @) 1¥=1,
=PN(1)-1
NG=N5-1
IFOS N 1t
IFCHS. HE. 1) NY=NX#1
N=DN(L)
TF(NLAYS. NEQ. 20 G0 TO 724
Ne=1
NF=R2
N¢=1
N=LMAY
L=UAK=2.
SI=51B
SIDOT=CCY
72 {Alt EXEC(14, 183P, CRQ, 178, IF12, D)
CALL EXEC(14, 1838, SXR 128, IF13, D
CALl. EXEC(44, 1638, CFOY, 128, IF14, 1)
CALL EMEC(44, 1638, SFQY, 128, TF15, No)
728 SF2=SYR(NA+L)
CF1=CYRENED
CF2=CN(N%+)
CALL SHBCCYS, YP, SF2, CF4, CF2, XL, P, ALAL LP, 516,
15165, PH, PHDOT, 51, SIDOT, BLMS)
383 CONTINUE
SF2Z=SFQX(H
CRI=CRRXCIED
SI=CHPLX(8. 8, 8. 8)
SIDOT=CIPLYA0. 6, 8. 8)
Pe=CHPIY(R. 8,8.8)
PSLOT=C11.%(8. 6, 6. 8)
IFCHLAYS. KER. 2) GO TO 453
DA=PHHERP(-7. B)
D2=t1
D3=PHUOTHEXP(-7. 8)
=5100T
453 CALL RHNRY(SF3, CF2,LP, SIGS, SIGP, PH, PHDOT, 51, SIDOT, TH, THROT,
1M, MOT, N, NDOT, GR, GRDOTY
GANOT=MPLYEA0. &, €. 8)
GA-CIPLY(0. 8,8 &
454 CONTIME
IFCHLAYS. GT. 2) Mest-AG+7
IFQEAYS. GT. 2) N=H-MAGH?
MAGE=8. B
MAGR=MAG+?
JR=DN(L)
FR=JA
SIGS=CMPL¥40. 8,0.8)
Li=t

CALL SCSPHCSFOL CFBR, LP, NS, NF, 7B5, DZ NDZ, SIGP, S1GS, WA, 2, I3,
ATH, THXOT, G, GROOT, M MDOT, N MDOT, PH, PHDOT, PP, PPRQT, S, SIDOT,

L0C DEMIT N2 TM 1 TEY TED TE? 104 TCAA T84T mon
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a7ed
8731
a7
9793
8794
8735
A795
ars?
4793

-,

S OF LI ML W Lk AF B2 AL 83 RS AT ST AF A 1R

SI=CMPLX(B. 6,8 )

CALL. EXEC(14,163R. YP, 128, IF9. @)
COL=YP(1 )/ (COOSLMA (1) CERP (2100
KRITECLP, 242) CCL

244 FORMAT(/F1S. 2, 2K F45. 22

HRITEXLP, 800}

828 FORMATC/"TOTRL SOLUTION-PH 5I°/)

¢

€ (8TAIN TOTAL SOLUTION

¢

D0 468 =L LMAX

M=1-4

CRLL EXEC(14, 1838, YP, 128, IFS, NLO
CRLL EREC(44, 1838, YBF, 128, IF16, M)
CRLL EXEC(14, 1838, 7RF, 428, IF14, R4
Do 76 J=0,22

YEF (T =P (N-CLAYBF ()

XPF(J3=FLOAT (J~1+YA32)47R5/FLORT(HDZ)
ZBF (J)=~CCLAZBF (1)

YEF(J)=YPF (5)sNDZ/Z85

ZRF(J=7BF (TDZ/ZBS

155 FORMAT(F6. 2, ¢4F15.5)
78 CONTINUE

CALL EXEC(15, 1838, YBF, 428, IF16, N1
CALL EXEC(45, 1838, ZBF, 128, IF14, M
DN -1 8

DRI+, 8

NP=NDZ/22

IF(L. GE. N ARD. 1. LE MN) NP=2
IFCISSUCY)) 468,178

173 DO 718 =522 WP
741 HRITE(LP,455) ¥BF(JX), YRF(JX), ZBF (J¥)
468 CONTINUE

¢

IF(JPE.£8 8> GO TO 1088

€ CBTAIN BASEMENT SOLUTION

¢

LB=LMAX
FFCISTNCIZY) 214,249

245 WRITECLP, 3470
347 FORMAT(//°YSLUES AT RASEMENT INTERFRCE™)

PHDOT=-CCLHDZ/ZBSHD2
S1=~CCLANDZ/ZB5 D2
SIDOT=-CCLARDZ/ZBSHD4

HRITE(LP, 216) PH. PHDOT, SI, SIDOT
IF(NLAYS. R 2) MAGE=7. 6

MRITE(LP, 290)
PH=PHBA(NDZ/ZPE)#(~CCL )AEXP (-MAGB)
PHDOT=SCL#+(NDZ/ZB5) % (-CLL)+EXP(~HAGR)
IF(MICNLAYS-1). EQ 0. 8) COR=CIPLI(1. 6,8.8)
SI=SIBANDZ/Z0S+(~COL)EHP (-IRGR)*COR
SIDOT=CCIMNDZ ZRS+ (~CLL NP (-TRGER*COR
WRITE(LP, 218) PH, PHDAT, S, SI00T

YeF (1)=PH

H(4)=PHDOT

ZBF(1)=5]

WA(13=SIDOT

THEQ=SI

HEQ=PH

2 CONTINUE

SHPR=~TRYD. P THYSREL It
LE=DRNLAYS)

¥BF{1)=1BS

NS=B

A 42 1m0y 1P
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2255
0856
2857
a253
885

8368
Bast
9862
@263
8584
4866
667
8362
9862
egra
6374
as72
&’
8874
8375
8376
es77
8378
a7y

2914

8346
a%17
6918

PO 26 J=1,21
N=J+1
¥2F (NLY=FLOAT(RL-1 4L 432)+7BS/FLOAT(NDZ)
YRE QUL )=PRACEXP{-RPHFLORT(JHE)HD)
ZBF (N4 )=ST+CEXP (-RSHFLOAT(J4REIHDZS)
574 FORMAT(I4, 2% 8F8. 32
26 CONTINGE
IFCISSNEBY) 415,418
445 DO 445 J=L 2L WP
WRITE(LS, 155} XBF{J), YBF(J), ZBFLI)
415 CONTINGE
CRLL EXEC(1S, 1038, YBF, 128, IF16, L)
CALL EXEC(4S, 1638, BF, 128, IF1L, L)
1088 CONTINE
PH=YBF (32}
SI=ZBF (2
YEF (1) =SHICEP(-RPHDZ)
ZBF (1)=5T4CEXP(-RSDZS)
¥RF(1)=FLORT(HLHLA32)+ZR5/FLORT(NDZ)
R&=1
313 CONTINUE
314 CONTINUE
SR =OIPLYC(FLORTCNLAYS)), 0. 8)
SHA2)=0PLXCFLOAT(HD2)), 8. )
SKR)=CMPLI(ZES, 6. 8)
SER(HER
SYR(S)~UED
DB 129 J=L JLAYS
SR J+5)=CHPLRCLDEP(), 8.8)
128 CONTINGE
CALL EXEC(IS 1638, 40 128, IFS, @)
B
¢

¢ THIS SUFROUTINE CRLCULATES POTENTIALS AROVE WATER-SEDIMENT

€ IMTERFRCE GIYEN POTENTIALS RELOK INTERFACE
c

SURRBUTINE SHBCAYS, VP, 5F2, CFL UF2, ¥LM, MU, ALAIL LP, STGP,

15165, PH PHDOT, ST, SIDOT, ¥LMS)
COMPLER %4, %2, %5, P, PH, PHDOT, ST, SIDOT, SIGP, 5163
COMPLEX ¥LM, CF 1, CF2, 5F2, P2, V52, ALHD, YL IiS2, JAY
COMPLEY &M E 6, F, H G D RIS
COMPLEY, Y4, Y2, 74, IPR
PEAL. 1
DYMENGION MU(L), ALAMCL)
DATR JAY,P1/¢0. 8, 1 0), 2, 1415926/
PI2-PLa2
YP2=HPe
YS2=5x2
HLR=H 2
RHA2=A MR M
=CHPLX(G. 6, 8. 8)
Y4=CrP1(0. 8,8.9)
Y3=CIPLX(O. 8,0.9)
A=CHPLY(0. 6, 8. 8)
MCIPLY(0. €, 0. 9)
E=CPLY(0. 8, 8. 8)
G=EMPLX(R. 6, 8. 8
SMPR-(MPLY(A. 8, 8.8)
F-OPL3(B. 8, 0. @)
H=CIP1(0. 8, 0. @)
C=CIPLA(O. 8, 8. 8)
D=CiF1.%40. 8, 6. 8)
R=JAHR. 2P THSHRLI
A=JRYR2, AP IFPHLR
=(ALANCLY 2. FIILD ) /(4. P T2RTP2ALID)

Ll {0 CMIDNLD SBICNN A WD T RAT N MDY
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Y

o6t

8963
964
@965

(]

[ I o 2

2O O

UEMRBIENLZ L, TIRACIZE S L LA ETALLIL S s
F(2 #5(10)/(~4, PI2RPRRLINIG)
HE(2, HH5(2))/ (-4, PIORPRARLIKLES)
C=4S/(2. 3P
D=L CIRY 4, +4PHPTHiQ 52
K1=CHP1 %00, 8, 8, 9)
QR=CIPLY(D. 8, 8. 8)
R1=R AN(2)HEH(CF2-SIGP)
KR=ALANCAHER(CFI-STGR)
SUPR=FAC-DH(F2-5165)
4 =PHOOT4R4S]
¥R=MI(2)+(PHOOTHSIPRAST)
Y4=XAAPHHAUSIO0T
WRITEAR,2)
2 FORMAT(/*PH, PHDOT, ST, SIDOT-BELON INTERFACE #1°/)
WRITELP, 1) PH, PHDOT, 51, SI00T
IRTTECLP, 1) Y4, Y3, V4, PR, 572
1 FORMAT(AF1S. 77)

PHDOT=PHDOT+RST
PH=(XLsPHERHESIDOTY /R
SI=CHPLX{B. 8, 2. &)
SIDOT=CMPLX(D. 0, 8. 8>

WRITE(LP, 246)

FORMAT(/*PH, PHDOT-RROYE INTERFACE #1°/)
M4=PHDOT4A#S]

YA=CAPHHAFSIDOT

WRITE(LP. 1) PH, PHDOT

WRITECLP, 4) Y, Y4

RETURN

B

o

THIS SUBROUTIRE CRLCULRTES POTENTIALS AROYE INTERFRCE
GIYEM POTENTIALS BELCH INTERFACE FOR INTERFACE SEPRRATING
THO ELASTIC LAYERS.

SUBROUTINE SSRC(ML, Y5, YP, SFL SF2, CFL, CF2, ¥LI MU, ALAR, SIGS, 51
4PH, PHDOT, ST, 51007, LP, FM, #.H5)

COMPLEX 7, VS, P, PH, PHOOT, 51, SIDOT, AL ML E, 5, F, H €, D, KLMS, WIS

COMPLEX Y52, YP2, SIGP, SIGS, {L3L SFL SF2, YL Y2, Y3, ¥4, JAY, CFL CF

COMPLEY, A2

DIMENGTON MU(1), LML)

REAL M

DATR JAY,PI/0.0,1 @), 2 1415926/

R=CIPLR(B. 8, 8. 8> ‘

M={IPLK(B. 6,8.0>

E=QMPLX(A.2,0.8)

G=CMPLX(0. 6, 0. 8)

F=CMPLR(2. 6, 8.8

H=CMPLX(9. 6, 8. 8)

¥7=CrPLY(0. 0,8, &)

C=CPLR(C. 0, 8.8)

D=CMPLY(B.8,0.8)

H=IPLE(R 8,8.8)

Y2=(PLY(0. 8,8 B)

Y2=(1PLX(8.8,6.8)

Y4=CIPLK(B. 6,8 &

PI2=PIxx2

YP2=iPriP

YGRS

AM2=RL AN

VI MO~ TRV MG
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AT ALY

R JRH2, +PTASH N
M2 «PTAPRILNS
E=(ALAM(ML )42, SMUCHL) )/ (-4, #PI2P24LID)
G (RLAMCRID42 UMD 3/ (4. AP I2H0P 2L M2)
F(2 #MUML) )/ (=4, P T2AIP2RLILINS)
He (2 (M )/ (=4, P T2uP 20 M) MSD
LS/ (2 +P)
DRl /(U WPHPTHA M)
Y4=PHEQT4A¥ST
Y2=-SI00T+tPH
Y2 (PHDOT+R*CAST -k SF2-S1G5) 451D
Y4=(ALAMCAM) +5+{CF2-SIGP) ) ¥PH+RAMBSIDOT
WRITECLP, 2) ML
FCRMATC/"PH, PHDOT, ST, SIDOT-BELCH INTERFACE #°, I2)
WRITECLP, 1) PH, PHDOT, S, SI00T
¢ HRITEALP, 1) Y1, Y2, Y2, %4

1 FORMAT(/4F15.7)

~

L Il

X7=(ALRM(MM 484 (CF2-SIOP ) +RaF DD +PH
R={f+(H-F2SINOT
R7=X7/RLAMCHL D +E#CF1-SIGP) +R+F 4D
SIDOT=CIDOT-I(PH-K7)

IF{SIGS. EQ CHPLX(3. 8, 8. 02 SIDOT=CHPLX(G. 6,8 8)°
PH=7

K7=CHPL¥(0. 8, 2. 8)

X7=-MU QLI - SF2-SIGS)+RC)
KPS THPHROTH (MU IO -HUML.Y)

KT=Y7 70 Y -RHC-Da{ SF1~S165)))

IF(SIGS. EQ OMPLX(A. 8, 8. 8)) X7=CMPLX(8. 0,0, 83
IFOMMML). ER 9. 03 X7=CHPLX(8.0,8. @)
PHDOT=PHDOT+R#(SI-¥7)

SI=¢7

IFCRUGHE). EQ 8.8) SIDOT=CIMPLICD. 9, 8.8)
IF(MUCHL). EQ 8. 8 SI=CHPLX(R. 8, 8. @)

WRITECLR, 912 1
213 FORMAT(/“PH, PHNOT, S1, SIDOT-ABOVE INTERFACE # , °, I3)
HRITE(LP, 1) PH, PHDOT, SL S1D0T
¥1=CMPLY(R 9,0. 8)
Y2=CHPLY(8. 8, 0. @)
Y3=CPLY(0. 6,0.8)
Y4=CMPLX(2. 0,8.8)
¥1=PHDOT+F4E1
=-SINOT+HHPH
Y3=MCH M PHDOT+AHCHST ~{SF1-CIGE)4DST)
Y4=( AL AMCHL Y+E%{CF1-SIGP ) ) +PHHWE#SIDOT
¢ HRITESLP, 1) Y4 Y2, Y3, ¥4
PETUPN
B
c
C THIS SUBROUTINE TRANGFORMS FROM THE LINEAR TO THE MAGNITUDE AND
€ PHASE PLRIE
c

SUBROUTIME RNSY(SF, CF, LP, SIGS SIGP, PH, PHDOT, ST, SIDOT, TH, THDO
1M, FDQT, N NDOT, GR, GRDOTS

CONPLER PH, 51, PHDOT, SIRGT, PP, PS5, PSDOT, PPDOT, 53, 1L N, TH, SIGP, S

COMPLEX MDOT, NDOT, THDAT, GRDOT, SF, CF, A, (521, 5521, 0522, 5522

DIMENSTON %(18)

DATR P13, 1415928/

TU- MO Ve G G 2y
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~

At PIT LN ATV T L RS -

1£53 M=CMPLY(D. 0,8, Q)

1054 GR=CIPLX(A. 6, 8. 9)
1835 N=CMPLY(A. 9,8, 8>
1856 THOOT=CHPLY(8. 8, 8. &)
10857 GRDOT=CIPLY(O. 6, 0. 8)
1858 MOOT=CMPL0. 8, 8. 8)
1453 PP=CMPLX{G. 0, 8. 8)
1860 MMOT=CPL X(8. 8, G 8)
1851 PPDOT=CRPLX(A. @ 0. 8)
1862 PS=(MPLKIG. 6,8 &)
1852 PEDOT=CHPLR(O. B, 8. 8)
1864 PR=PHROT+PHALF

1065 PPOOT=-SIGPHPHHCF#PP
185 PS=SIE0T+SI45F

1867 PEDOT=-S1GSAST+SF#PS
1868 E=0.8

1669 IF(AIMAGCFP). EQ @. 6. AND. RIMAGCPH). ER 8.8) 6D T0 5
1078 60 16 &

1671 5 IF(REAL(PP). LT. . B. AND. RERL(PH). LT. 8. 8> E=3. 14150264
1872 6 A=PHK2 PP

1072 #=0. SCLOGCRY+(8. B, 4. B)¥E

1074 =La

1675 IF(RIMAG(R). £Q. 8. 6. AND. RERL(A). LT.6.@) 6D T0 &
1676 10 18

1077 9 JF(RIMAGCPP). LT. @, @, AKD. AIMAG(PH). LT. 0. 8) D=-1.8
1873 16 D=D+AIMAG(I

1679 M=CRPLE(RERL (M), D)

1638 IFCREALCPE). LT. 8. 8. ArD. RINAGCPH). GT. 8. 8)

1881 1M=11440. 8, 2. 1415526

1882 E=0.0

blirixd IFCAIMAGCSI). EQL . B RND. RIMAGCPS). EG.B.8) G0 70 7
1834 GOT08

1685 7 IF(REALCPS). LY. 6. 8. AND. RERL{SI). LT. 8. 8) E=3. 144532654
1086 8 R=PSk245T 2

1887 =8, SRCLOG(RM (0. B, 1. B)+E

1pe8 D=1.8

1083 IFCRIMAG(AD. EQ. 8. 8. AND. RERL(A). LT, 8.8) G0 T0 11
igsa G0 TC 12

169 11 IF(AIMAGCPS). LT. 8. 8. AND. AIMAG(ST). LT.0.8) D=-1.8
1092 12 D=D+ATFAGLNY

1693 N=CHPLYCREALCND, DY

1694 IFCREALAST).LT. 6. 8. AHD. AINAG(ST). 61.0. @)

1095 =440, 8, 3. 1415926)

1696 CEA=SIw24PSHE2

1697 IF(C5Z4 EG CRPLY(0. 9,8.8)) N=CHPLX(D.8,8.08)

1698 TH=(8. , 8. S)*CLOG(( (8., L >-PP/PH)/((8., 1 1PP/FH))
1699 £524=PS/SI

1108 TF(SLEQ CIPLX(A. 6, 8. B)) CS21=(1PLX(8.9,8. 9)

1181 GR=(0. , -9, SH*CLOG( (R, , L }~C8Z1H/<(B. , 4 )+E524))
g2 £524=CCOS(TH)

1183 S524=CSIN(THY

1184 £522=CCOS(GA)

1485 §522=CSINCGA)

1186 HDOT=CF#(S528 #5521 (52405210 +C1. ~-SIGPISSZAC5Z1
1107 NDOT=SF#(S52245572-CoZ24CSZ2 ) +(4. -SI1G5E)*S5IHE5Z2
e THOOT=2. #CF#CAZA#GS24-SIGPRCSZA+CR7L~S52145521
ues GADOT=2 #SFHCSZ2#S522-CIGSHLSIHSIR-SSI2¥6522
1118 IF(ISSH(4)) 4,3

111 4 WRITECLP, 2)
142 2 FORMAT(/"TRANSFORM TO PHASE PLANE-®

1113 1"TH, 1, 68, N, THDOT, MDOT, GADOT, KDOT" /)

1114 WRITECLP, 1) TH, M, GA, N, THDOT, MDOT, GROOT, NDOT
145 WRITECLP, 1) PP, PPDOT, P5, PSDOT

1116 2 X(D=RTANZ(AIMRGCPH), REAL(PH))

1417 X2 =ATAN2(AIMAG(PPY, REAL(PPY)

1442 VOP-ATONNOTHOR/ZTY BEAl /TN
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PP, J 1T~ W LA, O WL TS

1185 GRP={TPLY(0. 8, 8. 8)

1186 MPROT=CMPLECB, 8,8.8)

1487 KPDOT=CMPLY(O. 8, 0. 8)

1188 MP=CMPLACE. 9, 8. 8)

1189 1P=(rPLECe 8, 8. )

1% THRDOT=CIPLX(O. 8, 6. 8)

1194 GAPDOT=CMPLX(B. 0, 6. 8)

192 CALL EXEC(14, 1838, YBF, 428, IF10. L)
us CALL EXEC(14, 4038, ZBF, 128, IF1L L)
1134 N=FHH

1195 JA=FN

11% B=FN-JA

ux IFONS. GE. 32) 5=

1198 JFCA £Q A9 AND. NS EQ. 1) N=FN
1199 IFCISSHES)) 4,9

1208 4 CCSZ=TH¥57. 295772

1201 5552=6A7. 293779

1282 S WRITE(R, 2
1203 2 FORMAT(/®INTECRATE IN PHASE PLANE-TH ML GAN"/)

1784 YNM=ZBS/FLORT(RDZ)#FLOAT(LA32423-N5)

1265 WRITE(LP, 46 XN CCS2, M 5552 N

1286 903 =L

1207 CALL EXEC(14, 1838, CFOX, 428, TF14, L)

1208 CRLL EXEC(44, 263R, PO, 128, IF15, L)

1289 1F(LER M RND. A NE 8. 8) NF=fie32

1218 JF(NS. NE. 1) NF=NGHE

1211 IFOF. GT. 22) NF=32

1212 12 80 58 J=ISIF

213 ¥=23-J

1244 HLCBO=CPLY(D. 8, 8. &)

1245 H2OEH=CIPLK(E. 8, 8. 0)

1216 WOSH=CMPLNC. 6, 8. 8)

1217 HAOEH=CPLE(C. A, 8. &)

1218 THP=TH-DZ*THDOT

1219 GRP=GR-DZS+GRDOT

1228 MP=H-DZHDOT

b /% KP=R-DZ5HRDOT

1222 (LEZ=CLOS(THP?

23 CSSZ=CSINCTHP)

1224 SC52=CCOS(GAP)

1225 $552=CSINCGAP)

1226 THPLOT=-SIGPHCCSZ4C0SZ-COSZ#LS5242, #CFQR(RALT5ZHSSZ
1227 CAPDOT=-S1G5#5C52#CC5Z-055#5552+2. ¥SFQN(RXIHSLSZHEESZ
1228 MPDOT=CFOK (NX)#(CESZHLS52-COEZAC0E2)+(1. ~SIGP)#LSSZHLSZ
1229 NPDOT=SFOX(NR)#(SEE2#5557-C05THE052) (1. -SIGSIHSES24SLSZ
1228 TH=TH-, S4DZ#(THROT+THPDOT)

1231 Mt SADZ#(MDOTHIPDOT)

1232 GA=GA-. S4DZS+(GRDOT+GAPDOTY

hhexas NN, SHDZS*(DOTHIPDOTY

1234 €L5Z=CL0S(TH>

1235 €SSZ=COIN(THY

136 565Z=CC0S(6R)

1237 5552=CSINCGRY

1238 THOT=-SIGPHLS24CEGZ-C5524€552+2. +CFAK(N*(LSZ4C55Z
1239 GROOT=-SIGSHGLZH5L57-555745552+2, *SFRX(NKIHSLSZ#SS52
1248 MDOT=CRRR(RK)*(CEEZ4LS5Z-COSZHLLS2 )+ (1. -SI0PIHSSZHCLEZ
1244 NPDOT=SFRX{NK)*(S552#5552-SLa2HSLS2) +(4. ~CIG5)*555245C52
1242 HRD=TH

1243 R2(RH=M

1244 IZNAD=GR

1245 KA =N

1246 YR (N2) =CCSZ+CEXP(M)

1247 ZBF (NX)=CPLX(B. 6, €. @)

1248 50 IF(NX ME. 1) GD 70 58

1242 CALL EXEC(15,4038, W1, 128, IFL L)

1958 fO11 CYER(45.4070 LD 490 107 1)
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125
1282
1253
124
1255
1256
1257
1252

4259

235

1268
1264
1262
1263
1264
1255
1266

1268
1269
1278
27
1272
1273
127
4275
1276

1278
1273
1280

1282
1283
1284

1286
1287

1288

1292
1232
1294
1295
1296
1297
1298

[ R IVE T RO XY WL

CALL EXEC(15, 1838, 1%, 126, IF2, L)
CRLL EXEC(!S, 2638, k4, 128, IF4, 1)
CALL EXEC(4S, 4038, Y9F, 123, IF16, L)
CRLL EXEC{15, 4838, ZBF, 126, IF1L, 1)
List
L=
LG
R&=4
28 JF(ISSUEGEN 7.8
7 D0 3 ML BF, NP
J=32-J4
Z=FLOAT(I7-14(L+1432)+ZBS/FLORT(NDZ)
CCSZRMAC Y57, 295078
SSSZARIVI*ST. 295778
3 WRITECLP, 18) 2, (CS2, KA(JY), S552, WA (Y)Y
16 FCRMAT(F7. 2, 2%, 8(FS. 3,12))
79 FORMAT(/16/)
T8 CONTINE
51 CONTIRUE
IFONF.ER 32) GO T0 6
CALL EXEC(135, 1838, W, 428, IFLL)
CRLL EXEC(15, 1038, W2, 128, IFZ L)
CRLL EXEC{45, 1838, W2, 128, IFZ, L)
CALL EYEC(4S, 1838, W4, 128, IF4, L)
IFCISSH(S)Y 14,6
11 DO 40 Ji=A15, NF, NP
F=33-3K
2=FLOAT(IY-1+#32)%ZBS/FLORT(NDZ)
CCS2=30 (Y0257, 295773
SSSZAR(IYIY, 295773
40 URITECLP, 48> 2, CCSZ W2(IY), 5552 HALTY)
6 N{=33-HF
MRG=ANMAXL (RERL (M), REAL(KD)
W=M-MAGST
HENTIRGH?
PH=CCOS(THCERP (I
PP=CSIN(THOALEXP (D)
SI=CCOS(GRLERPIN)
PS=CAINCGRIACEXPCND

IFCSFRX(NR). EG (IPLX(E. 8, 6. 8)) SI=CIPLE(B. 0,8.8)

PHOOT=-CRUX(RA+PHPP

PPDOT=-SIGP#PHI CFRR(NX)+PP

SIDOT=-SFRR(RAIASI+P5

PEDOT=-51GSAS TSR QKPS
3 He=F

RETURN

BN

EXD$
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