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INTRODUCTION 

Since Peker is ' s  study of shallow water sound propagat ion( l ) ,  considerable 

e f f o r t  has been directed toward developing a b e t t e r  understanding of the  

interact ion of oceanic acoustic waves with the  seabed, This e f f o r t  has occurred 

i n  two d i sc ip l ines ,  seismology and ocean acoustics.  

I n  seismology, primary i n t e r e s t  i n  wave propagation below the ocean- 

seabed interface.  Such information a s  layer  depths and c rus t a l  s t ruc ture  is 

desired, with t he  goal being t o  confirm seismic models through the generation 

of synthetic seismograms. Mathematical extensions of ray theory axe usually 

used t o  construct  the solution t o  the inhomogeneous wave equation (2,3,4,6,7) , 

Ocean acoustics, on the  other hand, i s  concerned with the seabed a s  a lossy 

and dispersive medium which influences the  s t ruc ture  of t he  acoustic pressure 

f i e l d  i n  the ocean. Construction of the solution via an expansion of the  

eigenfunctions associated with the  homogeneous equation is  most common(9,10, 

12), although several  recent methods obtain the  Green's function solut ion 

t o  the inhomgeneous equation d i rec t ly ( l3 ,14) .  The advantages and disadvan- 

tages of the most important analysis techniques t h a t  have evolved i n  each 

f i e l d  w i l l  be discussed i n  the following. 

SEISMOLOGY 

The most basic  approach t o  e l a s t i c  wave propagation i n  the  seismic 

l i t e r a t u r e  i s  the Thomson-Haskell method(2,3). It considers a medium of 

pa ra l l e l ,  i so t rop ic  layers which have constant e l a s t i c  parameters and sound 

speeds. A plane e l a s t i c  wave a t  specified wave number is propagated a t  

oblique incidence through the s t r a t i f i e d  media. Matrices which express the 

boundary conditions for  each interface a re  writ ten.  The proper t ies  of the  

wave i n  the IJth layer a r e  obtained i n  terms of the same proper t ies  i n  the  



lSt layer v ia  a recurrence r e l a t i on  which involves the  product of N 

matrices (2 )  . 

This matrix product i s  a major problem with the  Thornson-Haskell method 

and prevents i t s  more widespread use. Accurate modeling of the  meaim of ten 

requires a large number of layers(due t o  the  r e s t r i c t i o n  t h a t  each layer  

must have constant physical properties)  and computation of the  product of a 

large number of matrices is both time-consuming and inaccurate. The solution 

contains both posi t ive  and negative exponential terms and may suf fe r  from 

numerical i n s t ab i l i t y .  This i n s t a b i l i t y  r e s u l t s  f r o m  the  loss of t h a t  a r i s e s  

a s  the exponentially growing term increases  through the prof i le .  

A s  an example, the  Thomson-Haskell method has been applied t o  t he  

special  case of low-frequency sound propagation i n  the  Arctic Ocean(22,23). 

I n  t h i s  application the  upward-refracting sound speed p ro f i l e  required t he  

division of the  f l u id  i n to  layers of constant speed overlying an i n f i n i t e  

half-space. The half-space was taken t o  be e i t h e r  a high-speed f luid(22)  o r  

a solid(23).  The calculat ion of the  transmission matrices required the  use 

of double precision ar i thmet ic  and l imi ted  depths t o  approximately 1 kilometer. 

These r e s t r i c t i ons  prevent the  ap l l i c a t i on  of the method t o  more general 

deep ocean models. 

The method of c h a r a c t e r i ~ t i c s ( 4 ~ 5 )  can be used t o  solve t he  wave equation 

since it i s  a second order hyperbolic d i f f e r e n t i a l  equation. The character- 

i s t i c s  a re  the  natural  coordinates of the d i f f e r e n t i a l  equation and are 

roughly analogous t o  the  natural  coordinates used i n  multidegree of freedom 

vibration systems. I n  application of the method t o  wave propagation problems, 

an i n i t i a l  wavefront i s  assumed on which the veloci ty  po ten t ia l  and a l l  f i r s t  

order derivatives a re  known. The cha rac t e r i s t i c  equations, which represent 



propagation paths forward of  the  i n i t i a l  wavefront, can be derived from 

the inhomogeneous form of t h e  o r i g i n a l  d i f f e r e n t i a l  equation. A second 

s e t  of equations, t h e  condi t ionals ,  a r e  then derived from the  inhomogeneous 

equation. These two s e t s  of equations a r e  equivalent  t o  t h e  boundary value 

problem. 

Numerical ca lcu la t ion  of the so lu t ion  is  straightforward,  The charact- 

e r i s t i c s  form a grid forward of t h e  i n i t i a l  wavefront. By using t h e  known 

i n i t i a l  condit ions t o  begin in tegra t ion  of the  condit ionals ,  the solut ion 

i s  sequent ia l ly  determined throughout the  region. 

Since the condi t ionals  a r e  usual ly  in tegra ted  numerically, an advantage 

of t h i s  technique i s  t h a t  a l l  e l a s t i c  p roper t i e s  and sound speeds can vary. 

Discont inui t ies  i n  the i n i t i a l  condit ions a r e  a l s o  acceptable and w i l l  

propagate along t h e  g r id .  

The main problem with the  method of c h a r a c t e r i s t i c s  is  s imi la r  t o  the 

i n s t a b i l i t y  problem of t h e  Thomson-Haskell method. The  propagation paths 

represent  increasing and decreasing amplitude terms. A s  the  solut ion is 

computed, the inc reas ins  term tends  t o  swamp the  contr ibut ion of t h e  decreasing 

term, causing a l o s s  of p rec i s ion  and numerical s t a b i l i t y .  

F i n i t e  d i f ference  techniques are most commonly implemented i n  both the  

in tegra t ion and the approximation of  the  appropriate boundary conditions- The 

e r r o r s  due t o  these procedures require  high g r id  densi ty  and a r e s u l t i n g  

increase i n  computation t i n e .  The sequent ia l  nature of t h e  so lu t ion  i s  a l s o  

a d i r e c t  cause of long computation times. 

Two Fourier  transform techniques t h a t  have become important i n  the  

siesmic l i t e r a t u r e  i n  recen t  years  a r e  t h e  ray- theore t ica l  and r e f l e c t i v i t y  

methods. Both methods consider an e a r t h  model consis t ing  of an oceanic 



l i qu id  layer  overlying a so l i d  medium of plane, homogeneous, i sotropic ,  

e l a s t i c  l ayers  and an e l a s t i c  half-space. 

The ray-theoretical  method requires the calculation of the s t ep  function 

response of the  ear th  model fo r  a point  source and receiver i n  the ocean 

layer .  The step-function response involves using generalized re f lec t ion  

and transmission coeff ic ients  t o  obtain an  in tegral  representation of the 

acoust ic  f i e l d .  Next, a source t r ans fe r  function is wri t ten which describes 

the  nature of the  pressure f i e l d  due t o  the underwater explosion t h a t  a c t s  

as  t he  acoust ic  source. T h e  synthetic seismogram is then obtained by convol- 

ving the  s t e p  response w i t h  the time derivative of the source t r ans fe r  

func t ion(6) .  The i n i t i a l  s t ep  of the  r e f l ec t i v i t y  method is the numerical 

in tegra t ion  i n  the horizontal  wave number domain of the  plane wave re f lec t ion  

coefficient(ref1ectivity). This procedure i s  repeated for  each horizontal  

phase ve loc i ty  and the seismogram is  obtained by the  inverse transformation 

of t h e  product of the  source spectrun and the r e f l e c t i v i t y ( 7 ) .  

Since it includes multiple re f lec t ions  and converted waves, the  

r e f l e c t i v i t y  method provides highly accurate synthetic seismograms. However, 

it su f f e r s  from long computation times i f  the re f lec t ion  response has a long 

dura t ion(7) .  The ray-theoretical  method does not have a dependence on response 

durat ion but  instead has a computation time which i s  d i rec t ly  re la ted  t o  the 

number of  multiple re f lec t ions  and conversions t h a t  a re  included(6).  For any 

pa r t i cu l a r  application,  the choice must be made between the e r ro r  resu l t ing  

from omission of these waves and the computation time resul t ing from t h e i r  

inclusion.  Common procedure i s  t o  use the ray-theoretical  method t o  obtain an  

ove ra l l  seismic pic ture  , and the r e f l e c t i v i t y  method t o  study spec i f i c  

d e t a i l s  of the  p ro f i l e  under consideration ( 7 )  . 



OCEAN ACOUSTICS 

In the  ocean acoustic l i t e r a t u r e ,  emphasis has been on the  appl icat ion 

of various numerical techniques t o  the in tegrat ion i n  the water column of t he  

depth-separated wave equation, In  addition, various computer programs have 

been developed which obtain solutions for  those ocean models i n  which t he  

sound speed can be wri t ten i n  terms of specified mathematical functions. 

Final ly ,  Fourier transform theory has been used t o  study acoust ic  propagation 

f o r  given source and receiver con£ igurations . 
The Naval Research Laboratory(N&) programs FLUID and SOLID are  examples 

of the  d i r ec t  application of f i n i t e  difference techniques t o  the  solution of 

the  homogeneous wave equat ion( l0) .  The primary goal i n  each i s  the  determin- 

a t ion  of the eigenvalues and eigenfunctions of the  normal mode £ o m  of the  

solution.  The physical model considered is a f l u i d  layer with a specified 

sound speed pro f i l e  t h a t  over l ies  a half-space which is  e i t h e r  f l u i d  of so l i d .  

T h e  e l a s t i c  parameters of the  half  space are constants, The i t e r a t i o n  proced- 

ure employed involves integrat ion t o  obtain a t r i a l  eigenfunction for  an 

estimated eigenvalue and adjustment of the estimate depending on the e r ro r  

obtained between the value of the  eigenfunction a t  the surface and the surface 

boundary condition. This procedure i s  repeated u n t i l  the error a t  the surface 

is within a prespecified bound. 

Expression of t he  d i f f e r e n t i a l  eguation and the  boundary conditions i n  

f i n i t e  difference form is straightforward. For multilayered work the pawticu- 

l a r  form of the boundary condition approximation is important both with 

regard t o  the accuracy of the  solution and w i t h  regard t o  the  nature of t he  

compressional-shear coupling i n  the  e l a s t i c  medium. The e l a s t i c  multilayered 

model would require consi6eration of t h i s  topic.  It is  l i k e l y  t h a t  the 



extension t o  the more complex model would a l so  cause a subs tan t ia l  increase 

i n  computation time. 

The Applied Research Laboratory a t  the univers i ty  of Texas has developed 

a normal mode program which a l so  obtains the  efgenvalues and eigenfunctions 

of the homogeneous equat ion( l2) .  I t  employs numerical in tegrat ion as well  as 

a pa ra l l e l  shooting technique f o r  e f f i c i e n t  computation of each mode and such 

of i t s  properties as group veloci ty  and at tentuat ion.  Pa ra l l e l  shooting 

involves parameterizing the veloci ty  po t en t i a l  by introducing an independent 

variable,  and dividing the depth coordinate in tosubintervals(31) ,  The 

d i f f e r en t i a l  equation i s  then wri t ten as a f i x s t  order system where each member 

corresponds t o  a pa r t i cu l a r  subinterval and the coupling of the equations is 

expressed by the appropriate continuity conditions. Using an  assumed 

eigenvalue, the system i s  in tegrated towards the  sound channel. The secant 

method i s  used t o  improve the estimate and seduce t he  error between the upward 

and downward integrated terns  t o  within the  desired bounde- Although 

reasonably e f f i c i e n t  i n  i t s  present  application,  the  technique su f f e r s  from 

the same drawbacks t h a t  influenced the NRL programs, when applied t o  the more 

complex model. 

The parabolic wave equation method(l3) i s  a technigue of solving the 

inhomogeneous wave equation t h a t  i s  par t icu la r ly  useful  fo r  studying long 

range propagation i n  the ocean. It allows both depth and range-dependent 

sound speed prof i les .  The two-dimensional parabolic wave equation i s  obtained 

from the  e l l i p t i c  wave equation by replacing the  veloci ty  po ten t ia l  with the 

product of a Bankel function and an envelope function, and assuming tha t : l )  

the receiver i s  i n  the  f a r  f i e l d ,  2) only small angles t o  the horizontal  a re  

t o  be considered, and 3) motions are uncoupled i n  azimuthal di rect ions .  The 



in tegra t ion  i s  then performed by using a f i n i t e  d i f ference  Four ier  algorithm. 

Since the parabolic equation is v a l i d  only i n  the f a r  f i e l d ,  i t s  solut ion 

must be matched with a near f i e l d  so lu t ion ,  which i s  known f o r  simple sources. 

The upper boundary condit ion i s  spec i f i ed  through the use of an image source 

out of phase with the  actual source. The bottom outgoing wave boundary condi- 

t i o n  is  obtained by introducing a l a r g e  a r t i f i c i a l  absorption term which 

prevents the  backscattering of waves i n t o  the  ocean. The v a l i d i t y  of t h i s  

assumption i s  s t i l l  i n  ques t ion( l3 )  . 
Inaccuracies a r i s e  from the s m a l l  angle approximation and at discontin-  

u i t i e s  i n  sound speed and densi ty .  Gharac te r i s t i ca l ly ,  t h e  technique has 

long computation times, although recen t  vers ions  have seen s u b s t a n t i a l  

improvement ( 1 3 )  . 
The Fas t  F ie ld  Program (14) is an app l i ca t ion  of Fourier transform 

techniques t o  the solut ion of the inhomogeneous wave equation. The acous t i c  

p o t e n t i a l  i s  considered t h e  output  of a l i n e a r  system and i s  the r e s u l t  of the  

transform of t h e  product of  the  t r a n s f e r  function of the  medium and t h e  

transform of the  source waveform. The t r a n s f e r  function of the medium i s  

i t s e l f  a Fourier-Bessel transform and conta ins  all information about the 

environment. These i n t e g r a l s  a r e  evaluated using the f a s t  Fourier  transform. 

Computation time is t h e  major problem with the FFP. The Green's function 

solut ion must be obtained e i t h e r  by numerical in tegra t ion  o r  by r e s t r i c t i n g  

the  sound speed p r o f i l e  t o  s i t u a t i o n s  f o r  which known solut ions  a r e  avai lable .  

I n  the  l a t t e r  case, recurrence r e l a t i o n s  must be evaluated t o  obta in  the 

Green's function. These recurrence r e l a t i o n s  s u f f e r  from numerical i n s t a b i l i t y  

and are  time-consuming t o  evaluate.  

Green's functions obtained by numerical in tegra t ion  a r e  usua l ly  s e n s i t i v e  



to round-off errors and also substantial computer time. They are constructed 

by integrating the homogeneous,equation for two solutions that independently - 

satisfy the surface and bottom boundary conditionst a similar procedure is 

used in section 2.1 to obtain an exact solution for a simple shallow water 

ocean model), The emphasis of this thesis will be on obtaining the Green's 

function through a state variable representation cf the wave equation. This 

solution technique will be shown to be nurfierically superior toztBese:two 

procedures, In addition, when combined with a new technique of evaluating 

the Hankel transform(l5), a substantial improvement in computational efficiency 

is expected. 

A variety of other normal-mode related programs exist which do not fall 

in any of the above classifications, These include the works of Bucker (9) , 

Stickler(lG), and Mckisic and Hamm(l7). The first two authors specify the 

sound speed profileas mathematical functions for which the solution is known. 

Mckisic an6 Hamm have applied a new method of solution of eigenvalue 

problems to the depth-dependent wave equation. The method assumes exponential 

solutions where the functions in the exponents are specified by Riccati 

equations. The exponent functions can be obtained by an iteration procedure 

on the Riccati equations, The additional complexity of the elastic multilayered 

model is such that the use of any of these techniques in a computer program 

would be time-consuming and inefficient. 

This thesis will study a new technique far evaluating the Green's function 

solution to the inhomogeneous depth-separated wave equation. The technique 

involves the use of a state variable representation of the original differential 

equation that was originally proposed by Baggeroer(l8) to obtain the 

eigenvalues of the homogeneous or normal mode program. Emphasis will be on 



the study of the  technique and i ts  po ten t ia l  i n  the solut ion of acoustic 

propagation problems. The numerical advantages of the representation w i l l  be 

apparent for  the  oceanic model t h a t  includes shear wave propagation i n  the  

bottom. 

Chapter I w i l l  present the mechanics of the state variable system and 

introduce t he  continuity conditions required a t  the boundaries of each layer .  

Chapter I1 w i l l  compare the s t a t e  variable solution with known solut ions  

for  two simple shallow water models. 

Chapter I11 w i l l  discuss the use of complex sound speeds t o  model 

bottom at tentuat ion and invest igate  an associated numerical i n s t ab i l i t y .  It 

w i l l  conolude w i t h  a discussion of a deep ocean p ro f i l e  application and a 

s ens i t i v i t y  problem tha t  a r i s e s  when the bottom i s  modelled as a layered 

e l a s t i c  medium. 



1. DERIVATION OF STATE VARIABLE ALGORITHM 

Certain assumptions and def in i t ions  a r e  required t o  simplify the 

ocean model. These are  presented in Section 1. The depth-separated 

wave equations a re  then derived and s t a t e  var iable  theory used t o  

obtain the  s t a t e  representations. Surface and basement boundary 

conditions a re  specified i n  Section 3 ,  along with the  cont inui ty  

conditions required a t  the  in te r face  between any two layers .  Final ly ,  

Section 4 introduces a magnitude and phase representation of the  s t a t e  

equations t h a t  i s  numerically superior t o  the l i nea r  s t a t e  equations. 

1.1 SPECIFICATION OF THE OCEAN MODEL 

For the  purpose of t h i s  discussion, the ocean i s  assumed t o  be an 

compressible f l u id  media of constant depth. The seahed is modeled a s  

an e l a s t i c  medium consist ing of a specif ied number of hor izontal ,  homo- 

geneous isotropic  layers i n  which both compressional and shear waves 

can propagate. The sound speed of the ocean can vary i n  the v e r t i c a l  

d i rect ion.  All e l a s t i c  l ayers  a re  r e s t r i c t e d  t o  have constant sound 

speeds and e l a s t i c  properties.  Compxessional and shear speeds C and 

are defined i n  terms of Lame's constant A ,  r i g i d i t y  v ,  and density p 

follows : 

( a l l  variables are defined i n  Appendix I ) .  I t  should be noted t h a t  the 

technique t o  be described requires  constant e l a s t i c  parameters only i n  

that the standard derivation of the wave equation f o r  e l a s t i c  media makes 

t h i s  assumption (19). The f i n a l  requirement of the model is  t h a t  coupling 
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between compressional and shear waves occurs only  a t  the  i n t e r f a c e  

between l ayers ,  This coupling i s  spec i f i ed  by t h e  con t inu i ty  of v e r t i c a l  

and hor izonta l  ve loc i ty  and normal and shear stress. Figure 1.1,l dep ic t s  

the ocean-seabed model. 

For convenience, a Cartesian coordinate system i s  employed. The 

depth-separated equation t h a t  r e s u l t s  i s  i d e n t i c a l  t o  t h a t  r e s u l t i n g  from 

the  use of a c y l i n d r i c a l  coordinate system ( 3 2 ) .  Therefore, the p o t e n t i a l  

of t h e  technique f o r  use with t h e  FFP o r  with the Hankel transform 

algorithm of reference (15) can s t i l l  be evaluated. I n  addi t ion ,  the 

problems associated wi th  expressing the  con t inu i ty  condi t ions  between 

e l a s t i c  layers  i n  c y l i n d r i c a l  coordinates can.be  avoided. 

1.2 DERIVATION OF THE STATE EQUATIONS 

Consider t h e  genera l  form of  the acous t i c  wave equation f o r  a 

compressional ve loc i ty  p o t e n t i a l  

Assuming harmonic t i m e  dependence and hor izon ta l  plane wave propagation 

( the f a r  f i e l d )  the s u b s t i t u t i o n  

~ f )  

reduces 1 . 2 . 1  t o  

Following the  same procedure f o r  a shear ve loc i ty  p o t e n t i a l  g ives  t h e  

r e s u l t  



It is useful to define normalized sound speed and horizontal wave 

number functions as well as a depth parameter that is normalized by the 

longest wavelength of the sound speed profile (18)- The resulting forms 

of the differential equations are 

Compressional: 

Shear : 

wavelengths corresponding to the compressional and shear maximum wave- 

lengths, respectively. This is necessary because the normalization 

process requires that 



Had a s ingle  normalized depth parameter been used, both of equations 

1.2.7 could not have been sa t i s f i ed .  This becomes c lear  upon the  

subs t i tu t ion  of 1,2.5 c & d and 1.2.6 c & d in to  1.2.7. Since it i s  

preferable t o  sca le  1.2.3 and 1.2.4 i n to  a form which r e t a in s  t h e i r  

mathematical s imi l a r i t y  ( i .e. ,  1.2.5a and 1.2.6a), the independent 

depth parameters a re  introduced. Further considerations regarding 

the  use of t he  two depth parameters w i l l  be discussed i n  Section 1.4. 

A t  t h i s  p o i n t ,  it i s  important to s t a t e  the re la t ionship between 

the  hor izontal  wave numbers V and V . Consider the  case of a plane 
S 

compressional wave incident  from a f l u i d  onto an e l a s t i c  s o l i d  as  i s  

depicted i n  ~iguref .2.L Potent ia l  expressions f o r  the various waves are  

By Sne l l ' s  law, the  wave numbex p a r a l l e l  t o  the boundary must be the 
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Since 

it follows t h a t  V = . vs 

Representation of systems i n  s t a t e  form i s  common i n  the con t ro l  

theory l i t e r a t u r e  (20,21). The general ob jec t ive  i s  t o  model t h e  

p a r t i c u l a r  process by a system of f i r s t  o rde r  ordinary d i f f e r e n t i a l  

equations of t h e  form 

where - X ( f )  are  the  s t a t e s  of t h e  process and - U ( f )  t h e  con t ro l  inputs.  

Since control  processes of t h i s  form have been well s tud ied ,  representa-  

t i o n  of the  acoust ic  wave equation i n  state form i s  s t ra ight forward.  

The f i r s t  s t e p  i n  the  de r iva t ion  is t o  define two s t a t e  var iables .  

The ve loc i ty  p o t e n t i a l ,  $b ( f ) , being of prime importance here ,  i s  

spec i f i ed  a s  the  f i r s t  va r i ab le .  The second var iab le ,  P ( f )  , has no 

d i r e c t  

1 
acoust ic  s i g n i  f icance.  The s t a t e  system i s  

where the  dot  r e f e r s  t o  t h e  de r iva t ive  wi th  respect  t o  f . 
The coef f i c ien t  matrix - A i s  determined by matching 1 . 2 . 9  t o  the 

o r i g i n a l  depth-separated wave equation 1.2.5. This is done by taking 

the  de r iva t ive  of 1.2.9a with respect  t o  f and s u b s t i t u t i n g  i n  1.2.9 



for all first order derivatives. The second order equation that results 

Matching the 

are obtained 
b 

coefficients of 1.2.10 with those of 1.2.5a, three equations 

for the six unknowns of 1.2.9. 

Exact values of the coefficients A ( f ) and U . ( 5 ) can be chosen in 
ii L 

any manner that satisfies all of equations 1.2.11. Particularly 

convenient is A 12(/) = 1 and Ul( f )  = O r  which reduces 1.2.11 to 

= $y/) - v- 2 
,j / / ct)  + , 2 c f  + A z/ CI) 

The well-known Riccati equation can be obtained from 1.2.12a by 

the substitution f ( f ) = -A 11 ( 5 ) -  



The above der ivat ion i s  a r e p e t i t i o n  i n  g r e a t e r  d e t a i l  of reference (18) ,  

which a l s o  discusses the choice of A ( f ) , That choice i s  
21 

The compressional s t a t e  system is  

Notice t h a t  the  R i c c a t i  equation i s  a function of t h e  sound speed p r o f i l e  

only and i s  independent of wavenumber. R icca t i  equations have been w e l l  

s tudied  and 1.2.16 can be numerically in tegra ted .  The coef f i c ien t  matrix 

i n  1,2.15 i s  determined by t h e  Ricca t i  so lu t ion  and the  equations can 

then be in tegra ted  t o  ob ta in  t h e  velocity p o t e n t i a l .  

The shear s t a t e  system i s  

A t  t h i s  point ,  the  advantages of t h e  s t a t e  representa t ion a r e  probably 

not  obvious. They become more apparent a s  the  s t a t e  equations a r e  

implemented i n  a computer program. The s impl i f i ca t ion  from a second 

t o  a f i r s t  order  system allows the use of numerical in tegra t ion  tech- 



niques which are easier to apply than those for the second order system 

and for which approximation errors are less crucial, The state systems 

also allow the analysis of sound speed profiles which are moxe xepresenta- 

tive of the real ocean, Finally, the analogy to the FFP is apparent, 

with the extension to long-range propagation applications theoretically 

straightforward, 

1.3 CONTINUITY CONDITIONS 

In general, continuity of nine quantities is required at the inter- 

face between two elastic layers. Velocity components comprise three of 

the quantities and stress components the remaining six. The velocity 

terms follow from the definition of compressional and shear velocity 

potentials, which is 

For a homogeneous media in a Cartesian coordinate system with wave 

propagation occurring only in two dimensions, the "V" velocity and all 

Y terms can be neglected, The remaining horizontal and vertical velocity 

terns, neglecting the exponential of equation 1.2.2, are 

dz- - - - = i z d ' # ~ f ) - - -  
J X  d t  L d fs 

Since equations 1.2.5 and 1.2.6 were scaled using different normalized 

depth variables, notice that #' and are functions of f and f s r  
respectively. The integration size for 4 and will in general be 

different. However, the coupling at each interface requires that they 



be expressed i n  the cont inui ty  condit ions with respec t  t o  the  same 

coordinate.  Since 

- L. 
At df  dt .- 

/ 6'41.' d p f 1 4 =  - 
dt - dl', dt T i  d f ,  

t h i s  has 

For 

i n  tems 

i n  f ac t  been done i n  1.3.2, 

an i s o t r o p i c  media, the  six s t r e s s  components can be w r i t t e n  

of two elastic parameters: the  r i g i d i t y  p and the ~am6 constant  

A. The stress expressions, wr i t t en  i n  terns of the  ve loc i ty  components 

and the  d i l a t i o n  6 , a r e  1 

The assumptions of t h e  model reduce the  above s i x  expressions t o  

the normal s t r e s s  5 t and the  t angen t ia l  stress 5% . Expressed i n  

p o t e n t i a l  fom, they a r e  

p-z t 
C 

fs 

It is  important t o  note t h a t  the  reduction of 1.3.1 t o  1.3.2 and 1.3.3 

t o  1.3.4 is  poss ib le  because of the use of an X,  Y ,  Z geometry and the 



homogeneous, isotropic media assumption (33). Extension to a cylindrical 

geometry, as may be desirable for future applications, will require 

reconsideration of the velocity and stress equations. 

The result of these simplifications is that there are four quantities 

that must be continuous across the interface between any two elastic 

layers, The formal expression of these continuity conditions, as shown 

Pts; c&)= G a ; w  L 4.) 
; c )  = & x ; ,  c HI 

At the interface between the ocean and the uppennost elastic layer, 

a simplification of these conditions is in order. First, since the fluid 

is not allowed to hold shear, the tangential stress in the solid must 

vanish. Second, continuity of horizontal velocity is not required since 

slippage can occur. The formal expressions are 

k, C4) = % w) 
2 , )  = 5, (3) 

0 = Gx* C H )  
The bounda-ry condition at the ocean's surface is that the normal 

stress must vanish, From 1.3.4a and 1.2,5a, the expression for this 

condition is 

The bottom boundary condition can take either of two forms. For an 

N* layer bounded by a rigid surface, both velocity components must 

vanish. 
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For an  xth layer  bounded by a propagating, i n f i n i t e  e l a s t i c  half  

space, constrained motions a re  required. 

The boundary value problem has now been completely specified 

except f o r  the  exact nature of the solution. The homogeneous shear 

s t a t e  equations a re  exci ted a t  the ocean bottom by the  coupling of #(f) 

and ~(0, expressed by 1.3.6,and the  shear solut ion consis ts  sole ly  of 

the integrat ion of 1.2.17 sa t i s fy ing  1.3.6 and e i t h e r  1.3.8 or  1.3.9. 

The compressional state equations a re  inhomogeneous and their solution 

must consis t  of some combination of homogeneous and par t icu la r  t e rns  

which s a t i s f y  1.3.7 and e i t h e r  1.3.8 o r  1.3.9. Formally, the solutions 

a re  

Compressional : 

Shear: 



T h e  boundary condit ions f o r  the  particular solut ion depend on the 

in tegra t ion  d i rec t ion .  Baggeroer (18) d iscusses  the  convenience of 

in tegra t ing  up t h e  p r o f i l e ,  and the  r e s u l t i n g  choice of 

These i n i t i a l  condit ions r e s u l t  i n  a p a r t i c u l a r  so lu t ion  that i s  i d e n t i c a l l y  

zero below t h e  source. 

Equations 1.3.12 allow expression of t h e  bottom boundary condi t ions  

s o l e l y  i n  t e r n s  of the  homogeneous p o t e n t i a l s .  For the  r i g i d  bottom case 

I p(f;CIV*hJ - 0 i z 7 p b H  c'%@) - - - 
2.45 

Q' $3 

. 
1.3.13 

.--LI d4Jfl'%@) + ;,,p gc2s,=a 
7, df 

For t h e  propagating basement model, the assumption of constant  sound 

speed allows an analytic solut ion t o  be obtained.  T h a t  so lu t ion  i s  

From 1.3.9 



Both 1.3.13 and 1 .3  . l 5  contain four  unknowns and the re fo re  have two 

apparently a r b i t r ~ y  constants .  A s  in tegra t ion  proceeds upward, however, 

these  constants  are speci f ied  by other  requirements of the model. In 

p a r t i c u l a r ,  equation 1.3.6c, which must be s a t i s f i e d  a t  t h e  ocean-sediment 

in te r face ,  determines t h e  t h i r d  unknown by expressing the required  

re la t ionsh ip  between t h e  compressional and shear f i e l d s .  The f i n a l  

unknown is spec i f i ed  by the surface boundary condit ion.  Recall t h a t  

t h e  p a r t i c u l a r  so lu t ion  can be in tegra ted  using 1.3.12. Therefore, 

from 1.3.7, 

and the  boundary value problem i s  completely speci f ied .  

Since t h e  boundary condit ions 1 . 3 . 6 ~ .  1.3.7,  and 1.3.13 o r  1.3.15 

are s p l i t  ( t h a t  i s ,  evaluated a t  d i f f e r e n t  po in t s  i n  t h e  depth p r o f i l e ) ,  

it i s  useful  t o  consider the general  step-by-step procedure t o  be 

employed i n  solving the  boundary value problem. F i r s t ,  the  p a r t i c u l a r  

solut ion is  obtained. For the  i n i t i a l  condit ions of 1-3-12, Qp (()and 

6 (0 w i l l  be non-zero from the  source point t o  the surf  ace. Second, 

two unknowns a r e  chosen from the  four  i n  1.3.15 (for a propagating base- 

ment) and given u n i t  amplitude. For example, 

For s impl ic i ty  i n  s a t i s f y i n g  1.3.6c, the  t h i r d  step is  t o  i n t e g r a t e  

upward using only the  compressional f i e l d  i n  the basement as the i n i t i a l  

condition (assuming f o r  t h e  moment zero shear ht, ) .  Compressional 



and shear f i e l d s  will be excited i n  a l l  e l a s t i c  l ayers  and integrat ion 

w i l l  proceed t o  the uppermost in te r face  of the  p r o f i l e  where 1 . 3 . 6 ~  w i l l  

not i n  general  be s a t i s f i ed .  Next, the shear f i e l d  i s  used as the i n i t i a l  

condition a t  H (with a zero compressional field) and integrat ion again 
n 

w i l l  proceed upward t o  the  uppermost in terface.  

A t  t h i s  point ,  t w o  independent solut ions  w i l l  have been obtained 

for the e l a s t i c  l ayers ,  nei ther  of which s a t i s f i e s  1 . 3 . 6 ~ .  The l i nea r i t y  

of 1.2.15 and 1.2.17 allow superposition of these solut ions  i n  such a 

manner as t o  s a t i s fy  1 .3 .6~ .  This superposition amounts t o  a scal ing of 

the sheax solution t o  insure t h a t  the  tangent ia l  s t r e s s  a t  H 1 vanishes. 

This procedure spec i f ies  the t h i r d  constant as  was discussed e a r l i e r .  

Equations 1.3.6 a & b a r e  used t o  obtain the  appropriate compressional 

f i e l d  quan t i t i e s  i n  the ocean and in tegra t ion  proceeds t o  the surface t o  

obtain C& The superposition used e a r l i e r  determined the  re la t ionship 

between the  compressional and shear f i e l d s  but not the  absolute magnitude 

of e i t h e r  ( the  fourth constant) and i n  general  1-3-16 w i l l  no t  be 

s a t i s f i ed .  Scaling of the  e n t i r e  compressional and shear solut ions  by 

the constant 

w i l l  insure t h a t  the surface boundary condition is  sa t i s f i ed .  

The compressional and shear solut ions  a re  



T h i s  completes the specif icat ion of the boundary value problem. 

The equations can now be programmed and solut ions  obtained f o r  any 

ocean and seabed parameters. It has been found, however, t h a t  a 

representation independent of absolute magnitude is more convenient 

numerically. This representation w i l l  be presented i n  Section 1.4. 

1.4 PHASE PLANE ?XIPWSENTATION 

The s t a t e  equations of Section 1.3 can be integrated t o  obtain the  

solut ion for  any given ocean model. However, the exponential nature of 

t he  solution causes large amplitude terms t o  a r i s e ,  espec ia l ly  i n  deep 

ocean examples. Baggeroer (18) introduced a magnitude and phase 

representation of the s t a t e  equations which i s  numerically preferable.  

This representation allows integrat ion of d i f f e r e n t i a l  equations which 

are independent of the  absolute magnitude of ( f ) and a ( 6)  . A s  shown 

i n  Figure 1.4.1, the respective var iables  are  defined 
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Under t h i s  transformation, the s t a t e  equations can be derived t o  be 

The surface and propagating basement boundary conditions become 

The r i g id  bottom boundary conditions 1.3.13 and 1.3.5 and 1.3.6 

do not transform i n t o  convenient magnitude and phase expressions, When 

they a r e  required. the si~plest procedure is t o  return t o  the l inear 

plane, obtain the desi red r e su l t  and transform back t o  the  phase plane. 



Implementation of these equations is straightforward. The pa r t i cu l a r  

solution i s  integrated i n  the linear plane,  The homogeneous solut ions  

are obtained i n  the phase plane and the t o t a l  solution i s  given by 

Notice t h a t  the  scal ing constant of 1.3.28 has been included i n  1.4.13. 

In  the  following chapter, these equations w i l l  be integrated for 

two spec i f ic  ocean-seabed models and compared with known Green's function 

solutions.  



2 .  CONFIRMATION OF STATE VARIAl3LE ALGORITHM 

At any given wavenumber, the Green's function solut ion t o  the wave 

equation is equivalent  t o  the  superposit ion of an i n t e r f e r i n g  set of 

up and down t r a v e l l i n g  plane waves. Construction of the s o l u t i o n  by 

an appropriate combination of plane waves w i l l  provide an accura te  t e s t  

the  theory of Chapter I. I n  Chapter I1 an endpoint method of const ruct -  

ing  the  Green's function w i l l  be used t o  obta in  t h e  exact  so lu t ion  of t h e  

wave equation f o r  t w o  simple shallow water oceanic models. The s t a t e  

variable so lu t ion  w i l l  then be compared t o  the  exact  so lut ion.  

2.1 SINGLE LAYER OCEAN EXACT SOLUTION 

An exact  so lut ion of the  inhomogeneous depth-separated wave equation 

can be w r i t t e n  fox the  simple model o f  a constant  sound speed f l u i d  l a y e r  

overlying an i n f i n i t e  e l a s t i c  half space. Figure 2.1.1 dep ic t s  t h i s  

model, which i s  commonly re fe r red  t o  as the  general ized Peker is  wave- 

guide. 

The assumption of a pressure r e l e a s e  suxface a t  z = 0 reduces R 
s t  

the surface r e f l e c t i o n  coef f i c ien t ,  t o  t h e  value -1. The remaining three,  

coef f i c ien t s  do not i n  general  reduce to  such a convenient value,  and must 

be wr i t t en  i n  terms of t h e  appropriate e l a s t i c  parameters and wave numbers. 

For a f l u i d  wi th  K = 
1 

the  hor izon ta l  and v e r t i c a l  wave numbers 
C 
1 

a r e  defined i n  terms of t h e  angle of incidence 8, a s  follows: 

The corresponding expressions i n  the bottom a r e  
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The angles , 6?? , and f a r e  measured from the z-axis t o  the 
2 

respective propagation vectors as shown i n  Figure 2 . 1 . 1 .  Brekhovskikh(25) 

wri tes  the re f lec t ion  and transmission coeff ic ients  i n  terms of the 

impedances z of the media. H i s  expressions are:  
i 

The common oceanic model has C 
2 

> C1. T h e  magnitude of the re f lec t ion  

coef f ic ien t  V can be characterized by considering the various wave number 
21 

domains t h a t  occur f o r  C < C and for  C > C1 (Cs < C 2 )  
s 

2 
1 S 2 2 

For the case C < C < C2, Figure 2.1.2ar the  magnitude of V is 
S 2 1 21 

less than 1.0 f o r  a l l  r e a l  incident  angles , since from Sne l l ' s  l a w  
1 

r2 is  also real and the r e su l t i ng  shear wave i n  the bottom i s  propagating. 

The presence of a propagating wave, compressional o r  shear, i n  the  bottom 

s ign i f i e s  energy l o s t  from the water column and hence IV I < 1.0. When 
21 
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inhomogeneous and the shear wave propagating. For < @ both waves 
C 

are propagating. 

For the case C < C < C Figure 2.1,2b, t o t a l  i n t e rna l  r e f l ec t i on  
1 S,  2' 

2 CJ I I = 1 occurs for  8/ 7 5 ; ~ ; ' -  
v21 

B a t h  t he  compressional and the shear 
=sP -1 cj - /  C, 

waves i n  the bottom are inhomogeneous. When S)j - > q 7 % . ~  - , =** * = 2  

IV211 < 1 and shear propagates i n  the bottom. For L .5> -1 2 
both 

=2 

waves again propagate and I V  I < 1. Typical p lo t s  of the  re f lec t ion  
21 

and transmission coef f ic ien ts  are given i n  (25)  and ( 3 3 ) .  

I n  general, f o r  the d i f f e r en t i a l  equation 

the  solution obtained v ia  the  endpoint method (24,3O) has the form 

where W i s  the Wronskian 

U (z)  and Ub(z), w h i c h  satisfy the upper and lower boundary conditions 
a 

respectively, a r e  linearly independent solut ions  of the homogeneous 

equation . The compressional and shear solut ions  i n  the lower half  



space satisfy t h e  equations 

Compressional: 

Shear : 

and can be w r i t t e n  as 

U (2) and UZs(z) are so lu t ions  of 2.1.8 and 2.1.9 t h a t  s a t i s f y  the 
2 

boundary condit ion a t  z = H and the  rad ia t ion  condit ion as z + =. Note 

t h a t  the so lu t ions  2.1.10 and 2.1.11 are not, s t r i c t l y  speaking, Green's 

functions. The nota t ion G and G has been employed f o r  convenience. 
2 2s 

For the s ing le  layered ocean of Figure 2.1.1, t h e  various expressions are 



[ "A, ' G b ~ t , t , )  =-21sX&,a> e 2.1.17 
+ %,e e 



Equations 2.1.16 through 2.1.20 comprise the  exact  so lu t ion  f o r  the  

model of Figure 2.1.1. A s  was discussed e a r l i e r ,  the  compressional and 

shear waves i n  t h e  bottom axe e i t h e r  propagating o r  exponential ly decay- 

ing  (inhomogeneous) depending on the  inc iden t  angle 8 1- I t  should a l s o  

be noted t h a t  the Wronskian is  i d e n t i c a l l y  zero at d i s c r e t e  mode wave- 

numbers and the re fo re  the  Green's funct ion solut ion diverges i n  those 

cases. P e r f e c t l y  trapped d i s c r e t e  modes occur when C 1 < S 2  < C2 and a r e  

l imi ted  t o  the wavenumber domain where IV 1 = 1.0. Sect ion 2.2 w i l l  
2 1  

compare t h e  above so lu t ion  wi th  t h e  s t a t e  var iable  solut ion.  

2.2 S1NGI;F LAYER OCEAN SOLUTION COMPARISONS 

R e a l i s t i c  values of sound speeds and e l a s t i c  parameters f o r  Figure 

2 . 1 . 1  can be obtained from the geophysical l i t e r a t u r e .  Hamilton (28,29) 

suggests  t h i s  model a s  common i n  cont inenta l  shelf areas. The t a b l e  

below d e t a i l s  the  information t o  be used i n  t h i s  sec t ion.  These para- 

meters correspond t o  an ocean bottom of sand o r  s i l ty-sand of unknown 

depth. 

Frequency 

Source Depth 



I-r 

Depth 

0.405 l f5  dynes cm 
2 

100 m 

The water ,and bottom wave numbers fo r  t h i s  example a r e  

-1 
vw = 0.0667 m 

Solut ions  t o  1.2.5 for wave numbers V such t h a t  VW > B > VB w i l l  c o n s i s t  

o f  s inusoids  i n  t h e  f lu id  l ayer  and decaying exponentials  i n  t h e  bottom. 

A s  discussed e a r l i e r ,  t h e r e  are no pe r fec t ly  trapped d i s c r e t e  modes f o r  

t h i s  model, s ince  the  parameters and sound speeds correspond t o  Figure 

2 . 1 . 2 ~ .  The shear contr ibut ion is so small,  however, t h a t  the  response 

funct ions ,  when computed a t  the modal wavenumbers of the  equivalent  two 

f l u i d  case ,  w i l l  appear unchanged from the mode shapes. A d i scon t inu i ty  

i n  the s lope  of t h e  response function w i l l  occur a t  the  source for  a l l  

o t h e r  wave numbers. For wave numbers V < VB a propagating compressional 

wave w i l l  be exci ted  i n  t h e  bottom. Since V BS > VH a propagating 
2 

shear  wave w i l l  be generated i n  t h e  bottom. 

Figures 2.2 .I, 2.2.2, 2.2.3, and 2.2 -4 display  the  response funct ions  

obtained from t h e  two techniques f o r  the hor izon ta l  wave numbers V = 0.066, 

0.061, 0.059, and 0.055 ( t h e  term response funct ion is defined as t h e  

response of t h e  given ocean model a t  the hor izon ta l  wavenumbex V t o  a 

source a t  depth z 0 and is synonymous with t h e  term Green's function.)  

Agreement between t h e  two so lu t ion  techniques i s  q u i t e  good i n  a l l  cases.  

Notice a s l i g h t  decrease i n  accuracy a s  V decreases.  This phenomenon 











is  coupled with t he  integrat ion g r id  density and w i l l  be discussed i n  

the next section. 

2.3 INTEGRATION GRID DENSITY REQUIREMENTS 

Section 2 .2  showed t h a t  the  s t a t e  variable technique does produce 

accurate r e su l t s .  To determine the  eff ic iency of the algorithm, the 

integrat ion gr id  s i ze  t h a t  is  required t o  produce these solut ions  must 

be investigated.  Minimum computer time w i l l  occur when t h e  number of 

in tegrat ion points  is  minimized. 

The Nyquist sampling theorem of communication theory s t a t e s  the  

re la t ionship between the  sampling period of a process and the  minimum 

period present i n  the  data t o  be sampled that i s  required t o  enable 

exact reconstruction of the data.  A comparable re la t ionship f o r  t h i s  

appl icat ion would be one which spec i f ies  the number of in tegrat ion 

points  required per  spa t i a l  wavelength t o  insure solut ion accuracy. 

Defining the  v e r t i c a l  spa t i a l  wavelength X s as 

the nuxnbeu: of in tegrat ion points  per wavelength i s  defined as 

where N is  the t o t a l  number of in tegrat ion points  and H the basement 
I N 

depth. 

A s impli f ied version of Figure 2.1.1 w i l l  be used t o  study the  



v a r i a t i o n  of solut ion accuracy with g r i d  s i z e ,  The ocean bottom w i l l  

be assumed f l u i d  with a sound speed of 2000 m/s  and Lam6 constant  of 

2 
6.0 dynes/cm . Source depth and hor izonta l  wave number w i l l  

-1 
be held  constant  a t  30 m and 0.062 m . Brief comments w i l l  be made 

s h o r t l y  on the  e f f e c t  on so lu t ion  accuracy of varying these parameters. 

Figures 2.3.1 through 2.3. 5 a r e  the  response functions obtained 

by i n t e g r a t i n g  with t h e  values  of N ranging from 33.25 down t o  2.1, 
h 

as is noted below each f i g u r e .  Notice t h a t  exce l l en t  r e s u l t s  a r e  

obtained f o r  N = 33.28 and only s l i g h t  degradation i n  accuracy v i s i b l e  
h 

f o r  NA = 16.6. More s u b s t a n t i a l  e r r o r  i s  noticed f o r  N = 8 . 4  and 
h 

e n t i r e l y  unacceptable so lu t ions  obtained with N = 4.2 and NA = 2.1. 
h 

Repeated computation f o r  a v a r i e t y  of bottom parameters and source 

depths has  shown t h a t  the  value of Nh = 1 6  i s  the  minimum f o r  which 

accura te  solut ions  can be expected. I n  a few individual  cases ,  values 

as l o w  a s  12 o r  13 produced acceptable r e s u l t s  but  these cases were 

n o t  common. Nor d id  any unique c h a r a c t e r i s t i c  e x i s t  which would enable 

t h e  a p r i o r i  knowledge t h a t  NA = 1 2  was acceptable. S imi lar ly ,  

inc reas ing  N above 16.0 did not  uniformly increase  so lu t ion  accuracy X 

except  a s  a function of hor izon ta l  wave number, which w i l l  be discussed 

below. Therefore, t h e  value of N = 16.0 appears t o  be most appropriate.  
h 

Decreasing the  hor izon ta l  wave number V ,  which decreases t h e  

s p a t i a l  wavelength h does have an influence on solut ion accuracy. 
s r  

Consider Figures 2.3. 6 , 2.3. 7 , and 2 .3 .8  . The ocean model i s  

-1 
i d e n t i c a l  t o  t h a t  used above except t h a t  V = 0.058 m . The values 

of NA are 17, 34, and 51. The e r r o r  f o r  N = 17 i s  g rea te r  i n  Figure X 
-1 -1 

2 - 3 . 6  f o r  V = 0.058 m than i n  Figure 2.3.2 f o r  V = 0.062 m . Also, 















-1 
Figure 2.3.7 Response function for two fluid ocean model with V=0.058m . 

Basement depth=lOOm. Source depth=30m. N =34. 





t h e r e  i s  l i t t l e  d i f ference  between 2 . 3 ,  7 and 2 . 3 .  8 , a s  the re  was 
9 

between 2.3.1 and 2.3.2 f o r  the  equivalent  change i n  N I n  f a c t ,  A' 
-1 

convergence t o  t h e  exact solut ion does n o t  occur f o r  V = 0.058 m 

u n t i l  N = 51, which i s  a very high g r i d  densi ty  so lu t ion  (1056 i n t e -  
h 

gxation p o i n t s  i n  a 100 meter channel).  Continued use of t h e  algori thm 

has  shown t h a t  i n  some s i t u a t i o n s  gradual  convergence t o  the  s o l u t i o n  

occurs a s  N incxeases, and i n  o ther  s i t u a t i o n s  t h e r e  i s  a region of X 

var ia t ion  i n  N where the  error remains constant ,  as was t h e  case  
h 

above. 'No apparent d i f ference  e x i s t s  between these  two cases  which 

enables p red ic t ion  of the type of convergence t o  expect  as V decreases.  

Ta conclude, equation 2.3.2 p o v i d e s  a va l id  means of s e l e c t i n g  

t h e  optimal in tegra t ion  g r i d  s i ze .  For the wave number domain 

corresponding t o  the  higher wave numbers (lower o rder  modes), NA = 16  

i s  s u f f i c i e n t .  For t h e  lower wave number region (higher order  and 

continuous modes) it appears t h a t  inc reas ing  e r r o r  can be expected 

and NA should probably be increased accordingly. 



2.4 TWO LAYER OCEAN EXACT SOLUTION AND COMPARISONS 

Application of the endpoint method to more complicated models of 

the ocean i s  straightforward, providing the  required r e f l ec t i on  co- 

e f f i c i e n t s  can be writ ten.  A s  a second t e s t  of the s t a t e  variable 

technique, the exact solution f o r  the two layered ocean of Figure 2.4.1 

w i l l  be written. This model, also proposed by Hamilton ( 2 8 ) ,  is common 

i n  continental  shelf areas where deposition of silts occurred as the  

sea level rose. Fox convenience, the second layer will be assumed a 

f lu id .  T h i s  is r e a l i s t i c ,  as  s i l ts  generally have very low shear speeds. 

Brekhovskikh's re f lec t ion  coef f ic ien t  expressions are again most 

convenient. The ref lect ion,  transmission, and shear conversion co- 

e f f i c i e n t s  a t  the  lower in te r face  have the same £ o m  as  Equations 2.1.1, 

2.1.2, and 2.1.3. The  r e f l ec t i on  and transmission coef f ic ien ts  f o r  the 

upper in terface are  compound expressions, taking in to  account the 

influence of both of the lower media. They are: 



Two Layer Ocean Descript ion 

F i ~ u r e  2.4.1 7 m d  have units. &ynes/cm2. lom5 P 



The expressions for each term in the exact solution are 

where W is the Wronskian defined in 2.1.7. 

The l i n e a r l y  independent solutions to the homogeneous equation are 



The resul t ing solution is 



Figures 2.4.2 through 2-4.5 are t h e  solut ions  obtained fxam Equations 

2.4.14 through 2.4.19 and from the  s t a t e  va r iab le  algouithm. In tegra t ion  

s t e p  s i z e  was chosen t o  s a t i s f y  2.3.2 for NA 2 16. The respect ive  

-1 
hor izon ta l  wavenumbers a r e  V = 0.065, 0.064, 0.061, and 0.058 m . As 

i n  the s ing le  layered ocean r e s u l t s ,  these  f igures  show t h a t  accura te  

r e s u l t s  a r e  again obtained by the  s t a t e  va r iab le  algorithm. Further  

s tudy of t h i s  two layered ocean proves t h a t ,  a s  i n  the s ing le  l a y e r  case,  

so lu t ion  accuracy i s  not a function of any oceanic parameters o the r  'than 

v e r t i c a l  wavenumber. The same c h a r a c t e r i s t i c s  of the  solut ion were found 

for  the two l a y e r  ocean as were found for the  s i n g l e  layer  ocean with 

regard t o  t h e  value  of N i n  2.3.2. X 

The s t a t e  v a r i a b l e  technique can be used t o  obta in  accurate so lu t ions  

of the depth-separated wave equation. The solut ions  are s t a b l e  with 

regard  t o  all oceanic parameters. Required g r i d  densi ty has been 

spec i f i ed  by 2.3.2, I n  Chapter 3 t h e  technique w i l l  be used t o  study 

t h e  e f f e c t s  of inc luding complex sound speeds t o  model a t tenuat ion.  





F i g u r e  2.4.3 
-1 

Response func t i on  for two layer ocean model w i t h  V=0.064m . 
Shear field plotted five times actual magnitude. Basement 
depth=lOOm. Layer d e p t h = 7 5 m .  Source depth=15m. 







3 .  ATTENUATION AND DEEP O C W  MODEL 

Chapters 1 and 2 introduced the state variable technique for 

obtaining solutions to the inhomogeneous depth separated wave equation. 

By incorporating complex sound speeds, the technique can also be used 

to study the influence of bottom attenuation on the solution. Section 

3.1 will consider the single layer ocean of Chapter 2 with bottom 

attenuation. Section 3.2 will discuss an instability that arises during 

the integration process when complex sound speeds are included and the 

influence of that instability on the resulting response function's 

accuracy. Section 3.3 will conclude with a general discussion of the 

use of the algorithm on a deep ocean model. The complex sound speeds 

will, in general, cause the response functions to have real and imaginary 

components. Consequently, both the magnitude and phase of the complex 

response function will be discussed. The phase state variable 

will also be presented with and without attenuation. 

3.1 SINGLE LAYER OCEAN BOTTOM ATTENUATION 

Shear and compressional wave attenuation in marine sediments has 

been reviewed by Hamilton (34, 35). Experimental data indicates that 

compressional attenuation coefficients have a dependence on the first 

power of frequency, i.e., a = kf (34) . The coefficient k is largest 
C 

for sands, smallest for silty-sands, and intermediate for silt-clay 

muds. Very little data is available on shear wave attenuation. Relating 

the shear attenuation coefficient a to the compressional attenuation 
5 

coefficient a is most conveniently done by defining the logarithmic d 
C 



where c and c a r e  bottom shear and compressional wave speeds and f 
S C 

the frequency. The r a t i o  of 4 t o  A has been found t o  be 0.3 
c 

fo r  sands m d  0.1 for  s i l t -c lays  (35) .  Unt i l  more thorough experimental 

data is avai lable ,  the best method of obtaining a is t o  determine a 
S C 

from reference 34 and use 

t o  compute the best estimate of shear at tenuation.  

When at tenuat ion mechanisms are present,  the hor izontal  wavenumber 

becomes complex, i -e . ,  V +ib. Horizontally propagating plane waves then 

consis t  of a product of two exponentials. 

The second exponential provides the decay with distance due t o  a t tenuat ion.  

When bottom attenuation i s  the only loss mechanism t o  be considered, 

a s l igh t ly  more convenient method of including a t tenuat ion uses complex 

sound speeds i n  the  propagation constant K = 2nf/cc fo r  the  bottom. 
C 

Recall from Section 2.1,  

a d  - - 2 n V  - 



Writing the  bottom sound speed as c - i c  ', K becomes 
C C C 

Similarly f o r  c - ic " 
S S 

Therefore, 

Notice that the imaginary sound speed tern has a negative sign. 

This insures  that Equation 3.1.2 does i n  f a c t  have a decaying exponential. 

Representative values of the  a t tenuat ion coef f ic ien ts  can be obtained 

from the l i t e r a t u r e  (34, 35 ) .  A t  100 H z ,  for example, experimental 

data gives the following limits on a and a 
C S 

For sand, a typical  value from reference 35 is  a = 0.0056. Using 3.1.1 
C 

and 3.1.3, the  sound speeds t h a t  r e s u l t  axe 

1675 - i25 

450 - i22.4 



Figures 3.1.1 through 3.1.7 display various f ace t s  of the  solution.  

On each of the  f i r s t  f ive ,  the  magnitude of the response function 

evaluated both with and without bottom attenuation is plot ted.  Figures 

3.1.1, 3.1.2, and 3.1.3 correspond t o  the  f i r s t ,  t h i r d ,  and f i f t h  modes 

of the  comparable Pekeris waveguide. For the  Pekeris case without bottom 

attenuation,  i n f i n i t e  response would r e s u l t  a t  modal wavenumbem. In  

t h i s  case, the  shear ac t s  as  a l o s s  mechanism and the response function 

is finite. The fourth and f i f t h  are  fo r  wavenumbers on e i t he r  s ide  of 

the c r i t i c a l  angle, which occurs a t V  = 0.0597. Figure 3.1.6 p l o t s  the 

phase of  the complex po ten t ia l  f o r  the f i f t h  mode. Figure 3.1.7 i s  an 

example of the  var ia t ion of the  s t a t e  var iable  @ ( f )  with depth for  

V = 0,0651205. 

The f i r s t  three  f igures  exhib i t  cha rac t e r i s t i c s  t h a t  a r e  predictable.  

The magnitudes for the  attenuated cases are a l l  smoothed compared t o  the 

unattenuated cases; t h a t  is,  t he  maxima a r e  smaller and the  minima larger.  

The propagating shear wave, formerly of constant magnitude, now exhib i t s  

the expected exponential damping. The inhomogeneous compressional wave 

i n  the  bottom shows a s l i g h t  decrease i n  amplitude from the unattenuated 

case. Final ly ,  increased coupling t o  t he  bottom as wave number decreases 

i s  apparent v i a  the  increasing proportion of shear wave generation. 

Decreasing the  horizontal  wave number fur ther  t o  V = 0.061 and 

V = 0.059 produces an unexpected e f f ec t  on the response function. On 

the f i r s t  three  f igures ,  a l l  lobes of the  magnitude were uniformly 

attenuated. This cha rac t e r i s t i c  i s  na t  evident a s  V decreases. I n  

par t i cu la r  i n  3.1.4, the  upper two lobes a r e  only very s l i g h t l y  smaller, 

while the lower four are more noticeably attenuated,  a s  was the  case 

















e a r l i e r .  In  Figure 3.u. the  upper two lobes have s u b s t a n t i a l l y  l a r g e r  

magnitude i n  the a t tenuated case than i n  the  unattenuated case.  The 

remaining lobes continue the  uniformly reduced amplitude trend. 

Note t h a t  the  source depth f o r  t h i s  case i s  30 meters, and it 

becomes c l e a r  t h a t  t h e  l a rge r  magnitude region i s  above the source. 

T h i s  tendency w a s  inves t igated  f o r  various source depths and held  t r u e  

i n  a l l  cases. The region above the  source is s l i g h t l y  amplif ied and 

t h a t  below s l i g h t l y  a t tenuated a s  the hor izonta l  wave number V decreases 

below c r i t i c a l .  Unfortunately, t h e  numerical i n s t a b i l i t y  discussed i n  

t h e  following sect ion became apparent f o r  V below 0.059 and t h i s  

phenomenon could not  be inves t igated  fu r the r .  It i s ,  however, bel ieved 

t o  be an accurate desc r ip t ion  of t h e  influence of a t t enua t ion  on the  

response function and not  a product of the  numerical technique. 

A t y p i c a l  p l o t  of the  phase of the  complex p o t e n t i a l  is given i n  

Figure 3.1.6. The only  e f f e c t  of a t tenuat ion i s  t o  s h i f t  t h e  phase by 

0 
approximately 20 . Without a t tenuat ion,  the  phase is i n i t i a l l y  -175O 

0 
and remains constant u n t i l  22  m depth, where it jumps t o  about 5 . It 

0 
then  decreases t o  nea r ly  540 . A l l  values are p l o t t e d  on t h e  primary 

0 Q 0 
branch of -180 t o  +180 so the  phase a t  63 m jumps up t o  4-180 . With 

0 0 
a t tenuat ion,  the  phase i s  i n i t i a l l y  -195 ( p l o t t e d  a t  +I65 ) and t r a c k s  

t h e  unattenuated phase throughout the  p r o f i l e .  No v a r i a t i o n  i n  t h e  phase 

occurred a s  a funct ion of wave number, a s  was noticed i n  the magnitude 

f i g u r e s  . 
The phase s t a t e  va r iab le  6 ,/f> f o r  V = 0.059 is shown i n  Figure 

3.1.7. The complex sound speed s h i f t s  e ( f) by nearly 180° and, a s  with 

t h e  phase of the  complex p o t e n t i a l ,  has no o t h e r  influence.  The p l o t s  



are otherwise exactly identical. This characteristic was consistent 

throughout the wave number domain. 

Stability problems with the technique arose in certain profiles 

and wave number domains. The source of these problems will be discussed 

in the next section. 

3.2 COMPLEX SOUND SPEED WMl3RICAL INSTABILITY 

Reference 18 includes a thorough discussion of the numerical 

stability of the solution of the Riccati and phase differential 

equations. While investigating the use of complex sound speeds to 

model attenuation, instability during the integration of the phase 

differential equation occasionally occurred which prevented a solution 

from being obtained. Although a specific expression defining the 

limits within which the solution, with attenuation, converges was not 

found, a discussion of the cause of the problem is in order. 

Consider the phase differential equation: 

Given an ocean model with pure real sound speeds, the solution of 

3.2.1 can be obtained. Including complex sound speeds in the basement 
0 

will alter initial conditions for upward integration of e ( f ) .  

To study the change in @ ( I), it is convenient to use a perturbation 
method. First write 

where the first term on the right hand side of each equation is the 



unperturbed,without attenuation, solution. The second term is a 

first-order variation on that solution due to the inclusion of 

attenuation. To obtain the first order'linearized equation for 

6e (f  ) , expand the r i g h t  hand side of 3 -2.1 about ( f  ) by a 

Taylor series. 

In general, if 

The equation of first variation is 

where the partial derivatives are evaluated using unattenuated values 

of all parameters. Notice that the variation in 6 ( f) is a function of 

the  variation in both @ ( I) and f (f ). Theref ore an equation of var- 
iation for the Riccati equation must be studied before continuing with 

the analysis of equation 3.2 -6. 

Equation 1.3.16 is of the form 

The equation of first variation is obtained as follows: 

f : ~ f )  & C I )  = g C t q  ivf)) +&/ d f  @ &f) +9/djFcr) 
b 



Equation 3.2.8 was obtained via a locally stationary analysis. That is, 

the solution to 3.2.8 is valid only in a particular neighborhood of f([). 

The neighborhood is specified by that region of f in which f ( f )  is 

approximately constant. The solution to 3.2.8 is 

Equation 3.2.9 describes the changes in the Riccati solution that 

result from a change in the initial conditions. Notice that for integ- 

ration upward through the water column b 4 0.0 and therefore 3.2.9 f 
has a stable solution. The conclusion is that the second term on the 

right hand side of 3.2.6 is not the source of the numerical problem 

and the first term must now be considered. 

The equation of first variation for 3.2.3 is 

To study the instability which arose during the integration of the 

phase differential equation, the feedback term of equation 3.2.10 

(the coefficient of d@ (f)) must be studied in con junction with equa- 

tion 3.2.1. 

Before examining 3.2.10in detail, it is useful to recall a result 

of Laplace transform theory(37). For the differential equation 

with transform 
J 



the stability of the solution can be analyzed by considering the location 

of  the pole at A. Stable  solutions, in the bounded-input bounded-output 

sense, are obtainable for ALO and integration down the profile(po1e 

in the left half plane) or for A P O  and integration up the profile(po1e 

in the right half plane). In both cases, the solution is a decaying 

exponential. 

Now reconsider 3.2.10, which has a pole at 

,(I = ( ,-P*) 5,> 218,~~) - zf, c 0  ce5 2 a, CF) 

Note again this is a locally stationary analysis. The solution of 

3.2.10 will be stable for integration ~p the profile if APO. 

Therefore, the local requirement is that 

If stable solutions of 3.2.1 can be obtained such that 3.2.9 is 

satisfied, then the use of complex sound speeds to model attenuation 

would be acceptable. If not, however, then the numerical instability 

will result. A discussion of the critical points of 3.2.1 is now in order. 

Baggeroer(l8) discussed the importance of the equilibrium points 

of equation 3 . 2 . 1 .  In general, the larger of the two roots of 3.2.1, 

given by 

is stable for upward integration. Modes form when,at some point, 

and the equilibrium points disappear. In this case 4 ( f )  40.0 and 

6 ( f )  is continually decreasing up the profile. Note, for example, 

figure 3.1.7 where 8 ( f )  has been plotted modulo 360. 



*. The source of the instability is now clear. A s 5  mcreases, the 

lower boundary on the region for stable solutions of 3.2.10, as given by 

3.2.12, increases(the denominator becomes more negative, therefore 8, ( r  ) 
must approach zero from below the origin). However, the solution of 3.2.1 

tracks 8 , ( f )  in the opposite direction- by continually decreasing. At 

some point, 3.2.12 is no longer satisfied and A becomes less than zero. 

It is important to note that the solution to 3.2.10 is unstable in this 

case at the same time that the solution to 3.2.1 is stable. If the 

solution to 3 .2 .1  were not stable the entire analysis would be meaningless. 

This unstable solution is not solely the cause of the breakdown of 

the numerical technique. It means simply that the perturbed solution 

diverges from the unperturbed solution in these regions of the depth 

profile. As A becomes increasingly more negative, the solution becomes 

relatively more unstable. In other words, 8 (1) in equation 3 . 2 . 2  

diverges from e( f ) .  
The conclusion is that the region of convergence of the solution 

with attenuation is controlled by the sound speed profile through f, ( f ) ,  

Z 
the horizontal wave number through P , and the amount of attenuation 

through 68 ( f )  . The ability to study the attenuation characteristics 
of any given ocean model must be determined to a large extent by trial 

and error since the technique has this inherent instability. 

3.3 Deep Ocean Model Considerations 

The thesis to this point has dealt entirely with shallow water ocean 

models* This section will begin with a discussion of a simple deep ocean 

model that consists of a fluid layer and a thin sediment layer assumed to 

act as a fluid. The basement is allowed to be elastic. It will conclude 
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with  an  i n v e s t i g a t i o n  of t h e  technique f o r  ocean models i n  which t h e  bottom 

i s  a mult i layered e l a s t i c  medium. 

A simple deep ocean model i s  dep ic t ed  i n  f i g u r e  3.3.1. The s e a f l o o r ,  

cha rac te r i zed  a s  young oceanic c r u s t ,  c o n s i s t s  of a t h i n  sediment l a y e r  

t h a t  s epa ra t e s  the  ocean from t h e  e l a s t i c  basement. The sediment i s  assumed 

f l u i d  s i n c e  t y p i c a l  shear  speeds axe  g e n e r a l l y  smal l  and r e s u l t i n g  shear 

waves of n e g l i g i b l e  amplitude. The sha l low water  models of chapter  2 are 

proof of t h i s  assumption. I n  bo th  of t h o s e  c a s e s  t h e  basement shea r  f i e l d  

had s u b s t a n t i a l l y  smal le r  magnitude than  t h e  compressional f i e l d .  

The sampling d e n s i t y  requirement t h a t  Ny=16 was der ived  from t h e  s tudy 

of a simple cons tant  sound speed shal low water  model. A ques t ion  t h a t  

a r i s e s  i s  whether o r  not  t h i s  d e n s i t y  i s  v a l i d  f o r  t h e  more complex model. 

Since t h e  exact  s o l u t i o n  cannot be w r i t t e n ,  another  method of v e r i f i c a t i o n  must 

be found. Reconsideration of f i g u r e s  2.3.1 through 2.3.4 sugges ts  the method. 

Notice t h a t  as t h e  sampling d e n s i t y  i s  inc reased ,  t h e  s t a t e  s o l u t i o n  

approaches t h e  exac t  s o l u t i o n  i n  s t e p s  of decreas ing  s i z e .  For example, i n  

f i g u r e  2.3.4, t h e  s t a t e  s o l u t i o n  has  approximately one-half t h e  magnitude of 

t h e  exac t  so lu t ion .  I n  f i g u r e  2.3.3, t h e  r a t i o  i s  about  nine-tenths and i n  

f i g u r e s  2.3.2 and 2.3.1, t h e  d i f f e r e n c e  i s  almost  neg l ig ib l e .  By vary ing  t h e  

sampling dens i ty  and computing t h e  response  f u n c t i o n  f o r  f i g u r e  3.3.1, t h i s  

asymptotic tendency can be used t o  s tudy  t h e  v a l i d i t y  of B2=16 f o r  t h e  

deep ocean model. 

The r e s u l t  of t h i s  s tudy i s  t h a t  N2=16 i s  v a l i d  i n  genera l .  Accurate 

s o l u t i o n s  can be expected f o r  a l l  p r o f i l e s  i n  which t h i s  c r i t e r i o n  i s  sat- 

i s f i e d .  A s  with t h e  shallow water s t u d y ,  va lues  below 16 appeared occasion- 

a l l y  t o  be acceptable.  These occurrences were in f r equen t  and unpredic table  

however. 
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Study of the deep ocean profile for decreasing wavenumber V gave the 

same results as was obtained earlier for the shallow water cases. NZ should 

be increased as V is decreased, especially in the continuous mode region. 

Good procedure would involve selecting several typical horizontal wave 

numbers and computing the response of each for N2=12, N -16, and N -20. F- 3- 

Study of the results should then aid in selecting the optimal sampling 

density. 

Figures 3.3.2, 3.3.3, and 3 . 3 . 4  are typical response functions for 

figure 3.3.1 where an eight hertz source is at 400 meters. The horizontal 

wave numbers V=0.0053 and V=0.00469 are near the fifth and seventeenth 

modes of the 18 mode profile and V=0.003 is in the continuous region. 

Notice that the basement shear waves, which are plotted at full value, 

are on the same order of magnitude as the compressional waves. In all 

cases shear has the larger magnitude, substantially so for V=0.003. This 

is to be expected for the dense, high speed basement. The excitation of 

shear is a much more important attenuation mechanism than in any of the 

models considered earlier. Tn addition, the propagating shear wave present 

in the basement for V-0.003 appears to have a strong influence on the 

compressional wave response function below the source. This is a good 

example of the type of phenomenon that can be easily investigated using 

the state variable algorithm. 

A more complex model of the same ocean region is shown in figure 3.3.5. 

Shear propagation is allowed in the sediment layers and the basement is 

divided into two elastic media. Most of the listed parameters and sound 

speeds are assumed from laboratory experiments and field data(33,38). The 

remainder of the section will discuss the application of the algorithm to 

this model. 









Multilayered Deep Ocean Model 

2 F i g r e  3.1.. 5. ;1 and have u n i t s  ciynas/cm lon5 r 



From s e c t i o n  1.3 and f i g u r e  3 . 3 . 6  r e c a l l  t h e  method of s o l u t i o n  f o r  

t h i s  model. Two independent i n t e g r a t i o n s  of t h e  s t a t e  equa t ions  w i l l  occur.  

The f i r s t  w i l l  u se  $ , j ( f )  a s  t h e  i n i t i a l  cond i t ion  and t h e  second g(9. 
The p r i n c i p l e  of supe rpos i t i on  w i l l  t h e n  be used t o  combine t h e  two solu- 

t i o n s  i n  a  manner t h a t  s a t i s f i e s  equat ion  1 . 4 . 6 ~ .  This s u p e r p o s i t i o n  

amounts t o  a s c a l i n g  of #$($) and ?($) such t h a t  t h e  t o t a l  t a n g e n t i a l  

stress a t  H i s  zero-  I n  p a r t i c u l a r  

where A,is t h e  appropr i a t e  sca l ing  f a c t o r .  This procedure determines the  

r e l a t i v e  magnitude of t h e  t o t a l  shear  f i e l d  t o  t h e  t o t a l  compressional 

f i e l d  and s p e c i f i e s  one of t h e  unknown c o n s t a n t s  of equat ion  1.3.15. 

Equation 1.3.6a and 1. 3.6b a r e  then used t o  o b t a i n  &'(H[ ) and i n t e g r a t i o n  

proceeds t o  t h e  ocean sur face .  The remaining cons tan t  of 1.3.15 i s  then  

determined and t h e  e n t i r e  s o l u t i o n  sca l ed  t o  s a t i s f y  equa t ion  1.3.7. 

This t heo ry  breaks down upon implementation however. Enough p r e c i s i o n  

cannot be r e t a i n e d  during the  computation t o  i n s u r e  t h a t  does i n  f a c t  
%r 

e q u a l  zero. Refer r ing  aga in  t o  f i g u r e  3.3.6, t h e  apparent  cause of  t h e  problem 

l ies i n  t h e  r e l a t i v e  magnitude of Q c ( ( ) ,  r((2), &((I ,  and ( )  $($) 
i s  g e n e r a l l y  h a l f  an o rde r  of magnitude smal le r  t han  ((z). 'Y C ( { )  s i n  t u r n  

i s  g e n e r a l l y  a t  l e a s t  two o rde r s  of magnitude smal le r  than  $ ({) and 

4s((). The r e s u l t  i s  t h a t  t h e  cons tant  A,in equat ion  3.3.1 i s  s t r o n g l y  

D i f f i c u l t y  t h e n  a r i s e s  i n  keeping P =0.0. Figure 3.3.7 d e p i c t s  t h i s  
'% 

s e n s i t i v i t y  problem. For convenience, t h e  shear  f i e l d  and t h e  bottom e l a s t i c  

l a y e r s  a r e  n o t  drawn. A s  was discussed e a r l i e r ,  a t o t a l  compressional f i e l d  

i s  computed f o r  t h e  ocean bottom. The c o r r e c t  s o l u t i o n  r equ i re s  t h a t  t h e  

t a n g e n t i a l  s t r e s s  a t  H, equal  zero. I n  t h i s  c a s e ,  t h e  appropr i a t e  c o n t i n u i t y  
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Stress Sensitivity Example 

FigwZe 313-7 



conditions are used to calculate the compressional field in the water 

column, and integration continues to the ocean surface. However, the 

relative magnitudes of the potentials cause difficulty in controlling the 

exact value of the tangential stress, and in general the stress has a small 

nonzero value, depicted as 6, and E2 in figure 3.3.7. Notice that although 

the bottom compressional field is not influenced by the stress error, the 

water column compressional field is extremely sensitive to the error. As 

a result,the correct water column compressional field could not be computed. 

No other criterion exists for determining the correct magnitude of the 

compressional field above H,. The possibility of using double precision 

arithmetic was precluded by the requirement of complex variables. The 

conclusion is that further analysis of the state variable algorithm is 

required before being useful in the study of oceanic models of multilayered 

media. 

To conclude, an accurate and efficient technique for computing the 

  re en's function solution to the depth-separated wave equation has been 

presented. The technique has no inherent linitations when sound speeds 

are real quantities. The use of complex sound speeds to simulate attenua- 

tion is limited. In most cases attenuation is acceptable and solutions 

for wavenumbers corresponding to the discrete mode region. Study of the 

continuous mode region is limited. 

The technique can be applied to both shallow and deep ocean sound speed 

profiles. The basement can be modelled as elastic and one or more sediment 

layers assumed to act as fluids are acceptable. Sensitivity limitations do 

not allow the modelling of the basement as a multilayered elastic medium. 



APPENDIX I 

C (2)  = Compressional Sound Speed 

Co = Compressional Sound Speed Minimum 

Cs ( z )  = Shear Sound Speed 

Cso 
= Shear Sound Speed Minimum 

D = Transmission Coefficient From 1st to 2nd Layer 

-+ +- -i,& 
6 (x-r ) e = 6 (x-xO) 6 (y -yo)  6 ( 2 - zO)  e 

-iwt 
0 

Harmonic Sound Source At ( x  o r  Yo' Zo) 

A c  = Integration Step Size 

f = Frequency 

f ( s >  = Riccatti Parameter 

GU(z,zo) = Green's Function Solution Above Source at z 
0 

GL(z z ) = Green's Function Solution Below Source at z 
0 0 

th 
*i 

= D e p t h  of i Layer 

k = Radian Wave Number 2?rf/c 

ks 
= Shear Radian Wave Number 2rrf/cs 

k- = Vertical Radian Wave Number in ith Layer 

k Z s  
= Vertical Shear Radian Wave Number in ith Layer 

i 

X = ~amd's   on st ant; ith ~ a y e r  
i 

ho = Maximum Compressional Wavelength = f/co 0 

hOs 
= Maximum Shear Wavelength X = f/cOs 0s 

M(C) = Magnitude of Compressional Potential In Phase Plane 

N ( S )  = Magnitude of Shear Potential In Phase Plane 

11 = Rigidity of ith Layer 



= Transmission Coefficient of Shear Wave in 2nd Layex Excited 
by Compressional Wave in 1st Layer 

= Stress Component, Convention Related to 3-D C u b e ,  i Referring 
to Direction of Face On Which Stress Is Acting and j Being 
Direction On Which Stress Is Acting 

= Compressional State Variable 

= Shear State Variable 

= Compressional Velocity Potential 

= Normalized Compressional Sound Speed Parameter 

= Normalized Shear Sound Speed Parameter 

= Surface Compressional Reflection Coefficient 

= Density ith Layer 

= Shear Velocity Potential 

= Normalized Compressional Vertical Wave Number 

= Normalized Shear Vertical W a v e  Number 

= Phase of Compressional Potential in Phase Plane 

= Phase of Shear Potential in Phase Plane 

= Direction of Plane Wave Propagation in ith Layer 

th 
= Direction of Shear Propagation in i Layer 

- au av + - - -  + -  - dilatation 
ax ay az 

= (u, v, w) Velocity Vector 

= Horizontal Wave Number 

= Reflection Coefficient for W a v e  in jth Layer Off Of i 
th 

Interface 

= Acoustic Impedance in ith Layer 

= Shear impedance in i Layer 
th 



= Normalized Compressional Depth Parameter 

= Normalized Shear Depth Parameter 



APPENDIX I1 

The implementation of the algorithm of Chapter I for the HP 2100 

computer consists of a main program "SMAIN" and four subroutines "SWBC", 

"RNSV", "SCSPH" , and "SSBC". "SMAIN" asks a series of questions which con- 

pletely specify the ocean model to be studied. Table AII-1 lists these 

quantities. This profile is then displayed on the console for review by the 

operator before calculation begins. 

The four subroutines are called at various times during calculation of 

the response function. lrSWBC" implements equations 1.4.6, given the poten- 

tials in the second layer. "SSBC" implements equations 1.4.5, given the poten- 

tials in the lower layer. "RNSV" computes the transformation of equations 

1.5.1,1.5.2,1.5.5, and 1.5.6. "SCSPE" integrates the differential equations 

1.5.3,1.5.4,1.5.7, and 1.5.8 upwards in any layer. 

The calculated compressional and shear potentials are stored in disc files 

for later use. In addition, printed output of most important quantities is 

provided. Table AII-2 lists those quantities. 

Figure AII-1 is a flowchart of program "SMATN". It can be divided into 

several general calculation sections. The first section contains the input 

sequence as well as the computation of the normalized sound speed parameters 

q( f ) and q$ 5) and Riccati parameters f ( f ) and £& f ) . It also contains the 
s 

integration of the linear state equations for the particular solution. 

Initialization of the potentials as discussed in f 1.4 then occurs. 

The decision block titled "interface number" requires explanation. Each 

interface is numbered, with the fluid-sediment interface(the uppermost inter- 

face) number 1. Integration starts at the lowest interface. Therefore, for a 

one layer model, the interface number is one and the program jumps to "SWBC". 

100- 



For two or more layers the superposition principle of f 1.4 is required and 
"SMAIN" continues to "SSBC", after setting = = 0.0 as discussed earlier. 

The trio of subroutines then computes the field in the layer up to the next 

interface. If this interface number is greater than one, the procedure is 

repeated. If not, the program continues with the calculation of the shear 

excited field in a completely analogous manner. 

Once the fields due to compressional and shear excitation have both 

been calculated, the correction factor of equation 3.3.2 can be computed and 

the total field in the elastic layers obtained by superposition. The 

next sequence of subroutines then calculates the homogeneous compressional 

solution in the water column, which is combined with the particular solution 

in the following step. Finally, the basement solution is computed. 

The numerical integration technique used throughout "SMAIN" is a third- 

order Adams-Bashforth method(27). This method provides the same accuracy 

as the more common Runge-Kutta techniques, and is more straightforward to 

use in the desired application. 

Notice that this program has been organized to accomodate any desired 

ocean model, including those which were found not solvable in Chapter 3. 

This allows further study of the problems which these models have presented. 

"SMAIN" stores all information in fifteen binary data disc files, and all 

computations are done in groups of 32 integration steps, which is the 

maximum number of complex quantities that can be stored on one sector of the 

disc. Consequently, the disc file length in sectors should be 

where & z is the unnormalized integration step size and H the depth in 
n+/ 

the basement to which the solution is to be calculated. 
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TABLE AII-1  

FRQ = Complex Sound Speed 

ZB S = Basement Depth 

CMN = Minimum Value of Compressional Sound Speed(rea1 number) 

SCMN = Minimum Value of Shear Sound Speed(rea1 number) 

NDZ = Number of I n t e g r a t i o n  P o i n t s  

KBT = Number of Sound Speed Trans i t i on  Poin ts  

CSSP(i)  = Complex Compressional Sound Speed a t  T rans i t i on  Po in t  i 

SSSP(i) = Complex Shear Sound Speed a t  Trans i t ion  Poin t  i 

ZBT(i) = Depth a t  T rans i t i on  Point i 

NLAYS = Number of Layers 

JPS = Basement V p e ;  =I i f  propagat ing,  =O i f  r i g i d  

MU(j) = Rig id i ty  i n  Layer j 

LAM( j) = ~ame 's  Constant i n  Layer j 

LDEP(j) = Depth of Layer j 

CCBS = Complex Compressional Basement Speed 

SCBS = Complex Shear Basement Speed 

VP = Complex Horizontal  Wave Number 

S = Depth of Source 

SS = Strength of Source 



TABLE AII-2 

The following data is printed out only when the appropriate sense 

switch is on. 

Switch 1 Sound Speed Profile Data 

Switch 2 Riccati Data 

Switch 3 Particular Solution 

Switch 4 RNSV Data 

Switch 5 SCSPH Data 

Switch 6 Superposed Total Solution 

The following data is printed out only when the appropriate sense 

switch is off. 

Switch 7 Total Solution Above Basement 

Switch 8 Total Solution In Basement 

When switches 7 and 8 are off and switch 10 is on, data for each 

integration step is printed out. If 10 is off , a number of steps are 

skipped between each step that is printed out; the interval equal to 

N D Z / ~ ~ .  

Switch 11 must be off to use the batch input mode. 

Switch 12, when on, prevents calculation of the basement solution. 

Switch 13, when on, prevents calculation of sound speed and Riccati 

information and is useful when information stored in disc files from pre- 

vious computation will remain unchanged. 

Switch 14, when on, prevents calculation of particular solution and 

is useful when information stored in disc file from previous computation 

will remain unchanged. 





Program SMAIN 
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84F9 IF(VS. Ed UFCY(8.Fb8.8)) @ TO 681 
843 SI-1 
8421 SHPl?=!H..B(Bi-SIGS)/(4. tPI*~Z+PIWXLPl)*JAY.W 
M22 M3&AYS-1 
0423 IFo4UiNX). NEB 8.0) CiO TO €0l  
M24 W M - 1  
9425 IF<tlU(KKC3). EQ 0. BZ GO TO @I 
3426 FtQUT=-WR6I 
8427 P#PHWT/(WPI-CF~)  
0423 PP=PH*RPI 
6129 6MrnTINUE 
8430 IF( JPR. EQ Bi GOTO 814 
0431 Sf DOT=-RWISS 
8132 ~ I T E w ,  9%) 
M33 9% FmT(//"PkOPmTIr!G MERENT"/) 
6434 210 F ~ T 0 4 F l S  6 )  
WE c4 FCrnT!!NFl2 6, N )  
8436 lW=m 
0437 srHr 
8438 W=PP 
6439 P S e =  
H4e S C L m T  
$441 aW-5IDOT 
9412 M 4  
0443 bRITE(LPt 2 lO)  PI4 M T >  51, SIWT 
8444 814 IF<JPe. EQ 11 GO TO ;IBi 
8445 C 
0446 C RIGID WTTM INITIRLI~TIUf4 
0447 C 
0448 P S W U ( 0 . 8 >  8.8) 
M49 S I W ( 9 . 0 ,  B. 8) 
04% ?F'=cFw 
8451 PtHWCY(l. b0.8) 
8452 PHDOT=-CFEWW+PP 
9453 SIDOT=-SFWI95 
8154 LRITE(LP, 9%) 
M55 9% FrnT!/!"RIGID ROTTD#"//I 
0456 IYZITE(V, a%) Ptt PHNT 
6451 PtB=m 
W=.Q Cn-OUYIf . 





















i:l'I.Iu L.I\U. 1'1 c:. U i  

!HWl..X(O. 0J8. 0) 
[iF!=Q!PLX1(3. & 8.11) 
N=CI';DIX (8. & 8. 0) 
rnOT=CI1PLX(B. @J 8" e) 
MIWT.C!rnY (0. 6, 0.0) 
MNT--CtP91.X(Q. 8t0.0) 
PPECMPL.Y(B. R 0 .8 )  
~ T + R  xte. B, a a> 
PPDOTtcrsu~&l. b0.0) 
PS=Cil.!<I(% 0, 0. 01 
PWT=CMPL.X(O. OJ 0. 8 )  
PfW!MT+FHKF 
P P N r T = - S X M *  
PS=sXi:.oTtsIsSF 
P3OT=-SIWSI+SF*PI; 
E 4 .  R 
IF(AIIZRG(FP). EG! El. 0. RND. RIm(PH). EQ 8.0) GO TO 5 
GI! TO 6 

5 IF!EfiLCPP). LT. C? 0.1.. 2Efk(PH). LT. 0.6) E=3.1415963 
6 RSPH*t2+fP**2 
MI s*am(m+a. o1 L ONE 
H@ 
IF(AI?lBG(R). EQ. 0.8. RND- REAL(fl1. LT. 0.8) GO TO 9 
GO TO LO 

9 IF(WHXPP). LT. 0. B. RID. AIISRC(PH>. LT. 0.0) D=-l. 0 
18 D=Mlil%(M) 

R = ~ L X I P S R L ~  D) 
IF(Eff!Pt!). LT. 0. (3. BO. RIHRG(M). GT. 0.9) 

m t t a .  a, 3. i 4 m i a  
E 4 . 0  
IF~flIFIFB;(SI!. EQ 8.0. fW. RIMYXPS). EB. 0.0) G13 TO 7 
li(! TO 8 

7 IFG!E&(PE;>. LT. 8.8. RW. P a ( S I > .  LT. 9.0) E=3.1415.9354 
8 ff.ps.w24Im2 

fM. .Wrn(A)+(0. 0 I  I O)*E 
M. O 
l F ~ A I ~ ( ~ ~ .  EQ. 3.8. RND. E f t ( A ) .  LT. 8.0) GO TO 15 
El TO 12 

11 IF(fiItlAG(P5). LT. 0.8. #@. AIRFtG(S1). LT. 0.8) D=-F 0 
12 M I r ! R G ( N )  

N=CrPt X(RERLCN>, D) 
IF(.m!SI). 1.T. 8. 0. M. f?IE%(Sf). GT. 0.8)  

lN=1i+!Q. Os 3.1415,%) 
C"5Z=SIW.Ips**2 
I F ~ C ~  ES. C ~ ( B . B ,  0.8)) m ( o .  ~ ~ 9 . 0 )  
TH=!8. J -8. S)*Ct.W ( (0.1 1 >-PPRH>/( (0. ,l )+fP!PH) ) 

M I ~ I  
IFCSI. Eb CPWX(8.0,B. 11)) CEI=CIIPUC(0.& I?. 0) 
@I=(@. 1-0. S>*CLOGI ((FZ ,I ~-CSL1>/(($. , 1 )+CS;11)) 
mm!Tli) 
SQI=CSII~I) 
csz%ms(GA) 
SY?=CSIN(@D 
~10T=CF*~SWI~SZi-CSZi~i)t~I -SICBMSZl6Z1 
MX3T~*ISR2*5SiI2-m.clcsz;!~t~F -SIE>6522W 
T H M ~ T = ~  *a*wil*sm-slrm_alm-sgt*sal 
ClRDOT=2 * F ~ * S ~ - S I  GHS2CSQ-Sa6Sn 
IF(I554!4>) 41 3 

4 L~XTE~LPJ 2) 
2 FORi'mT(/"mOPSI TO PHRSE PL.ANE-' 
In% M, m 1C THIIOT, mOT, GRDOTJ WT'A 
I@IIT(LPJ 1) TCL I% I% N, WTI M T ,  GRLiOTt NNT 
WITE(LP11) PP, PPDOt P 5  ?SWT 

3 X(i)=RTAFt?(FIImCPH>, EH..(PH)> 
X!2~=ATWQ(flIfiRG(PP',, PSIX(Pf'Z! 
v n ~ - a ~ ( ] t . n r a ~ l y ~ ~ . r c ~  1 DCOI rcr \ 









REFERENCES 

Pekeris, C. L,, 1948, "Theory of Propagation of Explosive Sound in 
Shallow Water", Memoix 27, Geological Society of America. 

Thomson, W. T,, 1950, "Transmission of Elastic Waves Through a 
Stratified Solid Medium", 3.  Appl. Phys., 21:89. 

Haskell, N. A,, 1953, "The Dispersion of Surface Waves on Multi- 
layered Media", Bull. Seis. Soc. Am,, 43:17. 

Black, M. C., E. W, Carpentex, A. J. M ,  Spencer, 1960, "On the 
Solution of One Dimensional Elastic Wave Propagation Problems 
in Stratified Media by the Method of Characteristics", Geophys. 
Pxosp., 8:128. 

Ames, W. F., 1969, Numerical Methods for Partial Differential 
Equations, Barnes and Noble, New York. 

Helmbergex, D. V,, 1968, "The Crust-Mantle Transition in the Bering 
Sea", Bull, Seis, Soc. Am,, 58:179, 

Fuchs, K. and G. Miillex, 1971, "Computation of Synthetic Seismograms 
with the Reflectivity Method and Comparison with Observations", 
Geophys, J. R. Astr. Soc., 23:417. 

Williams, A. O., 1976, "Discrete, Continuous, and Virtual Modes in 
Underwater Modes", Applied Research Laboratory of the Univ. of 
Texas Report 40, 

Bucker, H. P,, 1970, "Sound Propagation in a Channel with Lossy 
Boundaries", JASA, 48:1188. 

(10) Miller, J. F., and F. R. Ingenito, 1975, "Normal Mode Fortran Program 
for Calculating Sound Propagation in the Ocean", Naval Research 
Laboratory Report 3071, 

(11) Hawker, K. E., et al,, 1977, "Results of a Study of the Ocean Bottom 
Interaction of Underwater Sound", Applied Research Laboratory of 
the Univ. of Texas Report 27, 

(12) Gonzalez, R. G. and K. E. Hawker, 1977, "On the Calculation of 
Acoustic Normal Modes Using Numerical Integration", Applied Research 
Laboratory of the University of Texas Report 2. 

(13) Tappert, F. D., 1977, "Selected Applications of the Parabolic Equation 
Method in Underwater Acoustics", International Workshop on Low- 
Frequency Propagation and Noise, 1:155. 

(14) DiNapoli, F. R. ,  1971, "Fast Field Program for Multilayered Media", 
Naval Underwater Systems Report 4103. 



(15) Oppenheim, A. V., G. V. Frisk, and D. R. Martinez, 1978, "An Algorithm 
fox the Numerical Evaluation of the Hankel Transform", Proc. IEEE, 
66: 264, 

(16) Stickler, D. C., 1975, "Normal Mode Program with Both Discrete and 
Branch Line Cantributionsl', JASA, 57:856. 

(17) McKisic, J. M. and D. P. Ham, 1976, "New Method for Normal-Made 
Models of Sound Propagation in the Ocean", JASA, 59:294. 

(18) Baggeroer, A. B , ,  ''A State Variable Method for Solving Acoustic Wave\ 
Equations", SACLANT ASW Research Centre Memorandum, in press. 

(19) Ewing, W, M,, W, S. Jardetsky, and F,  Press, 1957, Elastic Waves in 
Layered Media, McGraw-Hill, New York. 

(20) Athans, M, and P, L. Falb, 1966, Optimal Control, McGraw-Hill, New 
York . 

(21) Kirk, D, E., 1970, Optimal Control Theory, Prentice-Hall, Englewood 
Cliffs, New Jersey. 

(22) Kutschale, H. W., 1971, "The Integral Solution of the Sound Field in 
a Multilayered Liquid-Solid Half Space", Lamont-Doherty Geological 
Observatory Report 1. 

(23) Kutschale, H. W., 1972, "Further Investigation of the Integral 
Solution of the Sound Field in a Multilayered Liquid-Solid Half 
Space", Lamont-Dohexty Geological Observatory Report 6. 

(24) Morse, P. M, and H. Feschback, 1953, Methods of Theoretical Physics, 
Volume 1, McGraw-Hill, New York, 

(25) Brekhovskikh, L., 1960, Waves in Layered Media, Academic Press, 
New York. 

(26) Baggeroer, A. B., 1970, State Variables and Communication Theory, 
MIT Press, Cambridge, Massachusetts. 

(27) Golomb, M. and M. Shanks, 1965, Elements of Ordinary Differential 
Equations, McGxaw-Hill, New Yark. 

(28) Hamilton, E. L., 1974, "Geaacoustic Models of the Sea Floor" in 
Physics a£ Sound in Maxine Sediments, edited by L. Hampton, Plenum, 
New York . 

(29) Hamilton, E. L., 1971, "Elastic Properties of Marine Sediments", 
3. Geophys. Res., 76:579, 

(30) Bender, C. M. and S. A. Orszag, Advanced Mathematical Methods for 
Scientists and Engineers, McGxaw-Hill, New York. 



Dahlquist, G. and A. Bjzrck, 1974, Numerical Methods, Prentice-Hall, 
Englewood Cliffs, New Jersey, 

Tolstoy, I. and C .  S, Clay, 1966, Ocean Acoustics, McGraw-Hill, 
New York. 

Grant, F. S. and G. F. West, 1965, Interpretation Theory in Applied 
Geophysics, McGraw-Hill, New York. 

Hamilton, E. L., 1976, "Sound ~ttenuation as a Function of Depth 
in the Sea Floor", JASA, 59:528. 

Hamilton, E. L., 1976, "Attenuation of Shear Waves in Marine 
Sedimentsgt, JASA, 60: 334. 

Brockett, R. W., 1970r Finite Dimensional Linear Systems, Wiley, 
New York . 

M c G i l l e r n ,  C. D. and G. R, Cooper, 1971, Continuous and Discrete 
Signal and System Analysis, Holt, Rinehart, and Winston, New York. 

Hamilton, E. L., 1976, "Sound Velocity -- Density Relations in Sea- 
Floor Sediments and Rocks", JASA, 63:366. 


	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	


