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ABSTRACT

Mixed layer depth (MLD) is an important oceanographic parameter. However, the lack of direct
observations of MLD hampers both specification and investigation of its spatial and temporal
variability. An important alternative to direct observation would be the ability to estimate MLD from
surface parameters easily available from satellites. In this study, we demonstrate estimation of MLD
using Artificial Neural Network methods and surface meteorology from a surface mooring in the
Arabian Sea. The estimated MLD had a root mean square error of 7.36 m and a coefficient of
determination (R?) of 0.94. About 67% (91%) of the estimates lie within = 5 m (=10 m) of the MLD
determined from temperature sensors on the mooring.

1. Introduction

Ocean mixed layer depth (MLD) is an important parameter that defines the quasi-
homogenous region of the upper ocean, where physical properties like density, salinity and
temperature are nearly constant with depth. MLD variability is important to acoustic
propagation (Sutton et al, 1993), ocean-biology (Fasham, 1995), long-term climate
change (Thomson and Fine, 2003), and understanding air-sea interactions (Chen et al.,
1994a) associated with the exchange of heat, carbon dioxide, and fresh water and with
other biological and physical processes. Studies of atmospheric and oceanic phenomena
like cyclogenesis, cyclone tracks, heat transport, and fisheries variability also benefit from
information on MLD. The rate of intensification of cyclones, for example, is sensitive to
the initial MLD distribution (Mao ef al., 2000).

MLD can be estimated from in situ temperature and/or density profiles. Monterey and
Levitus (1997), Rao et al. (1991), Rao (1986), Ali and Sharma (1994), Ali et al. (1987), and
Belkin and Filyushkin (1986) used temperature profiles to estimate MLD. Some investiga-
tors refer this parameter estimated from temperature profiles alone as isothermal layer
depth (e.g., Bathen, 1972; Lukas and Lindstrom, 1991; Richards et al., 1995; Obata et al.,
1996; Kara et al., 2000; Kara et al., 2003). Thomson and Fine (2003), Bathen (1972),
Levitus (1982) and Kara et al. (2000) used density profiles, and Montégut et al. (2004)
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used both temperature and density profiles to estimate MLD. Since the in situ profiles are
sparse due to the limited availability of measurements from ships and ocean data buoys,
several numerical models like 1-D mixed layer models (Niiler and Krauss, 1977; Price et
al., 1986; Chen et al., 1994b) and 3-D models (Mechoso et al., 1995; Godfrey and Schiller,
1997; Schiller et al., 1997) have been used to provide an alternate means to estimate MLD
and overcome the limited availability of upper ocean temperature and density data.
However, one of the main problems of implementing even the best of the ocean models to
estimate MLD is the complexity of physical, chemical and biological processes involved
and the uncertainty about the realism of the models’ simulation of upper ocean vertical
structure. One other alternate, linear statistical techniques like multiple regression tech-
nique (MRT), is also likely to fail to capture the complexity of the relationship between
surface forcing and upper ocean response. For a complex process like mixed layer
dynamics, a nonlinear model like artificial neural networks (ANN) may be more appropri-
ate. The aim of the present study is to demonstrate the estimation of MLD from surface
observations alone using the ANN approach and to quantify how well this approach works
in comparison to the MRT method.

Working in the equatorial Indian Ocean, Ali (1993) and Ali and Sharma (1994)
developed a statistical relation between MLD and sea-surface height (SSH). These studies
used only SSH to estimate MLD and were restricted to the equatorial Indian Ocean. More
typically, MLD depends upon many other surface parameters besides the heat advection
associated with the geostrophic transports captured by SSH. In this study, we consider
sea-surface temperature (SST), wind stress (WS) and dynamic height (DH). We did not
consider the subsurface heat advection, radiation and surface heat fluxes because our main
aim is to demonstrate the estimation of MLD from those surface parameters that can be
directly obtained from remote sensing platforms. In this study we used observations from
an Arabian Sea mooring as a proxy for those remotely sensed data. We considered DH as a
surface parameter, though it is computed from the subsurface temperature and salinity
profiles, because this parameter can be replaced with SSH available from altimeters.

2. Data and methodology

The surface mooring data came from the central Arabian Sea mooring located at 15.5N
and 61.5E, deployed by the Woods Hole Oceanographic Institution during 16 October
1994 -22 October 1995. Rudnick et al. (1997) and Ali et al. (2004) have given the details of
the instrumentation on this mooring and its observations. We selected these data for the
analysis, even though observations are during 1994—1995, as this is the only data set with
both meteorological and oceanographic observations in the Indian Ocean with continuous
time series with hourly sampling. Note that the value of hourly sampling for us is that we
have a large number of total samples. We are not, given the present lack of availability of
remote sampling methods that resolve the diurnal cycle in the surface forcing of the ocean,
working to resolve diurnal variability in MLD.

Out of the 8858 hourly observations, we used 8306 profiles for which all surface and
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subsurface measurements are available. While temperature observations are available at 30
depths (only those depths where observations are available throughout the study period),
salinity observations are available only at 6 depths (1.42, 10, 35, 100, 200 & 250 m). DH at
the surface relative to 250 m depth was computed from temperature and salinity profiles. In
the first step, MLD was estimated from the temperature profiles using the gradient criterion
(Ali et al., 1987). In this method MLD is the depth where the temperature gradient exceeds
0.08°C/m. We refer to this MLD based on in situ temperature data as MLD,q. The authors
are aware of the limitations of estimation of MLD from temperature profiles alone.
However, we could not compute MLD using the density criterion, which also includes
salinity contributions (Lewis et al., 1990) as the vertical resolution of the salinity
observations is too sparse. We then estimated the temperature profiles using ANN method
following Ali ef al. (2004). They used a multi-layer perceptron model employing the back
propagation algorithm to estimate sub-surface temperature profiles. We also computed
MLD from these ANN-estimated profiles using the temperature gradient criterion dis-
cussed above. We refer to the MLD estimated from the ANN-estimated temperature
profiles as MLD 1. In addition to these two methods, we computed MLD directly from
surface parameters using the ANN approach, MLD,,, and using the MRT, referred
henceforth as MLDg 1. These two methods are described in the following section.

3. Artificial neural network and multiple regression analyses

The advent of high performance computers and the use of modern computational
techniques have provided new methods for use in oceanographic studies. The use of Fuzzy
Logic, ANN, Genetic Algorithm and Fractals, for example, in addition to statistical
ensemble models and conventional methods holds promise. ANN has been widely used in
various meteorological (Badran et al., 1991; Butler et al., 1996; French et al., 1992; Liu et
al., 1997) and oceanographic (Derr and Slutz, 1994; Hsieh and Tang, 1998; Tangang et al.,
1998; Krasnopolsky et al., 2002; Ali et al., 2004, Tolman et al., 2005) studies. The ANN
technique was also used in studying atmospheric radiation processes (Krasnopolsky, 1997;
Chevallier et al., 1998; Chevallier et al., 2000; Krasnopolsky et al., 2005) and in
developing satellite retrieval procedures (Krasnopolsky et al, 1995; Krasnopolsky and
Schiller, 2003).

An ANN is a massive parallel-distributed computer model consisting of simple process-
ing units called artificial neurons (henceforth referred simply as neurons) which are the
basic functioning units. The neurons are modeled as mathematical functions with analogy
to the neurons (cells) present in the biological brain (Fig. 1). These neurons are intercon-
nected through activation links modulated by weights called connection weights or
synoptic weights. The simplest neuron may be mathematically represented by:

y = f(bias + wl *x1 + w2 *x2 + w3 *x3 + - - - + wn * xn);
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Figure 1. (a) A Biological Neuron, and (b) An Artificial Neuron (Source: Gurney, 1997).

where, y is the output, x1, x2, etc., are the inputs (n is the number of inputs) and f is the
activation function. The resulting network has a natural propensity to store experimental
knowledge through learning or training (Haykin, 2002).

The neural network formulation is based on the fact that any parameterization of a
process can be considered as a continuous or almost continuous (with finite discontinuities)
mapping (input versus output vector dependence), which is analogous to atmospheric and
ocean models with forcing(s) and response. The ANN is a generic tool for approximating
such mappings (Cybenko, 1989; Funahashi, 1989; Hornik 1991; Chen and Chen, 1995a,b;
Attali and Pages, 1997). Based on this, ANN can be expressed as an analytical approxima-
tion that uses a family of functions (more significantly, these can be a combination of linear
and nonlinear threshold functions, known as activation functions) which may be generally
of the form:

k n
Y,=Ap+ 2 A@By+ > BX), q=1,2,...,m

j=1 i=1

where X; and Y, are the components of the input and output vectors respectively, and A and
B are fitting parameters. @ is the activation function, n and m are the number of inputs and
outputs, respectively, and k is the number of neurons in the layer (Ripley, 1997;
Krasnopolsky et al., 2005). The hidden layer is an internal layer between the input and
output layer containing many of the neurons in various inter-connected structures. All the
complex mathematical computations as required for the ANN model formulation are
carried out by the neurons present in this layer and the results are transmitted to the output
layer.

An ANN can be broadly classified into two main categories based on its topology:
networks with single-hidden layer and networks with multiple hidden layers. Some of the
popular formulations of ANN models are Multi Layer Perceptron (MLP), Radial basis
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Figure 2. The ANN model architecture used in the present study.

functions (RBF), and Conjugate Gradient Descent models (Broomhead and Lowe, 1988;
Moody and Darkin, 1989; Haykin, 2002). In the present analysis we used a single output
ANN model based on RBF, employing the Pseudo-Invert algorithm.

The RBF model consists of one input layer, one output layer and one hidden layer of
radial units. In a RBF, network units respond nonlinearly to the distance of points from the
center represented by the radial unit. Radial unit refers to a neuron based on the RBF
formulation where the first computation performed by the unit (i.e. the neuron) is to
compute the “radial distance,” d, between the input vector xi and the center of the basis
function using Euclidean distance. This converts the input into a higher dimension after
which it can be classified using only one layer of neurons with linear activation functions.
The network architecture consists of a single hidden layer of radial units (nonlinear
activation functions) and an output layer of linear units (linear activation functions). The
ANN model architecture (RBF network) used in the present study has one input layer
consisting of three neurons, one output layer consisting of a single neuron and one hidden
layer with 209 hidden neurons (Fig. 2).

The ANN analysis requires three data sets: (1) Training (Learning), (2) Verification
(Validation), and (3) Prediction (Testing). The data set marked for training is used to train
the ANN model through several iterations. The verification set of data is used to validate
the model during this process so that the model does not over-fit during training. At this
stage the ANN verifies whether the model developed for the training data set holds good
outside the data set also, in terms of root mean square (RMS) error, and applies a mid-term
correction in case required. The trained ANN model is then stored and used for estimating/
predicting the output using the input parameters from the data set marked for Prediction.
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The MLD predicted by the ANN model using the input parameters is compared with
MLDq of the data set marked for prediction.

In the present analysis, the input (independent) parameters are SST, WS and DH and the
dependent parameter (output) is the MLD,g for each input set. Out of the selected 8306
hourly observations, we used about 50% of the data sets (4154 observations) for training
the ANN model, about 25% (2076 sets) for verification, and 25% (2076 sets) for ANN
prediction and validation of the predicted results. In this analysis about 25% of the data,
marked for prediction or testing, were held back and were not used in training the model.
We have randomly selected the data sets for training, verification and prediction to avoid
any bias that might have crept into the training of the ANN when the training data set is
selected on any specific criteria.

ANN yields the best results if the training data set covers a wide spectrum of conditions.
From this perspective, it is always advisable to train and validate the model with similar set
of observations. A random selection is most suited for an ANN analysis as the training and
validation process requires “familiarizing” the network with all possible conditions of
inputs and the corresponding target outputs (Haykin, 2002; Ripley, 1997). Richaume et al.
(2000); Pozzi et al., (2000); Schroder et al. (2002); Bourras and Liu (2003) used random
selection technique for the prediction of various parameters. If the data cover more than
one year (one complete cycle), one (or a few) year(s) may be used for training and the other
for validation. For example, Singh ef al. (2004) used one year of data for the training and
the next six months for the prediction. Makarynskyy ef al. (2004) used four years of data
for the training, the successive four years of data for validation, and the next four years of
data for prediction of the sea level variations. Though we have a large data set (hourly
observations for one year) for the present analysis, it covers only one year and, in order to
cover all the possible oceanographic conditions, data sets for training, validation and
prediction have been selected randomly.

For the MRT analysis, we used 6230 observations (those used for training and validation
in the ANN analysis) to develop the multiple regression coefficients between MLDg and
surface parameters (SST, WS & DH). The regression equation is: MLD = 443.78 — 15.04
#*SST + 0.55 % WS + 42.18 + DH. We estimated MLDy for remaining 2076 observations
(that were not used for developing the regression equation) using the above equation. The
same 2076 observations were earlier used in predicting MLD using ANN approach. All the
results discussed in the subsequent sections refer to the predicted values (2076 hourly
observations) from the three estimations.

4. Results and discussions

In this analysis, we compare the hourly estimations of MLD ., MLD, , and MLDg
with MLD,g only for 2076 observations that were not used during training the ANN model
and during developing the regression equation. The scatter between MLD , , and MLDg
estimations is much better than that obtained from the other two methods (Fig. 3).
Statistical analyses of these estimations (Table 1) also indicate better performance by the



2006] Swain et al.: Estimation of MLD from surface parameters 751

MLDa, (M)

3
-E 80
9 @
=
” - -
20 y=18.892 + 0.797x
RZ=0.84
0
140
120, €
- 100
£ 80
&
S &
= L :
2 oy =27.718 + 0.524%
g RZ=0.53
0 20 4 60 B0 100 120 140
MLD;s (m)

Figure 3. Scatter between MLD estimated from in situ observations (MLD;q) and (a) ANN
(MLD, ) (b) ANN estimated temperature profiles (MLD ,1) and (c) MRT (MLDg).

ANN approach compared to MRT and MLD estimated from ANN-based temperature
profiles. Ali ef al. (2004) reported maximum errors of about 1.8°C near the MLD regions in
the estimation of temperature profiles. Slight error in temperature profile, particularly, near
the MLD region can lead to large errors in the estimation of MLD. Hence, the errors in this
parameter obtained from MLD, are large compared to MLD, ,. However, even these
estimations are far better than those obtained by MRT (MLDg ).
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Table 1. Statistical analyses of the MLD obtained from ANN (MLD,,), ANN based temperature
profiles (MLD , 1), and MRT (MLDy).

Parameters MLD 4 o MLD ¢ MLDg
Data SD (m) 29.05 29.05 29.05
Absolute error mean (m) 4.74 8.68 16.70
Absolute error (%) 10.35 17.83 36.06
Error SD (m) 7.12 11.66 19.93
SD ratio 0.24 0.40 0.69
R? 0.94 0.84 0.53
RMS difference (m) 7.36 12.62 20.36
Bias (m) —-1.15 —4.00 —-0.95
Slope 0.93 0.78 0.51
Scatter index 0.13 0.22 0.35

Absolute error mean (average of absolute differences between estimated and in sifu),
absolute percentage error, standard deviation (SD) of the errors in the estimations (error
SD), SD ratio (ratio of error SD to data SD), coefficient of determination (Rz), RMS
difference, and scatter index (RMS error/mean of in situ observations) are much less for
MLD, , compared to MLD o and MLDg (Table 1). In addition, the slopes in the scatter
plots are close to 1 for MLD, , (Fig. 3).

Histograms of the errors in MLD estimations from these three methods are shown in Fig.
4. Out of 2076 number of hourly estimations, MLD could be estimated within £5 m in
about 67% (39%) of the cases where as about 91% (68%) of the estimations lie within =10
m for MLD, , (MLD,1). On the other hand, only ~18% (~33%) of the estimations are
within =5 m (£10 m) for MLDg .

We have also obtained the monthly average MLD from the 25% of the randomly
selected hourly observations. Thus these monthly means do not actually represent the
hourly estimations of the entire month but only 25% of the values in that particular month.
The monthly average MLD,, values range from less than 30 m in April 1995 to a
maximum value of ~110 m in February 1995 (Fig. 5). These estimated values closely
follow the in situ measurements over the year while the estimations using MRT have
significant deviations ranging from 0.5 m to 30 m in individual monthly averages (Fig. 5).
Mixed layer is deeper during January to February and again during July. MLD is
shallowest during summer and post monsoon seasons. Weller et al. (1998) concluded that
much of the mixed layer variability in this region could be explained by local mixed layer
processes alone. Deeper MLD during the winter season could be attributed to convective
mixing whereas in July, it could be because of strong winds during the Indian summer
monsoon.

RMS differences and the absolute percentage errors in the estimation of MLD on
monthly basis obtained by averaging randomly selected hourly estimations are shown in
Figures 6 and 7, respectively. Monthly RMS differences vary from 4 m to ~14 m in case of
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Figure 4. Histograms of errors in the MLD, obtained from ANN (MLD,,), ANN estimated
temperature profiles (MLD ) and MRT (MLDg).

MLD 4 5. March, August and September 1995 have larger RMS errors. These values are
smaller than those obtained from the MRT. The absolute percentage errors in the case of
MLD, , are also much less (maximum of 23.5%) compared to those obtained from other
two methods. The monthly variations of RMS differences and absolute percentage errors
are large in the MRT estimations. Even though MLD , closely followed MLDyg, the errors
are large compared to MLD ,. Further the sensitivity analysis carried out using the ANN
model denoted 1° rank sensitivity of MLD to DH followed by SST and WS. The ranking is
an indication of the sensitivity of the dependent parameter to variations in the independent
parameters. A rank of 1 to DH indicates DH is the parameter affecting the MLD the most
followed by SST and the WS.

5. Summary and conclusions

Data obtained from a central Arabian Sea mooring located at 15.5N and 61.5E from
October 1994 to October 1995 have been used in the present study to estimate MLD from
surface parameters. These observations were selected because this is the only data set in the
entire Indian Ocean as of today having time series of surface meteorological and
subsurface temperature and salinity profiles on hourly basis. MLD,,, MLD,, and
MLDg have been validated with MLD;q. The RMS difference for MLD,, (MLD,r)



754 Journal of Marine Research (64,5

Oct-94 Dec-94 Feb-95 Apr-95 Jun-95 Aug-95 Oct-95
0 L 1 1 1 L

average MLD (m)
3 @ [+2] Bay N
o o o o o

_.-MLDAT o MLDRT

120

Figure 5. Monthly variation of MLD averaged from estimations from in situ temperature profiles
(MLD,g), ANN (MLD, ,), ANN estimated temperature profiles (MLD ) and MRT (MLDy).

[MLDgy] is 7.36 m (12.62 m) [20.36 m] with an R? value of 0.94 (0.84) [0.53]. Less RMS
error in MLD, , compared to MLD , - suggests that it is advisable to train the ANN model
directly to estimate MLD from surface parameters rather than estimating the MLD from
the estimated temperature profiles.

The main objective of this study has been to demonstrate the estimation of MLD from
surface parameters that are directly obtainable from remote sensing platforms. We could
not use any remote sensing data in the present study because SSH observations from
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Figure 6. RMS differences in the monthly MLD averages obtained from ANN (MLD,,), ANN
based temperature profiles (MLD 1), and MRT (MLDg).
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Figure 7. Absolute percentage errors in the monthly MLD averages obtained from ANN (MLD, ,),
ANN based temperature profiles (MLD 1), and MRT (MLDy ).

ERS — 1 and TOPEX/Poseidon (the two altimeters available during the study period) are
too few (all together just 86 observations during the entire study period) to support an ANN
approach. Instead, we used the observations from the Arabian Sea mooring as a proxy to
the remote sensing parameters. However, the ANN approach that has been used for the first
time to estimate MLD from surface parameters alone (SST, WS, and DH), was found to be
successful.

DH is used as a surface parameter even though it is computed from temperature and
salinity, as this parameter can be easily replaced with SSH from altimeters on board
satellites. In future, we plan to carry out a more comprehensive study using surface
parameters from remote sensing platforms, including SST from IR/microwave sensors,
WS from scatterometers, and SSH from altimeters in conjunction with in sifu temperature
and salinity profiles from Argo floats and other ocean platforms.
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