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On rectification of randomly forced flows

by Pavel S. Berloff1,2

ABSTRACT
Nonlinear rectification of the ocean circulation driven by random forcing, which simulates the

effect of unresolved eddies, is studied in an idealized closed basin. The results are based on the
analysis of randomly forced solutions and linear eigenmodes. Depending on the forcing strength, two
rectification regimes are found: zonal jets and isolated gyres. It is shown that both regimes are due to
nonlinear interactions of resonant basin modes. In the zonal-jet regime, these interactions involve
complex interplay between resonant baroclinic modes and some secondary modes. Both Rhines’
scaling for zonal jets and prediction of gyres based on the maximum entropy argument are not
confirmed.

1. Introduction

The principal phenomenon studied in this paper is nonlinear rectification of geostrophic
turbulence driven by random forcing. The mesoscale eddy flux divergences of momentum
and potential vorticity (PV) are capable of driving the large-scale oceanic currents. In the
comprehensive ocean models, the eddies are typically not resolved and their effects are
parameterized in terms of the turbulent diffusion. Recently, it has been shown that in the
midlatitude oceanic gyres fluctuations of the eddy forcing drive strong rectified response
(Berloff, 2005; hereafter, B05). In this context, rectification is the emergence of nonzero
time-mean currents due to forces fluctuating around zero mean. The rectification is an
anti-diffusive phenomenon, which can be modeled by adding random forcing to a
nonlinear, non-eddy-resolving ocean model (B05). The random-forcing approach for
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modeling eddy effects is actively developed in various areas of fluid dynamics: in the
contexts of the homogeneous and isotropic 3D turbulence (e.g., Herring and Kraichnan,
1971; Laval et al., 2003) and linear dynamics (Farrell and Ioannou, 1995; Whitaker and
Sardeshmukh, 1998; Zhang and Held, 1999; DelSole, 2001). The approach involves
searching for the right model of the eddy effects, on the one hand, and studying different
rectification phenomena, on the other hand. The idealized geophysical models are usually
of two classes: periodic zonal channel (or the whole sphere) that represents an atmosphere,
or closed basin that represents an ocean.

The zonal-channel works focus on the emergence of rectified zonal jets, such as those
observed on Jupiter and other giant gas planets. In this case a substantial part of the
small-scale forcing is due to convecting cells. Whitehead (1975) observed the phenomenon
in a lab experiment and Williams (1978)—in solutions of the global, barotropic atmo-
sphere. The corresponding theory has been developed in Rhines (1975) and Haidvogel and
Rhines (1983) and a comprehensive review of the subject is in Rhines (1994). The jets are
formed due to the inverse energy cascade, which is typical for the 2D geostrophic
turbulence, and the beta term that creates strong anisotropy and channels a large fraction of
the energy into zonal currents, thus creating a strongly anisotropic energy spectrum (e.g.,
Vallis and Maltrud, 1993; Chekhlov et al., 1996). On the other hand, it is argued that the
jets can be a weakly nonlinear phenomenon (Manfroi and Young, 1999; 2002). It has been
suggested that the rectified jets form if the planetary vorticity gradient exceeds a critical
threshold; that is, below some critical latitude which depends on the Rossby deformation
radius and the energy rate (Smith, 2004; Theiss, 2004). It is also argued that, with the
latitude-dependent planetary-vorticity gradient, there is an equatorward energy cascade
that should amplify rectified jets at low latitudes (Theiss, 2004). In the two-layer doubly
periodic flow, the observed zonal scaling of the jets is found to be consistent with the one
suggested by Rhines (Panetta, 1993). Recently, it has been shown that in the doubly
periodic domain, barotropic dynamics generates a “saw-tooth” vorticity profile, thus
confounding any scaling behavior of the statistical-equilibrium energy spectrum, and the
resulting long-time average of the turbulent solution is not unique, depending on its initial
state and evolution history (Danilov and Gurarie, 2004).

The closed-basin works focus on emergence of large-scale gyres. The statistical
equilibrium mechanics predicts that, in the absence of forcing and dissipation, the
barotropic-vorticity solutions evolve to the equilibrium state characterized by the time-
mean westward flow in the interior of the basin and the inertial boundary layers near zonal
boundaries (Salmon et al., 1976). In the northern hemisphere this state is associated with
the anticyclonic gyre in the north and its cyclonic counterpart in the south (Fofonoff,
1954). It is argued that this equilibrium remains valid in the situation with realistic forcing
and friction given by the anticipated-vorticity formulation (Griffa and Salmon, 1989).
Emergence of the Fofonoff gyres is found in different configurations of the barotropic
dynamics (e.g., Griffa and Castellari, 1991; Seidov and Marushkevich, 1992). It is argued
that in the no-slip barotropic case the gyres are prohibited and, hence, some other
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rectification pattern has to form, because correlation between the relative vorticity and the
latitude is always zero (Cummins, 1992; Wang and Vallis, 1994). Finally, it has been found
that statistical details of random forcing—rarely analyzed and discussed—are qualitatively
important for the dynamic response, therefore they must be physically constrained and
more thoroughly studied (Treguier and Hua, 1987; Sura and Penland, 2002).

Even if in the upper ocean there is a phenomenon analogous to the zonal jets on giant gas
planets, it is masked by the wind-driven currents. On the other hand, below the thermocline
alternating zonal flows are observed with float measurements (Hogg and Owens, 1999) and
in comprehensive eddy-resolving models (Nakano and Hasumi, 2005). Although, it is
argued that some of the large-scale zonal currents are due to the wind stress pattern
(Treguier et al., 2003), dynamical origin of the finer-scale zonal jets is not clearly
understood. In particular, the observed and modeled jets have a meridional scale that is
substantially larger than the Rhines’ scale, which may be an indication of dynamical
processes different from those acting in atmospheres of giant gas planets. Recently, it has
been suggested that Rossby waves and basin modes, and their instabilities are important
aspects of forced turbulence in a closed basin (Cessi and Primeau, 2001; LaCasce, 2002;
LaCasce and Pedlosky, 2002; 2004, hereafter: LP04). In this paper these results are
extended and connected with the rectification phenomenon.

The main questions asked in this paper are the following:

(i) What are the generic rectification regimes in an idealized closed basin?
(ii) How do rectification patterns depend on physical parameters?

(iii) How can these patterns be explained in terms of fluid dynamics?

Below, Section 2 describes the ocean model and discusses some relevant dynamical
mechanisms. Section 3 analyzes randomly forced solutions, Section 4 explains rectification
in terms of the nonlinearly interacting basin modes, and Section 5 summarizes the results.

2. Ocean model and dynamical mechanisms

a. Idealized ocean model

The fluid-dynamic model represents the midlatitude ocean with prescribed density
stratification in a flat-bottom square basin with north-south and east-west boundaries. The
quasi-geostrophic (QG), potential-vorticity (PV) equations (Pedlosky, 1987) for N � 3
dynamically active isopycnal layers are:

�qi

�t
� J��i, qi� � �

��i

�x
� fi � ��4�i, (1)

where i is the layer index starting from the top. The meridional planetary-vorticity gradient
is �, the random forcing is f, and J(,) is the horizontal Jacobian operator. The PV
anomalies, qi, are connected with the velocity streamfunctions, �i, through the coupled
elliptic equations:
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�2�i � �1 � 	i,1�Si,1��i � �i
1� � �1 � 	i,N�Si,2��i � �i�1� � qi, (2)

with the stratification parameters:

Si,1 � f 0
2�Hig

��i � �i
1�

�1
�
1

, 1 � i � N, (3)

Si,2 � f 0
2�Hig

��i�1 � �i�

�1
�
1

, 1 � i � N, (4)

where �i and Hi are the fluid density and depth of the ith layer, and f0 is the mid-basin
Coriolis parameter. The horizontal velocity components are found as

ui � 

��i

�y
, vi �

��i

�x
. (5)

The basin is square with 3840 km size. On the lateral boundaries there is the no-slip
boundary condition, that is, the velocity is zero, but in some cases the no-slip solutions are
compared with the free-slip solutions, which have zero relative vorticity on the boundaries.
Also, there is the mass conservation constraint for each layer:

�

�t �� ��1�x, y� � �2�x, y�� dx dy � 0, (6)

�

�t �� ��3�x, y� � �2�x, y�� dx dy � 0. (7)

In the three-layer case considered here, the isopycnal layer depths are H1 � 200 m,
H2 � 1200 m, and H3 � 2600 m starting from the top, the ratio of the density jumps
across the layer interfaces is 
 � (�2
 �1)/(�3
 �2)� 2, so that the first, Rd1, and second,
Rd2, Rossby deformation radii are 52 and 30 km, respectively. The standard value of � is
�0 � 2 � 10
11 m
1 s
1, except when � is varied. In the weak-forcing regime, the
random-forcing variance, ��f, is varied around ��0 � 0.83 � 10
3 days
2, and in the
strong-forcing regime it is 20 times larger than that. The choice of the forcing variance is
motivated by B05, where large variance is found around the eastward-jet extension of the
subtropical western boundary current, and weak variance is found elsewhere in the basin.
The lateral viscosity coefficient, �, is varied around �0 � 103 m s
2. The solution with �0,
�0, and �0 is referred to as the standard solution. The horizontal grid resolution is uniform
with 257 � 257 grid points, except for solutions with small � and Rd1, for which the
resolution is doubled in each direction. The space-time correlated random forcing, f, is
generated by the algorithm described in the Appendix. For simplicity f is limited to the
upper isopycnal layer, where the observed eddy forcing is the strongest (B05). For each set
of parameters, the model solutions are spun up for 100 years and then integrated over
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another 100 years of interest. It is found that if another 100 years of integration are added,
this has no significant effect on the rectified flow pattern.

b. Dynamical rectification mechanisms

There are two necessary conditions for rectification: nonlinearity of the dynamics and
the �-effect. The simplest paradigm of the rectification is the emergence of zonal jets
driven by spatially localized, oscillating forcing in the unbounded domain. Let’s consider
PV dynamics forced by the localized, zero-mean, external forcing, �(t, x), with (positive)
amplitude A:

dq

dt
� �v � A��t, x�. (8)

Integrating (8) over a short time interval and multiplying the result with v gives:

	qv � �A � � dt � � 	y�v. (9)

In the weak-forcing situation ( A3 0) or away from the directly forced latitudes, (9) can
be averaged over an ensemble of realizations. Taking into account that v � 	y/	t, the
meridional eddy q-flux is given by:

�	qv� � 

�

2

d

dt
�y2�, (10)

where the ensemble averaging is denoted by angular brackets. If there is irreversible
Lagrangian dispersion of the fluid elements, then there is the asymptotic diffusive limit in
which: �y2� � t. In this limit the rhs of (10) is negative, hence the ensemble-average
meridional flux of q, which is equivalent to the Eulerian flux of q, is negative. Since the
flux has to decay to zero farther away from the forced latitudes, its divergence has to be
positive/negative to the north/south of these latitudes, which is consistent with the induced
broad, zonal westward currents decaying to the north and south. This argument explains
the appearance of the westward rectified flow at the unforced latitudes in the localized-
forcing situation (Whitehead, 1975; Haidvogel and Rhines, 1983). Overall, this flow
regime is a result of the meridional mixing and partial homogenization of the absolute PV.
In the case of the oscillating localized forcing, the mixing is driven by the Rossby waves
radiating away from source.

The strong-forcing regime realizes when A is sufficiently large and v becomes signifi-
cantly correlated with the forcing. In the near-Sverdup regime, that is, when the leading-
order balance is between the forcing and the meridional advection of planetary vorticity,
this correlation is positive: �v � � dt� � 0. In this case the flux divergence pattern is
opposite to the one described above, therefore it induces a narrow, zonal eastward jet
occupying the forced latitudes. In the localized-forcing situation both dynamical regimes
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coexist, and in a closed basin the flow rectification takes the form of an elongated
recirculation dipole, with eastward jet in the middle, that extends from the western
boundary to the forcing location.

If random-forcing variance is spatially homogeneous rather than localized, then the
above regimes cannot exist because A is not negligible everywhere and the meridional
q-flux cannot be positive everywhere. In this situation the third regime can occur, which is
the resonance (Pedlosky, 1965). If L is basinscale and T � [�L]
1 is timescale, then the
relevant nondimensional parameter is

� �
A

�2L2 , (11)

and the governing dynamics scales as

�q

�t
� v � 
��uq � �2�F � D�, (12)

where F and D indicate the forcing and dissipation terms. Given the formal expansion,

q � q0 � �q1 � o���, (13)

the resulting sequence of linear problems begins with:

�q0

�t
� v0 � 0, (14)

�q1

�t
� v1 � 
�u0q0. (15)

Thus, nonlinear self-interaction of resonant structures given by the leading-order dynam-
ics, that is, rhs of (15), can be interpreted as an intrinsically generated forcing. Are there
any resonant patterns in the randomly forced solutions? Can nonlinear interactions of these
patterns induce observed rectified flows? These questions are addressed in the next two
sections.

3. Rectification regimes

a. Weak-forcing regime

For a broad range of parameters, random forcing generates rectified elongated recircula-
tions which are referred to here as alternating zonal jets (Fig. 1). The recirculations are
zonally asymmetric—with more intense flow near the western boundary—which is due to
reflection and dissipation of short Rossby waves (e.g., Pedlosky, 1987; see also Seidov and
Marushkevich, 1992). This asymmetry is more pronounced in the deep ocean, because it is
forced less intensively by the upper-ocean fluctuations. Here, it is found that the weaker the
forcing the more confined the rectified flow is to the western boundary. In the interior of the
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basin, the observed zonally-averaged rectified-velocity profile does not exhibit asymmetry
between the eastward and westward jets, as it is found in the periodic channel (Panetta,
1993; Manfroi and Young, 1999). In the channel the westward jets are weaker and broader
than the eastward jets. Also, the observed jets have no “saw-tooth” relative vorticity as it is
found in the periodic channel (Danilov and Gurarie, 2004). Both the lack of the above
asymmetries and the fact that the rectified jets in the closed basin are weak in comparison
with the flow fluctuations suggest that in the basin the underlying dynamics is quite
different from the atmospheric dynamics of the giant gas planets.

The most interesting structural property of the jets is their average meridional width, lm.
There are several theoretical predictions for lm. Rhines’ theory (Rhines, 1975) suggests
that lm is given by the scale LR, at which advection of the planetary vorticity is balanced by
advection of the PV anomaly:

LR � �U

��
1/2

, (16)

Figure 1. Velocity streamfunctions of the randomly forced solution with �� .5�0 (the upper-branch
regime in Fig. 2a): The upper-ocean (a) instantaneous and (b) time-mean patterns, and (c) the
time-mean deep-ocean pattern. The lower row of panels shows the same quantities, but for the
solution with � � 4�0 (the lower-branch regime). In each layer, the streamfunctions are
nondimensionalized by the maximum value of the corresponding ���. CIs are (a) 0.5, (b, c) 0.05,
(d) 2.0, and (e, f) 0.05. The patterns in (b) and (e) have lm equal to 670 and 280 km, respectively.
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where U is the velocity scale given by the variance of the flow fluctuations. Another similar
scaling law,

LHH �
��2��1/2

�
, (17)

is based on the idea of the bounded, meridional Lagrangian lengthscale (Holloway and
Hendershott, 1977; Ristorcelli and Poje, 2000). The above scalings do not take into
account dissipation and stratification, and also they assume local dynamical balance. How
does lm in the randomly forced solutions scale with parameters of the problem? Here, lm is
defined as one half of the wavelength of the dominant spectral peak of the Fourier-
decomposed, zonally averaged, time-mean velocity. An alternative method that defines lm

as the average distance between the neighboring zeros of the velocity (Ristorcelli and Poje,
2000) is found to be not robust.

The scaling laws (16) and (17) are checked by calculating several solutions with
different � and �f (here, U is approximately proportional to ��f). Dependence of lm on
both � and Rd1 is studied as well. Overall, the above scaling laws are not confirmed, and
actually no scaling laws are found for the large range of parameters (Fig. 2). The failure of
(16) to explain the rectified jets is in agreement with its failure to explain the observed
deep-ocean zonal jets (Treguier et al., 2003). Instead of accurate scaling laws some
approximate dependencies are found. Also, some critical parameter values are found at
which lm changes abruptly. These changes can be interpreted as transitions from one flow
regime to another (e.g., Fig. 1 shows flow patterns for two distinct regimes with different
lm). Near the transition points the meridional Fourier spectra are bimodal, suggesting that
the flow is actually a mixture of two regimes. In Section 4 it is argued that the discrete
regimes can be attributed to different ensembles of the resonant basin modes.

With � varied from 0.125 to 8 times its standard value, two regime branches are found
(Fig. 2a): the upper, small-� branch has lm decreasing from 780 to 490 km, and the lower,
large-� branch has lm decreasing very little, from 277.7 to 275.6 km. The upper-branch,
approximate power law, lm � �
0.2, implies much slower �-dependence than in the
Rhines’ scaling, and the lower branch has almost constant lm. Near the critical parameter,
with accuracy of 0.1�, no multiple regimes are found. The same two regimes are recovered
by varying � from 100 to 8000 m2 s
1 (Fig. 2b). Overall, it is found that lm substantially
decreases with decreasing �. In the context of weakly nonlinear barotropic dynamics with
bottom drag, the dissipation rate is found to be important for the flow pattern (Manfroi and
Young, 1999), and as dissipation gets stronger, lm becomes smaller. This behavior is
opposite to the present results. The difference is due to the scale-selective nature of the
lateral dissipation that preferentially damps small-scale resonant basin modes that drive the
rectification (Section 4). No robust dependence on Rd1, which is varied from 26 to
1664 km, is found: with Rd1 � 26 km the flow solution is on the upper branch, at 52 km it
is on the lower branch, and for the larger values of Rd1 there is another, intermediate-lm

regime (Fig. 2c). Finally, lm shows almost negligible increase with��f (Fig. 2d), although
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both the flow velocity and vorticity variances increase almost proportionally to ��f. This
behavior is in sharp contrast with the power laws (16) and (17).

The Rhines’ scaling law has been confirmed in a periodic channel (Panetta, 1993) with
transient zonal jets, but it has never been examined in a closed basin. Here, the focus is on
the time-mean rather than transient jets, therefore failure of (16) to predict lm is not very
surprising, given that any local balance does not necessarily yield a prediction of structure
with long-range meridional correlations. Apparently, discreteness of lm, insensitivity to the
forcing variance (in the range of interest), and sensitivity to the viscosity require a
dynamical explanation. At this point the central hypothesis of this study is formulated: the

Figure 2. The average meridional widths, lm, of the rectified jets as a function of (a) �, (b) �, (c) Rd1,
and (d) �f. The Rhine’s scaling in (a) is shown by the dashed line, and in (b) it would correspond to
almost vertical line.
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flow rectification is controlled by the resonant basin modes and their nonlinear interactions;
the modes are meridionally structured, therefore different ensembles of the modes drive
different rectified regimes. In Section 3c some of these modes are diagnosed from the flow
solutions, and in section 4 the linear eigenmodes are computed and systematically
analyzed.

b. Strong-forcing regime

When �f is increased by the factor of 20, the elongated, cyclonic and anticyclonic gyres
adjacent to the northern and southern boundaries (Fig. 3), respectively, dominate the
upper-ocean rectified flow. This result holds when the no-slip boundary condition is

Figure 3. The upper-ocean rectified velocity streamfunction in the strong-forcing regime with the (a)
no-slip and (b) free-slip boundary conditions. The lower row of panels shows the same, but for the
deep ocean. The streamfunctions are non-dimensionalized by the maximum value of the no-slip
��1�. CIs are 0.1 and 0.2 in the upper and deep ocean panels, respectively.
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replaced with the free-slip one, and in this case the gyres even invade the interior of the
basin. In the deep ocean the no-slip rectification consists of the weak counter-rotating,
elongated recirculations near each zonal boundary, and the free-slip rectification is in the
form of the strong gyres occupying the northern and southern parts of the basin and rotating
in the opposite way to the upper-ocean rectification. The upper-ocean circulation is exactly
opposite to the Fofonoff gyres (Fofonoff, 1954) predicted by the equilibrium statistical
mechanics argument of maximum entropy (Salmon et al., 1976), therefore it is referred to
here as the anti-Fofonoff gyres. In Section 4a the anti-Fofonoff flow pattern is explained by
the upper-ocean nonlinear interactions of the resonant, weakly damped, baroclinic basin
modes. The strong-forcing regime can be relevant to the ocean: in the eddy-resolving
solutions of the oceanic gyres (B05) it manifests itself in terms of relatively weak, zonally
elongated recirculations on the northern and southern flanks of the subpolar and subtropical
gyres, respectively.

Barotropic, no- and free-slip randomly forced solutions (Fig. 4) are calculated and
compared with the baroclinic solutions. The no-slip barotropic solution is characterized by
weak recirculations, whereas the free-slip solution is dominated by strong Fofonoff-like
gyres. Visual comparison of Figures 3c, d and 4 suggests that the deep-ocean rectification
is dominated by the barotropic component. Why are the no- and free-slip barotropic
rectifications so different? It can be shown (integrating by parts) that, with the no-slip
boundary condition, correlation between latitude and barotropic PV, which is equivalent to
the relative vorticity, is zero (Wang and Vallis, 1994):

C � �� y�2� dxdy � 0. (18)

Figure 4. The barotropic rectified velocity streamfunction in the strong-forcing regime with the (a)
no-slip and (b) free-slip boundary conditions. The streamfunctions are non-dimensionalized by the
maximum value of the no-slip ���. CIs are (a) 0.1 and (b) 0.4.
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This global constraint implies that either relative vorticity (in each of the Fofonoff or
anti-Fofonoff gyres) is balanced by the opposite-sign relative vorticity concentrated in the
viscous boundary layers or the gyres simply do not form. The latter is true for the no-slip
barotropic mode. The free-slip case is not constrained by (18), and the resulting Fofonoff-
like flow is consistent with the statistical-equilibrium mechanics arguments. On the other
hand, the Fofonoff-like flow configuration is consistent with the phenomenon of rectified
western flow driven by mixing of the background planetary-vorticity gradient (Section 2b)
that is induced by resonant barotropic basin modes. Nonlinear interactions of these modes
can also contribute to the rectification, but they are found to be very weak (Section 4a).

c. Diagnosed basin modes

What is the explanation for the failure of Rhines’ scaling and the existence of discrete
regimes? Here it is argued that lm is set by nonlinear interactions of large-scale,
propagating basin modes—this is a fundamentally non-local process, which breaks down
both local dynamical balances and scalings based upon them. The Empirical Orthogonal
Function (EOF) data analysis method (Preisendorfer, 1988) is used here to detect resonant
basin modes. The method is applied to the standard solution, computed for 300 years,
sampled every 50 days on a 65� 65 uniform grid, and moderately filtered in space. The 10
leading EOFs are found as eigenvectors of the covariance matrix of �1 fluctuations, and the
corresponding Principal Components (PCs) are obtained by projecting the data on the
eigenvectors. The leading EOF pair (Fig. 5) contains about 27% of the total variance and
represents a single-cell basin-scale pattern. The EOFs are time-lag correlated, hence they
describe a coherent propagating signal. The vertical structure of the EOFs is dominated by
the second baroclinic mode. The phase speed of the pattern is westward, and the
corresponding period, which is about 7 years, can be characterized as the transit time
required to cross the basin. With the phase speed C � 
�Rd2

2, a free second-baroclinic
Rossby wave crosses the basin for 6.9 years, which is in close agreement with the observed
period. The rest of the signal is dominated by the second EOF pair (Fig. 6) that represents a
propagating two-cell pattern characterized by 21% of the total variance, and a time period
of about 3.5 years. Are the diagnosed structures related to the basin modes?

Calculations of viscous basin modes have been made recently by Cessi and Primeau
(2001), and it has been shown that the largest-scale modes are weakly damped and,
therefore, can be easily excited (e.g., by random forcing, as in Cessi and Louazel, 2001). In
Section 4 the modes are found as the eigenvalue solutions of the linearized dynamics and
analyzed in detail, but this requires coarsening of the horizontal grid. Here the modes are
diagnosed approximately by turning off the random forcing, integrating the ocean model in
the decaying-flow regime, and calculating the corresponding EOFs. Given some initial
adjustment, this method works well because the modes decay slowly. The method yields
approximations of the first 3 modes given by the first 3 EOF pairs. The leading mode is
shown in Figure 7: it looks like the resonant pattern in Figure 5, both in terms of the spatial
structure and frequency. The e-folding timescale of the decay is about 50 years for the first
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basin mode, and the second mode decays about twice as fast. Thus, the coherent patterns
diagnosed from the randomly forced solution are indeed the resonant large-scale basin
modes. Even if these modes are baroclinically unstable, as suggested in LP04, this
instability has to be rather weak, because otherwise the modes would not have been
diagnosed with such a clarity. The modes would be particularly vulnerable to the baroclinic
instability if their transit times were long compared to the e-folding time of the instability.
On the other hand, in Section 4b it is shown that the least stable but still weakly damped,
secondary linear eigenmodes of the weakly damped, finite-amplitude, background basin
modes do not have to be unstable in order to imprint their structure on the rectified flow.

Figure 5. (a, b) The leading EOF pair of the space-filtered and subsampled, upper-ocean velocity
streamfunction of the standard solution. The patterns are nondimensionalized by their maximum
absolute values (CI is 0.1). The percentage fractions of the total variance are indicated. (c, d) The
corresponding principal components (nondimensionalized by their variance) of the EOFs, and (e)
the power frequency spectrum of the first component.
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This statement is analogous to saying that the basin modes themselves do not have to be
unstable in order to be excited by the random forcing. It is found here that the weaker is the
forcing, the more pronounced are the excited basin modes relative to other fluctuations.

4. Analysis of the basin modes

In the inviscid barotropic case and with � � 0 on the boundaries, the basin modes, that
is, the eigenmodes of the linearized equations of motion, have a simple analytical
expression (Pedlosky, 1987):

0 � x � 1, 0 � y � 1, �mn � 

�2��
1�

�m2 � n2�1/2 (19)

Figure 6. The same as in Figure 5, but for the second leading EOF pair.
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� � cos� �x

2�mn
� �mnt�sin�m�x�sin�n�y�, (20)

where �mn are the eigenfrequencies. The basin modes found and analyzed in this section
are an extension of (19)–(20) for the situation with multi-layer stratification, viscous
damping, integral mass constraint, and non-zero background flows.3

a. Eigenmodes with zero-background flow

Formally, the basin modes are the normal-mode solutions of the linearized governing
equation (1), and Eqs. (2) and (6)–(7). Given the spectral transformation,

3. Recently, similar classes of such modes have been studied in the 1.5-layer situation (Cessi and Primeau,
2001; LaCasce and Pedlosky, 2002), and it has been suggested that the corresponding finite-amplitude modes can
be vulnerable to the baroclinic instability.

Figure 7. The same as in Figure 5, but for the decaying, unforced flow solution.
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� 3 ��x, y�e
i�t, (21)

where � � �r � i�i, the linear problem is written in terms of 3 differential and 2 integral
equations:

i��4�1 � i�
��1

�x
� ���2�1 � S1��2 � �1�� (22)

i��4�2 � i�
��2

�x
� ���2�2 � S21��1 � �2� � S22��3 � �2�� (23)

i��4�3 � i�
��3

�x
� ���2�3 � S3��2 � �3�� (24)

0 � � �� ��1 � �2� dx dy (25)

0 � � �� ��3 � �2� dx dy. (26)

In the matrix form this system of equations can be written as the general eigenproblem:

A�� �B� or B
1A�� ��, (27)

where A and B are the linear-dynamics matrices,� is an eigenvector solution, and � is the
corresponding eigenvalue. Here, (27) is solved numerically by discretizing the equations
with the second-order finite differences on the uniform grid with 97 � 97 nodes. A very
useful technical trick was to rewrite (22)–(26) in terms of the vertical modes, which are the
barotropic, and the first and second baroclinic. With this rearrangement, (27) can be solved
as three distinct eigenproblems of the smaller size. Here, the linear-algebra eigenvalue
problem is solved directly with EISPACK subroutines. After the eigenvalue problem is
solved, all of the eigenmodes are normalized by the energy norm (Pedlosky, 1987).

Nonlinear self-interaction of a basin mode,

F � 
�uq, (28)

can be viewed as intrinsically generated eddy forcing. Potentially, both time-mean,4 �F�,
and fluctuation, F�, components of F can drive rectifications, but here, given the two
arguments below, the focus is on �F� only. First, history of the eddy PV flux divergence has
been diagnosed from some of the weakly forced solutions of Section 3. This history has
been applied as the only external forcing acting on the full dynamics, and the random
forcing has been turned off. Comparison between this solution and two other solutions,

4. Here, it is equivalent to time average over an eigenperiod.
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driven by either time-mean or fluctuation components of the history has shown that the
rectified jets are completely dominated by �F�. Second, similar analysis has been made for
nonlinear interactions of some of the basin modes discussed in this section, and it is also
found that �F� dominates.

The eigenspectrum of the eigenproblem (Fig. 8 shows only positive �r, because the
eigenspectrum is symmetric with respect to the imaginary axis) contains three classes of
the eigenmodes. The MU-BCL1- and MU-BCL2-modes are the meridionally unstructured,
first and second baroclinic modes with the eigenvalues organized along curves connecting
regions with small-�r/large-�i and large-�r/small-�i (Figs. 8b, c). The least damped
MU-BCL2-mode (Fig. 9) corresponds to the diagnosed pattern in Figure 5 and the second

Figure 8. Eigenspectra of the (a) barotropic, (b) first baroclinic, and (c) second baroclinic eigen-
modes. The vertical lines indicate the values of �r corresponding to the periods of 2 and 1 years,
and of 1 month. The horizontal lines indicate �i � 0 and 
2 years
1 (i.e., no decay and the
exponential decay over 0.5 years). Panel (d) zooms out part of the second-baroclinic eigenspec-
trum indicated by the small rectangular in panel (c). The lines in (d) connect eigenvalues
corresponding to the eigenmodes with the same meridional wavenumber (n � 2, 3, . . . , 7
starting from the right).
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least damped MU-BCL2-mode (not shown) corresponds to the diagnosed pattern in Figure 6.
The third least damped MU-BCL2-mode explains the third propagating coherent pattern,
but beyond that the EOF technique combined with spatial filtering fails to recognize the
presence of resonant basin modes, which doesn’t imply that the modes are not excited.
Thus, most of the large-scale variability in randomly forced solutions is well described by a
few eigenmodes. The MU-BCL-modes consist of plane Rossby waves in the interior of the
basin and boundary-layer corrections near the lateral boundaries (Figs. 9 and 10). As noted
in LaCasce and Pedlosky (2002), such modes satisfy the boundary condition, �(�) �
�(t), without the need for short Rossby waves near the meridional boundaries. The small
contribution of the short waves to the modes with just a few cells in the zonal direction
results in the weak damping of the modes.

Eddy forcing of the MU-BCL-modes is significant only near the zonal boundaries, and
only there can it contribute to the rectified jets pattern. However, in the interior of the basin
the eddy forcing is weak, therefore it cannot fully account for the observed jets. The
integral of the upper-ocean eddy forcing over the southern half of the basin,

Figure 9. The least damped, second baroclinic mode: (a) real part, (b) amplitude, (c) upper-ocean
eddy forcing, and (d) zonal mean of the upper-ocean eddy forcing. CIs are 1.0 in (a) and (b), and
0.01 in (c).
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Fint � �
0

L �
0

L/2

�F1� dx dy, (29)

is negative for all of the MU-BCL-modes (Fig. 12b, c). This suggests that the modes,
through their nonlinear self-interactions, tend to spin up an anticyclonic recirculation near
the southern boundary. By the symmetry argument, these modes have to spin up a cyclonic
recirculation near the northern boundary. Thus, it is argued here that the anti-Fofonoff
upper-ocean flow pattern in the strong-forcing regime (Section 3b) is driven by the
MU-BCL-modes. This result is not sensitive to replacing the no-slip lateral boundary
condition with the free-slip condition, as implied by the flow pattern in Figure 3b. This is

Figure 10. The same as Figure 9, but for the eighth least damped mode. CIs are (a) 2.0, (b) 1.0, and
(c) 0.02.
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confirmed by analysis of the free-slip MU-BCL-modes, not shown here for the sake of
brevity, which also have positive Fint.

The second class of the eigenmodes are the fast, barotropic modes (BT-modes), like the
one shown in Figure 11. Most of these modes are meridionally structured, thus they can
contribute to the rectified zonal jets. However, the modes have very weak eddy forcing
amplitudes, therefore they are not the main source of the rectified jets. The BT-modes have
positive Fint (Fig. 12a) due to the eddy forcing spikes in the zonal boundary layers. This
might suggest that the modes tend to drive Fofonoff-like gyres near the zonal boundaries,
but such behavior is prohibited by the global constraint (18). This constraint is consistent
with the alternating jets seen in the barotropic component of the weak-forcing regime, with
the rectified pattern emerging in the strong-forcing regime (Fig. 4a), and with the
deep-ocean rectification (Fig. 3c), which is dominated by the barotropic modes. It is easy to
see that either with the free-slip condition or for the full PV anomaly, which has the
stretching-term contribution, C doesn’t have to be zero. The latter is associated with the

Figure 11. The fourth least damped, barotropic mode: (a) real part, (b) amplitude, (c) upper-ocean
eddy forcing, and (d) zonal mean of the upper-ocean eddy forcing. CIs are 1.0 in (a) and (b), and
0.001 in (c).
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emergence of the anti-Fofonoff gyres in the upper ocean, and the former is consistent with
the Fofonoff-like gyres in Figure 4b.

In the free-slip situation and in the interior of the basin, �F� is similar to the no-slip one,
but near the zonal boundaries it has no spikes. Overall, the eddy forcing does not play a
substantial role in both cases, but what then drives Fofonoff gyres in the free-slip situation?

Figure 12. Average values of the eddy forcing over the southern half of the basin, Fint, are shown for
the (a) barotropic modes, and the (b) first and (c) second baroclinic modes which have the
single-cell meridional structure. First, Fint is taken with 10
6 � days
2 units, then the logarithm
of its absolute value is calculated and multiplied with the original sign: sign(Fint)log10�Fint�.
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Statistical-mechanics argument suggests that these gyres5 appear as the maximum entropy
solution (Salmon et al., 1976). The underlying dynamical mechanism is mixing of the
background planetary vorticity gradient by the barotropic basin modes. A systematic study
of the associated Lagrangian mixing is beyond the scope of this paper, but would be an
interesting extension of it. It is not clear what the dynamical mechanism is that enforces
(18) on a population of the excited BT-modes, and this question is also left for the future
studies. Hypothetically, this mechanism can be the mean-flow effect or the higher-order
nonlinear interactions.

The meridionally structured baroclinic modes (MS-BCL-modes) correspond to the
wedges of eigenvalues seen in Figures 8b, c, d. These eigenmodes can be grouped in terms
of their meridional wavenumber, n, and one of such modes is shown in Figure 13. The
modes with larger n are both more damped and have smaller values of �r. The
MS-BCL-modes are characterized by short zonal scales, and therefore they are more

5. The gyres are the most pronounced with the super-slip boundary condition, which minimizes boundary
fluxes of the relative vorticity to zero (Wang and Vallis, 1994).

Figure 13. The same as Figure 9, but for the seventeenth mode, which is the least damped,
meridionally structured mode with n � 5. CIs are (a) 4.0, (b) 4.0, and (c) 0.4.

518 [63, 3Journal of Marine Research



damped than MU-BCL-modes with a small number of cells. The MS-BCL-modes are
trapped near the western boundary and associated with time-dependent western-boundary
intensifications. This latter can be explained with the same arguments as the asymmetry of
the wind-driven gyres (Pedlosky, 1987). The eddy forcings generated by the MS-BCL-
modes are both strong, because the modes are associated with large velocity and relative
vorticity anomalies, and meridionally structured. Given all these properties, the MS-BCL-
modes can generate zonal jets only near the western boundary, therefore they cannot
explain the observed rectified jets. On the other hand, these modes can be responsible for
the observed enhancement of the rectified flows near the western rather than eastern
boundary (Fig. 1).

To summarize, in order to drive the observed rectified jets, a basin mode has to provide
strong eddy forcing, and it has to be meridionally structured and not trapped near the
western boundary. None of the above eigenmodes fully satisfies all of these conditions, so
its contribution to the observed rectified jets can only be partial. On the other hand,
nonlinear interactions of the least damped modes explain the emergence of the anti-
Fofonoff upper-ocean gyres. Further progress is made in the next section by considering
nonzero background flows.

b. Eigenmodes with non-zero-background flow

The failure of the zero-background basin modes to explain the rectified jets can be fixed
by introducing the auxiliary hypothesis: basin modes responsible for driving the rectified
jets have to be calculated with respect to the background flow given by the finite-
amplitude, least-damped zero-background modes. Any direct verification of this hypoth-
esis is problematic, because computation of the eigenmodes with respect to a time-
dependent background is unfeasible for any reasonable resolution in space and time.
However, some progress is made here by taking into account the slow propagation of the
least damped zero-background modes. The new eigenmodes are found with respect to a
background finite-amplitude mode that is kept fixed at a particular phase of its evolution. In
this case amplitude and phase of the background flow are the additional parameters.

With a nonzero background flow given by the streamfunction, �, and the PV anomaly,
Q, the Eqs. (22)–(24) are reformulated as:

i���4�1 � �
��1

�x
� J��1, q1� � J��1, Q1�� � ���2�1 � S1��2 � �1�� (30)

i���4�2 � �
��2

�x
� J��2, q2� � J��2, Q2��

� ���2�2 � S21��1 � �2� � S22��3 � �2�� (31)

i���4�3 � �
��3

�x
� J��3, q3� � J��3, Q3�� � ���2�3 � S3��2 � �3��. (32)
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The linearized equations are reduced to the general eigenvalue problem (27), as in Section
4a, except that with the nonzero background flow the problem is no longer separable in
terms of the vertical modes. Therefore, the horizontal resolution is sacrificed to 62 � 62
grid points in each isopycnal layer.

The background flow is chosen to be either the least damped or the second least damped,
second baroclinic eigenmode, both of which are calculated in Section 4a and also
diagnosed from the randomly forced solution (Section 3c). The results are qualitatively
similar for either background mode. They also do not depend on phases of these modes,
therefore the presentation is focused on the second mode with an arbitrarily chosen phase.
Three amplitudes of the background state were tried, which correspond to the maximum
meridional velocity of 0.5, 2.0, and 5.0 cm s
1. The first situation is found to be rather
close to the zero-background situation. The other two cases are qualitatively similar. The
presentation is focused on the last case and on the top one hundred of the least damped
modes. The eigenspectrum of the problem (Fig. 14) has some similarities with the
zero-background spectrum, but its eigenmodes have mixed vertical structure. All of the
eigenmodes are still stable, and there are no reasons to expect that their properties change
significantly in the weakly unstable regime corresponding to somewhat larger background-
flow amplitudes. The new eigenmodes can be sorted out into three classes which are
discussed below. These classes of modes are illustrated with the particular modes marked
on Figure 14.

The parasitic eigenmodes are the high-frequency modes traveling on resonant, weakly
damped, zero-background basin modes (Fig. 15). They are attached to parts of the

Figure 14. Eigenspectrum of the eigenmodes calculated with respect to the non-zero background
flow. The large filled circles correspond to the eigenmodes shown in Figures 15, 16, and 17.
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background flow where the vertical velocity shear is strong, therefore their amplitudes are
not localized in any particular part of the basin but travel across it from east to west. The
parasitic eddy forcing is very strong and meridionally finely structured. It is dominated by
the isopycnal-thickness flux divergence. Thus, the parasitic modes have all the properties
needed for driving rectified jets in the regimes characterized by relatively short lm.

The second class of eigenmodes are the distorted quasi-barotropic (DQB) modes (Fig.
16). These are large-scale, high-frequency modes that resemble zero-background BT-
modes. On the one hand, the DQB-modes have large amplitude distributed over the whole
basin, as the BT-modes have. On the other hand, they are strongly modified by the
background flow, both horizontally and vertically. In particular, the vertical distortion
results in substantial isopycnal-thickness fluxes that make the eddy forcing rather strong.
Given all these properties, the DQB-modes are also capable of driving the rectified jets.

The rest of the eigenmodes are the low-frequency modes (LF-modes), which have no
pronounced meridional structure (Fig. 17). Their shapes are tied to the shape of the
background flow, and they can be viewed as modifications of the MU-BCL-modes

Figure 15. One of the parasitic modes, with (�r, �i) � (72.10, 
1.95) yrs
1, calculated with
respect to the nonzero background flow. (a) Real part, (b) amplitude, (c) upper-ocean eddy forcing,
and (d) zonal mean of the upper-ocean eddy forcing. CIs are (a) 5.0, (b) 4.0, and (c) 4.0.
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analyzed in the previous section. The corresponding eddy forcing patterns have large
amplitudes, but they are limited to the regions just near the zonal boundaries. Given that,
the LF-modes do not significantly contribute to the rectified jets in the interior of the basin.

5. Summary

This paper studies rectification of the large-scale oceanic flow in a closed basin on the
�-plane. The flow is driven by random, zero-mean, space-time correlated forcing. The
main motivation of this study is given by Berloff (2005), where it is shown that the
mesoscale eddy effects on the large-scale circulation can be modeled in terms of random,
space-time correlated forcing driving nonlinear, non-eddy-resolving dynamics. Another
motivation comes from the observations and numerical modeling efforts that find persis-
tent zonal jets in different parts of the global ocean.

This study focuses on an idealized basin with stratification and spatially homogeneous
forcing variance. The main results can be summarized as the following.

(1) Depending on the forcing strength, two rectification regimes are found: zonal jets
and isolated gyres.

Figure 16. The same as in Figure 15, but for one of the distorted quasi-barotropic modes, with (�r,
�i) � (114.00, 
1.22) yrs
1. CIs are (a) 2.0, (b) 2.0, and (c) 0.5.
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(2) It is shown that both regimes are due to nonlinear interactions of resonant basin
modes.

(3) In the zonal-jet regime, these interactions involve complex interplay between
resonant baroclinic modes and some secondary modes.

(4) Both Rhines’ scaling for zonal jets and prediction of gyres based on the maximum
entropy argument are not confirmed.

These results are based on the analysis, on the one hand, of randomly forced solutions and,
on the other hand, of linear eigenmodes and their nonlinear interactions. Sensitivity of the
results to parameters of the problem is studied and the main results are found robust.

The rectified jets are found for a broad range of parameters. Rhines’ scaling law for the
average meridional width of the jets, lm, is tested for a broad range of parameters and not
confirmed. Instead, persistent regimes characterized by preferred widths are found. Within
each regime, lm varies rather little and transitions between the regimes are relatively
abrupt. It is found that lm is rather sensitive to the beta and lateral viscosity, but not to the
amplitude of the forcing, as long as the forcing variance is not very large. It is hypothesized

Figure 17. The same as in Figure 15, but for one of the low-frequency modes, with (�r, �i) �
(9.64, 
0.68) yrs
1. CIs are (a) 1.0, (b) 1.0, and (c) 4.0.
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that the observed behaviors are due to the nonlinear self-interactions of weakly damped,
resonant basin modes. Different ensembles of such modes produce different regimes, and
the lower the viscosity the more significant is the contribution of the fine-structure,
relatively more damped modes. Increased forcing simply fuels energy in the same excited
modes, and therefore has limited impact on the rectified flow pattern.

In order to test the above hypothesis, the basin modes of the state of rest are calculated
and analyzed. The modes are sorted out into three classes, none of which explains the
observed jets for the following reasons. The least damped, baroclinic modes, which are
also diagnosed directly from the randomly forced solutions, lack meridional structure in
the interior of the basin. The barotropic modes have too weak nonlinear interactions.
Finally, the meridionally structured baroclinic modes are trapped near the western
boundary. Given all that, the auxiliary hypothesis is formulated, according to which
rectified jets are driven by the secondary eigenmodes related not to the state of rest but to
finite-amplitude background flows given by the most resonant, large-scale, zero-
background eigenmodes. Direct test of this hypothesis is computationally unfeasible, but
significant progress can be made by taking into account slow propagation of the back-
ground flow. Thus, the background is approximated as the steady one and its phase
becomes an additional parameter. The new eigenproblem is solved and it is found that there
are two new types of modes, both of which can account for the observed rectified jets,
because they produce strong nonlinear interactions, effect the whole interior of the basin,
and are meridionally structured. These are parasitic modes traveling on the background
flow and distorted quasi-barotropic modes.

When the random forcing is strong, the isolated gyres rectify near the zonal boundaries. In
the upper ocean, these gyres are characterized by the cyclone/anticyclone in the north/south,
and in the deep ocean the circulation is reversed. Thus, the upper-ocean circulation is opposite
to the one predicted by Fofonoff (1954) and later explained with the statistical equilibrium-
mechanics arguments (Salmon et al., 1976). Here, the difference is due to the flow baroclinicity
which previously was not accounted for. It is shown that the upper-ocean gyres are due to
nonlinear interactions of the most resonant, baroclinic basin modes of the state of rest. The
deep-ocean gyres are driven by the barotropic basin modes, through their nonlinear interactions
and meridional mixing of the background planetary-vorticity gradient.

The following extensions of the presented results are anticipated. Effects of time-mean flows
and basin shape on the eigenmodes should be addressed. Make-up of the excited population of
basin modes has to be connected with parameters of the problem. The rectification process and
the role of basin modes have to be analyzed with dynamical approximations, which are less
restrictive than the quasigeostrophic approximation, and with less idealized model configura-
tions. Finally, study of the rectification needs to be broadened in order to account for the
intrinsic low-frequency variability of the large-scale flow pattern.
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APPENDIX

Random forcing

Statistical properties of the forcing are described by the autocorrelation function, RT,
isotropic horizontal correlation function, RH, and the forcing variance, �f, under the
assumption that the forcing statistics are Gaussian:

RT��� � �f�t�f�t � ����f

1, (A1)

RH�x0, y0, x, y� � �f�t, x0, y0�f�t, x, y���f

1, (A2)

where �f � �f 2�, and the angle brackets indicate time averaging. Thus, deep-ocean variance,
anisotropy, horizontal inhomogeneity, and intermittency of the forcing are neglected.

In the eddy-resolving model (B04), it is found that RT has integral correlation time,

� � �
0

 

RT��� d�, (A3)

which is about one week. Here, the observed RT(�) is approximated as

RT��� � exp�
�/��, (A4)

and the corresponding statistics are given by the first-order autoregressive process (Box et
al., 1994). The � is chosen to be 10 days and the autoregressive process is integrated with
the time step of 0.2 days.

Horizontal space correlations of the eddy forcing (B05) oscillate in most of the basin; in
the western part they decay over several Rossby deformation scales, and in the eastern part
they decay over much larger lengthscales set by transient large-scale Rossby waves. Here,
for simplicity, the isotropic RH is chosen to be monotonic and even Gaussian, with the
characteristic lengthscale LH, which is chosen to be 50 km. Here, it is found that the
rectification pattern does not qualitatively depend on � and LH, although the larger these
values are the more energetic the flow.

The following is the method for introducing space correlations in the random-forcing
model. Given its covariance matrix, a space-correlated random-force vector, f, with N
degrees of freedom (for example, representing �N � �N values of a function on the
space grid), is constructed from the space-uncorrelated, unit-variance noise, g, such that:

ggT � I (A5)

(here and below: the superscript, T, denotes transposition of the matrix, capital-letter
symbols denote matrices, and I is the identity matrix). Here, each component of g
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corresponds to an individual, random time series generated at the corresponding grid point
by an autoregressive process. Next, let’s assume that there is a linear relationship,

f�t�� Lg�t�, (A6)

and the covariance matrix for f is:

C � �ffT�. (A7)

Then, it is found that the transformation matrix, L, is equal to the “square root” of the
covariance matrix, which is symmetric and positive definite:

C � �Lg�Lg�T�� �LggTLT�� L�ggT�LT � LILT � LLT. (A8)

The transformation matrix is found by factorizing C with the Cholesky algorithm (Press et
al., 1992) and the 16-digit accuracy. Overall, the method is local rather than spectral,
therefore it can be easily adapted for spatially inhomogeneous statistics.
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