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Abstract

We study the dynamics of the planktonic ecosystem in the coastal upwelling zone

within the California Current System using a three-dimensional, eddy-resolving cir-
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culation model coupled to an ecosystem/biogeochemistry model. The physical model

is based on the Regional Oceanic Modeling System (ROMS), configured at a resolu-

tion of 15 km for a domain covering the entire U.S. West Coast, with an embedded

child grid covering the central California upwelling region at a resolution of 5 km.

The model is forced with monthly mean boundary conditions at the open lateral

boundaries as well as at the surface. The ecological/biogeochemical model is nitro-

gen based, includes single classes for phytoplankton and zooplankton, and considers

two detrital pools with different sinking speeds. The model also explicitly simulates

a variable chlorophyll-to-carbon ratio. Comparisons of model results with either re-

mote sensing observations (AVHRR, SeaWiFS) or in situ measurements from the

CalCOFI program indicate that our model is capable of replicating many of the

large-scale, time averaged features of the coastal upwelling system. An exception is

the underestimation of the chlorophyll levels in the northern part of the domain,

perhaps because of the lack of short-term variations in the forcing from the atmo-

sphere. Another shortcoming is that the modeled thermocline is too diffuse, and that

the upward slope of the isolines toward the coast is too small. Detailed time-series

comparisons with observations from Monterey Bay reveal similar agreements and

discrepancies. We attribute the good agreement between the modeled and observed

ecological properties in large part to the accuracy of the physical fields. In turn,

many of the discrepancies can be traced back to our use of monthly mean forcing.

Analysis of the ecosystem structure and dynamics reveal that the magnitude and

pattern of phytoplankton biomass in the nearshore region are determined largely

by the balance of growth and zooplankton grazing, while in the offshore region,

growth is balanced by mortality. The latter appears to be inconsistent with in situ

observations and is a result of our consideration of only one zooplankton size class

(mesozooplankton), neglecting the importance of microzooplankton grazing in the

offshore region. A comparison of the allocation of nitrogen into the different pools

of the ecosystem in the 3-D results with those obtained from a box model config-
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uration of the same ecosystem model reveals that only a few components of the

ecosystem reach a local steady-state, i.e. where biological sources and sinks balance

each other. The balances for the majority of the components are achieved by local

biological source and sink terms balancing the net physical divergence, confirming

the importance of the 3-D nature of circulation and mixing in a coastal upwelling

system.

Key words: Phytoplankton Dynamics, Nutrient Cycling, Coastal

Biogeochemistry, California Current, Upwelling

1 Introduction

The continental margins are among the most productive and biogeochemically

active environments on Earth. It is estimated that nearly half of the globally

integrated oceanic primary production and the bulk of sedimentary carbon

burial occurs in this narrow zone (about 300 km wide), which covers only a

few percent of the global ocean area (Walsh, 1991; Smith and Hollibaugh, 1993;

Muller-Karger et al., 2005). Relative to plankton dynamics and biogeochemical

cycling in the open ocean (e.g. Fasham et al. (2001)), comparatively little is

known about the overall role of the continental margins in the global cycling of

elements, their natural variability, or their potential responses and feedbacks

to global climate change (e.g. Doney (1999) and Liu et al. (2000)).
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Eastern boundary current (EBC) systems, such as the California, Humboldt,

Canary, and Benguela Currents, belong to the most productive coastal envi-

ronments (Carr, 2002; Carr and Kearns, 2003), providing the base for food

webs that support some of the most economically important fisheries. The

high rate of formation of organic matter by phytoplankton and the subse-

quent export of this material into the ocean interior stimulate a very rapid

turnover of biologically important elements in these systems (Wollast, 1991,

1998). Among many consequences, this provides a mechanism for taking up

inorganic carbon from the near surface ocean and transporting it downward

or toward the open ocean as organic carbon, potentially making these systems

a sink for atmospheric CO2 (Tsunogai et al., 1999; Thomas et al., 2004).

The high biological productivity in these EBC systems is fueled by the supply

of nutrients from upwelling, a result of the prevailing equatorward blowing

winds that push the near surface waters offshore through Ekman transport,

causing nutrient-rich waters from mid-depths to upwell to the surface. The

physical environment of these EBC systems is also characterized by slowly

varying longshore currents and often intense meso- and submeso-scale vari-

ability. The latter leads to a tight coupling between physical and biological

processes, documented most evidently by the strong co-variance of sea surface

temperature (SST) and chlorophyll (e.g. Denman and Abbott (1994) and Di-

Giacomo and Holt (2001)). These observations indicate clearly the important

role of physical transports in initiating, sustaining, and dispersing biological

production and in determining the associated cycling of elements.

Much effort has been spent on systematic observations of physical, chemi-

cal, and biological processes in EBCs, (e.g. Coastal Upwelling Experiment

(CUE), Coastal Ocean Dynamics Experiment (CODE), Coastal Ocean Pro-
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cesses (CoOP) in the California Current System), but the often spotty spatial

coverage and intermittent sampling make it difficult to determine the pathways

of elemental flow through the system and to establish elemental budgets. As a

consequence, relatively little is known about the dynamics of elemental cycles

in EBC regions and how they shape the magnitude and pattern of biological

production.

A relatively recently developed method to address this question is the use of

three-dimensional coupled physical-ecological-biogeochemical models. Fasham

et al. (1993) and Sarmiento et al. (1993) pioneered this approach by coupling

a nitrogen based, single phytoplankton functional group, single zooplankton,

bacteria, and detritus model developed by Fasham et al. (1990) to a three-

dimensional ocean general circulation model (OGCM) of the North Atlantic.

They demonstrated that the large-scale distribution of chlorophyll in the North

Atlantic can be simulated with a reasonable degree of accuracy. However, de-

tailed comparisons with observations at time-series sites revealed that the

model’s representation of the underlying processes supplying the nutrients

were not as satisfactory. This seminal work spawned a large number of stud-

ies, including, more recently, the use of eddy-resolving models (Oschlies and

Garçon, 1998; Oschlies, 2001; McGillicuddy et al., 2003) or ecosystem models

of substantially higher complexity (Chai et al., 2003; Gregg et al., 2003; Moore

et al., 2004; Lima and Doney, 2004).

In contrast to the many efforts of applying such three-dimensional (3-D) cou-

pled physical-ecological-biogeochemical models to open ocean environments,

there are fewer studies in coastal environments and EBC systems (see Moisan

et al. (2005) for a review). Moisan et al. (1996) were among the first who

used a 3-D coupled model in an EBC setting, but their simulation extended

5



over a few days only, and therefore permitted investigation of only a limited

aspect of the flow of material through the system. Most other existing investi-

gations of biological-physical interactions in EBCs and their impact on ecology

and biogeochemistry have used reduced-order physical models, such as one-

dimensional models (e.g. Moloney and Field (1991)), two-dimensional models

(e.g. Walsh (1975), Wroblewski (1977), and Spitz et al. (2003)) or box models

with a specified upwelling flux of nutrients (e.g. Olivieri and Chavez (2000);

Ianson and Allen (2002)). Such reduced-order physical models have been cho-

sen for their computational efficiency, and the relative ease with which the

results can be analyzed.

Over the last two decades, substantial progress has been made in developing

three-dimensional physical models covering limited domains (e.g. Princeton

Ocean Model (POM) (Blumberg and Mellor, 1987); S-Coordinate Rutgers Uni-

versity Model (SCRUM) (Song and Haidvogel, 1994); Regional Oceanic Mod-

eling System (ROMS) (Shchepetkin and McWilliams, 2005)). Furthermore,

computational power and methods have improved dramatically, permitting

the study of the dynamics of the coupling between biology, biogeochemistry,

and physics in a limited domain at eddy-resolving resolution (e.g. Penven et al.

(2001), Slagstad and Wassmann (2001), Spitz et al. (2005) and Koné et al.

(2005)).

In this study, we address the coupling of ocean physics and planktonic ecosys-

tems using such a computational modeling approach in the context of the Cal-

ifornia Current System (CCS). Our objectives are (i) to describe the model

components and to evaluate the simulated results quantitatively with observa-

tions, (ii) to study the impact of the physical-biological coupling on ecosystem

structure, with a particular emphasis on the relative abundances of fixed nitro-
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gen in the different pools of the ecosystem. Our modeling approach is based on

the coupling of an NPZD-type planktonic ecosystem-biogeochemistry model

to a U.S. West Coast configuration of ROMS (Marchesiello et al., 2003). We

thereby make use of the embedding capabilities of ROMS, permitting us to

simulate this coupling at a fully eddy-resolving resolution of about 5 km along

most of the central California Coast, while resolving the dynamics at about 15

km resolution for the entire domain from Baja California in the south to the

U.S./Canadian border in the north. A characteristic of our simulations is that

because of the use of an improved formulation of the lateral boundary condi-

tions, we are able to obtain multi-year equilibrium solutions for both the phys-

ical and ecosystem models. We will demonstrate that the model reproduces

the observed spatial and temporal variability in the planktonic ecosystems

to first order. We will also show that our ecosystem model, by construction,

has limited success to simulate simultaneously the highly productive coastal

ecosystems and the relatively unproductive offshore ecosystems. As our focus

is on biological productivity and the cycling of elements in the coastal envi-

ronment, we have selected the parameters of the ecological model to represent

upwelling ecosystems, accepting the shortcomings of this choice in the offshore

regions.

This paper is organized as follows: We first describe the model and its com-

ponents, and then subject the results to a quantitative evaluation with data

based metrics. In the second part, we investigate the model simulated ecosys-

tem structure and its dynamics, first focusing on the individual components,

and then assessing how fixed nitrogen is allocated to the individual ecosystem

pools as a function of the total fixed nitrogen content of the model. We will

use the solution of a mixed-layer box model configuration as a reference.
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2 Model Description

The main components of the model are (i) a physical model that simulates

the 3-D time-variant flow and mixing of ocean waters, (ii) an ecosystem-

biogeochemical model that computes the source and sink terms for the re-

active biological and chemical components, and (iii) an optical model that

computes the vertical penetration of short-wave radiation into the ocean, de-

termining the amount of light available for phytoplankton to grow. We discuss

each model component in turn. Further details are given in the online material

section.

2.1 Physical Model

The physical model we employ is a United States West Coast (USWC) con-

figuration of the Regional Oceanic Modeling System (ROMS) (Marchesiello

et al., 2003; Shchepetkin and McWilliams, 2005). We give here only a brief

overview of the physical model. The reader interested in more details is re-

ferred to Shchepetkin and McWilliams (2005) and Marchesiello et al. (2003).

ROMS solves the primitive equations of flow, and is discretized in horizontal

curvilinear coordinates and a generalized terrain-following vertical coordinate

(σ coordinate), which is configured to enhance resolution near the sea surface.

The prognostic variables are surface elevation, barotropic and baroclinic hori-

zontal velocity components, potential temperature and salinity, and the state

variables of the ecosystem-biogeochemical model (see below).

Of particular relevance for the ecosystem-biogeochemistry simulations is that
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vertical mixing in the interior and in the planetary boundary layer is cal-

culated with the non-local, K-Profile Parameterization scheme (KPP: Large

et al. (1994)), which performs well in both measurement comparisons and

large-domain model solutions (Large and Gent, 1999; Li et al., 2001). Of fur-

ther relevance are the open boundary conditions, which are formulated as

a combination of outward radiation and flow-adaptive nudging toward pre-

scribed external conditions (see Marchesiello et al. (2001)). We also benefit

from the embedding capabilities of ROMS (Penven et al., 2006), which we use

to more finely resolve the coastal region in the central part of our domain.

In the USWC configuration adopted here, the outer domain extends in lati-

tude from the middle of Baja California (28◦N) to the Canadian Border (48◦N;

approximately coincident with the subtropical/subpolar gyre boundary) (see

Figure 1). The model therefore spans a domain that is about 2100 km long

and 1300 km wide, and encompasses the CCS and its most energetic regions.

The horizontal grid spacing of the outer grid is about 15 km (85×170 grid

points). We embedded a reduced domain model with a resolution of about 5

km (Figure 1) to more finely resolve the most dynamic region of the CCS.

The domain of this child grid is the central California upwelling region and

extends from Point Conception (34◦35’N) in the south to approximately the

California/Oregon border (41◦51’N) in the north. The child grid covers about

15 % of the parent grid with an offshore extent of about 500 km, and an

alongshore extent of about 800 km (95×191 points). The child grid is embed-

ded in a one-way manner within the parent grid, i.e. information about the

state of the model is passed from the parent grid to the child grid at each

time step, while no such transfer occurs in the opposite direction. Our limited

experience with two-way embedding shows relatively little difference between
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one-way and two-way embedding, so that we opted for one-way embedding be-

cause of its computational simplicity. Both grids have 20 vertical levels with

vertical refinement near the surface to allow for a reasonable representation of

the surface boundary layer and the euphotic zone everywhere in the domain.

On average, about 8 levels are within the euphotic zone, defined here as the

1% light level.

2.2 Ecological-Biogeochemical Model

The ecological-biogeochemical model is a nitrogen based NPZD model. It con-

sists of a system of seven coupled partial differential equations that govern the

time and space distribution of the following non-conservative scalars: nitrate

(NO−

3 , subsequently denoted as Nn to reflect “new” nitrogen, e.g. Dugdale

and Goering (1967)), ammonium (NH+
4 , denoted as Nr to reflect “regener-

ated” nitrogen), phytoplankton (P ), zooplankton (Z), small (DS) and large

(DL) detritus, and a dynamic phytoplankton chlorophyll-to-carbon ratio (θ)

(see Figure 2). The state variables represent concentrations of nitrogen within

the different pools and have units of mmol N m−3, except for θ, which has

units of mg Chl-a (mg C)−1 (the latter is converted to per nitrogen units in

the model assuming a constant carbon to nitrogen ratio of phytoplankton).

The tracer conservation equation for any of the above 7 scalars B is given by:

∂B

∂t
= ∇ · K∇B − ~u · ∇hB −

(

w + wsink
) ∂B

∂z
+ J(B), (1)

where K is the eddy kinematic diffusivity tensor, and where ∇ and ∇h are

the 3-D and horizontal gradient operators, respectively. The symbols ~u and
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w denote the horizontal and vertical velocities of the fluid, respectively, and

wsink is the vertical sinking rate of the biogeochemical components. Sinking

affects all particulate pools, except for zooplankton. Finally, J(B) represents

the source minus sink term for each biogeochemical scalar, described in detail

below.

Structurally, the model builds on a long history of planktonic ecosystem mod-

els, starting, among others, with those of Walsh and Dugdale (1971) and

Steele (1974) (see Hood and Christian (2006) for a historical overview). Our

model is an evolutionary descendent of the ecosystem model of Fasham et al.

(1990), but was modified in a number of important ways. First, bacteria were

eliminated as an explicitly modeled state variable, and replaced with implicit

parameterizations of remineralization processes. Second, dissolved organic ni-

trogen (DON) and detrital organic nitrogen were replaced with two pools of

detritus, a large one that sinks fast, and a small one that sinks slowly, the lat-

ter mimicking DON and fine, slow-sinking particles. The small detrital pool

coagulates with phytoplankton, thereby forming large, fast sinking detritus.

Third, sinking is modeled explicitly, thereby permitting all state variables to

be advected laterally even in the aphotic zone. Finally, a variable chlorophyll-

to-carbon ratio is considered here. Most of these changes were made to simplify

the model and to reduce the number of parameters, while maintaining or im-

proving the model’s skill.

The full set of source and sink terms, J(B), for each of the seven biogeochem-

ical model components are written as:
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J(P ) = µmax
P (T, I) · γ(Nn, Nr) · P

−ggraz
Z Z

P

KP + P
− ηmort

P P − kcoagP · (P + DS) (2)

J(Z) = ggraz
Z βassim

Z Z
P

KP + P
− ηmetab

Z Z − ηmort
Z Z2 (3)

J(Nn) =−µmax
P (T, I) · γ(Nn) · P + knitr(I) · Nr (4)

J(Nr) =−µmax
P (T, I) · γ(Nr) · P − knitr(I) · Nr + ηmetab

Z Z

+kremin
DS

DS + kremin
DL

DL (5)

J(DS) = ggraz
Z · (1 − βassim

Z ) · (1 − Ωegest
Z ) · Z

P

KP + P

+ηmort
P P + ηmort

Z · (1 − Ωmort
Z )Z2

−kcoagDS · (P + DS) − kremin
DS

DS (6)

J(DL) = ggraz
Z · (1 − βassim

Z ) Ωegest
Z Z

P

KP + P

+ηmort
Z Ωmort

Z Z2

+kcoag
· (P + DS)2

− kremin
DL

DL (7)

J(θ) = µmax
P (T, I) · γ(Nn, Nr)





µT
P (T ) · γ(Nn, Nr) · θ

max

√

(µT
P (T ))2 + (αP I θ)2

− θ



 (8)

where symbols with parentheses, such as µmax
P (T, I) represent functions of

the respective variables, while all other symbols represent parameters. Sub-

scripts in the parameters and functions refer to the state variable this pa-

rameter/function is associated with, while superscripts refer to the process.

A complete list of the values and explanation of all parameters is given in

Table 1. In choosing these parameters, we aimed at representing correctly the

diatom-dominated, eutrophic coastal ecosystems and put less emphasis on the

oligotrophic offshore environments. A description of the functions and the basis

for our choice of parameters is presented in the online supplementary material,

including a derivation of the source and sink term for the chlorophyll-to-carbon

ratio, J(θ). We describe next solely the growth parameters for phytoplankton,

as their role in regulating the phytoplankton distribution is discussed in detail

in the results section.
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Phytoplankton growth is limited in our model by the amount of photosyn-

thetically available radiation, I, and the concentrations of nitrate and ammo-

nium. The effective growth is further constrained by temperature, T . Following

Fasham et al. (1990), we assume that light and nutrient limitation are inde-

pendent of each other, permitting us to write the total phytoplankton growth

rate, µP , as

µP (T, I,Nn, Nr) = µmax
P (T, I) · γ(Nn, Nr) (9)

where µmax
P (T, I) is the temperature-dependent, light-limited growth rate un-

der nutrient replete conditions and γ(Nn, Nr) is a non-dimensional nutrient

limitation factor. The temperature-dependent, light-limited growth rate is

given by

µmax
P (T, I) =

µT
P (T ) · αP · I · θ

√

(µT
P (T ))2 + (αP · I · θ)2

(10)

where αP is the initial slope in the growth versus light relationship (see Table

1), and where I stands for in situ PAR, given in W m−2.

This light versus growth relationship is based on Smith (1936) and is identical

to that used by Fasham et al. (1990), except that it has been modified to take

into account variations in the chlorophyll-to-carbon ratio, θ. This modification

attempts to represent the expected increase in photosynthesis in response to

phytoplankton cells allocating a higher percentage of their structure to the

photosynthetic apparatus, i.e. having higher θ. This should lead to higher

growth rates in regions that are nearly nutrient-replete, such as within the

upwelling zone, or in the proximity of the subsurface chlorophyll maximum.

This modification is supported by the observation that αP generally increases

with decreasing cell volume, which in turn tends to be associated with faster
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growing phytoplankton populations (Geider et al., 1986). We did not adjust

our light versus growth relationship for the fact that we are using a diurnally

varying light field, while most previous studies used an integral form (Evans

and Parslow, 1985). Sensitivity studies showed that the inclusion of a diurnally

varying light field leads, on average, to lower growth with fixed µT
P (T ) and αP ,

mainly because of the concave nature of the light versus growth relationship

(10).

The temperature dependent growth rate, µT
P (T ), is parameterized using the

relationship of Eppley (1972) ,

µT
P (T ) = ln 2 · 0.851 · (1.066)T (11)

where T is given in degrees Celsius. A factor of ln 2 was added to change the

units in the relationship from the original doubling per day to day−1.

The nutrient limitation factor, γ(Nn, Nr) ≤ 1, is parameterized using a Michaelis-

Menten equation, taking into account that ammonium is taken up preferen-

tially over nitrate, and that its presence inhibits the uptake of nitrate by phy-

toplankton (Wroblewski, 1977). We use an additive function weighted toward

ammonium:

γ(Nn, Nr) = γ(Nn) + γ(Nr) =
Nn

KNn
+ Nn

KNr

KNr
+ Nr

+
Nr

KNr
+ Nr

(12)

where KNn
and KNr

are the half-saturation constants for phytoplankton up-

take of nitrate and ammonium, respectively. The ammonium inhibition term

for nitrate uptake, (KNr
)/(KNr

+ Nr) is based on the work of Parker (1993),

and has been shown to give nearly the same results as the exponential decay

relationship originally used by Wroblewski (1977).
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2.3 Optical Model

We use a spectrally unresolved model to describe the penetration of photosyn-

thetically available radiation (PAR), I, into the water column. PAR is assumed

to be attenuated by seawater with an attenuation coefficient, κsw, and by the

presence of chlorophyll with a chlorophyll specific attenuation coefficient κchla

(see Table 1 for values). The subsurface profile of PAR, I(z) is calculated by

vertically integrating

dI

dz
= − (κsw + κchlaChl-a(z)) · I(z) (13)

from the surface down to the bottom of the water column. The concentration

of chlorophyll a, Chl-a, in units of mg Chl-a m−3 is computed from the phy-

toplankton concentration and the chlorophyll-to-carbon ratio, θ, assuming a

constant C:N ratio of 106:16.

Surface PAR is calculated from the total surface solar radiation used in the

physical model, assuming that PAR represents 43% of total solar radiation at

the sea surface. In order to resolve the diurnal cycle for PAR, we constructed

a diurnally varying PAR field from the monthly climatology that drives the

physical model. Details are given in the online supplementary material.

2.4 Boundary and initial conditions, spinup, and convergence

We force our physical model at the surface using monthly-mean climatologies

of wind stress and fluxes of heat and freshwater derived from the Comprehen-

sive Ocean Atmosphere Data Set (COADS) (da Silva et al., 1994). Our choice

of neglecting synoptic and interannual variability in the surface boundary con-
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dition is based on our focus on the mean state of the CCS and its seasonal

evolution. All non-seasonal variability in the model is therefore entirely intrin-

sic, i.e. generated by the instabilities in the flow. For further details on the

lateral and surface boundary conditions, the reader is referred to the online

supplementary material.

The model is initialized with climatological observations of temperature, salin-

ity, and nitrate for the average of the months of December and January

(Conkright et al., 2002) and no flow. The remaining state variables are set

to very small, but non-zero values. Winter values are used because this is

a period of minimum wind forcing and current energy, which reduces initial

spinup problems.

From the above initial conditions, we run the 15+5 km configuration for 10

years forward in time. Time-series for the different state variables show that

this configuration converges after about 3 to 4 years. Due to intense meso-

and submesoscale variability, and the chaotic nature of these variations, we

find substantial year-to-year variations in our results even after the spinup. In

order to remove these interannual variations, we generally show and discuss

5-year averages from year 6 through 10.

3 Model Evaluation

3.1 Ocean Circulation

Under the influences of climatological-mean seasonal forcing from the atmo-

sphere and subtropical-gyre open boundary conditions, a robust equilibrium
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state is established for the CCS on a time scale of a few years. Marchesiello

et al. (2003) demonstrated that this solution has mean alongshore, cross-shore,

and boundary upwelling currents similar to those estimated from hydrographic

climatologies. To evaluate our physical model results further, we compare here

our results with the climatological distribution of SST measured by AVHRR

(Figures 3) and the vertical structure of upper thermocline properties as ob-

served by CalCOFI (Figure 5, data obtained from www.calcofi.org) and at

station H3/M1 in Monterey Bay (Figure 6). We compare long-term averages

in order to remove the effect of mesoscale eddies.

The annual average ROMS solution represents well the observed SST pattern

in the CCS (Figure 3). In particular, the model successfully captures the off-

shore extent of the cold upwelling region along the central coast of California.

However, absolute values of modeled SST exhibit a cold bias of about 1◦C

relative to AVHRR (Figure 3c) for most of the model domain. Modeled SST

tend to be more consistent with the available CalCOFI data (Figure 4). Some

of the differences between the two observational estimates are likely due to

spatial and temporal representation error in the relatively sparsely sampled

CalCOFI data, but we also need to consider that these differences reflect true

changes over time. The CalCOFI climatology spans the period from 1949 to

2000, while the AVHRR climatology was put together on the basis of the years

1997 through 2002 only. As a result, the long-term warming that has been ob-

served in the offshore region of the CCS (Roemmich and McGowan, 1995; Di

Lorenzo et al., 2005) will lead to SST from AVHRR being warmer, on average,

than those from CalCOFI. Given the observation of an approximately 1.6◦C

warming from the early 1950s to the late 1990s (Roemmich and McGowan,

1995; Di Lorenzo et al., 2005), the AVHRR climatology is expected to be about
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1◦C warmer than a climatology based on the entire record. Since our model

was forced with heat fluxes from the COADS climatology, which was derived

from observations collected between 1950 to 1979, we expect it to be more

consistent with CalCOFI SST than with AVHRR based SST. We therefore

regard at least part of our cold SST bias relative to AVHRR as representing a

real difference. The cold bias in the nearshore regions is, on average, smaller

(Figure 3c), indicating that the model is upwelling water with approximately

the right temperature characteristics.

A comparison of the modeled versus observed vertical distribution of temper-

ature along CalCOFI line 70 indicates that the simulated thermocline (Figure

5, panels (a) and (b)) is at about the right depth, but is underestimating the

onshore slope, particularly in the nearshore region. Sensitivity experiments

and theoretical considerations have shown that the large-scale onshore slope

is to a significant degree determined by the magnitude and sign of the curl of

the wind stress. In contrast, the slope of the isotherms in the very nearshore re-

gion is primarily determined by the alongshore wind stress along the coast (X.

Capet, personal communication). In analogy to the open ocean, positive wind

stress curl leads to a heaving of the isotherms. Comparison of the COADS

winds with other wind products revealed that due to its coarse resolution

COADS very likely underestimates the positive wind stress curl, explaining

the underestimation of the offshore-onshore slope in the isotherms (X. Capet,

personal communication). The modeled salinity distribution (Figure 5, panels

(c) and (d)) is in good agreement with observations, except that it also ex-

hibits too small a slope towards the coast. Since the contribution of salinity

to density variations within the CCS is small (outside the Columbia River

plume), salinity can almost be regarded as a passive tracer. Consequently, the
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underestimation of the onshore slope in salinity can be interpreted as simply

reflecting the same issues with the wind stress and its curl as expressed in the

temperature deficiency.

An additional evaluation of our physical model results is the comparison with

the climatological mean annual cycle observed at the M1/H3 mooring site in

Monterey Bay (Figure 6) (Pennington and Chavez, 2000). The model success-

fully reproduces the key characteristics of the seasonal evolution of the upper

thermocline at this nearshore site, with a strong shoaling of the isotherms in

spring/early summer and a deepening of them in late summer, fall and win-

ter. However, the modeled thermocline is behaving too sluggishly relative to

observations, with the amplitude of the shoaling of the isotherms being about

30% too small (e.g. for the 10◦C isotherm, the shoaling amounts to about 70

m in the model, whereas the observations indicate a shoaling of more than 100

m). We suspect that many of these differences arise because of the absence of

synoptic variability in our physical forcing.

We conclude that, in agreement with the systematic evaluations of our U.S.

West Coast physical solutions by Marchesiello et al. (2003), our model setup

captures much of the spatial and temporal variability in ocean physics at the

scale of the upwelling region (several hundred kilometers) and over a clima-

tological annual cycle. As will be discussed below, this capability is key to

obtaining realistic ecosystem solutions given the tight coupling between bio-

geochemical, ecological, and physical processes.
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3.2 Biogeochemical and Ecosystem Properties

The comparison of the modeled annual mean chlorophyll with that inferred

by SeaWiFS (Figure 7) demonstrates the success and shortcoming of our so-

lutions even more clearly than SST. South of the region around Cape Mendo-

cino, i.e. south of about 40.5◦N, the model successfully reproduces both the

average chlorophyll concentration in the nearshore 50 km, as well as the nega-

tive gradient along an onshore-offshore transect. Similar conclusions are found

by comparing modeled near surface chlorophyll with those measured in situ

by the CalCOFI program in this region (Figure 4b). However, a detailed in-

spection also reveals that the model simulates much higher chlorophyll in the

very nearshore region, i.e. within the first 25 km, compared to both CalCOFI

and SeaWiFS. In the case of SeaWiFS, one would need to be careful with a

quantitative comparison, since the retrieval algorithm has not been optimized

for quantitatively determining chlorophyll in coastal waters (Toole and Siegel,

2001).

In contrast to the relative success in the southern part of our domain, chloro-

phyll begins to be underestimated by our model north of Cape Mendocino,

i.e. 40.5◦N, and remains much lower than observations north of Cape Blanco

(43◦N) all along the Oregon coast. The largest absolute underestimation is

found in the nearshore region, where annual mean chlorophyll simulated by

the model is well below 1 mg Chl-a m−3, whereas observed annual mean chloro-

phyll is above this value along the entire coast, reaching values as high as 6

mg Chl-a m−3 in a few locations. This negative bias extends far into the off-

shore regions, where modeled chlorophyll fields are persistently lower than

the observed ones by about a factor of three. We suspect that a substantial
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part of this bias is a result of our use of COADS wind products that lack the

synoptic variability that is typical for the Oregon/Washington coasts. Coastal

upwelling in these regions is much more intermittent, driven by short bursts

of strong upwelling, and interleaved by relaxation periods (Huyer, 1983). Sim-

ulations by Spitz et al. (2005) clearly demonstrate the importance of these

upwelling events, which are not well represented in our forcing. A monthly

mean wind product will therefore underestimate the upwelling. Furthermore,

small-scale wind patterns around complex topography (Dong and McWilliams,

2006), which are not represented in the COADS climatology, may further lead

to biases. Future sensitivity studies with differing wind products (c.f. Capet

et al. (2004)) will hopefully resolve this bias.

Figure 8 shows that the good agreement between modeled and observed chloro-

phyll for the southern portion of our domain extends to all seasons. The largest

difference is found in fall, when the offshore extent of the high chlorophyll re-

gion is too small. The seasonal comparison also reveals that most of the large

bias in the northern portion of our domain, i.e. north of Cape Mendocino,

is driven by a virtual absence of elevated chlorophyll in fall and winter, the

seasons of greater storminess. The negative bias does not disappear in spring

and summer, but is notably smaller.

A more quantitative comparison between the modeled and observed chloro-

phyll distributions is depicted in the Taylor diagrams shown in Figure 9 (Tay-

lor, 2001). A Taylor diagram combines information about the correlation be-

tween the modeled and observed pattern (plotted as the angle between the

abscissa and the line drawn from the origin to the point) with the standard

deviation of the modeled field relative to that of the observed field (distance

from origin to the point along the angle given by the correlation). On this
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plot, the observed pattern lies on the abscissa at distance 1 from the origin,

since it correlates perfectly with itself and has a normalized standard devia-

tion of 1. The centered pattern root mean square (RMS) error is then given

by the distance between the point defined by the modeled pattern and the ob-

served pattern. The shorter this distance, the greater the agreement between

the pattern.

Figure 9a shows for the annual mean chlorophyll pattern over the entire do-

main (point denoted by “DOMAIN”) a correlation of about 0.6 between the

model simulated field and the observations inferred from SeaWiFS. The model

underestimates the observed variance somewhat by having a standard devia-

tion around the annual mean of the entire domain that is about 20% smaller

than the observed standard deviation. The large difference in the success of our

model in simulating the pattern north and south of Cape Mendocino becomes

evident by computing the correlations and standard deviations separately for

these two regions. The southern part of our domain has a correlation exceed-

ing 0.8 with a standard deviation that is nearly identical to the observed one,

whereas the northern part has a correlation of only about 0.3, with a stan-

dard deviation that is only half of the observed one. As a result, the RMS

between the model and the observations is more than 50% larger in the north-

ern compared to the southern part of the domain. The north-south difference

is somewhat less pronounced in the nearshore region “Nearshore” (defined as

a 100 km wide strip following the coastline).

The model simulates the observed seasonal cycle of chlorophyll less success-

fully than the annual mean pattern (Figure 9b). The correlation of the seasonal

anomalies, i.e. of the monthly means minus the annual means, for the entire

domain is only 0.4, and none of the subregions has a correlation above 0.6.
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The best agreement is found for the nearshore region in the northern part

of our domain, but its RMS is only marginally better than the worst RMS

found for any of the sub-regions in the annual mean case. This distinct dif-

ference between the annual mean and the seasonal component is not reflected

in the Taylor diagrams for SST (Figure 9c-d), which show generally much

better agreement and no major distinction between the two temporal compo-

nents. The correlation for both annual mean SST and its seasonal component

amounts to nearly 0.99 and the model variance is very close to the observed

one. This is a remarkable success, but it needs to be added that by plotting

correlations and standard deviations only, the model bias for SST identified

above (Figure 3c) is not considered here.

In order to evaluate our subsurface modeled fields, we turn to the observa-

tions from the CalCOFI program and the M1/H3 mooring in Monterey Bay.

The comparison of simulated and measured depth distributions of nitrate and

chlorophyll along CalCOFI line 70 presents a supporting picture, although

several mismatches can be identified (Figure 5). The mean nutricline in the

model is very close to the observed one, but reminiscent of the comparison

with temperature and salinity, the modeled isolines fail to show the shoreward

shoaling seen in the observations, particularly in the nearshore region.

The vertical distribution of the modeled chlorophyll compares relatively well

with the available CalCOFI data. The model successfully captures the near-

surface chlorophyll maximum in the nearshore zone, followed by a progressive

deepening of the chlorophyll maximum as the transect moves offshore, for

reasons discussed in section 4.1 below. The model tends to overestimate the

chlorophyll concentration of this deep chlorophyll maximum and also tends

to exhibit too deep a penetration of sizeable chlorophyll concentrations. This
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overestimation could be driven by a too large Chl-a:C ratio, or by an over-

estimation of the phytoplankton biomass. We unfortunately lack in situ ob-

servations of either of these two quantities, so we cannot distinguish between

these two possibilities, but the simulation of a too deep nitracline (Figure 5)

suggests that the latter cause may be the main source of the discrepancy.

We suspect that our chosen value for the initial slope of the phytoplankton

response to light, i.e. αP , may be too large.

Figure 6 shows that the model successfully captures the upward lifting of

the nutricline at the Monterey Bay site during the summer upwelling season,

leading to the injection of new nutrients into the near surface ocean. The model

also simulates the relaxation during winter, when near surface nitrate drops

to very low values and the entire upper 50 m become nitrate deficient. As was

the case for temperature, the observed magnitude of this seasonal contrast is

not fully reproduced by the model. It underestimates both the upward lifting

of the high nitrate waters in summer and the downward relaxation of the low

nitrate waters in winter. In addition, the thermocline nitrate concentration

for a given temperature tends to be lower in the model in comparison to the

observations, potentially aggravating the nutrient injection bias by the too

small upward lifting of the thermocline in the summer season. Despite these

shortcomings, model simulated chlorophyll values in Monterey Bay compare

remarkably well with observations, with the main difference being a later onset

of the seasonal chlorophyll maximum in summer. The observations indicate a

maximum in spring and early summer, whereas the seasonal maximum in the

model occurs in late summer.

In summary, the evaluation of our simulated fields with in situ and remotely

sensed biological and biogeochemical properties suggest that the model cap-
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tures the large-scale pattern and their seasonal evolution remarkably well.

Some mismatches can be traced back to deficiencies in the physical model,

e.g. induced by the lack of synoptic wind forcing and potential biases in the

spatial resolution of the winds, while other deficiencies are clearly related to

the ecological/biogeochemical model. The largest structural problem is, per-

haps, our use of a single phytoplankton functional group model, which prevents

the ecological model from switching between eutrophic and oligotrophic con-

ditions. Since our focus here is on the eutrophic upwelling system, we accept

this shortcoming.

4 Upper Ocean Ecosystem Structure and Dynamics

We next discuss the different biomass pools in the upper ocean with an em-

phasis on the processes that control their spatio-temporal pattern. We focus

on the central California upwelling system, where our model evaluations pro-

vided us with confidence that the model is able to capture the most important

processes governing upper ocean ecosystem dynamics.

We limit our discussion to the distribution of the various ecosystem variables

within the euphotic zone (defined here as the 1% light level), whose depth

varies between about 50 m in the nearshore and more than 100 m in the off-

shore waters. This distribution is entirely governed by chlorophyll, since this

is the only property that absorbs light besides water in our model. These eu-

photic zone depths are everywhere deeper than the model’s mixed layer depths,

which are between 40 to 50 m deep in winter, and shoal to 20 m and less in

summer. These mixed layer depths are also substantially shallower than the

critical depth (Sverdrup, 1953), which is of the order of 100 m and more (Platt
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et al., 1991; Siegel et al., 2002). The critical depth is defined as the depth at

which the vertically integrated rates of photosynthesis and community respi-

ration are equal. This suggests that although our model phytoplankton within

the surface mixed layer will experience light limitation, it has always enough

light to sustain positive net growth.

4.1 Phytoplankton

The annual mean distribution of phytoplankton biomass averaged over the eu-

photic zone (Figure 10a) shows a slower transition than surface ocean chloro-

phyll from the high levels nearshore to the lower values offshore. This slower

transition is primarily due to phytoplankton biomass transitioning from a sur-

face maximum in the nutrient rich nearshore region to a deep phytoplankton

biomass maximum in the offshore region (see Figure 11c). The variable Chl-a:C

ratio considered in our model has little influence on this result, since surface

phytoplankton has a relatively constant ratio in our model (see below).

The phytoplankton biomass transition from a nearshore surface to an offshore

subsurface maximum is mainly a result of the interaction of light and nutrient

availability. Ample light and nutrients in the surface waters of the nearshore

regions permit phytoplankton to grow near maximum growth rates there. As

evidenced in Figure 12, however, surface nitrate concentrations get rapidly

drawn down as the upwelled waters are transported offshore by the mean

Ekman drift and the abundant meso- and submesoscale circulation features.

While phytoplankton uptake draws surface nitrate down to levels below 0.05

mmol m−3 (more than 15 times lower than the half-saturation concentration

for nitrate uptake) in the offshore waters, surface ammonium concentrations
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remain somewhat elevated between 0.05 and 0.10 mmol m−3. This is caused

by an active ammonium cycle consisting of rapid phytoplankton uptake, and

generation by zooplankton excretion and the breakdown of (small) detritus.

However, this ammonium concentration is too low to sustain high phytoplank-

ton growth rates in the near surface waters, since it is 5 to 10 times smaller

than our half-saturation concentration for ammonium uptake. In contrast, el-

evated nitrate and ammonium concentrations at depth in the offshore regions

permit phytoplankton to sustain an appreciable amount of biomass despite

the reduced light level (the deep phytoplankton biomass maximum is located

only slightly above the 1% light level). Although this essentially local growth

argument explains most of the depth transition of the phytoplankton biomass,

some of the phytoplankton is transported there by downwelling and subduc-

tion processes as well.

The interaction of light and nutrients and their influence on local growth, as

well as the influence of lateral transport are particularly evident when the

seasonal evolution of phytoplankton biomass along the same offshore section

is investigated (see Figure 13). In winter, phytoplankton biomass is compar-

atively low and vertically nearly homogeneously distributed. This is driven

primarily by the presence of deeper mixed layers, particularly offshore, which

mix the phytoplankton biomass vertically. In the offshore region, this dilution

effect is not compensated by increased growth from the mixing-induced en-

hanced nutrient input, because of the lower light levels available at this time

of the year. This light limiting effect is particularly strong in the lower parts

of the euphotic zone. The light levels are, however, not low enough to remove

the light inhibition of nitrification, so that substantial levels of ammonium are

built up at the base of the euphotic zone (Figure 11b).
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As the upwelling season starts in spring, near surface phytoplankton biomass

in the nearshore region rapidly increases, forming a distinct near surface maxi-

mum. Some of this elevated phytoplankton biomass is transported offshore and

downward forming distinct blobs of elevated phytoplankton biomass at depth.

Small detrital material is transported alongside phytoplankton as well, forming

a source of ammonium that can then fuel additional local growth. In summer,

the nearshore and offshore systems appear to become uncoupled, with the

nearshore region having continued high growth supporting high phytoplank-

ton biomass in near surface waters, while a strong phytoplankton biomass

maximum develops near the base of the euphotic zone in the offshore region.

The offshore subsurface biomass maximum is maintained through summer and

into early fall by lateral advection and local growth, fueled by high nutrients

and a relaxation of the local light limitation as the surface chlorophyll concen-

trations drop. In fall, when coastal upwelling in the central California region

starts to decrease, nearshore phytoplankton levels drop sharply, but the maxi-

mum remains near the surface. In the meantime, the offshore region continues

to show elevated phytoplankton biomass at depth, which erode only slowly

into winter.

The relative roles of light and nutrients in controlling the growth rate of phy-

toplankton can be diagnosed in more detail by splitting the phytoplankton

growth rate, µP (T, I,Nn, Nr), into its individual driving factors. We obtain this

separation by extending the growth rate equation (9) by the light-saturated

growth rate µT
P (T ), i.e.

µP (T, I,Nn, Nr) =

(

µmax
P (T, I)

µT
P (T )

· γ(Nn, Nr)

)

· µT
P (T ) (14)

= γ(I) · γ(Nn, Nr) · µ
T
P (T ) (15)
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where γ(I) is the ratio of the light-limited growth rate µmax
P (T, I) to the light-

unlimited growth rate µT
P (T ). If either of these two factors, γ(I) or γ(Nn, Nr) is

equal to 1, then phytoplankton growth is completely unlimited by this factor.

If either of these factors is equal to 0, then phytoplankton growth is zero.

In between, whichever factor is smaller has a stronger limiting influence on

growth. Since both γ(I) and γ(Nn, Nr) have very similar concave shapes, i.e.

negative second derivatives, a smaller value implies a larger sensitivity in γ

to a fractional change in either light or nutrients. Therefore, this condition

satisfies the Monod-type condition for a proximate limiting factor (see Monod

(1949)).

Figure 14 shows annual mean vertical sections of γ(I), γ(Nn, Nr), and the

logarithm of their ratio, log(γ(Nn, Nr)/γ(I)), along the same offshore transect

as shown before for phytoplankton (Figure 11c). The light and nutrient limi-

tation terms show the expected nearly orthogonal pattern. The light limiting

term is maximal in near surface waters and then decreases rapidly with depth,

while the nutrient limiting term is maximal at depth and decreases toward the

surface, except in the nearshore region. The latter pattern reflects directly the

combined concentrations of nitrate and ammonium shown in Figure 11a and

b. In contrast, by exhibiting a substantial offshore decrease from a maximum

in the nearshore region, the light limiting term shows more variations than

expected based on the distribution of PAR. The substantially lower values

of γ(I) in the offshore region are driven by low values of the Chl-a:C ratio,

which reduces the efficiency by which phytoplankton is capable of absorbing

the incoming PAR, reducing its growth rate.

The section of the logarithm of the ratio, log(γ(Nn, Nr)/γ(I)), (Figure 14c)

demonstrates that, except for a relatively thin layer of about 20 m depth near
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the surface, phytoplankton growth in the annual mean is primarily limited by

light. For most of the euphotic zone, light limitation exceeds nutrient limita-

tion by a factor of 2. In the nearshore region, this light limitation extends to

the surface, while in the offshore region, nutrients are the proximate factor

limiting phytoplankton growth. Part of the reason for the surprisingly large

importance of light in controlling phytoplankton growth are the high concen-

trations of ammonium simulated in the euphotic zone of our model, which

leads to a substantial increase in the nutrient limiting factor, γ(Nn, Nr). We

suspect that without the intense ammonium recycling exhibited by our model,

the dominance of nutrient limitation would extend much deeper into the ther-

mocline, particularly in the offshore region. A second caveat to consider is our

neglect of a possible iron limitation, such as reported by Hutchins et al. (1998)

and Hutchins and Bruland (1998) for the CCS. If iron is indeed an important

factor limiting growth in the CCS, nutrient limitation may be more dominant

than simulated by our model.

4.2 Chlorophyll-to-Carbon Ratio

In many coupled physical-ecosystem models, the chlorophyll-to-carbon ratio

is assumed to be constant, with typical values of around 20 µg Chl-a (mg C)−1

(this corresponds to a carbon-to-chlorophyll ratio of 50 mg C (mg Chl-a)−1)

(e.g. Sarmiento et al. (1993); Fasham et al. (1993)). We therefore discuss next

how our model simulated chlorophyll-to-carbon ratio varies and how much of

a difference it makes in comparison to assuming it to be constant.

Figure 15 reveals that the primary factor determining the variations of θ in our

model is the availability of light, as there is a strong increase in θ from near
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surface values of around 10 to 30 µg Chl-a (mg C)−1 to values approaching

θmax of 53 µg Chl-a (mg C)−1 at the bottom of the euphotic zone. Another

factor appears to be nutrient availability as nearshore surface waters tend to

have higher θ values than offshore waters.

These variations can be well understood by analyzing equation (9) in the online

supplementary material, which was derived from the model of Geider et al.

(1997) and forms the basis for our model of θ. This equation describes the

fraction of freshly photosynthetically fixed carbon, α, that is used for chloro-

phyll biosynthesis. Thus, when α is high, the chlorophyll-to-carbon ratio will

increase, and vice versa. After inserting our parameterization for µmax
P (T, I)

from (10), we obtain,

α =
µT

P (T ) · γ(Nn, Nr) · θ
max · β

√

(µT
P (T ))2 + (αP · I · θ)2

(16)

where we use the symbol β for denoting the product of the conversion factors

rP
C:N and 12 mg C(mmol C)−1.

In the case of high irradiance, typical for near surface waters, the second term

within the square root is much larger than the first term, so that (16) converges

to a solution that is inversely proportional to the amount of irradiance and

proportional to the nutrient concentration, expressed by the factor γ(Nn, Nr):

αhigh light =
µT

P (T ) · γ(Nn, Nr) · θ
max · β

αP · I · θ
(17)

This explains the generally low θ values in near surface waters, and also the

increase toward the more productive nearshore region. While we lack obser-

vations to assess our modeled distribution of θ, there exist time-series obser-

vations from near surface waters in the highly productive Monterey Bay (F.

Chavez, pers. comm). Comparison of our modeled surface Chl-a:C ratios for
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Monterey Bay surface waters show an excellent agreement with these observa-

tions. Both model and observations have a winter maximum of θ with values

around 35 µg Chl-a (mg C)−1, decreasing to a summer minimum of around

25 µg Chl-a (mg C)−1.

In the case of low irradiance, as encountered at the bottom of the euphotic

zone, the first term within the square root is much larger than the second

term, so that (16) converges to a solution that is determined by the nutrient

status and θmax:

αlow light = γ(Nn, Nr) · θ
max

· β (18)

Since nutrients often tend to be well above their half-saturation constants at

depth, the factor γ(Nn, Nr) is near 1 there (see Figure 14b), explaining why θ

converges to θmax at the bottom of the euphotic zone.

The large horizontal and vertical variations in θ tend to cancel out in the

vertical average over the euphotic zone (Figure 15c), so that the euphotic

mean θ varies only between about 20 and 30 µg Chl-a (mg C)−1. Most of

the euphotic mean variations can be traced to either higher growth rates

(nearshore) or lower average light levels (higher latitudes). This means that

the non-linearities in (16) are relatively small, so that its vertical integral is

primarily determined by the amount of light arriving at the sea surface.

Given the relatively small variations of the euphotic mean θ, does our con-

sideration of a variable chlorophyll-to-carbon ratio matter (see also discussion

by Doney et al. (1996) and Armstrong (2006))? The benefit is relatively small

when the simulation of euphotic mean phytoplankton biomass and the asso-

ciated chlorophyll is considered, but has a substantial influence on their ver-
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tical distributions. A particularly large impact of using a variable ratio exists

for the interpretation of satellite chlorophyll. Had we used a canonical value

of 25 µg Chl-a (mg C)−1 for converting our model simulated phytoplankton

biomass into chlorophyll, we would have obtained higher chlorophyll nearly

everywhere, except for the very nearshore region, where we would have ob-

tained lower chlorophyll. This would have given us rather different skill scores

in the Taylor diagram (Figure 9). The variable chlorophyll-to-carbon ratio is

also of great importance when model simulated chlorophyll is compared to in

situ observations, particularly at depth. In this case, using a canonical θ of 25

µg Chl-a (mg C)−1 would lead to much lower chlorophyll values, from which

one would conclude a very substantial negative bias in the model.

4.3 Zooplankton

The annual mean zooplankton distribution in the euphotic zone exhibits an

offshore gradient that is more pronounced than that of phytoplankton (com-

pare panels a and b in Figure 10). Furthermore, zooplankton in the nearshore

region tends to be more abundant in the southern part of the domain, while

phytoplankton biomass is meridionally more evenly distributed. In the off-

shore regions, zooplankton disappears in regions where phytoplankton still

maintains a substantial biomass. The reason for this result is that although

phytoplankton biomass is well above zero, it is below the minimum level re-

quired to sustain zooplankton in our model. In steady-state, this minimum

phytoplankton level, Pmin can be computed from the zooplankton conserva-

tion equation by setting J(Z) in (3) to zero, solving the resulting equation for
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Z, and then setting that equation to zero. The resulting equation

Pmin =
KP

ggraz
Z · βassim

Z /ηmetab
Z − 1

, (19)

shows that with the parameter values from Table 1, the minimum phytoplank-

ton biomass to sustain zooplankton, Pmin, is 0.29 mmol N m−3. Comparison

of this steady-state minimum value with the distribution of phytoplankton

biomass in Figure 10a shows that offshore phytoplankton biomass is indeed

too low to sustain a zooplankton population.

This is fundamentally inconsistent with observations. The phytoplankton thresh-

old for zooplankton growth is an artifact of our model structure and parameter

choices. In reality, the offshore transition from large to small phytoplankton

has a corresponding transition of the dominant grazers from mesozooplankton

to microzooplankton. Since we chose our zooplankton parameters to mimic

mesozooplankton, our model is structurally inept to mimic this transition. As

a result, zooplankton disappears from the offshore system, making coagulation

and phytoplankton mortality rather than grazing the dominant loss terms for

phytoplankton there, which is opposite to what is known about phytoplankton

loss in oligotrophic systems (e.g. Roman et al. (2002)).

In the vertical, zooplankton in our model nearly always shows a maximum

near the surface, as evidenced in its annual mean distribution (Figure 11d).

This surface maximum is a result of the nearshore region being the only region

that can sustain a zooplankton population. Offshore values of phytoplankton

biomass, even at the depth of the phytoplankton biomass maximum, are nearly

always below the above threshold of 0.29 mmol N m−3, except for brief periods

in summer, so that zooplankton has great difficulties growing there.
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The abundance and distribution of the simulated zooplankton population is

highly sensitive to our choice of the zooplankton parameters, which are not

well constrained by the literature. Unfortunately, there exist very few zoo-

plankton biomass observations, to which we can quantitatively compare our

model results. This is because most zooplankton observations are reported as

zooplankton biomass displacement volumes. Roemmich and McGowan (1995)

report for the upper ocean and for the stations inshore of 100 km along Cal-

COFI line 80 (extending southwestward from Point Conception) mean values

of about 250 ml zooplankton volume per 1000 m3 seawater strained for the

period 1951 to 1957, decreasing to about 60 ml (1000 m 3)−1 for the pe-

riod 1987 to 1993. Using the recommended conversion factor of 96 mg C (ml

zooplankton)−1 of Cushing et al. (1958) and assuming a fixed C:N ratio of 6.6,

these volumes correspond to a zooplankton biomass ranging from 0.07 mmol

N m−3 (1987-1993) to 0.3 mmol N m−3 (1951-1957). The long-term clima-

tology of zooplankton biomass for the nearshore CCS (O’Brien et al., 2002)

suggests somewhat higher values with biomass levels between 0.1 and 1 mmol

N m−3, in agreement with detailed observations made in Monterey Bay (B.

Marinovic, pers. comm.). Our simulated euphotic mean zooplankton biomass

levels of between 0.1 and 0.6 mmol N m−3 (Figure 10b) compare therefore well

in magnitude to these in situ observations. More detailed comparisons with

a more careful consideration of the displacement volume to biomass conver-

sion factor are needed, however, to evaluate our zooplankton simulations more

quantitatively.
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4.4 Detrital pools

The two modeled detrital pools exhibit strikingly different annual mean distri-

butions within the euphotic zone (Figure 10). Small detritus has a distribution

very similar to phytoplankton biomass both in terms of pattern and magni-

tude, while large detritus is essentially concentrated very nearshore, with con-

centrations that are an order of magnitude smaller than that of small detritus.

Most of the onshore-offshore contrast is due to their different sinking charac-

teristics. Given our choices for sinking speeds for the two detrital pools and

their remineralization rates (see Table 1), the remineralization length scales

for the two pools vary dramatically between 30 m for small detritus and 1000

m for large detritus. As a result, small detritus barely sinks, making it sus-

ceptible to offshore transport, while large detritus, once formed, disappears

very rapidly from the euphotic zone. This difference is illustrated in the ver-

tical sections (cf. Figure 11, compare panels e and f), which show a tongue

of high concentrations of large detritus extending from the euphotic zone into

the ocean interior, while the small detritus has no appreciable concentrations

below 200 m.

A second, albeit less important factor causing the large onshore-offshore dif-

ference in the distribution of small and large detritus are their differing forma-

tion mechanisms. In the nearshore region, phytoplankton and small detritus

concentrations are high, making coagulation an important sink for these two

components. This is because of the square dependence of coagulation on the

phytoplankton and small detritus concentrations. In addition, zooplankton is

abundant, further increasing the production of large detritus by its mortality

as well as by sloppy feeding and the production of fecal pellets. In contrast,
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phytoplankton, small detritus, and zooplankton concentrations are small in

the offshore region, making coagulation less efficient and all the zooplankton

formation mechanisms for large detritus virtually absent.

The similarity in pattern and magnitude of small detrital material to phyto-

plankton will be discussed in detail in the next section. In summary, the sim-

ilarity in the offshore region can be explained by considering the steady-state

condition of formation equalling loss. In the nearshore region, steady-state

conditions would require much higher small detrital material concentrations,

but those are not attained because the residence time of waters in these regions

is too short for small detritus to come to equilibrium.

Given that the parameters governing phytoplankton mortality, particle rem-

ineralization, and coagulation are not well constrained in the literature, our

parameter choices need to be viewed as somewhat arbitrary. We can evaluate

the combined impact of these parameters by comparing the simulated detrital

fields with observations. Unfortunately, we are not aware of any systematic

assessment of particulate organic matter (POM) in the CCS, except for a few

observations that indicate that living biomass is about half of total POM (Ep-

pley et al., 1983; Eppley, 1986). Gardner et al. (2006) recently estimated the

distribution of POM in the ocean using a combination of in situ measurements

and satellite observations. They showed that in the CCS, about 1% of POC

in mg m−3 exists in the form of Chl-a in mg Chl-a m−3. Dividing this number

with our average surface ocean chlorophyll-to-carbon ratio, θ, of about 20 µg

Chl-a (mg C)−1, we estimate a phytoplankton biomass to total organic mat-

ter ratio of about 0.5, in excellent agreement with our results. This agreement

needs to be viewed cautiously, however, as Gardner et al. (2006) developed

their algorithm for the estimation of POM for open ocean environments, and
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therefore this algorithm may not work well in the more turbid coastal waters.

5 Nitrogen allocation

A powerful tool to understand ecosystem structure is the analysis of how

nitrogen is allocated to the different nitrogen pools as a function of the to-

tal amount of fixed nitrogen in the system (see e.g. DeAngelis (1992) and

Sarmiento and Gruber (2006)). It is instructive, however, to first investigate

the relative allocation in the spatial context.

Figure 16 shows the annual mean concentrations of the 6 fixed nitrogen bearing

ecosystem state variables in the near surface ocean as a function of longitude

(offshore distance) for a section across the central California upwelling system.

The total amount of surface nitrogen in the system decreases from a maximum

at the coast relatively monotonically with increasing offshore distance, reflect-

ing the supply of new nitrogen into the surface ocean by upwelling nearshore

and the subsequent loss of nitrogen by sinking organic nitrogen as the water

ages along its mean offshore transport pathway. This overall trend is the sum

of similar trends exhibited by the individual nitrogen pools except for the very

nearshore region, where phytoplankton, zooplankton, and detritus are lower

than further offshore. This is a result of upwelling waters containing low con-

centrations of these state variables, requiring some time and some aging of

the upwelled waters for these pools to grow in. In the first 100 km, the total

nitrogen content of the system is dominated by nitrate, while further offshore,

phytoplankton and small detritus become the dominant nitrogen pools.

When plotted as a function of the total nitrogen content, these two distinct
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regimes emerge more clearly (Figure 17). Above a total nitrogen content of

about 3 mmol N m−3, nitrate dominates, and most other nitrogen pools de-

crease in relationship to phytoplankton. Below this threshold, phytoplankton

and small detritus are the dominant pools of nitrogen in the system, and

most pools increase their size relative to phytoplankton as more nitrogen be-

comes available. Is this behavior an intrinsic property of the ecosystem model,

or is this difference between low and high total nitrogen content driven by

the physical dynamics of the upwelling system? We address this question by

contrasting our ecosystem model results in the 3-D configuration with those

obtained in a box model configuration that does not consider lateral trans-

port. The latter configuration is thus stripped of all the complexities involved

in the 3-D nature of transport and mixing and therefore permits us to clearly

delineate the ecosystem model intrinsic part of our solutions. Furthermore,

the box model configuration is amenable to analytical steady-state solutions

so that we can also determine whether differences between the two physical

configurations are caused by the absence of local steady-states, i.e. balances

between biological sources and sinks.

We therefore implemented our ecological/biogeochemical model into a box

model configuration, which consists of a well mixed surface box of h = 20 m

depth, and an underlying thermocline box, for which all concentrations are

prescribed to be zero, except for nitrate, which is set to N th
n = 20 mmol N

m−3. The level of nitrate input into the surface box is determined by −w/h ·

(N th
n − Nn), where w is the vertical upwelling velocity. This exchange only

affects nitrate, i.e. we do not consider the potential for the washing out of

phytoplankton, etc., as would occur in a chemostat with inflow and outflow.

In order to achieve solutions with a widely differing amount of total nitrogen
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in the surface box, we varied w in our box model simulations from 0.001 m

day−1 to 15 m day−1. As is the case with the 3-D model, phytoplankton and

the two detrital pools are subject to sinking. All ecosystem parameters are the

same as in 3-D. We created light saturated conditions by adopting a PAR of

500 W m−2 in order to focus on the role of nutrients. This box model is then

run forward in time for different levels of nitrate input into the surface box

until a steady-state is reached.

A comparison of the box model results with those obtained in the 3-D model

reveals that phytoplankton and zooplankton behave similarly in both config-

urations when plotted as a function of the total nitrogen content, while the

detrital pools, nitrate, and ammonium show strongly differing relationships

(Figure 18). The largest difference is exhibited by nitrate, which is drawn

down to very low levels in the box model regardless of how much nitrogen

is in the system. Is this difference due to the different physical setting or is

this an expression of the ecosystem being far from steady-state in the 3-D

configuration? We address this question for each state variable in turn.

5.1 Phytoplankton

The close correspondence between the 3-D and the box model results could

lead to the conclusion that phytoplankton has achieved a local steady-state

in the 3-D configuration, i.e. that its growth and biological losses are locally

balanced. This appears reasonable given the fact that at the light and nutri-

ent saturated conditions typical for the nearshore region, growth rates are of

the order of 1 to 2 day−1 (see Figure 14). This gives an e-folding response

time of 0.5 to 1 day, likely fast enough to respond to the frequent physical
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perturbations imposed by the abundant meso- and submesoscale phenomena.

A closer inspection reveals a more complex story, however. Given the fact that

the nutrients nitrate and ammonium hover around 0.1 mmol m−3 in the box

model solutions, but attain very high concentrations in the 3-D simulations,

the phytoplankton growth rates associated with a particular level of phyto-

plankton biomass are much larger in the 3-D compared to the box model

configuration. This creates a puzzle since steady-state requires that the higher

growth rates in 3-D are compensated by higher loss rates, yet the loss by

mortality and by zooplankton grazing is about the same in both configura-

tions, because both have about the same zooplankton biomass for a given

phytoplankton biomass (Figure 18a). This requires that additional loss mech-

anisms remove phytoplankton biomass in 3-D, which do not exist in the box

model. The only mechanism of note is the lateral transport of phytoplankton.

Therefore, at the same phytoplankton biomass level, the balance in the box

model is between growth and grazing, both occurring at relatively low rates,

whereas the balance in 3-D is between growth and lateral loss, both occurring

at high rates. The similar scaling between the 3-D and box model configura-

tions when phytoplankton biomass is plotted as a function of total nitrogen

content is therefore coincidental.

5.2 Zooplankton

The relatively small differences in the zooplankton allocation between the 3-D

and box model results (Figure 18) is depicted in more detail in Figure 19a,

which shows abundances normalized to and as a function of phytoplankton

nitrogen. The 3-D results for the zooplankton to phytoplankton ratio (Z/P )
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are within a factor of two of the box model solutions (Figure 19). This indicates

that, to first order, zooplankton biomass is controlled by the same balance in

both configurations. In the absence of advective loss terms, the analytical

steady-state of Z/P is given by

(Z/P )steady-state =
ggraz

Z βassim
Z − ηmetab

Z

(

KP

P
+ 1

)

ηmort
Z (KP + P )

. (20)

i.e. this ratio is a function of only zooplankton parameters and the phyto-

plankton abundance. Since the 3-D and box model results agree relatively

well, one can conclude that the lateral loss terms affect zooplankton and phy-

toplankton in a very similar manner, i.e. have only a secondary effect on Z/P .

In fact, the observation that the 3-D solutions exhibit generally lower Z/P

values at high phytoplankton concentrations and higher Z/P values at low

phytoplankton concentrations can largely be interpreted by the impact of the

lateral flow present in the 3-D solutions. In the phytoplankton rich nearshore

zone, zooplankton appears to grow too slowly to establish tight grazing con-

trol on phytoplankton, while lateral transport of the zooplankton into the low

phytoplankton offshore zone may lead to an abundance of zooplankton in this

region that is above that expected from the local steady-state.

5.3 Detritus

Figure 19b shows in more detail the previously noted nearly equal concen-

tration of small detritus and phytoplankton in the 3-D model. This nearly

uniform ratio of 1 is not an intrinsic property of our ecosystem, since the box

model results show a ratio that starts around 1, but increases with increasing
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phytoplankton biomass. Therefore, either lateral transport processes or the

absence of local steady-state must explain this behavior. We can immediately

exclude net divergences by lateral transport as an explanation for the dif-

ference between 3-D and the box model, since both constituents have nearly

equal net transport divergences, so that this would not affect the small de-

tritus to phytoplankton ratio. This essentially leaves us with the explanation

that small detritus does not achieve local steady-state in the 3-D model, i.e.

that the production and remineralization of small detritus are not balanced

locally. In order to investigate this further, let us first look at the processes

that determine the steady-state ratio.

In the offshore region, where the zooplankton population is low, the primary

mechanism for the production of small detritus is phytoplankton mortality.

Under these conditions, the steady-state of the ratio of small detritus to phy-

toplankton can be approximated by (see online supplementary material for

derivation):

(DS/P )steady-state, low Z
≈

kremin
DS

8 kcoag
. (21)

With our parameter choices the right hand side is 0.75, as observed in both

the 3-D and box model solutions for low phytoplankton concentrations (Figure

19b).

In regions with substantial zooplankton abundance, sloppy feeding and zoo-

plankton mortality become important sources for small detritus. For these

conditions, the small detritus to phytoplankton ratio is given by:

(DS/P )steady-state, high Z
≈

√

ε2

kcoag

−
kremin

DS

2 kcoag P
(22)
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where ε2 is a function that includes several parameters and is slightly depen-

dent on the phytoplankton concentration P (see online supplementary mate-

rial for definition and the derivation of (22)). For a typical P of 1 mmol N m−3,

ε2 is 0.19 day−1 (mmol m−3)−2, resulting in a (DS/P )steady-state, high Z value of

3.2, close to the numerical value computed by the box model.

The timescale to achieve this local steady-state for small detritus is determined

by the coagulation and remineralization rate constants. These rate constants

are an order of magnitude smaller than those for phytoplankton so that the

small detritus to phytoplankton ratio is sensitive to the residence time of near

surface waters in a particular region. In the nearshore regions, the time wa-

ters spend in the well lit surface region is likely too short to come into local

equilibrium with regard to the processes generating small detritus, resulting

in the 3-D model consistently having smaller ratios than the box model at

high phytoplankton (or total nitrogen) concentrations. In the offshore region,

residence times of waters are longer and apparently sufficient to reach a lo-

cal steady-state, as evidenced by the convergence of the 3-D and box model

results. In conclusion, it appears that the nearly constant 1:1 ratio of small

detritus and phytoplankton in the 3-D configuration of the model is not an

intrinsic property of the ecosystem, but the result of chance.

For large detritus, the difference between the 3-D and box models is even

larger, but the same arguments listed above for small detritus are valid here.

In fact, they are amplified since the timescale for the formation of large detritus

is even longer than that for small detritus.
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5.4 Nitrate and Ammonium

The most dramatic differences between the 3-D results and the box model

solutions are found for the two limiting nutrients, nitrate and ammonium

(Figure 18b). The difference is particularly large for nitrate, which remains

very high at high total nitrogen content in the 3-D configuration, but is drawn

down to very low levels in the box model configuration regardless of the total

nitrogen content.

The latter behavior can be easily explained by the local steady-state condition

for nitrate in the box model, i.e. phytoplankton uptake must be equal to the

supply by nitrification and vertical transport/mixing. This condition is only

met when nitrate is well below the half-saturation constant for phytoplankton

uptake, as phytoplankton otherwise would remove much more nitrate than is

being supplied. Evidently, in the 3-D configuration, phytoplankton is much

less successful in taking up the supplied nitrate, particularly in the nearshore

region, leaving a substantial fraction of the total nitrogen in this pool.

This absence of nearly complete nitrate removal in the nearshore upwelling

region of the 3-D model can be explained by considering the nitrate balance

in this region. In this region, nitrate far exceeds the half saturation constant

for nitrate uptake, KNn
, i.e. Nn >> KNn

, so that the nitrate balance and

hence steady-state nitrate concentration can be approximated by (see online

supplementary material for details):

N steady−state,3−D
n ≈ Nup

n −
h

w
µmax

P (T, I) · P, (23)

where Nup
n is the nitrate concentration of the upwelling waters, and h is the

depth of the surface layer. The term h/w has units of time and can be inter-

45



preted as the residence time of surface waters relative to upwelling. This term

is small in the nearshore upwelling region, but increases with offshore distance,

as w decreases. We thus expect a monotonic decrease of nitrate as a function

of offshore distance with a slope that is steeper at high P concentrations,

i.e. when total nitrogen is high, becoming less steep as P decreases. These

predictions compare very favorably with the 3-D results shown in Figure 18b.

We can thus understand the fundamentally different behavior of nitrate in

the 3-D model relative to the box model as primarily reflecting differences

in the residence time of waters relative to upwelling. In the box model, this

residence time is essentially infinitely long, while surface waters are relatively

rapidly moved offshore in the 3-D model, resulting in short residence times

in a fixed location along an offshore trajectory. This precludes nitrate from

being drawn down to very low levels as is the case in the box model. The same

explanation applies to the difference of ammonium between the 3-D and box

model solutions.

5.5 Allocation summary

The nitrogen allocation to the different ecosystem pools in our dynamic 3-D

simulations differs substantially from that predicted by the box model. The

primary reason for this difference is that the governing balance in the 3-D

model is one of upwelling in the nearshore areas, followed by lateral transport

of the upwelled waters offshore, whereas the box model only considers local

vertical supply of nutrients and vertical sinking of the produced organic mat-

ter. As a result of this lateral transport, a distinct onshore-offshore gradient

exists for the residence time of waters in the surface ocean. The residence times
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in the nearshore regions are short relative to the characteristic equilibration

time of the ecosystem, so that most of the ecosystem variables are unable

to reach a local steady-state, i.e. being balanced by biological sources and

sinks. This effect is strongest for the slowest components of the ecosystem, i.e.

the detrital pools, as evidenced by their concentrations being up to an order

of magnitude smaller in the 3-D solutions than those predicted by the box

model. The effect is also substantial for nitrate, primarily because of its high

concentration in the upwelled waters. An important exception is zooplankton,

which appears to reach an abundance relative to that of phytoplankton that

is generally close to that predicted by local steady-state. This is because both

pool sizes start from low levels and grow at similar rates.

6 Summary and Conclusion

We have coupled an NPZD-type ecosystem/biogeochemistry model to an eddy-

resolving 3-D physical model of the California Current System (CCS) in order

to study biological-physical interactions in this upwelling dominated region

and how these interactions shape the planktonic ecosystem. Evaluations of

the model results with in situ and remote observations of chlorophyll reveal

considerable success of this coupled model in capturing the annual mean dis-

tribution as well as the mean seasonal cycle, particularly south of Cape Men-

docino (about 40.5◦N). The most important deficiency in this region is the

tendency of the model to overestimate the observed chlorophyll in the eu-

trophic nearshore region, and to underestimate it in the oligotrophic offshore

region. We attribute this deficiency primarily to our use of a single phyto-

plankton functional group model, which is structurally strongly limited in its
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ability to simultaneously capture these two very different nutrient regimes.

Larger discrepancies exist in the northern part of our domain, where our model

systematically underestimates the observed chlorophyll. We attribute this de-

ficiency primarily to our use of monthly mean surface forcing, which leads to

an underestimation of upwelling in areas, where it tends to occur more episod-

ically, such as is the case north of Cape Mendocino. This problem is less im-

portant further south since upwelling favorable winds persist there over longer

periods. Comparisons of the other state variables of the ecosystem model with

the often much more limited observations reveal similar agreements and dis-

crepancies.

We conclude that the use of a relatively simple NPZD-type ecosystem model

coupled to a high-resolution physical model is adequate for capturing the

most important features of the observed ecosystem variations in the CCS.

We attribute a substantial fraction of this success to the use of our physical

model, which, by resolving the mesoscale, explicitly captures most of the im-

portant physical processes in the CCS. The comparison of the model simulated

chlorophyll fields also profited markedly by our consideration of a variable

chlorophyll-to-carbon ratio as a state variable. A further improvement of our

model is the detailed modeling of the detrital pools. The consideration of two

size classes of particles turned out to be of critical importance in governing

the fate of organic matter produced in the nearshore zone. While most of the

large particles are exported vertically, the small detritus particles tend to be

exported horizontally. As discussed by Plattner et al. (2005), this leads to

a strong decoupling of new and vertical export production in the nearshore

region.
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Model deficiencies that need to be addressed are the inability of the ecosys-

tem model to simultaneously represent eutrophic and oligotrophic conditions.

At the phytoplankton level, this requires at least the addition of a nano-

/picophytoplankton group that is adapted to the oligotrophic conditions in

the offshore environment. We also need to add grazing control of this nano-

/picophytoplankton by microzooplankton, since our currently modeled meso-

zooplankton cannot survive at low phytoplankton concentrations. This may be

done by adding an additional zooplankton functional group to the model, by

implementing prey switching mechanisms, or by modeling this grazing implic-

itly. We are in the process of adding such extensions to our ecological model by

coupling the multiple phytoplankton functional group model of Moore et al.

(2004) to our physical model. Initial analyses of these simulations indicate the

expected improvement in this model’s ability to capture the onshore-offshore

transition of chlorophyll that is more gradual in the observations in compari-

son to our current results. We anticipate also an improvement in our solutions

from a switch in our surface forcing to include synoptic variability. We are

also planning to replace our lateral boundary conditions to those provided by

a Pacific-wide model, permitting us to consider also interannual to decadal

variations, since at least part of the variations in the CCS on these timescales

are forced by the lateral boundaries.

The spatial and temporal evolution of phytoplankton growth, and in particular

the depth transition of a phytoplankton maximum near the surface in the

nearshore region to a deep phytoplankton maximum offshore is controlled

in our model by the interaction of light and nutrients. As expected, light

limitation dominates at depth, while nutrient limitation dominates in near

surface waters. An exception is the nearshore region, where light limits growth
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more strongly than nutrients throughout the water column. Iron limitation,

which we have not considered in this study here, could change this conclusion,

however.

Our detailed study of how nitrogen is allocated to the various pools in the

ecosystem has revealed substantial deviations from those predicted in steady-

state by a box model of the upper ocean mixed layer, with nitrate and the

two particulate detritus pools differing most strongly. The key reason for these

differences is that the residence time of waters along their mean trajectory from

the time of upwelling until they arrive far offshore is too short relative to the

time the ecosystem needs in order to come to equilibrium. As a result, much

of the total nitrogen is still in the initial nitrate pool, while the components

that are produced last by the ecosystem, i.e. the two detritus components, are

much lower than expected from the local steady-state.

A number of important questions remain unanswered. In particular, we have

not yet addressed the rates of primary production and the relative contri-

butions of new and regenerated production, respectively. We also have not

studied in detail the fate of this freshly produced organic matter. How much

is exported vertically and how much is exported laterally to the offshore re-

gion? Another important question is the role of mesoscale dynamics. Is it just

a source of variability, or do eddies and other meso- and submesoscale phe-

nomena change the solutions in a fundamental manner? What is the impact

of the dynamic biological-physical interactions described here on the cycling

of carbon and oxygen? These questions will be addressed in upcoming publi-

cations.
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Oschlies, A., Garçon, V., 1998. Eddy-induced enhancement of primary pro-

duction in a model of the North Atlantic Ocean. Nature 394, 266–269.

Parker, R. A., 1993. Dynamic models for ammonium inhibition of nitrate

uptake by phytoplankton. Ecological Modelling 66, 113–120.

Pennington, J. T., Chavez, F. P., 2000. Seasonal fluctuations of temperature,

salinity, nitrate, chlorophyll and primary production at station H3/M1 over

1989-1996 in Monterey Bay, California. Deep-Sea Research II 47, 947–973.

Penven, P., Debreu, L., Marchesiello, P., McWilliams, J. C., 2006. Evaluation

and application of the ROMS 1-way embedding procedure to the central

California upwelling system. Ocean Modelling 12, 157–187.

Penven, P., Roy, C., Brundrit, G. B., Colin de Verdiere, A., Freon, P., Johnson,

A. S., Lutjeharms, J. R. E., Shillington, F., 2001. A regional hydrodynamic

model of upwelling in the Southern Benguela. South African Journal of

Science 97, 1–4.

Platt, T., Bird, D., Sathyendranath, S., 1991. Critical depth and marine pri-

mary production. Proceedings of the Royal Society London B 246, 205–217.

Plattner, G.-K., Gruber, N., Frenzel, H., McWilliams, J. C., 2005. Decoupling

marine export production from new production. Geophysical Research Let-

ters 32, L11612, doi:10.1029/2005GL022660.

Roemmich, D., McGowan, J., 1995. Climatic warming and the decline of zoo-

plankton in the California Current. Science 267, 1324–1326.

Roman, M. R., Adolf, H. A., Landry, M. R., Madin, L. P., Steinberg, D. K.,

57



Zhang, X., 2002. Estimates of oceanic mesozooplankton production: a com-

parison using the Bermuda and Hawaii time-series data. Deep-Sea Research

II 49, 175–192.

Sarmiento, J. L., Gruber, N., 2006. Ocean Biogeochemical Dynamics. Prince-

ton University Press, Princeton, NJ, 464pp.

Sarmiento, J. L., Slater, R. D., Fasham, M. J. R., Ducklow, H. W., Toggweiler,

J. R., Evans, G. T., 1993. A seasonal three-dimensional ecosystem model of

nitrogen cycling in the North Atlantic euphotic zone. Global Biogeochemical

Cycles 7, 417–450.

Shchepetkin, A. F., McWilliams, J. C., 2005. The regional oceanic mod-

eling system (ROMS): a split-explicit, free-surface, topography-following-

coordinate oceanic model. Ocean Modelling 9, 347–404.

Siegel, D., Doney, S. C., Yoder, J. A., 2002. The North Atlantic spring phy-

toplankton bloom and Sverdrup’s critical depth hypothesis. Science 296,

730–733.

Slagstad, D., Wassmann, P., 2001. Modelling the 3-D carbon flux across the

Iberian margin during the upwelling season in 1998. Progress in Oceanog-

raphy 51, 467–497.

Smith, E. L., 1936. Photosynthesis in relation to light and carbon dioxide.

Proceedings of the National Academy of Sciences 22, 504–511.

Smith, S. V., Hollibaugh, J. T., 1993. Coastal metabolism and the oceanic

organic carbon balance. Reviews of Geophysics 31, 75–89.

Song, Y. T., Haidvogel, D., 1994. A semi-implicit ocean circulation model using

a generalized topography-following coordinate system. Journal of Compu-

tational Physics 115, 228–244.

Spitz, Y. H., Allen, J. S., Gan, J., 2005. Modeling of ecosystem processes on

the Oregon shelf during the 2001 summer upwelling. Journal of Geophysical

58



Research 110, CS1017, doi:10.1029/2005JC002870.

Spitz, Y. H., Newberger, P. A., Allen, J. S., 2003. Ecosystem response to

upwelling off the Oregon coast: Behavior of three nitrogen-based models.

Journal of Geophysical Research 108, 3062, doi:10.1029/2001JC001181.

Steele, J. H., 1974. The structure of marine ecosystems. Harvard University

Press, Cambridge, MA, 128 pp.

Sverdrup, H. U., 1953. On conditions for the vernal blooming of phytoplank-

ton. Journal du Conseil Permanent International pour l’Exploration de la

Mer 18, 287–295.

Taylor, K. E., 2001. Summarizing multiple aspects of model performance in a

single diagram. Journal of Geophysical Research 106, 7183–7192.

Thomas, H., Bozec, Y., Elkalay, K., de Baar, H. J. W., 2004. Enhanced open

ocean storage of CO2 from shelf sea pumping. Science 304, 1005–1008.

Toole, D. A., Siegel, D. A., 2001. Modes and mechanisms of ocean color vari-

ability in the Santa Barbara Channel. Journal of Geophysical Research 106,

26985–27000.

Tsunogai, S., Watanabe, S., Sato, T., 1999. Is there a “continental shelf pump”

for the absorption of atmospheric CO2? Tellus Series B 51, 701–712.

Walsh, J. J., 1975. A spatial simulation of the Peru upwelling system. Deep-

Sea Research 22, 201–236.

Walsh, J. J., 1991. Importance of continental margins in the marine biogeo-

chemical cycling of carbon and nitrogen. Nature 350, 53–55.

Walsh, J. J., Dugdale, R. C., 1971. A simulation model of the nitrogen flow

in the Peruvian upwelling system. Investigacion Pesquera 35, 309–330.

Wollast, R., 1991. The coastal organic carbon cycle: Fluxes, sources and sinks.

In: Mantoura, R., Martin, J.-M., Wollast, R. (Eds.), Ocean Margin Processes

in Global Change. John Wiley, New York, pp. 365–381.

59



Wollast, R., 1998. Evaluation and comparison of the global carbon cycle in

the coastal zone and in the open ocean. In: Brink, K. H., Robinson, A. R.

(Eds.), The Sea: The global coastal ocean. Vol. 10. John Wiley & Sons, New

York, Ch. 9, pp. 213–252.

Wroblewski, J. S., 1977. A model of phytoplankton plume formation during

variable Oregon upwelling. Journal of Marine Research 35, 357–394.

60



7 Figure captions and table

Los
Angeles
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 138oW  132oW  126oW  120oW 

  24oN 

  30oN 

  36oN 

  42oN 

  48oN 

Monterey Bay
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     5km Reso-
         lution

PARENT GRID:
15km Resolution

Fig. 1. Map of the model domain. The outer line demarcates the domain of the

parent grid, which has a horizontal resolution of about 15 km. The model thus

encompasses the entire U.S. west coast and has an alongshore extent of about 2100

km and an offshore extent of about 1300 km. The inner line shows the domain of the

child grid that has a horizontal resolution of about 5 km. Also shown as points are

the station locations of CalCOFI line 70 that we use for comparing model results

with in situ observations.
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Fig. 2. Flow diagram of the ecological-biogeochemical NPZD-type model. Boxes

represent the state variables of the model, expressed in terms of nitrogen concen-

tration, while the arrows show the processes that transform nitrogen from one state

variable to another. Not shown is the dynamic chlorophyll-to-carbon ratio, θ, of

phytoplankton.
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Fig. 3. Comparison of annual mean SST between (a) the ROMS model in its USWC

15+5 km configuration, (b) remote sensing observations based on AVHRR, and

(c) difference between AVHRR and ROMS (AVHRR-ROMS). The modeled annual

mean SST is the average of model years 6 through 10 of the 15+5 km configuration,

while the observed annual mean is based on the climatology for the years 1997 -

2002.
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Fig. 8. As Figure 7, except for individual seasons. Spring: April-June; Summer:
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Fig. 9. Taylor diagrams of model simulated chlorophyll (a-b) and Sea Surface Tem-

perature (SST) (c-d) in comparison to observed estimates derived from SeaWiFS

(chlorophyll) and AVHRR (SST). Annual mean comparisons are plotted in (a) and

(c), while (b) and (d) show the seasonal components, computed by subtracting at

each grid point the annual mean from the monthly means. Each panel shows sep-

arately the results for the entire model domain (DOMAIN), for the region north

and south of Cape Mendocino (40.5◦N) (North and South), for the 100 km wide

nearshore region (Nearshore), and for this nearshore region divided into the region

north and south of Cape Mendocino (Nearshore North and Nearshore South). The

root mean square (RMS) misfit between the model and the observational estimates

is given by the distance between the model point and the observation point indicated

by the filled circle on the abscissa.

70



 130
o
W  125

o
W  120

o
W 

  33
o
N 

  36
o
N 

  39
o
N 

  42
o
N 

  45
o
N 

 130
o
W  125

o
W  120

o
W 

  33
o
N 

  36
o
N 

  39
o
N 

  42
o
N 

  45
o
N 

 130
o
W  125

o
W  120

o
W 

  33
o
N 

  36
o
N 

  39
o
N 

  42
o
N 

  45
o
N 

 130
o
W  125

o
W  120

o
W 

  33
o
N 

  36
o
N 

  39
o
N 

  42
o
N 

  45
o
N 

Euphotic Mean (mmol N/m
3
)

0 0.1 0.2 0.3 0.4 0.6 0.8 1 1.6

a

dc

bPhytoplankton

Small Detritus

Zooplankton

Large Detritus

Fig. 10. Maps of the euphotic mean standing stocks for (a) phytoplankton, (b)

zooplankton, (c) small detritus, and (d) large detritus. All properties are 5-year

annual averages in units of mmol N m−3.
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Fig. 11. Offshore vertical sections of annual mean ecosystem and biogeochemical

properties across the central California upwelling system. (a) Nitrate, (b) ammo-

nium, (c) phytoplankton, (d) zooplankton, (e) small detritus, and (f) large detritus.

All properties are in units of mmol N m−3. The section starts at about 36.5◦N,

122◦W and extends to 33.5◦N, 130◦W. The thick line indicates the annual mean

depth of the 1% light level, used here as the definition for the depth of the euphotic

zone.
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Fig. 14. Offshore vertical sections of the factors that control phytoplankton growth

across the central California upwelling system. (a) the light limiting factor, γ(I),

(b) the nutrient limiting factor, γ(Nn, Nr), (c) the logarithm of the ratio of the

nutrient and light limiting factors, i.e. log(γ(Nn, Nr)/γ(I)), and (d) the temperature

dependent maximum growth rate, µT
P (T ) in units of day−1. In (c) negative values

indicate that nutrient availability is the proximate factor limiting phytoplankton

growth, while positive values indicate that light is the proximate factor limiting

phytoplankton growth. All panels show 5-year annual mean values.
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Fig. 15. Maps of the chlorophyll-to-carbon ratio, θ in units of µg Chl-a (mg C)−1.

(a) Surface θ, (b) θ at the bottom of the euphotic zone, and (c) euphotic zone mean

θ. The euphotic zone mean θ has been calculated from the euphotic mean Chl-a

and phytoplankton biomass.
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ammonium (NH4), and the two detrital pools (DL and DS). The 3-D solutions are

the annual mean results for the central California upwelling system shown in Figure

16. The box model solutions were computed by implementing the ecosystem in a

box model configuration of the upper-ocean mixed layer, and then by running it to

steady-state for various levels of nitrate input (see text for details).
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Table 1

Values, units, and definitions for the parameters of the ecological-biogeochemical

model

Parameter Symbol Value Units

Phytoplankton Parameters

Half-sat. conc. for nitrate uptake KNn
0.75 mmol m−3

Half-sat. conc. for ammonium uptake KNr
0.50 mmol m−3

Phytoplankton linear mortality rate ηmort
P 0.024 day−1

Initial slope of P vs I relationship αP 1.0 mg C (mg Chl-a W m−2 day)−1

Max. chlorophyll-to-carbon ratio θmax 0.0535 mg Chl-a (mg C)−1

Zooplankton Parameters

Zooplankton grazing rate ggraz
Z 0.6 day−1

Zooplankton assimilation efficiency βassim
Z 0.75 -

Z.plankt. grazing half-sat. conc. for P KP 1.0 mmol N m−3

Zooplankton quadratic mortality rate ηmort
Z 0.1 day−1 (mmol m−3)−1

Zooplankton basal metabolism rate ηmetab
Z 0.1 day−1

Zooplankton mortality alloc. fract. Ωmort
Z 0.33 -

Zooplankton egestion alloc. fract. Ωegest
Z 0.33 -

Remineralization and Coagulation Parameters

Nitrification rate in the dark knitr,max 0.05 day−1

Nitrification inhibition threshold I Ith
Nr

0.0095 W m−2

Nitrification inhibition half-dose I Ihd
Nr

0.036 W m−2

Particle coagulation rate kcoag 0.005 day−1 (mmol m−3)−1

Remineralization rate of DS kremin
DS

0.03 day−1

Remineralization rate of DL kremin
DL

0.01 day−1

Remineralization rate of SD kremin
SD

0.003 day−1

Sinking Parameters

Sinking velocity of P wsink
P 0.5 m day−1

Sinking velocity of DS wsink
DS

1.0 m day−1

Sinking velocity of DL wsink
DL

10 m day−1

Optical Parameters

Light attenuation coeff. for seawater κsw 0.04 m−1

Chl-a specific light attenuation coeff. κchla 0.024 m−1 (mg Chl-a m−3)−1
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