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ABSTRACT

Experimental Study of Internal
Gra vity Waves Over a Slope

by

David A. Cacchione

Submitted to the Department of Earth and Planetary Sciences
in partial fulfillment of the requirement for the

degree of Doctor of Philosophy.

A series of laboratory experiments were conducted in a glass wave

ta~ to investigate the propagation of internal gravity wave's up a sloping

bottom in a fluid with constant Brunt- Vaisala frequency. Measurements of
the wave motion in the fluid interior were primarily taken with electrical
conductivity probes; measurements in the boundary layer were made with
dye streaks and neutrally buoyant particles. The results indicate that,
outside of the breaking zone, the amplitude and horizontal wave number of
the high-frequency waves increase lineariy with decreasing depth; this is
shown to agree with existing linear, inviscid solutions. A zone of breaking

or runup is induced by these high-frequency waves well upslope. Shadow-
graph observations show that, if the wave characteristics are coincident,
or nearly so, with the bottom slope, the upslope propagation of the low-

frequency waves causes a line of regularly spaced vortices to form along
the slope. Subsequent mixing in the vortex cells creates thin horizontal
i~Jminae that are more homogeneous than the adjacent layers. These lam-
inae slowly penetrate the fluid interior, creating a step-like vertical densitystructure.-.

Available linear theoretical solutions for the velocity in the viscous
boundary layer, determined to be valid for certain experimental conditions,
are used to develop a criterion for incipient motion of bottom sediment in-
duced by shoaling internal waves. The maximum sediment sizes that can be
placed into motion, according to this criterion, are larger than certain
mean sediment sizes on the continental margin off New England. This sug-
gests that internal waves might induce initial sediment movement. Specula-
tion about the geological effects of breaking and vortex instabilities is also
given. These processes, not definitely measured in the field as yet, might
also be condllcive to sediment movement.
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1. INTRODUCTION

GENERAL

The purpose of this research is threefold:

(1) to provide experimental results that describe the changing

character of single-frequency, small-amplitude internal gravity waves as

these waves propagate over a sloping bottom;

___ _ _ (2) to compare these results with recent theoretical solutions for
those conditions which are theoretically tractable, and to examine the phy-

sical characteristics of those conditions which are difficult to treat theo-

retically;

(3) to apply the theoretical and experimental results toward the
development of a simple analytical model that prescribes the conditions for
the iiutiation of bottom sediment motion induced by shoaling internal

, gravity waves.

The motivation for this work was rooted in speculation - a starting

point not uncommon in experimental research. The speculation was stimu-

lated by the results of previous work that had indicated the possible signifi-

cance of internal waves as geological agents and by recent theoretical
solutions that predict the intensification of internal wave motion along
sloping bottoms;

It was decided early in this research that a clearer physical under-
standing of the shoaling process for internal waves was needed - particuarly
knowledge of the nature of the bottom boundary layer - before the two-phase

problem could be considered. The effects of internal waves on sediment

particles of various shapes, sizes, and densities were investigated during

a preliminary set of experiments. It was concluded from these kinds of

experiments that the reliability of the results and the range of test condi-
tions were limited by the experimental difficulties, mainly the difficulty
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of attaining large'velocities in the small experimental system. The approach
to this problem was changed to investigate the movement of sediment by in-
ternal waves analytically, based on the results of a detailed laboratory study
of shoaling internal waves over a smooth sloping bottom. Recent theoretical

analyses had cast a framework for the experimental design (Wunsch, 1969;

Keller and Mow, 1969); preliminary laboratory work had established the
experimental techniques. Earlier experiments by other researchers had

demonstrated the feasibility of some of the techniques (Mowbray and Rarity,

1967; Martin, Simmons, and Wunsch, 1969; Gibson and Schwarz, 1963),

and had showed several stimulating results (Thorpe, 1966).

The.subsequent work is divided into three sections:

(1) the experimental design, instruments, and techniques are dis-

cussed in Chapters 2 and 3;

(2) the results. of the experiments and their comparison with theo-
retical solutions of Wunsch (1969) are presented in Chapter 4. The results

*
are separated into two basic "types: experiments with high-f;requency waves

and experiments with low-frequency waves. The interior wave field and

the boundary layer are discussed separately for each;

(3) in Chapter 5 the balance of forces acting on a bed particle is
used to derive a simple analytical model for the stability of the particle
beneath a train of high-frequency, shoaling internal waves. The approach
closely follows that useØ by Ippen and Eagleson (1955) and Eagleson and

Dean (1959) in the development of an analytical model for sediment motion

*
The distinction between high and low frequency waves is discussed in

more detail in Chapter 4. Basically the incident energy of the high fre-
quency waves propagates upslope to the corner; i. e., toward the intersec-
tion of the slope and the free surface, with no reflection. By contrast, the
incident energy of the low frequency waves theoretically is back reflected
from the slope.
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induced by surface waves. The applicability and limitations of the analysis

of internal waves and sediment movement are discus~ed in Chapter 5, and
some speculations are offered concerning the effects of breaking of internal

waves and the action of boundary layer instabilities on bottom sediment in
the ocean.

BACKGROUND

Internal Wave Theory and Experiment

In two recent papers, Wunsch (1968, 1969) has developed normal-

mode solutions for both standing and progressive internal waves in a wedge
geometry. The solutions of interest here are for progressive waves pro-
pagating into the wedge, i. e., over a linearly shoaling bottom. . This theory

assumes two-dimensional motion in a stably stratified, inviscid, Boussinesq
ôp

fluid with constant Brunt- Vaisala frequency N (N2 = ~-ô 0). The geometryPo z
and coordinate system that Wunsch considered is given in Figure 1.
Wunsch's solutions are discussed in more detail in Chapter 4; these solu-

tions are presented for comparison with the experimental results. One of

the principal features in the solutions is the suggestion of a strong intensi-

fication of velocity components along the sloping boundary. Wunsch (1969)

conducted a simple experiment in which internal waves were propagated
over a linearly sloping, rigid bottom. From photographic determinations
of the changes in wave length up the slope, he showed that the results are

in agreement with his solutions. The wave length was approximately pro-

portional to the depth. Magaard (1962) presented solutions for a similar
problem of standing internal waves except for the density distribution and
shape of the bottom profile. He considered a density distribution that can
be expresse(i analytically as:

(1-1)
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computational facility and some realism was:

r 1/2)
1 1 c1hex) = 2 2 + bX

(2bx)
(1-2)

where c i and b are constants. He developed a linearized characteristic

,equation for the velocity Held and found that the equation was separable in

the spatial coordinates only for the case of constant depth. He also showed
that for a bottom slope 'Y less than the slope of the characteristics c, a

solution is possible which gives waves that have increasing amplitudes and
decreasing wave lengths with depth. Magaard (1962) also found an appre-

ciable intensification of the velocity components along the slòping bottom.

Robinson (1970) has recently considered the effects of a corner

(such as the point of transition between slope and flat bottom) upon an in-
ternal wave train propagating toward the slope in an infinite medium (i. e.,

with free surface infinitely far from the horizontal bottom). Robinson
provided solutions that consist of incident and reflected waves such that
the reflected waves do not violate the radiation condition; i. e., they do
not introduce energy from the far field (at x = + 00).

Keller and Mow (1969) obtained an asymptotic solution to the
problem of internal wave propagation in a horizontally stratified fluid of
nonuniform depth by application of the principles of geometrical optics.

Their general solutions apply to the linearized equations of motion, and
, the, wave amplitude andfluid depth are assumed to vary very little over
horizontal distances small compared to a wave length. They gave a partic-
ular example in which N was assumed constant and the bottom was a small,

linear slope. The solutions in this case show that the wave length is

proportional to the depth, and the wave amplitude increases linearly with
decreasing depth. Keller and Mow noted that their solutions also are
in agreement with the experimental results given by Wunsch (1969).

Hogg and Wunsch (1970; also personal communcation) derived

similar asymptotic solutions using a WKB approach with a two parameter
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expansion scheme. Their first order, linear solutions for progressive
internal waves over a small, linear slope are equivalent to those of Keller
and Mow (1969); both solutions are compatible with- the normal mode
solutions of Wunsch (1969) for small slopes ~o( 0( c) . Hogg and Wunsch ex-

tended their analysis to higher-order terms in the stream function and

developed expressions for the wave-induced radiation stress. They showed

that a significant set-up of the isopycnals induced by internal waves is pos-
sible and demonstrated theoretically the plausibility of "longslope" currents
for a line of breaking internal waves oblique to the bottom contours. From
the higher order terms Hogg and Wunsch (1970) were also able to demon-

strate that in the absence of mixing the net Lagrangian motion of water

particles in a two-dimensional stably stratified fluid is necessarily zero
for internal wave motion in the proximity of a sloping, rigid boundary.

Fofonoff (1969) also examined analytically the unsteady motion

in a horizontally stratified, uiformly rotating ocean. He considered
the seaward propagation of an internal baroclinic wave that was
generated at the continental shelf edge by the diurnal tide. By exam-
ining the characteristics of the solution, he presented a numerical
example in which the values of density, latitude, and depth were those
measured at site "D" (390 20'N, 700W), located about 37 miles south of

the 200 meter contour. Fofonoff (1966) showed that north of this location

the bottom profile of the continental slope and the path of the characteris-

tic were approximately coincident. Again there is implication of increased
bottom shear along the' slope.

Sandstrom (1966) derived the reflection properties of internal
waves from a sloping, rigid boundary. Both he and Robinson (1970) have

noted that the normal-mode solutions derived by Sandstrom from his ray
theory solutions for progressive internal waves propagating over a slope

violate the ra~diation condition (i. e., the complete solution requires an

anomalous set of reflected waves that introduce energy from the far field).
Sandstrom predicted that upon reflection the waves change their wave
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number and amplitude; he found that the magnitude of the changes are
dependent on a ratio equivalent to y jc. Sandstrom (1966) also conducted a
set of experiments in which internal waves were generated by a flap-type
wave maker and allowed to propagate over a planar, inclined bottom. His
experimental results for a gently sloping bottom (y -(-(c) showed qualitatively--~ -
two features that were also found in the present study, and are discussed
quantitively in Chapter 4: (1) amplification of internal waves traveling

from "deep" into "shallow" water, and (2) intensification of motion near
the slope. Sandstrom (1966) noted, however, that unfortunately the partic-

ular experiment for which these features were observed was complicated
by the presence of a surface mode that was also generated by the wave

maker. ~ Although his apparatus was apparently capable of generating the

first internal mode, there are no experimental results in his work which
indicate that he did this. Sandstrom discussed solutions for the case y'?c

(steep bottom slope), but did not present experimental results for this
case. He concluded from the linear theory that in the case 'Y": c, the motion

close to the bottom becomes very large.

Longuet-Higgins (1968) extended the discussion of reflection prop-

, erties of internal waves from rigid surfaces to account for various types
of bottom roughnesses. He has shown that the important parameter is not

. the ratio of the scale of bottom roughness to wavelength but instead the
ratio of the scale of roughness to the thickness of the oscillatory boundary
layer. He pointed out that this suggests that small-scale irregularities

can severly affect the transmittance and reflection conditions of the bottom.

¡,

, .t

In a very thorough theoretical and experimental treatment of finite-
amplitude effects on interfacial and internal waves in a horizontal channel,
Thorpe (1968) also reported some qualitative observations of progressive

internal waveson a slope. In his experimental arrangement, a linearly
sloping, sm ooth bottom was mainly employed as a wave absorber. How-

ever, during the course of the experimental runs for internal waves in a

linearly stratüied salt solution he noted several interesting features over
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the slope. These observations are summarized here as a preface to the
results shown later in this study:

(1) the wave length decreased upslope;
(2) a large runup was apparent along the upper slope region, and the

larger amplitude waves produced a larger runup;

(3) the free surface remained undisturbed;

(4) a "rotor" was observed near the free surface on one occasion;

(5) breaking ("overturning") was observed well upslope on one

occasion;

(6) no reflections could be detected.

Thorpe (1968) showed three photographs of the waves over the

slope. His method of flow visualization, involving alternating dyed and

undyed layers, did not permit detailed observations of the breaking or
mixing, but his qualitative observations are quite instructive and essentially
agree with the results shown later.

It should also be mÊmtioned here that excellent experimental studies

of instabilities and turbulence in a stably stratified fluid, including breaking

of interfacial waves, have been carried out by Pao (1968).

Field Observations
. -- --.

Two kinds of field observations are pertinent to this study: (1)

measurements that suggest shoreward propagation of internal waves over

the continental margin, and (2)' observations that indicate, directly or in-
directly, the motion of bottom sediment due to passage of internal waves.

Measurements of the first kind have been presented by Lee (1961),

Gaul (1961) and Ufford (1947), among others. Their investigations presented

time-series measurements of temperature fluctuations taken simultaneously

at three stations oriented in various triangular arrays in shallow water

(depth .(200 feet). The wide geographical distribution of these studies illus-
trates the ubiquity of internal motions on the continental shelves. Common
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internal-wave periods were on the order of'5 to 20 minutes; wave propaga-

tion was shoreward with speeds of 0.3 to 1. 2 knots. Lafond (1962) has

provided similar values. Longer period internal oscillations are described
by Lee (1961), Boston (1964), and Summers and Emery (1963). The last
study illustrated the refraction of internal waves of semidiurnal period as
they propagated shoreward over the continental slope and shelf off Southern

California. The estimated wave speed was 7 knots in deep water and slightly
less than 1 knot over the shelf.

Isolated asymmetrical internal temperature disturbances resembling
the idealized solitary wave profile of surface waves (Ippen, 1966) have also
been detected by Lee (1961), Gaul (1961), and Cairns (1967). The commòn

period of this sort of disturbance seems to be approximately 10 minutes,
and the propagation direction is again shoreward.

Curves of spectral kinetic energy density versus frequency are
available for velocity.measurements of internal motion taken with vertical

arrays of current meters at site "D" (Fofonoff, 1968). An example of these

'spectra is shown in Chapter '5.

Direct observations which reliably link the two motions of internal
waves and sediment,movement are limited to a few isolated instances.
This lack of evidence might suggest both the difficulty and the insufficiency
of this kind of field measurement. Ideally, one would like to measure simul-
taneously the internal wave velocity structure and the movement of bottom
sediment beneath th~ wave motion. Either measurement alone is a challenge
in the field. Lafond (1965), using underwater television to observe the sedi-

ment motion and a vertical array of temperature sensors to measure the

internal wave motion, found that the movement of sediment ripples in shal-
low water (depth about 60 m) was correlated with large fluctuations in the
temperature structure. He interpreted this as evidence for sediment trans-

port by internal waves.

Indirect field data that connect the two motions are similarly limited.
Revelle (1939) inferred the connection in an attempt to explain an observed
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pattern of sediment distribùtion. Mu~ (1941) calculated the theoretical
standing-wave characteristics in the Gulf of California and found that the
nodal-antinodal separation coincided favorably with Revelle's (1939) ob-

served distribution of sediment sizes. That is, the smaller sizes were

noticeably lacking beneath the 'nodes, where larger instantaneous velocities

are expected. However, in a subsequent detailed study of the sediment dis-
tribution in the Gulf of California Van Andel showed that the sediment pat-
tern described earlier by Revelle was not apparent in the later data.
Emery (1956; 1960) suggested that deep, standing internal waves in certain
California basins stir the bottom sediments and might produce the observed
local concentrations of coarse sediments at the basin sills.

More recent investigations of the large submarine sand waves (av-
erage height ~ 8 meters) near the edge of the continental shelf southwest of

, Great Britain (water depth ~ 180 meters) by Stride and Cartwright (1958),

Cartwright (1959), Stride and Tucker (1960), and Carruthers (1963) indicate

the possibility 'of interaction between internal waves and bottom sediment.

, Cartwright (1959) formulated a theory which suggests that these sand waves
are maintained by a stationary internal-wave system of tidal period that

exists during the presence of the local seasonal thermocline. Measure-
ments of oscillations of the scattering layer (Stride and Tucker, 1960) and
towed thermistor records (Carruthers, 1963) support this theory. Car-
ruthers (1963) also measured the currents close to the crest of the sand
waves at one-hour intervals over a seventeen-hour period. A plot of cur-
rent vectors indicated that the predominant flow direction was normal to

the crests, with a maximum current of 0.5 knot in this direction. Inter-
estingly, the crests of the sand wav~s are parallel and adjacent to the

shelf edge.

",
"

¡,

. -r

Many investigators have studied the observed sediment distribution

on the continental shelf and slope off the East Coast of the United States.

Uchupi (1963), Emery (1966), and Schlee (unpublished manuscript) have
summarized much of this work. Sand waves and local topographic highs



22

are abundant on the continental shelf. The type and size distribution of
sediment varies both across and along the bottom contours. The seaward

variations are generally sharper. For instance, Uchupi (1963) delineated

four broad zones parallel to the shelf edge from Cape Cod to Hudson Can-
yon. He noted that the most s'eaward zone (about 70 kilometers wide) con-

sists of silty sand, sandy silt, and silt (water depth 60 to 135 meters).

Uchupi (1963) claimed that from Hudson Canyon to Cape Hatteras the outer-

most zone is composed of fine ~and of approximately uniform grain size.
The surface of the continental slope in these regions consists mainly of

silt and clay; however, sand, silty sand, and gravel line the floors of the

submarine canyons that cut the slope.

Wave-Induced Bottom Sediment Motion

The writer could find no published results on wave-induced bottom
sediment motion in a stratified fluid. However, there are many published
studies of sediment motion beneath surface waves in a homogeneous fluid.

Most of these studies are empirical or semi-empiricaL. The obvious lack

of theoretical treatment probably stems from the complex form of the gov-

erning equations of motion, which are not well established.

One appealing approach to a laboratory and analytical study of the
problem was undertaken by Ippen and Eagleson (1955) and later extended by

Eagleson, et al (1958), and Eagleson and Dean (1959). A statistical treat-
ment of laboratory data that involved the motion of discrete spherical sedi-

ment particles due to shoaling surface waves supplemented their theoretical
presentation. Many of the complicating secondary factors, such as (1)

nonuniform bed roughness, (2) shape variations of the particles, (3) mu-
tual particle interactions, (4) nonuniform incident wave trains, (5) local

channelization and fluidization of the bed, and (6) bed permeability were

not included in their work. They were able to derive a force-balance
equation for the individual particles. Ippen and Eagleson (1955) described

two possible types of particle motion: incipient and equilibrium. Incipient
sediment motion was defined by Eagleson et al (1958) as !Ian instantaneous

""o

t
!



23

condition reached when the resultant of all active forces on the particle
intersects the line connecting the bed particle contact points." They also
defined established sediment motion as "an oscillatory 0..' quasi-oscillatory

condition of motion reached when for some portion of each wave cycle the
sum of the instantaneous active forces is greater than that value necessary
to initiate motion." The major difficulties in working with these definitions
are: (1) the point of application of some of the individual forces is usually

not known; (2) the various coefficients, such as those for drag, lift, and
virtual mass, are not well defined for unsteady motion; (3) usually the

effective fluid velocities acting on the bed particle must be estimated from
an approximate theoretical equation, since the exact velocity profile near
the rough bed in unsteady, motion is not known. Despite these difficulties,

Eagleson and Dean (1959) were able to arrive at a semi-empirical relation-

ship for particle size, beach slope, and local wave characteristics. Eagle-
son etal (1958) compared the analytical results with field data from eight

stations on the Atlantic coast of the United States. As these authors put it,

the agreement was "fortuitously" remarkable.

The concept of an equilibrium diameter for given wave conditions

was first proposed by Cornaglia (Miller and Zeigler, 1964) and has since

been labeled the null-point theory. His arguments, as well as those of
Ippen and Eagleson (1955) and Miller and Zeigler (1964), are basically

simple. In an area of shoaling waves, every bottom sediment particle is
affected by the existing sea state. For any given sea state and bottom

slope, there will De one size class of particles in a state of equilibrium

motion. That is, this size class will move back and forth along the bottom

as successive troughs and crests pass, but will oscillate about some mean

position. In general, particles larger than the null-point size will move

offshore and those smaller will move onshore. Miller and Zeigler (1964)

noted that in the field the null point should be regarded statistically, where-
as in the laboratory it is convenient to regard it as single-valued. Their
field study also indicated the limitations and the modified applicability of

, this theory in nature. However, at the same time their work showed that
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the tl1eory gives a satisfactory prediction of the gross sediment distribution

of a nearshore sand bottom.

Other laboratory investigations have produced relationships between
the initiation of motion of a given particle size and the associated wave con-
ditions (Manohar, 1956; Goddet, 1960; Vincent, 1958). These investigations
were all conducted in a channel with a leveì bottom. Vincent (1958) observed
that the fluid velocity just outside the bonndary layer was almost constant
at the onset of movement of equal-diameter grains. Abou-Seida (1965)

noted that field measurements of radioactive sand tracers conducted by

Sato 'et al (1963) compared favorably with the laboratory relationships de-
duced by l4anohar (1956) and Goddet (1960).

,

A second approach to this problem is relatively new. Arguing from
basic physical principles and certain assumptions, Bagnold (1963, 1966)

derived a relationship between bed load transport and the dissipation of

energy in the fluid motion. His argument rests on the assumption that a
. distribution of dispersive and tangential shear stresses exists in a bed of

granular material that is subjected to shear deformation. Several sum-
maries of the topic of wave-induced sediment motion are available (Inman,

1963; Abou-Seida, 1965; Raudkivi, 1967). Such presentations of incipient
sedlment motion usually include a discussion of the various criteria developed

for open channel flow. In particular, the work of Shields (1936), White

(1940), and Kalinske (1947) is often cited.
, .

..~. .:
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2. EXPERIMENTAL .SYSTEM

APPARATUS

Wave Tank and Mechanical Components

The rectangular wave tank illustrated in Figure 1 has an open top
and 3/8 - inch glass side walls and bottom. ,It is 4. 9 m long, 20. 5 cm wide,

and 38.4 cm deep and consists of two sections of similar dimensions joined
end to end by an 0- ring seal contained between plastic inserts attached to

the sections with epoxy cement. A thin layer of clear silicone sealant (Dow

Corning 701 Building Sealant) was applied along the inside seam to form a

smooth transition between the two sections. All other joints were also

formed with silicone sealant. The ends of the channel are acrylic plastic
plates sealed by Neoprene gaskets. A 14-foot length of aluminum angle

attached to five vertical aluminum angle supports behind the tank and 3/4 of
an inch above the side wall served as an instrument mount.

A filling technique sI-milar to that described by others (Fortuin,
1960 ; Oster, 1965; Jaffee, 1968) was designed to establish the desired sal-

inity gradients in the wave channeL. Figure 1 shows a diagram of the filling

system. Owing to the corrosive properties of salt watèr, the insides of the

two 55-gallon containers were coated with epoxy paint, and all seams were

calÙked with silicone sealant. Wherever the liquid came into contact with

bare metal, only stainless steel or brass was used. Flexible Tygon tubing

is used throughout the filling system wherever tubing was required.
.r'

The filling rate was controlled by a brass needle valve. Each drum
was equipped with a Tygon sight tube for visual determination of the level
in each barreL. A motor driven stainless stirring rod with two brass stir-
ring vanes was mounted above the fresh water barreL. ' To prevent solid-
body rotation of the water, the stirring rod layoff the axis of the barreL.

The bottom slopes, one of which is shown in position in Figure 1,

were cut from Plexiglas sheets. Each slope is beveled at one end to form
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a smooth junction with the bottom of the tank. Four slope angles were used,
7, 15, 30, and 45 degrees. During the experiments the slopes were supported

by two parallel Plexiglas struts. These struts were positioned at the proper

angle along the inner walls of the tank. Four Lexan plastic rods with threaded
ends and plastic nuts were used to separate the struts and to maintain their
position by forcing them against the channel walls. Neoprene strips were

cemented to the outer surfaces of each strut to form a continuous and flexible

seal with the side walls of the channeL. All materials forming the beach
slopes and supports were noncorrodible.

Wave Generating Apparatus

The wave generator had to meet five primary requirements:

(1) smooth and sufficiently powerful motion;

(2) desired frequency range and control;

(3) variable amplitude;

(4) compact size with components 
stably mounted on a plate above

one end of the channel;

(5) long running with low vibration leveL.

In an effort to meet these requirements the apparatus was modified several
times. Availability of various components such as the variable speed drive

often aided the choice of parts. The end product was an outgrowth of the

usual experimenter's dilemna: getting optimum performance at reasonable

cost.

Power unit. Figure 2 is a diagram of the power drive for the wave maker.

The entire drive mechanism is rigidly supported above one end of the chan-
nel by four 1-lj2-inch pipe legs with foot flanges. The base is a 1j4-inch
steel plate. The assembly consists of a Graham variable-speed drive

coupled to a 1j4-hp motor. The output shaft is joined to a fixed-ratio gear
reducer (9.5: 1) via a flexible coupling. This second speed reducer is con-
nected to a Scotch-yoke device that converts the rotary shaft movement into

rectilinear sinusoidal motion of a vertical shaft.
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Wave maker. Figure 3 shows the wave maker in actual location. Several
additional considerations were involved in the design of this device. First,

a unit was needed that could be inserted into position easily without appre-

ciably disturbing the stratification after the tank had been filled. Secondly,

the driving motion had to generate, to a good approximation, first-mode
internal waves while minimizing mixing at the wave maker. In addition,
the water motion in the section behind the wave maker had to be prevented
from interacting with the fluid in the working section of the channeL.

Basically, the device consists of a plastic flapper plate free to pivot

about its midpoint. Hinges anchor this plate to a supporting frame. A thin
flexible rubber gasket covers the entire face of the plate and frame, thus
preventing liquid from flowing between the two sections. This gasket is

held in position by thin plastic covers cut to the same shape and dimemensions
as the frame and flapper plate. The flapper plate 

is driven by a stainless-

steel push rod connected to the vertical shaft of the Scotch yoke by a universal

,coupling that allows for minor misalignments between shaft and flapper plate.

A closed-cell Neoprene strip was cemented to the sides and bottom
of the frame. This afforded an adequate seal between the wave flapper

assembly and the glass tank. A test showed that the wave maker could suc-

cessfully maintain a head difference of at least 6 cm of water between the
working section of the channel and the unused portion.

DATA ACQUISITION

This section describes the instruments used to record the experi-

mental data. A more detailed discussion of the quality of the measurements,
including calibration curves, error, and reliability estimates, is presented

in the next chapter and in Appendix A.

Detection of Wave Motion

The changing properties of the internal waves as they propagated
upslope were measured in the Eulerian sense with conductivity probes.
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The basic feature of the water medium was its strong salinity stratification.
Also, over the range of salinity values used during thjs study, salinity is
approximately linearly proportional to conductivity. The temperature vari-
ations in the water were found to be small (usually less than O. 5°C over the

total depth) except in the upper two centimeters, so that below this layer the

total change of conductivity at a point is here a valid estimate of the total

change of salinity:

s = So + î (0" - 0"0)

(2-1)

DO" 1 DS
Dt = ¿ Dt

where

¿ in %o/(ohm - cmf1

S ' in 0/0 0

. -1-10" in ohm cm

Because the wave-induced fluctuations of conductivity are measured relative
to some basic state of rest, only relative changes in conductivity at a point

are needed to decode the waves.

The conductivity sensor is a spherical platinum electrode that is the
active arm of an A. C. Wheatstone bridge. Design and construction of the
probe was inspired by Gibson and Schwartz (1963). Figure 4 shows a probe

assembly, including electrode, glass housing, and connecting cable. A de-
tailed description of its construction and an analysis of its performance are
presented in Appendi A.

Temperature"

Temperature of the room air and the water in the filling barrels
was measured with a mercury-in-glass thermometer which can be read to
O. 05°C. Vertical and horizontal temperature profiles of the stratified
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water column were taken with a glass-coated thermistor bead that is the

active arm in a D.C. Wheatstone bridge.

Specific Gravity

Specific gravity measurements of the water in the filling barrels
were made with a lead-weighted glass bulb hydrometer. The hydrometer
can be read to 0.0005 for any specific gravity in the range from 1. 000 to
1. 070. Its accuracy is about 0.2 percent of the maximum value in the range.

The basic specific gravity gradient was determined from measure-
ments of the vertical distribution of index of refraction. Figure 5 shows
the refractometer and mini-siphon that were used to obtain index of re-

fraction at various depths in the stratified water. These measurements
were converted to specific gravity values from calibration curves. The
'siphon consists of a O. 5 mm diameter stainless steel tube supported verti-

cally by a brass bushing and two locking screws. The bushing is press-

fitted into an aluminum bar. Centering pins allow repeatable positioning of
the aluminum bar athwart the channeL. Markings that are evenly spaced one
centimeter apart are inscribed on the steel siphon for vertical positioning.

Small-diameter Tygon tubing fits over one end of the siphon tube. A brass

pin that can be inserted into the open end of the Tygon tubing is used to stop

the flow. Flow rate through the siphon at mid-depth (about 16 cm of water)

-is about 0.2 m ~/sec.

Wave-Maker Motion

A rotary potentiometer in a D. C. voltage-divider circuit transduces
the oscillating, rectilinear motion of the Scotch yoke into a fluctuating D. C.

voltage signaL. A preclsion gear meshes with a linear rack that is cut into
the forward part of the upper vertical shaft of the Scotch yoke (Figure 2).

The spur gear is fastened to the shaft of the rotary potentiometer. Vertical
movement of the Scotch yoke causes a change in the voltage output of the

sensing circuit. The sensitivity is approximately 0.1 volt/cm. This tech-
nique establishes a convenient and accurate frequency reference and time
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base for the conductivity probe measurements. The accuracy of the circuit

as a frequency reference is primarily dependent upon the linearity of the

potentiometer. In this case, the linearity of the rotary pot is O. 1 percent
(Giannini Control Corporation). Amplitude calibration of the signal also
provides a measure of the forcing amplitude of the wave flapper.

The period of the motion is sensed by a microswitch mounted on
the lower part of the vertical support plate for the Scotch yoke (Figure 3).

This switch is closed once per cycle by a protrusion on the rotating arm,
and provides a convenient trigger for a period counter.

Photographic Measurement

Photographic measurements of the wave motion were obtained by

recording on film the behavior of neutrally buoyant particles and various
dyes. Expandable polystyrene particles (Sinclair-Koppers Company) were

chosen because their density was adjustable to the proper range by a tech-
nique described by Bohlen (1969). In addition, their milky white color pro-
vides an excellent contrast with the surrounding water when used with a
black background and overhead lighting. After processing to achieve the
desired density range, Bohlen found that their sizes varied over a consider-

able range. Sieving produced a more uniform size distribution, with media)'

size about 0.2 mm. The range of specific gravity for the lot was 0.990 to
1.040, with an obvious skew toward the heavier limit. The mean specific

, gravity was estimated at 1.020. These values were adequate for neutral
buoyancy in the range of fluid densities used during this study. The particieE:

were used to study orbital velocities and modal structure.

Potassium permanganate (KMnO 4) was used to make the vertical dye

streaks to determine near-bottom velocities and bottom shear stress.

When dropped'into a water column,~ystals of this substance leave a dis-
tinct dark-red dye trace from surface to bottom. The vertical trace was
then tracked photographically as it was deformed by wave motion.
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Small quantities (one to two cc) of common liquid food coloring or a

highly nondiffusive blue dye (Blue Dextran 2000) were .injected into the fill-

ing tube by means of a 16-gauge hypodermic needle and syringe through a
self-sealing rubber membrane at infrequent intervals. The membrane was
fitted over one end of a glass T-joint in the Tygon filling line (Figure 1).
These injections resulted.in thin horizontal dye layers at various levels in
the stratified water column. This enabled qualitative measurements of the
internal waves by observation of the deformation of the dye layers by the
propagating waves. The layers were typically 3 to 5 mm thick for the food

dyes and only about 1 to 2 mm thick for the Blue Dextran 2000. The tech-
nique also aided in observing flow conditions at the entrance'to the main

channel during filling. Excessive mixing at this point was indicated by rapid
diffusion of the dye, as might be expected in an area of strong turbulence.
In such cases, filling rate was decreased. Finally, the dye layers added
some aesthetic value to the final stratification.

Shadowgraph images were used to display instabilities in the boundary,
layer and the violent breaking of waves in the upslope turbulent zone. The

shadowgraph system is shown diagrammatically in Figure 6. The two-way
diffusive screen is sold by Edmund Scientific Company under the trade name
Lenscreen. Its excellent dispersive properties and good transmittance pro-

duced clear and evenly lighted images. The merits and techniques of shadow-
graph flow visualization are discussed by several authors (Barnes, 1954;

',Goldstein, 1965; Edgerton, 1958). A Bolex 16 mm camera was used to take
motion pictures öf the shadowgraph images. '

The shadowgraph lighting was provided by a tunsten filament lamp

(Beck Company) that contains a dial rheostat for light-intensity adjustments.
It also has a circular portal lens that can be moved toward or away from

the light sourCe. This lens and an adjustable diaphragm are located in a
collimating tube through which the light rays pass. A 500-watt combination

flood-spot lamp provided illumination for the dye streak photographs.
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Data Recording and Display

Figure 7 shows some of the instruments used in this study. The
oscilloscope at the left of the picture has provisions for dual-channel opera-
tion (Tektronix Type 564 Storage Oscilloscope), and was used mainly to
display the output of each conductivity bridge when null was set (Appendi A).

The instrument at the right is a Brush dual-pen strip-chart recorder. The
two charts operate on the same time base but with independent voltage scales.
This .recorder provided a real-time display of the transduced conductivity

,'.

fluctuations during the internal-wave runs. Thermistor temperature mea-

surements were also recorded in this way.

The heart of the data recording system, a Wang model 2300 digital

readout and recording system (Wang Laboratories), is at the center of the
photograph in Figure 7. The fastest available sampling rate (1 cycle per
second) was chosen for all phases of this investigation. The system was
programmed such that each tape record was in card-image format (.0 80

characters per record) and represented one second of real time. Included

in each record were digital clock time to the nearest second and six sequen-
tial channels of data. The data characters contained five measurement

digits, decimal point location, and sign; each data point was recorded to the
nearest millivolt. The recording format simplified use of the data in the
digital computation routines on the IBM 360/67 system and in listing the
raw data in decimal format on the IBM 1401.

"".

1;

Several cameras were used to photograph the neutrally buoyant par-

ticles and dye lines. General photographic work was done with a Nikon F

single-lens 35 mm reflex camera. Another Nikon F camera with an auto-

matic film advance attachment was used to photograph deformations of the
dye streaks, and, in some cases, the motions of neutrally buoyant particles.

The film advance was controlled by a synchronous timing device that provides

continuous one-second trigger pulses to the camera at an accuracy of :l.1

percent of the timing interval. A Calumet view camera with fast Polaroid

film was normally used to photograph the neutrally buoyant particles, which
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Fig. 1. Data acquisition system
Left: Tektronix type 564 storage oxcilloscope
Lenter: Wang model 2300 digital data system
Right: Brush dual-pen strip chart recorder
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were illuminated by a flashing stroboscope. The strobe flashes were triggered

externally by a signal generator (Wave-Tek).

EXPERUMENTAL PROCEDURE

Although the procedure for each experiment varied depending upon the

purpose, the following basic procedure was employed throughout the prepara-
tion and execution of all experiments. Several days (usually three) prior to

the experiment, the two 55-gallon barrels were filled to a predetermined level
with .hot tap water to which 7 to 10 teaspoons of Alconox laboratory detergent

were added. Liberation of dissolved air accompanied the subsequent cooling

to room temperature. The detergent inhibited formation of air bubbles along

the walls of the drums. The water was also stirred manually as often as pos-
sible. On the next day, a predetermined amount of salt was added to one drum.

A submersible pump was used to mix the salt into solution and to minimize
entrainment of air at the free surface. After the wave tank had been cleaned,

the wave flapper assembled and tested", and the slope supports positioned at
, the desired angle, the siphon connecting the two barr'els (Figure 2) was primed,

and the stirrer in the fresh water barrel was started. The water temperature

in each barrel and the room temperature were then recorded. Readings of

specific gravity and index of refraction were taken in both barrels. During
filling, the water level was recorded as a function of time, and dye was in-
jected into the filling tube at selected intervals. Room and water temperatures
were monitored at one-hour intervals. After filling was completed, about 10

hours later, the final temperature and specific gravity of the water in eac'h

barrel were measured. The slope was then inserted very slowly and smoothly

by sliding it down the supporting struts until its beveled edge lay flush with
the tank bottom. Very little mixing was observed, except at the edge, as the
slope moved through the stratified fluid. The coherence of the dyed layers
near the slope attested to the small degree of disturbance. The wave flapper,

whose bottom had been positioned at mid-depth during the filling, was then

inserted through the remainder of the fluid. Its driving rod had been fastened
to the vertical shaft of the Scotch yoke prior to filling. This procedure also
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caused very little noticeable mixing. The water depth was recorded. and
the top of the tank was covered with a thin plastic she~t (Saran Wrap) to
minimize evaporation losses at the free surface. (Prìor experience showed

that these evaporative losses could be quite substantial, 1 - 2 mm of water

per day.) In addition, the conductivity probes were cleaned and platinized

as necessary (Appendix A). Depth markings were checked and refurbished

on all probes.

On the next day, vertical profiles of temperature and index of re-
fraction were taken over the flat bottom and at other stations along the slope.
The depth was recorded, and the presence of an interface near the surface

was investigated with the shadowgraph apparatus. The plastic covering was

removed from the slope section of the tank, and the pertinent photographic
.

apparatus was made ready.

Prior to wave generation, the conductivity probes were given static
calibration by raising and lowering them vertically by known increments
while recording their output at each level; this allowed a comparison with
previous calibration values and provided an updated sensitivity coefficient
for each probe. Normally, the next group of measurements were taken

with the probes all at the same depth over the flat-bottom region. Adjacent

probes were separated by equal distances usually 5 to 10 cm, with the probe

farthest from the slope at a distance of at least 200 cm from the wave maker.

Runs were then conducted in which the forcing amplitude and frequency of
, the wave maker were varied to include most of the values to be investigated.
These data provided a set of reference values with which the later measure-

ments over the slope were compared. The procedure used to take the dye-
streak measurements is summarized below.

(1) Prior to the initiation of wave motion, a grid marked in milli-
meters was gently lowered to the slope in the middle and parallel to the side

walls of the tank, photographed in place, and gently removed. The position

of the camera relative to the front wall of the tank was carefully measured;
this position could be repeated to within 1 percent.
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(2) After the disturbances introduce~ by the grid removal had sub-
sided (usually 10 -15 minutes), and several minutes after the wave-maker

had been turned on, several dye pellets were dropped at various locations
over the slope (normally four) and at one position over the flat bottom. The
pellets were dropped through a small glass tube at the previous position of

the grid. By choosing dye pellets that were small (diameter ~ 0.3 mm) and

nearly spherical, irregular motion during descent was minimized. During

the rest of the experiment, photographic and conductivity measurements

were taken at various locations and times. Each experiment usually lasted

from two to four days, depending on the nature of the particular experiment
and the physical endurance of the experimenter.

-~



43 '

3. DATA ANALYSIS

Several kinds of experimental data were obtained; these included

(1) temperature, (2) mean density gradient, (3) density perturbations,
(4) boundary layer velocities and bed shear stress, and (5) miscellaneous

data including mode number, net particle drift, and measurements of boun-
dary layer instabilities. The instruments and some of the procedures that

were used to obtain the various kinds of data have already been described;
this section presents a summary of the data reduction techniques and the
methQfls of analysis.

TEMPERATURE

Vertical temperature profiles at several horizontal locations were
made at least once before and after each experiment, and usually several
times in between. Typically the maximum temperature variations were

. relatively small (oc O. 5°C) over the fluid interior; more irregular changes

often occurred in the near-surface layer. This layer will be discussed in

more detail in the next section. Figure 8 is a representative temperature-
depth profile.

MEAN DENSITY GRADIENT

A typical density gradient is shown in Figure 9. Measurements of
index of refraction were made at about 2-cm intervals in the vertical and
at closer spacing near the free surface. Index of refraction was converted

directly to specific gravity by applying a calibration constant that included

a correction for the local temperature. Several times during the course of
the experiments the specific gravity values obtained in this way were checked
by carefully weighing a known volume and determining density in g/cc di-
rectly. The maximum difference in the two methods was always found to be3 '
less than 1 part in 10 (or about O. 1 percent).
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'\l

23.5

Fig. 8. Typical temperature variation wi th depth.
Data from exp. group 4.
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The linearity of the curve in Figure 9 is quite good over the fluid

interior but nonlinear tails are evident near the boUoni and the free surface.

Evaporative cooling at the free surface, when the plastic wrap was removed
from the slope section of the tank during the conductivity runs, tended to
increase the density of the water there, countering the effect of lower den-

sity due to low salt concentrations. The overall result was a more homo-
geneous density layer near the free surface. Weak convective motions were

observed in this layer in the absence of wave motion by dropping potassium
permanganate crystals through the water and tracking the motions of the dye~-'--...----- _." --_. --- -~_.~. "..- '.~"'- .-- ._--
traces in this layer . The amount of evaporation was reduced siglUficantly

(t6~~:¿1 mm per da.y)wlien the "plastic cover was used.

The variation of salt concentration with depth as a function of time

for a similar experimental arrangement has been derived theoretically
from the one-dimensional diffusion equation for a constant coefficient of
diffusion and conditions of no flux of salt across the boundaries (Mowbray

and Rarity, 1967). The theoretical concentration-depth curves were shown

to have a linear interior and nonlinear tails that thickened in time. The
.

point of-maximum curvature-located between the nonlinear and linear por-
tions of the curves might explain the sharp shadowgraph image that was
usually observed a small distance below the free surface and was inter-
preted as a change in the density gradient (i. e., êpo/ez *0 at this point).
An example of the vertical distribution of Brunt- Vaisala frequency N is

, shown in Figure 9. The effects of the nonlinear tails cause N to decrease
sharply in the small layers. Photographic measurements of the modal

structure and of the particle displacements indicate that the basic wave

motion was not measureably affected by the small, nonlinear portions of
the density distribution.

¡,

r

DENSITY PERTURBATIONS

Perturbations in the density field induced by internal wave motion
..

were sensed with conductivity probes. Voltage variations relative to some
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mean or null value and proportional to the conductivity changes were recorded
digitally on magnetic tape. The quality of the data was checked by using a
real-time display on a strip-chart recorder.

Normally, measurements from all four probes were taken at least
one minute before and after the wave motion to establish an instrument drift
correction. Each of six data channels was sampled sequentially once per

second (~t = 1 sec); the channel allocations were four channels for probe

data,. one for the wave-maker signal, and one for a reference voltage.
Samples of the raw data signals from one probe and wave-maker are shown

in Figure 10. The length of each data record depended on the particular ex-

perimental run. Record durations of least 50 wave periods, often up to 100,
were obtained for quasi-steady conditions as determined from the strip-
chart output.

The data records on the magnetic tape were then processed on the

IBM 360/65 as follows:

(1) average and trend were computed, listed, and removed;

(2) mean square of the data values was computed and listed;

(3) the periodogram was computed for 2N data points using a Fast
Fourier Transform algorithm (IBM Manual H20-0205-3) to obtain squares

of the real Fourier coefficients ~, bk such that:

N-1
v. = 1/2aO + i fak cos CTNik) + bk sin (1TNikn +.!a (_1)iJ k=1 2 N
j = 0, 1, ....., 2N-1 (3 -1)

Normally, the starting point for each computation of the periodogram was
selected when it was determined that the data were quasi-steady (transients
and other irregular motions were no longer evident on the strip chart).

Output listings and selected plots of the squares of the periodogram esti-

mates a 2 (in cm2) and of the phase 4i at each frequency f (in cpa)m m m
were obtained.
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am
2 = (~2 + bk2)1/2

cPm
-1 bk= tan -ak

m = k = 0, 1, ....., N-l

A sample periodogram computed from the data record represented in Fig-
ure 10 is shown in Figure 11. A calibration constant has been applied so

that the ordinate is cm2 instead of (volts) 
2 . The strong peak at the input

frequency and the sharp fall-off at adjacent frequencies are typical of these
results. The cut-off frequency' was lower than the Brunt- Vaisala frequency

for all periodogram computations (cut-off frequency = 0.5 cps).

Estimates of the periodogram a 2 * were computed for probe data
o

taken over the flat bottom region. These estimates were used as reference
values for subsequent estimates a 2 for data taken over the slope at similar
frequencies. The results are sho~n in a later chapter in the form a 2/a 2m 0
to indicate the change in wave amplitude from flat bottom to slope regions.
This normalization also conveniently removes certain calibration constants.

VELOCITIES AN BOTTOM SHEAR STRESS

Time-sequenced photographs of the deformation of potassium per-

_______.:na~anate streaks were used to obtain one-second averages of the Lagran-
gian velocities of these streaks at several levels parallel to the bottom in
and near the bottom boundary layer. Reliable measurements of streak dis-
placements were obtained at one-second intervals over at least one full
wave period, often down to distances of 0.05 cm above the bottom. Tracks

*
The subscript !toT! signifies a value pertinent to the flat-bottom section of

the tank, not to be confused with the general Fourier coefficient a inEquation (3 -1). , 0



50

Fig. 11.

-4

Sample Periodograms.

Upper: Periodogram of wave maker signal.
Lower: Periodogram of conducti vi ty probe

output.
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of neutrally buoyant floats near the bottom generally showed very little, if
any, motion normal to the bottom, except in the zone of breaking. The dye
traces usually remained coherent to the slope, but if irist abilities and tur-
bulence were present the streak traces usually developed a wavy structure

or dissipated rapidly near the bottom.

The following summarizes the methods used to obtain velocity and
bed shear stress data from the streaks.

(1) Photographic negatives which contained a series of one-second
. positions of the streaks for a particular input wave amplitude and frequency

and at each station were enlarged and transferred onto a sheet of tracing
paper by using a microfilm reader. A single sheet was produced containing

the traces of the successive positions of the dye streak at each station for

one-second sampling intervals. Successive displacements of neutrally
buoyant particles were recorded simultaneously on the same sheet. Figure

12 is an example of a worksheet that includes the dye streak and particle

positions. 'The numbers represent successive seconds in time relative to
t = 1. The streaks and particles were also color-coded; this does not show

in Figure 12.

(2) The coordinates of each streak relative to its position at the slope
were punched onto IBM cards by a special purpose X- Y digitizer. The streak

positions were usually sampled at 0.02 mm increments normal to the bottom
*

in the boundary layer and at larger increments (0.05 mm to 0.10 mm) above

the boundary layer. Each neutrally buoyant particle position was digitized.

(3) Successive displacements of the streaks (or particles) at a partic-
ular level above the bottom gave approximately one-second averages of the
Lagrangian velocities uj, t at that level;

""

J

*
The thickness of the boundary layer is tentatively defined as the distance

of the inflection point in the streak trace to the bottom.



ti
i
 
0
-

\
)
0
'
 
·

.
~
 
~
 
1

. i

G
 ~

,
~,

"-
-~

v(
 ~

\'
O

r.
' . \*

 ,'
"

Q
 .;

.. 
,

A
 ~

rJ
~

"~
'\i

;. 
.:-

i-
~

l'.
 ~

, ¡
''Ý

.f~
1.

,"
" 

','
 ~

\ \ \ \ '\

'
i
 
t
"
.
.

,~
 r

,
 
.
~
~
,
I
:
"
,

..-
-~

~
¿
"
:
:
 
~
.
:
 
'

,
,
/
~
:
,
.
.
i
 
~
_

'..

r(
 i.

r-
-r

...
.' 

:1
1

'..
."

\"
'r

..-
,-

..-
"~

,ir
-'-

:;~
--

:''
.

"
k
 
0
 
¡

~
~

 (
1 

'''r
.~

' r
~

~
 1

..) 'b
,~ ,I 
")

 q
 j:

\
'
t
;
'
 
~
Æ
¿
!
.
i

.
 
~
í
-
\
 
,
1

~
,
r
 
,
1
0

fA A
I; ,

(
-
 
,
.
~
.
.
 
.
.
.
.
.
,

/-
--

1
~/

/
.: /

/ ~
,
i
-
 
c
 
r
"

C
 "

.Ç
j"

Ò
 \:

~
bq

'

~

çi
o.

...
"7

/
¡,

-
//'

~
~

, r
L 

-,
-.

"
...

,. 
..-

'/
'"

':.
*

I
 
.
.
k
~

/ n

i:
"-

 I 
~

~
i
f
 
:
;
(
:
Q
'
t
Y
S

-
i
 
G
 
b
 
3
L
 
I
l

,~
 D

o.
 i

,.0
 ~

 ..
tj:

;
.
 
.
'

/
I

I 
.

G
I

/

/
ui l-

..

\.

\ \

F
i
g
.
 
1
2
.
 
S
a
m
p
l
e
 
w
o
r
k
s
h
e
e
t
 
w
i
t
h
 
l
o
c
a
t
i
o
n
s
 
o
f
 
d
y
e
 
s
t
r
e
a
k
s
 
a
n
d

p
a
r
t
i
c
l
e
s
 
p
l
o
t
t
e
d
 
a
t
 
e
a
c
h
 
s
e
c
o
n
d
 
d
u
r
i
n
g
 
a
 
w
a
v
e
 
c
y
c
l
e
.

T
i
m
e
 
m
a
r
k
s
 
(
n
u
m
b
e
r
s
)
 
a
r
e
 
r
e
l
a
t
i
v
e
 
t
o
 
t
 
=
 
1
.



53

X. t - Xj, t-1
u. t = J,

J, M

t = 1, 2, . . . . . , T

j = 1, 2, . . . . . , L

T is the number of streaks (usually equal to the nearest integer
greater than the wave period).

L is the number of vertical levels .

j' = 1 represents the lowest level for which the data of any particular
set are considered reliable.

As stated above, the spacing between the various vertical levels
from j = 1 was constant in the boundary layer.

(4) Estimates of bottom shear stress (one-second averages) were

computed from the velocity values at j = 1:

TO t
,

U1 t
= --

Ar¡

t = 1, 2, ....., T as before.
-,'

A r¡ is the distance between the bed and the level j = 1 measured normal tothe bottom. '-
MISCELLANEOUS

¡,

r

To ascertain that the wave maker was in fact generating primarily
the first mode, several photographs of the orbital motion of neutrally buoy-

ant particles over an entire vertical section were taken at various positions

along the tank. Figure 13a is a typical section over the flat bottom. The
predominantl¥ vertical motion near the center of the water column and the
horizontal pattern near the free surface and at the bottom are characteris-

tic of internal wave motion of the first mode. The photograph was taken
with Polaroid film that was exposed by flashing a strobe through a thin slit
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- .., -.. 1;-,,, ,. ~~. .

~

rig. 13 a; ~ime sequence of neutrally buoyant
particle positions over horizontal bottom.
Modal structure approximately equal to the
first internal mode (n = 1).
Pointer depth: ,16. Ocm.
Bright horizontal section on pointer: 1.0 cm.
Brunt-Vaisala period: 6.5 sec.
Wave period: 12.0 sec.
(Strobe: 1 flash/sec; Polaroid 4x5 film,

ASA 3000)
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from above the ta~ at 2 cps. The illuminat.ing flash was a rectangular

beam about 1. 5 cm wide and approximately centered between the side walls
of the ta~. Similar photographs were taken at various positions over the

slope. Figure 13b shows a close-up view of successive displacements of

neutrally buoyant beads near the bottom of a relatively low slope (a ~ 15
degrees). Note the amplification in the particle displacements nearer the

bottom.

Shadow graph images were used to visualize the boundary layer in-
stabilities and breaking of the high frequency waves. Both of these phenomena
are discussed in Chapter 4; several photographs of the shadow graph i!pages

are shown in that chapter.

The net drift patterns of neutrally buoyant particles were determined
by two methods:

(1) The positions of selected particles were marked on the glass side
walls of the ta~ over long durations (up to 30 minutes).

(2) The positions of the particles were traced from 16 mm movies
of the shadow graph images that were projected onto a screen of large grid

- paper. By counting the frames between position marks, the approximate

time that had elapsed was estimated and a net velocity computed.
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fig. 13 b. Time sequence of neutrally buoyant
particle positions over slope ( =30 deg).
Note intensification of motion near bottom.
Brunt-Vaisala period: 6.0 sec.
Wave period: 9.6 sec.
Input wave amplitude: 0.2 em.
(Strobe: 1 flash/see i Tri-x 35mm film.)
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4. EXPERIMENT AL RESULTS

GENERAL DISCUSSION

'"

This section describes the organization of the results and presents
an overview of the hydrodynamics. Subsequent sections discuss the results
in more detail and compare them with the predictions of recent theories.
The results are separated into two basic categories: (1) one that describes

the interior wave field (wave number and wave amplitude); (2) another that
describes the activity at the boundaries (wave breaking and boundary layers).

It is useful to define two distinct hydrodynamic regimes on the basis
of the reflection conditions for internal gravity waves from a smooth, rigid
slope (Phillips, 1966; Sandstrom, 1966). This subdivision is based on the
ratio of bottom slope y to the slope of the input wave characteristics c.
Figure 14 illustrates the classification and shows that regime IT can be fur-

ther subdivided into two cases. Phillips (1966), among others, has shown
the slope of the characteristics to be a function only of the stability fre-
quency N and the frequency of the input waves w, provided that N is con-
stant with depth:

c = 1/(N2/w2_1)1/2 (4-1)

Since Nand y were essentially constant during each experiment, the ratio

y /c could be altered by changing w. In this way, both hydrodynamic regimes

i' /c-( 1 and y /c~ 1 were investigated during several experiments.

Tables B1 and B2 in Appendix B summarize the experimental param-

eters for the various measurements that were made with the conductivity

probes. Table B1 is divided into experimental groups that each have a simi-

lar Brunt- Vaisala frequency and bottom slope. This table is a reference for

Table B2, which lists the various input wave frequencies that were generated
during the experiments. The experimental conditions for each frequency can

be found by matching the second number in the first column of Table B2 with
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Regime Case Designation

.~
..')i1

y /c

Reflection
Properties

transmissive; all
energy propagates
into corner

marginally trans-
missive; energy
propagates parallel
to bottom slope

nontransmissive;
energy is back-
reflected

Fig. 14. Classification of internal waved based on reflection
from a smooth, rigid slope. Slope of wave charac-
teristics = c; bottom slope = y.
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the number of the experimental group in Table Bl. Those frequencies
which belong to hydrodynamic regime II are identified by a dash in column 7.

An asterisk is located above those frequencies for which more than one ex-
perimental run were made.

The emphasis on two hydrodynamic regimes is supported by the re-

sults. The subcritical case was examined extensively, since the results for
this case are pertinent to the later analysis of sediment motion and since
this case is important for certain oceanic conditions (Chapter 5). The

data for this case suggest a further classification into two wave types

based on the frequency of the input waves. This distinction is more justified
for the measurements that were taken over the low slope angle (15 degrees)
than those measurements taken over steeper slopes. The experimental re-

sults indicate that the high-frequency input waves decrease in wave length
, and increase in wave amplitude as they propagate upslope until at some lo-
cation near the corner and be19w the free surface they dissipate by breaking.

The low-frequency waves in this case (y.(c) initially steepen like the high-
frequency waves, but the effects are less pronounced. The steepening
diminishes upslope as these waves form an internal surge that produces a
large runup with little breaking. The water motion near the bottom is am-
plified for both wave types. The bottom shear stress is increased over the

slope and is greatest in and near the zones of breaking and runup. In addi-
tion, there is considerable vertical motion near the bottom in the breakers.

The experimental results for case B and case C (y /c:;l) indicate
that the interior wave motion is very complicated. The conductivity-probe

measurements show that during most experimental runs the wave amplitude

over the alope was a maximum at or 'near a depth z = -cx. (The geometry
is definect in Figure 15.) In the critical case, a line of small, regularly

spaced vortices forms along the slope. The vortices have diameters on the

order of 1 cm and axes that are normal to the side walls of the ta~. They
oscillate along the slope with the wave motion, collapsing and reforming
over a half-cycle. The distance from the vortex core to the slope is about
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7 to 10 mm. Several wave cycles after the .formation of the line of vortices,

thin horizontal layers appear in the fluid. Each layer is associated with a

vortex near the slope and represents a modification to the density structure

over the slope. Wave breaking near the corner accompanies the vortex

activity. These features are discussed in more detail later in the chapter.

THEORETICAL DISCUSSION

The experimental results presented in this chapter are compared to

, the theoretical solutions of Wunsch (1969). Preliminary measurements in-
dicated that the exact linear solutions for the interior wave field fitted the
experimental data. The experimental conditions and the assumptions im-

plicit in the theory were compatible except for the boundaries. Wunsch (1969)

solved the prOblem for a wedge geometry bounded above by a rigid horizon-

--,tal-top and below by a rigid bottom slope that extends indefinitely far from
the corner (the term corner refers to x = z = 0 in Figure 15). The rigid
bottom slope used in the experiments terminated a finite distance from the
corner at the transition to a horizontal bottom. The possible effects of
this discrepancy between theoretical model and experimental conditions

are mentioned in the discussion of results for cases Band C and in the, ,
boundary layer section for case A. Although a free surface was permitted

in the experiments, the observed vertical motions of this surface were

small. In the sense that w i: 0 at z = 0, the use of a free surface was
compatible with the rigid top in the theoretical modeL.

For a viscous Boussinesq fluid of mean density p (z) the two-dimen-
o

sional perturbation equations (after Wunsch, 1969) are:

2
ut = -p j p + v'\ ux 0 (4-2)

2wt=-pjp -gp'jp +v'\wzoo (4-3)

u + w = 0x z (4-4)



62

p't + w p = 0_ °z (4-5)

where p' is the perturbation density, and a bar denotes partial differen-
tiation.

Interior Wave Field

The interior equations are given by the inviscid forms of Equations

(4-2) through (4-5) above. The pertinent linear solution (Wunsch, 1969)

for small-amplitude internal waves of frequency w traveling toward the ..
corner is composed of two progressive waves:

A r -iqQn(cx - z) -iqQn(cx + Z)J -iwt¡p= e -e e (4-6)

2n1T

q :: .en~ ~=~c - y (4 -7)

where n is the mode number. This solution is singular at x = z = 0 for

case A (y -( c). The phases of the two waves in Equation (4-6) are arith-

metically averaged to give an average phase function U:

U = q/2 (Qn(cx - z) + .en(cx + z)) (4-8)

..It follows that an average local horizontal wave number is defined by k :
w

kw = aU/ax = q( 2 ~2x 2) (4-9)
, c x - z

The corresponding wave number k that was determined from the conduc-, m
tivity prObe measurements is ~e /t:x (Chapter 3).

m

For a time dependence of e -iwt, the incompressibility condition
condition,(Equation (4-5)) yields:

p = -ilw apo/az w (4-10)

(the prime on p has been dropped for convenience).
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The vertical veloc ity w is obtained from the stream function in Equation (4 - 6),

w = a il / ax:

A" r 1 -iq ~ nM 1 -iqQnNj -i wtw = iqc l- M e + Nee (4-11)

M = cx - z N = cx + z

Applying Equation (4-11) into Equation (4-10) and taking the time average of

the product of p and its complex conjugate p*, we obtain an expression for

the square of the amplitude variation with coordinate position:

2 1- 1 2 nc. 2 2p =-pp*=-A (.:) (ap/az)w 2 2 w 0
(4- 12)

(1 ,1 2 N J
x- + - - - cos 1qQn(-)JM2N2NM M

It is useful to point out here that for y-( -(c, Wunsch's solutions are
the asymptotic solutions for internal waves propagating over a small slope

(also given by Keller and Mow, 1969). The dependence on local depth h
for local values of horizontal wave nwnber k and amplitude a is

x
a hkx = n~c a = ~ 0 (4-13)

where the subscript "0" signifies "deep" water values (i. e., constant values
of wave amplitude a and depth h). Hogg and Wunsch (1970) have showno 0
that the nonlinear terms are significant when E becomes order one,

a h
o 0

€ = akx = -- cn 7f

".

" (4-14)

That is, the amplitudes of the next higher order term in the velocity ex-

pansion grows as € 2. This suggests that the linear solutions are no longer
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( ,
valid over the small slope at some depth h given by E of order one in
Equation (4-14).

For the case y? c, Wunsch (1969) showed that the apparent singu-

larity at z = -cx in Equation (4-6) could be removed. Wunsch rewrote q
*

in the form

q = l' + is (4-15)

and showed that the expression for the stream function for waves propagat-
ing upslope could be rewritten

A r (s - ir) .QnM (s - ir) ~ nNj -iwtil = ie - e e (~-16)

where r=~
((~n \A' \)2 + 1T 2)

'- 2n 1Ts = 2 2
((~n \D. \) + 1T .J ,r

D.' = c - ~ = 1/D.c + y .

and n is a negative integer. (Note that~nN is complex for cx + z:= 0.)
..

*
The notation here does not conform to that of Wunsch (1969) in order to

avoid later confusion. He wrote the complex form of q as q = 1' + ió,

and gave an analogous expression for Equation (4-16) in which the real part
of the exponential group was written in a power of s(i. e., ó in his notation).



65

In order to have the velocities and their first derivatives continuous,

Wunsch derived the requirement that s ): 2 or

-n): (~n I~ It +. 1

7r

(4 -1 7)

-n represents the lowest, nonsingular inviscid mode permissible for

these solutions. The vertical velocity is obtained from Equation (4-16):

A ( .) r 1 (s -" ir)~nM 1 (s - ir)QnNj -iwtw = c s - ir L M e - Nee (4-18)

An expression for p2 analogous with that in Equation (4-12) can be obtained
w

in principle from Equation (4-10) and Equation (4-18) and compared to the
measured amplitude a 2 for specific coordinate positions by the method

m
described in Chapter 3. However, it is not simple in this case to obtain a
physically meaningful phase function that is analogous to Equation (4-8)

owing to the complicated wave forms in Equation (4-18). The amplitude
dependence on the spatial coordinates indicates that these are not simple
plane waves. By writing'

w = f(x, z) eig(x, z, t) (4-19)

where f and g are complex, a phase function U can be defined as

U t -: 1 I(w) 

,

= an, R(w) (4-20)

where I(w) and R(w) are the imaginary and real parts of w, respectively.

This form of U will be used in the later discussion of theoretical and ex-
perimental results for cases Band C.

Boundary Layer

The full set of perturbation Equations (4-2) through (4-5) were used
by \Vunsch (1969) to obtain linear boundary-layer solutions for case A
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(y c( c). The solutions match those for the inviscid interior just outside
the boundary layer. The stream function can be written:

iPT = iJi + iPb.~. (4-21)

where iPI and iPb. ~. are the interior and boundary layer contributions, re-

spectively. In terms of the coordinates r, 71 shown in Figure 15, the

expression for iPb. Q. given by Wunsch (1969) can be rewritten

Øb.9.. =¥ P ¡F e -iq~n(B¡:) - G e -iq ~n(DË) 1

-(i + 1) r¡ /ó -iwtX e e
, where

1 ( 2 wv \ 1/2P=T-2 2.2)
w - N sin a

ô = (i - 1) P

B = C cos a + sin a, D = c cos a - sin a

F = c sino. - cOSo.
B

G = c sin a + cos aD

(4-22)

The component of velocity parallel to the slope (in the r direction) is

given by

UT = ui + ub..~. = - ô t/ T / ô 71 (4-23)

or from Equation (4-6), after it has been expressed in I, Ti coordinates,
and Equation (4-22),
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UT ~ v 0:) f1 - e -(i + 1) ii/ól e -iwt
(47"24)

ven ~ ~q fF e -iqin(BT) - G e -iqin(Duj

The behavior of the velo~ ity component uT parallel to the bottom with
variations in -l and "; is obvious: (1) uT grows to infinitely large values

as T ~ 0; in fact, at ri = Y = 0, the solution is singular, as might be ex-

pected since the interior solution is singular at the origin for 'Y -( c; (2)

for i7 = 0, "f "* 0, the solution reduces to that of the interior field; and (3)
as r¡ -+ + 00, the boundary-layer part (~. Q. ) becomes infinitesimally small
and uT ~ uï The solutions for wT can be derived in principle from
wT = a ¡plaT, but are not presented here since the measured values of wT
were very small in the boundary layer (this is discussed later in thi~_ _

chapter) .

FOr cases Band C (y ~ c), Wunsch (1969) found that the boundary-

layer equation for Wb. Q. ~as nonseparable in the spatial coordinates. In

fact, Wunsch showed that when the slope is near critical the scale of the

boundary-layer thickness is proportional to R-1/3, in contrast to R-1/2 for

y -( c, where R is a local wedge Reynolds number and h is the local depth:

2R = Nh iv
-----

INTERIOR WAVE FIELD - RESULTS

Subcritical Case

Table B3 (Appendix B) summarizes the periodogram amplitudes

and wave ,numbers that were determined from the conductivity-probe mea-

surements as, described in Chapter 3. The notation in the column headings

is discussed in the following sections. The experimentally determined

values are organized into columns by input wave amplitude.
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Wave number. As was described in Chapter 3, an experimental wave

number k was computed from the measured phase differences betweenm, .
adjacent probes (km = A8m/Ax). Columns 9, 10, and 11 of Table A3 con-
tain the appropriate values of k divided by q, i. e., ! A8 lAx (q is de-m q m 1
fined in Equation (4-7)). This parameter is convenient since - k corres-1 . q m
ponds to the theoretical value - k given by Equation (4-9):

q w.

.! k
q w

1 aU- ---- -
q ax

x2 2x - (zjc)
(4-25)

The right-hand side of this equation is evaluated for the appropriate values
of c, and the average is computed for the two probe positions. The value

listed in column 7 is

!k - ! r x Jq w - 2 2 21,2 _x - (zjc) 1,2 (4-26)

in which the subscripts 1 and 2 indicate that the function is evaluated at the
coordinate positions for each probe and then the average is taken.

The theoretical curves in Figures 16 and 17 are straight lines with

slope of 1. The data in Figure 16 are taken from the values for relatively
high-frequency waves in Table B3. The upper right portion of the diagram
corresponds to the corner region of the slope. Figure 17 is a similar plot
forthe data of the low-frequency waves. Both plots show that the wave

*number decreases with increasing distance from the corner. The agree-

ment of the results with the theoretical curve is best for waves over the
lower section of the slope, well away from the corner. Toward the corner,

*The behavior of the abscissa, 2 x 2 ' is approximately like 1jx for
x - (zjc)

constant z. (This is obviously true for x ).). zjc.)
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the data points in Figure 16 depart significantly from the theoretical curve.

It is also evident that the value farthest to the right for each experimental
group in Figure 16 is displaced toward higher wave number than that pre-
dicted by theory. This trend is illustrated in Figure 18, which includes

data for the high-frequency waves (w = 0.094 cps) in Group 1 (Table B3).

The upslope increase in wave number is similar for both input waves

(a = 0.2 cm and a = O. 1 cm). However, the greater increase in waveo 0
number for the larger waves (a = 0.2 cm) at the most cornerward position

o
(i. e., closer to x = 0) suggests that the upslope variation in wave number
might depend on amplitude. The experimentally determined value òf E at
this most cornerward position is approximately O. 15; this might indicate

that nonlinear effects are beginning to have a significant effect on the motion.

In Figure 17 there is good agreement between theory and measure-
ment for the low-frequency waves, although most of the data values tend
to be lower than the theoretical curve in the right-hand side of the diagram

(near the corner). This suggests that the wave length of these lower fre-

q1,ency waves decreases more slowly with decreasing distance to the corner'
than theory predicts. .:..

Another type of comparison between theoretical and experimental

values of wave number is shown in Figures 19 through 21. The data are

taken from columns 12 through 14 in Table B3 (Appendix B). Experimental
wave numbers k and k were determined for each input wave from probem 0

, measurements taken over the slope and over the flt bottom, respectively.
The ratio k /k is the ordinate in Figures 19 through 21 (k = Ae lAx).mom m
A comparative theoretical ratio is used as the abscissa in these figures;
i. e., kw/kw where k is the theoretical wave number computed fromo w
Equation (4-9) for coordinates established by the probe locations over the
slope, and kw is similarly computed for coordinates at the entrance too '
the slope region (kw = Aew/Ax). (The depth z used in the computation of
k is equal to the probe depth during the determi1Îation of k and k .)w m 0

o

..,
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Figure 19 and 20 also show better agreement between experiment

and theory for the smaller wave numbers over the lower slope sections.
Farther upslope the data for the higher frequency waves in Figure 19 tend
toward larger values of wave number relative to the theoretical values; by
contrast, the lower frequency waves in Figure 20 generally tend toward

smaller wave number. The effect of input wave amplitude on wave number- ._--
is indicated in Figures 21 and 22, for high and low frequency waves, re-
spectively. The values for the targer amplitude waves in Figure 21 appear

to deviate from theory more significantly than the smaller waves. Signifi-
cant departures from theoretical estimates are also shown for the larger

input waves of low frequency (Figure 22). In this case, however, the

measured wave numbers are smaller than the predicted values at locations
farthest to the right in Figure 22. This behavior corresponds to the pre-
vious observations (Figure 17) that the wave lengths of the lower frequency

waves apparently decrease less than theory predicts at positions well upslope.

,Wave amplitude. The results of the conductivity-probe measurements for

case A, concerning the effects of shoaling on wave amplitude, are sum-

marized in Table B4 (Appendix B). The experimental group numbers cor-

respond to those in Table Bl. Experimental determintions of the period-
ogram amplitudes a2 and a2 for each input wave were made from probem 0
measurements over the slope and over the flt bottom, respectively (for
mòr-e-detail see Chapter 3). The value a2 was determined for each of the

o
four probes so that each ratio a 2 ja 2 represented data taken with a par-m 0
ticular probe. This pr..c;€dure was convenient since it removed the

necessity of introducing calibration constants relating one probe to another.

That is, the measured amplitude ratios could be compared to one another

without applying relative gain factors. This method of normalization also

simplified the detection of measured changes in wave amplitude relative to
the input wave amplitude ao. The comparative theoretical values Pw 2 and

P 2 were computed from Equation (4-12) for coordinates of the probe loca-o
tions over the slope and at the entrance to the slope region, respectively.

..,
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The ratio pw 2/p02 was equally convenient, since its use circumvented a

conversion from density p to the units of a and permitted direct com-. .th th . wt 1 t. 2 / 2 m 'parison Wl e experimen a ra 10 a a.m 0
The results shown in Figures 23 and 24, for the high-frequency and

low-frequency waves, respectively, suggest that the agreement between
theory and experiment is best for the lower values of (a /a)2, i. e., for, m 0
the wave motion on the lower and middle sections of the slope. This is in

agreement with the results for wave number. The solid lines in these fig-
ures were drawn for reference and represent points where measurement
and theory coincide. The deviations of the points from the straight line in

Figure 23 are significant for (p /p )2 ? 20, but no consistent pattern is, w 0
apparent in the variations. The values for lower frequency waves show

earlier departures from theoretical values than do the higher frequency

waves. For example, the measured and theoretical values shown for low-

frequency waves in Figure 24 are significantly different for (p /p )2? 10.w 0
. There is strong indication in the trend of the points that the actual ampli-
tudes are much lower than predicted on the middle and upper sections of

the slope. At these slope sections it was also found that the measured
values of steepness. a k (or E ) are considerably less than those esti-m m m
mated from theory.

Measured amplitude growth is further compared with theoretical
estimates in Figures 25 through 30. In these figures the variation of wave

amplitude is examined as a function of horizontal distance x to the corner
c, ,

at various fixed depths z . The data are again taen from Table B4 (Appen-* c
dix B). In each of these figures the theoretical and experimental ratios of

*
The actual wave amplitude in centimeters at a point along the slope can

easily be found from the graphs. If the correct wave amplitude (in centi-
meters) for the flat botto~ region is multiplied by the square root of the

measured value ((a /a) ), the measured estimate of the actual amplitude

. bt. d m 0lS 0 aine .
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amplitude variations (p jp )2 and (a ja )2, respectively, are plottedw 0 m 0
along the ordinate; the ratio of the horizontal distance between the probe. .
and the corner Xc to the total horizontal projection of the slope Xo is plotted':/

along the abscissa. The depth of the probe measurements is constant for

anyone of the figures, but as shown in Appendix B, Figure B4, it generally
varies for each experimental group. In Figures 25, 26, 27 and 30 the re-
sults pertain to the slope angle of 15 degrees, for which the distinction be-

tween high and low frequency waves appears most applicable. Two effects

of the method used to display the results must be mentioned here:

(1) the deviations between the theoretical and measured estimates
of amplitude are exaggerated in the graphs, since squares are plotted as

the ordinate;

(2) the peaking of the waves is a function of the vertical position z
c

of the probes as well as distance from the corner x. This latter effect is, c
subtle; since the internal waves are of the first mode, the amplitude should

be largest near the center of the water column at any position over the slope
*

if the modal structure remains intact. Consequently, the amplitude is

expected to vary along a horizontal line (constant depth) due to the modal
structure as well as to the amplification during shoaling.

To the right of the peak values (i. e., away from the corner) in
Figures 25 and 26 (high-frequency waves), the variations are essentially

parallel, although the experimental values are consistently higher than the

'predicted. The maximum measured values are slightly higher than pre-
dicted, with an indication that the larger input waves (a = 0.4 cm,, 0
Figure 26) peak sooner than the smaller waves. There is also evidence

*For this case (oy .( c), photographic measurements indicate that the mode
is preserved at least over the lower and middle slope areas.
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that the measured values fall off to lower values than the theoretical values
to the left of the zone of peaking (i. e., toward the corner).

The high-frequency waves over the steeper slope (Figure 28) con-

form closely to the predicted behavior for x Ix ). 0.35, but nearer theco,
corner the amplitudes of these waves grow less than predicted. This is

probably a result of the anomalously large growth of the theoretical solu-

tions near the corner (recall that for 1" -( c Equation (4-6) is singular for

x = z = ,0). The larger input waves (a = 0.4 cm, Figure 28) show a
o

tendency to peak earlier than predicted. The measured value at
x Ix = 0.35 for a = 0.2 cm is suspiciously low.coo '

Figures 27 and 30 illustrate the behavior of wave amplitude during

shoaling of the lower frequency waves for a low slope angle (15 degrees).

The measured values obviously do not achieve the high predicted values

well upslope (x Ix -( Ü. 4 in Figure 27 and x Ix -( 0.5 in Figure 30).co' c 0
The departure from theoretical estimates is most noticeable for the very

iow frequencies (w = 0.047 cps and w = 0.043 cps) in Figure 27. This sug-

gests that the waves increase in amplitude as they propagate upslope until

at some point near the half-distance of the horizontal projection of the slope

the rate of growth decreases. It was indicated earlier that these waves
tend to surge as they approach the corner. Possibly a transformation from
the sinusoidal wave form to a different wave structure (such as a solitary

wave) that is continually losing energy to viscous dissipation along the slope
accounts for the nature of the experimental data for these kinds of waves.

In any event, the amplitude of these lower frequency waves is not as large

as predicted, and there seems to be evidence of a more gradual dissipa-,

tion of these low frequency waves with the formation of runup.
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Critical and Supercritical Cases

The experimental runs for the critical and supercritical cases are
indicated by a dash in column 6, Table B2 (Appendix B). A comparison of the

input wave frequency with the critical frequency for each of these runs shows

that w:: W , a necessary condition for this regime. A brief description of
c

the reflection properties that define this regime was presented in the first
section of this chapter. In particular, for case C (supercritical) two fea-
tures are suggested by the reflection properties: (1) the presence of
back reflected wave energy; (2) concentration of this back-reflected energy
in a zone bounded by the bottom slope and the characteristic that intersects

the corner., Figure 31 further illustrates these features. This figure
shows that wave characteristics which are incident to the slope from above,

i. e., those with a down~ard-pointing vertical component, upon reflection
from the slope will remain below the characteristic (defined by z = -cx)

that intersects the corner. The energy flux associated with these charac..

teristics enters the slope region in a relatively broad band and exits in a

confined, triangular zone (for example, the triangular area °AOB in Figure

, 17). As Figure 31 indicates, there is a smaller influx of energy which,

upon reflection fron: the flat bottom, propagates upslope within the narrow
bottom zone (for example, the path of the characteristic "b" in triangle
AOB). The characteristics associated with this latter energy flux have
upward-pointing vertical components as they enter their slope regions;

upon reflection they preserve the sense of the upward-directed vertical
components. In both cases (Characteristics "a" and "b" in Figure 31) once
the characteristics reflect from the slope the horizontal direction of energy

is away from the corner.

Critical conditions (case B) were dUficult to achieve experimentally
for two reasons: (1) y = c required that the wave-maker frequency be

tuned precisely; (2) it was difficult to determine the Brunt- Vaisala fre-
quency accurately during an experiment. In addition, the experimental
groups which involved the 15 degree slope angle had critical frequencies
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FIG. 31. Reflection of characteristics for case C, 'Y ? c where 'Y = tan Ci,

Zc = IzI, xc= ixl and characteristics are labeled a, b, c. Char-

acteristic c is "critical" i. e., passes directly to the corner at
o in (1) and at F in (2). The increased concentration of charac-
teristics in the triangular zones (hatched areas) is illustrated by

the path of characteristic a~
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that corresponded to long horizontal wave lengths over the flat bottom (on

the order of the tank length). Data for only six runs at the critical fre-
quency are considered reliable. During each of these runs the input wave

frequency was held to within two percent of the calculated critical frequency.

Table B5 (Appendix B) summarizes the experimental results from

the conductivity-probe measurements for this regime (y 2: c). Like the
organization in Table B3, the frequency, period, and probe coordinates

(x , z ) * are given for each experimental run. The experimental runsc c
having the same Nand yare again collected into groups; as before, the

experimental parameters for each experimental group are listed in Table

BL. An asterisk in column 2 of Table B5 again indicates that the experi-
mental run was repeated at least once. The local depth h is shown in

column 6 of Table B5, and the parameter 2 x 2 in column 10 is

x - (z c)
analogous to the parameter in column 7 of Table B3.

The experimental method of determining wave number and wave am-
plitude was discussed in Chåpter 3. These quantities are plotted as functions
of x Ix and z Icx in this section to examine their dependence on (1) hori-c 0 c c
zontal distance from the slope at a fixed depth, and (2) nearness to z = cx. ,c c
(i. e:, distance to the theoretical position of the critical characteristic).
The pert~ent theoretical curves were computed from Equations (4-18) and

(4-20) and are presented in several of the figures for comparison with the
data.

;. -
"",

It must be pointed out here that qualitative considerations of the
linear, inviscid solution for y).c, given by Equation (4-16) suggest a priori

that these solutions might fail to fit the experimental data. It can be shown
that the velocity components derived from Equation (4-16) become anoma-
lously large for large coordinate values (x, z). This behavior was not

*
In this discussion and in Table B5 x = ixl and Zc = lzl for x, z as shownin Figure 15. c
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observed in the experiments. In addition it is shown later that the theory

(in particular, Equation (4-17)) selects Inl = 2 as the lowest nonsingular
inviscid mode permissible over the slope region for each of the experimental
conditions tested. In the particular experimental geometry, it was not ap-

parent that the second mode was present over the slope; it was found most

often that the modal structure was approximately that of the input mode

( I n I = 1). In spite of these qualitative objections, the following discussion
of the experimental results is done quantitatively by comparison with the

theoretical predictions and by consideration of the reflection properties

(Figure 31). It is felt that this method of presentation aids the interpreta-
tion of the results.

Wave number. Figure 32 and 33 illustrate the complicated behavior of the

experimentally determined wave numbers for this case. Data from three

experimental groups and for frequencies w= 0.051 cps and w= 0.066 cps

are represented in these figures. The calculated positions of the critical

characteristic (determined by z = cx ) for two of the experimental groupsc c
are shown along the horizontal axes. The two theoretical curves shown in

each figure were computed for two different values of the mode number (see
qualitative discussion at end of previous section). Equation (4-20) was used
to determine the minimum permissible nonsingular mode number for the
curves labeled n = 2. The mode number n = 1 was preselected for the theo-

... 0",, ~ "

retical curves labeled n = 1. Although this latter choice violated the con-

, dition necessary for finite values of the velocity components and their first
derivatives at z = -cx (Equation (4-20)), it nevertheless forces the theoretical
mode number over the slope to be equal to the input mode of the experim~nts.

It is apparent in the figures that there is no straightforward relation-
ship betwe'en linear theory (n = 2) and the data. There is only qualitative

indication that the curves for n = 1 have the same trend as the experimental
results for x Ix ~ 0.035 in Figure 32 and for x Ix ~ 0.45 in Figure 33.c 0 c 0
It is obvious that the theoretical estimates for n = 1 grow toward very large

values at the critical points (for example, x Ix = 0.26, Figure 33). The
c 0
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experimental values near the calculated critical points are apparently
bounded. The dip in the data in Figure 32 for x x ~ 0.30 is not apparentco,
in Figure 33. Possibly the absence of the dip in the data from experimental

, group 4 (Figure 33) can.be explained by considering nonlinear effects. The
measured value of E (Table B5) for this particular data set is approximatelym ,
0.5 at x Ix = 0.36. This suggests that nonlinear amplitude growh might

c 0
be significant near these positions. By comparison, the measured value of
E for the data in Figure 32 is-only 0.13 for x IX ~O. 2 (Table B5). Itm , c 0
shotild also be noted that there is a significant shift in the peak value to the
right of the calculated critical point in Figure 32. Possible this shift indi-
cates that the singularity is removed by nonlinear or fiscous processes and tha
that the linear inviscid solutions are not valid in this particular physical
situation.

Data from experimental groups 3 and 4 are plotted on log-log scales
in Figures 34 and 35, respectively. Theoretical curves for n = 1 are again
shown in these figures. The qualitatively similar trend between the theo-
retical curve and the data is apparent, particular in Figure 12. Values of

wave number for the larger amplitude input waves (a = 0.4 cm) tend to be
o

higher than those for the smaller waves (a = 0.2 cm) in experimental
o

group 3 (Figure 34).

Figure 36 shows the results of experimental group 3 plotted as a
function of z Icx. It is obvious that the theoretical curve for n = 1 growscc
toward infinite values of k /k at z = cx ; the theoretical curve for n = 2' m 0 c c
(obtained from Equation (4-17)) is finite at this point. The trend in the
data values reverses at about zc/cxc,~ 0.80, and again at zclcxc ~ 1. O.

No simple relationship between the data and the theoretical curves are

apparent from this figure.

Figure 37 summarizes the experimental results of wave number for

case B (y = c). The log-log plot emphasizes the steep rise toward larger

values of wave number for decreasing distance to the slope. It is interesting
that the magnitudes of wave number for the larger input waves (a = 0.4 cm)

o
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in experimental group 3 are larger than the corresponding values of the

smaller input waves for x Ix -( 0.3, but for x Ix ): 0.3 the wave numbersc 0 c 0
of the larger waves are consistently less than those of the smaller wav'es.

In general, the wave number variations with distance to the slope for this

case are similar to the variations shown in Figure 34 for the supercritical

case. No theoretical comparison is shown, since for y = c the minimum

permissible nonsingular inviscid mode over the slope, given by Equation

(4 -17) is infinite.

In summary, the results show a complicated relationship between

wave number and position over the slope. There is evidence in Figures

34 and 35 that the wave number in~reases rapidly as the waves pass over

the lower and middle sections of the slope for the supercriticalcase, but

there does not appear to be a systematic pattern to the data near z = ex .c c
The variations in wave number for the critical case are qualitatively simi-
lar to those for the supercritical case; a large increase in the wave number

for smaller x Ix is apparent. The trends of the theoretical values of wavec 0
number computed for n = 1 are similar to the measured values for z Icx -( 1.c c
It is obvious that the unbounded theoretical values at z = cx for n = 1 arec c
removed when the condition given by Equation (4-17) is satisfied. For both

cases, the measured values of E (Table B5) are greater than 0.1 for the. m
most of the measurements taken closest to the corner. This suggests that
nonlinear effects might be important near these positions.

Wave amplitude. The experimental estimates of wave amplitude were ob-

tained from the periodograms of the conductivity-probe measurements

(Chapter 3). The results are presented as ratios of the square of the wave

amplitude over the slope to the square of the wave amplitude over the flat

bottom for various frequencies of the input waves. Like the earlier presen-
tation for wave number, these results are illustrated graphically with
z Icx and x Ix used as the hÖrizontal axes.c c c 0
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The results for wave amplitude are easier to interpret in terms of
the reflection properties of the slope than were the r~sults for wave number.

Earlier theoretical discussion indicated that near the characteristic defined

by z = cx and in a zone between this characteristic and the bottom slopec c
(Figure 31) there is a possible region of concentrated energy flux. Figure
38 shows that the measured values of wave amplitude are highest near

z Icx = 1. 0 for each frequency tested in this group except w= 0.039 cps.c c
However, it is not conclusively shown in this figure that the amplitudes peak
exactly at z = cx. This figure also shows that the ordinate values for the'c c
various frequencies at equal values of z Icx generally increase with de-

c c
creasing frequency. In the light of Figure 31, back-reflected wave energy m
might contribute smaller amounts to the total energy at locations above the
critical characteristic (i. e., at positions given by z ~ cx ) for frequenciesc c
nearer to criticaL. This in turn might account for the lower measured
levels of (a la)2 for the frequencies nearer to critical in Figure 38.m 0
Figure 39 is a similar plot for data from experimental groups 3 and 4;
two input wave amplitudes are represented in the values from experimental

group 3. Also shown in Figure 39 are theoretical curves for (pwIPo)2 de-

rived from Equations (4-10) and (4-18) by the methods described earlier.
The mode number Inl was determined from the condition in Equation (4-17)

for curve n = 2 in this figure. The theoretical values (a la)2 decreasem 0
toward the slope and undergo a smooth transition through the critical point
z lex = 1. 0, where they then begin to increase toward the slope. The,c c
theoretical Curve with n = 1 has increasing values toward the slope until the
critical point (z = cx ) is approached; a sharp dip in the theoretical valuesc c
at this point followed by a rapid rise suggests that the solutions are not well
behaved at this critical point. The ordinate values for the two input ampli-

tudes of group 3 in Figure 39 agree within 10 percent of one another for

values of z icx ~ 1. 0; in general, the larger input waves have slightlyc c
higher measured amplitudes in this range. It is also apparent that the
larger input waves grow more rapidly as the value z Icx = 1. 0 is approached.c c
Owing to the larger values of € (Table B5) for the waves of larger input

m
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amplitude (a = 0.4 cm), the increased disparity in the measured amplitude
o

values for input waves of 0.4 and 0.2 cm, respectively, at values of

z Icx :; 1. 0 in Figure 39 might be the result of nonlear effects.c c
Figure 40 shows the experimental results and theoretical curves for

w = 0.051 cps (group 3) on a log-log scale; the horizontal axis id distance x
c

to the corner normalized by the total horizontal projectiòn of the slope x .
o

The rapid increase in amplitude upslope for 0.28 -( x Ix -( O. 60 is readily
c 0

apparent in the data; however,. the theoretical values for n = 2 show an op-

posite trend, toward lower values for decreasing distance to the slope. The

measured amplitudes below the indicated position of the critical point remain
relatively high; this suggests amplification of the motion near the bottom.
Nonlinear effects also might be important near the corner (x Ix = O. 19), c 0

The results for the prObe measurements of wave amplitude at critical
frequencies are shown in Figure 41. The increase in amplitude over the

range 0.28 -( x Ix -( O. 60 is similar to the increase shown in Figure 38 forco,
the same range. However, the maximum amplitude measured for these

waves is considerably less than the corresponding value for the supercritical
case (Figure 40). Larger viscous dissipation along the slope in the critical

case might explain the smaller peak amplitude levels.

In summary, the data indicate that the wave amplitudes generally
increase toward the slope; the higher frequency waves (i. e., those closer

to w ) for these cases show rapid growth during shoaling over the middlec .
sections of the slope. Peak levels of amplitude were generally found near

z Icx ~ 1. 0, with lower measured peak values for waves of critical fre-c c
quency. In both cases the motion is relatively large near the slope. In,
general, the conductivity-probe measurements of amplitude agree qualita-

tively with the reflection properties of internal waves from a rigid, sloping
bottom. There is some indication from the measured values of € that

m
nonlinear amplification of the amplitude occurs for small values of x Ix ., c 0



105

10.0

(~:r
8-

EXP group 3

,w=0.051 cps

A 00 em0
5.0 8- 0 0.20

A 0.4

A
n = i 0

0:2

2.0

0.

'.0
" ' 8.

0.5

" ,
l'J

J
í
~

I:

0.1
0.5

Xc "
Xo

1.0

Fig. 40.

. Upslope variation of wave amplitude, y ~ c.



~o r ~: r

106

&.

fA

2.0 0, &.

&. 0
0

1.0--- .._-~ -- -

.- -------~-- --_.- --~.~.- ~ - - -_..~

0.5

, 0.2

0.1

o

EXP group 3
w = 0.073 eps
00 i em

o
8

0.2
0.4

%

ft, &.
'--0 ê

;, .
"",

¡,

'. r

0.5
Xc

Xo

1.0

. Fig. 41.
Upslope variation of wave amplitude, y ~ c.



107

It might be added here that the bounded experimental values at
Zx = cXc suggest that viscous dissipation and nonlinear processes might act

to remove the singularity at the critical characteristic. For example, the
shUt in the measured peak wave number in Figure 32, mentioned earlier in th
this section, and the formation of vortices near the bottom for these cases,

discussed in the next section, suggest that the linear inviscid model is not

properly tested by these experimental results. Nonlinear and viscous effects

in the interior, particularly in the vicinity of the critical characteristic,

shou,ld be examined in future analytical treatments of this problem.

BOUNDARY ACTIVITY

The discussion of the bottom boundary layer and the zone of breaking
follows the procedure of separating the experimental results into two hydro-

dynamic regimes (I y -(_c, and II y :;,c). The distinction between these two

regimes was defined in Figure 14. Qualitative features observed during the
experiments and illustrated by several photographs are presented at the
outset as an introduction to the later discussion of quantitative results. In

~~e~iscuss~t:~_ot- quantiÌ3t!~~ re~ults?_ ~xperimentally determined velocities

in the bottom boundary layer at several positions along the slope are shown
to agree with theoretical values computed from the linear solutions in
Equation (4-24) for case A. On the basis of the good agreement between
~~erim~~~ndtti_e~!Y_~'?-r_the c~?_~_i!!_,??s__t~ste~ in_~_~e_A,_~qu~tion (4-24)

is used in Chapter 5 to develop a model for sediment movement induced by

shoaling internal waves.

Case A: y-(c

Qualitative results. The shadowgraph images and the motion of neutrally

buoyant floats permitted excellent real-time observations of the oscillatory
flow in the boundary layer and breaking zone. One obvious major feature
of this flow was its intensification near the bottom along the slope as com-
pared with the flow along the horizontal bottom. The maximum velocities
generally increased at positions farther upslope, with a sharp growth in the
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velocities near the zone of breaking. The 'oscillatory flow remained laminar

in the boundary layer up to the zone of breaking.

The breaking of waves on the relatively steep slopes (30 and 45
degrees) is characterized by considerable turbulence and vertical motion

below the free surface and by the generation of spatially irregular fine
structure in the density field. This kind of breaking is also observed for

relatively high-frequency waves on the smaller slopes (7 and 15 ,degrees).
In contrast, the lower frequency waves (i. e., those waves with frequencies
closer to w ) break much less violently, and typically form surges that run

c
up the slope for relatively long distances.

MQre detailed observations of the higher frequency waves indicate

that shortly after the first arrival of the waves near the top of the smaller
slopes (a = 7 and 15 degrees), a small vortex forms along the slope be-

neath the crest of the advancing wave form. Figures 42 and 43 illustrate
the onset of this instability beneath the wave crest. In Figure 43 the maxi-
mum amplitude of the inco~ing wave at the entrance to the slope region

was approximately 0.4 cm, whereas the corresponding amplitude in Fig-

ure 42 was O. 2 cm. The time that had elapsed from the start of the wave
maker is shown in ,the guide sheet preceding Figure 42. Subsequent devel-
opment of the instability in Figure 42 is shown in Figures 44a and 44b, and
later stages of the instability in Figure 43 are shown in Figure 45a and 45b.

The lamellar structures in these photographs represent small-scale depar-
tures from the constant vertical index-of-refraction gradient characteristic
of the stratified fluid with no wave motion. A constant index-of-refraction
gradient (or equivalently, constant density gradient) produces a uniform
uninteresting shadow graph image (see center of field in Figure 42). In
spite of the apparently chaotic density structure, the basic wave-form can
still be discerned in the photographs. Qualitatively, the larger amplitude
waves shuw-aîher intensity of, breaing, as evidenced by the contrast be
tween Figure 44b and Figure 45b. Not shown in this series of photographs
is the protrusion of thin horizontal layers back into the interior region
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over the slope. The protrusions lose their intensity (as measured by
photographic contrast) over very short horizontal distances (5 to 10 cm)

and are confined to the upper vertical levels, where the breaking OCcurs.

The protrusions, thin tonges of mixed fluid that are weakly converted back
into the interior, are probably caused by mixing in the zone of breaking.

In contra~t to the higher frequency waves, the waves of lower fre-
quency on a small slope (7 degrees or 15 degrees) show less mixing and

fewer laminae in the zone of breaing. Each wave forms a surge in which
the velocities of neutrally buoyant particles within the surge become approxi-
mately equal to the wave celerity as the wave progresses upslope, somewhat
analogous to solitary surface waves. The surging motion eventually produces

a runup and backwash zone along the bottom very near the corner. The runup

appears as a thin streamer in the shadow graph image and represents a pro-

trusion of fluid of higher density into the near-surface layer. Figures 46a
through 46c illustrate the development of this phenomenon for waves whose

initial amplitude is 0.4 cm, Figures 47a through 47c show waves whose
initial amplitude is 0.2 cm. Vortex instabilities initially form beneath the
wave crests and propagate upslope with the wave form. The quasi-steady
development for the 0.4 cm and 0.2 cm waves is shown in Figures 46c and

47c, respectively. In these figures, the surging motion essentially fills
the water column in the left portion of the photographs. Farther upslope a
vortex forms and eventually dissipates into runup.

Figures 48a throuch 49c show a corresponding development of break-

ing for waves of 10.7 sec period andO. 4 cm initial amplitude over a 30-
degree slope. The mixing becomes very intense after the collapse of the

initial vortex (Figure 48a). It is interesting to note the reversal in the cir-
culation of,the lead vortex as it propagates upslope and collapses. The re-

versal is a consequence of the shear between the surging motion near the

bottom and the opposing flow above the vortex. The following sketch in
Figure 50 illustrates this pattern.
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FIG. 50. Advancing initial vortex at successive locations A, B, and C.
Note observed reversal in circulation at position C.

-

-:

-

B

\l

-

The outflow above the vortex balances the flow of water that is advected
toward the corner along the bottom by the wave motion. '

As indicated by the well developed lamellar structures in Figures

49b and 49c, the steeper slopes appear to produce a high intensity of breaking.

The formation of a surge with associated runup was not observed for the
steeper slopes (30 degrees and 45 degrees) for any wave frequency tested.

Figure 51 presents a summary of the observed positions of breaking

on slopes of 30 degrees. The accuracy of the distance Lb is low, owing to

the difficulty in defining the point of breaking; however, the relative order

of the values of Lb for the waves of different frequencies shown in the figure

is reliable. The general trend indicates that for a given N, the higher fre-

quency waves break first, i. e., in deeper water.

, ~
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FIG. 51. Position of breaking

a = 300 , N = 0.97
~

-1
T, sec

Lb, cm
w, sec

a = O. 2 cm a = 0.4 cm
0 0

0.722 8.7 13.4 14.0

0.668 9.4 12.5 12.9
O. 593 10.6 10.6 11. 1

O. 561 11. 2 9.9 10.5

O. 537 11. 7 9.0 9.,5

O. 515 12.2 8.2 8.6
0.495 12.7 7.7 8.2

.-

Quantitative results. The experimental techniques that were used to mea---~..--_..., ~- ~ -.-.--~- .---- . - - - -
sure the motion in the boundary layer are discussed in Chapter 2. The

results of these measurements are compared with the predictions of the

linear, viscous boundary layer solutions in order to check the validity of
these solutions for certain conditions and provide some empirical estimates

of the motion where the theory does not apply.

Since successive displacements of the dye streaks 'and neutrally buoy-

ant particles were measured at one-secon,d time intervals, the veloCity

values computed from these measurements are essentially one-second time--------"---- -_.- ------- - - - --------.- -- -------------- -~---- --
averages in the Lagrangian sense. Equation (4-24) provides a linear,

Eulerian solution for the velocity field parallel to the bottom in the viscous
boundary layer'; this solution is identical with the Lagrangian one to first
order in E. The Lagrangian velocity lîL can be determined in principle

, from the Eulerian velocity uE:

ÛL (â, tY = ÛE (â, t) + .!t Û (â, t') dt' '\- ua E (4-27)

, -+

where a is a position of the dye streak, say, at time to, t - t is small com-
o

pared to the wave period T., and '\ is the gradient operator. (Phillips, 1966)
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This expression for uL is correct to O(€ 2) if uE is correct to this order.

Let

uE - (1) 2.. (2)= €UE + € uE (4 - 28)
..

where UE (1) is the linear solution for the velocity field. It is easy to show

..
that there are two second order contributions to uL in Equation (4-27):

(1) ~E (2) and (2) (ftt ~Edt') · \J ~E. The first contribution (1) is due to the, 0 ,
rtonlinear terms in the equations of motion; the second (2) is commonly re-

ferred to as the Stokes velocity and can be computed in principal from Equa-

tion (4-21). Hogg and Wunsch (1970) have shown that to order €2 the time

average of û for this problem is zero. This implies that there is no net
L

transport of water particles induced by internal waves near a sloping boun---"
dary. It also implies that since ûE (1) = 0, then

~ (1) _ _( rt ~ (1)dt') .. \J~ (1)E - Jt E Eo
(4-29)

where the bar denotes a time average over. one wave period.

u_A complete analysis of the data was carried out for three wave fre-

,~

quencies in regime I (yo(c). Two of these analyses involved waves on a

30 degree slope (w = O. 105 cps and w = 0.094 cps, group 7, Figure Bl,

Appendix B) and one involved waves on"a 15 degree slope (w = O. 105 cps,

group 2). For the sake of brevity, and without any appreciable loss of de-

tail, only the results from w = O. 105 cps will be discussed at length.

Instances where measurements from the other runs showed significant

features of deviations from this one will be mentioned in the discussion.

The results for regime II (y :: c) are discussed in a later section.
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A time-sequenced series of streak and particle positions from
which velocity information was obtained is shown in rigure 12. The streaks

are numbered according to consecutive, one-second time marks relative to
the initial one. The numbers on the particles correspond to those for the
streaks. The increase in displacement of the streaks nearer to the bottom

agrees qualitatively with .the amplification predicted by Wunsch (1969) for

y -( c (Figure 52).

Figure 53 summarizes some of the relevant parameters that were
estimated from the measurements. The five station marks in the diagram

show the locations of dye pellets. The coordinates for these locations are

given in columns 2 and 3. The definitions of the various Reynolds numbers
and estimates of boundary-layer thickness are given in the legend. The

approsimate maximum error in the measured estimates of the boundary-
layer thickness (ô ) is 10 percent of the listed value.m '

The boundary-layer behavior for steep slopes (30 degrees) is anom-
alous on the lower portion of the slope. The data at station 4 for w = O. 105

cps (Figure 57) and w = 0.094 cps both reveal erratic streak displacement.

The estimates of boundary-layer thickness at this location were slightly

larger or approximately equal to those at station 3. The measured thick-
ness of the boundary layer at corresponding positions on the smaller slope

(15 degrees) generally increased in an upslope direction to the zone of
breaking. The anomalous behavior for steeper slopes was probably associ-
ated with an adjustment in the modal structure as the waves progressed
from the flat-bottom region to one of appreciable slope. The irregularities

in the motion at station 4 are discussed later in this section.

The larger values of ôm as compared with ô2 at stations 1, 2, and

3 represent significant departures of the measured estimates from the
theoretical v,Ùues. In addition, the theoretical value is constant over the

entire slope, whereas the measurements indicate that ô varies slightly
m

with slope positions. Over the flat bottom, ô is slightly larger than the
m

value given by (2v/w)1/2, although this difference was not significant for
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z 1.0 X .

w (z)

ç, = \. 0

Y = 0.5

n =

u (z)

Fig. 52. Theoretical prediction of increase in

ve10ci ty components along the slope. Units

are arbitrary (after Wunsch, 1969).
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z

ho

w = 0.66 Tad/see, T = 9.5 see
N = 0.97 Tad/see, C = 0.93
a = 30 deg 'Y = 0.577

a = 0.2 em
k~ = 0.097 em-l, Ào = 64.7 em

h = 30.0 emo

5

1 2 3 4 5 6 7 8 9 10 11 12

Station x
h

RL
61 62 ôm Os ae -3 iw RB m

No. (em) (em) v10 em em em em em E

1 8.7 5.0 2.4 209.0 41. 2 0.17 0.26 0.35 0.17 1. 78 0.52
2 23.0 13.3 17.2 32.4 21. 7 0.17 0.26 0.47 1. 16 0.70 0.08
3 36.0 20.8 42.0 19.3 13.0 0.17 0.26 0.39 2.17 0.54 0.04
4 51. 0 29.4 83.8 62.2 25.0 0.17 0.26 0.39 1. 74 0.97 0.05
5 100.0 30.0 87.3 4.1 3.6 0.17 0.26 0.22 8.70 0.25 0.01

R = Nh2 Iv = local wedge Reynolds numberL

~---~-Rw-'= a 2 W Iv = local wave Reynolds number

----Ô
1

ô2

= awômlv =

" 1/2
= (2v/w)

= (2vIN)1/2

local boundary layer Reynolds number-'----R '
B

(/( 2 . 2 )1/2a a - sin a (J = wiN

Ôs = Ô1/€

€ = a k sin am m

FIG. 53. Estimated of boundary layer thickness and

Reynolds numbers. y.( c.
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the experiments in which w = O. 105 cps, a := 15 degrees. It appears that

the boundary layer thickness given by linear theory gives the correct

order, mm rather than cm, but the measured values tend to be significantly
higher. However, it must be recalled that the definition of boundary layer
thickness for the purposes of measurement, i. e., the distance between the
bottom and the point of inflection in the velocity profiles, is somewhat
arbitrary, and might account for the discrepancies with the theoretical

values.

It should also be mentioned here that at station 1, the computed

value of E is relatively high (E ~ 0.5); nonlinear effects are probably im-
portant there. It was mentioned earlier that Wunsch (1970) recently showed

theoretically that there can be a mean upwelling velocity independent of wave

motion in a layer whose thickness is ô :, w
Ôw -- (v K )lj4'¡N1j2

.where v and K are the vertical diffusivities of momentum ~nd heat, re-
spectively. In terms of molecular processes, v __ 1Õ2 cm2jsec and

K -- 10-3 cm2jsec. Using the val~e of N given in Figure 53, N -- 1 sec-i,
we can estimate ô . -- 0.06 cm for this particular expeI'ment.

w

The curves in Figures 54 through 58 show velocity versus depth for

all five stations. Each curve represents a one-second time average of the

Lagrangian velocity parallel to the bottom. The consecutive numbers on the
curves indicate the time history Of this velocity over one wave cycle. The

curves were computed only to the vertical level nearest the bottom for
which the streak data was considered reliable. The horizontal velocity

scales are uniform in each of the figures except for the expanded scale of
the flat bottom results (Figure 58) and the condensed scale at station 1; the
vertical scales are the same for all figures.

It is important to note that at each of these stations the observed
motion in and near the boundary layer was essentially parallel to the bottom.



126

'-

0
C\

0 co
E\Q)
o IJ

w
ii.i- -
-( -( ~

C\

0

co
Ó
w
Ó
v
Ó

C\

Q Ól\
Ó 0

0

.\

E
o

,~ ~
ó

It

r- . ,
.

s: ..o ~
'M OJ,
.L "d
ct
.L 0
tI M

C\
Ô
i

~Ô
i

(!
Ci
i

co
Ô
i

Qi
C\
i

~
I

(!
I

co

Q
C\
r

.L II
ct

.8'5
.L
.Lo ..
.0 to

o.
OJ 0..
.L LO

LO
S- r-ct .
OJ 0
s:

II~
.L Z
'Mo ..
o tI
r- A;
OJ 0
:;

LO
4- 0
o r-.
s: 0
o

oM II
.¡
::
~~
H
.L
tI
"M ~ 5
"d 0
r- N r-ct . .0000,
oM

.L II II
H
OJ 0 0
:: ctX

-.
Lt

.
~

'M
rx



r¡

-0
.5

-0
.1

o
0.

1
-0

.4
-0

.3
-0

.2

6, 6.
 t

0.
2

0.
3

t- r- ~

,
 
e
m se
e

0.
4

0.
5

F
i
g
.
 
5
5
.
 
V
e
r
t
i
c
a
l
 
d
i
s
t
r
i
b
u
t
i
o
n
 
o
f
 
v
e
l
o
c
i
t
y
 
n
e
a
r
 
t
h
e
 
b
o
t
t
o
m
 
a
t
 
s
t
a
t
i
o
n
 
2
.

ao
 =

 0
.2

 e
m

, C
U

 =
 0

.1
05

 e
ps

, N
 =

 0
.1

55
 c

ps
, 0

( 
=

 '3
0 

de
g,

x
 
=
 
2
3
.
0
 
e
m
.

c



"7

o

I- N 00

-
0
.
5
 
-
0
.
4

6(
,

em

6t
' - se

c
i

I
I

I
;

0
-0

.3
-0

.2
-0

.1
0.

1
0.

2'
0.

3
.0

.4
 ,

~
0.

5

F
i
g
.
 
5
6
.
 
V
e
r
t
i
c
a
l
 
d
i
s
t
r
i
b
u
t
i
o
n
 
o
f
 
v
e
l
o
c
i
t
y
 
n
e
a
r
 
t
h
e
 
b
o
t
t
o
m
 
a
t
 
s
t
a
t
i
o
n
 
3
.

ao
 =

 0
.2

 e
m

, ú
Ù

 =
 0

.1
05

 e
ps

, N
 =

 0
.1

55
 e

ps
, 0

( 
=

 3
0 

de
g,

x
 
=
 
3
6
.
0
 
e
m
.

e



-1
.0

7J

o
i- N \D

~E
,

.6
 t

C
m

,'- se
 
C

- 
0.

5
o

0.
5

.
1.

0

F
i
g
.
 
5
7
.
 
v
e
r
t
i
c
a
l
 
d
i
s
t
r
i
b
u
t
i
o
n
 
o
f
 
v
e
l
o
c
i
t
y
 
n
e
a
r
 
t
h
e
 
b
o
t
t
o
m
 
a
t
 
s
t
a
t
i
o
n
 
4
.

a 
0 

=
 O

. 2
 c

m
, ú

ù 
=

 O
. 1

05
 c

ps
, N

 =
 0

.1
55

 c
ps

, 0
( 

=
 3

0 
de

g,
x
 
=
 
5
1
.
0
 
e
m
.

c



0.
6

7J 0.
5

-0
.2

-0
.1

o
0.

1

~ w o

.
6
~
 
e
m

-,
 -

.
6
 
t
 
.
 
s
e
e

0.
2

F
i
g
.
 
5
8
.
 
V
e
r
t
i
c
a
l
 
d
i
s
t
r
i
b
u
t
i
o
n
 
o
f
 
v
e
l
o
c
i
t
y
 
n
e
a
r
 
t
h
e
 
b
o
t
t
o
m
 
a
t
 
s
t
a
t
i
o
n
 
5
.

a
o
 
=
 
0
.
2
 
e
m
,
 
=
 
0
.
1
0
5
 
c
p
s
,
 
N
 
=
 
0
.
1
5
5
 
c
p
s
,
 
=
 
3
0
 
d
e
g
,

x 
=

 1
 0

 0
 . 

0 
cm

 .
c

.;;
''-

_.
...

.'_
.~

!r
''~

;;i
'r~

ii~
..,

-.



131

Only very small velocities normal to the bottom were detected from the

motion of the plastic beads, and this vertical motion was usually confined

to regions adjacent to and in the zone of breaking.

A reason for the anomalous behavior of the velocities at station 4

(Figure 57) was hypothesized 'earlier in this section. An alternative ex-

planation is that the abrupt change in bottom geometry acts as a sourc e of
diffracted waves which locally affect the pattern of motion. However,

since the density did not vary linearly with depth at the bottom (for example,
,

FigUre 9), but instead gradually became more homogeneOt~s in a small
layer near the bottom, the dynamics in this transition region are probably

quite complicated. Visual observations of the motion of neutrally buoyant
particles and dye patches that were placed at the transition in bottom geom-

etry during several experiments (for 15 and 30 degrees slop angles) did not
disclose any significant patterns other than those already mentioned.

,
Figure 59 shows a comparison between the theoretical and experi,., .

mental RMS values of the velocities at selected vertical levels shown in

Figures 54 through 58. The experimental RMS value at each level was

computed as:

_ ( )1/2uRMS - uMS

---

where
, 2uMS = ~ (ui )/'
i

, i = 1, 2, ....., T

and T was chosen as the smallest integer greater than the wave period.

For this particular set of data, T =.,10 (wave period ~ 9.5 sec). For
stations on the slope, theoretical RMS values were obtained from the Eulerian

expression for the boundary layer velocity component parallel to the slope

(Equation (4-24)):

uRMS (theory) = (1/2 uE . uE)1/2.
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These RMS values are listed in Figure 59 as first order theoretical estimates

of the RMS Lagrangian velocities.

Qualitatively, we ~ight expect that the measured values are more

accurately represented by the sum of the first order Eulerian values and

the second order values consisting of the Stokes velocity component and the

nonlinear component, particularly farther upslope where E become larger.
,

When the various sources of uncertainty in the measurements of

velocity and e:h'"erimental parameters (Ao' N, w, h, etc.) are considered,

a rather good comparison would require that the theoretical and experimental

values fall within 15 percent of one another at each level:;. Th,e results in

-
Figure 59 show that excluding station 4 there is excellent agreement (with-

in 10 percent) between the measured RMS values and the corresponding

first order, theoretical values. The excellent comparison at station 1 is

particularly remarkable, considering that the estimated value of E is approx-

imatéiy 0.5 fher-e. The-high measuì-'ed values-at station 4 are a consequence

of the anomalous motion that has already been discussed.

,- Thè'results forlhe maximum velocity-IUI max paraÜel to the bottom

at the selected levels (columns 6, 7, 8, Figure 59) also show good agreement

between exp eriment and theory. Theoretical estimates of the maximum

values of this velocity component were' again obtained from Equation (4-24).

The maximum computed Stokes velocity is shown in column 8. The experi-

mental values are generally higher than the theoretical first order values.

The large deviations between experiment and theory at station 4 are again

obvious. The results for the other analyses of this kind show similar, good
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agreement between theory and experiment. The velocity values for station
4 with the 15 degree slope are more in agreement with the theoretical
values (within 25 percent) than are the results in Figure 59 and did not show
anomalously large velocity values for this station.

The asymmetry in the velocity profiles at station 1 (Figure 54)

contrasts with the more symmetrical curves for the other stations.
Station 1 is located well upslope and only a Ú~w centimeters from the zone

of breaking. The skewness toward positive velocities suggests that there
might be a measurable net upslope motion of the water particles over one
wave cycle. Although the maximum velocity is directed downslope (curve,

1, Figure 54), the magnitudes of the upslope component are quite high

(approximately 1 cmj sec) for a considerable fraction of the wave cycle.
The local measured value of E is about 0.5 at this station, which suggests
that nonlinear effects might be important. It is also interesting to note
that ô at this station 'shows a decrease from that at station 2 (Figure 53).m

Experimental estimates of net drift at the outer edge of the boundary
layer were computed at each station by algebraically averaging the mea-
sured velocity values at the estimated level of ô in Figures 54 through 58,, m
respectively. The average is for one wave cycle (sampling interval of one

second) and represents a single estimate of mean streaming at each station.
No statistical significance can be inferred from this method, but the mea-

- sured results in Figure 60 show that the streaming is insignificant at all

slope stations except station 1. Here the net drüt is approximately 1. 3 mmj

sec. This drift is probably induced by mixing in the nearby (3 - 5 cm) zone

of breaing. As discussed earlier, protrusions of thin fluid laminae slowly
advect into the interior over the slope from the zone of breaking. The direc-
tion of the drüt measured at station 1 is toward the breaker, possibly indi-
cating that this flow compensates in part for the mass efflux in the protru-
sions. The observed direction net drüt near the free surface above this

station is also toward the zone of breaking.
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FIG. 60. Measured values of mean streaming at 17 = ôm
stations 1 through 4 on slope.

Station No. x , cm r, cm ii , cmjsecc s

1 8.7 10.05 +0. 13

2 23.0 26.6 -0.07

3 36.2 41. 8 -0.003

4 51.0 58.9 -0.023
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'r

Owing to the poor reliability of the raw streak data very nèar the
,-,

wall (-(0.07 cm), the best experimental estimate of bed shear st~ess, 'T ,:'1 ': 0was obtained by extending the reliable portion:' óí the velocity-depth curves
(.~,'U ~_,.'to the zero point at the bottom. The shear' stress was then computed from

a simple straight-line fit between the zero point and the lowest point on the

velocity curve. This gives a low estimate of the bed shear stress, since

the actual shape of the velocity curves in the boundary layer are more

exponential. The maximum bed shear stress /T jmax measured at each
o

location is listed in column 9 of Figure 59; the time variations in 'T over
o

one wave cycle corresponding to the time variations in the velocities in

Figures 54 through 58 are shown in Figure 61(a - d). The tlteoretical values
of bed shear stress were computed from Equation (4-24):

'T = -¡ ôujô1f , ri = 0
o

where

11 = 0.01
gm

2 .cm - s ec

'-The maximum theoretical value is shown in column 10, Figure 59,
for comparison with the corresponding measured value. Since the theo-
retical estimates were made from the linear' Eulerian expression of velocity

at each station, they correspond to the experimental Lagrangian estimates

only to first order in €. It can be shown that 11 varies by only 4 percent over

the density range for the particular experimental conditions shown in Fig-

ure 53. In spite of the poor comparison of the estimates of boundary layer

thickness given by linear theory and experiment, the theoretical estimates
of maximum bed shear stress at stations 1 - 3 compare reasonably well with

the measured values. This is apparently the consequence of the higher ex-

perimental values of maximum velocity as compared to the first-order
theoretical values for levels near the boundary. Figure 61 also shows the
excellent fit of the theoretical curve computed from first order solutions to
the experimental values at stations 1, 2, and 3.

i
. .r
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Fig. 61 a. Experimental and theoretical values of bed
shear stress TO at station l. The experi-
mental values were obtained for each
second of time t during one wave cycle.



138

Shear stress l dynes/ cm2

3.0

2.5

2.0

1.5

'1.0

0.5-

-0.5

-1.0

- 1.5

-2.0

- 2.5

o

L

r

ø measured

theoretical curve

.:~~..--.:"-

Fig. 61 b. Experimental and theoretical values of bed
shear stress LO at station 2. The experi-
mental values were obtained for each second
of time t during one wave cycle.
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Experimental and theoretical values of bed
shear stress TO at station 3. The experi-
mental values were obtained for each second
of time t during one wave cycle.
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Fig. 61 d. Experimental and theoretical values of bed
shear stress TO at station 4. The experi-
mental values were obtained for each second
of time t durin~ one wave cycle.
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Cases Band C: y = c and y ? c

The description of the boundary-layer motion in this section follows

a format similar to that presented in the discussion of boundary activity for

case A (y -( c). The qualitative remarks deal mainly with the observations

and photographs of shadow graph images, whereas the quantitative results
were derived from the measurements of the motion of dye streaks and
neutrally buoyant particles.

Qualitative During those runs for the critical case (y = c) with moder-
ately steep slopes (30 and 45 degrees), the zone of breaking near the cor-
ner was characterized by intensive mixing as evident in the shadow graph

images, similar to that described for the high-frequency waves on a 30

degree slope (see earlier discussion for y -(c in this chapter). For runs
with a slope of 15 degrees, each wave, for both the critical and supercriti-
cal cases, formed a surge that usually ended with a short runup. This
runup usually occurred at the bottom of the more homogeneous near-surface
layer, if present, and appeared like a gentle, lapping motion with much

smaller upslope penetration than the runup for the subcritical case, which
persisted over a much longer distance. In summary, the intensity of

breaking and runup for y ?: C is decreased as compared with the experi-
mental observations of these processes for the subcritical case.

Figures 62 through 64 illustrate in a very striking way that the in-
ternal wave motion for these cases (y ?: c) is associated with the growth of

an instability along the slope. The shadow graph observations of the insta-
bility illustrated in these figures indicate that a line of regularly spaced
vortices forms near the bottom. These vortices grow and decay over each

half cycle as they oscillate along the slope 'at the frequency of the input

waves. It appeared that on the downslope propagation during the wave

cycle, the vortices would "flatten", indicating that they form only during

the upslope movement of the water particles. This is indicated in Figures

63a and 63b. The circulation of adjacent vortices has the same sense;

I:
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this circulation is indicated diagrammatically below. The axis of each
vortex is oriented approximately normal to the side walls of the ta~,

and the maximum distance observed between the core of adjacent vortices was
was about 2 cm. Unlike the vortices which form beneath the shoaling,
high-frequency waves well ups.1ope and which prece de the violent breaing

(Figure 45), these vortices retain their cyclic growth and decay pattern'
for the duration of the input wave motion. Their regular spacing was much
shorter than the wave lengths of the input waves, particularly at the middle
and lower slope regions.

z
x

.

l1f~. Circulation in Vortices

Shortly after the formation of the line of vortices, thin streamers or
wisps appear near the cusp of each vortex and penetrate horizontally back

into the interior of the fluid (note the thin lighter bands that alternate with
the darker bands in Figures 62 through 64). Qualitatively, it appears that
fluid of slightly different densities from vertical levels adjacent to each
vortex cell is mixed in, the cell and returns to the interior as a thin streamer

at a new equilibrium leveL. The result of this process is alternate layers of
thin, nearly homogenous streamers and thicker, linearly stratified laminae.
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Quantitative (1. Vortices and Layering. The onset of vortex activity for
any particular run normally occurs within 10 to 20 wave periods following

the arrival of the first wave motion at the corner region of the slope. 'The

initial vortex generally appears somewhere along the middle section of the
slope, and the instability spreads gradually toward the corners. The ini-
tiation of vortex activity was observed as a function of input frequency for
experimental groups 4 and 5; the results are shown in Figure 65. These

results indicate that, for this set of experiments, (1) the vortices occur
earliest (in time measured from the start of the wave maker) for w :: w ', c
even though the lower frequency waves have a higher group velocity; (2) ,
there is some w .( w for which the vortices do not appear, and (3) there, c
is a small range of w slightly greater than w (i. e., waves in the sub-

, c
critical range) for which vortices form.

The diameters of the vortices were dUficult to measure accurately
from the shadow graph images because of the constant process of either
growth or decay during each half cycle. From dtat taen from various

photographs, the size of the vortex diameters is largest for w :: wand
c

generally decreases for lower and higher frequencies. Figure 66 shows

the size variation .of maximum vortex diameters measured at midslope
positions during experimental group 4. The corresponding input wave

frequencies are listed in column 1.

The position of the vortices relative to the bottom also varies over
each half cycle of the wave motion. As a vortex grows in diameter it also
appears to move away from the boundary; conversely, as its diameter
diminishes its distance from the bottom decreases. The maximum distance

measured between the center of a vortex and the bottom was approximately

1. 2 cm. *

*
It is worth noting here that the alternate motion toward and away from the
boundary by a diminishing and enlarging vortex cell gives the impression
of a periodic pumping in a direction normal to the bottom.
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-1
T, sec d, cmw, sec

- 0.546 11. 5 0.32
O. 547 11. 7 0.39
0.519 12.1 0.43

0.495 12.7 0.52
0.487 12.9 0.51
0.480 13. 1 0.52

0.468 13.4 0.47

O. 4 58 13.7 0.47

0.430 14.6 0.43

FIG. 66. Maximum size of vortex diameters
as a function of frequency

-1W ,; 0.495 secc ' -1N = 0.99 sec
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Shadow graph images of the thin, horizontal streamers (for example,
Figure 62b) usually intensify with time if ths wave motion continues. Their

initial appearance generally varies with frequency much in the same way as
the onset of the vortices. The streamers are usually sharply outlined as

shadow graph images near the vortices, but within short horizontal distances

from the slope (order of 2 - 4 em) their ima.ges weaken. Although they can
be detected out to distances of 20 cm from the bottom from the shading
variations on the shadowgraph, the contrast between the images of the

streamers and adjacent layers becomes very indistinct at distances greater

than 20 cm from the slope. Their deepest observed penetration of the
interiro was approximately 25, cm, measured horizontally away from the'
slope. This particular measurement was made after one hour of continu-
ous wave motion at the critical frequency for a run during experimental
group 4 (a = 30 degrees). The thickness of the streamers during this

particular run was 2 mm near the boundary, and the vertical distance
separating two streamers was typically 5 mm. Normally the vertical
separation between streamers is approximately equal to the diameter of

the nearest vortex. The shadwograph images of the streamers are most

- --dìstinct for wave frequencies near w .
c

Several conductivity probe traverses through short vertical sections

(3 and 4 cm) were made in order to detect changes in the linear density-
depth profiles that might be associated with the streamers. Figure 67 shows
the measured structure for a typical vertical traverse of a prObe after the
formation of the streamers. Small scale irregularities in the curve (after
the wave motion) are typical of these traverses. The values along the
horizontal axes represent changes in output voltage relative to the null po-

sition that was chosen approximately at the center of the traverse; the

vertical axis is actual tank depth in cm. Changes in equivalent density de-
termines from the calibration curves are also shown along the horizontal

axis. Although sharp changes in density at the edges of the streamer are
apparent from the photographs, some conductivity probe and specific gravity
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measurements suggest that the density is not homogeneous within the

streamer, but has a small, nonzero gradient there. This latter remark is

based on only six measurements within two streamers (not shown in Figure

67), and these were taen near the associated vortex cell close to the slope,, .
where the streamer could easily be identüied from shadow graph observa-
tions. The apparent density inversion at layer "3" in Figure 67 is not
significant.

The net movements of neutrally buoyant particles in the streamers

and in the invervening layers were observed for several runs. The typical
net motion (away from the slope in the streamers and toward the slope in

the intervening layers) is indicated diagrammatically in Figure 68. Aver-,
ages of the net velocity measurements in the streamers and layers are

listed in the table in Figure 68. Each individual determination of net mo-

, tion that went into the computation of this average involved tracking particles

for a minimum of 10 wave periods. The düferences among the various num-

bers are not significant; however, a magnitude of about O. 1 mm/sec in each
zone is reliable.

. ~ Streamer .

//~/// /L
-- rIntervening

/ /~/ / / / / Layer
--

, ,

Average net
--.Case- -'vé16ëities in mm/sec

Intervening
Streamer Layer

Critical 0.14 0.21
( 'Y = c)

Sup er

Critical 0.17 O. 13

'Y
? c

--/ O~/ / (

Fig. 68. Average net velocities in streamers and intervening layers.



IS3

(2) Boundary-layer description. Owing to the complicated near-

bottom motion caused by waves of frequencies at or near critical, it was
difficult to choose a level that accurately described the physical extent of
the boundary layer. The height above the bottom of the inflection point in

the streak curves was selected as an approximate measure of the boundary-

layer thickness. Admittedly, the choice is somewhat arbitrary; however,

the change in curvature in the streaks was generally well defined at this

point during at least the total time of sampling. In any event, this estimate
of ô should be regarded as only approximate. In addition to the values ofm
ô , other estimates of the boundary-layer thickness are presented inm
Figure 6~ for comparison. * " .

Similar results for a representative run of the supercritical cases 1;
are shown in Figure 70. For these measurements, the boundary-layer, ,
motion at each station was very regular, and the dye-streak profiles gen-
erally resembled those described for the subcritical case. There was no
evicence of vortex activity with the associated generation of thin streamers

*
The estimates of ô1 and ~ differ approximately by a factor of 2; this is
obvious from their definitlOns.



154

z

ho

w = 0.495 fad/see, T = 12.7 see
N = 0.97 fad/see, C = 0.593
a = 30 deg 'Y = 0.577
a = 0.2 em
kO = 0.056 em-I, À = 113.0 em
h 0 :: 33.5 emo

5

1 2 3 4 5 6 7 8 9 10 11 12

Station x h
RL

ô1 62
"3

ôm a
e

'dO-3 Rw RB
ni

No. (em) (em) (em) (em) (em) (em) (em) E

1 15.6 9.0 7.86 68.98 21. 14 0.201 0.45 0.10 0.362 1. 18 0.12

2 24.2 14.0 19.03 92.91 26.51 0.201 0.52 0.10 0.391 1. 37 0.09
3 43.3 25.0 60.63 102. 64 29.08 0.201 0.64 0.10 0.408 1. 44 0.05

4 53.7 31. 0 93.2 25.66 14.65 0.201 0.68 0.10 0.411 0.72 0.04

5 110.0 33.5 109.2 7.15 5.27 0.201 0.70 0.10 0.283 0.38 0.02

~ = Nh2 Iv = local wedge Reynolds number

I\ 2 local wave Reynolds number= a w/v =
m

R = am W ómlv = local boundary layer Reynolds number
B

ô1 = (2v /w)1/2

ó2 = hRL -1/3
-,

ô3 = hRL -1/2
= (v /N) 1/2'

€ = a k sin am m

FIG. 69. Estimates of boundary layer thickness

and Reynolds numbers. 'Y = c.
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z

w = 0.405 Tad/see, T = 15.5 see
N = 0.97 Tad/see, C = 0.460
a = 30 deg r = 0.577

h 0 a = 0.2 em

k~ = 0.043 em-I, Ào = 145.7 em

h = 33.5 emo

5

1 2 3 4 5 6 7 8 9 10 11 12.
L
i
I

I

Station x
h

RL
°1 °2 °3

° ae
x10-3 l\ RB m m

No. em em em ,em em em em (
1 12.1 7.0 4.7,5 15.1 11. 4 0.22 0.42 0.10 0.46 0.61 0.06
2 22.5 13.0 16.39 61. 3 22.4 0.22 0.51 0.10 0.45 1. 23 0.07
3 38,1 22.0 46,95 30.7 17.3 0.22 0.61 0.10 0.49 0.87 0.03
4 48.5 28.0 76.05 31. 4 11.8 0.22 0.66 0.10 0.33 0.88 0.02

. 5 100.0 33.5 108.86 i.3 1. 5 0.22 0.70 0.10 0.21 0.18 0.004

R = Nh2 Iv = local wedge Reynolds numberL
2 local wave Reynolds number~ = a wlv =

m

RB = am w 0mlv = local boundary layer Reynolds number

°1
= (2vlw)1/2

ô2 h RL -113
=

°3
= h RL-1/2

= (v IN)1/2

€ = a k sin am m

FIG. 70. Estimates of boundary layer thickness and

Reynolds numbers. y :? c.



156

or breaking along the entire slope. Unlike the subcritical case, with slopes

of 30 degrees, the displacements of dye streaks and neutrally buoyant par-

ticles at station 4 did not show any irregularities or anomalous behavior.
The measurements of the boudary-layer thicknesses at each station are
considered to be as reliable as those given for the subcritical case

(figure 53).

(3) Velocity and Shear Stress. One-second velocity averages were

again computed from the streak displacements; for the critical case these
--va--u'es are shown only-for one vertical level: that described above for the

measurements of õ . This level was chosen since it normally was the
m

vertical position closest to the slope for which the streak curves remained
0" k'e,-,~,'l:

- ~ over the entire wave cycle during sampling. The dye streaks

usually became quite distorted above this level (probably due to the motion

in the wisps and streamers), and generally the streaks were very faint

- adjacent to the slope (probably due to mixing). These velocity measure-
ments for the various stations on the slope are presented in Figure 71;
the experimental conditions at the time these values were determined are

___ listed in the upper right-hand section of Figure 69.

The values of velocity in Figure 71 are plotted along the vertical
axis in cmjsec, and the successive seconds of time during the wave cycle

are shown along the horizontaL. The phase has been adjusted artificially
-'- so at time t = 1 the velocity is nearly zero. The average distance above

the bottom for which these measurements were taken is indicated for each
station. This distance is approximately equal to õ (Figure 69). A sum-

m
mary of the maximum and RMS values of velocity is given in Figure 72 for
each station (including the velocity variations on the flat bottom not shown
in Figure 71).
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The last column of Figure 72 gives rough estimates of the maximum

bed shear stress,

I I .æ maxT 0 max ~ p. ô

where p, = 0.01 gmjcm-sec, that were computed at the level of the inflec-

tion point (7f = ô ) described above. This kind of estimate assumes am
laminar velocity distribution that remains essentially linear with distance
above the bottom over the wave cycle. This assumption is not accurate

,for two reasons: (1) the actual profiles of velocity are probably not linear,

and (2) the observed dissipation of the dye streaks below ô indicates pos-
m

sible turbulence in this region. The estimates of IT I are intended
o max

only as approximate lower bounds on the local maximum bed shear stress;

the actual values are probably larger due to a nonlinear velocity distribu-
tion with superimposed turbulent fluctuations near the bed.

Fig. 72. Summary of velocity and bed shear stress
values for critical case (y ~ c) measurements.

r- 0 Imax
Station lu1nax UR~S dynesjcm2 cm

(see Fig. 11) cm sec cm sec (X10-2) ôm

1 0.65 0.38 --_1. 80 0.36

2 0.68 0.44 1. 74 0.39 ,

I:
3 0.72, 0.45 1. 76 0.41

4 0.35 0.25 0.85 0.41

5 O. 18 0.13 0.64 0.28

The velocity measurements show that the magnitude of the maximum

oscillatory motion at the selected level of measurement is nearly uniform at
the middle and upper slope stations. The value of I u I max on the lower slope

(station 4) is smaller than that farther upslope (stations 2, 3, and 4) by about



159

a factor of 2. The increase in maximum velocity between the flat bottom

and station 1 is approximately a factor of 4. This is considerably lower
than that found between similar locations for the subcritical-case measure-
ments shown in Figure 59. The measured bed shear stress (as defined
above) at station 1 is greater by only a factor of 3 than that for the flat
bottom. A striking feature in the results is the smooth sinusoidal appear-
ance of the velocityltime curves in Figure 71. The apparant lack of irreg-
ularities in these curves suggests that in spite of the vortex-streamer
production, the basic harmonic motion of the input waves is still quite
recognizable.

'The Lagrangian velocity measurements for the supercritical case

are represented by the results in Figures 73a and 73b. These velocity-

depth profiles are analogous to those shown in Figures 54 through 58 for

'Y -(c. Only the results at tow stations (1 and 4) are shown here to illustrate
the regularity of the motion. The absence of the vortices and thin streamers
for this frequency (w -( w ) was also accompanied by a return to an apparent

c
periodic motion of the dye streaks and particles near the b,ottom. No wave

breaking was observed near the corner. The maximum and RMS velocity

values that were taen from selected levels in the velocity-depth curves at

each station are listed in Figure 74. The maximum value of bed shear

stress is also shown in the last column of this figure.

The velocity curves at all stations are quite symmetrical and do not
indicate any measureable net motion; the measured net displacement of
neutrally buoyant particles over several wave periods corroborate this

finding. It is also evident that \ u I at the selected levels increases
max

only slightly from station 4 to station 2, and then decreases at station 1,
which is farthest upslope. This behavior contrasts sharply with the large

increase in LU I max at station 1 for the high-frequency waves (y -(c, case A).

The estimated bed shear stress, at the slope locations increases by a factor

of 4 or 5 from that over the flat bottom. In this case, ô in Equation (4-7a)

was chosen as the smallest lf for which the dye streak data were considered
to be reliable (see first value of Ti for each station in Figure 74).
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FIG. 74. Velocity and bed shear stress at selected levels

Station ;r lulmax JuIRMS
No. cm cm/sec cm/sec

1 0.11 0.18 0.08
0.26 0.26 0.14
0.38 0.29 0.17
0.45 0.28 0.17

2 0.16 0.32 '0.22
0.30 0.44 0.30
0.45 0.48 0.33

-"-.... ~ -- - -- ------ -~ .-. _.. ,-0.66 - 0.50 0.33
, ' 3 -- 0.13 0.20 0.13

0.24 0.30 0.20
0.38 0.35 0.24
0.53 0.36 0.24

4 0.13 0.25 0.17
0.24 0.35 0.23
0.37 0.38 0.25
0.51 0.35 0.23--_._--- -----~----._~._------

5 0.12 0.05 0.03
.0.21 0.07 0.04
0.32 0.11 0.06
0.46 0.11 .0.07

._----..-....,' ~--- --. ----~..

\7" 01 max

(x 102) 2
dynes/cm

1. 64

2.00

1. 54

1. 92

0.42
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DISCUSSION

The experimental results can be summarized briefly. The measure-
ments of the wave motion in the subcritical range y -(c, indicate that the

linear theoretical solutions (Wunsch, 1969) accurately represent the data
for the higher frequency waves in the interior and in the boundary layer
over the slope for € les.s than approximately O. 5. The data for the lower

frequency waves in the subcritical range do not agree with these solutions
as well as the data for the higher frequency waves. For both of these wave
types, no significant reflections were measured; the wave energy dissipates
primarily in a narrow upslope zone. The higher frequency waves break

turbulently in this zone, where mixing generates laminae òf various thick-
nesses that protrude back into the interior. By contrast, the lower fre-

quency waves form surges that dissipate in runup near the corner. Large

intensification in the velocities parallel to the slope were measured for all
waves in this range.

The critical case, y ~ c, is characterized by less violent breaking

near the corner. Regularly spaced line vortices form along the slope dur-

ing the upslope motion of the water particles. The mixing in these vortices

generates thin streamers of fluid that penetrate horizontally back into the

interior over most of the depth. Intesüication of the near-bottom oscillatory

velocities was also evident; however, the flow pattern in the vortices com-

plicated the kinematics near the bottom.

In the supercritical case, y? c, no breaking was seen near the

corner. The vortices and streamers persisted until the wave frequency

reached low values, below which the vortex production subsided. The

motion in the boundary layer was very regular in the absence of the insta-
bilities. ,In the fluid interior the measurements show that the wave motion
intensifies near the critical characteristics, whose pos ition is given by

z = -cx.
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5. SEDIMENT MOVEMENT BY INTERNAL WAVES

GENERAL DISCUSSION

This chapter attempts to assess the role of shoaling internal gravity

waves in the initiation of bottom-sediment movement in the ocean, in the
light of the theoretical and experimental results discussed in the previous
chapters. Although the concept of internal waves as an effective geological

agent in-the ocean is not new, very few published studies have dealt speci-
fically with the erosion, transportation, or deposition of sediments on sub-
marine slopes. Chapter 1 has provided some historical background on this

subject. Several explanations for the apparent lack of attention are possible:
,

(1) our knowledge of the mechanics of sediment movement beneath the more
familiar oceanic surface waves is still incomplete; (2) the wide spatial
separation of available data on bottom sediment types on the continental

margins hampers understanding of local sedimentary processes; (3) reli-
able measurements of oceanic internai,waves, particularly those taken in
conjunction w ith a-seàiment~sa-m13-l-ing-prÐ-g-ra-m,a-re-f-ew;-~4-)-unH-l-ver----- ,

recently, theoretical and experimental studies of internal waves passing
*

over a bottom with variable depth were virtually nonexistent. In spite of

these problems, there have been inferences to the potential importance of

this process (Lafond, 1962; Hulsemann, 1968). There exists a body of
internal-wave measurements (see Chapter 1) which indicate that internal

waves propagate shoreward normal to the bottom contours. (Wunsch, 1969,

has also shown theoretically.that these waves can refract, in the sense that
their crests tend to align parallel to the bottom contours.) These measure-
ments, together with the results of the previous chapters, promote the fol-

lowing di~cussion about the interaction of these waves with bottom sediment.

i

. .r

*
Defant (1961) gives two illustrations of the experimental work of Zeilon

(done in 1934) in which interfacial waves incident onto a model shelf-slope
configuration were studied.
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The first section in the following discussion presents various
examples of internal-wave measurements in the ocean and discusses quali-
tatively some features of sediment distribution on the continental margins,
particularly off the northeastern United States. The purpose of this section
is to provide some background material on ocean conditions relevant to the
later discussion and to demonstrate the wide range of values of the various

hydrodynamic and sediment properties. The second section develops a
criterion that describes the initiation of bottom-sediment motion. This
criterion is basically an extension of the analysis developed by Eagleson,

et al (1958) for incipient motion of discrete bottom-sediment particles in-

duced by s.urface waves. The analysis for shoaling internal waves over a
constant bottom slope is then specialized for the case of small slopes

(') .( .(c), which is shown to be particularly appropriate for high-frequency
internal waves in the ocean. Another criterion (the Shields curve, with a
later extension by Vanoni, 1964), which represents the more traditional
approach to the problem of incipient motion of bottom sediment and is based
primarily on dimensional analysis and empirical results, is also discussed.
This latter criterion is shown to be approximately equivalent to the first.

The analysis is then applied to specific oceanic measurements, and
the results are discussed in a final section, in light of the various limita-
tions. Qualitative remarks concerning the effect on sediment movement by

breaking internal waves and critical slope conditions (') ~ c) are also given
in the last section. Throughout the subsequent discussion, consideration of

the interaction between internal waves and sediment particles is only an
initial attempt to evaluate the possibilities of incipient motion induced by

this interaction; the actual importance, or even existence, of this process
under real conditions must await future field studies.

Oceanic Conditions

Chapter 1 provides several references to actual measurements of
internal wave motion in the ocean, including studies of the directional
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properties of these waves (for example, Summers and Emery, 1963). In
most cases the measurements were made either by recording fluctuations

of temperature or horizontal velocity at fixed positions from a maored buoy
or anchored ship or by sampling the vertical distribution of temperature
with devices like the bathythermograph. Since the frequency content of the
internal wave field.is not known a priori, a common means of distinguishing
the contributions to the measured changes by the various frequency compo-

*nents is the energy spectrum. Figure 75 illustrates kinetic energy spectra
at several levels computed from horizontal velocity data taken at site "D"

(location shown in Figure 76) and described by Fofonoff (1969). The large
values of spectral energy density at the inertial and tidal frequencies are
typical of this location. Frequencies and amplitudes of vertical tempera-
ture fluctuations have been measured by others (Chapter 1). Figure 77
demonstrates the wide range of amplitudes and frequencies represented in

previous measurements of internal waves in the ocean. The measurements
by Gaul (1961) and Ufford (1947) taken over the outer continental shelf and

continental slope suggest that wave amplitudes of 1 meter to 5 meters are

, not unreasonable for the higher frequency internal waves.

* .
Time series of measurements of vertical velocity or temperature fluctua-

tions can be used to compute frequency spectra of potential energy. Mea-
surements of horizontal velocities like those taken at side "D" (location
given in the following text) are the basis for kinetic energy spectra.
Fofonoff (1969) discussed the spectral ratio of potential energy to kinetic
energy in terms of a linear internal wave model and found that this ratio is
approximately unity for low frequencies (near inertial frequency), but ap-
proaChes infinity for w -+ N. He noted that this latter behavior is probably
caused by the exclusion of the advective terms in the linear modeL. Voor-
his (1968) measured vertical internal motions near site "D" with neutrally
buoyant floats. After comparing the frequency spectra of potential energy
and vertical kinetic energy (obtained from the measurements) with the spec-
tra of horizontal kinetic energy computed from the site "D" records,
Voorhis found that there is an approximate equipartition of potential and
kinetic energies for frequencies between inertial and Brunt- Vaisala. He
interpreted this .equipartitioning to indicate the predominance of internal
wave motion in the measurements.

"""

I;

/
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480 0.5

SITE 0
'882 7m oct 6 -oov23,19G5
2121 50m oct 8 -dec 7,1966
2203 l 06 m feb 26-opr l1 ,1967
2204 511 m feb26-oprll,l967
2205 1013 m feb?6-oprll ,1967
2125 '950 m oct 8 -nay 18,~9E6

o.Ot' O.t 1.0

Fig. 75. Frequency spectra of horizontal kinetic energy
densi ty computed from current meter records at
si te "D" (after Fofonoff, 1969).
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FIGURE 77

INTERNAL WAVE MEASUREMENTS ON CONTINENTAL MARGINS

Source Water Depth Wave Height Wave Period Celerity*
(meters) (meters) (knots)

i. Lafond 20 7 (max.') 7 min. to 0.11-0.6
(1963) 12 hr.

2. Boston 20, 33 8 12 hr.

(1964)

3. Gaul 62 1 - 3 10 min. 0.5 - 1. 5

(1961)

4. Ufford 40, 100 1 - 30 9 min. - 0.08-0.68
(1947) 2 hr.

5. Emery 1350 130 - 200 12 hr. (standing)
(1956)

6. Lee 20 3 - 7 5 - 15 m in.

(1961)

7. Summers and 10 - 1500 30 12 hr. 1 (shallow)
Emery 7 (deep)

(1963)

*In all cases, the dominant direction of propagation was shoreward.

. '
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In order to describe internal wave motions in the ocean, an estimaL
of the vertical distribution of Brunt- Vaisala frequency is needed. The ave;
age vertical distribution of Brunt- Vaisala frequency for locations seaward
of the continental slope (near site "D", for example) is typically character~

__,i~ed by relatively large values of N in the seasonal thermocline, if presen:

and in the deeper main thermocline. Figure 78 shows measured values of
Brunt- Vaisala frequency N versus depth for stations near site" D". the hvd," "
graphic data were provided by Volkmann (personal communication). An
idealized distribution of Brunt- Vaisala frequency with depth is also shown L

, this f~ure. The idealized case cons)ts of three distinct vertical layers; in
. each layer the density gradient is assumed to be constant (i. e., N ë: constant'

- This hypothetical vertical distribution of N is later used with the idealized

topography also shown in Figure 78 as a basis for various models of sedi-.

. ment movement induced by internal waves.

The generalized topographic cross-section in Figure 78 is not con-

strued to be representative of any particular area, but is taken as an

idealized case in which the slopes are linear and the boundaries between
the three provinces (shelf, slope and rise) are well defined. Each idealized

spatial province in this figure is similar to the experimental conditions
described in previous chapters in the sense that Nand yare constant in
each.

The actual bottom topography of the various provinces comprising
the continental margins of the oceans not only varies markedly with geo-

graphic position but also can be quite complicated locally. Featureless

and even bottom slopes are probably rare. In his summary of the continen(
shelves and slopes of the world, Shepard (1963) remarks that it is exception
to find a s~elf that has a constant slope out to the shelf edge; constancy of
slope usually implies widely spaced sample points. The values for bottom
slopes shown in Figure 78 are r.ecommended averages taen from Shepard

(1963) and Heezen, et al (1959). More detailed descriptions of the physiûg-

raphy, structure, and sedimentology of the continental margin off the east
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coast of the United States is presented by Uchupi (1963, 1968), Emery (1966)

Pratt (1968), Schlee (unpublished manuscript), and Emery, e-t a1 (1969).

At this point it is instructive to compare average values of the
oceanic slopes y with hypothetical estimates of the slopes of the internal

wave characteristics c in order to determine which case (y -(c, y ~ c, or

y )-c) in Figure 1, if any~ is predominant. Figure 79 summarizes the
relative values of c and y for typical values of Brunt- Vaisala frequency N,

wave frequency w, and a constant value of Coriolis frequency (f = 0.042 cph).
The results show that the continental shelves are approximately critical

(i. e., y ~ c) for internal wave frequencies near inertial for each of the values
of N shown; for frequencies greater than the frequency of the semi-diurnal
tide wT' the shelf is subcriticaL.

The assumption that the average gradient of the continental shelf is

small compared to the slope of characteristics c for normally incident
internal waves (i. e., y -( -(c) appears to be reasonable for high-frequency
internal waves. For example, if w)-O.l cph and N:; 1. 0 cph, or if w:?O. 5

cph and N = 6.0 cph, then y -( -(c is approximately valid according to

Figure 79. The average gradient of the continental slope might be critical
for a relatively wide range of internal wave frequencies depending on the
local values of Nand f. For example, in Figure 79 for N in the range
considered (0. 5 cph -( N -( 6.0 cph), the range of critical frequencies is

approximately 0.045 cph -( w -(0.03 cph; this range includes the semi- --------

diurnal tide. The average gradient of the continental rise is approximately

critical for frequencies between ineI-tial and tidal (semi-diurnal) for
0.5 cph -( N -( 3.0 cph.

It is tempting to speculate about the consequences of y :; C for
oceanic conditions; this is done later and only touched upon here. The ex-

perimental results show that for internal wave frequencies equal to or
slightly less than critical, vortex instabilities form along the slope. If
this OCcurs along submarine slopes, the mixing in these vortices, with
consequent formation of thin streamers that might advect fluid horizontally
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FIG. 79. Characteristic slope c (ordinate) computed for various
frequencies ùJ and selected Brunt Vaisala frequencies iV
Average oceanic slopes Yare also shm..n.
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back into the interior, might provide a means of stirring the fluid near the
bottom and moving the very fine suspended matter seaward. This agitation

might inhibit or prevent deposition of fine suspended matter, and thus main-

tain a relatively turbid and well-mixed fluid layer near the bottom. How-

ever, it is dangerous to extrapolate the laboratory observations to unobserved

natural phenomena.

The intention of the above discussion of average gradients of the

oceanic slopes was to present the gross features of these slopes in relation
to an idealized hydrodynamic structure (Figure 79); local bottom features
such as animal markings, sediment ripples, depressions, and rock outcrops

were intentionally left out of consideration. It is realized that these additional
features might locally affect the internal wave motion by causing complicated
reflection patterns of the internal wave characteristics (Longuet-Higgins,
1969) and by influencing the flow in the boundary layer.

The actual scales of bottom roughness on oceanic slopes are quite
variable. Spatial variations of these scales have been illustrated by several,

excellent photographic and echo-sounding studies of submarine topography.

A series of camera stations spaced two miles apart on a line extending south

of Martha's Vineyard and lying approximately normal to the bottom contours
was described by Northrup (1951). Sediment samples were taken at most of
the camera stations. Northrup noted that there was good evidence for the

action of bottom currents on the outer shelf. Others (for example, Uchupi,

1963) have described topographic features such as sand waves with heights

of 5 to 25 meters on the continental shelf. Owen and Emery (1967) cited

photographic evidence for intensive erosion of the continental slope south of
of Martha's Vineyard by strong bottom currents. They found several un-

usual features in their photographs including small masses of sediment that
protruded a centimeter or so above the general level of the bottom; in this

instance they described the overall appearance as "sand-blasted". Bowin,
et al (1967) made an extensive photographic and sediment survey of the

western and southern slopes of Plantagenet Ba~ (near Bermuda) in water



i 75

depths of 60 meters to 2000 meters. The height scales of the various sand

ripples that are clearly shown in some of their stereo-photographs appear
to be on the order of 10 cm. (The ripples were observed at various depths,
but especially between 950 and 1200 meters.)

The effects these local variations in bottom roughness actually have
on the internal wave motion have not been determined. In fact, what role

internal waves might have in forming or maintaining features such as ripples

or sand waves is uncertain, and must await field studies of this problem.

The analysis and discussion in the subsequent sections deals only with the

simpler problem of a linearly sloping bottom, mainly for reasons of analy-
tical tractability. It is probably true that the wide variations in the hydro-

dynamic and topographic features of the ocean include this case; its consider-

, ation might provide some insight into more complex situations.

A general discussion of the distribution of sediments on the various
continental shelves and slopes is given by Shepard (1963). For the purposes
of this discussion, only a brief summary of the sediment types in the area
shown in Figure 76 will be given. Uchupi (1963) and Schlee (unpublished

manuscript) presented detailed descriptions of the bottom sediments in

this region. In his report Schlee noted that although the sediments on the

shelf are dominantly quartzose sands that are moderately sorted, many of

the sediment samples from the continental shelf (about 20 percent) showed,-_. - ------------ ---
sizable silt-clay fractions. Schlee also noted that there is some evidence

for a seaward reversal in the median sand sizes (i. e., fine to coarse in a
seaward direction) at limited sections of the shelf break southeast of Cape
Cod. This seaward reversal has been found by others.

Several studies have indicated that the sediments on the outer shelf

shown in Figure 76 are predominantly Tertiary, and that modern sediments
are either lacking or the result of reworking of the older material (Donahue,

et al 1966). The dynamics of the by-passing of the shelf by much of the silt

and clay of modern sediments, particularly on that part of the shelf below

surface wave base, are not well known.' Emery (1966) states that waves
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and currents on the continental shelf produce enough motion to cause much
of the silt and clay of modern sediments to travel across the outer shelf

and come to rest in deeper waters. It is suggested later in this chapter
that near-bottom velocities induced by internal waves might be partly re-
sponsible for the sediment transport in this region.

Pratt (1968) described the continental slope off the eastern coast of the

United States as a complex feature whose surface is generally more irregular on
the upper parts. In the area under consideration the median diameter ofthe sur-

face sediments is in the silt range; quartzose sands are locally predominant on the

upper slope (SChlee, unpublished manuscript). The continental rise has been de-
. -- -- ~. . - .

scribed as a depositional apron sloping seaward from depths of about 2000 m to

about 5000m ata gradient of between 1:100 and 1:700 (Heezen, et al1959). The

surface is covered with fine well-sorted sands and coarse silts interbedded with

-clays. Emery (1966) suggests that these sediments were deposited by turbidity

currents; however, Heezen, et al (1966) maintain that ocean bottom currents

flow ing parallel to the contours are responsible for most, if not all, continental

rise sedimentation.
Actual sediment data that are later compared with the analytical

results were obtained from the work of Hollister (personal communication),"" --- .._-- -- ----------
Stetson (1939), Pratt (1968), and Emery and Ross (1968). The geographic

locations of the sampling sites are shown in Figure 76. These results are

______~a_r_ticularly_l.s~fu1__,sjnce the sample locations are on lines extending off-

shore near site "D". The hydrodynamic data at and near site "D" provide

convenient inputs to the models considered in a later section in which

incipient-motion criteria are discussed for the various sediment data.

Before proceeding to the analysis of sediment movement by internal

waves, some consideration of the boundary layer along oceanic slopes would

be worthwhile. Studies of sediment movement in rivers and beneath surface

waves have indicated the importance of the flow characteristics (laminar or
turbulent) in this layer in determining the motion of bottom sediment. Linear

solutions due to Wunsch (1969) for the boundary layer beneath internal waves

on a sloping bottom were discussed in Chapter 4. Wunsch (1970) also
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considered theOretically oceanic boundary mixing for quasi-steady conditions

in a stratified fluid adjacent to a sloping boundary, and showed that a mean

vertical velocity is induced at the sloping boundary to satisfy the no-flux

condition. He found that the effect is confined to a boundary layer of thick-

ness

õ = (v K)1/4/N1/2

where

v is the eddy momentum coefficient

K is the eddy heat coefficient
N is the Brunt- Vaisala frequency, as before.

He also pointed out that the various estimates of the mixing coefficients

v, K in the ocean are ,unreliable, and showed that for v , K.- 1 cm2/sec,

-3 -1and N = 2 X 10 sec , then õ .- 20 cm.

Attempts to define v for various oceanic processes are abundant

(Defant, 1961); however, near a sediment-strewn bottom that is disturbed
by periodic and quasi-steady currents, such a definition is elusive. Based
on measurements of suspended matter near the bottom of the continental

slope east of Chesapeake Bay (Ewing and Thorndike, 1965), Ichiye (1966)

computed an eddy diffusivity from a linearized version of the Fickian dif-
, fusion equation. He arrived at a figure of 0.12 cm2/sec for the eddy

viscosity. Others have shown photographically that the bottom along the

submarine slopes can be quite turbid; high concentrations of suspended mat-
ter in this near-bottom zone might increase both the viscosity and the den-
sity of the fluid. By contrast, many photographs show remarkable clarity
and suggest low concentrations of suspended material near the bottom. It

therefore ,appears that the local conditions along oceanic boundaries are

sufficiently variable to preclude a single, all-inclusive value of v. The
above discussion suggests that many processes are operative along the

oceanic slopes (currents, animal stirrings, etc.); internal waves are only
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one possible kind. The actual viscosity near the bottom must be the result
of the composite effects of the processes.

INCIPIENT MOTION CRITERIA

The various approaches to the formulation of analytical criteria
that adequately describe the initiation of motion of bottom sediment due to

water waves are limited owing to the complexity of the process. Several

aut~ors (Inman, 1963; Raudkivi, 1967; Abou-Seida, 1965) have summarized

these approaches and discussed some of the limitations of each method.

Prior to the development of an analytical model, it might be helpful
to present a dimensional analysis of the problem of initiation of sediment

motion induced by internal waves, in order to show the large number of

independent variables and dimensionless groupings of these variables that

are possible. The specific problem is to relate functionally the incipient
*

diameter of the movable sediment particles to the pertinent hydrodynamic,

geometric, and sediment variables. It is assumed that internal gravity
waves of~_g;t~en mode number in a continuously stratified fluid propagate
over a bottom slope that has a sedimentary bed. The density stratification

. is approximately linear and stable, and the bottom slope is constant. The

bed is assumed to consist of noncohesive particles with mean diameter D ;m
the roughness is arbitrarily described by a length scale . Figure 80
shows the idealized geometry and particle relationships; this figure is '
similar to that given by Eagleson and Dean (1959).

*Incipient diameter is the largest size within a local size-frequency distri-
bution of particles that can be placed into motion by the action of the hydro-

dynamic and gravitational forces. The condition of incipient motion induced
by surface waves on beaches has been described as follows. At some point
on the offshore slope, the instantaneous hydrodynamic forces may become
sufficiently large to cause static instability of bed-sediment particles of a
given size. The diameter of this size is referred to as the incipient diam-
eter (Johnson and Eagleson, 1966).
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Eleven independent variables are selected a priori as being important

in determining the incipient diameter D. for this problem. The functional re-, 1
lationship can then be expressed as

Di = f(a, w, N, n, Pf"v, h, y,Dm,ps' K) (5~ 1)

(The symbols are defined in the front section of this paper.) By dimensional
analysis the functional relationship can be expressed equivalently in terms of
eight independent dimensionless groups:

( , , 1/2D./D = f alh, wiN, n, 'Y Ie, awn Iv , awl( (s - 1) gD J ,1 m m m, (1) (2) (3) (4) (5), (6)
(5- 2)1 1/2)

Ñ ((s - l)g/Dml , DmlK '

(7) (8)
where s = ss/sr

The first four expressions on the right in Equation (5-2) relate to the
*

local wave field ; the remaining groups relate either to the wave-sediment
interaction or to the sediment properties alone. Dimensionless groups (5)

through (8) resemble those developed by Carstens, et al (1969) in his analy-

sis of incipient motion due to surface waves. The large number of dimension-

less groups indicates the complexity of the process and the potential difficulties

in developing accurate dynamic models of this process. Several other vari- '

ables have purposefully been omitted; these include measures of sorting and
packing. These factors would increase the complexity of the process.

If the problem is simplified to consideration of the balance of forces
acting on a single, protruding bed pai.ticle such as shown in Figure 80, an

*
alh is proportional to the local Stokes parameter E, since k ~ cn7T /k and

€ = ak (Chapter 4).
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expression can be derived for the incipient diameter in terms of the local,
wave-induced velocity field in the viscous boundary layer, certain resistance

coefficients, bottom slope, and sediment properties. Furthermore it is
postulated that incipient conditions hold when the sum of all hydrodynamic

and gravitational moments acting on the particle at any instant is equal to
zero. Such a condition can be represented (similar to Eagleson and Dean,

1959) by

¿ M = 0 = (F F sin ß sin cp f: F F cos ß (1 + cos cp) (5-3)

f:FVM(l+coscp) f: Fpcoscp - FGsin(~Ta))~

Brief definitions of each force and its assumed point of application
for this model are given in Figure 80. The points of application follow from

the discussion in Ippen and Eagleson (1955) and Eagleson and Dean (~959).

Ippen and Eagleson (1955) give a more detailed discussion of the various
forces and their representation. The fluid resistance can be rewritten in

terms of components normal to and parallel to the bed; these components
are commonly referred to as lift and drag, respectively (Schlichting, 1955):

FL = F F sin ß = CL Pf 7TD2/8 u/

2 2FD = FF cos ß = CDPf 7TD /8 uf

To obtain an expression for the incipient diameter from Equation

(5-3), the following assumptions are made.

(1) The magnitude of the acceleration is small compared to the
magnitude of the effective velocity (1~01' I~fl -( -( I uf I). If the advective

accelerations are neglected (this is a linearized model), then the instanta-
neous accelerations are approximately equal to w times the instantaneous

~

velocity. Their neglect is reasonable for internal waves in the ocean (say

-3 -1w ~ 10 s ec ) .



182

(2) The lift coefficient is approximately equal to the drag coefficient.

The actual relationship used in this model (eL ~ 0.85 CD) was obtained from

Chepil (1958). It is recognized that this relationship was found for particles
in a turbulent boundary ~ayer; its applicability to laminar conditions has not

been verified.

Applying assumptions (1) and (2) above and the lift and drag expres-

sions for the fluid resistance in Equation (5-3) and solving for D, the incipi-

ent ~iameter is expressible as '

2
3 uf CDDi = 4" g \ r I (5-4)

where

r =
:l (1 + cos cb) + 0.85 sin cP

(ss/sf - 1) sin (cP :¡a)
-'

The sign convention necessitates the use of absolute value for r; if uf is
directed upslope the choice of the bottom signs would give a negative value

of r. The value of D. represents the largest diameter that can be moved
1

for particular sediment and internal-wave conditions.

The quantity r is dependent oncP, ss/sf' anda. Since emphasis is
placed here on noncohesive particles in sea water, the choice of s = 2.65s

(quartz) and Sf ~ 1. 027 appears reasonable. The density variation in tl!e
water column over the continental margins off the northeastern United

States is .( 1 percent. The angle of repose cP for both well-rounded and

very angular grains of sizes :; 0.3 mm was shown graphically by Albertson,

et al (1963). There is strong evidence from the nature of the curves for

rounded and angular grains of small diameters (.( 0.3 mm) that cP approaches

30 degrees (:l 3 degrees). Eagleson, et al (1958) showed that for the idealized

situation similar to Figure 80 this angle can be derived geometrically:

t A. 0.866an ~

= ((D/K)2 + D/K - 1/3) 1/2
(5- 5)
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If the diameters of the bed grains are approximately equal to the equivalent

diameters of the roughness (D 1 K ~ 1), tan cb = O. 53 or iP ~ 28 degrees. If. '
these values of ss' sf' and cb are used and (1 is assumed to be small, such
that (1 -( -( cb, then I r I ~ 2.01 for upslope motion and I r \ ~ 3.08 for down-

slope motion.

Consequently, on .small slopes ((1 -( -( cb ),

2uf CD
D. = 2.311 g (downslope incipient motion) (5-:6a)

and1'~'-:'.-"'.-' ,-.-. . _. -~..".R- .
~ 2 C

--~---D.- ~-T:51 .f, ,D,1 g ".. (upslope incipient motion). (5-6b)

The problem now remains to obtain a value uf in Equation (5-6a) or

(5-6b) that is the maximum velocity which effectively acts at the uppermost
point of the grain surface (17 = D.). The boundary-layer velocity at this

1

point can be expressed as the real part of Equation (4-24)

u f = ~q (-r F sine 1 - G sine 21 - e - D / ot-
X -rF sin(e1 + D/o) - G sin (e2 + Di/onJ

o ( 2vw )1/2- 2 N2 . 2
, ____w ~ Sil (1___

(5-7)

(5-7a)

where

2nrr
q = ~nå

, c + 'Vå=~
c - y

D
e2 = q~n(~) + wt

I3
e 1 = qQn(1I + wt

. .

For the case of small slopes in the sense y -( -( c, Wunsch (1969) has shown
n1TC'

that q ~ -. Furthermore, for distances well away from the corner

(cx?? Iz ~ the coefficient A c~n be written in terms of the input wave
motion



184

a w
oA~-

2 ko
also k

o
=

cn7T

h
o

(5 -7b)

where a and k are the amplitude and wave number of the internal waveso 0
over the flat bottom, re'specUvely. This expression is true for an input
area whose top and bottom are horizontal and rigid. If the condition that
the vertical velocity of the wave motion at the top and bottom of the input

channel is approximately equal to zero, then Equation (5-7b) is approximately

tpie for an input channel with nonrigid upper and lower boundaries. It is

important to note that these approximations of q and A imply a smooth

transition in flow conditions from the input region to that over the slope

ji. e., in two dimensions this implies a smooth matching of stream lines at
the transition between the two regions).

For conditions of small slope (y c( c( c) and a smooth bottom transi-

tion, several simplüications are possible in Equation (5-7). For small
slope, y ~ a ~ sma and for high enough wave frequencies, w/N?? sin a.

In addition,

M ~ c. N~ c,

F
1

G ~
1

~ - _. -
c' c

so that

Uf ~
a~o:n; (S~BS - e -D/6 sin (BS + D/6 )J

(5-8)

where

83 = qQn(c t) + wt

1/2
ó .~ (2v)

w

S . k' cn 7i d h f IIince 0 = ~ an = -yx ~ - y"f or sma '),
o

then a w r -D./ó 1
Uf ~ C(h/ho) isine3 - e 1 sin(e3 + D/ó)J

with n = 1.

(5-9)
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After a short amount of manipulation it can be shown that the maximum
value of the terms inside the brackets on the right side of Equation (5-9)2 '
can be approximated as V2 D.lo to order (D.jo) . For waves of 1-hour-3 i i -2 2period, w ~ 1. 7 X 10 radjsec, and for 11 ~ 10 cm jsec, 6 ~ 10 cm.

Typical sediment diameters on the outer shelf are on the order of 10 -1 cm,

indicating that the above approximation is reasonable to about one percent.

Since for incipient motion conditions it is the maximum value of the velocity
at 11 = 1;\ that is the important quantity, then from Equation (5-9)

a w

IUflmax ~ C(hjh) ~o , D.j6
1

(5-10)

for the following assumptions~

(1) small slopes such that y .(.( c and a .(.(q,;

(2) D..(.( o.i "
It is also worth recalling here that the results of the laboratory experiments
described in the earlier chapters for the subcritical case (y .( c) suggest that,
at least for the conditions tested, the velocity field in the boundary layer was
adequately described by the linear theoretical solutions along the slope to the
point of breaking. For any particular case in which y .(.( c is not valid, but

'Y .(C still holds, the complete expression for uf (Equation (5-7)) must be
used in Equation (5-4)., However, it has been shown (Figure 79) that y .(.(c
is reasonable for several average oceanic conditions.

If Equation (5-10) is applied to Equation (5-6a),

(c (h/h ))2
D. = 0.216 0i a w

o

then

g 62

CD
(downslope incipient
motion) (5~11)

This equation shows that in order to determine D. some estimate of boundary
1

layer thickness 6 (or equivalently, viscosity 11) must be made. Owing to the
difficulties in obtaining oceanic measurements of this quantity, this choice is
not simple. However, a lower bound can be estimated: the value of ó obtained



186

from Equation (5-7a) with v = vk' where vk .is the kinematic viscosity

(vk ~ 10-2 cm2/sec). The variation in vk for sea water is shown by .
Higgins (1962); typically vk varies from about 0.008 cm2/sec at 30°C to
about 0.015 cm2/sec at O°C (salinity about 35%0), Although coefficients

of viscosity have been suggested by other authors to describe mixing

processes that have scales larger than molecular, the current state of
knowledge of the oceanic boundary layer induced by internal waves does not
justify an a priori assumption of v).vk' The problem of selecting a repre-
sentative value of v was discussed at the end of the previous section in this

chapter. The basis for other choices of viscosity here lies in an "intuitive

feeling" that natural oceanic boundary layers are turbulent. The actual

viscosity is probably a result of several processes at work, including in-

ternal waves. It is worth recalling, however, that the experimental runs

with linear, smooth slopes showed no appreciable net transport of fluid in
the boundary layer outside of the breaking zone for y -(c. In the discussion

of net Lagrangian motion in Chapter 4, this observed absence of net trans-
port was interpreted to mean that there was no measureable mixing induced

by the internal waves along the slope up to positions near the breaking zone.

The turbulent dissipation of the high-frequency waves for y -(c in the break-
ing zone and the mixing induced by the vortex instability for 'Y:: C are two

possible instances for which a choice of v ).vk might be made, at least for

the laboratory conditions.

The other apparent difficulty in the direct application of Equation

(5-6a) or Equation (5-6b) to oceanic conditions is the choice of the drag co-
efficient CD. Considerable experimental evidence shows that CD is largely
dependent on a suitable Reynolds number RD for solid bodies immersed in a
moving fl~id (Prandtl, 1952; Batchelor, 1967). Usually the relationship be-

tween CD and RD is given for a steady flow past a smooth and regular body

such as a sphere in an unbounded fluid, In the case of an irregularly shaped

particle resting on a rough bed in an oscillatory flow, the relationship be-

tween CD and RD is not well known. Eagleson et al (1958) showed
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measurements from which the drag coeffic~ents for spheres rolling down a

smooth, inclined boundary immersed in water or oil were evaluated from
the relation

1TD2 2C F .
D Pf-- v s = G sin a

where v is the measured translational velocity of the sphere of diameter D.s
Their results are shown in Figure 81. Line A in this diagram: is the con-
ventional curve for CD 0: RD -1 for spherical particles moving in an un-

bounded fluid (Batchelor, 1967). Eagleson et al (1958) later extended these
results experimentally to account for the presence of a rough bottom..

Figure 82' shows that for constant values of particle diameter D, decreasing

roughness size K (i. e., increasing ratio DI K) causes a reduction in the drag
coefficient determined for a smooth bottom from Figure 81. In their studies
of incipient motion of bed particles due to surface waves, Eagleson and
Dean (1959) chose CD = 19. 2/RD with DIK ~ 1 and RD = uf Dlv. On the

basis of a large number of .experiments in which CD was computed from an

equation similar to Equation (5-4) for various measured values of uf' Di,

ib, a, and ss/sf' Eagleson and Dean (1959) concluded that there was no

qualitative disagreement between the values of CD obtained in this way with

those values obtained from Figures 81 and 82. It is not obvious, however,
that their results show conclusively that the two methods of computing CD

are equivalent for incipient motion of the particles. On the other hand,

their results are quite convincing that the two methods are in agreement

for discrete particles that are already in motion.

In view of the apparent importance of the local particle Reynolds
number RD on the value of CD' it is useful to establish some upper bound
on RD for,the oceanic problem. Sediments on the outer shelf have median
diameters on the order of 10-2 cm. Lacking specific measurements of
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internal-wave velocities in the bottom boundary layer, a value of 100 cm/sec
*

is selected as a crude upper estimate.
-2 2If v = vk ~ 10 cm /sec, then RD ~ 100. For larger values of v

or smaller uf' RD becomes l,ess than 100. This upper bound suggests that,
according to Figure 81, CD ~ 192/RD for a hydraulically smooth bottom.
If the additonal assumption that D/K ~ 1 is made, then CD = 192/RD

(Figure 82). If this value of CD is applied to Equation (5-11) withuf Di 2
RD. = v and v ~ Ó W /2, then

a 2
OW

g c (h/ho)n; = 31. 36
(5-12)

for incipient downslope motion on small slopes.

It is obvious from Equation (5-12) - and not unexpected - that the

local incipient diameter is a function of the boundary layer thickness (or

alternatively, the viscosity v) as well as the local depth and input wave

conditions. The value of D. increases linearly with decreasing depth, sug-
1

gesting progressive sorting of sediment. Equation (5-12) predicts that sed-

iment particles having diameters smaller than D. will initially move down-
1

slope so that there should be a trend toward smaller mean diameters in the
seaward direction. Since the model does not describe the subsequent history

of bottom particles once they are initially moved from their roughness hol-
lows, it is not possible from this analysis to trace their net motion after
initial movement. However, one might speculate that once the particles
are set into motion they might be advected to different locations as bed load

, *A few values of instantaneous near-bottom velocities on the continental
margins are available. For example, Emery and Ross (1968) reported a
maximum value of 70 cm/sec on the continental slope south of Martha's
Vineyard; the flow direction was parallel to the bottom contours.
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if there is net motion of the surrounding fluid. The net motion of the fluid
need not depend on mixing induced by internal waves, but can be caused by

other currents. It is emphasized that this analysis pertains to initiation of
motion of noncohesive bed particles for the conditions assumed; subsequent
motion as established bed load or suspended load is only speculative.

The inverse relationship between the ratios D./ó and h/h can be1 0
conveniently illustrated for different choices of a , N, and w; Figure 83

o
is an example of this relationship. Each straight line in the diagram
represents a particular input wave amplitude a for internal waves that

o
are assumed to be normally incident to the slope. The larger values of a, . 0
are permitted only for h large in the sense a /h ~ ~ 1. (The linear in-o 0 0
ternal wave theory used in this analysis is valid only for small-amplitude
waves.) Finite-amplitude effects have not been considered explicitly. Con-
sequently, the results are valid upslope to a point where the Stokes param-

eter € becomes order one; the exact value of € for this limiting condition
is not precisely defined. A discussion of € for the small-slope approxi-
mation is given in Chapter 4. The experiments show that for y ~ c, the

high-frequency waves induce a zone of breaking for values of E ~ O. 5. A
value of E ~ o. 5 might be used to establish a limiting depth ratio h/ho for

this model; i. e., at depth ratios shallower than h/h the linear analysis is
o

invalid. If a = mh where m ~ ~ 1 and positive, then from Equation (4-14)o 0
h/h = (m C1T) 1/2o E (5-13)

where

mode n = 1.

For example, for relatively high-frequency, first-mode internal waves, such
that w ~ N/2 and a = 0.01 h (m = 0.01), it follows from Equation (5-13)~ 0 0
that

( 2) 1/2h/h ~ 1.8 x 10- .o E
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If E = O. 1, h/h "' 0.4; if E = 0.5, h/h "' 0.2. Figure 83. shows theo 0 .
limiting depth ratios derived in these examples.

Before discussing the results of this model in terms of oceanic
conditions it is instructive to show that the form of Equation (5-12) is in
some sense compatible with the familiar Shields parameter S,

TS _ C
- (s /sf - 1) Pfg D,s s (5-14)

where D is equivalent to D. and T is the shear stress necessary to pro-s 1 c '
duce initial motion of noncohesive bed particles in a steady flow. Shields

(1936) presented experimental results relating this parameter to a partic-

ular Reynolds number. Others (for example, Vanoni, 1964) provided sub-
sequent experimental results that established a single curve relating this
Shields parameter S to the particle Reynolds number R* D' where

u*D & f
R* - ~, with u* = VT/PfD - v

The diagram in Figure 84 shows the classical Shields curve with some
later experimental results plotted on it; the Shields parameter is the ordi-
nate, and the particle Reynolds number is the abscissa. Two basic prob-

lems arise in the application of this curve to the present problem: (1)

the experimental measurements represented by the curve were made for

boundary layers that were fully'turbulent; and (2) in most cases the mean
flow conditions were steady (channel flow). White (1940) derived a similar
semi-empirical result for the critical stress at the bed for steady flow
condit ions and a laminar boundary layer:

, I:

S = O. 18 tan cb (5-15)

where S is given by Equation (5-14). According to White, tan cb is about
unity which gives S ~ O. 18, as compared to about 0.03 to 0.06 for S ob-

tained by Shields (Figure 84). White found, however, that the value of S
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for turbulent flow in the boundary layer was about one-half that for laminar
conditions. The remaining discrepancies in the results of White for turbu-

lent flow with those of Shields were attributed to the more intense turbulence

in the flows with fully developed velocity profiles which Shields used (Vanoni,

1964). The difference between the two results according to Vanoni was that

for both turbulent and laminar flow conditions in the boundary layer, White

found that 7" c was apparently independent of R*D' By contrast, ,Figure 84

shows that 7" c is dependent on R*D to values of R*D near 103 where the

Shields parameter approaches a constant value of about 0.06.

The mean conditions of steady flow that are implicit in Figure 84 ,
are not unreasonable for low-frequency internal wave phenomena, since
the advective accelerations are small, as was assumed in the earlier modeL.

The compatibility of the earlier model with White's equation for laminar

flow conditions (Equation (5-15)) can be demonstrated simply. If the bed

shear stress is written as

7" = ¡i au/a17

arid if au/a r1 is approximated by a linear fit:

~~/a rj .. Au/o -=___aw/co________, 1/2
where Au :: aw/c, then for o = (2v/w) (i. e., small slopes) and f.
the bed shear stress can be rewritten approximately

= v Pf

2 .. .7" = V Pf aw/o = ó/2 aw /c. (5-16)

On small slopes it was shown earlier that

a=ahjh
o 0

(correct to first order in €). (5-17)

Combining Equations (5-16) and (5-17) it follows that

2aow
7" ~ o 2c (h/ho) (5-18)
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Applying this expression for bed shear stress into White's result for

,incipient motion in a laminar boundary layer (Equat~on (5-15)) an expres-

sion is obtained for D./o:
1

D./ó
i

2
aow

= K gc (h/ho)

(5-19)
K _ 2. 78

- (p s - P f) tan ib

The functional form of this result is equivalent to Equation (5-12). A closer
comparison between this equation and Equation (5-12) is not justified because:

(1) Equation (5-17) does not include a Reynolds number dependence; (2)
Equation (5-19) assumes a linear velocity profile in the boundary layer; and

(3) Equation (5-19) does not specify the point of application of the effective
velocity acting on the bed grains.

A brief summary of the preceding analysis might be helpful here.
The foregoing model deals with conditions of incipient motion of noncohesive

bed particles induced by internal gravity waves shoaling over a small linear

slope. The static equilibrium of these partiCles on the bed was defined in

terms of an incipient diameter D.. The analysis predicts that the net in-i
stantaneous hydrodynamic and gravitational moments acting on the particle
about the contact points with other bed particles will cause those particles

with diameters less than Di to move downslope initially. Equation (5-12)
relates D. to the internal wave parameters (a , w, c), a local depth ratioi 0
(h/h ), and the boundary layer thickness (ó ). It is also shown that Equa-o '
tion (5-12) is compatible with the results of Shields (1936) and White (1940).

MODEL ANALYSIS AND SPECULATION

As defined above, the criterion in Equation (5-12) essentially
defines the condition of neutral equilibrium set up by instantaneous hydro-
dynamic forces of internal waves and that of gravity acting on discrete bed
particles that are resting on a rough bed. A different dynamic balance is
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. 1..;'1:

needed to define a condition of equilibrium for particles that have already
been placed in motion. This balance must depend on the net transport cur-
rents influencing the particle motion, including any net currents that might
be induced by the internal waves, and the downslope pull of gravity. How-
ever, as was indicated in Chapter 4, steady transport of water particles

induced by internal waves, near a sloping boundary in a stably stratified
fluid, other than that caused by diffusion, theoretically cannot, occur in a

plane normal to the depth contours unless other processes of mixing are

active. Consequently, it is not possible to predict a type of oscillating

equili.brium for onshore-offshore motion of sedimentary particles for which

D.( D.. In the case of surface waves, Ippen and Eagleson (1955) and Eagle..
1

son and Dean (1959) have shown that a balance between the forces on a par-

ticle due to the mass transport current in the bottom boundary layer, directed

upslope, and the downslope component of gravity creates a situation where

sediment particles of increasing size in the onshore direction are in oscil-
lating equilibrium.. The diameter of the local equilibrium size is often
referred to as the "null" or "equilibrium" diameter D. The location of, e
this type of equilibrium for a particular sediment size is called the "null"
point. Miller and Zeigler (1964) and Eagleson and Johnson (1966) discuss

sediment sorting by surface waves and give some comparisons with field

data. The only available direct evidence for net fluid transport induced by
internal waveson a slope are the laboratory results that were presented in
Chapter 4.

In view of the absence of other evidence for the existence of mass
transport by shoaling internal waves, only the effects of the incipient condi-

tion which was derived in the preceding section are considered here. Curves

similar to that shown in Figure 83 can be used to determine the hypothetical

distribution of D. along a linear bottom slope if o is known. Suppose that
1

the initial size-frequency distribution of noncohesive bed particles is given
by the solid curve in Figure 85 at each position along the slope. After the

internal waves have acted to produce incipient motion of sediment having
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diameters less than D. at each depth according to Equation (5-12), the final
1

shape of the size-frequency distribution at each location might eventually

have a spike at Di and appear as shown by the broken line in Figure 85'-

The sediment size at which the spike occurs decreases in the offshore

direction.

It is unreasonable to require this simple analysis, with Equation,

(5-12) as its tidy result, to explain the co'mplicated sedimentary pattern
found on, the continental margins. Instead, it is instructive to postulate

various simple models to determine at what locations and for which hydro-

dynamic conditions, if any, the predicted values of Di according to E.qua-
tion (5-12) might exceed the observed natural sediment diameters.

Models are constructed for three provinces defined by the idealized

bottom geometry and the simplified distribution of Brunt- Vaisala frequency

shown in Figure 78. Each layer (i. e., the three fluid layers intersecting

the shelf A, slope B, and rise C) with constant N is assumed to support

small-amplitude, single-frequency internal waves of the first mode that
propagate shoreward at approximately normal incidence to the slopes.
Furthermore, only examples that satisfy the condition 'Y -( -( c were con-

sidered, except for the hypothetical instance of waves with semi-diurnal

frequency over the continental shelf and continental rise. In these cases,

it is shown that the ratio 'Y jc is on the order of one-tenth. Values of the

pertinent hydrodynamic parameters are listed on each diagram. In addi-

tion, since the depth range over which the analysis is valid is limited to

small values of E (as discussed in the initial section of this chapter), the
depth ratios h/h at which E = O. 1 and E = 0.5 are indicated on each diagram.o ,
It should be recalled that the experiments for y -( c showed breaking of in-

ternal waves at E ~ 0.5. On this basis, it was suggested that the linear
solutions might be invalid if local values of E exceed O. 5. The sources
for the sediment data are listed in each diagram; the approximate locations

of the sampling areas for each source are shown in Figure 76.
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Figure 86 treats a continental-shelf model with relatively high-

frequency internal waves (w ~ N/2, N = 6 cph); the pertinent assumptions
in the model are specified in the figureo The ordinate is mean diameter
D (for actual sediment .data) or incipient diameter D. (computed fromm . i
Equation (5-12)); the horizontal axis is the depth ratio h/h . As mentioned, 0
above, vd-lues of h/h computed from Equation (5-13) for two selected values

o
of € and for the particular wave conditions (a , w, c) of the model areo '
marked long the horizontal axis.. The variations of D. with h/h are shown, . i 0
as theoretical stright-line curves for selected values of H:,

1/2
ao v

H =
A 1/2o vk

where a is input wave amplitude in meters,
o

v is viscosity in cm2/sec,

A = 1 m,
o

-2 2vk = 10 cm /sec.
1/2 2 -1/2(Aovk = 10 cm . sec .)

For example, the curve in Figure 86 labeled H = 5 represents1/2 2 -1/2 .a v = 50 cm . sec , or if v = vk' then a = 5 meters. This kindo 0
of log-log plot simplifies presentation of the analytical results; the theoreti-
cal curves are straight lines (Equation (5-12)), and D. can readily be obtainedi
for various combinations of a and v (or o). The field data of mean sedi-o
ment diameters in Figure 86 show a general trend toward decreasing sizes
in an offshore direction. This trend reverses for h/h ? 0.4 in Stetson's. 0
data and for h/h ? 0.5 in Hollister's data.

o

Interpretation of the relationship between the actual mean values Dm
and the theoretical distributions of D. was described earlier and will bei
summarized here. D. represents the maximum sediment diameter that is ini '
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neutral equilibrium at slope positions given by h/h for hypothetical internal-, 0
wave types and idealized bottom conditions. The analytical model predicts
initiation of motion of bed particles in a downslope direction if D ~ D..m 1

In Figure 86 incipient motion of measured sizes D is predicted for2 ' mH ~ 50 (for example, a = 5m, v = 1 cm /sec) and h/h ? 0.48 (for theo 0
cut-off condition imposed by E = 0.5). If H = 5 (ao = 5m, v = vk) and if
E= 0.5 is the limiting value for the linear analysis, then all values of D

m
from Stetson's data for O. 25 ~ h/h ~ 0.45 could be placed into motion by

o
the waves. It might be noted here that the nonlinear effects which are sig-
nificant farther upslope (where E is order one, say) could rnake the case for
possible sediment movement even stronger. For instance, the experiments

for y ~ c showed that the measured velocities in the boundary layer near
the zone of breaing were significantly larger than corresponding measure-
ments taken farther downslope. Consequently, one might expect that the

presence of nonlinearities in the velocity field might increase the values of
D. for positions well upslope. The consideration here of a strictly linear

1

analysis is in this sense a "worst" case: if initiation of motion of measured

diameters is predictable from the linear model, then the inclusion of non-

linear effects strengthens the argument. We might also recall that values of

v ?Vk are included mainly on the supposition thatthe oceanic boundary-layer

dynamics might involve an eddy viscosity.

Figure 87 is another shelf model similar to Figure 86 except that

, the internal-wave frequency is assumed to be semi-diurnaL. In this model,
the requirement y /c ~ ~ 1 is necessarily relaxed to y /c ~ 1 (y /c ~ 0.01).

The case for incipient motion of the measured sediment sizes is not as con-
vincing as that given in Figure 86. The theoretical curves indicate that D

m
is less than D. for relatively small-amplitude waves (a oe 5m) only if2 1 0V ~ 1 cm /sec (see H = 50, for example). The values of D. along theoreti-

1

cal curves H = 1 and H = 5 are below the mean diameters; this suggests that

waves of 5-meter amplitudes with v = vk will not move the measured mean
s iz e s.

.. I.;'
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The continental slope model in Figure 88 assumes relatively high-
frequency waves (w = N/2; N = 3 cph) because critical conditions ('Y ~ c)

are approximately achieved along the slope for waves of lower frequencies,
such as the frequency of the semi-diurnal tide. The data shown in this

figure were obtained from various sources; the lines of sample locations are

shown in Figure 76. Initial movement is predicted for sediment along the
lower extremity of the slope (h/h ~ 0.8) for H = 10. For H =50 (a = 5m,o 0
v = 1 cm2/sec), initiation of sediment motion is possible for each of the
measured values along the slope.

A smaller number of data points are shown in the continental .rise

model in Figure 89. The available values of mean diameter tend to be in
the range of fine to very fine silt; the ordinate (D. or D ) has been scaled1 m
accordingly. It is worth recalling the earlier discussion of sedimentary
types on the continental rise. Several previous workers (Heezen, et al

1966, for example) noted that clean quartzose sands and coarse silts inter-

bedded with the clays can be locally dominant. These larger sizes are not
represented in the data plotted in Figure 89. It is obvious from Pratt's
data however, that the mean diameters found on the lower parts of the rise
are generally larger than farther upslope. The computed incipient diameters

exceed the mean diameters for H = 5 (ao = 5m, v = vk) on the upper rise.
Initial movement of the larger measured sizes on the lower rise requires

--larger wave amplitudes (or larger viscosity), such that H ~ 50. The effects
of cohesive forces acting on the smaller sizes (very fine silts and clays)
have not been considered; these forces might inhibit initial movement and
thereby require larger values of H for incipient motion.

The results of this section can be summarized briefly. It has been
shown that, within the constraints of the models, the predicted values of
incipient diameters D. can exceed the values of mean diameters D mea-l m
sured at various positions on the continental margin southeast of New England.

The condition for incipient motion of bed particles induced by internal waves
shoaling over a small slope whose average gradient is linear is given by
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Equation (5-12). It is obviöus from Equation (5-12) that larger values of
wave amplitude and viscosity produce larger incipient diameters at specified
values of h/h . Incipient motion of the measured sediment is predicted foro
specific instances in the. models considered above:

(1) on the outer continental shelf (h ? 50 m, say) with N = 6 cph,

w = 3 cph, and H 2: 5;

(2) on the outer contin~ntal shelf with N = 6 cph, semi':diurnal

frequencies, and H 2: 50;

(3) on the lower continental slope (h/h 2: 0.8), for N = 3 cph,..._ _....,,_ _, _, ,," 0
w = 1. 5 cph and H = 10, or on the middle sections of the continental slope~ ~ ..-- ~---' -
with H = 50;

(4) on the upper and middle sections of the continental rise for
N = 1 cph, w = 0.083 cph, and H :: 5, or on the lower rise with H 2: 50.

The internal wave amplitudes suggested in the discussion of the various
models are representative in that they fall within the range measured in
the ocean. The various proposed values of viscosity v (or boundary layer

thicknesses ó) are speculative.

The available data for specific sediment distributions on the conti-

''''''-nental margins do not correspond in a simple way to the predicted distri-

.J:mtions; the natural setting is too complex to fit these idealized models.
However, what is not answerable at this time is whether or not the internal
waves do in faCt initiate motion of bottom sediment: for certain conditions,

the models predict that they can. It must be noted that an additional attri-

bute of the sediments on the slope a!1d rise that is probably important in
increasing the local forces necessary to dislodge the grains is the existence
of cohesive forces acting between particles of clay and very fine silt sizes.
The incipient-diameter criterion in Equation (5-12) assumed noncohesive
bed particles. Other factors, such as bed roughness scales greater than

granular, stirring by bottom organisms, bed fluidization, grain angularity,
and packing of bed grains, are probably significant locally in the transport
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of bed particles. Their effects are difficult to treat analytically; future
field studiesni'1ght establish their actual importance.

In the light of the experimental results presented above, the effects
of two other phenomena induced by internal waves must be considered.

Breaking internal waves of high frequency were observed to produce turbu-
lent conditions and increased instantaneous velocities near the bottom. The
breaking often generated filimentous horizontal layers which penetrated the

adjacentfluid interior. Secondly, experimental runs with y:; c showed a
vortex instability along the slope; the mixing in the vortices caused a ver-
tical structure of alternating horizontal streamers and layers within which

the net fluid transport was away from and toward the slope, respectively.
If these processes occur in nature, there are no definitive field measure-

ments of either process, speculation about their possible impact for sedi-

ment processes on the continental margins raises some interesting questions.
*

Wherever the breaking might occur on the slope, sediment that is
well-sorted and coarse relative to nearby material probably will be associ-

ated with this zone. The finer materials might be winnowed out and trans-

ported from the area by currents. Hogg and Wunsch (1970) have shown that

for sufficiently large values of eddy viscosity and slightly oblique incidence,

in theory the breaking internal waves can generate "longslope" currents.
Hence, a littoral drift of fine materials similar to that observed for surface
waves and supplementing the effects of the contour currents (Heezen, et al
1966) might be possible. If the position 'of breaking along the slope is a

function of time, i. e., if the stratified layer containing the waves shifts its
vertical position over a time scale of days or longer, as seasonal or local

*
The laboratory measurements suggest that the breaking occurs well up-

slope (for y ~ c). In fact, when the stratified section was beneath a less

strongly stratified or homogeneous layer, the breaking occurred near or at
the base of this upper layer.
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thermoclines might, then a time-sequenced winnowing out of fine materials
might Occur along the bottom over a wide offshore traverse. Deposition of

recent sediments entering the area from the continental sources might be

prevented, and local siz~-frequency distributions might be skewed toward
the coarser sizes. A dynamic process like this might help to explain the

observed scarcity of recent sediments on the outer shelf.

Finally, speculation is ventured for the effects of breaking internal
waves at the edge of the continental shelf. Suppose that relatively large-
amplitude, high-frequency internal waves were generated at infrequent
intervals (for example, by the passage of severe surface storms) in the
seasonal thermocline when the upper extent of the thermocline was at the
approximate depth of the shelf edge. Sudden substantial increases in bot-
tom turbidity due to the suspension of bed materials by breaking of these
large-amplitude waves might increase the density of the water along the
shelf-slope transition to values high enough to generate density currents.
This mechanism might provide a means of continued eroding the slope
face at irregular times and places by relatively wea small-scale turbidity
currents.

The vortex instabilities and steamers that were' created in the lab-
oratory, generally for y :; c, might also provide a means of increasing

suspension of bottom materials, by increased turbulence within the eddies

near the bed, and by transporting fine suspended materials away from the

slope. The net transport in the streamers might move the finer sediment

(clay and very fine silt) away from th'e continental slope to deeper sites of
deposition on the rise or abyssal plain.

None of these mechanisms have been observed in the ocean. The
case for increased mixing along the oceanic slopes is not new; Mu~ (1966)

and Wunsch (1970) have called attention to this process. It is hoped that

these experiments have illuminated some of the hydrodynamic features of

shoaling internal waves, and strengthened the case for internal waves as
geological agents on the oceanic slopes.
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APPENDIX A

The use of conductivity cells in A. C. circuits to detect fluctuations
of conductivity in electrolyte solutions has been briefly summarized by
Gibson and Schwarz (1963). In this section we describe only the particular
sensors and circuitry that were used during the set of experiments discussed
in the text.

DESCRIPTION

The sensor is a single-electrode, platinum conductivity probe whose

construction is shown diagrammatically in Figure 4. The rounded platinum
tip and the L shaped glass housing minimized flow disturbances induced by

the probes. The probe assembly was oriented so that the horizontal portion

of the glass housing containing the probe tip was approximately parallel to

the crests of the internal waves (i. e., perpendicular to the side walls of the

tank). This prevented the wake of the vertical shaft from washing by the

electrode and introducing spurious values. The electrical path was between
this electrode and the solution ground (a large copper strip placed along the

tank bottom beneath the slope). The platinum tip was normally platinized

by a method similar to that described by W.olbarscht et al (1960h (1) the
probe was immersed in a 1 percent solution of Chloroplatinic ac id to which

lead acetate (80 percent by weight) had been added; '(2) current from a 10 v

D. C. source in series with a 10,000 ohm resistor was passed between the
probe (cathode) and a platinum wire (anode) either for about 15 seconds or
until a thin stream of bubbles was emitted from the probe tip. The result
was a thin grayish-black coating on the platinum probe. The effects of

this coating on prObe performance are discussed in Ives and Janz (1961);

essentially, the platinization minimizes drift in the output of the sensor.

The probe is the active arm in an A. C. Wheatstone Bridge (Figure

A1). Potential imbalances across the bridge caused by fluctuations of con-
ductivity at the probe are amplified, detected (diode rectification), and
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recorded by the A-D conversion described in Chapter 2. The high excitation

frequency (60 kc) and low excitation voltage (0.5 v rms) inhibited polariza-
tion of the electrolyte at the probe tip. This was essential in order to mini-
mize signal drift and capaçitance problems.

PERFORMANCE

Four complete circuits like that shown in Figure A 1. were used. It

was found that the levels of signal output changed by as much as 15 percent

when probes were interchanged, owing to nonuniformities and irregular
platinization of the probe tip; this usually necessitated a calibration check
before each experiment. Normally this calibration consisted of recording

output voltage as a function of probe depth before each run. This provided
an updated sensititivity value that could be checked with previou's values.

If it was observed that sensitivity changed markedly (). 10 percent) between
runs, the probe tip was checked for fouling and cleaned as necessary. The

cleaning process is like that described by Ives and Johns (1961). Prior to
initial platinization, or when the platinized coating was cleaned off with a

soft tissue, the following procedure was used:

(1) wash in warm concentrated HN03 for 30 seconds,
(2) wash in distilled water,
(3) polish platinum tip with glass rod,
(4) treat polished electrode with warm 50 percent solution

of Aqua Regia (4 Volumes H20, 3 Volumes HC.e, 1 Volume

HNOS) for 15 seconds,

(5) wash in distilled water,
(6) wash in warm HN03 for 30 seconds,
(7) wash in distilled water,
(8) dry inair,
(9) place in distilled water when not in use.

Normally, the output signal was acceptable up to three hours of continuous
use; however, shortly thereafter degradation of the signal to noise ratio
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and erratic output values necessitated cleaning of the probe tip (steps (5)
~

through (7) above.

The following list summarizes the average performance of the
probes determined from e?Cerimental data and calibration tests. The

length units are presented for convenience and are based on:

p = p (1 - ßZ)o

where

ß = 0.001 g/cc/cm

(1) sensitivity:

(2) resolution:

(3) accuracy:

(4) linearity:

(5) drift:

0.3 volt/0.001 g/cc (0.3 v /cm)

0.5 X 10-4 g/cc (0.5 mm)
5 percent of maximum vertical displacement
of probe relative to stratified fluid at test
for displacements ~ O. 5 cm.

2 percent of maximum vertical displacement
of probe relative to stratified fluid at rest
for displacements.c 0.5 cm.
variable, depending on quality of platiniza-

tion. (Typically 20 millivoltsjhour.)

It might be useful to present functional relationships between some
of the physical variables for sodium chloride solutions that were assembled
during this study. Several sources were used to obtain the relationships

(L. L. Higgins, 1962; International Critical Tables, 1929; American Opti-
cal Company, 1969).

(1) n = 1. 3330 + O. 244(p - 1); T = 20°C

(accurate to approximately 1 percent)
(2) S = 1.39 (p -1) X 103; T = 20°C

(accurate to approximately 1 percent)
(3) CT = 1. 902 (p - 1); T = 20°C

(accurate to approximately 5 percent)
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n is index of refraction,

p is density on g/cm3

S is salinity in 0/00,

(J is electrical conductivity in (ohm-cmf 1.



226

APPENDIX B



227

TABLE B1

Group N N Wc Wc Tc ho a y
sec-1 cps s ec-1 cps sec cm deg (tan a)

..

1 0.776 0.123 0.199 0.038 31.51 31. 55 14.9 0.266

2 0.990 0.157 . 0.248 0.039 25.35 31.60 14.5 0.259

3 O. 970 0.154 0.456 0.073 13.80 31.80 28.0 0.532

4 O. 988 0.156 0.494 0.079 12.72 31. 65 30.0 0.577

5 0.945 0.151 0.473 0.075 13.29 33.35 30.0 0.577

6 0.952 0.152 0.235 0.038 26.69 33.45 14.3 0.255

7 0.972 0.154 0.497 0.079 12.7 33.5 30.0 0.577

"

"1

1
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TABLE B2.

Ref.' No. w T ko c q
cpa sec cm-1

1-2 O. 129* 7.76 0.142 1.426 17.105
2-3 0.129 7.76 O. 150 1. 522 8.614
3-4 0.109 9.14 0.095 0.962 4.532
4-2 0.102* 9.85 0.084 O. 843 9.913
5-5 0.102* 9.85 0.083 0.883 4.020

6-3 0.098* 10.24 0.081 0.822 4.075
7-4 0.098 10.24 0.079 0.793 3.627
8-5 0.098* 10.24 0.080 0.853 3.818
9-6 0.098 10.24 O. 080 O. 848 10.124

10-1 0.094* 10.67 0.116 1. 168 13.546

11-2 ' 0.094 10.67 0.074 0.743 8.625
12-3 0.094* 10.67 0.075 0.764 3.,656
13-1 0.094* 10.67 0.116 1.168 13. 546
14-4 0.090* 11. 13 0.070 O. 697 2.897
15-4 o. 086 11.64 0.065 O. 653 2.506

16-5 0.086 11.64 O. 046 0.486
17-4 O. 082* 12.19 0.061 0.612 2.085
18-5 0.082* 12.19 0.061 0.650 2.227
19-4 O. 078* 12.80 0.057 0.573 1. 537
20-4 0.072* 13.86 0.051 0.515

21-4 0.066* 15.06 0.046 O. 462
22-5 0.066* 15.06 0.046 O. 488
23-6 0.062 16.00 0.043 O. 453 4.922

, 24-2 0.062* 16.00 0.042 0.420 4.366 "

25-1 0.055* 18.28 0.051 0.517 5.518
l.

26-4 0.055* 18.28 0.037 0.373
27-5 0.055 18.28 ' 0.037 0.393
28-3 0.051 19.69 0.035 0.350
29-4 0.051 * 19.69 0.034 0.343
30-3 0.049 20. 51 0.033 0.335

31-6 0.047* 21.33 0.031 0.325 2.971
32-6 0.043* 23.26 0.028 0.296 2.407
33-4 0.039* 25.60 0.025 0.256
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TABLE B4

Expt.
CA/Po)2(irrO)2 (in!)2 ~ao)2Group w T Xc z'c xc/xo

cps sec cm crn ao=o.lcmao=O.~cm ao=O. 4cm

1 0.094 10.67 130.6 9.5 1. 101 0.716 2.642
100.6 0.848 1. 716 3.016 3.242
80.6 0.680 3. 261 3.666 4.474
70.3 O. 593 4.488 3.045 5.123
70.9 '0.598 4.410 3.038 5.202
55.9 0.471 6.060 4.246 7.996
45.6 0.385 4.791 3.782 3.412
40.6 0.342 2.544 1. 412 2.679

0.055 18.28 130.6 1.101 0.704 0.884
100'. 6 0.-848 1.780 0.723 0.867
80.6 O. 680 3.650 1. 268 1.602
70.3 0.593 5.380 2.712 6.550
7009 0.598 5.260
55.9 0.471 8.735 1. 633 3. 687
45.6 0.385 9. 758 0.802 1. 357
40.6 0.342 8.678 0.837 1. 221

2 0.102 9.85 132.6 6.6 1. 085 0.735
102.6 O. 840 1. 901 1. 614 1. 723
82.6 0.676 4.081 4.202 3.782

--------- -- 72_. 6 0.594 6.258 8.062 11. 820

72.6 O. 594 6.258 4.410 8.108 11. 238

57.6 0.471 12.428 6.083 15.490 14.774
47.6 0.389 19.295 9.378 21. 441 25.845
41. 6 0.340 23.432 25.005 24.242
51.0 0.417-.' 16~-479 14.210 24.370
43.3 0.354 22.419 10. 942 14.205 23.332
37.1 0.304 24.437 10.138 25.256 19.539
32.3 0.264 19.940 6.214 1.4. 178 10.839

0.062 16.00 132.6 ,6.6 1.085 o ~ 729

102.6 0.840 1.942 O. 843 1. 715
82.5 0.674 4.354 1.956 5.083
72.3 0.591 6.974 2.001 7.272
72.8 0.596 6.8071
57.9 0.474 14.670 4.954 10.724
48.0 0.393 25.431 12.842 25.578
42.9 0.351 33.443 1. 471 26.616
51. 0 0.418 21. 520 6.122 19.504
43.3 0.355 32.771 12,.645 13.248
37.1 0.304 43.212 4.571 12.368
32.3 0.265 47.519 2.082 11. 488
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TABLE B4 (Cont)

Expt. 2 ,2 2 . 2
Group w T Xc z'c xc/xo 0w/po) (arrao) (arrao) (anlao)

cps sec cm cm ao=O.lcm ao=0.2cm ao=0.4cm

3 0.094 10.67 .54.1 5.5 0.905 1. 427 2.728 3.034
33.8 0.565 8.702 11. 192 6.322
25.5 0.426 24.331 23.630 22.024
21. 0 0.351 ' 46.975 33.112 71. 648
26.3 0.440 21.816 . 21. 608 25.424

, 21.7 0.363 42.216 42.892 44. 450
16.7 0.279 91.863 52. 984 60.728
11.6 0.194 175. 545 * 73. 624* 86.540

0.129 7.76 26.3 0.440 17.754 16.136
21. 7 0.363 30. 243 42. 114

......~---' -- "--- .. - -, - .16. 7 ' .0.279 48.736 56.270
11. 6 0.194 26.475 20. 924

..

4 0.098 10. 24 48.3 11. 1 0.853 1. 770
32.3 0.571 6.23S
.25.5 O. 450 10.014
20.5 0.362 17.103

O. 086 1 1 . 64 48.3 O. 853 1. 877
32.3 0.571 8.990
25.5 0.450 22.063
20.5 0.362 83. 440

0.090 11. 13 ' 46.8 1003 0.827 2.071
30.8 0.545 9.424
24.0 0.425 20. 394
19.0 0.336 57.874

0.078 12. 80 46.8 0.827 2.279
30.8 0.545 16.582
24.0 0.425 ' 74.749
19.0 0.336X 1946.208

5 0.098 10.24 47.4 11. 0 0.427 2.038 1.485
37.2 0.335 4.535 3.221
28.5 0.257 9.121 11. 402
23.0 0.207 12. 364 15.100

0.082 12.19 47.4 0.427 2.241 1. 881
37.2 0.335 6.078 8.563
28.5 0.257 18.656 19.068
23.0 0.207 50. 672 37.403
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TABLE B4 (Corit)

, Expt. 2 2 ' 2 2
Group w 'T Xc ze Xc I Xo (pw/Po) (am/ao) (a . I a ) (amI ao)m 0

eps see em em ao =0. 1em ao =0. 2em a =0.4 em0

6 0.062 16. 00 177.9 9. 5 1. 351 0.318
112. 9 0.861 1. 713 2. 227
82.9 O. 632 4.777 4. 292
62.9 0.480 9.839 7. 008

O. 047 21. 33 177. 9 1. 357 0.318
112. 9 0.861 1. 784 i. 747

82. 9 O. 632 5. 729 4.472
62.9 0.480 15.146 4. 090

0.043 23.26 177. 9 1. 357 0.295
112.9 O. 861 1. 820 1. 364
82.9 O. 632 '6.260 7. 346
62. 5' 0.477 18.788 6. 042

......~~
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