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Abstract  
 

Rock is porous, with a connected network of cracks and pores. The static and dynamic 

behaviors of a rock sample under load depend on both the solid mineral matrix and the porous 

phase. In general, the configuration of the pore phase is complex; thus most studies on the effect 

of the porous phase on rock deformation are conducted numerically and theoretical analyses of 

the constitutive relations are scarce. We have studied rock deformation under axially-symmetric 

loading by analyzing a model where the pore phase is approximated by rough planes, randomly 

spaced and oriented, extending through the sample. The roughness is caused by asperities, all 

with the same tip radii, but having heights h with a probability density distribution given by the 

negative exponential e-h/λ where λ is a length parameter. Slip at contacts under local shear stress 

is resisted by simple Coulomb friction, with friction coefficient f. Both static and dynamic 

deformation were analyzed. The effect of porosity on deformation for both modes was found to 

be given by the non-dimensional parameter λαj, where αj is the total area of the fault planes per 

unit volume. We demonstrate that stress-induced microfracturing begins as randomly oriented 

microslip throughout the sample. As axial load increases, microslip occurs along preferred 

orientations and locations, which finally leads to deformation on a single fault. The model was 

found to fault under static loading conditions---the axial load at faulting and the angle of the 

“fracture” plane agree with values of those parameters given by Coulomb’s theory of fracture. 

Dynamic moduli and Poisson’s ratio are found to be virtually elastic and independent of the 

friction coefficient acting at contacts. The attenuation  for uniaxial dynamic loading is a 

strong function of the friction coefficient and increases linearly with strain amplitude, in 

agreement with laboratory measurements.  

1−
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Nomenclature 

h, R: height and radius of an asperity 

g(h/λ): probability density function of asperity heights,  g(h/λ)=e-h/λ, with λ as a length parameter  

f: frictional coefficient 

αj: total area of the fault plane per unit volume 

σ1, σ2, σ3: principle stresses; axial stress σ1 is equal to or greater than radial stress σ2 and lateral 

stress σ3 (σ1≥σ2=σ3) in an axis-symmetrical configuration.  

β: the angle between a joint plane and the axial direction (1-axis); βυ  is the threshold value of β 

above which no slip occurs on the joint and deformation is elastic 

p0: hydrostatic pressure 

σ, τ: normal and shear stresses acting on the joint surface; σc,τc: normal and frictional shear 

stresses at asperities in contact 

∆: change in stress or strain 

r: ratio between change in σ3 and change in σ1, r=∆σ3/∆σ1, its maximum value is denoted as rm 

∆w, ∆u: normal and shear displacements of a joint; ∆uE consists of only the elastic contribution 

where no slip occurs along the joint; ∆uS involves slip at asperity contacts 

∆u1, ∆u3: axial and radial displacements of a joint from both ∆w and ∆u 

∆ua, ∆ur: total axial and radial displacements of a sample with a single joint; ∆ua
M, ∆ur

M are the 

overall displacements for the solid matrix 

εa, εr : axial and radial strains of a sample with a single joint 
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<εa>, <εr>: overall axial and radial strains of a rock sample with randomly oriented joints;  

<εa>M, <εr>M are the axial and radial strains of the solid matrix  

∆W’, ∆W”: work done by the stresses 

L, Lj : lengths of the sample and of a joint j  

E, ν : Young’s modulus and Poisson’s ratio of the elastic matrix 

1
~σ∆ , τ∆~ ,: normal and shear cyclic stresses, 1/~

01 <<σ∆ p , and 1/~
0 <<τ∆ p  

w~∆ , u~∆ : normal and shear displacements of a joint resulting from small cyclic stress 1
~σ∆  

1
~u∆ , 3

~u∆ : axial and radial displacements of a joint from w~∆ and u~∆  

aε
~  , rε

~  : axial and radial strains of a sample with a single joint responding to dynamic loading 

>ε< a
~ , >ε< r

~ : overall axial and radial strains of a rock sample with randomly oriented joints 

responding to dynamic loading 

>< E~ , >ν< ~ : Effective Young’s modulus and Poisson’s ratio of the sample 

VV /~∆ : volumetric strain 

>< K~ : effective bulk modulus 

>< G~ : effective shear modulus 

∆WF : energy loss from friction for all planes 

∆WSE : maximum strain energy 

QE
-1: attenuation 

e : volumetric strain  

∆σ1F , βF : asymptotic values of stress at large strain and the angle of faulting  

sG , sE : slopes of a plot of 1/G~  vs. 1/p0 and a plot of 1/ E~  vs. 1/p0 
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1. Introduction 

 
Understanding the constitutive behavior of rocks deformed under crustal conditions is 

central to many civil engineering problems such as reservoir architecture, assessment of 

geological repositories for nuclear waste, drilling technology and energy recovery. All rocks of 

interest are porous to some degree----the range varies from sets of joints in natural rock 

formations to microcracks and tiny pores in hand specimens. We develop in the analysis here a 

procedure for calculating the overall elastic response of these porous structures to changes in 

applied loading, both static and dynamic. Clearly, not all possible distributions of joints or cracks 

can be considered, and so here we have applied the technique to rocks with random fractures. As 

we show, this model is a reasonable simulation of the behavior of intact rock, allowing 

theoretical results to be compared with published experimental data. Solid rocks include hard, 

crystalline rocks having porosity of the order of 1% to porous, sedimentary samples where the 

porosity may be 10% or more. The porous phase forms a connected network, and rock is found 

to be hydraulically and electrically conductive to depth in the earth of 30 km (e.g., [1]), with 

porosity serving as pathways. Rock has tensile strength, and so we know that the mineral phase 

is also continuous. Some pores in some rocks are not connected to the network, and undoubtedly 

fragments of the mineral ensemblage can be found isolated from the solid framework, but these 

aberrations do not have an appreciable effect on the mechanical properties that are of interest 

here. 

The mechanical properties of rocks under crustal conditions are found in experiments to 

be nonlinear and hysteretic although deformation of the mineral framework is linearly elastic. 

Mathematical analysis (e.g., [2]) of models that simulate the structure of rock show that the 

nonelastic behavior can be explained by the closure of cracks under local normal stress and the 

Zhu and Walsh - 5 -  3/20/2006 
Porous Rocks 
 



sliding of closed cracks against friction. The model used in these analyses consists of a linearly 

elastic body that contains cracks and also, in general, voids with more equant dimensions called 

pores. The cracks and pores are isolated in the matrix, and so existing solutions for the effect of 

voids having idealized shapes in an infinite medium can be used in the analyses. Although these 

analyses have been helpful in a qualitative sense for evaluating the effect of the porosity on 

mechanical properties, the model has several limitations. In the first place, quantitative 

evaluation is limited by the necessity of defining the “density” of isolated cracks and pores for a 

typical rock where porosity consists of a continuous network. In addition, the range of applied 

differential stresses that can be considered is limited by the microfracturing that can be expected, 

particularly at crack edges. Finally, the lack of connectivity between voids in the model is a 

serious defect when the transport properties such as fluid permeability and electric conductivity 

are to be studied. 

We consider here a model where the pore phase is continuous and the mineral phase is 

not. In a fundamental sense, this is the model used in the various maximum-shear stress theories 

of faulting such as Coulomb-Navier criterion (e.g., [3]). In these theories, all planes through the 

body are considered to be planes of weakness, and elastic analysis is used to calculate the plane 

on which faulting eventually occurs---that is, the plane on which shear stress and normal stress 

reach the theoretical critical value. The analysis requires that the planes of weakness intersecting 

the body are only potential planes on which slip could occur; in fact, no slip does occur except 

on the fault plane at the instant of fracture, and elastic theory is valid throughout the body until 

fracture occurs. 

Our model differs from those described above in that planes of weakness have no 

cohesive strength, and the body remains intact only because of the compressive loads acting on 
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it. The planes of weakness are assumed to be faults with rough surfaces. Relative displacements, 

both normal and shear, across the faults are possible because of deformation at asperities in 

contact. Deformation of the body as a whole therefore involves both the elastic deformation of 

the solid material between the faults and the relative shear and normal displacements across the 

faults. For the isotropic materials under consideration here, the faults are considered to be 

randomly spaced and oriented. 

This model was used to analyze the behavior of porous rocks under hydrostatic pressure 

loading [4]. Because of the symmetry of the applied stress system, each fault in that analysis is 

subjected to a purely normal load. Although the matrix material can be assumed to be linearly 

elastic, the contribution of the joints to overall deformation is found to be non-linear, both 

because the Hertzian deformation of individual asperities is non-linear, and because the number 

of asperities contributing to the total load increases as closure brings them into contact. Walsh 

and Grosenbaugh’s analysis [4] showed that the effective compressibility depends on porosity as 

described by the non-dimensional parameter αjλ, where αj is the total area of the joints in the 

pore phase per unit volume and λ is a characteristic length describing the topography of the joint 

surfaces. The significance of λ will be discussed more fully later. 

Walsh and Grosenbaugh [4] considered only the hydrostatic loading, analyzing effective 

bulk modulus by evaluating the response of each fault to normal stress alone and summing the 

contribution of all faults using an appropriate averaging scheme. In this study we use the same 

model to study deformation under triaxial loading, which is more relevant to engineering 

problems. Evaluation of elastic properties such as Young’s modulus and Poisson’s ratio requires 

summing the deformation at individual joints in both the normal and shear modes. These 

boundary conditions at the joint surfaces were established in a recent analysis [5] of the normal 
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and shear displacements for rough surfaces. Large overall displacements can be considered in 

our new model, and so all stages of deformation, from the initial elastic response to the final 

“fracture”, can be analyzed. The passage of acoustic waves are also simulated by considering 

low amplitude, cyclic loading, giving expressions for both the elastic and the inelastic dynamic 

properties of the model.  

2. Analysis 
 

2.1 Preliminaries  

As described above, porosity in isotropic rock is simulated by randomly oriented planar 

joints with rough surfaces intersecting an elastic body. We consider only axially-symmetric 

loading systems, as in Fig. 1. Because of this symmetry, a representative joint plane at angle β to 

the 1-axis can be considered to be loaded by axial stress σ1, lateral stress σ2 applied parallel to 

the plane of the joint, and radial stress σ3 (σ2=σ3) oriented normal to axial stress σ1 and lateral 

stress σ2, as in Fig. 2a. Lateral stress σ2 doesn’t affect deformation of the joint itself (although it 

contributes to the deformation of the elastic matrix), and so analysis of the effect of the joint on 

overall deformation of the body can be carried out considering only the axial and radial 

components, σ1 and σ3, respectively, of the loading system, as in Fig. 2b. As shown in Fig. 2b, 

the applied loads σ1 and σ3 are equilibrated by normal and frictional shear stresses, σc and τc, at 

the interface between asperities in contact.  

In typical “triaxial” tests in the laboratory, a hydrostatic pressure p0 is applied to the 

sample, and this is considered the initial state for subsequent changes in stresses and 

displacements. Accordingly, we adopt the notation that changes in stresses and displacements are 

indicated by ∆; for example:  
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as in Fig. 3. We will be analyzing cases where the change ∆σ3 in radial stress is proportional to 

the change ∆σ1 in axial load, that is 

 13 σ∆=σ∆ r . (2) 

 Using Mohr’s construction, we find that applied stresses (σ, τ) acting on the joint surface 

are 

 
β−σ∆++σ∆=σ

ββ−σ∆=τ
2

101

1

sin)1(
cossin)1(

rpr
r

 (3) 

This applied stress system is in equilibrium with shear and normal stresses, σc and τc, at contacts 

(as in Fig. 2b). The deformation of the surface to this stress system---both the normal and shear 

components of joint deformation (∆w, ∆u)---depends on the topography of the surfaces in 

contact. The topography of the microfractures that comprise porosity isn’t known, of course, but 

fortunately the simple model proposed by Greenwood and Williamson [6] has been found to 

provide a good simulation for a variety of fault surfaces [7]. We assume that it is adequate for the 

analysis here. Greenwood and Williamson [6] assume that asperities are so widely spaced that 

deformation at one location does not affect neighboring contacts. Further, the tips of all asperities 

are assumed to have the same radius R, and the probability density function g(h) for heights h 

(relative to a fixed plane through the rough surface) is approximated by a negative exponential, 

that is 

 λ−=λ hehg )/(  (4) 

In a previous analysis [5], we show that the normal and shear displacements (∆w, ∆u) for 

this model of a rough surface are given by the expressions: 
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)/1ln()/(

)/ln( 0

στ−=λ∆−

σ=λ∆

ffu

pw
S

 (5) 

where the assumption has been made that 2(1-ν)/(2-ν)≈1; this approximation induces an error of 

20% at most for typical values of Poisson’s ratio ν. The superscript S in (5) indicates that shear 

displacement ∆uS involves slip at asperity contacts. Walsh and Zhu [5] show that for slip to occur  

 σ∆≥τ f . (6) 

For planes oriented such that shear stress τ is less than f∆σ, contacts are “locked”, and so the 

shear deformation that occurs is elastic; i.e., the component resulting from slip at contacts is 

zero. The elastic displacement (∆uE/λ) for a locked surface is found by examining the expression 

for (∆uS/λ) in (5) in the limit where slip is no longer possible; this can be done, for example, by 

allowing the friction coefficient to become infinite. We find that displacements at the joint are 

given by 

 

)2/(/)/(

)0()/1ln()/(

)2/0()/ln( 0

π≤β≤βστ=λ∆

β≤β≤στ−=λ∆−

π≤β≤σ=λ∆

υ

υ

E

S

u

ffu

pw

 (7) 

where βυ is the angle that separates planes on which slip occurs from those on which 

deformation is elastic. 

Introducing (1) and (3) into (6), we find that βυ is described by the relationship 

 [ ] frrr /sin)1(cossin)1( 2
υυυ β−+=ββ−  

or  

 0tan)1(tan2 =+β
−

−β υυ r
f

r  (8) 

Factoring (8), we find 
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⎤
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⎡
−

−
±

−
=βυ r

f
r

f
r 4)1()1(

2
1tan 2  (9a) 

Evaluating (9a) for the case of uniaxial compression (r=0) shows that the + sign before the 

radical is operative; i.e., 

 ⎥
⎦

⎤
⎢
⎣

⎡
−

−
+

−
=βυ r

f
r

f
r 4)1()1(

2
1tan 2  (9b) 

Note in (9b) that for a specified friction coefficient f, r has a limited range over which slip 

(∆u/fλ) in (7) is possible; that is, r has the maximum value rm such that the radical is not 

negative: 

 041
2

=−⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −
m

m r
f
r  (10a) 

Making use of the binomial theorem, we find 

 2222 )1(1221 fffffrm −+=+−+=  (10b) 

and the range of angles for which slip can occur is found from (9b) and (10b). It can be 

expressed as 

 mrff =−+≤βυ
21tan . (10c) 

2.2 Reciprocal Theorem  

Betti’s reciprocal theorem [8] provides a convenient method for evaluating the effect of 

the deformation of the model’s two components---the joints and the solid, elastic matrix---on 

overall deformation of the body. The technique involves the use of two stress systems acting 

individually on bodies having the same configuration and elastic properties. The two stress 

systems are illustrated in Fig. 4. Fig. 4a describes the actual stresses and displacements for the 

model that we are using (as in Figs. 2 and 3). The other stress system is designed such that 
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application of the reciprocal theorem will produce the characteristics of the body one is seeking. 

Here we need the overall deformation resulting from the radially symmetric stress system (∆σ1, 

r∆σ1). To derive the axial component of the displacement, we apply an axial stress to the 

external and internal surfaces of the body; as in Fig. 4b, this results in a uniform stress 

throughout the body. 

In its simplest form, the reciprocal theorem demonstrates that the work ∆W’ done by the 

stresses in Fig. 4a acting through the displacements in Fig. 4b must equal the work ∆W” done by 

the stresses in Fig. 4b acting through the displacements in Fig. 4a. The displacements ∆u1 and 

∆u3 in the axial and radial directions from the components ∆w and ∆u normal to and parallel with 

the joint surface are given by (5); referring to Fig. 5, we find, 

 
β∆+β∆−=∆

β∆+β∆=∆
cossin

sincos

3

1

wuu
wuu

 (11) 

Note that ∆u1 and ∆u3 are positive in compression (shortening). The displacements ∆u and ∆w in 

(5) are expressed in terms of stresses ∆σ1 and r∆σ1, in the axial and radial directions by 

combining (3) and (7); incorporating the restrictions imposed by (9b) gives 

 

( ){ }
( )

( ) ( )
( )
( ) 2/

]sin)1([1
]cossin)1[(

0
]cotsin)1([1

]sin)1([1ln

]sin)1([1ln

2
01

01

2
01

2
01

2
01

π≤β≤β
β−+σ∆+

ββ−σ∆
=λ∆

β≤β≤
⎭
⎬
⎫

⎩
⎨
⎧

β−β−+σ∆+
β−+σ∆+

=λ∆

β−+σ∆+=λ∆

υ

υ

rrp
rpu

ffrrp
rrpfu

rrpw

E

S  (12) 

Displacements at the joint in Fig. (4b) are found to introduce terms of the order of 

porosity; such terms are negligible in an analysis like this, and so we ignore these displacements 

in the calculation. Work ∆W’ is found to be give by the expression 

 )  (13a) 21()/(' 32
1 ν−σ∆=∆ rLEW

Zhu and Walsh - 12 -  3/20/2006 
Porous Rocks 
 



The expression for ∆W” is found to be 

  (13b) )sin(" 1
22

1 uLuLW ja ∆β−∆σ∆=∆

 where Lj is the length of the joint, and  Lj sinβ is the length of the joint normal to the axis of 

symmetry. 

Evaluating (13a) and (13b), we find 

  (14a) 1sin uj
M
aa ∆βα+ε=ε

where  Luaa /∆=ε

)21)(/( 1 ν−σ∆=ε rEM
a  

αj = joint area per unit volume = Lj
2/L3,  

superscript M refers to elastic properties of the solid matrix, and ∆u1 is given by (11) and (12). 

The effective displacement ∆ur in the radial direction is found following the same 

procedure, except that ∆σ3 is applied to all internal surfaces as well as the external radial faces. 

One finds that the radial strain εr is given by the expression 

  (14b) 3cos)2/( uj
M
rr ∆βα+ε=ε

where  Lurr /∆=ε

)]1()[/( 1 ν−−νσ∆−=ε rEM
r  

and ∆u3 is given by (11) and (12). 

The deformation of the body as a whole is found by summing the contribution of each 

joint plane defined by (14), given the constraints in (9). We are considering isotropic behavior, 

and so the joint planes must be randomly oriented; the procedure for assuring that the 

distribution is random is to consider each positioned uniformly on the surface of a unit sphere, as 
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in Fig. 6. We see that the summations for overall axial and radial strains <εa> and <εr> are given 

by the integrals 

 
}coscossincossin){2/(

}cossincossincossin{
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2/ 2/

0

322
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β π
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β
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∆
−βββ
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βββ
λ
∆

+βββ
λ

∆
+βββ

λ
∆

λα=ε−>ε<

dwdudu

dwdudu

ES

j
M
ra

ES

j
M

a

(15) 

The integrals were evaluated using MATHEMATICA and plots of and  

are given in Fig. 7. Of course, all rocks are anisotropic to various degrees. The effect of 

anisotropy on rock deformation can be incorporated into expression (15) by including weighting 

functions in the integration. These weighting functions should represent the statistical 

distribution of voids obtained by quantitative structural or microstructural study.  

M
aa ε−>ε< M

rr ε−>ε<

2.3 Dynamic Stressing---Elastic Component  

A stress wave traversing a sample superimposes a harmonically varying stress on the 

existing stress system. Mindlin and Deresiewicz [9] show for a single asperity that cyclic loading 

is almost elastic at small amplitudes, and further that the compliance of the contact to cyclic 

loading does not depend on the shear stress acting on the joint. Walsh [7] found that these 

observations held as well for rough surfaces. 

On the other hand, dynamic compliance does depend on the normal stress, as one would 

expect: higher normal stress increases the area of contacts and the number of contacts, making 

the surface stiffer. It is this sensitivity of compliance to normal stress that gives rise to “stress 

induced anisotropy” and “shear wave birefringence” observed in experiments on isotropic 

samples where the background stress system is not hydrostatic. Intrinsic anisotropy in the porous 

structure, and anisotropy caused by stressing, can be accommodated in the model we have 

proposed, but such topics are not warranted in the analysis here, where general characterization 
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of constitutive behavior is of interest. Accordingly, we assume that dynamic loading is 

superimposed on an isotropic system; i.e., the sample is structurally isotropic and the pre-existing 

stress is hydrostatic. 

We find the elastic dynamic response by repeating the analysis for small excursions in the 

cyclic axial stress 1
~σ∆ ; i.e., for 1/~

01 <<σ∆ p . Normal and shear displacements λ∆ /~w  and 

λ∆ /~u  of the joint for 1/~
01 <<σ∆ p are found from (12) to be given by the expressions 

 
ββ−σ∆=λ∆
β−+σ∆=λ∆

cossin)1)(/~(/~
]sin)1()[/~(/~

01

2
01

rpu
rrpw

 (16) 

Axial and radial displacements of the joint, 1
~u∆ and 3

~u∆ , are found from (11) and (16) to 

be 

 
βσ∆=λ∆

βσ∆=λ∆
cos)/~(/~

sin)/~(/~

013

011

pru
pu

  

and aε
~  and rε

~ from (14) are expressed by 

 
βσ∆λα=ε−ε

βσ∆λα=ε−ε
2
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2
01
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pr

p

j
M
rr

j
M
aa  (17) 

 Strains in (17) are elastic (note that friction factor f does not appear), and so integration is 

over all orientations 0≤β≤π/2; we find 

 
)/~)(3/(~

)/~)(3/(~

01

01

pr

p

j
M
rr

j
M
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σ∆λα=ε−>ε<

σ∆λα=ε−>ε<
 (18) 

Young’s modulus >< E~  is given by >ε<σ∆ a
~/~

1 , and Poisson’s >ν< ~  ratio is 

>ε<>ε<− ar
~/~ .  For uniaxial compression (r=0); we find from (18) 

 
)]/)(3/(1/[~

)/1)(3/(/1~/1

0

0

pE

pEE
M

j
M

j
M

λα+ν−>=ν<

λα=−><
 (19) 

Zhu and Walsh - 15 -  3/20/2006 
Porous Rocks 
 



Note that the response to a purely hydrostatic cyclic loading can be found from (19). The sample 

is subjected to a uniform harmonic hydrostatic load by letting r=1 in (18); the volumetric strain 

VV /~∆ is given by 

 >ε<+>ε=<∆ raVV ~2~/~ , or  

 0//1~/1 pKK j
M λα+>=<  (20) 

where >∆<σ∆>=< VVK /~/~~ .  

Note also that, because the sample can be considered elastic for small amplitude cyclic 

loading, dynamic behavior under shear loading can be found from (18) and (19) using the 

standard relationships between elastic properties; for example, effective shear modulus >< G~  

can be evaluated from the relationship 

 ><−><>=< KEG ~3/1~/3~/1 , 

giving  

 03/2/1~/1 pGG j
M λα+>=<  (21) 

2.4 Dynamic Stressing---Anelastic Component  

Although the sample can be considered to be elastic for small amplitude cyclic loading, 

nevertheless some energy is dissipated owing to micro-slip against friction at some contacts. 

Although all contacts contribute to the stiffness of the surface, not all contacts are a source of 

frictional dissipation. As we saw in the analysis for the static constitutive behavior of the model, 

deformation on planes having certain orientations given by (9) is purely elastic. Here, to simplify 

the presentation, we consider only the case r=0, i.e., the cyclic loading is uniaxial compression 

1
~σ∆ , where 1/~

01 <<σ∆ p . 
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Mindlin and Deresiewicz [9] derived an expression giving the energy loss for this case 

resulting from frictional dissipation for two asperities in contact. Deriving the expression for the 

loss ∆WF from friction for all planes involves summing the contribution from each joint for 

which loss occurs. Referring to the Appendix, we see that the analysis is straightforward, 

following the same steps leading to the expression for >< E~ in (19). The loss ∆WF per unit 

volume arising from frictional dissipation given by (A-7) is found to be 

 )()/~(
)1(2

2
3
4 2

0
3

1 υβσ∆λα⎥
⎦

⎤
⎢
⎣

⎡
ν−
ν−

=∆ FpW jF , 

where  

 22) ββββ−=β ∫ υβ
υ dffF 442

0
2 cossin)tan1)(/1()(  (

)

F(βυ) was calculated numerically and is plotted in Fig. 9. 

Attenuation in dissipative materials is commonly described by Q-1, the reciprocal of the 

quality factor. For uniaxial compression, the attenuation is  1−
EQ

  (23a) /)(2/1(1
SEFE WWQ ∆∆π=−

where ∆WF is the energy loss per cycle and ∆WSE, the maximum shear strain energy during the 

cycle, is 

 ><σ∆=∆ EWSE
~2/~ 2

1  (23b) 

Combining (22) and (23) gives 

 )(~)/~(
)1(2

2
3
4 2

0
1

υ
− βε∆><λα⎥

⎦

⎤
⎢
⎣

⎡
ν−
ν−

π
= EjE FpEQ  (24) 

where 

 ><σ∆=ε∆ E~/~~  (25) 
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3. Discussion 
 

We have analyzed a model for simulating the deformation of rocks under stress in which 

the pore space is the aperture between rough faults traversing the sample. For the isotropic 

material considered here, the faults are randomly spaced and oriented. As in a previous analysis 

[4], employing this model, the effect of porosity is found to be described by the non-dimensional 

term, λαj, where αj is the area of all joints per unit volume and λ is a parameter having 

dimensions of length that describes the roughness of the surface in a statistical sense. 

The topography of most rough surfaces can be described statistically as Gaussian 

( 2/2)/(

2
1)/( λ−

π
=λ hehg ); that is, the heights of the surface above a reference plane at random 

locations have a normal distribution. Here, we are interested in the distribution of the heights of 

asperities (summits) above the reference plane. This distribution can be found [10-12] from the 

first three moments of underlying distribution of heights. To make the calculations easier, we 

have chosen to approximate the distribution g(h/λ) of asperity heights h by a negative 

exponential e-h/λ (see (4)), where λ is found by fitting the exponential to the appropriate part of 

the distribution function. We make the further simplification that all asperities have the same tip 

radius R. The justification for using these approximations and the procedure for estimating λ are 

discussed by Walsh [7]. 

We have considered only applied stress systems that are axially symmetric; i.e., 

deformation occurs in response to an axial stress σ1 and radial stress σ3. Overall deformation is 

composed of components representing elastic compression of the solid material in the model and 

closure of the rough faults comprising the pore phase. Although the matrix material is linearly 

elastic, deformation in the model is non-linear because closure and slip against friction at the 
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joints isn’t a linear process. In this respect, the model is similar to models where pore space 

consists of isolated pores and cracks----in these models, closure and slip against friction at cracks 

introduces the non-linear element of overall deformation, which is characteristic of rock 

deformation observed in the laboratory. 

Summing the contributions of all of the individual components of the body is 

conveniently carried out using the reciprocal theorem. The procedure, which is described briefly 

in the text, leads to general expressions (14) for axial and radial strains (εa, εr) involving the non-

dimensional parameter λαj that describes the configuration of the pore phase, the friction 

coefficient f, and the ratio r of the applied radial stress ∆σ3 to the axial value ∆σ1 (see (1) and 

(2)). The integrations required to evaluate (14) were carried out numerically using 

MATHEMATICA, and the results are presented in graphical form in Fig. 7.  

3.1 Triaxial Experiments  

The constitutive behavior of the model in experiments where radial stress ∆σ3 is 

increased at a uniform rate r proportional to the axial load ∆σ1 is described in Fig. 7. We see that, 

in general, strains are a function of both the ratio r (=∆σ3/∆σ1) and the Coulomb friction 

coefficient f. The volumetric strain e, where 

 rae ε+ε= 2 , (26) 

is anomalous. Calculating e from (15), we find 

   (27) ∫
π ββλ∆+= 2/

0
cos)/( dwee M

Note that the expression for e in (27) depends only on the normal displacement ∆w between the 

fractures; it is unaffected by the friction coefficient f, and so the volumetric strain component can 

be expected to be free from dissipation and hysteresis in loading/unloading cycles. 

Zhu and Walsh - 19 -  3/20/2006 
Porous Rocks 
 



The expression for volumetric strain e in (27) can be integrated [13, eqn. 2.733.1], giving 

a solution in closed form: 

   )]}/1(tan1[2)/1{ln( 1
01 SSpee j

M −−−σ∆+λα+=

where 

 )1(1
0

1

0

1 r
p

r
p

S −
σ∆

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ σ∆
+=  (28) 

As r approaches one (as the load approaches uniform compression), (28) becomes 

  (29) )/1ln( 01 pee j
M σ∆+λα=−

Note that (29) could be obtained directly from (12) for r=1 and (14). 

Walsh and Grosenbaugh [4] analyzed the deformation of cracked elastic bodies under 

hydrostatic pressure, and Wong et al. [14] refined the calculation. As in the present model, 

fractures were considered to be rough surfaces with asperity heights distributed as in (4), with the 

difference that fractures did not necessarily extend through the body. The compressibility of their 

model at zero load is finite, therefore, where as in the present model the compressibility is 

infinite. Allowing for this difference, one can show that all expressions are equivalent for the 

case where compressibility under zero load is infinite.  

As mentioned above, the lack of a term involving friction in the general expression for 

volumetric strain suggests that no hysteresis should be observed in a plot of volumetric strain 

during a loading/unloading cycle under any loading path. Walsh [2] analyzed a uniaxial 

compression test on Westerly granite in which axial and radial strains were measured throughout 

a loading/unloading cycle. Although hysteresis was observed in stress-strain curves for both 

axial and radial components, hysteresis was negligible in a plot of volumetric strain as a function 
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of stress, in agreement with the analysis here (and in Walsh’s [2] analysis of a model utilizing 

open and closed ellipsoidal cracks). 

3.2 Faulting  

The constitutive behavior of the model in a conventional uniaxial compression 

experiment (i.e., where r=0) is described in Fig. 7a. We see in Fig. 7a, that uniaxial stress 

approaches an asymptotic value ∆σ1F at large strains for all values of friction coefficient f 

(except f=∞ where contacts are effectively welded). The value of ∆σ1F can be calculated using 

(12). Note in (12) that the expression for uS/λ approaches infinity as the denominator approaches 

zero. That is, the asymptotic values of the angle βF of faulting and stress ∆σ1F can be found from 

the equation 

 ( ) [{ j
j

rffr
p

−−ββ−⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ σ∆
−= /)(cotsin110 2

0

1 ] }  (30) 

In a conventional triaxial experiment, r=0, and (30) becomes 

 [ 1sin)/cos(sin 2

0

1 =β−ββ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ σ∆ f
p

j

]   

or equivalently, 

 [ 212cos)/2(sin
0

1 =−β+β⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ σ∆ f
p

j

]  (31) 

The asymptotic values of ∆σ1/p0 depend on β, and the value (∆σ1F /p0) operative in the model is 

the minimum value; that is, the value where d(∆σ1/p0)/dβ=0. We find from (31) that the angle βF 

for faulting is given by the expression 

 fF /12tan =β  (32) 

and the value ∆σ1F of axial stress at faulting is given by 
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 )1(2)/( 2
01 fffp jF ++=σ∆  (33) 

It is interesting to note that (32) and (33) are the expressions that define the axial stress required 

for faulting and the angle of the fault in Coulomb’s (and others) theory of failure (see [3]) for the 

special case where the strength at zero confining pressure is zero. We see that the model provides 

an alternate way of arriving at theoretical failure stress, namely by determining displacements 

and deriving the stress and angle for which slip displacement is unlimited. The similarity 

between the behavior of the model and the maximum shear stress theory of faulting isn’t exact 

because in faulting theory fracture occurs by failure along a single plane, whereas in the model 

failure occurs by uninhibited sliding along many planes symmetrically positioned around the 

axis. In addition, as noted above, the model has no strength until compressive stresses are 

applied, whereas faulting theory provides for a finite tensile strength, which, of course, is 

characteristic of real rock. (Analyzing a model where the fracture planes don’t extend completely 

through the body involves only minor variations in the analysis presented here; we didn’t use this 

approach, however, because we felt the advantages were small compared with the complications 

that it increased in the calculations and presentation of the results).  

One finds by following the same procedure outlined above for the case where r≠1 in 

expression (30) that faulting occurs only for a limited range of r and f. Repeating the calculations 

here would be superfluous; they show, surprisingly, that the angle βF at which faulting occurs 

does not depend on r; i.e., βF is given by (32). The faulting stress (∆σ1F /p0) is found to be given 

by the expression 
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Note in (34) that faulting stress ∆σ1F becomes infinite when the term in brackets is zero. In other 

words, for a given radial stress ratio r, faulting occurs only for a range of values for friction 

coefficient f given by 

  (35) rrf 4/)1( 22 −≤

The failure of real rock occurs in stages, and some rocks under some conditions may not 

fail by brittle faulting at all----i.e., the specimen can support higher and higher axial loads with 

no instability or asymptotic limit. Generally speaking, strong, low-porosity rocks fail by faulting 

at all confining pressures attainable in the laboratory, whereas weaker, higher-porosity rocks 

fault only at relatively low confining pressures (e.g., [15-17]). Deformation in this class of rocks 

at low axial stress is elastic, or nearly so. Though elastic, the stress-strain curve is concave 

upwards (i.e., becomes stiffer under increasing load) because of the non-linear effect of the 

compression of pore space, as described above. Measurements of acoustic emission (e.g., [18]) 

show that microfracturing begins as axial stress is increased, the events positioned and oriented 

randomly throughout the sample. As axial load increases, these events begin to show a preferred 

orientation and location, and finally the sample fails by faulting on the plane described by these 

latter events. 

Our model simulates in an approximate way the initial and final steps in this process. In 

Fig. 7, we have plotted a curve labeled f=∞; for this case, contacts are effectively welded, and so 

the sample responds elastically, with no fracturing. As described above, the other curves refer to 

a sample where all contacts are mobile. One can imagine simulating the deformation of a real 

rock as a gradual transition from elastic response (i.e., f=∞) to faulting and pre-faulting behavior 

of the model when contacts are free to slide. We illustrate the progress from microfracturing to 

faulting in Fig.8. The elastic phase 0-1 during brittle failure of a rock can be simulated in the 
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model by letting the friction coefficient become infinite: deformation arises only from closing of 

the pore phase. In the leg 1-2 where microfracturing is ubiquitous, we allow the friction 

coefficient to assume a finite value: microfracturing is equivalent to slip occurring at contacts on 

the rough surfaces which comprise the pore phase. Microfracturing in leg 2-3 occurs 

preferentially along the future plane of faulting. We could simulate this stage by analyzing a 

model where slip on a particular plane is enhanced by, for example, assuming that the geometric 

factor λαj is larger for that orientation. But such a calculation is beyond the scope of this study, 

so we have merely indicated in Fig.8 a transition to deformation on a single fault in leg 3-4.  

In Fig. 8, we see that the deformation path we have sketched is energetically acceptable, 

that is, the elastic strain energy released from stress reduction under increasing strain is available 

to balance energy lost through sliding against friction. Although the progression from elastic 

deformation to faulting in Fig.8 is observed for some rocks, the energy balance lacks one 

significant component, namely work done by volume change acting against confining pressure. 

By assuming that displacements are continuous throughout the body and no gaps open up as slip 

occurs on fracture planes, our model ignores one characteristic of deformation in the non-elastic 

range, the so-called ‘dilatancy’ (e.g., [19-20]). As shown by direct observation, dilatancy is 

caused by the formation and opening of cracks preferentially oriented parallel to the maximum 

compressive load. This phenomenon introduces a component of radial strain that tends to expand 

the sample, in competition with the elastic contraction caused by the applied compressive 

loading. The magnitude of the dilatant component and the conditions under which it occurs 

cannot yet be given unambiguously---suffice to say, however, no dilatancy is allowed in the 

present model (see, e.g., expressions (28) and (29)). 

3.3 Dynamic behavior  
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As we show in the text, dynamic moduli can be considered elastic. The expressions for 

Young’s modulus >< E~ and rigidity >< G~ , given by (19) and (21) respectively, depend upon 

only the elastic properties of the solid matrix material and λαj, the parameter that describes the 

pore phase. Note that the geometrical characteristics (i.e., λαj) of the joints are explicitly 

incorporated for in our model, which differs from numerical programs such as 3DEC in 

simulating cracked rock. The area of the pore phase (here taken to be half of the wetted area) can 

be found by direct measurements (e.g., [14]). The roughness parameter, defined by (4), can be 

measured for macroscopic surfaces (e.g., [5], [21]). But in analyses like this one here, λ must be 

considered a geometric property, which always occurs in the product λαj, and which has 

application only as a term that shows the difference between properties of a porous body and 

those of the elastic, solid matrix, as in (19), (21), and (24). 

The parameter λαj is non-dimensional. It is useful only if the value found for one 

physical parameter can then be used to estimate the effect of porosity on another parameter. We 

find that λαj can be used in this way. Stewart et al. [22] carried out a series of experiments on 

Berea sandstone samples, measuring P- and S-wave velocities and attenuation as a function of 

strain amplitude and confining pressure. We have taken their velocity data and converted them to 

moduli following standard procedure. 

We see in (21) that the slope sG of a plot of 1/G~  vs. 1/p0 can be used to find the porosity 

parameter λαj; i.e., 

 3/2)/1(/)~/1( 0 jG pdGds λα==  (36) 

The slope sG from Stewart et al. [22] velocity measurements is plotted in Fig. 10. Note that sG 

approached a constant value, as predicted by the model, only at pressures above approximately 

20 MPa. The lack of agreement at low confining pressure is not surprising, as we discussed 
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above, the model predicts that moduli are zero when confining pressure is zero, whereas the 

modulus is finite at all pressures for all rocks because of the tensile strength. Walsh and 

Grosenbaugh [4] corrected this problem by introducing a term that made the modulus finite at 

zero pressure; however, this procedure cannot be applied here because it contaminates the 

behavior of the model as faulting is approaching---i.e., the region of primary interest in this 

study.  

The slope sG at pressures above 20 MPa is 1.9x10-4, and so from (36) the parameter λαj is 

approximately 3x10-4. Walsh and Grosenbaugh [4], using measurements of bulk modulus for 

Navajo sandstone, Casco granite and Westerly granite, found values of λαj in the range 10-4 to 

10-3, depending upon rock type and measurement technique. Although Berea sandstone was not 

part of their study, the values of λαj are in the range expected from our analysis. 

As discussed above, the parameter λαj must be applicable to other properties that depend 

on porosity. Comparison of (19) and (21) indicate that the slope sG in (36) must be twice the 

slope sE of a plot of 1/ E~  vs. 1/p0, where  

 3/)/1(/)~/1( 0 jE pdEds λα==  (37) 

We have plotted the ratio sG/sE in Fig. 11. This ratio has the asymptotic value sG/sE=2, in 

agreement with the predicated value, except at low confining pressure where the model is not 

expected to be accurate. 

Measurements of Q-1 by Stewart et al. [22] provide another way to estimate the value of 

λαj. The estimate inevitably lacks precision because it relies on observations of both the pressure 

dependence of Young’s modulus and the dependence of the quality factor on pressure and strain 

amplitude. Further, measurements of quality factor show that Q-1 is proportional to strain 

amplitude only at amplitudes greater than 10-5 (see [22] for reference to their measurements). We 
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have sidestepped this problem by using the rate of change of these elastic and inelastic 

parameters with pressure rather than measurements of the parameters themselves. Specifically, 

we calculated  and ε
−

1

1 )/( dpdQ dppEd /)/~( 2
0 as a function of pressure and strain amplitude. As 

shown by (24) the ratio should lead to an estimate of λαj; that is 

 )(~
3
4]/)/~(/[)/( 1

2
01

1
υε∆

− βλαε∆
π

=>< FdppEddpdQ jE  (38) 

where we have made the approximation (2-ν)/(2-2ν)≈1. The ratio is plotted in Fig. 12 as a 

function of strain amplitude and confining pressure. The relationship is approximately linear, as 

predicted. Confining our attention only to data at higher pressures, for the reasons discussed 

above, we see that the slope is approximately 3.6x10-5; that is, from (38) 

 14 )()
4

3(106.3 −
υ

− β
π

×=λα Fj  (39) 

If we use a friction coefficient f of 0.6---the value commonly used for sliding polycrystalline 

rock surfaces, the porosity parameter λαj is approximately 2x10-3. On the other hand, 

measurements by Byerlee and by Horne and Deere (e.g. [23]) suggest that a friction coefficient 

in the range 0.1-0.2 is appropriate for very low amplitude displacements and for sliding between 

single crystal materials. Using a friction coefficient of 0.2, we find that λαj is approximately 

4x10-4. We see that both values of λαj are consistent with the values obtained using expressions 

for elastic moduli. 

 

Conclusion 

A new model was utilized to study the constitutive behavior of rock under axially-

symmetric loading. In this model, the pore phase is approximated by rough planes, randomly 

spaced and oriented, extending through the sample. The roughness is caused by asperities, and 
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we assume that all asperities have the same tip radius R and the distribution g(h/λ) of asperity 

heights h is given by a negative exponential e-h/λ. Slip at contacts under local shear stress is 

resisted by simple Coulomb friction, with friction coefficient f.  

1. Using this model, we derived general expressions of stress-strain relations in terms of 

the non-dimensional parameter λαj that describes the configuration of the pore phase, the friction 

coefficient f, and the ratio r of the applied radial stress ∆σ3 to the axial value ∆σ1.  

2. Our model provides a quantitative approximation to the brittle failure process. In our 

model, stress-induced microfracturing begins as randomly oriented microslip throughout the 

sample. As axial load increases, microslip occurs along preferred orientation and location, which 

finally leads to deformation on a single fault. The model was found to fault under static loading 

conditions---the axial load at faulting and the angle of the “fracture” plane agree with values of 

those parameters given by Coulomb’s theory of fracture.  

3. We demonstrated that the dynamic moduli and Poisson’s ratio are virtually elastic and 

independent of the friction coefficient acting at contacts.  

4. We also demonstrated that the attenuation  for uniaxial dynamic loading is a strong 

function of the friction coefficient and increases linearly with strain amplitude, in agreement with 

laboratory measurements.  

1−
EQ

The constitutive relations derived from our model are based on Greenwood and 

Williamson [6] and Walsh and Zhu [5]. It is shown that the results from our model are consistent 

with Coulomb’s theory of fracture and agree well with existing experimental data. Our model 

provides a useful tool in studying the response of a rock mass where joints or fractures are well-

developed [e.g., 25]. While the numerical modeling becomes a standard tool to determine stress-
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states and elastic properties of a complex structure, our model should provide a necessary ground 

truth for increasingly intricate multi-dimensional, multi layered computer programs. 
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Figure Caption 

Fig. 1. In the model (having dimension LxLxL), the linearly elastic matrix is intersected 

by rough joints, randomly distributed and oriented. The load (σ1, σ2, σ3) is axially symmetric 

(σ1≥σ2= σ3). 

 

Fig. 2. a) An arbitrary plane in the sample is oriented at angle to the axial load σ1. 

Because of the axial symmetry of the loading system, we can consider only planes parallel to σ3.  

b) Stress σ3 parallel to the plane has no effect on deformation of the joint, and so only σ1 and σ2 

must be included in the analysis. Note in the figure that (σ1, σ2) cause normal and shear stresses 

(σc, τc) at contacts. 

 

Fig. 3. The applied loading system is a hydrostatic confining pressure p0 (not shown) with 

a superposed axial stress difference ∆σ1 (=σ1-p0) and a radial stress difference r∆σ1 where r is a 

proportionality constant. These stresses are equilibrated by shear stress τ and normal stress ∆σ 

(=σ-p0) difference acting on the joint plane. 

 

Fig. 4. The contribution of deformation of a representative rough surface to overall 

deformation is found using the Reciprocal Theorem. Applying the Reciprocal Theorem requires 

consideration of two bodies having the same configuration and elastic properties, as in a) and b) 

in the figure (see text for details). In a), applying (∆σ1, ∆σ3) causes axial and radial deformations 

(∆u1, ∆u3) of the body as a whole. In b) applied external loads (∆σ1, ∆σ3) are equilibrated by 

internal load (∆σ1, ∆σ3) acting on the joint surface. The entire body in b) is therefore under a 
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uniform state of stress (∆σ1, ∆σ3), and so overall displacements (∆ua
M, ∆ur

M) are those for an 

elastic body. 

 

Fig. 5. Axial and radial displacement components (∆u1, ∆u3) acting on the fault are 

rotated to components (∆u, ∆w) parallel and normal to the fault surface. 

 

Fig. 6. To insure randomness, planes are considered to be uniformly distributed on the 

surface of a unit sphere with the usual polar coordinates (ϕ, β). 

 

Fig. 7. Constitutive behavior, both axial and radial strains (εa, εr) as a function of axial 

stress difference ∆σ1 (=σ1-p0), as calculated from (15) using MATHEMATICA. The parameter f 

is the Coulomb friction coefficient at contacts between the rough surfaces, and r is the ratio 

between the radial and axial stress differences (r=∆σ3/∆σ1,). 

 

Fig. 8. Brittle failure of a rock. Marked with (*), the failure process can be divided into 4 

phases: 1) the elastic phase 0-1, which can be modeled by letting the friction coefficient become 

infinite; 2) the microfracturing phase 1-2, when the friction coefficient takes a finite value (f=0.6 

is shown here); 3) the preferential microslip phase 2-3, when slip preferentially occurs along the 

future plane of faulting; 4) the faulting phase 3-4, when sliding along a single fault occurs. With 

frictional coefficient f=0.6, our model predicts that the faulting angle is ~30°, consistent with 

Coulomb’s theory of fracture. Notice that the actual stress-strain curve of a rock (dashed curve) 

deviates from our model because of the existence of cohesion.  The stress-strain curve of a single 

fault is from Walsh and Zhu [2004]. 
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Fig. 9. F(βυ) from equation (22) as a function of frictional coefficient f. 

 

Fig. 10. Dependence of the slope sG=d(1/G~ )/d(1/p0) on confining pressure. Shear 

modulus G~  was obtained from the S-wave velocity measurements by Stewart et al. [1983] (see 

their Fig. 5).  

 

Fig. 11. The ratio between two slopes sG/sE as a function of confining pressure p0. Shear 

modulus G~  and Young’s modulus E~  were obtained from the S and P-wave velocity 

measurements by Stewart et al. [22], respectively (see their Fig. 5). At high confining pressure, 

sG/sE ≈2, which is consistent with our model predictions. The dashed lines represent large 

uncertainty in [22] measurements at low confining pressure. Because we did not include tensile 

strength at zero pressure in our model, we cannot accurately predict mechanical behavior of 

rocks at low confining pressure. 

 

Fig. 12.  The ratio  /ε
−

1

1 )/( dpdQ dppEd /)/~( 2
0 as a function of strain increments at 

confining pressures p0=12 and 20 MPa, respectively. The attenuation data are from Fig. 9 of 

Stewart et al. [1983].  
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APPENDIX 
 

Mindlin and Deresiewicz [9] show that energy δWF lost at the interface between a single 

asperity loaded by a small alternating force oriented at an angle β to the plane of contact is 

 )tan1(
72

~)2( 22

00

3

β−
∆ν−

=δ f
faGN

TWF  (A-1) 

where N0 is the normal force, and T~∆ is the tangential component of the oscillating load, both 

acting on a contact having nominal radius a0; other parameters are defined in the text. Mindlin 

and Deresiewicz’s expression is twice (A-1) because they consider two asperities in contact 

whereas here we consider a single asperity in contact with a rigid surface. 

Mindlin and Deresiewicz [9] show that the compliance of a contact is given by the 

expression 

 )2/(16~
~

0 ν−=
∆
∆ Ga

T
u  (A-2) 

The deformation (h-w) of the tip of a spherical asperity having tip radius R, height h 

relative to a reference plane that has advanced a distance w is related to contact radius a0 (see 

[24]) by 

 )(20 whRa −=  (A-3) 

Hertz (see [24]) shows that the force N0 required to produce displacement (h-w) is given by 

 )1/()()3/28( 22/3
0 ν−−= EwhRN  (A-4) 

Combining (A-1) through (A-4) gives 

   2/1
1 )( −−=δ whCWF

where  
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222
32

1 )2(
)1()tan1(~)/)(23/128(

ν−
ν−β−

∆=
f

fuREGC  (A-5) 

The expression (A-5) giving the energy lost at a single contact must be summed over all contacts 

to find the energy lost for a rough plane. The probability density distribution g(h) for asperity 

height can be assumed to be given by the negative exponential 

 λ−=λ hehg )/(  (A-6) 

where λ is a characteristic length chosen so (A-6) approximates the actual probability when that 

is known; carrying out this summation, we find the energy δWF, per unit area, for a rough plane, 

is 

 )2/1()()( 1/
2/1

1 Γ=λ−=δ λ−λ−∞

λ
−∫ wh

wF enChdewhnCW  (A-7) 

where n is the number of asperities per unit area. 

 The total normal stress p0 acting on the plane is found by summing the forces N0 at 

individual contacts in (A-4); we find 

 )2/5()()( 2/
2/3

20 Γ=λ−= λ−λ−∞

λ∫ wh
w

enChdewhnCp  (A-8) 

where )1/()3/28( 2
2 ν−= ERC . 

 Combining (A-7) and (A-8) gives an expression for energy δWF: 

 3
22

3
tan1

τ∆⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ β−
=δ

f
fCWF   

where 

  (A-9) )22/()2()3/4( 2
03 ν−ν−λ= −pC

Displacement u~∆ is related to the shear load τ∆~ acting on the plane (see [6]) for 0
~ p<<τ∆  by the 

expression 
 )22/()2)(/~(/~

0 ν−ν−τ∆=λ∆ pu  (A-10) 
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and τ∆~ , in turn, is related to the applied axial load 1
~σ∆ : 

 ββσ∆=τ∆ cossin~~
1  (A-11) 

Combining (A-9), (A-10) and (A-11) gives 
   ffCWF /)tan1(cossin 2233

4 β−ββ=δ

where 

 λσ∆ν−ν−= )/~)](22/()2)[(3/4( 2
0

3
14 pC  (A-12) 

To find the total energy ∆WF dissipated, we must sum the loss for an individual plane, 

given by (A-12), over the unit sphere, including only those orientations for which loss occurs; 

that is 

  (A-13a) βββδ=∆ ∫ υβ dWW FF cossin
0

giving 

 )( υβαδ=∆ FWW jFF  (A-13b) 

where 

  ββββ−=β ∫ υβ
υ dffF 442

0
2 cossin)tan1)(/1()( .

The integration in (A-13b) was carried out numerically using MATHEMATICA 4.0; the 

function is plotted as a function of friction coefficient f in Fig. 9.  

Attenuation is typically measured using the quality factor Q; the quality factor is defined 

as 

 , (A-14) )/)(2/1(1
SEFE WWQ ∆∆π=−

where ∆WSE the maximum strain energy during a cycle, is 

 ><σ∆=∆ EWSE 2/~
1   

and <E> is the effective Young’s modulus. Combining (A-12), (A-13), and (A-14), we find 

Zhu and Walsh - 38 -  3/20/2006 
Porous Rocks 
 



 )()/~()]22/()2)[(3/4( 2
01

1
υ

− β><σ∆λαν−ν−π= FpEQ jE  (A-15) 

An equivalent form of (A-15) in terms of the strain amplitude 1
~ε∆ , of the harmonic load, is given 

by the expression 

 )(~)/(
)1(2

2
3
4

1
2

0
1

υ
− βε∆><λα⎥

⎦

⎤
⎢
⎣

⎡
ν−
ν−

π
= FpEQ jE  (A-16) 

 

 

 

 

Zhu and Walsh - 39 -  3/20/2006 
Porous Rocks 
 



Figure 1

L

L

L

σ1

σ2=σ3

σ3



Figure 2

L

L

L

σ1

σ2=σ3

σ3

a)

b) σ1

σ3

σ1

σ3 (σc,τc)
σc τc

σc τc
β

β



σ1

r∆σ1

τ

∆σ

Figure 3



a)
∆σ1

∆σ3

∆u1
∆u3

∆ua

∆ur

∆σ1

∆σ3

b)

∆ua

Figure 4

∆σ1

∆σ3

M

∆ur
M



β

β

∆w

∆u

∆u1

∆u3

Figure 5



φ

β

1

2

3

Figure 6



0.0 0.2 0.4 0.6 0.8 1.0 1.2
0.0

1.0

2.0

3.0

4.0

5.0

6.0

7.0

di
ffe

re
nt

ia
l s

tre
ss

 ∆
σ 1

/p
0

f=0.2
r=0.1

f=0.4

f=0.6

f=0.8

f=∞

0.0 0.2 0.4 0.6 0.8 1.0 1.2
axial strain (εa−εa

M)/αjλ

0.0

1.0

2.0

3.0

4.0

di
ffe

re
nt

ia
l s

tre
ss

 ∆
σ 1

/p
0

f=0.2

r=0

f=0.4

f=0.6

f=0.8

f=∞

0.0 0.2 0.4 0.6 0.8 1.0 1.2
0.0

2.0

4.0

6.0

8.0

10.0

12.0

di
ffe

re
nt

ia
l s

tre
ss

 ∆
σ 1

/p
0

f=0.2
r=0.25

f=0.4

f=0.6

-0.2 -0.1 0.0 0.1 0.2 0.3 0.4 0.5
radial strain (εr−εr

M)/αjλ

0.0

1.0

2.0

3.0

4.0

di
ffe

re
nt

ia
l s

tre
ss

 ∆
σ 1

/p
0

f=0.2

r=0

f=0.4

f=0.6

f=0.8

f=∞

-0.2 -0.1 0.0 0.1 0.2 0.3 0.4 0.5
0.0

1.0

2.0

3.0

4.0

5.0

6.0

7.0

di
ffe

re
nt

ia
l s

tre
ss

 ∆
σ 1

/p
0

f=0.2
r=0.1

f=0.4

f=0.6

f=0.8

f=∞

-0.2 -0.1 0.0 0.1 0.2 0.3 0.4 0.5
0.0

2.0

4.0

6.0

8.0

10.0

12.0

di
ffe

re
nt

ia
l s

tre
ss

 ∆
σ 1

/p
0

f=0.2
r=0.25

f=0.4

f=0.6

f=∞

a) b)

c) d)

e) f)

Figure 7

f=∞

radial strain (εr−εr
M)/αjλ

radial strain (εr−εr
M)/αjλ

axial strain (εa−εa
M)/αjλ

axial strain (εa−εa
M)/αjλ



di
ffe

re
nt

ia
l s

tre
ss

 ∆
σ 1

/p
0

axial strain (εa-εa
M)/αjλ

Figure 8

0.0 0.5 1.0 1.5
0.0

1.0

2.0

3.0

4.0
r=0
f=0.6

sli
p o

n a si
ngle fault

m
ic

ro
sl

ip
 e

ve
ry

w
he

re

“e
la

st
ic

”
br

itt
le

 fr
ac

tur
e process

1

*

2*

3* 4

*



0.0 0.2 0.4 0.6 0.8 1.0
friction coefficient f

0.0

0.1

0.2

0.3

0.4
F(

β υ
)

Figure 9



Figure 10

0

0.5

1

1.5

2

0 10 20 30 40 50 60 70

d(
1/

G
)/d

(1
/p

) (
x1

0-4
)

p (MPa)



Figure 11

?

0

1

2

3

4

0 10 20 30 40 50 60 70

p (MPa)

ra
tio

 s
G
/s

E



Figure 12

0.0

2.0

4.0

6.0

8.0

10.0

12.0

14.0

0.0 2.0 4.0 6.0 8.0

strain (x10-6)

(d
Q

-1
/d
p)

/(d
(E

/p
)2 /d

p)
(x

10
-1

0 )

p0=12 MPa

p0=60 MPa


	A new model for analyzing the effect of fractures on triaxia
	Abstract
	2. Analysis
	3. Discussion

	APPENDIX



