NUTRITIONAL ECOLOGY OF AGALMA OKENI AND OTHER SIPHONOPHORES

1976

FROM THE EPIPELAGIC WESTERN NORTH ATLANTIC OCEAN

MARINE BIOLCOIDAL LAR, MITEORY W00008 (101.2, 1992). W. P. O. I.

by

Douglas C. Biggs

A.B., Franklin and Marshall College

(1972)

Submitted in Partial Fullfillment of the Requirements

for the Degree of Doctor of Philosophy at the

Massachusetts Institute of Technology

and the

Woods Hole Oceanographic Institution

May 1976

Massachusetts Institute of Technology/Woods Hole Oceanographic Institution Joint Program in Biological Oceanography.

Certified by .< Thesis Supervisors

Accepted by .

Author .

Chairman, Joint Committee in Biological Oceanography Massachusetts Institute of Technology Woods Hole Oceanographic Institution Nutritional Ecology of Agalma okeni and Other Siphonophores from the

Epipelagic Western North Atlantic Ocean

bу

Douglas C. Biggs

Submitted to the Massachusetts Institute of Technology/Woods Hole Oceanographic Institution Joint Program in Biological Oceanography for the degree of Doctor of Philosophy, May 1976.

ABSTRACT

The feeding and fishing behavior of siphonophores in their natural environment was observed by SCUBA diving at 171 stations in warm-water areas of the Western North Atlantic Ocean. Calycophorae and Physonectae showed a two-phase cycle of fishing and swimming. The fishing posture of a siphonophore is determined by its floatation and by the contractility of its stem; fishing postures can be similar in siphonophores which are unrelated generically. Total tentacle length in colonies with 2 - 3 mg body protein can extend 4.5 meters.

Variations in the morphology of tentilla reflect differences in the kinds of prey which can be captured. Dissection of feeding polyps revealed that most siphonophores could eat copepods, amphipods, polychaetes, pteropods, heteropods, veliger larvae, sergestids, mysids, euphausiids, and small fish, though laboratory experiments showed that not all could eat nauplii. Species which could capture <u>Artemia</u> nauplii usually required 2 - 4 hours to digest them, while large prey took 7 - 18 hours to be digested. Since a single feeding polyp of species which captured nauplii could ingest more than one per minute, colonies with 20 - 150 feeding polyps may be able to eat several hundred individuals within minutes if they encounter aggregations of small zooplankton.

Agalma okeni was the most common siphonophore encountered by divers. Colonies of A. okeni maintained in the laboratory on a diet of Artemia nauplii, copepods, or shrimp budded an additional feeding polyp and 1 - 2 pairs of nectophores about every two days. Energetic calculations suggest that small and medium-size colonies incorporate 48% and 33%, respectively, of ingestion into production. A small colony of <u>A. okeni</u> with six nectophores probably requires 2.8 - 5.0 calories to balance daily rates of oxygen consumption and growth; a

1977-WMDI

medium-size colony with 14 nectophores probably requires 5.8 - 9.2 calories. Extrapolating from short-term increases in size in the laboratory, the generation time of <u>A</u>. okeni in tropical and sub-tropical regions is likely $2 \ 1/2 - 4$ weeks.

Respiration of siphonophores at $26 \pm 3^{\circ}$ C ranged from 2 - 86 μ l $0_2/mg$ protein-hr, and ammonia excretion ranged from 0.1 - 3.3 μ g NH₄/mg protein-hr. The cystonects <u>Rhizophysa filiformis</u> and <u>Bathyphysa sibogae</u> had low rates of respiration and excretion, while calycophores of the genus <u>Sulculeolaria</u> had the highest rates. For most siphonophores, ratios of oxygen consumed to ammonia-nitrogen excreted ranged from 16 - 36 and suggest that both protein and lipid are important metabolites.

Thesis Supervisors: John M. Teal Senior Scientist Woods Hole Oceanographic Institution

G. Richard Harbison Assistant Scientist Woods Hole Oceanographic Institution

÷

TABLE OF CONTENTS

List of	Figures	v
List of	Tables	vii
Preface	and Acknowledgments	ix
Part 1,	Distribution of Siphonophores in the upper 30 m of the North Atlantic Ocean	1
	Introduction	2
	Methods	···· 4
	Results	5
	Zoogeographic Distribution	14
	Rarity	14
	Vertical Distribution of Physonectae	15
	Summary	18
Part 2.	Fishing, Feeding, and Digestion in Siphonophores	19
	Introduction	20
	Methods	21
	The Fishing Cycle	23
	Fishing Posture	26
	Dimensions of Fishing Tentacles	43
	Types of Prey Captured by Siphonophores	48
	Rates of Feeding on Naturally-Occurring Zooplankt	on 53
	Laboratory Studies of Digestion	53
	Discussion	59
	Summary	63

1. 1. {·

÷

Part 3.	Oxygen Consumption and Ammonia Excretion	64
	Introduction	65
	Methods	66
	Results	70
	Temperature Acclimation	85
	Interspecific Differences	86
	Nutrient Cycling	87
	$0: NH_4^+$ Ratios and Nutrition	88
• •	Summary	90
Part 4.	Growth and Reproduction of Agalma okeni	91
	Introduction	92
	Methods	94
ње.	Results	99
	Discussion	102
	Summary	107
	General Discussion: Food Limitation, Predation Pressure, and Mass Aggregations	108
Literatu	re Cited	119
Appendix	1. SCUBA Stations, September 1973 - November 1975	132
Appendix	 Carbon monoxide composition of float gas in the siphonophores <u>Rhizophysa filiformis</u>, <u>Bathyphysa sibogae</u>, and <u>Athorybia rosacea</u>. 	137
Appendix	3. The siphonophore <u>Bathyphysa</u> <u>sibogae</u> Lens and van Riemsdijk, 1908, in the Sargasso Sea, with notes on its natural history (Bull. Mar. Sci. 26: 14-18).	

ţ

4.10 °.

-

LIST OF FIGURES

Figure 1.	Colony of <u>Agalma elegans</u> , illustrating the principal parts of a siphonophore.	••••	x
Figure 2.	SCUBA stations, September 1973 - November 1975	••••	6
Figure 3.	Athorybia rosacea, a physonect siphonophore with a noncontractile, curvilinear stem.	••••	27
Figure 4.	<u>Agalma okeni</u> , a physonect siphonophore with a noncontractile, linear stem.	••••	29
Figure 5.	Agalma elegans, a physonect siphonophore with a flexible stem.	••••	32
Figure 6.	Stephanophyes superba, a calycophore siphono- phore with a flexible stem (A), and <u>Rosacea</u> cymbiformis, a calycophore siphonophore with a contractile stem arranged in "long-line" configuration (B).		35
Figure 7.	<u>Sulculeolaria monoica</u> , a calycophore siphono- phore with a contractile stem arranged in a helical configuration.	••••	37
Figure 8.	Sulculeolaria quadrivalvis, a long-stem relative of <u>S. monoica</u> , extended in fishing posture.	• • • • •	39
Figure 9.	Forskalia edwardsi, a physonect siphonophore with gastrozooids attached to the stem on pedicles.		41
Figure 10.	Number of tentilla (combined for all tentacles) of <u>Agalma okeni</u> of different sizes.		44
Figure 11.	Oxygen consumption at $26 \pm 3^{\circ}$ C of some of the more abundant tropical and subtropical siphonophores, estimated by linear regression.	* * 6 v *	72
Figure 12.	Ammonia excretion at $26 \pm 3^{\circ}$ C of some of the more abundant tropical and subtropical siphonophores, estimated by linear regression.		75

.

.

· .

v

- Figure 13. Protein content of colonies of <u>Agalma okeni</u> as a function of overall length (A) and number of nectophores (B). 97
- Figure 14. Stations where aggregations of <u>Nanomia cara</u> were encountered by U.S. National Marine Fisheries Service bottom trawl survey in the Gulf of Maine, 7 October - 18 November, 1975. 116

LIST OF TABLES

Table 1.	List of siphonophores encountered by SCUBA divers in the North Atlantic Ocean.	••••	9
Table 2.	Population density of Physonectae during the day in the upper 30 meters of the Western North Atlantic Ocean, determined in situ by SCUBA divers.	1	12
Table 3.	Approximate swimming speeds (cm/sec) of siphono- phores, measured in situ by SCUBA divers.	••••	24
Table 4.	Approximate dimensions of stem, tentacles, and tentilla in siphonophores extended in fishing posture.		46
Table 5.	Survey of prey removed from feeding polyps of siphonophores.		51
Table 6.	Ingestion rates of siphonophores feeding on copepods and hyperiid amphipods in the labor-atory.	•••••	54
Table 7.	Time course of egestion in siphonophores main- tained in the laboratory.	••••	57
Table 8.	Oxygen consumption at $26 \pm 3^{\circ}$ C of some of the more abundant tropical and subtropical siphono- phores, estimated by linear regression.	••••	72
Table 9.	Ammonia excretion at $26 \pm 3^{\circ}$ C of some of the more abundant tropical and subtropical siphono-phores, estimated by linear regression.	••••	75
Table 10.	Respiration, excretion, and 0:NH4 ⁺ ratio for siphonophores of three different sizes.	••••	78
Table 11.	A comparison of respiration of Forskalia tholoides and F. edwardsi at ambient tempera- ture and at $5^{\circ}C$ below ambient temperature.		80.
Table 12.	Nitrogenous excretion in some tropical and subtropical siphonophores.	•••••	82
Table 13.	Nectosome size in <u>Agalma</u> okeni.	• • • • •	95

...

· 2 ·

· •

· .

Table 14.	Increase in size of colonies of <u>Agalma okeni</u> main tained for 1 - 4 days in the laboratory.	••••	100
Table 15.	A comparison of production, respiration, and egestion estimated for <u>Agalma okeni</u> with other marine carnivores.	• • • • •	104
Table 16.	Associations of hyperiid amphipods with siphonophores.	••••	1 10
Table 17.	Zooplankton predators of siphonophores.		113

1. 1.

1

÷

.

÷ . , , ,

PREFACE AND ACKNOWLEDGMENTS

Siphonophores are a group of gelatinous, oceanic zooplankton which taxonomists rarely see alive and which have never been studied in their natural environment. Many of these colonial animals are incredibly beautiful combinations of sculptured, gelatinous swimming bells and delicate bracts. There are three suborders, the Physonectae, Cystonectae, and Calycophorae, in which over 140 species are now recognized.

Physonectae have an apical gas-filled float, or pneumatophore, often followed by a series of swimming bells, called nectophores, which are commonly arranged in biserial rows along the nectosome. Below the nectosome is the siphosome with its gastrozooids, palpons, gonophores, and clusters of bracts. Each gastrozooid and palpon has a tentacle. The tentacles of gastrozooids often have numerous lateral branches, or tentilla, bearing terminal batteries of nematocysts. Figure 1 illustrates the organization of a colony of Agalma elegans. It is shown in life in Figure 5. Calycophorae lack a pneumatophore and most have only one or two nectophores. Rosacea cymbiformis, Stephanophyes superba, and Sulculeolaria quadrivalvis are representative Calycophorse (Figures 6 and 8). Cystonectae have no gelatinous individuals and the pneumatophore is greatly enlarged. Bathyphysa sibogae (figured in Appendix 3) is a member of this group, as is Physalia physalis, the Portuguese Man-of-War. For a discussion of siphonophore taxonomy and phylogeny, see Garstang (1946) and Totton (1965).

ix

Figure 1. Colony of <u>Agalma elegans</u>, illustrating the principal parts of a siphonophore.

Pn : Pneumatophore

N : Nectophore

Gz-4 : Gastrozooid # 4

Br : Bract

Gz-3 : Gastrozooid # 3

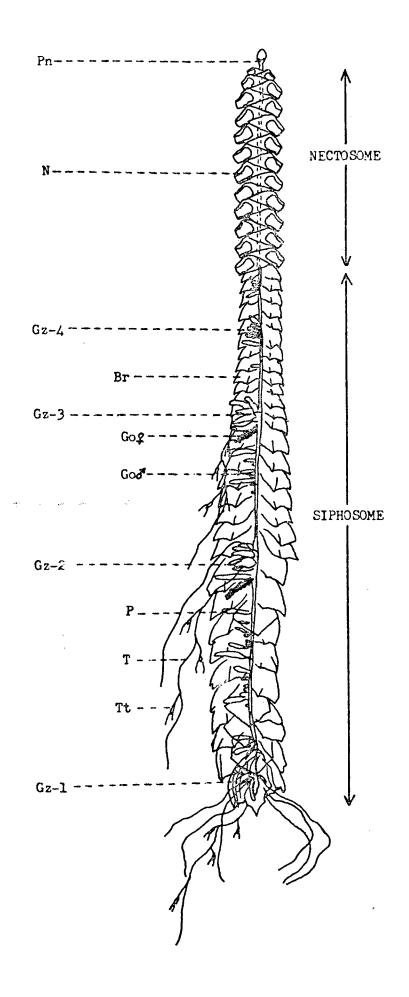
Go $\stackrel{\mathcal{Q}}{\leftarrow}$: Female gonophore

Go 🗗 : Male gonophore

Gz-2 : Gastrozooid # 2

P : Palpon

T : Tentacle


Tt : Tentillum

Gz-1 : Gastrozooid # 1

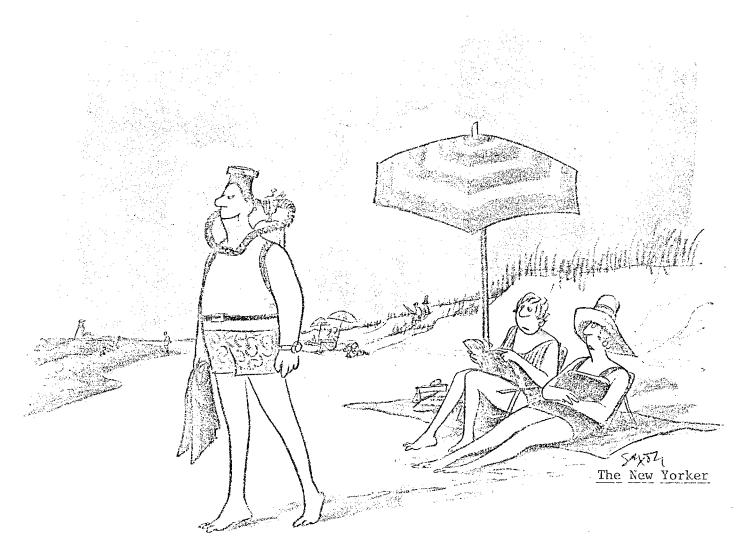
1

ŝ

(Redrawn from Totton, 1954)

. . 1.

÷


This dissertation summarizes the results of a 26-month program of field studies on aspects of the nutritional ecology of siphonophores. It is divided into four parts, which consider the distribution, feeding biology, oxygen consumption and ammonia excretion, growth and reproduction of siphonophores. In situ observations and simple experiments performed while SCUBA diving contribute to and unify these four sections.

I am especially grateful to my thesis supervisors, John Teal and Richard Harbison, who introduced me to siphonophores, dived with me, and offered constructive comments during all phases of this research. I would also like to thank the other members of my thesis committee, Vaughan Bowen, Fred Grassle, Ned Holt, and Peter Wiebe, who provided me some of their ship time (V.B., P.W.) and were available for provocative discussions. Larry Madin, Ron Gilmer, and Neil Swanberg also dived with me throughout most of these studies, and I benefited from their expertise on other groups of gelatinous zooplankton.

During this research, I was supported by predoctoral fellowships from the National Science Foundation and the Woods Hole Oceanographic Institution, and in part by NSF Grants GA-39976 and GA-21715. I am indebted to Burr Steinbach and Adair Feldman, Directors of the Harbor Branch Foundation Laboratory, for providing laboratory space and ship time to Richard Harbison and me during 1973-1974 research in the Florida Current. I would also like to thank David Mook and Ross Wilcox, who dived with us in Florida.

xii

Most especially, I would like to thank my wife Joanne for her toleration of my enthusiasm for open-ocean diving during 14 cruises which contributed to this research, and dedicate this dissertation to her:

.

"My rival is the sea."

÷

Part 1. Distribution of Siphonophores in the upper 30 m of the North Atlantic Ocean.

i.

b

INTRODUCTION

Siphonophores have intrigued marine naturalists since the time of Captain James Cook's first voyage of discovery (Parkinson, 1768, <u>in</u> Totton, 1954). A few Calycophorae may be indicator species for neritic water masses (e.g., Russell, 1934; Fraser, 1967), and pleustonic species like <u>Physalia physalis</u>, the Portuguese Man-of-War, are occasionally blown or carried by currents close inshore (e.g., Totton and Mackie, 1960; Kennedy, 1972). Most, though, are exclusively creatures of the open ocean.

Siphonophores occur from the surface to bathypelagic depths in excess of 4391 m (Lens and van Riemsdijk, 1908). Many species are cosmopolites of tropical and subtropical Atlantic, Pacific, and Indian Oceans (Margulis, 1972), while a few are restricted to Arctic and Antarctic seas (Moser, 1925; Stepanyants, 1963). Despite their cosmopolitan distribution, however, quantitative zoogeographic information is largely unavailable.

Conventional sampling of populations of Cystonectae with nets cannot provide unbiased presence-absence data, since all those of the Family Rhizophysidae adhere to fabric. As these are delicate and easily fragmented, most specimens captured in plankton nets probably do not remain in recognizable condition. Almost all Physonectae, as well, fragment when captured in trawls or plankton nets. Because siphonophores grow by budding, the nectophores and

bracts of a single physonect colony are present in a wide range of sizes. Unless the siphosome or pneumatophore remains as a recognizable entity, it is impossible to determine whether the gelatinous components represent one or several colonies.

It is only for some of the Calycophorae that estimates of population size are feasible by enumeration of plankton collections. Most calycophores, especially those of the Families Diphyidae and Abylidae, have only one superior nectophore and one inferior nectophore per colony. The superior nectophore is morphologically distinct from the inferior; often either can be used for specific identification and enumeration. However, calycophores have fragile stems which, when extended in fishing posture, may stretch several meters (see Part 2). Since most plankton nets used for quantitative sampling are 1 m or less in diameter, they seldom collect the entire colony of large Calycophorae. Unless the plankton net snags the extreme anterior ends of these siphonophores, estimates of population numbers (derived from counts of the anterior nectophores) will represent minimum population values.

In summary, difficulties in quantitatively sampling populations of large, fragile colonial animals like siphonophores arise both from the general characteristics of present samplers and from the small volume of water which they routinely sample (usually, 200 - 500 m^3). However, SCUBA divers can see an enormous volume of water,

thanks to excellent visibility in open-ocean surface water. By noting the species of siphonophores encountered in situ, divers can record qualitative zoogeographic data by direct observation. If the volume of water searched per dive is known or approximated, divers can provide estimates of population density, as well.

METHODS

During 1973 - 1975, I (with others) made 171 SCUBA dives in the upper 30 m of the North Atlantic Ocean (Figure 2 and Appendix 1). We followed logistics and safety procedures for open-ocean diving described by Hamner (1975). In this mode of diving, each diver was connected by a pulley-operated 10-meter tether to a plumb line drifting beneath a motorized rubber raft. The raft was launched from an oceanographic research vessel, which kept in radio contact. Surface temperatures ranged from $17 - 29^{\circ}C$ (Appendix 1), and visibility during the day was usually in excess of 30 meters.

Seven dives were made at night: three in the Northern Sargasso Sea, three in the Southern Sargasso Sea, and one in the tropical Atlantic. At night, divers remained in the upper 10 meters, within an area of illumination provided by a one-meter square semi-submerged array of nine automobile headlamps.

On dives during KNORR Cruise 53, pellets of fluorescein dye were dropped at intervals from the rubber raft. I marked the time

in which the plume of dye drifted the 10-meter length of my tether and was able to approximate my drift in relation to the water. On any dive, I spent most of my time looking up from depth so that siphonophores and other gelatinous plankton were silhouetted above me. Since many species of Physonectae are large and have pigmented stem groups, they were readily visible at least 10 meters away. I estimate that, on any dive, the other divers and I were able to locate and collect in jars most or all of the physonect siphonophores in half a cylinder of radius 10-meters and length equal to that of our drift (see Table 2).

RESULTS

in the second second

Although there is morphological variability within species, especially between juvenile and mature colonies, I collected seven specimens of <u>Athorybia</u> Eschscholtz, 1825 which are different from previously described species synonomized by Totton (1954) as <u>Athorybia rosacea</u>. I will refer to th^{ese} as <u>Athorybia</u> sp. A (Table 1). Similarly, I collected three specimens of <u>Rosacea</u> sensu Bigelow, 1911 which cannot be attributed to previously described species (P. R. Pugh, personal communication); I will refer to them as Rosacea sp. A (Table 1).

Figure 2. SCOBA Stations, September 1973 - November 1975. Zoogeographic regions and provinces are those proposed by Backus, et al., in prep.

LEGEND:

North Atlantic Temperate Region

1 = Slope Water

North Atlantic Subtropical Region

2 = Northern Sargasso Sea

3 = Southern Sargasso Sea

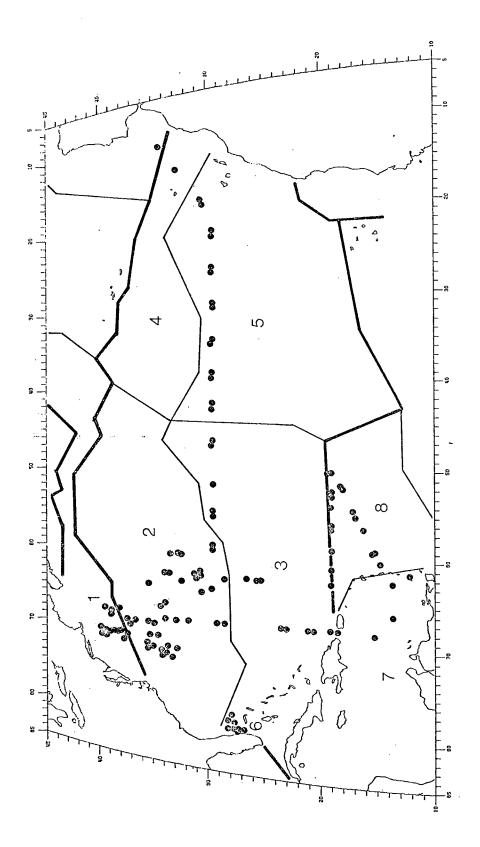
4 = Northern North African Subtropical Sea

5 = Southern North African Subtropical Sea

Atlantic Tropical Region

i -

6 = Straits of Florida (Florida Current)


7 = Caribbean Sea

11

ŝ

÷.

8 = Lesser Antillean Province

÷.

Table 1 gives the relative abundance of 21 species of siphonophores collected by divers. I was unable to distinguish between <u>Forskalia edwardsi</u> and <u>F. tholoides</u> during collections made prior to August, 1974, so I have totaled these species together. Calycophorae other than species of <u>Stephanophyes</u>, <u>Rosacea</u>, and <u>Sulculeolaria</u> were sometimes present but were small, transparent, and often overlooked. For this reason, I have not listed occurrences of <u>Diphyes</u> <u>dispar</u> Chamisso and Eysenhardt, 1821, <u>Chelophyes appendiculata</u> (Eschscholtz, 1829), and <u>Hippopodius hippopus</u> (Forskal, 1775), as well as species of <u>Abyla</u>, <u>Abylopsis</u>, <u>Lensia</u>, and miscellaneous Calycophorae reproductive stages (eudoxids).

<u>Bathyphysa sibogae</u>, <u>Sulculeolaria chuni</u>, <u>Athorybia</u> sp. A, and <u>Rosacea</u> sp. A were collected only in the subtropical North Atlantic Ocean. <u>Agalma clausi</u> was collected only in the tropical Atlantic Ocean. The rest of the species were found in both tropical and subtropical regions. Only six species were found in slope Water.

<u>Halistemma rubrum</u>, <u>Apolemia uvaria</u>, and <u>Sulculeolaria biloba</u> were present in surface waters only at night (Table 1) and probably migrated there from daytime depths below 30 meters. Very large specimens of <u>Forskalia tholoides</u> (station 316) and <u>Agalma okeni</u> (station 318) were also seen at night in surface waters.

Table 1. List of siphonophores encountered by SCUBA divers in seven zoogeographic provinces of the North Atlantic Ocean (provinces according to Backus, et al., in prep). Calycophorae other than Stephanophyes, Rosacea, and Sulculeolaria spp. were ignored.

LEGEND:

- = species absent

÷.

+ = less than one colony per dive

++ = one or more colonies per dive

. .

-

*

= Does not include a mass aggregation of N. bijuga at stations 286 - 288.

ŝ.

ŝ

Species	Total Number	Slope Water (day)	Northern Sargasso Sea (day) (night)	Southern Sargassc Sea (day) (night)	Southern North African Subtropical (day)	Florida Current (day)	Caribbean Sea (day)	Lesser Antillean (day) (night)
Aaalma okeri	121	‡	+ 	+	I	‡	+	، +
Eschscholtz, 1825 Agalma elegans	23	‡	ו ר +	•		ı	1	+ +
(Sars, 1846) Fewkes, 1880 Acalma clausi	Ŋ	١	1 1	• •	ŝ	÷	+	+ +
Č Bedot, 1888 Nanomia bijuga	28 *	ı	+ 	1	ı	*+	ı	+
(Chiaje, 1841) Halistemena rubrum	н	• •	+	1 1	,	ı	ı	1 1
(Vogt, 1852) Cordagalma cordiformis	20	•	۲ +	י +	+	+	+	י +
Totton, 1932 Physophora hydrostatica	2	, I	י +	1	1	ı	ł	י +
Forskal, 1775 Apolenia wvaria	2	ı	4 1	+	ı	ı	1	ŀ
(Iesueur, 1811) <i>Forskalia eduardsi</i> Kolliker, 1853;	97	+	+ ‡	+ +	ı	+	² +	+ ‡
Forskalia tioloides Haeckel, 1888 Athorybia rosacea	24	+	ı +	• +	+	+	+	۱ +
(Forskal, 1775) <i>Athorybia</i> sp. A	7	ł	۱ +	1 +	+	i	ı	ו ו
Bathyphysa sibogae	14	ı	1 +	t J	ı	ı	ł	;
Lens and van Riemsdijk, 1903 Rhizophysa filiformis	25	+	ı +	1 +	ı	+	+	י +
(Torskal, 1775) Stephanophyes superba	55	. '	י +	+	+	+	+	+
Chun, 1888 <i>Rosacea cymbiformis</i>	58	ı	ו +	۱ ۰+	I	+	+	' ‡
(Chiaje, 1822) <i>Rosacea</i> sp. A	e	1	۱ +	1	ı	ł	ı	1
Sulculeolaria quadrivalvis	24	+	י +	۱ +	+	+	÷	ו +
Blainville, 1834 Sulaileolaira monotoa	16	ı	+ +	+ +	ı	+	ı	+ 1
(Chun, 1888) Sulerieořaria chuni	6	,	; +	י +	+	ł	I	1
(Lens and van Riemsdijk, 1908) Sulculeoiaria biloia (Sars, 1846)	ŝ	I	+	+	ı	J	ı	1 1

. .

· Į

I

e i i i

· .

Agalma okeni was the most common siphonophore in surface waters during the day (Table 1). Forty-six per cent of all specimens of <u>A. okeni</u> were collected in the Florida Current. Physonectae, including <u>A. okeni</u>, were seen on 85 of 164 dives made during the day. Table 2 presents estimates of their abundance made in situ on 15 dives during KNORR Cruise 53. Physonectae seemed more abundant at night in both the Northern and Southern Sargasso Sea, although I have no estimates of volume of water searched at night. During a period in early May, 1974 (stations 286 - 288 in Appendix 1) hundreds of <u>Nanomia bijuga</u> were present in the Florida Current close inshore off Fort Pierce, Florida. I estimate that there was more than one colony of <u>N. bijuga</u> per cubic meter at Capron Shoal (station 287), where water was less than 10 meters deep.

DISCUSSION

One can average the data from all fifteen stations in Table 2 and estimate that during the day there is one physonect siphonophore per 15,000 m³ in the upper 30 meters of the Western North Atlantic. In the upper 110 meters of the California Current, Physonectae are present at densities less than one per 2,000 m³ (Alvarino, 1967). Some species of Calycophorae may be locally several orders of magnitude more abundant than Physonectae (e.g., Bigelow and Sears, 1937; Alvarino, 1967; Lewis and Fish, 1969) and at times comprise over 50% of the macroplankton (Boucher and Thiriot, 1972).

Table 2. Population density of Physonectae during the day in the upper 30 meters of the Western North Atlantic Ocean, determined in situ by SCUBA divers. Data are from KNORR Cruise 53 (see Appendix 1 for additional station information).

÷

ŝ.

	STATION NUMBER	DIVE TIME (minutes)	METERS DRIFTED	VOLUME SEARCHED (m ³)	NUMBER OF SIPHS	VOLUME (m ³) per SIPH
Northern Sargasso Sea	417	30	150	24,000	3	7,900
along edge of Gulf Stream	426	30	63	9,800	1	9,800
Northern Sargasso Sea	418	35	230	37,000	0	> 37,000
proper	419	30	120	19,000	1	19,000
Northern Sargasso Sea	420	25	110	17,000	2	8,500
outer edges of cold core eddy D	421	30	78	12,000	1	12,000
Northern Sargasso Sea	422	27	54	8,500	2	4,300
near center of cold core eddy D	423	25	250	39,000	0	>39,000
	424	25	130	20,000	0	>20,000
	425	30	87	13,000	2	6,500
Gulf Stream eddy on	427	20	140	22,000	2	11,000
Continental Slope	428	20	170	26,000	2	13,000
	429	22	550	76,000	10	7,600
	430	25	370	59,000	6	9,800
	431	17	170	27,000	1	27,000

. .

. .

1

· E·

Zoogeographic Distribution

Pugh (1975) has enumerated a series of oblique (1 - 100 m)plankton tows along an Atlantic transect at 32° N, from 16° W to 60° W. He found 66 species of siphonophores, of which the 19 most abundant were Calycophorae. Thirteen of these 19 species differed in abundance between the North African Subtropical provinces and the Sargasso Sea, though none were restricted to either of the two areas.

On a SCUBA diving transect of the North Atlantic at 30°N (Figure 2), I encountered few siphonophores in the North African Subtropical provinces. When present in the upper 30 meters, they were the same species I found in the Sargasso Sea. However, the three species of Calycophorae I collected common to both areas (Table 1) were rare in Pugh's (1975) net tows. Species Pugh found common in the North African Subtropical area which would have been large enough for divers to see, like <u>Ceratocymba sagittata</u> and <u>Rosacea</u> sp., were not seen by us on our 16 dives there. Apparently, they are either very patchy in space in time or live deeper than 30 meters in this region.

Rarity

Several siphonophores once considered rare are relatively common in North Atlantic surface waters. The cystonect siphonophore

<u>Bathyphysa sibogae</u> is neither rare nor obligately bathypelagic (Biggs and Harbison, 1976). Young colonies of <u>Stephanophyes superba</u>, which have two apposed apical nectophores with a single bifurcation of the somatocyst in each, are sometimes locally abundant in surface waters (Table 1). The limited number of specimens of <u>S. superba</u> known to systematists (P. R. Pugh, personal communication) probably reflects their extreme fragility. The nectophores of <u>Cordagalma</u> <u>cordiformis</u>, which is probably the smallest physonect siphonophore, were described 45 years ago (Totton, 1932), but the colony has only recently been described adequately (Carré, 1968). Since its gelatinous components are fragile and extremely small, they may have been mistaken for immature forms of related genera by previous systematists.

Vertical Distribution of Physonectae

Bathyscaphe dives in the San Diego Trough revealed a close spatial relation between physonect siphonophores and the deep scattering layer as recorded by precision depth recording echosounders (Barham, 1963, 1966). The siphonophores looked like species of <u>Nanomia</u> and were tentatively identified as <u>N. bijuga</u> (Barham, 1963). It is apparent from my SCUBA collections (Table 1), though, that <u>N. bijuga</u> and nine other physonects are not restricted to deep-scattering layers. In fact, Pugh's (1974)

enumeration of siphonophores in plankton collections made with opening-closing nets off Fuerteventura in the Canary Islands suggests that Physonectae have a wide vertical distribution. Bradbury, et al. (1970), who sampled scattering layers in the equatorial Indian Ocean, also found Physonectae distributed throughout the upper 500 meters both day and night.

My own observations indicate that temperature may influence the distribution of congeneric species of Agalma. Agalma okeni is basically a warm-water species, while A. elegans is sometimes abundant in temperate and boreal waters (Alvarino, 1971). SCUBA stations where both species co-occurred usually showed smallscale temperature heterogeneity. In June, 1975, slope water stations 388 - 396 frequently had water at a depth of 5 - 17 meters which was $0.5 - 1.2^{\circ}$ C warmer than that at the surface or below 17 meters. Agalma okeni was most abundant in these warm lenses, while A. elegans was restricted to colder water below 17 meters. Temperatures at 30 meters were $16 - 20^{\circ}C$ at these stations. In August, 1975, A. elegans was also collected in slope water. Temperatures at depth of collection were 20 - 23°C. Divers captured A. elegans on only two occasions outside the continental slope. One specimen was collected during the day at station 425 in the Northern Sargasso Sea, where the temperature

was 23.1°C. The other was captured at night at station 351 in the Lesser Antillean province, where the surface temperature was 25.9° C.

٢

÷

1

÷.

Ę -

SUMMARY

- I observed and collected 21 species of siphonophores (small Calycophorae excluded) on SCUBA dives in the upper 30 meters of warm-water areas of the North Atlantic Ocean.
- Physonectae were seen on 85 of the 164 dives made during the day. One of these, <u>Agalma okeni</u>, was the most common siphonophore encountered by divers.
- 3. <u>Apolemia uvaria</u>, <u>Halistemma rubrum</u>, and <u>Sulculeolaria biloba</u> were seen only at night.
- 4. <u>Bathyphysa sibogae</u>, <u>Sulculeolaria chuni</u>, and two previously undescribed species of <u>Athorybia</u> and <u>Rosacea</u> were collected only in the subtropical North Atlantic Ocean; <u>Agalma clausi</u> was collected only in the tropical Atlantic Ocean. The rest of the species were found in both tropical and subtropical regions. Only six of 19 species of siphonophores seen by divers in the daytime were found in slope water.
- 5. The population density of Physonectae in the upper 30 meters of the Northern Sargasso Sea is about one colony per 15,000 m^3 during the day.

Part 2. Fishing, Feeding, and Digestion in Siphonophores.

1

÷

.

INTRODUCTION

Each stem group of siphonophore colonies is armed with a contractile fishing tentacle bearing batteries of nematocysts. Tentacles of <u>Physalia physalis</u> can extend 10 meters and paralyze and kill fish 6 - 10 cm long within an hour (Bigelow, 1891; Wilson, 1947). Colonies of <u>Nanomia cara</u> with a stem length of only 11 cm may have a total tentacle length of 5.4 meters (Mackie and Boag, 1963).

I believe that carnivores like these, with several meters of branched, stinging tentacles, are important predators in oceanic ecosystems. However, the fishing behavior of siphonophores has never been studied in their natural environment, and the diet of siphonophores living under field conditions is unknown. Although digestion time in <u>Nanomia cara</u> has been approximated in the laboratory (Mackie and Boag, 1963), nothing is known about rates of feeding on naturally-occurring zooplankton.

To study the fishing and feeding behavior of siphonophores, I observed them in situ in the open ocean while SCUBA diving. These non-visual animals seemed undisturbed by divers unless in close proximity. I will show some morphological bases for their fishing behavior and will speculate on predation by siphonophores upon different size-classes of zooplankton.

METHODS

Dimensions and configurations of siphonophore fishing tentacles were estimated from underwater photographs of colonies extended in fishing posture. Siphonophores were photographed with a 35 mm Nikonos camera fitted with a 1:3 extension tube and synchronized with electronic flash.

Swim speeds were estimated by marking points along the path of a swimming colony with fluorescein dye and then measuring distances between them with a meter stick. Times when dye was released were recorded on an underwater cassette tape recorder (see Hamner, 1975). I estimated escape speeds after gently prodding the stem or tentacles.

Siphonophores collected with swollen feeding polyps were dissected. Frequently, portions of larger prey had been digested or lost, and many were too fragmented to be identified to species (Table 5). For laboratory studies of digestion, siphonophores were released into 3.8 liter cylindrical aquaria and were allowed to feed for 5 - 10 minutes on stage-2 <u>Artemia</u> nauplii at densities of 100/liter. The nauplii had fed previously on a suspension of carmine particles and had easily visible red guts. After they had captured a number of nauplii, siphonophores were transferred to finger bowls of clean water. Since feeding polyps and stem are transparent, the carmine content of a colony was monitored to follow the time

course of digestion. Colonies were observed hourly for three hours, and at less frequent intervals thereafter. When more than one nauplius was ingested, I recorded the observation interval when carmine was first voided into the wash dish as the time egestion began.

Feeding rates at high densities of prey were estimated by adding 100 Artemia nauplii per liter and counting the number ingested by a single feeding polyp in a 10-minute period. To study feeding on naturally-occurring zooplankton, copepods (Acartia sp. and Pleuromamma sp.) and hyperiid amphipods (Parathemisto sp.) were collected with a 505 µm mesh plankton net. They were provided to siphonophores in 3.8 liter aquaria at densities of 4 - 24 per liter. After 12 hours, the siphonophore was removed and the number of zooplankton remaining was determined by filtering the contents of each aquarium through Gelman Type A glass fiber filters. I selected Forskalia tholoides and Agalma okeni, which infrequently collide with aquarium surfaces, for most of the 12-hour feeding experiments, but also studied the larger, faster physonect Agalma elegans. In all feeding experiments, aquaria were kept in the dark so that prey would be distributed homogeneously.

OBSERVATIONS

The Fishing Cycle

Calycophorae and Physonectae had a two-phase cycle of fishing and swimming. While fishing, they floated motionless in the water with tentacles extended. If no prey encountered their tentacles or when the fishing configuration dissolved by sinking of the colony, siphonophores withdrew the tentacles and contracted the stem to become streamlined. Simultaneously, they began swimming and then moved to an adjacent place to fish.

An active calycophore like <u>Chelophyes appendiculata</u> repeated the cycle about 100 times per hour in the field, while physonects repeated it less than a dozen times per hour. Periods of swimming lasted 2 - 12 seconds and were short in relation to the time during which the network of fishing tentacles was extended. During the swimming interval, siphonophores swam 1 - 16 cm/sec (Table 3). <u>Chelophyes appendiculata and Sulculeolaria monoica</u> used only their anterior nectophore ^{to} propell them between settings of the tentacles, while <u>Diphyes dispar</u> used only the posterior nectophore. Physonectae, unless escaping from stimuli, swam by asynchronous contractions of their nectophores.

When provided with <u>Artemia</u> nauplii in the laboratory, several siphonophores modified their swimming behavior. Sulculeolaria monoica

Table 3. Approximate swimming speeds (cm/sec) of siphonophores, measured in situ by SCUBA divers.

÷.

1

SPECIES	NUMBER MEASURED	UNDISTURBED SWIM SPEED	ESCAPING FROM STIMULI
Agalma okeni	27	2 - 5	10 - 13
Nanomia bijuga	2	_	25
Physophora hydrostatica	1	7	-
Forskalia edwardsi; F. tholoides	10	1 - 3	2 - 5
Stephanophyes superba	3	10 - 15	_
Rosacea cymbiformis	5	1 - 3	3
Sulculeolaria monoica	5	2 - 5	12 - 16
Chelophyes appendiculata	6	7 - 16	23
Diphyes dispar	3	1 - 3	5 - 10

· Er

.....

.

<u>Stephanophyes superba</u>, and <u>Rosacea cymbiformis</u> reduced the duration of periods of swimming activity observed in situ and remained extended in fishing posture 2 - 3 times longer between activity periods. If this form of orthokinesis (Fraenkel and Gunn, 1940) is not a laboratory artifact, it might allow siphonophores to remain among aggregations of prey.

Fishing Postures

The fishing posture of a siphonophore is determined by its floatation and by the contractility of its stem. The network of fishing tentacles in siphonophores which may belong to different families yet which have similar stem dimensions often appears quite similar. I would like to describe four broad groups of siphonophores with related fishing postures.

The first, a group of Physonectae with short, noncontractile stems, includes <u>Athorybia rosacea</u>, <u>Physophora hydrostatica</u>, and <u>Agalma okeni</u>. All have tentacles that are long in relation to siphosome length (see dimensions of <u>A</u>. <u>okeni</u> in Table 4). In <u>A</u>. <u>rosacea</u> and <u>P</u>. <u>hydrostatica</u>, buoyancy of the pneumatophore kept it upright, and 1 - 7 tentacles hung directly downward (Figure 3). Both species have short, curvilinear siphosomes, and their tentacles enclosed a narrow cylinder of water.

The pneumatophore of <u>A</u>. <u>okeni</u> is smaller than that of either <u>A</u>. <u>rosacea</u> or <u>P</u>. <u>hydrostatica</u>, and its slight lift did not constrain

Figure 3. <u>Athorybia rosacea</u>, a physonect siphonophore with a noncontractile, curvilinear stem. The long tentacles extend directly below the colony to enclose a cylinder of water. Photographed in situ.

į ·

1

÷.

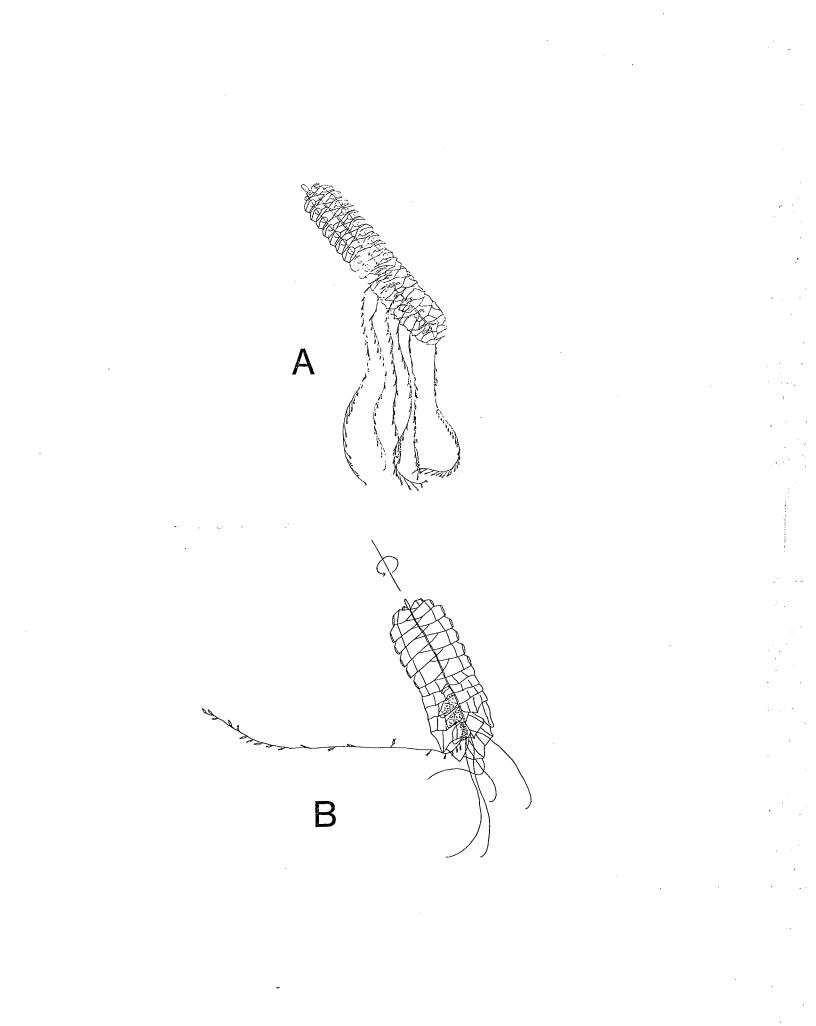
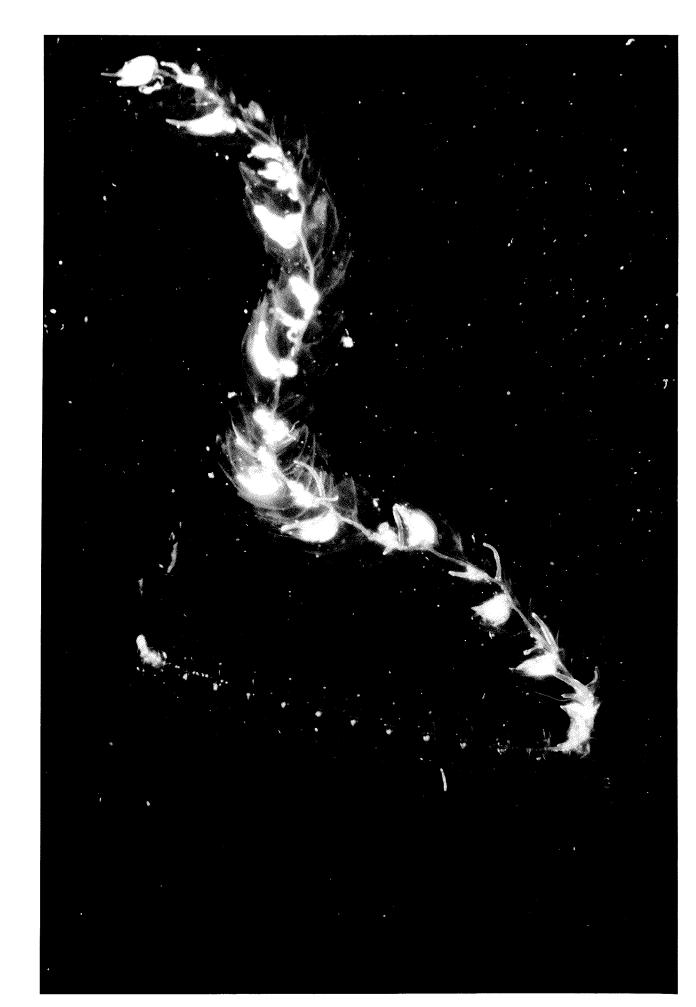



Figure 4. <u>Agalma okeni</u>, a physonect siphonophore with a noncontractile, linear stem. (A) Colony is inclined, which allows the tentacles to extend ventrally without entanglement. Redrawn from Chun (1897). (B) After counterclockwise rotation, which allowed tentacles to extend centripetally. Five unbranched palpon tentacles are visible. Drawn from in situ photograph.

colonies of <u>A</u>. <u>okeni</u> to orient vertically. In situ, colonies of <u>A</u>. <u>okeni</u> were usually inclined $15 - 40^{\circ}$ from the vertical. Since the siphosome of <u>A</u>. <u>okeni</u> is linear and noncontractile, its tentacles hung coplanar; the inclined posture allowed tentacles to extend without entanglement (Figure 4 A). However, <u>A</u>. <u>okeni</u> could rotate about the axis created by its stem, and so allow drag to extend its tentacles in a radial configuration (Figure 4 B). Alternate contraction of its nectophores, arranged in two biserial rows, created rotation. <u>Agalma okeni</u> did not rotate while swimming, so rotation is probably a modification of fishing behavior which allows the tentacles to cover a larger volume of water.

A second group of siphonophores has flexible stems which are somewhat contractile. This group includes <u>Agalma elegans</u> and Stephanophyes superba.

The siphosome of <u>A</u>. <u>elegans</u> is 1 - 2 times longer than the nectosome. The stem has a large surface area of long, thin bracts which are neutrally buoyant, and it is often supported in arcs (Figure 5). The tentacles, hanging ventrally from the arched stem, lie in more than a single plane. Each of the 10 - 24 stem groups of <u>S</u>. <u>superba</u> has both a gelatinous bract and a special nectophore; in situ the surface area of these gelatinous individuals frequently supported the flexible stem in a horizontal arc. Tentacles hung downward to enclose a shallow cylinder of water (Figure 6A).


Figure 5. <u>Agalma elegans</u>, a physonect siphonophore with a flexible stem. The stem has drifted to lie in arcs above the nectosome. Photographed in an aquarium by L. P. Madin.

-

1.

÷.

÷

A third group of siphonophores has stems which are both long and contractile. This includes Cystonectae of the Family Rhizophysidae, as well as Calycophorae like species of <u>Rosacea</u>, <u>Chelophyes</u>, <u>Sulculeolaria</u>, and Diphyes.

Cystonectae have no gelatinous appendages, and the stem usually hung vertically beneath the enlarged apical pneumatophore. In situ, colonies of <u>Rhizophysa filiformis</u> and <u>Bathyphysa sibogae</u> extended several meters (Table 4), and local turbulence drifted the delicate, thread-like tentacles in all directions.

Rosacea cymbiformis fished extended in "long-line" posture (Figure 6 B). Intermittant contractions and subsequent relaxations of individual tentacles did not cause the expanded stem to contract, although colonies whose tentacles I touched often "crumpled" by contraction of stem and tentacles.

<u>Sulculeolaria monoica</u> and <u>S</u>. <u>quadrivalvis</u> set their tentacles in a "veronica" movement (named after the bull-fighters pass it resembles) like that described for <u>Muggiaea atlantica</u> by Mackie and Boag (1963). The stem of <u>S</u>. <u>monoica</u> is longer than that of <u>M</u>. <u>atlantica</u> and drag created by relaxing, elongating posterior appendages caused the anterior part of the stem to arch round in a series of spirals. The tentacles then spread centripetally from the stem, which remained as a helix of 2 - 3 turns (Figure 7). Colonies of <u>S</u>. <u>quadrivalvis</u> had even longer stems which came to rest in less regular arcs (Figure 8).

Figure 6. (A) <u>Stephanophyes superba</u>, a calycophore siphonophore with a flexible stem. The stem lies in a horizontal arc, which allows tentacles to surround a cylinder of water. Drawn from in situ photograph.

(B) <u>Rosacea cymbiformis</u>, a calycophore siphonophore with a contractile stem. The stem is partially extended in a "long-line" configuration. Drawn from in situ photograph.

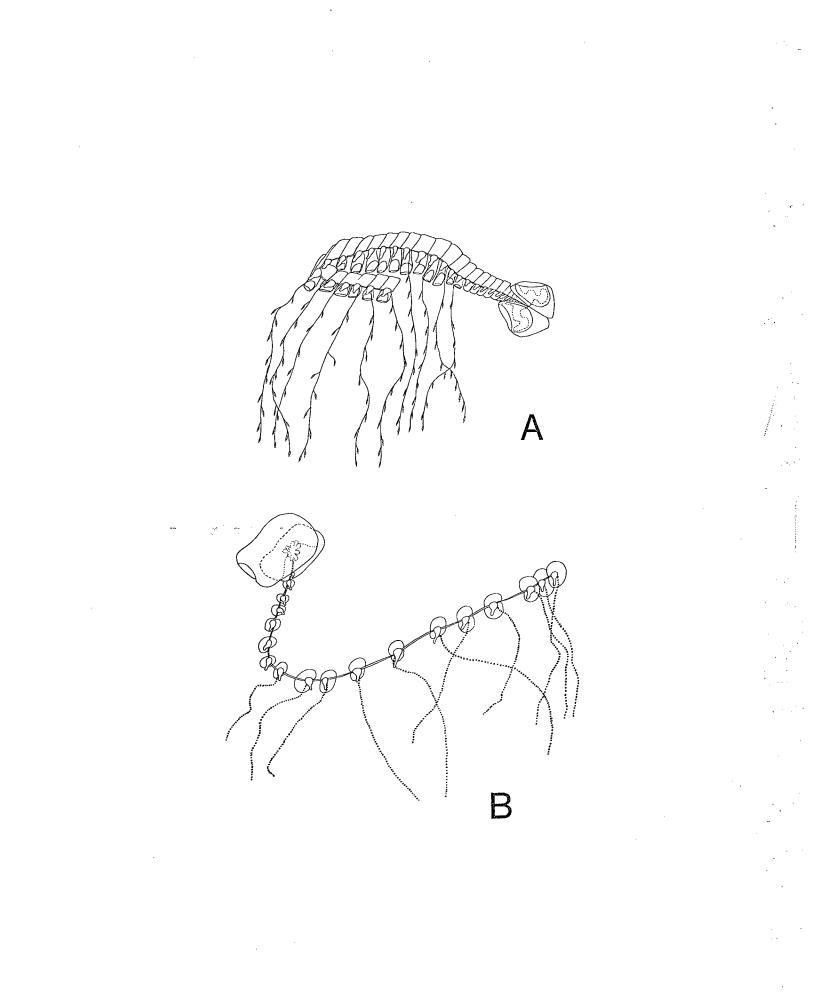


Figure 7. <u>Sulculeolaria monoica</u>, a calycophore siphonophore with a contractile stem. Photographed in situ, showing helical configuration of the stem.

1.

-

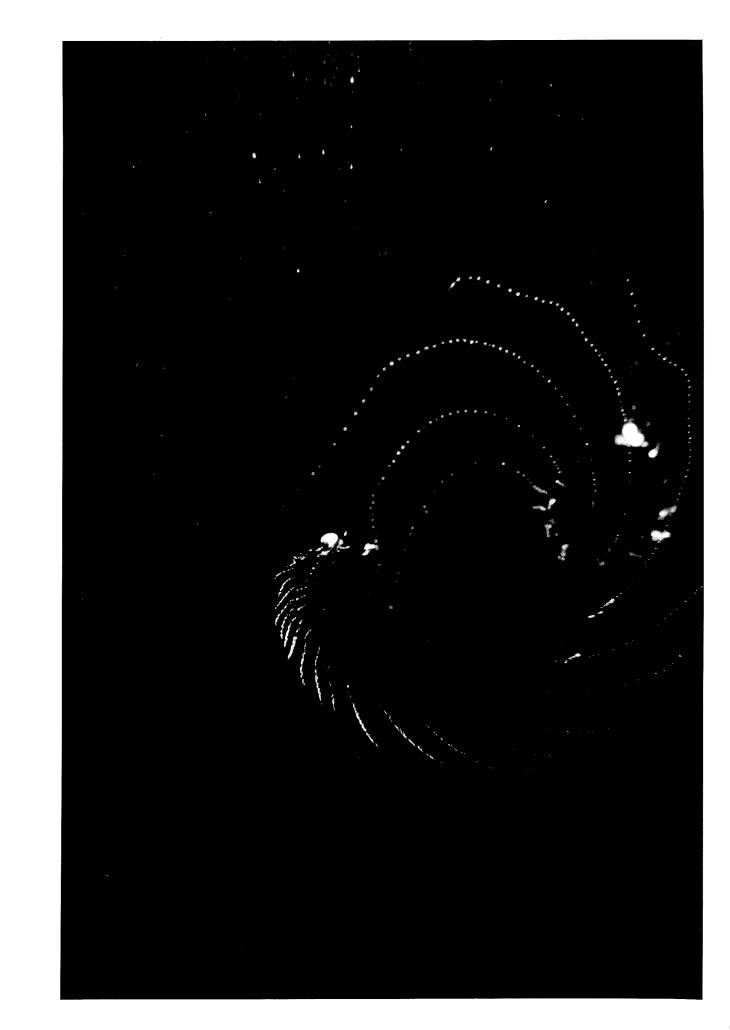


Figure 8. Sulculeolaria quadrivalvis, a long-stem relative of

1.

ļ


<u>S. monoica</u> (Figure 7). Photographed in situ immediately after extending stem and tentacles in fishing posture.

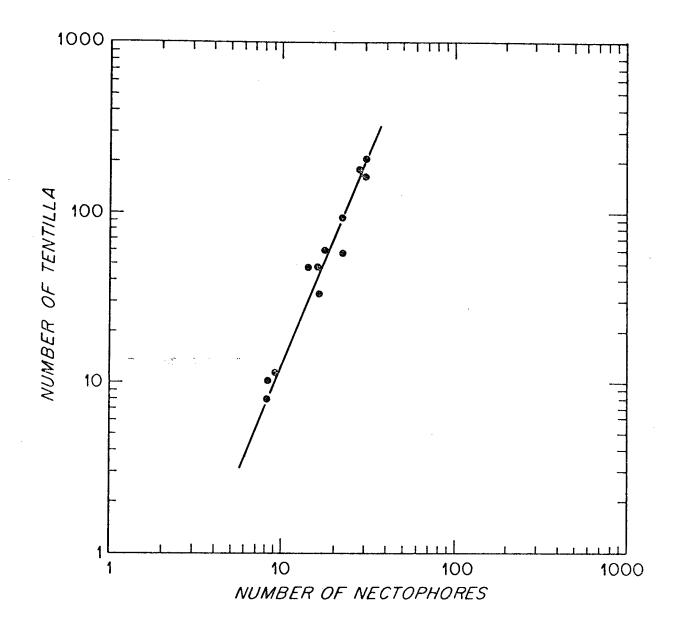
Figure 9. <u>Forskalia edwardsi</u>, a physonect siphonophore with gastrozooids attached to the stem on pedicles. Tentacles extend radially. Photographed in situ by L. P. Madin.

2

ę. : ł

The fourth group is made up of species of <u>Forskalia</u>. Small colonies had stubby, poorly contractile stems, yet their fishing networks were not restricted to planar configurations. Feeding polyps, rather than arranged linearly along the stem, extended out from it on long pedicles, rather like spokes of a wheel (Figure 9). Small colonies had an almost radial symmetry and tentacles enclosed a cylindrical or spherical volume. The orientation of the colony was not restricted by the minute pneumatophore, and I observed five colonies hanging "upside-down" in the water, with siphosome upright and nectosome below.

Dimensions of Fishing Tentacles

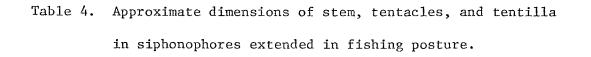

A colony of <u>A</u>. <u>okeni</u> with 28 nectophores has 5 gastrozooids and about 160 tentilla (Figure 10). If its five fishing tentacles are maximally extended, tentilla are spaced at 10-mm intervals (Table 4), and combined the tentacles extend 1.6 meters. Tentilla 4-mm long combined extend 0.6 meters, so the total fishing line of <u>A</u>. <u>okeni</u> extends 2.2 meters. In addition, each palpon has a fine, thread-like tentacle.

A colony of <u>Forskalia</u> <u>edwardsi</u> or <u>F</u>. <u>tholoides</u> with 15 gastrozooids has 15 tentacles, each with an average of 15 tentilla (Table 4). If tentilla are spaced at 5-mm intervals in a partially-extended configuration, combined the tentacles stretch 1.1 meters. Tentilla

Figure 10. Number of tentilla (combined total for all tentacles) in <u>Agalma okeni</u> of different sizes.

ţ.

. . .



.

÷

Ĩ

.

1

1

1.4.4

) OF								
LENGTH (mm) OF EACH TENTILLUM		2 - 5	2 - 5	2 - 5	2 - 5	5 - 7	5 - 7	15 - 25
LENGTH (mm) OF TENTACLE BETWEEN	TENTILLA	3 - 10	3 - 10	7 - 19	2 - 7	2 - 5	1 - 5	5 - 11
NUMBER OF TENTILLA PER	TENTACLE	20 - 50	20 - 30	9 - 15	50 - 150	30 - 55	30 - 40	10 - 20
DISTANCE (mm) BETWEEN	STEM GROUPS	1 - 4	6 - 30	3 - 15	50 - 200	7 - 21	2 I 5	5 - 15
NUMBER OF STEM	GROUPS	1-6	3 - 17	10 - 28	5 - 25	10 - 100	20 - 150	8 - 50
R SPECIES	Đ.	<u>Agalma okeni</u>	<u>Agalma</u> elegans	Stephanophyes superba	Rhizophysa filiformis	Rosacea cymbiformis	<u>Sulculeolaría monoica;</u> <u>S. guadrivalvis</u>	<u>Forskalia</u> <u>edwardsi</u> ; <u>F. tholoides</u>
NUMBER	MEASURED	Ŀ	Ŋ	Ŋ	Ŋ	Υ	Ŋ	Ŋ

. . .

.

i.

.

have long terminal filaments (Table 4); combined these represent at least 3.4 meters, to total 4.5 meters of fishing line per colony. Although the biomass of a colony of <u>Forskalia</u> with 15 gastrozooids is about 2 - 3 mg protein, or half that of a colony of <u>A</u>. <u>okeni</u> with 28 nectophores and 5 gastrozooids, its length of fishing line is over two times longer.

Satiation can limit the length of tentacles fished. Colonies of <u>F. edwardsi</u> and <u>F. tholoides</u> encountered in situ which had recently eaten several or large prey (Table 5) did not have their tentacles maximally extended. Intratentillar distances were less than 5 mm, and one colony had withdrawn its tentacles entirely. In the laboratory, as well, colonies of <u>Forskalia</u> and <u>A. okeni</u> which had fed on copepods had intratentillar spacings of 3 mm or less.

Types of Prey Captured by Siphonophores

Siphonophores have large concentrations of nematocysts in complex batteries located distally on each tentillum. Calycophorae have a band packed with parallel arched rows of nematocysts (the cnidoband) which is folded in half and ends in a terminal filament. Physonectae have a coiled cnidoband which can end in more than one terminal filament.

Both Calycophorae and Physonectae have elastic ligaments attached to the cnidoband which trigger the "spring-loaded" tentillar

battery to erupt when stretched and bring hundreds of nematocysts instantly to bear on prey. Cystonectae do not have an exploding ligament-cnidoband system, though tentilla terminate in clusters of large nematocysts (Totton, 1965; Biggs and Harbison, 1976).

Tentacle morphology seems to reflect fishing ability and determines prey selectivity. Tentillar batteries of <u>Forskalia edwardsi</u>, <u>F. tholoides, Nanomia bijuga, Cordagalma cordiformis, Rosacea</u> <u>cymbiformis, Stephanophyes superba</u>, and <u>Sulculeolaria monoica</u> terminate in single, long filaments. All of these species ingested <u>Artemia</u> nauplii at densities of 100/liter in the laboratory, although they ate larger prey as well (Table 5). A colony of <u>C. cordiformis</u> with three gastrozooids captured and ingested 30 <u>Artemia</u> nauplii within 10 minutes; one gastrozooid in this colony ingested 13 nauplii.

The long terminal filaments of <u>F</u>. <u>edwardsi</u> and <u>F</u>. <u>tholoides</u> were "sticky" and very sensitive to stretch. I observed that copepods entangled in them caused the tentillar batteries of nematocysts to erupt, as Chun (1891) described and figured for <u>Stephanophyes</u> <u>superba</u> feeding on copepods. The terminal filaments of species of <u>Forskalia</u> were sufficiently sensitive that 2 - 3 hours of contact with surfaces in a collecting jar caused several terminal batteries to erupt.

Tentilla of Agalma okeni, A. elegans, A. clausi, and Athorybia rosacea terminate in a pair of filaments and a bulbous ampoulla. The cnidoband is encapsulated in an involucrum. Unlike species of Forskalia, the terminal filaments of species of Agalma and Athorybia rosacea had to be stretched several millimeters before the tentillar nematocyst battery erupted; tentillar batteries never discharged in collecting jars. Though colonies of Agalma okeni and A. elegans captured copepods (Acartia and Pleuromamma spp.) and shrimp (Leander sp.) in the laboratory, tentillar batteries were not used in feeding. In the field, species of Agalma and Athorybia rosacea ate zooplankton ranging in size from copepods to sergestids, as well as small fish (Table 5). In surface waters, it is highly likely that Agalma okeni feeds mostly at night, as tentacles were contracted in over 90 of 114 colonies observed in situ during the day but were extended in the seven colonies observed at night.

<u>Artemia</u> nauplii were eaten by pre-reproductive colonies of <u>Agalma okeni</u>, but apparently they are too small to be sensed as prey by <u>Athorybia rosacea</u> or by large colonies of <u>Agalma okeni</u> and <u>A. elegans</u>, even in the dark at densities of 100 nauplii per liter. In the laboratory, 14 of 20 colonies of <u>Agalma okeni</u>, <u>A. elegans</u>, and <u>Athorybia rosacea</u> did not ingest any nauplii in 2 1/2 hours; five ingested three or less, and one colony of <u>Agalma okeni</u> ingested four nauplii. Although nauplii were struggling on them, the tentacles did not contract to allow gastrozooids to eat the trapped nauplii.

Table 5. Survey of prey removed from feeding polyps of siphonophores.

STATION	CIDIONODIODE	DDTV	
NUMBER	SIPHONOPHORE	PREY	

Suborder Calycophorae

350 417	Rosacea cymbiformis Rosacea cymbiformis	<u>Corycaeus</u> , <u>Candacia</u> spp. (copepods) gastropod veliger; copepods
381	Stephanophyes superba	3 euphausiids (7-10 mm overall length)
384	<u>Sulculeolaria monoica</u>	Candacia ethiopica

Suborder Physonectae (tentilla with single terminal filament)

289	<u>Nanomia bijuga</u>	mysid
327	<u>Forskalia</u> sp.	atlantid heteropod (1.5 mm)
345	Forskalia sp.	fish (7 mm)
349	<u>Forskalia</u> sp.	fish (6 mm)
419	<u>Forskalia</u> sp.	polychaete
417	<u>Forskalia edwardsi</u>	<u>Candacia</u> sp.
430	Forskalia edwardsi	<u>Candacia</u> sp.
406	Forskalia tholoides	stomatopod larva
430 ~	Forskalia tholoides	<u>Candacia</u> sp.
316	<u>Forskalia</u> tholoides	<u>Anchylomera blossevillei; Hemityphis</u>
		<u>rapax</u> (hyperiid amphipods)

Suborder Physonectae (tentilla with paired terminal filaments and ampoulla)

285	Agalma okeni	hyperiid amphipod
297	Agalma okeni	megalops larva
390	Agalma okeni	megalops larva
398	Agalma okeni	megalops larva
411	Agalma elegans	<u>Parathemisto</u> sp. (hyperiid amphipod)
411	Agalma elegans	<u>Parathemisto</u> sp.
321	Athorybia rosacea	2 fish (7 mm and 9 mm)
350	Athorybia rosacea	<u>Lucifer typis</u> (sergestid)
373	Athorybia rosacea	5 <u>Corycaeus</u> sp.; fish (6 mm)
417	Athorybia rosacea	<u>Candacia</u> sp.; polychaete
421	Athorybia rosacea	hyperiid amphipod

Suborder Cystonectae

ŝ

321	<u>Rhizophysa filiformis</u>	alcyopid polychaete;	fish (5 m	um)

1

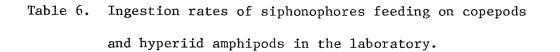
÷

ł

Cystonectae may be able to eat only large zooplankton or nekton. Two colonies of <u>Bathyphysa sibogae</u> did not feed on either <u>Artemia</u> nauplii or copepods (<u>Acartia</u> sp.) in the laboratory, and a colony of <u>Rhizophysa filiformis</u> captured only a Sargassum shrimp (<u>Leander</u> sp.) when provided with <u>Artemia</u> nauplii, copepods, and shrimp in laboratory aquaria.

Rates of Feeding on Naturally-Occurring Zooplankton

<u>Forskalia tholoides</u> consistently captured more copepods in 12 hours than did <u>A</u>. <u>okeni</u> (Table 5). <u>Agalma elegans</u> captured intermediate numbers of copepods. However, except for a colony of <u>A</u>. <u>okeni</u> with only one gastrozooid which did not capture any copepods, large siphonophores did not capture more zooplankton than small individuals of the same species. Since small colonies had fewer or shorter tentacles than large colonies, large siphonophores were probably inhibited from extending their fishing network to dimensions observed in the field (Table 4), perhaps by more frequent contact with aquarium surfaces.


Laboratory Studies of Digestion

÷ ·

A colony of <u>A</u>. <u>okeni</u> which captured four <u>Artemia</u> nauplii egested carmine and unassimilated portions within 2 - 3 hours (Table 6). Most other species required similar times for digestion

÷

5

ľ.

÷.

1.000

Size (mg protein)	Number of Feeding Polyps	Number of Zooplankton per liter	Number of Zooplankton Captured per Feeding polyp	Per Cent of Zooplankton Captured in 12 hours
skalia tholoi	des, feeding on	<u>Acartia</u> sp.		
2	9	5	1.0	45
2	11	6	1.3	67
0.2	4	12	5.5	49
2	10	12	3.2	70
2	12	11	2.0	60
2	9	19	3.8	49
2	8	27	6.0	48
0.7 2.8 6.0 8.8	1 2 3 4	8 *7 6 8	0 1.5 1.7 1.3	0 12 24 17
	3	11	3.0	20
4 5		**		
4.5 9.8	4	11	1.8	17
		11	3.0	10
9.8 3.1 3.8	4 2 3	16 16	3.0 2.3	10 12
9.8 3.1	4 2	16	3.0	10
9.8 3.1 3.8	4 2 3	16 16	3.0 2.3	10 12
9.8 3.1 3.8 9.8	4 2 3 4	16 16 16 20 28	3.0 2.3 1.8 5.0 4.3	10 12 12 14 13
9.8 3.1 3.8 9.8 3.8 3.0 6.0	4 2 3 4 2 3 4	16 16 16 20 28 28	3.0 2.3 1.8 5.0 4.3 2.3	10 12 12 14 13
9.8 3.1 3.8 9.8 3.8 3.0	4 2 3 4 2 3	16 16 16 20 28	3.0 2.3 1.8 5.0 4.3	10 12 12 14
9.8 3.1 3.8 9.8 3.8 3.0 6.0 7.6	4 2 3 4 2 3 4	16 16 16 20 28 28 28 27	3.0 2.3 1.8 5.0 4.3 2.3	10 12 12 14 13
9.8 3.1 3.8 9.8 3.8 3.0 6.0 7.6	4 2 3 4 2 3 4 4 4	16 16 16 20 28 28 28 27	3.0 2.3 1.8 5.0 4.3 2.3	10 12 12 14 13
9.8 3.1 3.8 9.8 3.8 3.0 6.0 7.6 alma elegans, 19.0	4 2 3 4 2 3 4 4 4 feeding on <u>Pleu</u> 15 7	16 16 20 28 28 27 romamma sp.	3.0 2.3 1.8 5.0 4.3 2.3 2.3	10 12 12 14 13 9 9
9.8 3.1 3.8 9.8 3.8 3.0 6.0 7.6 alma elegans,	4 2 3 4 2 3 4 4 5 feeding on <u>Pleu</u>	16 16 20 28 28 27 romamma sp. 5	3.0 2.3 1.8 5.0 4.3 2.3 2.3 0.5	10 12 12 14 13 9 9 9

· •

.

of nauplii, though <u>R</u>. <u>cymbiformis</u> sometimes required 8 - 24 hours before egestion was complete. Digestion of large prey required more time. Three colonies of <u>A</u>. <u>okeni</u> which captured large crustaceans waited 7 - 18 hours before they disgorged the undigested remains (Table 6). Their palpons and gastrozooids remained swollen for 18 - 48 hours.

If prey is large, several gastrozooids assist in its digestion. For example, a colony of <u>R</u>. <u>filiformis</u> with 18 gastrozooids ate a 30 mm fish (<u>Fundulus</u> sp.) in the laboratory. Initially, one gastrozooid contacted the fish and within five minutes began to envelop the caudal area. When maximally everted, this polyp covered the posterior third of the fish. Two additional gastrozooids then encountered the fish and everted to cover an additional 20% of its area. The <u>R</u>. <u>filiformis</u> may have been too small to ingest the entire fish and dropped it after 10 - 12 hours. By this time, the siphonophore had become distended and translucent. About 20% of the fish seemed to be digested; its caudal surfaces were eroded and amorphous with mucus.

When prey were small enough to be ingested entirely within a single gastrozooid, they were more completely digested. The remains of a 15 mm Sargassum shrimp (Leander sp.), when egested by <u>A</u>. okeni between 12 - 18 hours after capture, was a 10 mm bolus of uncompacted

Table 7. Time course of egestion in siphonophores maintained

.....

in the laboratory.

Į.

••

			the second se
SPECIES	PREY	OBSERVATION INTERVAL (HOURS) WHEN EGESTION BEGAN	OBSERVATION INTERVAL (HOURS) WHEN EGESTION COMPLETE
Agalma okeni	crab megalops	-	8 - 9
Agalma okeni	Leander sp.	-	7 - 18
Agalma okeni	Leander sp.	-	12 - 18
Agalma okeni	Artemia sp.	2 - 3	3 - 4
Forskalia sp.	polychaete		2 - 3
Forskalia sp.	hyperiid amphipo	od – b	5 – 8
Forskalia sp.	Artemia nauplii		2 - 3
Forskalia sp.	Artemia nauplii	2 - 3	3 - 4
Forskalia sp.	Artemia nauplij	2 - 3	2 - 3
Forskalia sp.	Artemia nauplii	3 - 6	3 - 6
Rosacea cymbiformis	Artemia nauplii	3 - 6	(no observations)
Rosacea cymbiformis	Artemia nauplii	6 - 12	(no observations)
Rosacea cymbiformis	Artemia nauplii	6 - 10	10 - 24
Rosacea cymbiformis	Artemia naupli		(no observations)
Rosacea cymbiformis	Artemia naupli:	i 10 - 12	(no observations)
Rosacea cymbiformis	Artemia naupli:	i 8 – 10	(no observations)
Rosacea cymbiformis	Artemia naupli:		8 - 18
Stephanophyes superba	Artemia naupli:	i 4-6	4 - 6
Stephanophyes superba	Artemia naupli:		4 - 5
Stephanophyes superba	Artemia naupli:		6 - 8
Sulculeolaria quadrivalvis	Artemia naupli:	i 1-2	2 - 3
Sulculeolaria chuni	Artemia naupli		3 - 4
Sulculeolaria chuni	Artemia naupli		3 - 4
Sulculeolaria	Artemia naupli		2 - 3
Diphyes dispar	Artemia naupli	i 2-3	3 - 4
Diphyes dispar	Artemia naupli		3 - 4
	The second second frame	i 2-3	3 - 4

1

.

i ·

mucus and exoskeleton. Material egested by siphonophores is not bound in a peritrophic membrane and fragmented when I tried to collect it quantitatively.

DISCUSSION

The siphonophore cycle of swimming and then lying in wait for prey is well-suited to life in an oligotrophic environment. It allows siphonophores to concentrate food from a large volume of water while reducing energy expended searching actively for prey. One might imagine orb-weaving spiders, which extend a network of prey-ensnaring lines and then wait for prey to approach or drift into them, as terrestrial analogs. However, siphonophores are not restricted from moving about and cover a larger volume than can spiders, whose webs are anchored in one location. Moreover, the buoyancy of the fluid environment of siphonophores does not restrict their "webs" to planar configurations.

A swimming interval which lasted 12 seconds or less and swimming speeds which averaged less than 16 cm/sec (page 23) caused most siphonophores to progress less than two meters before again setting their network of fishing tentacles. This behavior seems to imply a feeding adjustment to scales of zooplankton patchiness much smaller than the scales of $10^1 - 10^3$ meters currently visualized by biological oceanographers.

When the stem has been retracted, Calycophorae like <u>Chelophyes</u> <u>appendiculata</u> and species of <u>Sulculeolaria</u> are well streamlined and can escape from stimuli as fast as larvaceans and heteropods (see Hamner, et al., 1975). However, Calycophorae with flabby nectophores or very long stems, like <u>Rosacea cymbiformis</u> and large specimens of <u>Diphyes dispar</u> (50 - 60 mm overall length of both nectophores) swim so weakly that they rarely exceed speeds of 3 - 5 cm/sec (Table 3).

The architecture of some Physonectae makes them inefficient swimmers. For example, the radial arrangement of nectophores in the genus Forskalia restricts rapid forward movement. The fastest Physonectae have two biserial rows of nectophores and siphosomes of narrow diameter. Colonies of Nanomia bijuga with 28 nectophores and 13 stem groups, when jostled by divers, escaped at speeds exceeding 25 cm/sec (Table 3). A cold-water congener, N. cara, moved off in laboratory aquaria at 20 - 30 cm/sec through synchronous contraction of its nectophores (Mackie, 1964). Contraction of N. cara's nectophores in sustained swimming was asynchronous, and sustained speeds averaged only 8 - 10 cm/sec (Berrill, 1930; Mackie, 1964). The latter velocities are theoretically sufficient, though, to permit individuals of Nanomia to keep pace with a migrating deep scattering layer.

Siphonophore digestion times correspond to metabolic rates approximated from their oxygen consumption and nitrogenous excretion. Species of Sulculeolaria, which had the fastest digestion of siphonophores I observed in the laboratory, have some of the highest rates of respiration and excretion (see Part 3). Conversely, Rosacea cymbiformis, which required the longest time to digest Artemia nauplii, has a very low rate of respiration and excretion (Part 3). Mackie and Boag (1963) reported that Nanomia cara egested carmine within 25 minutes after it had eaten a piece of carmine-dyed crab muscle. However, most of the carmine was apparently adhering to the surface of the muscle and was probably released into the gastric cavity of the feeding polyp immediately upon digestion of the outer surfaces. While I did not encounter N. cara in the tropical and subtropical North Atlantic, I expect (on the basis of Table 6), that this species would require longer than 25 minutes to digest living prey.

The range of siphonophore digestion times I measured includes those reported for other gelatinous zooplankton. Swim-collected heteropods <u>Cardiopoda placenta</u> and <u>Pterotrachea coronata</u> required 4.5 - 7 hours, and 6 - 8 hours, respectively, between ingestion and defecation (Hamner, et al., 1975). The ctenophore <u>Bolinopsis</u> <u>infundibulum</u> digested stage-5 <u>Calanus</u> sp. within one hour; <u>Beroe</u> <u>cucumis</u>, preying on <u>B. infundibulum</u>, digested it within 3 - 3.5 hours (Kamshilov, 1960; Fraser, 1962).

Laboratory experiments with <u>Cordagalma cordiformis</u> suggest that siphonophores able to eat small zooplankton could glut themselves on dense aggregations of microzooplankton until tentaclespreading behavior became limited by satiation. Feeding polyps of most siphonophores are larger than those of <u>C</u>. <u>cordiformis</u>. If, like <u>C</u>. <u>cordiformis</u>, feeding polyps of long-stem forms like <u>Rosacea cymbiformis</u> or <u>Sulculeolaria quadrivalvis</u> can ingest 13 or more small zooplankton in ten minutes, a single colony feeding at high densities of microzooplankton might be able to rapidly ingest several hundred individuals.

ŝ

SUMMARY

- Calycophorae and Physonectae observed in situ by SCUBA divers showed a two-phase cycle of fishing and swimming. An active calycophore like <u>Chelophyes appendiculata</u> repeated the cycle 100 times per hour in the field, while physonects repeated it less than a dozen times per hour. During the swimming interval, swim speeds ranged from 1 - 16 cm/sec.
- 2. The fishing posture of a siphonophore is determined primarily by its floatation and by the contractility of its stem; fishing postures can be similar in siphonophores which are unrelated.
- The total length of tentacles in colonies with only 2 3 mg body protein can extend 4.5 meters.
- 4. Variations in the morphology of tentilla reflect differences in the kinds of prey which can be captured. Dissection of feeding polyps revealed that most siphonophores could eat copepods, amphipods, polychaetes, pteropods, heteropods, veliger larvae, sergestids, mysids, euphausiids, and small fish, though laboratory experiments showed that not all could eat nauplii. Cystonectae can probably eat only large zooplankton and nekton.
- Siphonophores able to capture <u>Artemia</u> nauplii usually required
 2 4 hours to digest them. Large prey took 7 18 hours to be digested.

1

Part 3. Oxygen Consumption and Ammonia Excretion

INTRODUCTION

Most of the macrozooplankton encountered on daytime SCUBA dives in the upper 30 m of the Western North Atlantic Ocean are gelatinous, transparent forms (see Gilmer, 1972; Madin, 1974; Swanberg, 1974; Harbison and Gilmer, 1976). Besides siphonophores, gelatinous zooplankton include medusae, ctenophores, thaliaceans, pseudothecosome pteropods, and several heteropods. Despite their widespread occurrence in open-ocean regions, there is little quantitative information on the energy requirements of gelatinous animals. Measurements of respiration or excretion for gelatinous zooplankton are mostly limited to nearshore ctenophores (e.g., Williams and Baptist, 1966; Hirota, 1972) and medusae (Kruger, There are a few respiration measurements on open-ocean 1968). gelatinous animals (e.g., Rajagopal, 1962; Nival, et al., 1972; Gilmer, 1974), but simultaneous measurements of respiration and excretion have been reported for only a dozen species (Mayzaud and Dallot, 1973; Ikeda, 1974).

Because of their fragility, siphonophores and other gelatinous animals make poor subjects for classical laboratory respiration and excretion measurements. Turbulence, abrasion, or prolonged contact with surfaces causes ctenophores and siphonophores to fragment and can cause salps to shed their tests. Previous

investigators have collected gelatinous animals with nets and held them without food in small laboratory aquaria for up to 2 days before measuring oxygen consumption or ammonia excretion. Although neritic species might survive this treatment, it will cause most open-ocean forms to become moribund.

To minimize damage to them, I collected oceanic gelatinous zooplankton individually in hand-held jars while SCUBA diving and measured oxygen and subsampled ammonia in the jars within 6 hours of collection. I made measurements of respiration and excretion on over 220 siphonophores. The results indicate that interspecific differences in metabolism are related to differences in their morphology and ecology.

I am grateful to G. Woodwell for allowing me to use his laboratory for Kjeldahl analyses and thank J. McCarthy for use of his Bausch and Lomb 710 spectrophotometer on CHAIN Cruise 122. R. Gilmer performed the carbon-hydrogen-nitrogen (CHN) analyses on <u>Agalma okeni</u>, using a Perkin-Elmer model 240 CHN analyzer.

METHODS

SCUBA divers collected gelatinous plankton in 130 - 980 ml glass jars fitted with screw-top plastic lids with polypropylene liners. Before collecting a specimen, divers flushed the open jars by shaking them vigorously. Care was taken not to damage siphono-

phores by direct contact with the divers. Siphonophores were usually allowed to swim into the jars, in order to minimize shearing turbulence and also obtain the entire fishing network.

At most stations where siphonophores were collected, temperature in the upper 30 m was $23 - 29^{\circ}$ C (see Appendix 1). Colonies in their collecting jars were incubated aboard ship in a flowing sea water bath at surface temperature for 1 - 6 hours after enclosure. Oxygen consumption and ammonia excretion were estimated by difference from control jars of sea water collected simultaneously. The tension of dissolved oxygen in each jar was measured with a polarographic oxygen electrode (Kanwisher, 1959) connected to a portable, batterypowered amplifier which allowed oxygen to be measured with a precision of \pm 0.035 ml/liter at 4.800 ml 0₂/liter. The amplifier was designed and constructed at W.H.O.I. by K. Lawson. Oxygen electrodes were calibrated by Winkler titration (Strickland and Parsons, 1972) or standardized against oxygen-saturated surface water.

Laboratory experiments were performed to investigate the effect of short-term changes in temperature on oxygen consumption. After measuring the oxygen consumption of two colonies of <u>Forskalia</u> <u>edwardsi</u> by the method outlined above, I placed them and five other colonies of <u>Forskalia</u> in a water bath 5^oC below in situ collection temperature for one hour. All were then transferred gently into new jars of water at this temperature, sealed, and incubated for 1 - 6

hours. Oxygen consumption was measured by difference from jars of water enclosed simultaneously.

For determination of ammonia, 100 ml of water was decanted from each collecting jar and filtered under low vacuum (10 - 12 psi) through Gelman Type A glass fiber filters. The filtrate was immediately fixed with phenol (Deggobis, 1973) and refrigerated. Ammonia was determined in duplicate by the phenol-hypochlorite method (Solorzano, 1969) within 1 - 2 weeks. There was no measurable change in ammonia concentration in fixed, refrigerated samples during this time. I used 50% less sodium nitroprusside than specified by Solorzano (1969) and allowed color to develop in the dark at room temperature. Color development was complete in two hours, and serial dilutions of an NH4C1 standard gave a linear photometric response from 0 - 15 μ g-at NH₄⁺ per liter. Others (Dal Pont, et al., 1974; Liddicoat, et al., 1975) have suggested similar modifications in the nitroprusside reagent and in development time. At sea, using a 5-cm pathlength in a Bausch and Lomb model 710 spectrophotometer, precision was equal to that ashore: \pm 0.1 µg-at NH₄⁺/liter at 3.0 µg-at NH₄⁺/ liter.

In ten instances, additional water samples were decanted, filtered, and frozen for determination of total dissolved nitrogenous excretion by Kjeldahl digestion ashore. Within one month of collection, samples were thawed and ammonia determined again to

ŝ

÷

į.

calculate per cent loss of ammonia during storage. Replicate 25 ml aliquots of the remainder of each sample were then digested for 2 hours by 5 ml of concentrated H_2SO_4 , deionized water, and a 5% CuSO_4 solution mixed 50:50:5 by volume. After reconstitution to 25 ml with deionized water and titration to pH 5.4, ammonia was measured by the phenol-hypochlorite method outlined above. Total dissolved nitrogenous excretion, as NH_4^+ equivalents, was calculated and corrected for anmonia lost during storage. Addition of NH_4Cl to digestion mixture blanks showed a linear photometric response from $0 - 10 \ \mu g$ -at $NH_4^+/liter$, though blank absorbance was about 0.810 at 640 nm (10-cm pathlength). Precision of the phenol-hypochlorite analyses of the digestate was $\pm 0.2 \ \mu g$ -at $NH_4^+/liter$ at 3.0 μg -at $NH_4^+/liter$.

Incubation times for oxygen consumption and ammonia excretion experiments were chosen to correspond to the size of a siphonophore relative to the size of its collecting jar. Ammonia in control jars of sea water was less than 0.4 μ g-at NH₄⁺/liter. Six hours was sufficient for the smallest siphonophores to produce a measurable change in both ammonia and oxygen. I disregarded incubations in which oxygen tension fell to less than 70% of saturation.

Experimental animals were frozen on Gelman Type A glass fiber filters. Within 1 - 6 months after freezing, they were homogenized individually in 1.0 N NaOH for protein analysis by the Lowry method

(Lowry, et al., 1951). Freeze-dried bovine serum albumin (BSA) was the reference standard.

All measurements were standardized to protein, rather than dry weight, since the organic fraction of siphonophores is only 3% - 16% of their dry weight (Beers, 1966). Previous investigators have found that protein is the major organic fraction in zooplankton (Reeve, et al., 1970; Ikeda, 1972; Mayzaud and Martin, 1975). For purposes of comparison, carbon-hydrogen-nitrogen analyses were also performed on colonies of <u>Agalma okeni</u>.

RESULTS

There was no measurable change in oxygen or ammonia in replicate control jars of sea water after a six-hour incubation at ambient temperature. Moreover, when a siphonophore was placed in unfiltered sea water and ammonia measured hourly for four hours, cumulative ammonia excretion showed a linear relationship with time. These results suggest that there was minimum growth of microorganisms in the collecting jars.

Neither oxygen consumption nor ammonia excretion had a negative correlation with jar size or incubation time, suggesting that siphonophores did not respond to capture with rapid, short-term increases in metabolism. However, the mobility of very active forms like <u>Nanomia bijuga</u> and species of <u>Sulculeolaria</u> may be

inhibited in jars of 130 - 980 ml volume. Apart from these species, rates of oxygen consumption and ammonia excretion measured by in situ collection and continuing shipboard incubation at environmental temperature probably reflect rates which undisturbed colonies show in their natural environment.

Regression equations expressing oxygen consumption and ammonia excretion as power functions of body protein were calculated for nine of the more abundant siphonophores (Tables 8 and 9, and Figures 11 and 12). I have grouped two species of <u>Forskalia</u> because I was unable to distinguish between them. I have more arbitrarily grouped other species in Tables 8 and 9 for which individual data are limited but which had similar rates of respiration and ammonia excretion (Table 10). The average coefficient of determination $(r^2 \pm s)$ in the nine groups was $0.81 \pm .10$ for oxygen consumption and $0.77 \pm .11$ for ammonia excretion. All coefficients of determination were highly significant statistically (P < 0.001).

Respiration of siphonophores ranged from $2 - 86 \ \mu l \ O_2/mg$ protein-hr, and excretion from $0.1 - 3.3 \ \mu g \ NH_4^+/mg$ protein-hr (Table 10). Colonies of smaller size had higher rates of respiration and excretion than those of larger animals. Ratios of respiration at environmental temperatures to respiration at temperatures $5^{\circ}C$ lower varied from 1.3 - 5.0, with a tendency for the lower ratios to occur at higher environmental temperatures (Table 11).

Table 8 and Figure 11:

÷

Oxygen consumption at $26 \pm 3^{\circ}C$ of some of the more abundant tropical and subtropical siphonophores, estimated by linear regression: log y = a + b (log x); where y = oxygen consumption (µ1 0₂/hr); x = body protein (mg); a \pm s and b \pm s = regression coefficients \pm standard errors; s_{yx} = standard error of the estimate (of y on x); r² = coefficient of determination.

1.44

Species	n	a <u>+</u> s	b <u>+</u> s	^s yx	r ²
iphonophora: Physonectae					
Agalma okeni	58	1.07 <u>+</u> .04	0.87 + .06	0.20	0.77
<u>Nanomia bijuga</u>	19	$1.36 \pm .02$	0.70 <u>+</u> .04	0.08	0.93
Forskalia edwardsi; <u>F. tholoides</u>	20	1.26 <u>+</u> .03	0.90 <u>+</u> .06	0.13	0.94
<u>Athorybia rosacea;</u> <u>Athorybia</u> sp. A	13	1.51 <u>+</u> .15	0.34 <u>+</u> .06	0.12	0.81
iphonophora: Cystonectae					
<u>Rhizophysa filiformis;</u> <u>Bathyphysa sibogae</u>	13	0.80 <u>+</u> .16	0.87 <u>+</u> .15	0.18	0.72
iphonophora: Calycophorae					
<u>Rosacea</u> cymbiformis	13	0.75 <u>+</u> .08	1.24 <u>+</u> .19	0.19	0.79
Diphyes dispar	17	1.08 <u>+</u> .15	0.65 <u>+</u> .06	0.18	0.88
<u>Sulculeolaria</u> <u>quadrivalvis</u>	10	1.61 <u>+</u> .08	0.79 <u>+</u> .15	0.18	0.78
Sulculeolaria monoica	9	1.41 <u>+</u> .08	0.77 <u>+</u> .23	0.22	0.61

. . .

. .

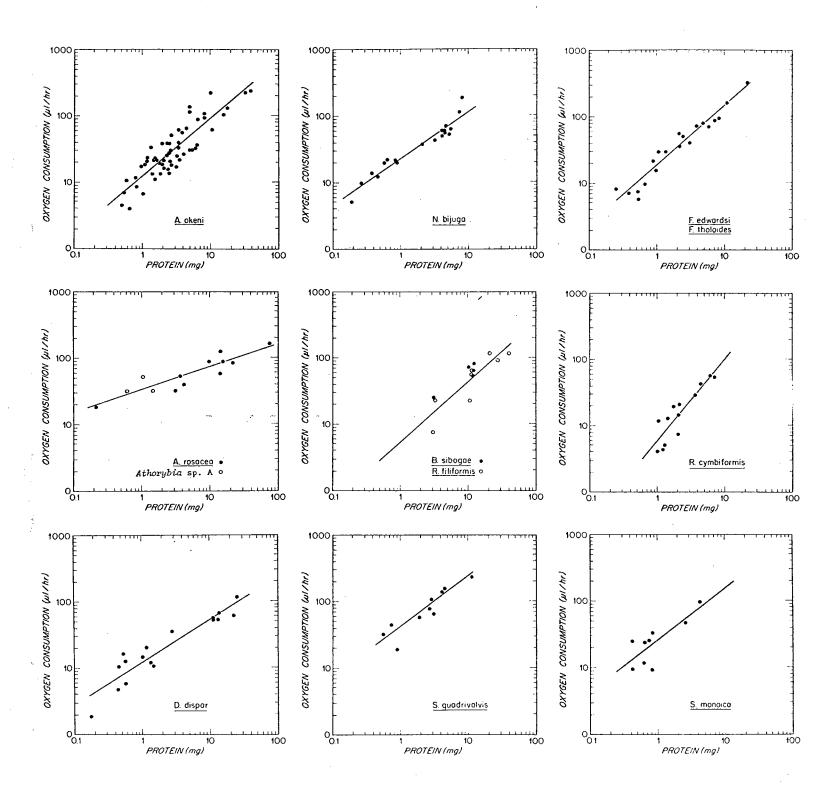
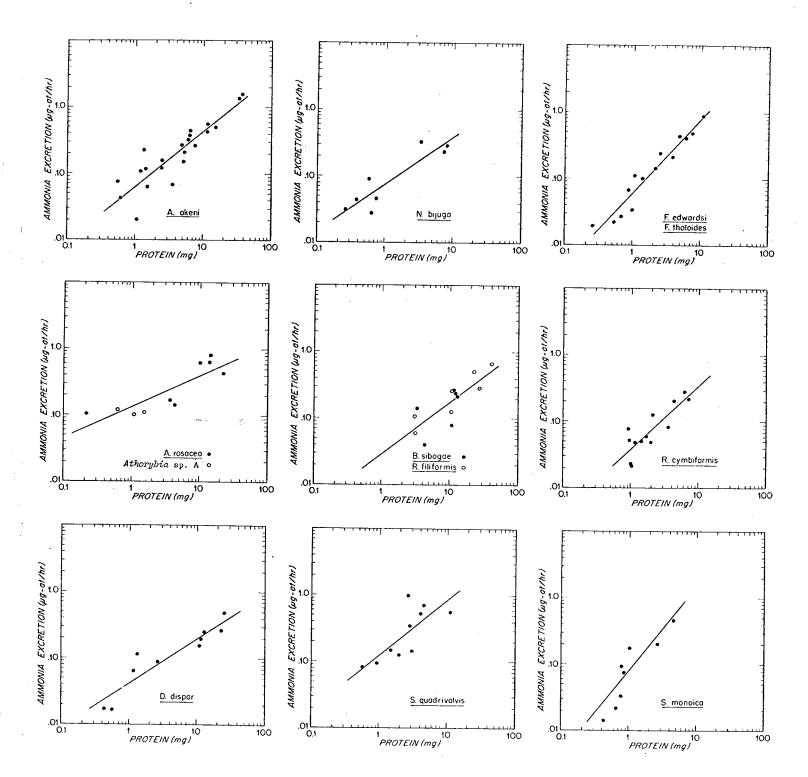


Table 9 and Figure 12:

Ammonia excretion at $26 \pm 3^{\circ}$ C of some of the more abundant tropical and subtropical siphonophores, estimated by linear regression: log y = a + b (log x); where y = ammonia excretion (µg-at NH₄⁺/hr); x = body protein (mg); a ± s and b ± s = regression coefficients ± standard errors; s_{yx} = standard error of the estimate (of y on x); r² = coefficient of determination.

Species	n	a <u>+</u> s	b <u>+</u> s	^s yx	r ²
phonophora: Physonectae					
Agalma okeni	22	-1.21 <u>+</u> .07	0.82 + .10	0.23	0.79
<u>Nanomia bijuga</u>	8	-1.13 <u>+</u> .07	0.71 <u>+</u> .14	0.21	0.82
Forskalia edwardsi; F. tholoides	14	-1.20 ± .04	1.10 ± .08	0.15	0.93
<u>Athorybia</u> rosacea; <u>Athorybia</u> sp. A	11	-0.88 <u>+</u> .08	0.48 ± .09	0.19	0.77
phonophora: Cystonectae		•			
<u>Rhizophysa</u> filiformis; <u>Bathyphysa</u> sibogae	13	-1.55 <u>+</u> .18	0.80 <u>+</u> .17	0.22	0.60
phonophora: Calycophorae					
Rosacea cymbiformis	13	-1.43 <u>+</u> .08	0.95 <u>+</u> .19	0.20	0.7
Diphyes dispar	10	-1.39 ± .08	0.68 <u>+</u> .09	0.18	0.88
<u>Sulculeolaria</u> quadrivalvis	10	-0.91 <u>+</u> .13	0.84 <u>+</u> .25	0.27	0.5
<u>Sulculeolaria</u> monoica	8	-1.13 ± .10	1.35 <u>+</u> .30	0.27	0.7


. .

. .

÷ ·

· f·

.

Table 10. Respiration (μ l O₂/mg protein-hr), excretion (μ g NH₄⁺/mg protein-hr), and O:NH₄⁺ ratio for siphonophores, of three different sizes.

.

÷.

į.

	Weight-Specific Oxygen 0.1-1.0 mg 1.1-: N Mean ± S N Mu		Consumption (µ1/mg-hr) 0.0 mg 10.1-100 mg an ± S N Mean ± S	Weight-Specifi 0.1-1.0 mg N Mean <u>+</u> S	Weight-Specific Ammonia Excretion (µg/mg-hr) 0.1-1.0 mg 1.1-10.0 mg 10.1-100 mg N Mean ± S N Mean ± S N Mean ±	lon (µg/mg-hr) 10.1-100 mg N Mean <u>+</u> S	0:NH ₄ Ratio all sizes N Mean <u>+</u> S
Suborder Physonectae Agalma okeni Agalma elegans Cordagalma cordiformis Nanomia bijuga Forskalia edwardsi; F. tholoides Athorubia rosacea	$ \begin{array}{c} (7) & 12 \\ (4) & 39 \\ (4) & 39 \\ (6) & 27 \\ (6) & 27 \\ (8) & 31 \\ (8) & 31 \\ (1) \\ (8) & 20 \\ (1) \\ 86 \\ 7 \end{array} , 1 \\ \end{array} $	$ \begin{array}{c} (46) & 12 \\ (3) & 16 \\ - \\ (3) & 16 \\ - \\ (11) & 14 \\ + \\ (10) & 17 \\ + \\ + \\ 0 \end{array} , 3 \\ (10) & 17 \\ + \\ + \\ 0 \end{array} , 7 \\ \end{array} $	$ \begin{array}{c} (5) \\ - \\ - \\ - \\ - \\ - \\ (2)^{\circ} 15 + 0.1 \\ (2)^{\circ} 15 + 0.1 \\ \end{array} $	$ \begin{array}{c} (3) & 1.3 \\ - \\ (4) & 2.5 \\ (5) & 1.6 \\ 1.1 \\ (6) & 1.1 \\ 0.5 \\ (6) & 1.1 \\ 0.5 \\ \end{array} $	$(15) 1.0 \pm 0.6$ - (3) 1.0 \pm 0.5 (3) 1.0 \pm 0.5 (8) 1.3 \pm 0.2	0.6	$\begin{array}{c} (22) & 19 \pm 7.8 \\ - \\ (4) & 16 \pm 1.9 \\ (7) & 38 \pm 20.5 \\ (14) & 25 \pm 8.0 \end{array}$
Athorybia sp. Suborder Cystonectae Bathyphysa sibogae			+l +l n vo·		0.8 + 0. 1.5 + 0. 0.5 + 0.	(4) 0.7 <u>+</u> 0.2 - (4) 0.3 <u>+</u> 0.1	17 22 ++ 20 +
Suborder Calycophorae Suborder Calycophorae Stephanophyes superba Rosacea cymbiformis Dinnues dienor	22 8	+ + + · ^ 42 %	+ + • •	+ + 8 8 8 1 0	1+1+ 1+ 0.0 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1	- 0.3	23 23 23 1+1+
urpryes arspar Sulculeolaria quadrivalvis Sulculeolaria monoica Sulculeolaria biloba Abula so	$\begin{array}{c} (7) & 17 + 7.4 \\ (3) & 45 + 17.1 \\ (7) & 32 + 15.1 \\ (4) & 75 + 25.2 \\ - \end{array}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c} (6) & 4 \pm 0.9 \\ (1) & 21.3 \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ $	$\begin{array}{c} (2) & 0.6 \pm 0.1 \\ (2) & 2.1 \pm 0.3 \\ (6) & 1.5 \pm 0.9 \\ (4) & 2.7 \pm 1.0 \\ - \end{array}$	1.0 1.0 1.1 1.0 1.1 1.1 1.1 1.1 1.1 1.1	(5) 0.3 ± 0.1 (1) 0.8 ± 0.1	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
Chelophyes appendiculata Hippopodius hippopus	- (1) 17.3	, 5 1+1-1 1-2 1-2 1-2 1-2 1-2 1-2 1-2 1-2 1-2			(3) 0.5 <u>+</u> 0.2 (3) 0.5 <u>+</u> 0.2 -	111	17 26
eudoxid phase, <i>Diphyes dispar</i> eudoxid phase, <i>Ceratocymba sp</i> .	(2) 78 ± 20.2 (1) 75.6	- (1) 2.3	1 1	(2) 1.4 \pm 0.7 (1) 0.8	- (1) 0.1	11	(2) 121 ± 78.7 (2) 88 ± 52.9

i

.

.

.

1.1.1

Table 11. A comparison of respiration (μ 1 0₂/mg protein-hr) of <u>Forskalia tholoides</u> and <u>F. edwardsi</u> at ambient temperature and at 5^oC below ambient temperature.

*Oxygen consumption calculated from Table 8.

SPECIES	SIZE (mg protein)	TEMPERATURE (^O C) ambient expmntl	URE (^O C) expmntl	RESPIRATION ambient(R ₀) ex _I	RESPIRATION ambient(R ₀) expmntl(R ₁)	RATIO R ₀ /R ₁
<u>Forskalia</u> tholoides	0.48	25.5	20.5	20.0*	15.2	1.3
Forskalia tholoides	3.23	25.5	20.5	16.1 [*]	8.1	2.0
Forskalia tholoides	3.15	22.0	17.0	16.0 [*]	5.7	2.8
Forskalia edwardsi	6.33	22.0	17.0	14.1	3.7	3°8
Forskalia edwardsi	10.66	22.0	17.0	18.1	4.1	4.4
Forskalia tholoides	6.38	21.0	16.0	14.9*	3.2	4.7
Forskalia edwardsi	7.77	21.0	16.0	14.6 [*]	2.9	5.0
•	•					

Į.

Į.

5

÷

Table 12. Nitrogenous excretion in some tropical and subtropical siphonophores.

1.00

.

1

.....

·

1

NH4 ⁺ TOTAL N	0.80	0.68	0.56	0.74	1.00	0.58	0.89	0.35	0.73	0.56
TOTAL NITROGENOUS EXCRETION (µg NH4 ⁺ equivalents/hr)	0.5 ± 0.2	2.2 + 0.2	4.7	5.0 ± 0.2	5.9	7.7 ± 0.1	13.2 ± 0.6	23.6 ± 3.9	4.8	3.5
AMMONIA EXCRETION (µg NH4 ⁺ /hr)	0.4 ± 0.1	1.5 ± 0.1	2.6 ± 0.1	3.7 ± 0.1	5.9	4.4 ± 0.2	11.7 ± 0.1	8.2 ± 0.2	3.5 ± 0.1	1.9 ± 0.4
SIZE (mg protein)	1.3	2.4	2.5	8.6	8.6	8.6	8.6	10.1	2.8	1.4
SFECIES	<u>Agalma okeni</u>	<u>Agalma okeni</u>	<u>Agalma okeni</u>	<u>Agalma</u> okeni	<u>Agalma okeni</u>	<u>Agalma okeni</u>	<u>Agalma</u> okeni	<u>Agalma okeni</u>	Rosacea cymbiformis	Stephanophyes superba

•

.

In eight specimens of <u>A</u>. <u>okeni</u>, ranging in size from 1.3 - 10.1 mg protein, ammonia excretion averaged 69% of total nitrogenous excretion (Table 12). Measurements on single colonies suggest that <u>Rosacea cymbiformis</u> and <u>Stephanophyes superba</u> may also be primarily ammonotelic (Table 12). This is the case for most planktonic invertebrates (Corner and Cowey, 1968; Jawed, 1973; Mayzaud and Dallot, 1973).

In <u>A</u>. <u>okeni</u>, total body carbon, C (by CHN analysis), and body protein, P (by Lowry analysis), can be related by the following equation:

 $\log C = 0.894 (\log P) - 0.137$

Smaller colonies had a higher C:P ratio than large colonies.

DISCUSSION

Rates of oxygen consumption reported for siphonophores taken from nets and held for 1 - 2 days in the laboratory without feeding (Nival, et al., 1972; Ikeda, 1974) were consistently lower than most rates determined in the present study. Since stresses of collection, maintenance in laboratory aquaria, and transfer to respirometer vessels may damage these very delicate animals, extrapolation of previous estimates of oxygen consumption to field populations of siphonophores is unrealistic. Although estimates of respiration and excretion in the present study are not free from bias which may

..

be induced by confinement, colonies were collected in situ in the ocean which minimized damage to them.

Temperature Acclimation

Although most respiration measurements were made on siphonophores collected at temperatures from 23 - 29°C, those acclimated to lower habitat temperatures had similar rates of oxygen consumption. Species of <u>Forskalia</u> which had 1 - 10 mg protein respired $17 \pm 4.7 \ \mu 1 \ 0_2/mg$ protein-hr at 23 - 29°C (Table 10). Four additional colonies (not included in Table 10), ranging in size from 3.15 mg protein to 8.21 mg protein but collected in surface waters of $21 \pm 1^{\circ}$ C showed equivalent respiration (20 \pm 9.1 $\mu 1 \ 0_2/mg$ protein-hr). This implies that species of <u>Forskalia</u> can acclimate metabolically to a temperature range of at least 9°C.

Short-term exposures to temperatures only 5°C lower than ambient, though, caused twofold to fivefold reductions in oxygen consumption (Table 11). Temperature changes of this magnitude could influence the metabolism of diel migrators. If some siphonophores feed at night in surface waters and then migrate through the thermocline to their daytime depths, they could conserve energy (McLaren, 1963), providing increases in respiration due to swimming activity and increased hydrostatic pressure are less than the decrease induced by temperature (e.g., Teal and Carey, 1967).

Interspecific Differences

The value <u>b</u> (Tables 8 and 9) is the exponent in the relation between metabolic rate and size; if metabolism is directly proportional to weight (mg protein), <u>b</u> = 1. Actually, <u>b</u> was usually less than 1.0 (Tables 8 and 9), and in most species was not significantly different statistically (t-test; P < 0.05) from Hemmingsen's (1960) index of 0.73. Variation in the rate at which metabolism changes with size may reflect differences in dietary or reproductive state. Behavioral and ecological differences between groups of siphonophores also contribute to differences in metabolism.

For example, cyctonect siphonophores had lower respiration and excretion rates than physonect siphonophores (Table 10). Since cystonects lack swimming bells and are only able to writhe about in the water and rise or sink by release or secretion of gas, it is reasonable that they have lower metabolic rates. Within the Physonectae, respiration and excretion rates were somewhat lower in species like <u>Athorybia rosacea</u> and <u>Agalma okeni</u>, which are slow swimmers and largely inactive.

Calycophorae are highly variable in form, and the range of respiration and excretion rates in this group was correspondingly broad. Slow-swimming inactive species like <u>Hippopodius hippopus</u> and <u>Abyla</u> sp. had the lowest rates. <u>Rosacea cymbiformis had lower</u>

respiration and excretion than a faster and more active confamilial like <u>Stephanophyes</u> superba.

I have measured oxygen consumption and ammonia excretion in other groups of gelatinous zooplankton by the same methods (Biggs, in prep). Specimens of cydippid and cestid ctenophores, hydromedusae, and the scyphomedusa <u>Aurelia</u> sp. had relatively low rates of respiration and excretion $(6 - 13 \ \mu 1 \ 0_2/mg$ protein-hr, and 0.2 -1.1 μ g NH₄⁺/mg protein-hr for animals with 1 - 10 mg protein). More active, muscular carnivores of the same size, like <u>Pelagia</u> <u>noctiluca</u>, <u>Ocyropsis maculata</u>, and <u>Pterotrachea hippocampus</u>, as well as most herbivores, had higher rates (16 - 36 μ 1 $0_2/mg$ proteinhr, and 0.7 - 2.9 μ g NH₄⁺/mg protein-hr).

Nutrient Cycling

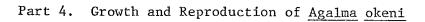
Over large areas of the oligotrophic central gyre of the North Atlantic Ocean, concentrations of ammonia in the upper 100 m are less than 0.8 μ g-at/liter (Goering, et al., 1964). Most medium to large siphonophores have more than 5 mg body protein and excrete ammonia at rates exceeding 0.3 μ g-at/hr (from Table 9). Ammonia may be a preferred nitrogenous source for phytoplankton and microbial populations (Corner and Davies, 1971), and ammonia released by zooplankton has been proposed as a significant nitrogenous input in areas of the Pacific Ocean off Peru (Walsh and Dugdale, 1971) and Washington (Jawed, 1973). Since, by per cent displacement

volume in plankton tows, siphonophores are one of the ten major taxonomic groups of zooplankton in the upper 200 m of the Sargasso Sea (Grice and Hart, 1962), they and other zooplankton may be important in regenerating nutrients there.

0:NH4 Ratios and Nutrition

Ratios of oxygen atoms consumed to ammonia nitrogen atoms excreted by siphonophores are in accord with those reported for many non-gelatinous species. For example, in tropical, subtropical, and temperate planktonic crustacea, most $0:NH_4^+$ ratios ranged between 8 and 24 (Harris, 1959; Conover and Corner, 1968; Ikeda, 1974). Lipid and protein are probably both important metabolites. Protein is about 16% N and requires 1.04 liters of oxygen for complete combustion of one gram (Ikeda, 1974). If ammonia was the endproduct of nitrogen metabolism, the metabolic $0:NH_4^+$ ratio for protein catabolism would be about 8. Oxidation of equivalent weights of protein and lipid requires 2.02 liters of oxygen for complete combustion of one gram and yields an $0:NH_4^+$ ratio of about 24 (Ikeda, 1974), which is in agreement with most of the $0:NH_4^+$ ratios I measured for siphonophores (Table 10).

The very high 0:NH4⁺ ratios measured in four Calycophorae eudoxids (Table 10) may reflect a large amount of non-protein catabolism in these tiny reproductive forms. In fact, some eudoxids


do not seem to feed after being released from the siphonophore colony, and therefore may subsist on carbohydrate or lipid reserves for their relatively brief existence.

In general, mean $0: \text{NH}_4^+$ ratios in subtropical gelatinous herbivores were higher than those measured in siphonophores and medusae, ranging from 18 for the aggregate generation of <u>Salpa</u> <u>maxima</u> to 89 for pteropods like <u>Corolla spectabilis</u> (Biggs, in prep). The extremely low 0:N ratios reported for salps and other macroplankton from areas of the Mediterranean Sea (Mayzaud and Dallot, 1973) may reflect damages incurred in collection. Animals collected from plankton nets (300 μ m mesh) and from IKMT hauls may have experienced significant abrasion arising from the filtering characteristics of these samplers. After being held for 12 hours in the laboratory, some or all may have been moribund, and either catabolized or leaked unnaturally high levels of nitrogen compounds.

SUMMARY

- 1. Siphonophores were individually collected in jars by SCUBA divers and their rates of oxygen consumption and ammonia excretion were estimated by difference from control jars of sea water enclosed simultaneously.
- 2. Respiration at 26 ± 3 °C ranged from 2 86 µl 0_2 /mg protein-hr, and ammonia excretion ranged from 0.1 - 3.3 µg NH₄⁺/mg protein-hr. Colonies of small size had higher rates of respiration and excretion than those of larger colonies.
- 3. Although most respiration measurements were made on siphonophores collected at temperatures of $23 29^{\circ}$ C, those acclimated to lower habitat temperatures had similar rates of oxygen consumption. Short-term exposures to temperatures only 5° C lower than ambient, however, caused twofold to fivefold reductions in respiration.
- Ratios of oxygen consumed to ammonia-nitrogen excreted for most species ranged from 16 - 36 and suggest that both protein and lipid are important metabolites.
- 5. Rates of oxygen consumption measured by me in hand-collected siphonophores are higher than most rates reported by previous investigators. I suggest that most siphonophores which were taken from nets and held for 1 - 2 days in the laboratory without feeding were moribund, and that their respiration was certainly not representative of populations living in the natural environment.

£

.....

INTRODUCTION

Siphonophores increase in size by budding. Nectosome and siphosome are unable to replace lost gelatinous parts, though, except by budding new ones apically (e.g., Moser, 1925; Mackie and Boag, 1963). When unprotected areas are exposed by loss of nectophores and bracts, the stem rotates and contracts to close them and maintain bilateral symmetry (Mackie, 1964). When the stem, in regions outside proximal zones of budding, fragments or is severed surgically, it seems unable to regenerate additional parts.

Because regenerative ability is so limited, reproduction is probably obligately sexual. Most colonies are hermaphroditic and have an alternation of male and female gonophores (Totton, 1965). Since siphosome budding occurs at the base of the nectosome, gonophores which are most ripe are those farthest from the anterior end of the colony. In Physonectae, gonophores are budded multiplely from the bases of palpons associated with each stem group. Eggs and sperm may be released free into the water, as in species of <u>Nanomia</u> (Totton, 1965), or ripe gonophores may be shed from the stem to swim weakly under their own power, as I have observed in species of <u>Agalma</u>. As gonophores mature, some Calycophorae release their distal stem groups as free-swimming units known as eudoxids.

Despite the ubiquity of siphonophores in oceanic regions, their productivity is difficult to measure quantitatively. In

theory, secondary production can be estimated by following sizefrequency changes in natural populations, or by measuring growth and reproduction of species in laboratory culture. Although there are theoretical and practical difficulties in sampling a single population of oceanic plankton through time, populations of some gelatinous zooplankton may be amenable to size-frequency analysis when they occur in swarms (Heron, 1972). Populations of most siphonophores, though, are too disperse and too fragile to be accurately sampled with nets (see Part 1). Because of their colonial organization, they are especially ill-suited to analysis by size-frequency distribution. Although neritic ctenophores can be maintained in laboratory culture (Greve, 1970; Hirota, 1972; Baker and Reeve, 1974), none of the oceanic jellies have been successfully cultured through an entire reproductive cycle.

Although there are difficulties in evaluating the effects of laboratory confinement, it is possible to measure short-term growth of siphonophores. Mackie and Boag (1963) were able to keep carefully-collected colonies of <u>Nanomia cara</u> at 12-14^oC in largevolume flow-though aquaria for up to 36 days. Approximately every three days, colonies under culture were fed particles of fresh crab meat or small crustaceans. Mackie and Boag found that small colonies of N. cara would live and grow on this diet.

<u>Agalma okeni</u>, the most common tropical and subtropical relative of N. cara, is smaller and generally less active in

aquaria. I was able to maintain sexually-immature colonies for up to five days aboard ship by allowing them to feed on high densities of <u>Artemia</u> nauplii or on species of the copepods <u>Acartia</u> and <u>Pleuromamma</u>. During this time, most colonies budded new individuals along both nectosome and siphosome.

METHODS

Colonies of <u>A</u>. <u>okeni</u> were individually collected by SCUBA divers and released into 3.8-liter and 20-liter cylindrical aquaria. Laboratory temperatures ranged from $24 - 26^{\circ}$ C. Colonies were maintained in the dark. Those in 3.8-liter aquaria were provided with <u>Artemia</u> nauplii at densities greater than 100 per liter. Copepods were added to colonies in 20-liter aquaria at densities of 20 or more per liter. By maneuvering struggling Sargassum shrimp (<u>Leander tenuicornis</u>) against the fishing tentacles, I allowed three colonies to capture and ingest shrimp 10 - 20 mm long. I changed the water and added new prey every second day.

I estimated growth rates by counting the increase in number of nectophores and stem groups in 12 colonies of <u>A</u>. <u>okeni</u> in captivity for 1 - 4 days. As colonies of <u>A</u>. <u>okeni</u> grow, individual nectophores increase in size (Table 13), though at any time all except 2 - 4 apical nectophores (buds) are roughly equivalent. Carefully handcollected colonies having the same number of nectophores are similar in size (Figures 13 A and B), and colony biomass can be estimated

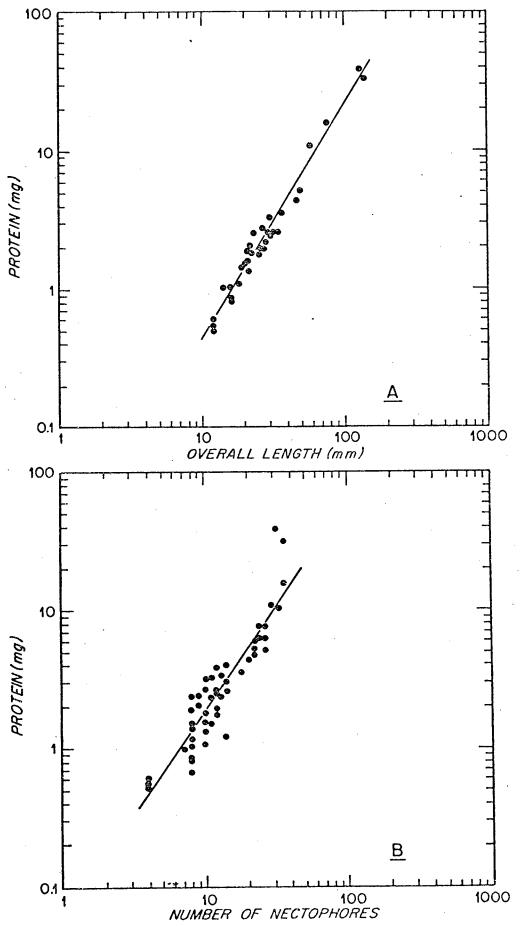
Table 13. Nectosome size in Agalma okeni.

ş

ţ

OVERALL LENGTH OF COLONY (mm)	NUMBER OF NECTOPHORES (other than buds)	DIMENSIONS OF NECTOPHORES (mm)	PROTEIN (mg) per NECTOPHORE
49	24	7 x 7	0.05
59	22	8 x 8	0.06
59	30	9 x 9	0.06
		10 x 8	0.11
65	25	12 x 10	0.11
86	32	13 x 13	0.17
140	36	13 x 13	

÷.


÷

· . .

Figure 13. Protein content of colonies of <u>Agalma okeni</u> as a function of overall length (A) and number of nectophores (B).

Ę

÷.

1

ţ.

from either the number of nectophores or from overall colony size. The mean difference in size between colonies with 2 and 3 pairs of nectophores is 480 μ g protein, while colonies with 6 and 7 pairs of nectophores differ by about 600 μ g protein (Figure 13 B).

RESULTS

Despite varying diets, most colonies of <u>A</u>. <u>okeni</u> added 1 - 2pairs of nectophores within $1 \frac{1}{2} - 2 \frac{1}{2}$ days and five colonies maintained for 2 additional days added 2 - 3 pairs of nectophores (Table 14). All colonies maintained for longer than $1 \frac{1}{2}$ days budded a new gastrozooid and tentacle, in addition to nectosome growth. Small colonies with 1 or 2 pairs of nectophores roughly doubled their protein biomass in two days, while large colonies with 4 - 6pairs of nectophores added 33 - 36% more protein (Table 14).

The steady increase in size shown by carefully-maintained colonies was offset somewhat by accidental loss of gelatinous parts. Although the effects of laboratory confinement are difficult to assess, the faculty for autotomy is so well developed in most Physonectae and Calycophorae that shedding of nectophores and bracts probably occurs in situ as well as in the laboratory.

Colonies of <u>A</u>. <u>okeni</u> first show well-developed gonophores at about the 14 \pm 2 nectophore stage (32 \pm 4 mm overall colony length). Pre-reproductive colonies have nectophores with a single

Table 14. Increase in size of colonies of Agalma okeni maintained for 1 - 4 days in the laboratory. (A = after 1 \pm 1/2 days; B = after 2 \pm 1/2 days;

Ē

1

C = after 4 + 1/2 days)

1

Į.

INITIAL NECTOPHORES PLUS BUDS	SIZE *PROTEIN (mg)	DIET	NECTOPH A	ORES + B	BUDS ADDED C	FINAL SIZE *PROTEIN (mg)
1+0	0.1	nauplii		2+1		0.3
3+1	0.5	nauplii; shrimp		3	5+1	1.6
4+1	0.6	nauplii; shrimp	-		5+1	1.9
5+0	0.7	nauplii	-	2+1	_	1.1
6+0	0.9	nauplii	0+2	-	-	1.1
6+1	1.1	copepods	-	4+2	6+2	3.5
6+1	1.1	nauplii		4+1		2.1
7+0	1.1	nauplii	1		-	1.3
7+0	1.1	nauplii	1+1	_		1.4
8+0	1.4	nauplii	-	1+2		1.9
10+1	2.1	copepods	1+1		5	3.5
13+0	2.5	nauplii; shrimp	-	2+2	-	3.5

1

-

÷

*Calculated from Figure 13.

Į.

vertical lateral ridge (1-r variety), while nectophores budded by colonies larger than the 16 ± 2 nectophore stage have two vertical lateral ridges (2-r variety). The more distal nectophores in colonies of <u>A</u>. <u>okeni</u> with 14 - 18 nectophores may be 1-r forms, while those more proximal are all 2-r. I never encountered a colony of totally 1-r morphology which was larger than the 14-nectophore stage, and none of these were sexually mature. Thus, the genus <u>Crystallomia</u> Dana, 1858 which was established for 1-r forms of Agalmidae is invalid, since it is but a growth phase of A. okeni.

DISCUSSION

I can now estimate the energy requirements of colonies of <u>A. okeni</u>. A small colony with three pairs of nectophores has about 1.0 mg of protein (Figure 13 B) and consumes about 12 μ 1 0₂/hr (Table 8). Assuming an oxycaloric equivalent of 4.9 calories per ml, 3.5 calories would be consumed in respiration during a 2 1/2 day period.

The caloric value of a <u>Candacia</u> sp. copepod is about 0.5 calories (estimated from Shushkina and Sokolova, 1972). If assimilation by siphonophores ranges between 70 - 90% of ingestion, a colony with 1.0 mg protein would have to ingest 8 - 10 such copepods in 2 1/2 days to balance its metabolism. Assimilation efficiencies of 70 - 90% are not unrealistic for aquatic carnivores (Welsh, 1968); values of 80% and 88% have been reported for

Sagitta hispida (Cosper and Reeve, 1975) and Euphausia pacifica (Lasker, 1966), respectively.

If siphonophores living under natural conditions can increase in size at rates suggested by short-term laboratory growth experiments, a colony of <u>A</u>. <u>okeni</u> with 3 pairs of nectophores could grow to the 8 or 10 nectophore stage in 2 1/2 days. This corresponds to an increase in size of about 480 - 900 μ g protein (Figure 13 B). Since the caloric value of protein is about 5.5 kilocalories per gram (Morowitz, 1968), this increase in size represents 2.6 - 5.3 calories. Additional consumption of 6 - 15 copepods of <u>Candacia</u> size should support this increase in size, for a total ingestion of 14 - 25 copepods over a 2 1/2 day period. A colony of <u>A</u>. <u>okeni</u> initially 3 times larger, with 3.0 mg protein and 14 nectophores, would have to consume 29 - 46 copepods of similar size to balance its respiratory energy losses and increase in size at a similar rate.

The preceding calculations suggest that growth in siphonophores like <u>A</u>. <u>okeni</u> may be quite efficient. In fish and euphausiids the greatest fraction of ingestion goes to support respiration (Table 15). Physonect siphonophores able to grow to a colony size two pairs of nectophores larger in 2 1/2 days should have a higher ratio of growth to respiration, or more like chaetognaths in overall production efficiency (Table 15).

Table 15. A comparison of production, respiration, and egestion estimated for <u>Agalma okeni</u> with other marine carnivores. Production and respiration of <u>A</u>. <u>okeni</u> were calculated from caloric equivalents; an assimilation efficiency of 80% was assumed (see text).

SPECIES	PRODUCTION	RESPIRATION	EGESTION	SOURCE
Agalma okeni 3.0 mg protein 1.0 mg protein	33% 48%	47% 32%	20% 20%	
carnivorous fish	20%	60%	20%	Welsh (1968)
Euphausia pacific		59%	12%	Lasker (1966)
Sagitta elegans	35%	37%	28%	calculated from Sameoto (1972)

•

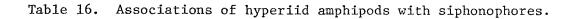
. .

In colonies of Agalmidae, female gonophores have 1 - 4 eggs which measure about 0,7 mm in diameter (Totton, 1965). When fertilized in the laboratory at 14° C, eggs of Agalmidae require about 2 - 3 weeks to develop to the postlarva (Carré, 1969, 1971, 1973). In tropical and subtropical environments, development is probably more rapid and might proceed in 1 - 2 weeks. Extrapolating from laboratory growth rates I measured at 25°C, a colony might grow from the postlarva to the 14-nectophore stage in $1 \frac{1}{2} - 2$ weeks. This suggests that the generation time of Agalmidae living in tropical and subtropical oceanic regions may be between 2 1/2 - 4 weeks. Among Calycophorae, times for larval development are similar (Carré, 1967), although many species must grow to large size before gonophores become ripe. Other gelatinous carnivores have generation times of 3 - 4 weeks (Hirota, 1972; Baker and Reeve, 1974), as do tropical and subtropical chaetognaths (Reeve and Walter, 1972).

SUMMARY

- Colonies of <u>Agalma okeni</u> maintained in the laboratory on a diet of <u>Artemia</u> nauplii, copepods, or shrimp budded an additional feeding polyp and 1 - 2 pairs of nectophores about every two days.
- Agalma okeni became reproductive at the 14 + 2 nectophore stage, when it measured 32 + 4 mm overall length.
- Energetic calculations suggest that small and medium-size colonies of <u>A</u>. <u>okeni</u> incorporate 48% and 33%, respectively, of ingestion into production.
- A small colony of <u>A</u>. <u>okeni</u> with six nectophores probably requires 2.8 - 5.0 calories to balance daily rates of oxygen consumption and growth. A medium-size colony with fourteen nectophores probably requires 5.8 - 9.2 calories.
- Generation time of <u>A</u>. <u>okeni</u> in tropical and subtropical regions is probably 2 1/2 - 4 weeks.

GENERAL DISCUSSION: FOOD LIMITATION, PREDATION PRESSURE, AND MASS AGGREGATIONS


The preceeding respiration and production data permit a comparison of the nutritional requirements of siphonophores of the Family Agalmidae with the availability of food in the environment. In the upper 30 meters of the Sargasso Sea, Agalmidae are present at densities of less than one colony per 15,000 m³ (from Part 1). The average numerical abundance of calanoid copepods in semimonthly plankton collections from the upper 500 meters of the Sargasso Sea exceeds $100/m^3$ (Deevey, 1971). Even if only 10% of these occur in the upper 30 meters and a high percentage of those which encounter siphonophores escape capture, I suggest that Agalmidae are unlikely to be food-limited here. Total tentacle length of most Agalmidae extends over 2 meters, and in situ observations suggest that colonies may fish several cubic meters daily (from Part 2). Moreover, since they are not restricted to feeding on copepod-size prey, Agalmidae like A. okeni could capture a euphausiid or mysid less than an inch long (with 5 mg body protein) and extract enough energy for 1 - 2 weeks maintenance or to increase in size to within the range of reproductive capacity.

In situ observations suggest that hyperiid amphipods, fish, and other gelatinous carnivores like medusae and heteropods are predators of siphonophores. Every common species of siphonophore

which I encountered in subtropical surface waters has been collected with hyperiid amphipods (Table 16). Although the nature of these associations are not completely understood, many are quite specific and at least four genera of hyperiids eat parts of their siphonophore hosts (Harbison, et al., in prep). Larval hyperiids of the Family Pronoidae encyst in gelatinous parts of physonect colonies and molt through at least three developmental stages there. Since the radial canals of nectophores and bracts communicate with the gastrovascular cavity of the siphonophore, a colony may provide pre-digested food for these endoparasitic juveniles. Multiple infestations of juveniles in siphonophores are common, and often more than one juvenile is present in the same nectophore or bract.

Several gelatinous zooplankton prey on siphonophores (Table 17). About 20% of all <u>Pterotrachea coronata</u> collected in the Florida Current had been feeding on physonect siphonophores (Hammer, et al., 1975). In fact, heteropods were able to digest gelatinous parts of siphonophores in 6 - 8 hours (Hammer, et al., 1975). A transparent pelagic polychaete, which swallowed a colony of the small siphonophore <u>Eudoxoides spiralis</u> (Table 17), digested it completely in 7 1/2 hours. The stem was digested in less than 3 hours.

Juveniles of at least seven species of fish associate with <u>Physalia physalis</u> and may bite off pieces of this siphonophore (Mansueti, 1963). While diving, I twice collected juvenile fish

.

SPECIES

GENERA IN ASSOCIATION

Suborder Physonectae

Agalma okeni

Agalma elegans

Agalma clausi

Cordagalma cordiformis

Nanomia bijuga

Forskalia edwardsi; F. tholoides

Physophora hydrostatica

Athorybia rosacea

Athorybia sp. A

Suborder Cystonectae

Rhizophysa filiformis

Bathyphysa sibogae

Suborder Calycophorae

Stephanophyes superba

Rosacea cymbiformis

Diphyes dispar

Sulculeolaria quadrivalvis

Sulculeolaria monoica

Sulculeolaria chuni

Abyla sp.

Abylopsis tetragona the lophyes appendiculata Thyropus; Eupronoe (encysted juveniles) Scina; Tryphana; Amphithyrus; Eupronoe (encysted Paralycaea; Tetrathyrus; Eupronoe juveniles) juveniles (specimen lost) Tetrathyrus; Paralycaea Thyropus; Eupronoe (encysted juveniles) Platyscelus Thyropus; Eupronoe (encysted juveniles) Thyropus Thyropus Schizoscelus; Thyropus Thyropus Sympronoe; Paraphronima Thyropus; Lycaeopsis Paralycaea

Paralycaea

Paralycaea

Thyropus

Phronima

Amphithyrus

living among the tentacles of colonies of <u>Forskalia tholoides</u> (stations 299 and 428). Pigmentation of these juveniles mimicked the reds and browns of this siphonophore. Phyllosome larvae of stomatopods also accompany some gelatinous carnivores (Shojima, 1963), and I collected two from the nectosome of colonies of <u>A. okeni and Diphyes dispar (stations 396 and 428).</u>

Larger fish, as well, may feed on siphonophores and other gelatinous zooplankton (Hamner, et al., 1975). In a one-cubicmeter tank on board ship, I have observed oceanic filefish (Family Monacanthidae) feeding on colonies of <u>Agalma elegans</u>. The filefish approached this siphonophore as soon as I had dipped a colony into the aquarium, and rapidly bit off every pigmented stem group. After a few moments, a fish bit off the pigmented pneumatophore, but discarded it almost immediately. The filefish had no interest in the gelatinous remainder of the colony.

<u>Agalma okeni</u> may be subject to similar predation. I twice found colonies missing portions of the stem. A large colony with 34 nectophores (station 297) had only the first three stem groups and 15 mm of siphosome. At station 392, a colony of <u>A</u>. <u>okeni</u> with five stem groups had only ten nectophores. The entire apical portion of the colony, including the pneumatophore and nectosomal budding zone, was missing and presumably had been bitten away.

Gelatinous carnivores may sometimes occur in enormous abundance. Along the Atlantic Coast of the United States, populations of scyphomedusae often bloom in May and June, followed in July - September by

Table 17. Zooplankton predators of siphonophores (Hyperiidae are listed separately in Table 16).

Ţ

ł

SIPHONOPHORE	PREDATOR	SOURCE
Nanomia bijuga	Cephalopyge trematoides	Sentz-Bracconot & Carré (1966)
Nanomia bijuga	nudibranch	station 302
<u>Abyla</u> sp., eudoxid	<u>Ocyropsis maculata</u> (50 mm) station 303
Chelophyes appendiculata	<u>Ocyropsis crystallina</u> (40	mm) station 284
Chelophyes appendiculata	<u>Ocyropsis</u> crystallina (40	mm) station 347
Abylopsis eschscholtzi	leptomedusa	station 304
Physophora hydrostatica	<u>Orchistoma</u> sp.	L.P. Madin (communication)
Eudoxoides spiralis	polychaete	station 419
(physonect siphonophores)	Pterotrachea coronata	Hamner, et al. (1975)
Physalia physalis	<u>Ianthina prolongata</u> <u>Lepas ansifera</u> <u>Glaucus atlanticus</u> Fiona pinnata	Bieri (1966)

1

.....

.

a large standing crop of <u>Mnemiopsis</u> ctenophores (see Miller and Williams, 1972). Mass aggregations of oceanic species have also been reported (Zelickman, 1969). I encountered a swarm of thousands of <u>Nanomia bijuga</u> off Fort Pierce, Florida (stations 286 - 288), coincident with a bloom of the salp <u>Thalia democratica</u>. <u>Nanomia</u> <u>bijuga</u> has been reported in enormous numbers off the coast of Ireland, and on one occasion there were large numbers of this species in an estuary of the English Channel (Berrill, 1930).

Apparently, large aggregations of a related species, <u>N</u>. <u>cara</u>, were present in October and November, 1975, in the Gulf of Maine. At some locations (Figure 14), colonies were so abundant that trawls set by the U.S. National Marine Fisheries Service and by commerical fishermen were littered with pieces of this species (F. Lux, personal communication). The cause of the aggregation of <u>N</u>. <u>cara</u> has not been determined. It is conceivable that widespread reproduction of <u>N</u>. <u>cara</u> occurred earlier in the fall and local patterns of circulation aided in concentrating and maintaining the aggregation. While siphonophores of the genus <u>Nanomia</u> are the only ones known to occur in aggregations of vast dimensions, orthokinetic modifications of the fishing-prey search cycle (page 26) could perhaps generate local aggregations of siphonophores with a patch size corresponding to that of their zooplankton prey.

In conclusion, siphonophores seem able to capture a wide variety of prey, despite differences in prey size and abundance.

Figure 14. Stations where aggregations of Nanomia cara were

ļ

encountered by U.S. National Marine Fisheries Service bottom trawl survey in the Gulf of Maine, 7 October - 18 November, 1975.

-

1.

Although standing stocks of siphonophores are low, high growth efficiency and 2 1/2 - 4 week generation times suggest that <u>Agalma okeni</u> and other epipelagic siphonophores are well adapted to oceanic life and probably function as important predators in most warm-water open-ocean areas of the world.

LITERATURE CITED

- Alvarino, A. 1967. Bathymetric distribution of chaetognaths, siphonophores, medusae, and ctenophores off San Diego, California. Pacific Sci., 21: 474-485.
- Alvarino, A. 1971. Siphonophores of the Pacific, with a review of world distribution. Bull. Scripps Inst. Oceanogr., 16: 1-432.
- Backus, R. H., J. E. Craddock, R. L. Haedrick, and B. H. Robison. in prep. A contribution to the zoogeography of the pelagic Atlantic Ocean. Limnol. Oceanogr. (manuscript submitted).
- Baker, L. D., and M. R. Reeve. 1974. Laboratory culture of the lobate ctenophore <u>Mnemiopsis mccradyi</u>, with notes on feeding and fecundity. Mar. Biol., 26: 57-62.
- Barham, E. G. 1963. Siphonophores and the deep scattering layer. Science, 140: 826-828.
- Barham, E. G. 1966. Deep scattering layer, migration and composition: Observations from a diving saucer. Science, 151: 1399-1403.
- Bedot, M. 1888. Sur l'<u>Agalma clausi</u> n.sp. Rev. Suisse Zool., 1: 231-254.
- Beers, J. R. 1966. Studies on the chemical composition of the major zooplankton groups in the Sargasso Sea off Bermuda. Limnol. Oceanogr., 11: 520-528.

- Berrill, N. J. 1930. On the occurrence and habits of the siphonophore, <u>Stephanomia bijuga</u> (Delle Chiaje). J. Mar. Biol. Assoc. U.K., 16: 753-755.
- Bieri, R. 1966. Feeding preferences and rates of the snail, <u>Ianthina prolongata</u>, the barnacle, <u>Lepas ansifera</u>, the nudibranchs, <u>Glaucus atlanticus</u> and <u>Fiona pinnata</u>, and the food web in the marine neuston. Publ. Seto Mar. Biol. Lab, 14: 161-170.
- Bigelow, R. P. 1891. Notes on the physiology of <u>Caravella maxima</u> Haeckel (<u>Physalia caravella</u> Eschscholtz). Johns Hopkins Univ. Circ., 10: 473-481.
- Bigelow, H. B., and M. Sears. 1937. Siphonophorae. Rep. Danish Oceanogr. Exped. Medit., Biology H2: 1-144.
- Biggs, D. C. in prep. Respiration and ammonium excretion by openocean gelatinous zooplankton. Limnol. Oceanogr. (manuscript submitted).
- Biggs, D. C., and G. R. Harbison. 1976. The siphonophore <u>Bathyphysa</u> <u>sibogae</u> Lens and van Riemsdijk, 1908 in the Sargasso Sea, with notes on its natural history. Bull. Mar. Sci., 26: 14-18. Blainville, H. M. 1834. Manuel d'Actinologie ou de Zoophytologie.

Paris. 694 pp.

Boucher, J., and A. Thiriot. 1972. Zooplancton et micronecton estivaux des deux cents premiers metres en Mediterranée occidentale. Mar. Biol., 15: 47-56. Bradbury, M. G., and 15 others. 1970. Studies on the fauna associated with the deep scattering layers in the equatorial Indian Ocean, conducted on R/V Te Vega during October and November, 1964. pp. 409-452 <u>in</u> Biological Sound Scattering in the Ocean,

(G. B. Farquhar, ed.) U.S. Government Printing Office.

- Carré, C. 1968. Description d'un siphonophore Agalmidae, <u>Cordagalma</u> cordiformis Totton, 1932. Beaufortia, 16: 79-86.
- Carré, D. 1967. Étude du développement larvaire de deux siphonophores, <u>Lensia conoidea</u> et <u>Forskalia edwardsi</u>. Cah. Biol. Mar., 8: 233-251.
- Carré, D. 1969. Étude histologique du développement de <u>Nanomia</u> <u>bijuga</u> (Chiaje, 1841), Siphonophore Physonecte Agalmidae. Cah. Biol. Mar., 10: 325-341.
- Carré, D. 1971. Étude du développement d'<u>Halistemma rubrum</u> (Vogt, 1852), Siphonophore Physonecte Agalmidae. Cah. Biol. Mar., 12: 77-93.
- Carré, D. 1973. Étude du développement de <u>Cordagalma</u> <u>cordiformis</u> Totton, 1932, Siphonophore Physonecte Agalmidae. Bijdragen tot de Dierkunde, 43: 113-118.
- Chamisso, A. De, and C. G. Eysenhardt. 1821. De animalibus quibusdam e classe vermium Linneana . . . fasc. 2. Nova Acta Leop. Carol., 10: 342-374.
- Chiaje, S. delle. 1822. Memorie sulla storia e notomia degli Animali sensa vertebre del Regno di Napoli. Atlas, 1823-1831, Napoli.

- Chiaje, S. delle. 1841. Descrizione e notomia degli Animali Invertebrati della Sicilia citeriore osservati vivi negli anni 1822-1830, 6-7, Atlas 181 plates, Napoli.
- Chun, C. 1888. Bericht uber eine nach den Canarischen Inseln im Winter 1887-1888 ausgefuhrte Reise. S.B. Preuss. Akad. Wiss. for 1888: 1141-1173.
- Chun, C. 1891. Die Canarischen Siphonophoren in monographischen Darstellungen. I. <u>Stephanophyes</u> <u>superba</u> und die Familie der Stephanophyiden. Abh. Senckenb. Naturf. Ges., 16: 553-627.
- Conover, R. J., and E. D. S. Corner. 1968. Respiration and nitrogen excretion by some marine zooplankton in relation to their life cycles. J. Mar. Biol. Assoc. U.K., 48: 49-75.
- Corner, E. D. S., and C. B. Cowey. 1968. Biochemical studies on the production of marine zooplankton. Biol. Rev., 43: 393-426.
- Corner, E. D. S., and A. G. Davies. 1971. Plankton as a factor in the nitrogen and phosphorus cycles in the sea. Adv. Mar. Biol., 9: 101-204.
- Cosper, T. C., and M. R. Reeve. 1975. Digestive efficiency of the chaetognath <u>Sagitta hispida</u> Conant. J. Exp. Mar. Biol. Ecol., 17: 33-38.
- Dal Pont, G., M. Hogan, and B. Newell. 1974. Determination of ammonia in sea water and the preservation of samples for nitrate analysis. C.S.I.R.O. Rept. 55: 1-7.

- Dana, J. W. 1858. On a new species of medusa related to <u>Stephanomia</u>: <u>Crystallomia polygonata</u>. Mem. Amer. Acad. Arts Sci. (N.S.), 6: 459-460.
- Deevey, G. B. 1971. The annual cycle in quantity and composition of the zooplankton of the Sargasso Sea off Bermuda. I. The upper 500 m. Limnol. Oceanogr., 16: 219-240.
- Deggobis, D. 1973. On the storage of seawater samples for ammonia determination. Limnol. Oceanogr., 18: 146-150.
- Eschscholtz, F. 1825. Bericht uber die zoologische Ausbeute wahrend der Reise von Kronstadt bis St. Peter und Paul. Oken's Isis., 16: 733-747.

Eschscholtz, F. 1829. System der Acalephen. Berlin. 190 pp. Fewkes, J. W. 1880. Contributions to a knowledge of the tubular

jelly-fishes. Bull. Mus. Comp. Zool. Harvard, 6: 127-146. Forskal, P. 1775. Descriptiones animalium . . . quae in itineri orientali observavit, post mortem editit Carsten Niebuhr. Hauniae, 164 pp.

- Fraenkel, G. S., and D. L. Gunn. 1940. The Orientation of Animals. Dover. 376 pp.
- Fraser, J. H. 1962. The role of ctenophores and salps in zooplankton production and standing crop. Rapp. P.-v. Reun. Cons. Perm. Int. Explor. Mer, 153: 121-123.
- Fraser, J. H. 1967. Siphonophora in the plankton to the north and west of the British Isles. Proc. R. Soc. Edinb., 70 B: 1-30.
- Garstang, W. 1946. The morphology and relations of the Siphonophora. Quart. J. Micr. Sci., 87: 103-193.

1.

Gilmer, R. W. 1972. Free-floating mucus webs: A novel feeding adaptation for the open ocean. Science, 176: 1239-1240.

- Gilmer, R. W. 1974. Some aspects of feeding in the cosomatous pteropod molluscs. J. Exp. Mar. Biol. Ecol., 15: 127-144.
- Goering, J. J., R. C. Dugdale, and D. W. Menzel. 1964. Cyclic diurnal variations in the uptake of ammonia and nitrate by photosynthetic organisms in the Sargasso Sea. Limnol. Oceanogr., 9: 448-451.
- Greve, W. 1970. Cultivation experiments on North Sea ctenophores. Helgol. wiss. Meeresunters., 20: 304-317.
- Grice, G. D., and A. D. Hart. 1962. The abundance, seasonal occurrence, and distribution of the epizooplankton between New York and Bermuda. Ecol. Monogr., 32: 287-309.
- Haeckel, 1888. Report on the Siphonophorae. Rep. Sci. Res. Challenger, Zool., 28: 1-380.
- Hamner, W. M. 1975. Underwater observations of blue-water plankton: Logistics, techniques, and safety procedures for divers at sea. Limnol. Oceanogr., 20: 1045-1051.
- Hamner, W. M., L. P. Madin, A. L. Alldredge, R. W. Gilmer, and P. P. Hamner. 1975. Underwater observations of gelatinous zooplankton: Sampling problems, feeding biology, and behavior. Limnol. Oceanogr., 20: 907-917.
- Harbison, G. R., D. C. Biggs, and L. P. Madin. in prep. The associations of hyperiid amphipods with gelatinous zooplankton. II. Associations with Cnidaria, Ctenophora, and Radiolaria. Deep-Sea Res. (manuscript submitted).

- Harbison, G. R., and R. W. Gilmer. 1976. The feeding rates of the pelagic tunicate <u>Pegea confederata</u> and two other salps. Limnol. Oceanogr., 21: 517-527.
- Harris, E. 1959. The nitrogen cycle in Long Island Sound. Bull. Bingham Oceanogr. Coll., 17: 31-65.
- Hemmingsen, A. M. 1960. Metabolism in relation to body size. Rep. Steno. Mem. Hosp. Nordisk Insulin Lab., 9: 1-110.
- Heron, A. C. 1972. Population ecology of a colonizing species: The pelagic tunicate <u>Thalia democratica</u>. Oecologica, 10: 269-312.
- Hirota, J. 1972. Laboratory culture and metabolism of the planktonic ctenophore, <u>Pleurobrachia bachei</u> A. Agassiz. pp. 465-484 <u>in</u>
 Biological Oceanography of the Northern North Pacific Ocean,
 A. Y. Takenouti, et al. (eds.). Idemitsu Shoten, Tokyo.
- Ikeda, T. 1972. Chemical composition and nutrition of zooplankton in the Bering Sea. pp. 433-442 in Biological Oceanography of the Northern North Pacific Ocean, A. Y. Takenouti, et al. (eds.). Idemitsu Shoten, Tokyo.
- Ikeda, T. 1974. Nutritional ecology of marine zooplankton. Mem. Fac. Fish. Hokkaido Univ., 22: 1-97.

Jawed, M. 1973. Ammonia excretion by zooplankton and its significance to primary production during summer. Mar. Biol., 23: 115-120.

Kamshilov, M. M. 1960. Feeding of the ctenophore <u>Beroe cucumis</u> Fabr. Docl. Acad. Nauk. S. S. S. R., 130: 1138-1140.

- Kanwisher, J. 1959. Polarographic oxygen electrode. Limnol. Oceanogr., 4: 210-217.
- Kennedy, F. S., Jr. 1972. Distribution and abundance of <u>Physalia</u> in Florida waters. Prof. Pap. Fla. Dept. Nat. Resources, Mar. Res. Lab. St. Petersburg, 18: 1-38.
- Kolliker, A. 1853. Die Schwimmpolypen oder Siphonophoren von Messina. Leipzig: Wilhelm Engelmann. 96 pp.
- Kruger, F. 1968. Stoffwechsel und Wachstum bei Scyphomedusen. Helgolander wiss. Meeresunters., 18: 367-383.
- Lasker, R. 1966. Feeding, growth, respiration, and carbon utilization of a euphausiid crustacean. J. Fish. Res. Bd. Canada, 23: 1291-1317.
- Lens, A. D., and T. van Riemsdijk. 1908. The Siphonophora of the 'Siboga' Expedition. Siboga Exped., 9: 1-130.
- Lesueur, C. A. 1811. Voyage de decouvertes aux terres australes. Paris.
- Lewis, J. B., and A. G. Fish. 1969. Seasonal variation of the zooplankton fauna of surface waters entering the Caribbean Sea at Barbados. Caribbean J. Sci., 9: 1-24.

Liddicoat, M. I., S. Tibbitts, and E. I. Butler. 1975. The determination of ammonia in seawater. Limnol. Oceanogr., 20: 131-132.

Lowry, O. H., N. J. Rosebrough, A. L. Farr, and R. J. Randall. 1951. Protein measurement with the Folin Phenol reagent. J. Biol. Chem., 193: 265-275.

Mackie, G. O. 1964. Analysis of locomotion in a siphonophore colony. Proc. R. Soc. B 159: 366-391.

Mackie, G. O., and D. M. Boag. 1963. Fishing, feeding, and digestion in siphonophores. Publ. Staz. Zool. Napoli, 33: 178-196.

- Madin, L. P. 1974. Field observations on the feeding biology of salps (Tunicata: Thaliacea). Mar. Biol., 25: 143-147.
- Mansueti, R. 1963. Symbiotic behavior between small fishes and jellyfishes, with new data on that between the stromateid, <u>Peprilus</u> <u>alepidotus</u>, and the scyphomedusa, <u>Chrysaora quniquecirrha</u>. Copeia, 1: 40-80.
- Margulis, R. Y. 1972. Factors determining the large-scale distribution of siphonophores of the suborders Physophorae and Calycophorae in the Atlantic Ocean. Oceanology, 12: 520-526.
- Mayzaud, P., and S. Dallot. 1973. Respiration et excretion azotée du zooplancton. I. Evaluation des niveaux métaboliques de quelques espèces de Mediterranée occidentale. Mar. Biol., 19: 307-314.
- Mayzaud, P., and J.-L. Martin. 1975. Some aspects of the biochemical and mineral composition of marine plankton. J. Exp. Mar. Biol. Ecol., 17: 297-310.
- McLaren, I. A. 1963. Effects of temperature on growth of zooplankton and the adaptive value of vertical migration. J. Fish. Res. Bd. Canada, 20: 685-727.

- Miller, R. J., and R. B. Williams. 1972. Energy requirements and food supply of ctenophores and jellyfish in the Patuxent River (Md.) estuary. Chesapeake Sci., 13: 328-331.
- Morowitz, H. J. 1968. Energy Flow in Biology. Academic Press, New York. 179 pp.
- Moser, F. 1925. Die Siphonophoren der Deutschen Sudpolar Expedition, 1901-03. Dtsch. Sudpol. Exped., 17: 1-541.
- Nival, P., S. Nival, and I. Palazzoli. 1972. Données sur la respiration de différents organismes communs dans le plancton de Villefranche-sur-Mer. Mar. Biol., 17: 63-76.
- Pugh, P. R. 1974. The vertical distribution of the siphonophores collected during the SOND Cruise, 1965. J. Mar. Biol. Assoc. U.K., 54: 25-90.
- Pugh, P. R. 1975. The distribution of siphonophores in a transect across the North Atlantic Ocean at 32^oN. J. Exp. Mar. Biol. Ecol., 20: 77-97.
- Rajagopal, P. K. 1962. Respiration of some marine planktonic organisms. Proc. Indian Acad. Sci., Ser. B, 55: 76-81.

- Reeve, M. R., J. E. G. Raymont, and J. K. B. Raymont. 1970. Seasonal biochemical composition and energy sources of <u>Sagitta hispida</u>. Mar. Biol., 6: 357-364.
- Reeve, M. R., and M. A. Walter. 1972. Conditions of culture, foodsize selection, and the effects of temperature and salinity on growth rate and generation time in <u>Sagitta hispida</u> Conant. J. Exp. Mar. Biol. Ecol., 9: 191-200.
- Russell, F. S. 1934. On the occurrence of the siphonophores <u>Muggiaea</u> <u>atlantica</u> Cunningham and <u>Muggiaea</u> <u>kochi</u> (Will) in the English Channel. J. Mar. Biol. Assoc. U.K., 19: 555-558.
- Sameoto, D. D. 1972. Yearly respiration rate and estimated energy budget for <u>Sagitta elegans</u>. J. Fish. Res. Bd. Canada, 29: 987-996.
- Sars, M. 1846. Fauna littoralis Norvegiae. 1: 1-94. Christiania. Sentz-Braconnot, E., and C. Carré. 1966. Sur la biologie du nudibranche pélagique <u>Cephalopyge trematoides</u>. Parasitisme sur le siphonophore <u>Nanomia bijuga</u>, nutrition, et développement. Cah. Biol. Mar., 7: 31-38.
- Shojima, Y. 1963. Scyllaird phyllosomas' habit of accompanying the jellyfish. Bull. Jap. Soc. Scient. Fish., 29: 349-353.
- Shushkina, E. A., and I. A. Sokolova. 1972. Caloric equivalents of the body mass of the tropical organisms from the pelagic part of the ocean. Oceanology, 12: 860-867.
- Solorzano, L. 1969. Determination of ammonia in natural waters by the phenol hypochlorite method. Limnol. Oceanogr., 4: 799-801.

- Stepanyants, S. D. 1963. A finding of Siphonophora, <u>Nectopyramis</u> <u>diomedea</u> Bigelow, 1911 in the Arctic Basin. Zool. Zhur., 42: 1866-1869 (in Russian).
- Strickland, J. D. S., and T. R. Parsons. 1972. A Practical Handbook
 of Sea Water Analysis, Second Ed. Fish. Res. Bd. Canada,
 Ottawa. 310 pp.
- Swanberg, N. R. 1974. The feeding behavior of <u>Beroe ovata</u>. Mar. Biol., 24: 69-76.
- Teal, J. M., and F. R. Carey. 1967. Respiration of a euphausiid from the oxygen minimum layer. Limnol. Oceanogr., 12: 548-550.
- Totton, A. K. 1932. Siphonophora. Sci. Rep. Gr. Barrier Reef Exped., 4: 317-374.
- Totton, A. K. 1954. Siphonophora of the Indian Ocean together with systematic and biological notes on related species from other oceans. Disc. Rep., 27: 1-161.
- Totton, A. K. 1965. A Synopsis of the Siphonophora. British Museum, Natural History. 230 pp.
- Totton, A. K., and G. O. Mackie. 1960. Studies on <u>Physalia physalis</u> (L). Disc. Rep., 30: 301-408.
- Vogt, C. 1852. Ueber die Siphonophoren. Z. wiss. Zool., 3: 522-525.

Walsh, J. J., and R. C. Dugdale. 1971. A simulation model of the nitrogen flow in the Peruvian upwelling system. Inv. Pesq., 35: 309-330.
Welsh, H. E. 1968. Relationships between assimilation efficiencies and growth efficiencies for aquatic consumers. Ecology, 49: 755-759.

- Williams, R. B., and J. P. Baptist. 1966. Physiology of <u>Mnemiopsis</u> in relation to its role as a predator. (Abstract) Bull. Amer. Soc. Biol., 13: 48.
- Wilson, D. P. 1947. The Portuguese Man-of-War <u>Physalia physalis</u> L., in British and adjacent waters. J. Mar. Biol. Assoc. U.K., 27: 137-172.
- Zelickman, E. A. 1969. Structural features of mass aggregations of jellyfish. Oceanology, 9: 558-564.

Appendix 1. SCUBA stations, September 1973 - November 1975

Ship Code:

KN = KNORR

A2 = ATLANTIS-II

CH = CHAIN

GS = GOSNOLD

JO = JOHNSON

HB = Harbor Branch Foundation Laboratory motorboats

<u>.</u>

1

Date Code:

Year-Month-Day

••

BLUE WATER PLANKTON STATION LISTI THESIS

1.

1.

	STAT	THN	SHID	CRU	156	LAT.	Lang,	DAT	F.	TABLE E COLLECI TIME	9F STAT198 F	S SURF. SALIN.	SURF. TEMP.
	BWP	259	KN	33	39	46N	69 51*	73* 1X *	14	1545*1630			
	BWP	590	ĸ٨	33	35	191	63 434	73• IX •	16	1430~1457	•		,
	BWP	261	ĸN	33	33	34 N	63 16W	73= IX =	17	1030-1104	•		
	BWP	265	KN	33	33	401	6" 16k	73° IX *	17	1415-1457	•		•
	awp	263	KN	33	33	21N	59 50W	73• 1x •	18	1430-1504	•		,
	BWP	264	KN	33	32	21N	59 51W	73° IX -	19	1201-1253	•	,	,
	8wP	265	KN	33	32	35N	59 43W	73* 1x *	20	1000*1058	•		•
	BWP	<u> 266</u>	ĸ٧	33	35	201	63 64	73* IX -	21	900* 950	•	•	r
	₿w₽	267	ΚN	33	35	1 ⁶ N	63 04	734 IX 4	21	1530-1620	•		,
	BWP	268	ΚN	33	32	322	59 48×	73" IX "	53	1000-1055	•		•
•	BWP	563	Нß	0	<u>2</u> 7	258	80 OM	73" × •	31	945"1115	٩	270	• 4
	₽w₽	270	нэ	0	27	S2N	80 0W	73• XI •	5	1030-1245	. •		•
	BWP	271	Нß	0	27	12N	ზი იზ	73- X1 -	3	0" 0	•		•
	BWP	272	нs	0	27	25N	80 5M	73• X] •	6	1300-1320	٠		•
	₿₩₽	ş73	GS	503	5.8	11 ^N	78 49vi	73- ×1 -	14	928-1030	•	52	5
	BWP	274	65	208	53	7 N	79 46W	73= XI -	14	1355-1512	•	27	• 6
	BWP	275	65	208	27	443	79 47 ₁₈	73• XI •	15	930-1018	. •		,
	₿₩P	275	GS	208	27	46N	79 44w	73∾ XI ∘	15	1330-1445	•		•
	BWP	277		510	27	25 ^N	79 5eW	73" XI "	26	1520°1630	٠	27	° 2
	BWP	2 ⁷⁸		210	27	2 ^{8N}	79 45W	73" X1 "	-	1015"1110	. •	27	• 4
•	BWP	279	65	515	57	341	70 49W	73"X11 *		1249 1352	•	25	•7
	BwP	2 ⁸ 0	65	515	27	4 J'S	79 434	73°X11 F	6	1507"1614	٠	25	*5
	ВИР	2 ⁸ វ	65	215	52	34N	73 424	74 - 1 -	· 7	1517-1631	٠	25	*0
	BWP	5 ₈ 5	GS	512	27	53N	78 8W	74• I •	• •	1243*1347	•	26	•0
	BWP	5 ₈ 3	GS	512	27	37N	79 8w	74* 1 *	9	1034-1107	•	. 25	• 6
	BWP	284	GS	215	27	397	75 29W	74- I -	• 9	1423°1534	•	25	•6
	BWP	285	65	215	56	53N	79 42W	74-1 •	10	1043*1143	٠	23	•7
	BWP	286	нв	0	27	85N	90 13k	74* V *	ι. Έ	935-113 0	•		•
	₽₩P	287	HB	0	27	25N	80 10W	74 - ∨ •	• 9	0 - 0	•		•
	BWP	288	Нај	0	27	541	60 15M	74 •• V •	-10	1015-1100	٠		•
	BWP	289 289	HB	0	27	25N	Po 134		*21	0" 0	•		•
	₿₩₽	530	ι μ η	0	27	52:1	80 13W	74• VI -		965-1015	•		•
	BWP	291	65	\$38		28N	79 57W	74- VI •	-	1430-1440	1	52	• 3
	ΰWo	595	65	538		17N	79 45W	74- V1 -		1006-1056	•		•
	BWP	Þ93		538		23N	79 384	74" VI •		1410=1.4R	•		•
		294		238		3414	79 55W	74- VI -		1220*1315	•		•
		295		0		45N	79 55W	74 HVII -		1405*1440	•	5;	š•3
		590				45%	79 53w	74*v11 ·		1110*113°	•		•
		297				458	79 55%	74+11		1547-1613	•		
		238				5 45 ⁵ 4	79 554	74-711		1131+)150	•		
		209				5 45;'! 61.5	79 59W			1058+1128	•		
		1 300				, 4,6,7,	79 594	74-11		1130-1214	•		•
		, 401 				5 45 ⁴ 7	73 55" 20 65			0° 0	•		•
	RM	302	i nu	0	21	4 ~ 1	70 55k	74+v11	- 23 -	1411-1432	•		•

1

1

BLUE WATER PLANSTON STATION LISTS THESIS

									TABLE	0F	STATIONS		
	57A1	194	ентр	CRU	ISE	LAT.	LØNG,	DATE	COLLE TIM		SURF. SALIN.	SURI Temi	-
	₽w₽	303	42	54	13	405	62 21%	74-VIII- 8	1011"1051		34+57	27•6	
	₿₩₽	304	۲S	84	13	367	65 55W	74=V111= 9	956-1016		34+60	27•6	
	8wP	302	A 2	84	15	135	68 5W	74-111-10	1124-1146		34+71	58.3	
	BwP	306	ΑS	84	18	58%	67 45W	74-111-11	947×1022		36•00	28+5	
	выь	307	۷۶	84	19	4	67 45W	74~VIII~11	1544-1613		36+00	28+5	
	8WP	30 ⁸	۲2	84	20	38N	67 46W	74=111-15	1013*1049		36+33	25+5	
	BWP	309	۶^	84	51	37	67 44W	74-4111-15	1549-1625		36+33	28.2	
	BWP	310	٨g	84	53	18	67 428	74°V111-13	1045-1122		36+34	23+5	
	₿₩₽	311	4۶	R.4	53	S87	47 42W	74-111-13	1510-1618		36+34	25+5	
\$	₿₩Р	315	45	84	39	317	67 38h	74*VI11*15	1004-1034		35.08	28+8	
	₿₩P	313	4۶	84	53	10%	67 41W	74-VIII-15	1510~1635		36+08	28+8	
	BWP	314	54	84	31	40N	67 43.	74-111-16	1105-1145		36 . 26	28+8	
	выь	315	45	84	31	41N	67 43W	74°VIII~16	1515-1845		36+26	23+8	
	₿₩P	316	A.5	84	31	421	67 41W	74-v111-16	2009*2105	¥	36+26	25+8	
	BwP	317	SA.	84	32	48N	67 48 ₈	74×v111+17	1034~1103	У.	36+23	25.8	
	BWP	318	^2	84	33	54N	67 48w	74**111*17	2350, 5328	*	36 - 23	53.8	
	BWP	319	۶ ^۸	84	34	52 ^N	68 30W	74**111-19	1000-1030		35140	26:7	
	BWP	320	45	84	36	37N	65 23W	74-0111-50	1315*1430		35+93	27.4	
	BwP	321	88 8	84	37	398	70 52W	74-v!!!~21	1400"1503		•	54+3	
	BWP	355	ĄĄ	85 	31	8N	6p 10%	74• 1X •27	1615-1655		•	28+5	
	BWP	353	Ag	85	30	351	62 17W	74= 1x =27	5010-5011	×	•	•	
	₿WP	324	٨S	85	Se	30N	62 1 ³ M	74" IX =28	5038-5131	¥	•	53.0	
	8wP	325	45	85	25	59::	(5 51M	74- IX *29	1044*1123		•	25+5	
	B₩P	326	v 5	85	55	16N	45 50M	74 ° X ° 1	1553*1629		•	28.5	
	B₩P	327	4 S	85	25	162	62 21W	74* X * 1	2035-2055	¥	•	•	
	BWP	358	42	85	25	16N	62 25W	74- X - 2	1507*1 530		•	٠	
I	BWP	358	45 8	85	25	57N	62 27W	74* X * 2	\$600-5033	¥	•	•	
I	BMb	330	45 8	85	23	21 ^N	65 30M	74" X " 3	1555*1635		•	27•7	
	BwP		54	85	59	37%	63 45W	74 × × 4	1645-1655		•	27+7	
	BWP		42	85		324	64 11W	74 × × 7	1516+1539		•	27+3	
	BWP	-	۲5 ۲۶	86	-	59N	65 35M	75-1 -30	1430*1505		32.25	22+3	
	BWP		v 5	86		02	60 48W	75* 1 *31	132371343		35.7	24.9	
	BWP		88	86	-	58N	58 414	75- 11 - 1	957*1024		35.74	24•7	
	BWP		4 <u>2</u>	86		18	•	75* 11 * 2	1016=1033		36+69	24.7	
	8 M P		12	86		0 ^N	55 5 JW	75* 11 * 2	1450-1516		36+69	24+7	
	чwР		42	86		59N		75°11 ° 3	1340-1407		37 05	24.5	
	BWP		42	たん	•	58N	52 234	75* 11 * 4	1310*1350		95.65	5404	
	HWP	•			18			75-11-4	1625+1733		37.05	24+5	-
	₽₩₽		A2		19		50 IW	75• 11 - 5	1013-1046		35+50	54 + 0	
	EWP				, 5		50 OM	75-11-5	151551555		•	• .	·
	HWP				1¢		51 82M	75* 11 * 6	100511/35		26 . Re	54+3	
	амр				1		•	75* 11 + 6	1410-1441		36.04	23.1	
	BMP		•		17			75+ (1 - 7	1009-1044		75•7A	52+ 5	
\$	ዓዳዮ	ባፋሉ	42	とい	1'	234	54 598	75m 11 m 7	1, 19-1-004		34.71	54+4	
								* กา	sht dive				

134

night dive

.

Į.

					INDLE OF 2	the state of the s	
STATION S	HIP CRUI	SE LAT.	Laxa,	DATE	CALLECT. TIME	SURF + SAL1N+	SUS TEM
EWP 347	42 86	16 111	56 138	75- 11 - 8	1005-1040	25.88	54+4
88P 348	42 86	16 12N	56 150	75= I1 = 8	1439*1512	35188	24+4
BWP 349	A2 86	15-1 ⁷ N	53 50m	75-11-9	1040-1105	35-41	23+9
8WP 350	A2 86	15 17N	58 50*	75-11-9	1425-1507	35+41	•
BWP 351	42 86	15 22N	53 56*	75- II - 9	1945*2025 ×	35+41	2519
8wP 355	45 86	14 44N	60 i ^h	75- 11 -10	1005-1045	35+79	23+5
BWP 353	A2 86	14 44N	60 1 M	75- II -10	1415-1452	35.79	25+5
8WP 354	48 86	12 9N	61 21 W	75* 11 "11	1400-1433	35.68	25+5
BWP 355	CH 155	34 16N	10 478	75= V =24	1503=1533	36.48	17.0
BWP 356	CH 155	32 41N	13 53*	75° V *25	934*1003	36+65	18+4
BWP 357	CH 155	30 33N	17 56x	75• v •26	921* 955	36.71	19+0
8WP 358	CH 125	30 S0N	13 304	75∾ V *26	1445-1515	•	19•7
BWP 359	CH 122	58 58M	21 428	75= V -27	913- 930	37+00	50+0
8WP 360	CH 155	29 29N	22 27 K	75• v •27	1450*1512	•	21+0
BWP 361	CH 155	89 30N	26 44	75" V *28	927- 952	36.79	21.3
BWP 362	CH 122	29 33N	26 31m	75- V -28	1417=1432	•	55.1
BWP 363	CH 122	29 28N	30 13%	757 V -29	900° 921	36.74	21+8
8WP 364	CH 155	29 28N	30 13%	75• v ∾29	957-1030	36.74	21.8
BWP 365	CH 125	28 56N	30 37*	75 V -29	1443-1513	•	23+0
8WP 366	CH 155	S ₅ 58.4	34 207	75° V *30	910* 940	26+75	2315
8WP 367	CH 155	58 314	34 532	75* V *30	1501-1530	•	23.6
BWP 268.	CH 155	2 ⁹ 30N	38 258	75" V *31	900° 940	36+83	5345
8WP 369	CH 122	29 33V	39 0*	75= V *31	1542-1612	•	53+5
BWP 370	CH 122	Sa 5an	42 34	75- VI - 1	910- 940	36+70	2315
BWP 371	CH 155	58 31N	42 47*	75- VI - 1	1515=1547	٠	23+0
8WP 372	CH 155	29 30N	46 22%	75- V1 - 2	915* 945	36.83	23+4
BWP 373	CH 155	29 31N	46 504	75- VI - 2	1415~1450	•	
8WP 374	CH 122	89 88N	51 25%	75* vi * 3	1530-1605	36.74	23+8
8WP 375	СН 122	89 30N	54 30%	75• V] • 4	935-1005	36.26	54+0
BWP 376	CH 128	29 27N	55 4 ₈	75" VI " 4	1430-1500	•	54+2
BWP 377	CH 155	59 30N	58 27%	75° V1 ° 5	845= 917	36.61	52+1
BWP 378	CH 122	29 30N	58 59*	75* VI * 5	1350-1420	•	2415
BWP 373	CH 122	59 89N	59 94	75° vi = 5	1615-1642	•	24+3
BWP 380	CH 155	30 38N	61 434	75- VI - 6	855* 930	26 • 47	5411
8wP 351	CH 122	31 IN	45 S2+	75- VI - 6	1540=1610	•	24+0
PWP 382	CH 153	34 15N	65 21×	75° VI *13	933-1001	•	22+7
8wP 383	CH 183	34 164	A6 240	75• V1 •13	1447~1509	•	22.7
43WP 384	CH 123	33 55N	65 514	75* v1 714	1432-1507	26.44	55+3
8wP 385	CH 123	33 544	65 568	75* VI *15	1130-1150	25 . 44	23+4
BWP 345	CH 123	37 198	68 80v	75" VI -17	018- 353	76+ 5P	26*A
8WP 337	C4 183	37 158	58 86v	/ 75* V1 *17	1590~1535	36+52	27+0
HUP 204	CH 183	고민 47년	70-117	75* VI -18	1435-1505	22°JJ	51×3
686 - 3 93	CH 183	36 429	70 120	- 75+ VI -19	8004 430	32+33	50+5
							20.7

70 342 Por V1 197

Į.

900- 024

*night dive

BLUE WATER PLANKTON STATION LIST: THESIS

NES 05 EST HO 285 RHH

ł

135

TABLE OF STATIONS

SURF. 1EMP:

50-1

÷

33.98

•		TABLE OF S	TATIONS	
STATION SHIP CRUISE LAT.	LONG. DATE	COLLECT. TIME	SURF. Salin.	SURF. TEMP.
BWP 391 CH 123 39 401	70 37% 75- VI -22	1650-1720	35.73	51.0
BWP 392 CH 123 39 40N	70 37W 75* VI *23	906- 930	35+59	21+2
BWP 393 CH 125 39 19N	70 15m 75mv11 "31	1426-1453	•	24+7
BWP 394 CH 125 38 26N	69 57# 75-VIII- 1	1047-1122	•	23+6
BWP 305 CH 125 38 25%	69 58% 75-VIII- 1	1423-1448	•	53+8
8WP 396 CH 125 38 28N	70 OW 75-VIII+ 2	1020-1050	•	23+8
BWP 397 CH 125 37 7N	68 55W 75-V111- 4	1045-1110	ŧ	26+2
8WP 398 CH 125 35 21N	68 18W 75-VIII- 5	1302-1332	•	26+6
BWP 399 CH 125 35 16N	69 58w 75 vill 6	1#15*1450	•	56+0
EWP 400 CH 125 34 31N	69 54% 75=VIII= 8	1025*1050	•	25+4
BWP 401 CH 125 34 32N	69 51W 75*VIII* 8	1542-1913	•	25.4
BWP 402 CH 125 34 28N	69 57 _W 75+v111+10	1113-1143	•	25+5
BWP 403 CH 125 34 30N	69 54w 75-VIII-10	1618-1653	•	25+5
BWP 404 CH 125 34 5N	71 33W 75-V111-11	1052*1116	•	27:4
BWP 405 CH 125 34 11N	71 38w 75 ville11	1514-1549	•	27+4
BWP 405 CH 125 34 9N	71 374 75=111-12	110 ⁹⁻ 113 ⁹	•	27+4
BWP 407 CH 125 34 8N	71 38% 75"VIII"12	153771618	•	27 . 4
BWP 408 CH 125 34 56%	71 13w 75=v111=13	1537*1603	0	•
BNP 409 CH 125 37 224	70 11* 75-4111-14	1021-1043	•	•
BWP 410 CH 125 35 ON	70 38 75-VIII-14	1530+1600	٠	25•3
BHP 411 CH 125 38 10W	70 5w 75*V111*15	1410=1430	•	6315
BWP 412 CH 125 38 20%	70 5" 75-VIII-15	1022-1045		25+3
8WP 413 CH 125 39 5N	70 6W 75+V111+16	1517-1542	•	24+8
BWP 414 CH 125 39 11h		1115-1140	•	24+9
BWP 417 KN 53 35 32		935-1005	•	54+4
BNP 418 KN 53 32 454		1045-1120	36+46	23+8
BWP 419 KN 53 32 43		1046*1116	36+60	53•8
BWP 420 KN 53 33 39		1540-1505	36+33	23+1
BWP 421 KN 53 33 13		840+ 910	36.30	83.8
BWP 422 KN 53 33 55		1533-1600	36+30	23:4
BWP 423 KN 53 33 49		1230-1255	36+30	23+3
BWP 424 KN 53 33 55			36+32	2313
EWP 425 KN 53 34 1		959 ~1 029	35.40	53.1
BWP 425 KN 53 35 27		1057-1127	•	22.7
BWP 427 KN 53 35 7	- 	1540-1600	35+50	85+5
3WP 427 KN 53 38 55			35150	55°C
		815" 840	35.60	13.6
			35+30	51+5
			. 35+90	0+CS
800 431 KN 53 34 20	-			

BLUE WATER PLANKTON STATION LISTI THESIS

Ę

Appendix 2. Carbon monoxide composition of float gas in the siphonophores <u>Rhizophysa filiformis</u>, <u>Bathyphysa</u> <u>sibogae</u>, and <u>Athorybia rosacea</u>.

ABSTRACT: Carbon monoxide averaged 83% of the float gas in Cystonectae and Physonectae siphonophores collected by SCUBA divers in the Western North Atlantic Ocean. Concentrations of 80 - 90% CO are characteristic of non-pleustonic siphonophores.

Wittenberg (1958) announced that carbon monoxide (CO) comprised one to five per cent of the float gas in colonies of the surfaceliving siphonophore <u>Physalia physalis</u> (Suborder Cystonectae). More recent studies with freshly-collected colonies of <u>P</u>. <u>physalis</u> reported higher percentages of CO, though CO was variable and seldom made up more than 35% of the total float gas (e.g., Copeland, 1968). Pickwell and his colleagues (see Pickwell, 1970, for review) found higher concentrations of CO in float gas of siphonophores of the Suborder Physonectae. They reported that 80 - 90% of the float gas was CO in colonies of <u>Nanomia bijuga</u> collected in midwater trawls, and that less than four per cent of recently secreted gas was O_2 and CO_2 .

I analyzed the float gas composition of 10 colonies of <u>Rhizophysa filiformis</u> and <u>Bathyphysa sibogae</u> (Suborder Cystonectae) and two colonies of <u>Athorybia rosacea</u> (Suborder Physonectae). Siphonophores were collected individually in jars by SCUBA divers in the Western North Atlantic Ocean on ATLANTIS-II Cruise 86, CHAIN Cruises 122 and 125, and KNORR Cruise 53. All analyses were carried out within one to two hours of collection. Gas was withdrawn by suction from the pneumatophore of living colonies into a syringe of acid-citrate solution. The bubble of gas was transferred into a Scholander 0.0284-cc Gas Analyzer, and carbon dioxide

and oxygen were analyzed sequentially by the microgasometric method of Scholander, et al. (1955). Carbon monoxide was absorbed with a solution of cuprous chloride in ammonium chloride (Wittenberg, 1960). Nitrogen was not assayed, but is part of the residual gas remaining after absorption of CO_2 , O_2 , and CO,

I found consistently high concentrations of CO in siphonophore float gas. In the twelve colonies I collected which had floats large enough to provide at least 2.6 mm³ of gas for analysis, carbon monoxide averaged 83% of the float gas (Table A). The variable and low concentrations of CO reported in pleustonic species like <u>Physalia</u> <u>physalis</u> (whose large float remains above the air-sea interface) probably reflect diffusive exchanges with atmospheric gases.

References

- Copeland, D. E. 1968. Fine structures of the carbon monoxide secreting tissue in the float of Portuguese Man-of-War Physalia physalis L. Biol. Bull. 135: 486-500.
- Pickwell, G. V. 1970. The physiology of carbon monoxide production by deep-sea coelenterates: Causes and consequences. Ann. N. Y. Acad. Sci. 174: 102-115.
- Scholander, P. F., L. Van Dam, C. L. Claff, and J. W. Kanwisher. 1955. Microgasometric determination of dissolved oxygen and nitrogen. Biol. Bull. 109: 328-334.
- Wittenberg, J. B. 1958. Carbon monoxide in the float of <u>Physalia</u>. Biol. Bull. 115: 371.
- Wittenberg, J. B. 1960. The source of carbon monoxide in the float of the Portuguese Man-of-War, <u>Physalia physalis</u> L. J. Exp. Biol. 37: 698-705.

ŝ.

Volume Analyzed (mm ³)	co ₂	0 ₂	CO	residuel
Rhizophysa filiforni	IS		•	
21.9	2%	3%	85%	10%
22.6	1%	3%	87%	9%
22.2	2%	3%	86%	. 9%
. 4.4	- ·	7%	83%	10%
9.5	1%	7%	7 8%	14%
7.1	2%	2%	86%	10%
8.5	-	8%	72%	20%
 	•		mean: 82%	
Bathyphyse sibogae	ż		-	• .
2.6		5%	84%	11%
4.5	-	6%	85%	9%
3.8	, , ,	4%	. 89%	7%
Athorybia rosacea				
2.8	. –	5%	85%	10%
3.1	-	5%	79%	16%

Table A. Composition of float gas in siphonophores collected by SCUBA

divers in the Western North Atlantic Ocean.

Appendix 3. The siphonophore <u>Bathyphysa</u> <u>sibogae</u> Lens and van Riemsdijk, 1908 in the Sargasso Sea, with notes

.

1

....

on its natural history.

THE SIPHONOPHORE *BATHYPHYSA SIBOGAE* LENS AND VAN RIEMSDIJK, 1908, IN THE SARGASSO SEA, WITH NOTES ON ITS NATURAL HISTORY

.•

D. C. Biggs and G. R. Harbison

Reprinted from BULLETIN OF MARINE SCIENCE Vol. 26, No. 1, January, 1976 pp. 14–18 Made in United States of America

BULLETIN OF MARINE SCIENCE, 26(1): 14-18, 1976

THE SIPHONOPHORE BATHYPHYSA SIBOGAE LENS AND VAN RIEMSDIJK, 1908, IN THE SARGASSO SEA, WITH NOTES ON ITS NATURAL HISTORY

D. C. Biggs and G. R. Harbison

ABSTRACT

Eleven specimens of *Bathyphysa sibogae* Lens and van Riemsdijk, 1908 (Siphonophorae: Cystonectae) were collected by SCUBA divers in the upper 30 m of the Sargasso Sea. The appearance and behavior of the living animal are described for the first time. The larger gastrozooids are attached to the stem by pedicles, and their tentacles have tricornate tentilla. The hyperiid amphipod, *Schizoscelus ornatus* Claus, 1879 seems to be preferentially associated with this siphonophore.

Bathyphysa sibogae Lens and van Riemsdijk, 1908 (Siphonophorae: Cystonectae) is known only from two specimens found in preserved collections of the SIBOGA Expedition (Lens and van Riemsdijk, 1908). Both came from trawls to 2080 m deep near the Celebes Islands. This paper reports the occurrence of *B. sibogae* in the Western North Atlantic Ocean.

We observed and collected 11 specimens of *B. sibogae* while SCUBA diving in the upper 30 m of the western Sargasso Sea during R/V ATLANTIS-II Cruises 84 and 85 (Table 1). Since this siphonophore is considered a rare species, we will describe its morphology and provide some information on aspects of its natural history.

Description of the Species

The most prominent features of a colony of *B. sibogae* are the pneumatophore (apical gas-filled float) and series of gastrozooids (feeding polyps) which are arranged along one side of the highly contractile stem (Fig. 1). The living colony appears colorless except for a cap of red-violet pigment around the apical pore of the pneumatophore. The pneumatophore is bluntly fusiform in shape and while alive measured 4.0×1.0 mm. Small hypocystic villae are located at the base of the reflective gas-filled pneumatosaccus. The small gastrozooids are transparent, while large gastrozooids have opaque patches of nematocysts in the ectoderm. Several forms of gastrozooids occur along the stem. Gastrozooids closest to the apical float are flattened dorso-ventrally and have ptera (lateral aliform ridges which distinguish the genus *Bathyphysa* from *Rhizophysa*). Gastrozooids #18-22 also have ptera, but each has a small basal tentacle bud as well. The tentacle is more pronounced in gastrozooids #23-25, and ptera are absent. Gastrozooids #23-25 are each attached to the stem by pedicles.

The specimens we observed and collected are much smaller than the two described by Lens and van Riemsdijk (1908). In 4% formalin buffered with sodium borate, the colony illustrated in Figure 1 is only 25 mm long. The remainder of the stem (not illustrated in Fig. 1) is complexly contracted and has six gastrozooids with well-developed tentacles and pedicles. The largest gastrozooids are 5-10 mm long and are attached to the stem by pedicles 3 mm long (Fig. 2). Each of these large gastrozooids has a tentacle with 35-40 tentilla. The tentacles produce a sharp stinging sensation when touched. The largest tentilla (those most distal) are segmented and measure about 0.1 mm in diameter. They are faint pink in color and each ends in a swelling 0.2-0.3 mm long with two lateral projections (Fig. 3). A smaller terminal projection represents the developing central filament (Lens and van Riemsdijk, 1908, Fig. 164).

Gonodendra are located midway along the

BIGGS AND HARBISON: THE SIPHONOPHORE, BATHYPHYSA SIBOGAE

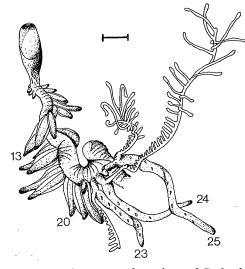


Figure 1. Upper part of a colony of *Bathyphysa* sibogae from the Sargasso Sea, showing the pneumatophore at the apical end of the colony, the first 25 gastrozooids and the tentacles of gastrozooids 23, 24, and 25. Gastrozooids 13, 20, 23, 24, and 25 are numbered in the figure. Pedicles are visible at the bases of gastrozooids 23, 24, and 25. Scale line 1 mm.

stem between two gastrozooids and their early developmental stages closely resemble those of *B. conifera* (Leloup, 1936, Fig. 6). The largest gonodendrum from the animals

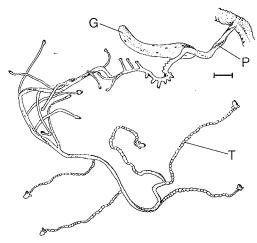


Figure 2. Older gastrozooid (G) of *Bathyphysa* sibogae, showing pedicle (P) and form of the tentilla (T). Scale line 1 mm.

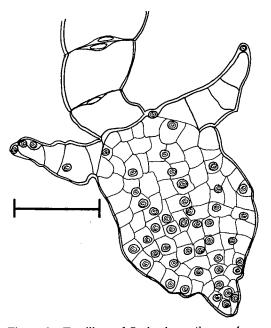


Figure 3. Tentillum of *Bathyphysa sibogae*, showing the arrangement of the nematocysts. Scale line 0.1 mm.


we collected measured 1.3×0.8 mm (including gonostyle) and bore 14 colorless lateral buds. Each bud was a grapelike swelling which measured about 0.3×0.1 mm (Fig. 4). The lack of differentiation of the gonophore buds and the small size of the animals we collected both suggest that all were juvenile, sexually-immature colonies.

Notes on the Natural History of B. SIBOGAE

An undisturbed living colony of *B. sibo*gae hangs vertically in the water with the stem often extending more than 300 mm below the pneumatophore. In this fishing posture, the longer tentacles may trail an additional 60 mm and the pedicles may extend up to 10-15 mm in length. The colony can contract to about one-tenth of its extended length through a series of longitudinal contractions of stem and tentacles which cause the stem to spiral dextrally.

Bathyphysa sibogae does not swim by contraction of the ptera of younger gastro-

BULLETIN OF MARINE SCIENCE, VOL. 26, NO. 1, 1976

zooids, as suggested by Lens and van Riemsdijk (1908). It can only writhe about in the water by repeated contraction and relaxation of the stem as does *Rhizophysa filiformis* Forskal, 1775 (Totton, 1965). Gastrozooids with ptera are no more prehensile than the larger, tentaculate gastrozooids, which is contrary to Fewkes' (1884) suggestion. Our observations of living colonies of *B. sibogae* suggest that the ptera may function primarily to retard the sinking of the colony. In colonies of *B. sibogae* extending in fishing posture, the smaller gastrozooids are oriented at right angles to the stem.

The hyperiid amphipod, Schizoscelus ornatus Claus, 1879 seems to be preferentially associated with *B. sibogae* (Table 1). Of the eleven colonies of *B. sibogae* we collected, five had *S. ornatus* associated with them, and one had a mature *Thyropus ed*wardsii (Claus, 1879). The rest had no amphipods. We have collected *S. ornatus* only with *B. sibogae*, while we have found *T. edwardsii* with other species of siphonophores.

Figure 4. Developing gonodendrum of *Bathyphysa sibogae*. Scale line 1 mm.

Date	Time	Position	Surface Temp.	Numbers of B. sibogae	Number and Kind of Associated Amphipods
15 August 1974	1000	28°31′N, 67°38′W	28.8°C		Schizoscelus ornatus (4.3 mm female)
				3	no amphipods
	1540	29°10′N, 67°41′W	28.8°C	1 1	Schizoscelus ornatus (5.4 mm mature female)
				1 1	Schizoscelus ornatus (4.7 mm female)
16 August 1974	1100	31°40′N, 67°43′W	28.8°C	1 1	Thyropus edwardsii (6.2 mm mature male)
	1515	31°41′N, 67°43′W	28.8°C	1 4	Schizoscelus ornatus (4.3 mm mature male) (3.5 mm male) (3.4 mm male) (4.4 mm female)
1 0 - 4 - 1 - 1074	1.000	0000101 (0000011			no amphipods
3 October 1974	1600	28°31′N, 62°30′W	27.7°C	1	no amphipods
4 October 1974	1700	29°37′N, 63°45′W	27.7°C	1 1	Schizoscelus ornatus (3.5 mm female)

Table 1. Stations where Bathyphysa sibogae was collected

Our field and aquarium observations indicate that *S. ornatus* moves about freely on the pneumatophore and the smaller gastrozooids but avoids the gastrozooids with tentacles. If the amphipod's freedom of movement is restricted, as when it is enclosed in a jar with its host, it can be captured and quickly ingested.

DISCUSSION

Both of Lens and van Riemsdijk's type specimens of *B. sibogae* were badly fragmented. The smaller of the two apparently had no gastrozooids with mature tentilla (Lens and van Riemsdijk, 1908, Fig. 148), suggesting that it may have been the apical part of a much larger colony. Only two gastrozooids with tentacles remained on the stem of the second, but these seemed to be attached by long filamentous pedicles (Lens and van Riemsdijk, 1908, Fig. 160).

Leloup (1936) was unable to discern the presence of pedicles when he reexamined the type material. He published a figure of an isolated gastrozooid from *B. sibogae* and identified the basal filament as a tentacle (Leloup, 1936, Fig. 9). Accordingly, Leloup abandoned previous classification schemes based on the presence or absence of pedicles and grouped all previously described Cystonectae material with ptera and simple tentacles as *Bathyphysa conifera* (Leloup, 1936). Leloup retained *B. sibogae* as a second distinct species because it had tentilla.

Our specimens clearly have pedicles, and suggest that Leloup's synonomy may not be appropriate. If other species of *Bathyphysa* exist (e.g., *B. abyssorum* Studer, 1878; *B. japonica* Kawamura, 1954), *B. sibogae* may be distinguished by two anatomical features: (1) The tentacles have tentilla (terminating in an ampulla and two lateral filaments); (2) Pedicles are present at the basal end of the larger gastrozooids.

The different morphological forms of gastrozooids which occur sequentially along the stem of B. sibogae probably represent stages in gastrozooid development. During growth of Cystonectae siphonophores, gastrozooids produced in the budding region at the base of the pneumatophore become progressively situated towards the posterior part of the stem. Gastrozooids with ptera are found adjacent to this budding zone. These are probably juvenile gastrozooids unable to capture and ingest prey. Later, they develop by differential growth into the larger pediculate, tentaculate gastrozooids. Gastrozooids #18-23 (Fig. 1) represent stages in this transformation process. Shortly after the formation of a tentacle bud (gastrozooids #18-22), the basal region of the gastrozooid seems to elongate and differentiate into the pedicle. The ptera disappear and simultaneously the tentacle and pedicle become well-developed (gastrozooids #23-25).

Siphonophores of the genus Bathyphysa have been considered to be deep-living organisms, since most specimens collected came from deep trawls or were removed from hydrowire or cable being retrieved from casts deeper than 1000 m (Leloup, 1936; Totton, 1965). Records of B. conifera from the Atlantic Ocean have a distributional range extending from at least 47°53'N to 24°24'S (Leloup, 1936). Bathyphysa has also been collected from the equatorial Pacific Ocean (Lens and van Riemsdijk, 1908) and off the east coast of Japan (Kawamura, 1954). However, many specimens of each of the three other genera of Cystonectae siphonophores (Totton, 1965) have been obtained from surface tows. Both Physalia and Epibulia float on the surface (Alvarino, 1972), while *Rhizophysa* is frequently present in the epipelagic zone (Bigelow and Sears, 1937; Pugh, 1974).

The fact that we have collected 11 specimens of *B. sibogae* implies that this species is not rare and may even be abundant in the upper water layers. Though it is difficult to understand why *B. sibogae* has not been reported since its original description, it is perhaps significant that all Cystonectae siphonophores of the Family Rhizophysidae adhere to fabric. Since they are delicate and easily fragmented as well, most specimens

captured in plankton nets probably never reach the cod-end in recognizable condition.

The specimen of *B. sibogae* described in this paper has been placed in the Museum of Comparative Zoology at Harvard University.

Acknowlegments

The authors thank R. Gilmer and N. Swanberg for their aid in collecting *B. sibogae*, and M. Sears for reviewing the manuscript. Contribution No. 3542 of the Woods Hole Oceanographic Institution. The work was supported in part by an NSF Graduate Fellowship and Grant Nos. GA39976 and GA31983 from the National Science Foundation.

LITERATURE CITED

- Alvarino, A. 1972. A second record of a rare siphonophore, *Epibulia ritteriana* Haeckel 1888. Fish. Bull. 70: 507-509.
- Bigelow, H. B., and M. Sears. 1937. Siphonophorae. Rep. Danish Oceanogr. Exped. Medit. II. Biology. H.2: 1-144.
 Claus, C. 1879. Die Gattungen und Arten der
- Claus, C. 1879. Die Gattungen und Arten der Platysceliden in Systematischer Uebersicht. Arb. Zool. Inst. Univ. Wien. 2: 147–198.

- Fewkes, J. W. 1884. Report on the medusae collected by U.S.F.C. steamer ALBATROSS, in the region of the Gulf Stream, in 1883-'84. Rept. U. S. Comm. Fish for 1884: 927-980.
- Forskal, P. 1775. Descriptiones animalium . . . quae in itineri orientali observavit, post mortem edidit Carsten Niebuhr. Hauniae, 20.
- Kawamura, T. 1954. A report on Japanese siphonophores with special reference to new and rare species. J. Shiga Prefect. Junior College, Ser. A: 99-129.
- Leloup, E. 1936. Siphonophores calycophorides (suite) et physophorides provenant des campagnes du Prince Albert 1 de Monaco. Res. Camp. Sci. Monaco. 93: 3-36.
- Lens, A. D., and T. van Riemsdijk. 1908. The siphonophora of the SIBOGA expedition. Siboga Exped. 9: 1-130.
- Pugh, P. R. 1974. The vertical distribution of the siphonophores collected during the SOND Cruise, 1965. J. Mar. Biol. Assoc. U.K. 54: 25-90.
- Studer, T. 1878. Ueber Siphonophoren des tiefen Wassers. Z. Wiss. Zool. 31: 1-24.
- Totton, A. K. 1965. A synopsis of the Siphonophora. British Museum (Natural History). 230 pp.

ADDRESS: Woods Hole Oceanographic Institution, Woods Hole, Massachusetts 02543. Douglas C. Biggs Woods Hole Oceanographic Institution Woods Hole, Massachusetts 02543

Born: October 17, 1950.

Education:

JOINT PROGRAM IN BIOLOGICAL OCEANOGRAPHY: MASSACHUSETTS INSTITUTE OF TECHNOLOGY and WOODS HOLE OCEANOGRAPHIC INSTITUTION.

Candidate for Ph.D. degree in Biological Oceanography, September, 1976.

NSF Graduate Fellow, 1972-1975. Thesis research, sponsored by John M. Teal and G. Richard Harbison, on "Nutritional ecology of <u>Agalma okeni</u> and other siphonophores from the epipelagic Western North Atlantic Ocean".

FRANKLIN AND MARSHALL COLLEGE, Lancaster, Pa. A.B. degree, Magna Cum Laude with Departmental Honors in Biology, May 1972. Honors thesis: "Variations in temperature-salinity tolerance between two geographicallyseparated populations of <u>Pagurus longicarpus</u> Say (Crustacea: Anomura)".

Phi Beta Kappa President, Porter Scientific Society Richard C. Schiedt Award in Biology

Experience:

ICTHYOLOGICAL ASSOCIATES, Drumore, Pa. Summers 1970, 1971. Professional experience in limnology (productivity and water chemistry) in Muddy Run-Conowingo Reservoir Environmental Impact Study, under direction of Dr. E. C. Raney (Cornell University, retired).

WOODS HOLE OCEANOGRAPHIC INSTITUTION, Woods Hole, Ma. Summer 1972. Research assistant to J. M. Teal. Measured CO₂ exchange and productivity of two species of the salt marsh grass <u>Spartina</u> under regimes of fertilization with secondary-treated sewage on Greater Sippewissett Salt Marsh, West Falmouth, Ma.

Sea Experience:

19 cruises on R/V ALCOA SEAPROBE, KNORR, ATLANTIS-II, CHAIN, LULU, GOSNOLD, and JOHNSON.

Publications: Biggs, D. C., and J. J. McDermott. 1973. Variation in temperature-salinity tolerance between two estuarine populations of <u>Pagurus longicarpus</u> (Say) (Crustacea: Anomura). Biol. Bull., 145: 91-102.

*

Biggs, D. C., and G. R. Harbison. 1976. The siphonophore <u>Bathyphysa sibogae</u> Lens and van Riemsdijk, 1908 in the Sargasso Sea, with notes on its natural history. Bull. Mar. Sci., 26: 14-18.

Biggs, D. C. 1976. Nutritional ecology of <u>Agalma okeni</u> (Siphonophora: Physonectae). <u>In</u>: Coelenterate Ecology and Behavior (G. O. Mackie, Ed.). Plenum. in press.

Harbison, G. R., D. C. Biggs, and L. P. Madin. in prep. The associations of hyperiid amphipods with gelatinous zooplankton. II. Associations with Cnidaria, Ctenophora, and Radiolaria. Deep-Sea Res. (ms submitted).

Biggs, D. C. in prep. Respiration and ammonium excretion by open-ocean gelatinous zooplankton. Limnol. Oceanogr. (ms submitted).