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Abstract

The 25-m onshore migration of a nearshore sandbar observed over a 5-day period near

Duck, NC is simulated with a simplified, computationally efficient, wave-resolving single-

phase model. The modeled sediment transport is assumed to occur close to the seabed and

to be in phase with the bottom stress. Neglected intergranular stresses and fluid-granular in-

teractions, likely important in concentrated flow, are compensated for with an elevated (rela-

tive to that appropriate for a clear fluid) model roughness height that gives the best fit to the

observed bar migration. Model results suggest that when mean-current-induced transport is

small, wave-induced transport leads to the observed onshore bar migration. Based on the re-

sults from the simplified phase-resolving model, a wave-averaged, energetics-type model (e.g.,

only moments of the near-bottom velocity field are required) with different friction factors for

oscillatory and mean flows is developed that also predicts the observed bar migration. Al-

though the assumptions underlying the models differ, the similarity of model results precludes

determination of the dominant mechanisms of sediment transport during onshore bar migra-

tion.
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1 Introduction

When mean currents are weak, nearshore sediment transport is driven predominately by wave-

orbital velocities. As waves shoal, their shapes become skewed (relatively sharp crests and broad,

flat troughs) and asymmetric (pitched-forward, with steep front faces and gently sloping rear faces).

During the passage of the steep front faces of asymmetric waves, fluid is accelerated strongly as

the orbital velocity rapidly changes from maximum offshore to maximum onshore (e.g., Elgar

et al., 1988). Sediment transport associated with nonsymmetrical waves often is parameterized

with statistics of the near-bottom velocity field averaged over many wave periods. In particular,

the skewness (normalized mean cube) of time series of cross-shore fluid velocity (Bowen, 1980;

Bailard, 1981) and of cross-shore velocity acceleration (Drake and Calantoni, 2001) have been

incorporated into energetics-type (after Bagnold, 1966) models for nearshore sediment transport

(Roelvink and Stive, 1989; Nairn and Southgate, 1993; Thornton et al., 1996; Gallagher et al.,

1998; Crawford and Hay, 2001; Hoefel and Elgar, 2003; and others). The corresponding morpho-

logical evolution is determined from the conservation of sediment mass (i.e., from the cross-shore

divergence of the net cross-shore sediment transport rate). Energetics models, driven with mo-

ments of time series of fluid velocities measured above the bottom boundary layer, suggest that

offshore bar migration, observed when incident waves are energetic, is driven by strong offshore-

directed mean currents that are maximum near the bar crest (Thornton et al., 1996; Gallagher et al.,

1998). An energetics model extended to include sediment transport associated with the strong flow

accelerations under steep wave faces (Hoefel and Elgar, 2003, hereinafter the extended-energetics-

acceleration EEA model) suggests that onshore bar migration, observed when incident wave en-

ergy is moderate and mean currents are relatively weak, is related to cross-shore gradients in the

skewness of velocity accelerations.
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In the energetics models, the stress on the seabed and the resulting sediment transport are related

to moments of velocity and acceleration via power laws with empirical coefficients. The velocity,

bottom stress, and sediment transport are all in phase. Other models predict a phase lag between

flow forcing and bottom stress, and between stress and transport. For example, transport of sed-

iment suspended high above the bed is not in phase with free-stream wave-orbital velocities nor

with the bottom stress, and usually is modeled by solving an advection-diffusion equation for sedi-

ment concentration (e.g., Li and Davies, 1996; Henderson et al., 2004; Hsu and Liu, 2004). Dilute

suspensions often are simulated by single-phase (clear fluid only) models that neglect intergranular

stresses and fluid-granular interactions. In flows with dense concentrations of grains, such as near

the bed, a two-phase (fluid and sediment) approach may be required to model fluid-sediment and

grain-grain interactions (e.g., Dong and Zhang, 2002; Hsu et al., 2004).

A single-phase, wave-resolving eddy-diffusive (WRED) model incorporating suspended sediment

transport for which the upward sediment flux just above the bed is given by an empirical refer-

ence concentration, and suspended concentrations higher in the water column are determined by

turbulent diffusion, simulates sandbar migration with skill close to that of the EEA model (Hen-

derson et al., 2004). Similar to the EEA model, offshore bar migration is caused primarily by

offshore-directed mean currents that are maximum near the bar crest. Onshore bar migration is

driven by gradients in Stokes’ drift, and by coupling between orbital velocities and sediment con-

centration. During onshore bar migration, the contribution to nearbed transport from velocity

skewness is roughly twice that from velocity asymmetry, whereas in the EEA model transport is

driven by acceleration skewness, which is proportional to velocity asymmetry. In contrast to the

computationally-efficient EEA model, the WRED model is driven with time series of velocities,

and is computationally expensive.
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The phase-resolving sediment transport models developed here are different than the energetics,

EEA, and WRED models. Turbulence modeling of the wave boundary layer is used to relate the

free-stream velocity to the bottom stress, rather than the parameterized relationships of energetics

and EEA models. The boundary layer dynamics and turbulent closures are similar to those used in

the WRED model, but sediment transport is assumed to be in phase with the bottom stress via an

empirical Meyer-Peter Mueller-type power law.

Here, observations of onshore sandbar migration are compared with predictions based on wave-

resolving and wave-averaged sediment transport models. In three different wave-resolving models,

the bottom stress is represented with a quasi-steady formulation, a first-order (linear) boundary

layer, and a computationally expensive second-order model. The bottom stress is then substituted

into a sediment transport power law. The wave-averaged models include an energetics-based model

and an energetics model extended to account for different friction factors for wave- and mean-flow-

induced transport.

Models for wave-induced sediment transport are formulated in section 2, and model-based predic-

tions are compared with observations of onshore bar migration in section 3. A velocity-moment-

based energetics model (Bowen, 1980; Bailard, 1981) is modified to include separate friction co-

efficients for orbital-velocity-only-driven transport, and for transport that involves mean currents

(Section 4). The models simulate onshore bar migration with similar skill.

4



2 Wave-Induced Sediment Transport

2.1 Model Formulation for Bottom Stress

2.1.1 Second-order Boundary Layer Model

The governing equations for a one-dimensional wave boundary layer model follow from the Reynolds-

averaged Navier-Stokes equations by adopting a boundary layer approximation (i.e.,kwδ � 1,

wherekw is the wavenumber andδ is the boundary layer thickness) and assuming small amplitude

waves (i.e.,kwA �1, whereA is the wave amplitude). Retaining the nonlinear terms to second

order yields (see Trowbridge and Madsen (1984) and Henderson et al., (2004) for details):
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∂Ũ0

∂t
− Ũ0
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whereu andw are the cross-shore (x) and normal to the bed (z) velocity components,t is time,

ρ is the fluid density,τzx is the fluid stress, and̃U0 is the oscillatory (wave-orbital, with no mean)

velocity. The phase speed of shoreward propagating, linear shallow water waves isc =
√

gh, with

g gravitational acceleration andh the water depth.

2.1.2 First-order Boundary Layer Model

The second-order boundary layer model can be simplified by retaining only the leading order

terms in (1) and (2), resulting in a first-order (linearized) boundary layer equation (e.g., Grant and

Madsen, 1979):
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=

∂Ũ0

∂t
+

1

ρ

∂τzx

∂z
. (3)
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The linearized continuity equation along with the bottom boundary condition givesw = 0. Bound-

ary layer streaming, included in the second-order model, is neglected.

2.1.3 Turbulence Closure

Adopting the eddy viscosity hypothesis (Grant and Madsen, 1979; Justesen, 1988), the fluid stress

τzx is given by

τzx = ρ(νt + ν)
∂u

∂z
, (4)

with νt the eddy viscosity andν the fluid viscosity. Near the bed, the eddy viscosityνt can be

approximated using mixing-length theory (Grant and Madsen, 1979):

νt = κ

√
|τb|
ρ

min (z, 0.3l) , (5)

whereκ = 0.41 is the Karman constant. Details of the relationship betweenνt and the mixing

length far from the bed do not affect the near-bed boundary layer flow (Trowbridge and Madsen,

1984). Therefore, to avoid small computational time steps owing to a large eddy viscosity far from

the bed, a constant eddy viscosity is used when the mixing length exceeds 30% of the computa-

tional domain heightl.

Alternatively, a more accurate eddy viscosity is calculated by fluid turbulent kinetic energy (k) and

its dissipation rate (ε):

νt = Cµ
k2

ε
. (6)

The constantCµ, andk andε are calculated from standard balance equations and coefficients (see

for example, Rodi (1993) and Henderson et al. (2004) for details).

Assuming a logarithmic velocity profile (law of the wall) near the bed, the time-varying bottom
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stress is obtained from the model velocity at the first grid point∆z above the bed (Justesen, 1988):

τb = ρ

[
κu(∆z, t)

ln (30∆z/Ks)

]2

. (7)

The roughness heightKs is proportional to the grain diameterd (Appendix). The bottom stressτb

also serves as the bottom boundary condition for the momentum equations (2) or (3).

2.1.4 Quasi-steady Parameterization

An alternative, quasi-steady approach is to estimate the wave-induced instantaneous bottom stress

τb(t) directly from the instantaneous, oscillatory free-stream velocity through a quadratic depen-

dence (e.g., Ribberink, 1998; Traykovski et al., 1999):

τb(t) =
1

2
ρfwŨ0(t)|Ũ0(t)|, (8)

wherefw is a wave friction factor. When the root-mean-square wave-orbital velocity is much larger

(a factor of 5 for the onshore bar migration discussed below) than mean currents (e.g., undertow),

nonlinear wave-current interaction effects on wave-induced bottom stress are weak and can be

parameterized by an enhanced wave friction factor (Soulsby et al., 1993).

The quasi-steady formulation (8) is particularly computationally efficient because boundary layer

calculations are not required. However, detailed boundary layer processes are neglected, and the

underlying assumption that bottom stress is in phase with the free-stream velocity can sometimes

lead to substantial errors (e.g., Drake and Calantoni 2001; Nielsen and Callaghan, 2003). For

example, over a wave period quasi-steady models erroneously predict zero net bottom stress and

transport under idealized sawtooth-shaped (zero skewness, high asymmetry) waves, whereas EEA

(Hoefel and Elgar, 2003), two-phase (Hsu and Hanes, 2004), and WRED (Henderson et al., 2004)

models predict significant net bottom stress and transport.
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2.2 Model Formulation for Sediment Transport Rate

During the low energy wave conditions for the onshore bar migration discussed here, although

sometimes megaripples were present (Figure 6 in Gallagher et al. (1998)), visual observations

suggested little suspended sediment, consistent with the absence of wave-orbital ripples on the

seafloor. Recent detailed measurements of sand transport (d = 0.21 mm) in a U-tube (Dohmen-

Janssen et al., 2002) under nonbreaking surface gravity waves (Dohmen-Janssen and Hanes, 2002;

Dohmen-Janssen and Hanes, 2005) suggest that most of the transport is in phase with forcing for

grain sizes (d ≈ 0.2 mm) and dominant wave periods (T > 6sec) typical of those considered here.

A comprehensive analysis of sheet flow (d ≈ 0.2 mm) (Ribberink, 1998) suggests a Meyer-Peter

Mueller power law for the nondimensional transport rate,Ψ = q/
√

(s − 1)gd3, given by

Ψ = 11
θ

|θ| [|θ| − 0.05]1.65 , (9)

whereq is the dimensional transport,θ = τb/ρ(s − 1)gd is the Shields parameter, ands is the

sediment specific gravity. Bottom stress from the three phase-resolving models (1-2, 3, and 8) is

coupled with (9) to predict transport rate.

2.3 Morphological Change

Temporal changes in the sand levelzb owing to accretion and erosion are determined from the

estimated gradient in sediment transport rate and conservation of sediment mass as

∂zb

∂t
= −1

µ

∂Q

∂x
, (10)

whereµ = 0.7 is the assumed sediment concentration (packing) within the still bed. The time-

averaged net sediment transportQ is obtained by integratingq(t) over the time-step for which (10)
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is evaluated. Small variations inµ cause only small variations in the predicted morphology change

and best-fit parameters.

2.4 Numerical Implementation

The convection-diffusion boundary layer and morphological evolution equations are solved effi-

ciently with a forward-time, central-space, explicit scheme (e.g., Jaluria and Torrance, 1986). The

vertical computational domain of the wave boundary layer (0.18 m) is gridded withδz = 0.003 m.

Further increasing the height of the computational domain, and decreasingδz, had negligible effect

on the results. The time stepδt for solving the boundary layer is adjusted dynamically to satisfy

the constraint imposed by the convection and diffusion terms (Jaluria and Torrance, 1986).

The vertical morphological change(∂zb/∂t)∆t in (10) is estimated on a uniformly spaced (∆x =1

m) grid by linearly interpolating the predicted net transport rate between the current meter locations

(nonuniformly spaced in the cross-shore direction, Figure 1). With the morphology updated every

∆t=3 hr, vertical changes are a small fraction of the water depth. Numerical experiments with

different∆x, ∆t, and interpolation schemes suggest the results are not sensitive to the values used

here.

3 Onshore Bar Migration

The models are tested by comparisons with onshore bar migration observed near Duck, NC (22-

27 September 1994). The measurements, observational errors, and the assumption of alongshore

homogeneity (e.g., divergences of alongshore transport are neglected in (10), based on the similar

cross-shore depth profiles observed on nearby transects) are discussed in Gallagher et. al. (1998).
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The models were forced with demeaned (3-hr averages) velocity time seriesŨ0(t) measured about

0.5 m above the seafloor at 11 cross-shore locations extending 250 m from near the shoreline to

approximately 4-m water depth (Figure 1). The calculated instantaneous bottom stress yields the

sediment transport rate (9), and the corresponding morphological change (10) is then updated. Re-

sults are presented for a spatially constant sand grain diameter (d = 0.20 mm), but are qualitatively

similar using the observed values ofd, which ranged from 0.29 mm at the shoreline to 0.15 mm

in 4-m water depth. The roughnessKs also is assumed to be constant. During the 5-day period

modeled, the Shields parameterθ estimated near the bar crest with the single-phase models often

exceeds 0.8, the nominal lower limit of sheet flow.

To assess model performance, model skill is defined as

M = 1 −

√√√√ΣN
n=1(∆

p
n − ∆n)2

ΣN
n=1∆

2
n

, (11)

where∆ and∆p are the observed and predicted changes to the seafloor elevation at each of theN

measurement points. Perfect predictions have skillM = 1, and a prediction of no change in the

seafloor yieldsM = 0.

Both the quasi-steady model (8) with best-fit wave friction factorfw = 0.01 (M = 0.34, crosses in

Figure 1) and the first-order (linear) boundary layer model (3) with mixing-length closure (6) and

roughnessKs = 6d (M = 0.27, not shown) predict onshore sandbar migration, but the height of

the sandbar crest (cross-shore position = 220 m in Figure 1) is underpredicted. Numerical exper-

iments suggest that better predictions near the bar crest can be obtained at the expense of poorer

predictions near the shoreline (cross-shore position 160 meter). Predictions are improved using

the more accurate second-order (nonlinear) model (1-2) with both the mixing length (Ks = 14d,

M = 0.57, plusses) and more completek − ε (Ks = 25d, M = 0.69, circles) closures. These re-

sults suggest that nonlinear boundary layer processes enhance the shoreward transport of sediment
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near the sandbar crest, consistent with earlier studies (Trowbridge and Young, 1989; Henderson

et al., 2004). The best-fitKs for onshore bar migration is larger than usually used in a clear

fluid (Appendix,Ks ∼ 2d, Justesen, 1988), consistent with detailed laboratory measurements of

sheet flow (Dohmen-Janssen et al., 2001) and numerical results of a two-phase model (Hsu and

Raubenheimer, 2005). Sensitivity analysis suggests that a 5% change in model skill can be caused

by a 10% change infw in the quasi-steady model and by a 30% change inKs in the first- and

second-order boundary layer models (mixing length closure).

Demeaned velocities are used in the results shown in Figure 1. Accurate parameterizations of

wave-current interactions and current-induced bottom stress are complex (e.g., Grant and Madsen,

1979; Fredsøe, 1984; Soulsby et al., 1993). However, when mean flows are weak (as for the

onshore migration event discussed here), nonlinear wave-current interactions are small (Soulsby

et al., 1993) and the mean-current-induced bottom stressτbc can be parameterized by an enhanced

current friction factorfc and a quadratic dependence on the mean velocityŪ0 (e.g., Fredsøe, 1984):

τbc =
1

2
ρfcŪ0|Ū0|. (12)

Using (12) and (9) to estimate the mean-current-induced sediment transport withfc = 0.02 (a typi-

cal value for the surf zone), the predicted beach profiles that include both wave- and mean-current-

induced transport are similar to the profile predicted by wave-induce transport alone (compare

circles and crosses in Figure 2). For the samefw andKs used in the predictions shown in Figure

1, the corresponding model skills when including mean-current-induced transport areM = 0.32

andM = 0.24 for quasi-steady and first-order model with mixing length, andM = 0.55 and

M = 0.67 for the second-order models with mixing length andk − ε closures, respectively. In-

creasing the mean-current friction factor tofc = 0.04 results in increased (relative to predictions

with fc = 0.02 and to predictions with wave-induced transport only) erosion near the shoreline
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(Figure 2, cross-shore positions less than about 175 m) and underprediction of the height of the bar

crest (cross-shore position about 220 m). The model results are consistent with prior studies (e.g.,

Thornton et al., 1996; Gallagher et al., 1998) that suggest offshore directed mean currents (e.g.,

undertow) cause offshore transport. However, the relatively strong wave-induced transport results

in the observed net onshore sandbar migration.

4 Extended energetics: friction factors

Substituting (8) into the Meyer-Peter Mueller power law (9) shows that the time-averaged (〈 〉)

transport〈Ψ〉 ∼ 〈 |Ũ2.3
0 (t)|Ũ0(t) 〉. Thus, for the quasi-steady model, transport depends on the

3.3 power of velocity, between theU3 andU4 dependence in the terms used in standard energetics

models. However, commonly used wave-averaged energetics-based sediment transport models

(velocity-based, without fluid accelerations (Bowen, 1980; Bailard, 1981)) do not predict onshore

bar migration when the total (mean̄U0 and oscillatoryŨ0) velocity field is used to parameterize

wave-induced transport (Roelvink and Stive, 1989; Thornton et al., 1996; Gallagher et al., 1998;

Hoefel and Elgar, 2003). Even though the mean velocityŪ0 is less than 1/5 of the root-mean-square

orbital velocity〈Ũ2
0 〉1/2 during the onshore bar migration investigated here, the contributions to the

time-average cubed velocity from mean and oscillatory components (i.e.,(Ū0+Ũ0)
3) have opposite

signs and comparable magnitudes. Thus, when mean cross-shore flows (typically offshore directed

and less than about 10 cm/s) are included, values of the mean cube velocity are altered substantially

relative to values without means, and the associated sediment transport gradients are not consistent

with onshore bar migration (crosses in Figure 3,M = −0.1).

Previous results suggest that different friction factors should be used for wave- and mean-current-
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induced bottom stresses (e.g., Grant and Madsen, 1979; Fredsøe, 1984; Soulsby et al., 1993; see

also Figure 2). Although not cast in terms of friction factors, the WRED model also is consistent

with different friction factors for steady and oscillatory flows (Henderson et al., 2004). A modified

energetics-type model that separates transport associated only with orbital velocities from transport

associated with the mean current (including interaction with the oscillatory current) is given by

Q = Kw

[
εb

tanφ
〈| ~̃U0|2Ũ0〉 +

εs

W0
〈| ~̃U0|3Ũ0〉

]
+ Kc

[
εb

tan φ
〈| ~U0|2Ū0〉 +

εs

W0
〈| ~U0|3Ū0〉

]
, (13)

where the friction coefficients from contributions from waves only and from waves combined with

mean currents are

Kw =
Cw

(s − 1)g
, Kc =

Cc

(s − 1)g
, (14)

and|~̃U0| is the magnitude of the orbital velocity vector,| ~U0| is the magnitude of the total (orbital

and mean) velocity vector,W0 is the sediment fall velocity,φ is the friction angle, andεb andεs are

numerical coefficients. This extended-energetics-friction-factor model is labeled EEFF. Using typ-

ical values (Thornton et al., 1996; Gallagher et al., 1998) ofεb = 0.135, εs = 0.015, tan φ = 0.63,

W0 = 0.025 cm/s, ands = 2.65, friction coefficients ofCw = 0.0046 and Cc = 0.0053 are

obtained by maximizing EEFF model skill for onshore (September 22 to 27, circles in Figure 3,

M = 0.25) and offshore (October 10 to 15, case D in Gallagher et al. (1998), Figure 4,M = 0.55)

sandbar migration. Although better predictions near the bar crest can be obtained at the expense of

poorer predictions near the shoreline, and vice-versa, further tuning of model coefficients was not

investigated. Using the coefficients determined from the two bar migration events, the 50-m off-

shore migration of the sandbar observed during a storm with 4-m high offshore waves (September

1 to 5, case A in Gallagher et al. (1998)) is predicted with similar skill by the EEFF (M = 0.45)

and the unmodified energetics (M = 0.55) models (not shown).
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5 Discussion

The results presented here (Figures 1 to 4) suggest that the time-integrated spatial divergences

of transport that result in onshore bar migration can be simulated approximately with computa-

tionally efficient wave-averaged and wave-resolving models. However, although the assumptions

underlying the models differ (Hoefel and Elgar, 2003; Henderson et al. 2004; the present models),

the similarity of model results precludes determination of the mechanisms of sediment transport

during onshore sandbar migration.

Models with different assumptions may yield similar predictions because each model has at least

one parameter that can be tuned to compensate for neglected processes. For example, to fit the

observed morphological change, the roughnessKs in the boundary layer (single-phase) model is

elevated (relative to the roughness used in a clear fluid), compensating for neglected intergranular

and fluid-granular interactions (Dohmen-Janssen et al., 2001). Similarly, the best-fit value for the

magnitude of reference concentrationα in the WRED model differs by about 35% from values

based on field observations in unidirectional flow above river dunes (Smith and McLean, 1977;

cited in Henderson et al., 2004). If the magnitudes of bedload and suspended load are correlated,

then an elevated value forα might compensate for the neglect of bedload in the WRED model.

Correlation between the different velocity moments that drive sediment transport in each model

also may result in similar predictive skill despite different underlying assumptions. For example,

velocity asymmetry (important in models that resolve the turbulent boundary layer) and acceler-

ation skewness (used in the EEA model) are closely related (Elgar, 1987), and thus although the

underlying assumptions and physical rationales of the EEA and WRED models differ greatly, they

predict bar migration (both onshore and offshore) with nearly equal skill (Henderson et al., 2004).
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Similarly, although the EEFF model depends on velocity skewness (Figure 5), but not on velocity

asymmetry (Figure 6), its predictions are similar to those of the EEA and WRED models because

demeaned-velocity skewness and asymmetry have similar cross-shore variation during onshore bar

migration (compare Figure 5 with Figure 6).

6 Conclusions

A new computationally-efficient model for wave-driven morphological evolution predicts the on-

shore migration of a sandbar observed over a 5-day period. The model combines a wave-resolving

single-phase boundary layer approach to determining bottom stress with a power-law for near-bed

sediment transport that is in phase with the bottom stress. Neglected intergranular stresses and

fluid-granular interactions are compensated for with an elevated roughness value. Based on results

from the phase-resolving model, a wave-averaged (i.e., only moments of the near-bottom veloc-

ity field are required) energetics-type model with different friction factors for oscillatory-only-

and mean-plus-oscillatory-flow-driven transport was developed. The two-friction-factor energetics

model predicts the observed onshore bar migration with significantly more skill than obtained with

a standard energetics model with one friction factor.

The observed onshore bar migration is predicted with similar skill by the new wave-resolving

boundary layer model, a previously developed wave-resolving eddy-diffusive model, and by two

different wave-averaged energetics models. Despite their similar results, the assumptions under-

lying the models differ, ranging from near-bed to suspended load transport, driven by different

combinations of fluid velocities and fluid accelerations, suggesting that the comparisons of model

predictions with the one observed onshore bar migration event are not sufficient to determine the
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dominant mechanisms of sediment transport.

Appendix: The Roughness Height

The effects of a rough bottom on the flow predicted by single-phase boundary layer models with

turbulence closures usually are parameterized by a roughness height, often taken as1 ∼ 2 grain

diameters (Justesen, 1988). Although single-phase models may be appropriate for flow over fixed,

rough beds, additional energy is dissipated via intergranular and fluid-granular interactions in

particle-laden flows over a mobile bed. Thus, a larger roughness height is expected when pa-

rameterizing the flow velocity profile in sheet flow (Dohmen-Janssen et al., 2001). To confirm this,

roughness heights were estimated by matching sediment transport rates measured in U-tube ex-

periments under 2nd-order Stokes wave velocities (Ribberink and Al-Salem, 1994) with rates pre-

dicted by the first-order boundary layer model and power law (9). The best-fit roughness heights

are greater than the corresponding values (Ks ∼ 2d) in a clear fluid, and increase with increasing

free-stream flow velocity and oscillatory period. The magnitude of roughness height also depends

on the turbulence closure scheme. The mixing length closure often over-predicts the fluid turbu-

lence and energy dissipation in the oscillatory boundary layer, thus requiring a smaller roughness

(Ks = 14d) than the more accuratek − ε closure (Ks = 25d) with the second-order model and the

same free-stream flow.

Using Swart’s (1974) formula (see also Nielsen (1992), p.25) relating friction and roughness,

fw = exp[−5.997 + 5.213(Ks/A)0.194] (15)

the best-fit friction factorfw = 0.01 of the quasi-steady model (8) corresponds toKs = 11d,

where the semi-excursion lengthA ∼ 2 m is based on a saturated wave field in 1-m water depth.
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The best-fit values ofKs (andfw) in the quasi-steady model therefore also are larger than those

used for a clear fluid. In addition to compensating for the neglected effects of intergranular and

fluid-granular interactions, the elevated values ofKs (andfw) may account for neglected nonlinear

interactions between mean currents and waves in the boundary layer (Soulsby et al., 1993).
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Figure 1: Bottom elevation (i.e., bed level relative to mean sea level) versus cross-shore position

observed September 22 (dashed curve) and September 27 (solid curve) 1994. Symbols are model

predictions of the September 27 profile initialized with the September 22 profile and driven with

near-bottom wave-orbital (i.e., demeaned) velocities observed between 1900 September 22 and

2200 September 27. Crosses (x) are the quasi-steady model (8) with a wave friction factorfw =

0.01, plusses (+) are the second-order single-phase flow model (1-2) with a mixing-length closure

(Ks = 14d), and circles are the second-order model withk − ε closure (Ks = 25d). The quasi-

steady model has moderate model skill (M = 0.34), whereas the second-order model with mixing

length closure has higher skill (M = 0.57). The highest skill (M = 0.69, circles) is obtained

usingk − ε closure in the second-order model. Average (3-hr) bottom elevations were obtained

with altimeters colocated with pressure gages and current meters at the cross-shore positions with

symbols [Gallagher et al.,1998]. Two additional current meters (not shown) without colocated

altimeters were deployed near the bar crest.
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Figure 2: Bottom elevation (i.e., bed level relative to mean sea level) versus cross-shore position

observed September 22 (dashed curve) and September 27 (solid curve) 1994 near the sandbar crest.

Symbols are predictions of the September 27 profile (initialized with the September 22 profile) with

only the wave-induced component of transport (second-order model withk− ε closure,Ks = 25d,

circles) and with both wave- and mean-current- ((12) and (9), withfc = 0.02, crosses;fc = 0.04,

plusses) induced transport components.
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Figure 3: Bottom elevation (i.e., bed level relative to mean sea level) versus cross-shore position

observed September 22 (dashed curve) and September 27 (solid curve) 1994. Symbols are predic-

tions of the September 27 profile (initialized with the September 22 profile) from the energetics

model [Gallagher et al., 1998] (crosses,M = −0.1), and from the EEFF model (13) (circles,

M = 0.25, with Cw = 0.0046, Cc = 0.0053).
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Figure 4: Bottom elevation (i.e., bed level relative to mean sea level) versus cross-shore position

observed October 10 (dashed curve) and October 15 (solid curve) 1994. Symbols are predictions

of the October 15 profile (initialized with the October 10 profile) from the energetics model [Gal-

lagher et al., 1998] (crosses,M = 0.6), and from the EEFF model (13) (circles,M = 0.55, with

Cw = 0.0046, Cc = 0.0053).
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Figure 5: Contours (color scale at right) of (a) mean cubed oscillatory velocity [〈 Ũ3
0 (t) 〉, the

dimensional skewness] and (b) cross-shore gradient of dimensional skewness [∂〈 Ũ3
0 (t) 〉/∂x] as a

function of cross-shore position and time. The dashed curves indicate the approximate location of

the bar crest.
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Figure 6: Contours (color scale at right) of (a) oscillatory velocity (dimensional) asymmetry (the

mean of the cube of the Hilbert transform of the velocity time series [Elgar, 1987]) and (b) cross-

shore gradient of dimensional asymmetry as a function of cross-shore position and time. The

dashed curves indicate the approximate location of the bar crest.
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