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ABSTRACT

This thesis presents an investigation of the dynamics
of bottom boundary currents in the ocean. The major empha-
sis is t6 develop simple mathematical models ,in which vari-
ousdynamical features of these complex geophysical flows
may be isolated and explored. Two separate models are for-
mulated and the theoretical results are compared to' obser-
vational data and/or laboratory experiments. A steady flow
over a constant sloping bottom is treated in each model.'

A streamtube model ,which describes the variatlon in
average cross-sectional properties of the flow is derived
to examine the interaction between turbulent entrainment
and bottom friction in a, rotating stratified fluid~ Empir-
ical laws are used to parameterize these processes and the
associated entrainment and friction coefficients (Eg,K) are
e val u ate d fro m d a t a for two bot tom cur r e n t s :' the No rw e g i an

Overflow and the Mediterranean Outflow. The ability to fit
adequately all observations with the solutions for a single
parameter pair demonstrates the dynamical consistency of the
streamtube model. The solutions indicate 

that bottom stress-
,es dominate the frictional drag on the dense fluid layer in
the vicinity of the source whereas relatively weak entrain-
ment slowly modulates the flow properties in the downstream
region. The combined influence of entrainment and ambient
stratification help limit the descent of the Mediterranean
Outflow to a depth of approximately 1200 m. while st~ong
friction acting over a long downstream scale allows the
flow of Norwegian Sea water to reach the ocean floor.
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A turbulent Ekman layer model with a constant eddy
viscosity is also formulated. The properties of the flow
are defined in terms of the layer thickness variable d(x,y),
whose governing equation is judged intractable for the gen-
eral case. However, limiting forms of this equation may be
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solved when the layer thickness is much le~s than (weak
rotation) or greater than (strong rotation) the Ekman
layer length scale (~~íSL )~h. '

In the weak rotation liDit, a similarity soltition is
derived which describes the flow field in an intermediate
downstream range. Critical Deasurements in a laboratory
experiment are used to establish distinctive properties
of rotational perturbations to the viscous flow, such as
the antisymmetric corrections to the layer thickness pro-
file and the surface velocity distribution, which depend
on downstream distance like y~1. The constraint of weak
rotational effects precludes a meaningful comparison with
oceanic bottom currents.

The analysis of the strong rotation limit 
leads to

the prediction of an Ekman flux mechanism by which dens~
fluid is drained from the lower boundary of the thick core
of the current and the geostrophic flow is exting~ish~d.
The form of a similarity solution for the downstream flow
£s derived subject to the specification of a single con-
stant by the upstream boundary condition. The results of
some exploratory experiments are sufficient to confirm
some qualitative aspects of this solution, but transience
of the laboratory flow limits a detailed comparison to
theory. Some features of the Ekman flux mechanism are
noted in the observational data for the Norwegian Overflow.

Thesis Supervisor:
Title:

Robert C. Beardsley
Associate Professor of Oceanography
Massachusetts Institute of Technology
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CHATER I

Introduction

There is ample motivation for studying the dynamics of bottom

boundary currents in the deep ocean. According to Worthington (1969),

four of the five sources of North Atlantic deep and bottom water are

dense bottom currents entering the North Atlantic from adjoining seas

and oceans. Specifically, the waters carried by the overflows from

the Norwegian Sea through the Denmark Strait and across the Iceland-

Scotland Ridge, the Mediterranean outflow, and the flow of Antarctic

Bottom Water across the equator are known to be the major constituents

of North Atlantic Deep Water. The basis for this statement is some

critical water mass analyses of the hydrographic structure in the

North Atlantic Ocean, notably those by Lee and Ellett (1965), (1967)

and Worthington and l1etcalf (1961). Not only is the composition of

the deep water controlled by these currents, but it has also been

suggested that the resulting deep circulation pattern and its variabi-

lity are responsible for the climatological characteristics of northern

Europe and for fluctuations in the productivity of the rich fishing

grounds of the northwestern North Atlantic (Cooper (1955)). Further-

more, there is a keen geological interest in bottom current dynamics.

Certain evidence suggests that contour-following bottom currents are

the principal agents which control the shape of the continental rise

and other sedimentary features, such as the Blake-Bahama Outer Ridge
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and the Eirik Ridge south of Cape Farewell, Greenland (see Johnson and

Schneider (1969)). Considering their location and orientation it is

clear that these sea floor ridges are formed by depositional processes

which in turn are controlled by the overflow of dense bottom water from

the Norwegian Sea into the North Atlantic.

In contrast to the abundance of water mass analyses and budget

calculations involving the deep boundary flows, few attempts have been

made to explain their dynamics. There are several notable exceptions,

however. Stommel and Arons (1972) have employed a simple potential-

vorticity-conserving model to examine the effects of bottom slope,

latitude, and transport on deep western boundary currents such as

northward flow of Antarctic Bottom Water in the South Atlantic. Of

particular interest in these results is the demonstration that the

presence of a sloping bottom can produce substantial broadening of

inertial boundary currents. On the other hand, Whitehead, Leetmaa

and Knox (1973) have used hydraulic concepts in conjunction with poten-

tial-vorticity conservation to study the dynamcs of strait and sill

flows. Their analysis provides relations betweèn transport, upstream

conditions, and rotation rate which are then tested successfully against

laboratory experiments and observational data. However, their model is

tailored speeifically to the conditions in the strait and its applica-

bility is therefore limited to the vicinity of the shallowest and nar-

rowest sill. Moreover, both this and the Stommel-Arons model are steady

and inviscid. Finally, Bowden (1960) has made an investigation of the

dynamics of flow on a submarine ridge which is aimed at interpreting

data from the Denmark Strait and Iceland-Scotland overflows. His steady,
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two-layer model on a constant sloping bottom incorporates both rota-

tional effects and bottom friction. The conelusion he draws is that

bottom friction is solely responsible for the component of flow across

data, he computes deflections of the current vector to 30°

bottom contours and should not be neglected. Based

downslope.

The purpose of the present study is to examine in detail the dy-

namics of deep ocean boundary currents. The major emphasis will be

to develop simple mathemetical models, which isolate certain physical

processes at work in these flows and illustrate the interactions among

them. The internal consistency of the model will then be demonstrated

by testing the theoretical results with laboratory experiments or by

comparison to observational data.

The Norwegian Sea overflow through the Denmark Strait and the

Mëditerranean outflow are adopted as prototypes for this investigation.

With the aid of hydrographic data, it is possible to identify or infer

certain general characteristics common to these and other deep boundary

currents. First of all, the flow emanates from a confined source region

and is banked up against the continental slope by the Earth's rotation.

Over the course of the stream, the dense water descends along the slope

from the sill depth to a constant level or the ocean floor. The cross-

stream profile of the current is characteristically broad and thin

-2
(order 100 km. x 100 m.) and the bottom slope is generally small (10 ).

Furthermore, the flow regime in the outflows may be assumed to be

fully turbulent. The Reynolds numbers based on typical velocity and

length scales with molecular viscosity are quite large (107 - 108),
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whereas the hydrodynamic stability is weak due to relatively small densi-

ty contrasts with the surrounding medium. Evidence for entrainment and

mixing of the outflow current with adjacent waters is afforded by water

mass analysis of the changing properties at the core of the stream.

Moreover, the generally rough topography coupled with high Reynolds

numbers suggests that strong turbulence is generated at the base of

the flow. The rugged bottom may also exert a strong influence on the

path of the outflow current. In the Mediterranean outflow, for instance,

the jet whieh emanates from the Strait of Gibraltar is fragmented into

several veins which plunge down submarine canyons as the mean axis of
.,;

the stream spreads over the northern slope of the Gulf of Cadiz (see

Madelain (1969)).

Finally, numerous investigations (Cooper (1955), Mann (1969),

Worthington (1969)) have revealed a distinct temporal variability in

the overflow currents. However, the details of these fluctuations and

their controlling mechanisms are poorly understood, largely because of

the difficulty of obtaining adequate synoptic coverage with hydrographic

surveys.

Faced with the complexity of these geophysical flows, the theor-

;. .
",,

~tical analysis will be formulated to treat only certain aspects of

the fluid dynamical problem. Making use of observed parameters and

seales in the outflow data, two separate models which describe steady,

two-layer flows over plane topography are presented in the following

chapters. In the investigation of simple dynamical balances, attention

will be focused on the effects of entrainment, bottom friction, and

rotation.
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similarity solution for the thick geostrophic core of the stream.

This result is supplemented by a viscous solution valid near the upper

edge of the flow. Some exploratory experiments for source flow in a

rapidly rotating system will also be described in this chapter.

--'



18.

CHATER II

The Streamtube Model

Historically, integral techniques have proved to be very powerful

methods in a variety of fluid dynamical applications (e. g. boundary layer

theory, hydraulics). In the present context, a streamtube model will be

employed to demonstrate some dynamcal features of bottom boundary currents.

Specifically the effects of entrainment, bottom friction, Coriolis accelera-

tion and ambient density stratification will be investigated in an attempt

to evaluate their relative importance in determining the path of the stream

as well as variations in its average flow properties, i.e., mean velocity,

density conatrast, and cross-sectional area.

The processes of entrainment and bottom friction result from turbulence

present in the outflow current which mixes in fluid from the surrounding

medium across the upper interface of the flow and transmits momentum to

the bottom by the action of turbulent Reynolds stresses, thereby causing

a dragon the fluid above. To understand fully the physics of these processes,

it is essential to distinguish clearly the nature of this turbulence and

the mechanism(s) by which it is generated and maintained. However, for

modelling purposes, two different empirical laws will be adopted to account

for the effects of entrainment and friction. Each contains an unknown

constant which must be determined independently from laboratory experiments

or by comparison with observations.

The first of these relations sets the total volumetric entrainment

per unit length of the stream equal to a constant fraction of the mean

velocity of the flow with a proportionality constant E. A similar assump-
o

tion has been used by Ellison and Turner (1959) in their experiments with
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turbulent stratified flow down inclines. Their results indicate that

the appropriate value of E for a given physical situation depends rather
o

critically on the "overall Richardson number", Ri , a stability parameter
o

based on the initial density contrast, characteristic depth, and velocity.

On the other hand, the frictional resistance is related to the square of

the mean velocity through an unknown factor, K. Quadratic drag laws have

been used successfully in a number of oceanographic applications £Defant

(1961)), so estimates of the magnitude of the drag coefficient are avail-

able.

In other applications, the coefficients corresponding to E and K
o

are dimensionless. However, in the present context, both E and K are
o

found to have the dimension of length due to an integration performed in

the cross-stream direction. Since the analysis only provides information

about the area of the cross-stream profile, not its linear dimensions,

it is not possible to use average dimensionless coefficients by dividing

E and K by the local cross-stream scale. Furthermore, an estimate of the
o

stability parameter is unavailable because the characteristic depth of the

layer is unknown. In an attempt to overcome these deficiencies, an a1-

,

,,~

r
ternative streamtube model was considered in which the area was expressed

as a variable cross-stream dimension times the average layer depth. By

analogy to the two-dimensional nonrotating results of Ellison and Turner

(1959), the layer depth was specified to increase linearly in the downstream

direction. However, it was felt that the introduction of assumptions about

the entrainment process derived from a situation in which the dynamcal

balances were different not only limited the flexibility of the model but also
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could not be justified from a physical standpoint. Moreover, because of

the ambiguity involved in assigning particular dimensions to the profiles

of actual outflow currents over rough topography, this alternate model

was rej ected.

The usefulness of the present model lies in its ability to fit

observational data with unique values of the empirical constants, E and
o

K. Hydrographic sections furnish estimates of the density contrast,

cross-sectional area, and path of the stream, while current meter and/or

Swallow float data provide estimates of the mean velocity. If all these

data can be fit with reasonable accuracy by the solutions for a single

parameter pair (E , K), then the dynamical consistency of the model is
o

demonstrated. Once this is achieved, it is then possible, using observed

cross-stream dimensions, to estimate average dimensionless friction and

entrainment coefficients and compare them to those deduced in other ocean-

ographic situations and in laboratory experiments.
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11.1 Formulation

A schematic diagram showing the geometrical aspects of the streamtube

model is presented in Figure 2-1. The bottom plane is inclined at a small

angle ~ to the horizontal, and the rotatio~ ~ and gravity i vectors are aligned

vertically. Two coordinate systems will be employed in the model. The

first is a Cartesian system whose orientation is fixed by the bottom top-

ography. Its origin is located at the source, the x-axis lies along a

bottom contour, the y-axis points downslope, and z is measured normal to

the bottom.

The second system is a set of streamise coordinates (t \ 't ) in which

every point (x,y) in the neighborhood of the current is associated with a

norml distance l( from the stream axis (." = 0 ) and a corresponding point

on the! axis where L is the distance from the source. The value of f

defines uniquely both the position of the axis of the streamtube in the bottom-

fixed coordinates, (Xct) ,Y (t) ), and a local pitch angle, (h between

the streamtube and x axes. Therefore, the equations for the path of the

stream are

dX c. Co~~ ' (2.1)-
di

and fi ~~~ . (2.2)
d\ :.

The governing equations for the streamtube model are derived in Appendix

A. The formulation proceeds from the differential equations of motion (rather

than from integral theorems) in order to emphasize the detailed assumptions

made in the analysis. The maj or constraints placed on the mean flow variables
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are that the flow is steady, the strong axial velocity and excess density

fields are concentrated in a broad, thin layer adjacent to the bottom, and

that these quantities are nearly uniform over a cross section of the stream.

In addition, the current is narrow in the sense that the cross-stream scale

is much smaller than the local radius of curvature of the stream axis.

Furthermore, the turbulent velocity and density profiles are assumed to

exhibit similarity forms, so that the turbulent stresses and rate of en-

trainment may be related solely to the mean velocity and density contrasts

(see Morton (1959) ). The postulated forms for the, turbulent entrainment

and friction laws are

a) entrainment,

and b) friction,-

l+

to \f =- t - We d,i '
'2 e+

l KV = r ("Cß + 't:i) d, )l:

(2.3)

(2.4)

where \\(ti't. is the entrainment velocity at the interface, "Ce. (1.-')

and '!(t,'l) are the turbulent stress components (defined in a sense

opposing the mean motion) at the bottom and interface respectively, and- +
't = J.ql . J-et)

are the edges of the flow.

Subject to these conditions, the dynamical equations for the streamtube

model have the form

.4 (AV) :: E i.T";" ,
ell

.s (f A~-) "C l e E;v-
di

yV cf + V ~) = S ~ Af CoS~,

(2.5)

(2.6)

(2.7)



24.

and

11 ~ AV~) = s ~ Al A s~p - fC"'~ (2.8)

where -\((1\ and Af (t) are the mean velocity and density contrasts and

A Gl) is the cross-sectional area. In addition to the entrainment constant

E and friction coefficient K, the parameters appearing in the equations are
o

the slope S :.lGN 0(
"

meter .ç = 2. l lL\ t.~ al

, and the normal components of the Coriolis para-

, and gravity ~ :. \ ~ \ C6~ c( The excess

density is defined as the difference between density in the current and the

local ambient density, i.e.,

Af~ t- fe ) (2.9)

where
1\

fe(i) = fo(I+STYCt)l (2.10)

,.
and T:: T co~ 0( is the stratification rate normal to the plane in the

quiescent region. According to the model, the divergence of the downstream

volumetric flow rate is measured by the entrainment, Eo V , the cross-

stream balance is geostrophic with a correction for' the curvature of the

path, ~ , and the divergence of the downstream momentum flux is drivend\
by the downslope component of gravity and retarded by friction.

Considering (2.1) and (2.2) along with (2.5) - (2.10) as the full set

of model equations, the mathematical formulation is completed by imposing a

suitable set of initial conditions at the source:

v == '.~
,
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Al= 'lo,

A =- Ä, ,

~ =- ~o ,

X=y=-o,

(2.11)

at t:. 0 .

As a further simplification, the Boussinesq approximation is now invoked

, in the momentum equation which implies f ';fé~ fo except when combined with

gravity. After making some convenient definitions,

rCt.) = (AVr' c inverse of density contrast, (2.12)

H~, 0: A Y A V = flux of excess density, (2.13)

further manipulation yields the following form for the dynamical equation

".
cUl '=

- fo~ T r-H StMl"eft

4r E ,,-
/l

': + lo s T ..:i 'S~I' 'di ..
lo

rV2 h I- "
= S~ Ce~~ f r- -V- ,di lo

and
¡.

(Eo+1l) V"5,,¥ 4Y = ~ SlM~ -
d1 lo H

(2.14)

(2.15 )

(2.16 )

(2.17)

where the initial conditions corresponding to equations (2.14) and 2.15) are

-Ir = ro = (f l D) i

\-:: \1 Q:: A l 0 A 0 -\J~

Note that the density contrast, Af = r--'

at t ~ 0 . (2.18)

is modified both by entrainment

and by the effect of descending along the slope into a denser medium. Also
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note from equation (2.17) that the entrainment, while not affecting the

momentum flux, has a decelerating effect on the velocity due to the injection

of mass into the stream.

Next the variables are normalized in the following way:

i
r =- ro r

v = lfV'
(, X:C) =- 'L (sl X'y')\.1.. , i'" (2.19)

H: t2.'l \-', ~o l
where the geostrophic velocity scale lJ and the topographic length scale

"L are defined by
If .:

,. ,.
S ~ I foro ~ ,

.,Set/ ,. 2-Jlor-or .-ú~ =- Ir::
The full set of dimensionless model equations then takes the form

(1\\' t 1 , .:: - \" H SLlAP )
cli'

Ar' Y. ' t ,i:: ~ l4' + ' r Sll4 r )

dl'

(2.20)

(2.21)

1 'J- i i.

~,
'V'r ': c.'Sr - r ,

(2.22)
, '3

r ',,- i dV' = "ilM f' - G -l x.) *. )
(2.23 )and dt

with if:
:: Co~p (2.24)

dY'_
.

and SIM p . (2.25)(i' -
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The corresponding initial conditions are

, i
H := Ho

i

r = \ (2.'26)

I _ - ,
,i- :: V 0

,
at 'î = 0 .

(J = ~o

-, -f'v _ _.. - - o .

The dimensionless constants appearing in the equations are the entrainment

parameter,

~= Eol
~ ,

(2.27)

which measures the amount of entrainment over a topographic wavelength, the

friction paramter,

)( = "K/i- ) (2.28)

which measures the frictional dissipation over that distance, and the stratifi-

cation parameter,

1'-= fCl ~ T y-o~ -:
~ !.

,. ..~ :
;¡ 7.

.t

'2 . 'ZN SL~ 0(

r? c.~iol
, (2.29)

which measures the square ratio of the natural frequency for motion along the

slope of a particle of density Po in a stratified system to that in a rotating

sys tem.
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Numerical solutions for the streamtube model were obtained by integrating

equations (2.20) to (2.25) in the downstream direction starting with the

ini tial values, (2.26). The calculations were performed on an IBM sys tem

360 computer using a modified Adam "predictor-corrector" scheme.
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11.2 Approximate Solutions in Limiting Cases

Before proceeding to the comparison with observational data, it is

instructive to examine the behavior of solutions to equations (2.20) -

(2.25), subject to (2.26), in several limiting cases. For certain ranges

'of the parameters ( S )( 'ti , ) and in certain regions of the flow,

approximate solutions to this system may be found by asymptotic methods.

These solutions fall into two categories:

(i) linearized solutions, which are valid in the vicinity of the

source for small values of the parameters and restricted initial

condi tions , and

i

(i i) asymptotic solutions in the downstream region ( t. ~ CI ) where

irregularities in the flow are damped by friction or entrain-

ment and the flow variables attain constant values.

In all cases, the results of these approximate analyses are confirmed by

quantitative comparison to numerical solutions õf the full equations in the

appropriate regime.

The most important qualitative features of the streamtube model may be

extracted from the case of uniform external density ( t = 0 ). This limit

is characterized by a constant flux of excess density such that il ' =- H~

Therefore, to streamline the notation, it is convenient to define modified

entrainment and friction parameters as,

\: \/~~ (2.30)
)

and
)( 1: ll/~~ (2.31)
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Four different limiting cases were analyzed and the resulting approxi-

mate solutions are summarized and discussed below. The complete derivation

of these expressions is found in Appendix B.

II. 2.1 Small Entrainment and Friction ~ i £ c. L
1

Environmen t 1: 0
Homogeneous

For small values of i and it with 1l=- 0 , a bilinear perturbation
l'

expansion of the dimensionless flow variables yields a linearized solution

to streamtube model equations valid in the source region, provided the initial

conditions are suitably constrained, i. e.,

(Jo ~ ~($ ,"i) -v:- t = A\¡~ ~ O~)i) . (2.33)

The resulting expressions for the dimensionless variables to firs't order in

both i and lC are

r' = '/Af'
-

- 1+ ~ t' (2 .34 )

V-' - \-~1.' - (ßo~~) S~tl + IiV~' c.'St,') (2.35)

~ '= (p~-"') (i~ i' + ~:vo i S~ t i +)( (2.36)

AI = A~ ( I +2 ~ î i +0()-~) S~il + å"~l (l-Ce~i')l. (2.37)
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-
Note that the presence of the secular terms at first order in ~ limits

, --I
the validity of the perturbation scheme to a region f ' ~ .

These results indicate that, near the source, a pattern of steady,

topographic meanders of wavelength i 11 1- arises from mismatches

between the imposed initial conditions and the "preferred state":

~ : -l V'-- i . Furthermore the appearance of the secular term at

first order implies that initially both the velocity and density con-

trast diminish linearly with downstream distance, whereas the area in-

i

creases with ( at twice the rate. The velocity and cross-sectional

area both oscillate about these initial trends, while the pitch angle

~ oscillates about its preferred value of )t , the friction

parameter.
, I --,

Beyond the region of validity of perturbation theory ( t ~ ~ ),

the numerical solutions indicate that the oscillations induced by the

initial conditions are damped and p approaches a constant value.

Furthermore, for large values of the entrainment of friction parameter

( ~ or ~ ~ ) the solutions appear èritically damped and no meanders

appear.

II. 2.2 Downstream Limit for Zero Entrainment,
Homogeneous Enyironment, t = 0

~ = 0 , and

"

,~

, j:\

In this asymptotic limit ( i' -. c: ), the meanders present near

the source are damped by friction and the axis approaches a constant

pitch angle at which the viscous drag exactly balances the downslope

component of gravity. For this case, all flow variables approach con-

stant values governed by the following relations
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ir (2.38)

,

A' ;: Ho Iv i (2.39 )

.J ,,_' '2~p: I' (2.40 )

i" i 2.- ~ V ,,-') , -l v -1-:0. (2.41)

,t.
The cubic equation for l( has only one real root, so choosing its

positive square root,

y, -f, r (')"-i ~3 i
V':. i")£ ~ 1 ,+~i+4t2i~ .. ('-~-l4-/211ë') j (2.42)

serves to specify all the variables uniquely.

In the absence of entrainment and external stratification, the

density contrast remains fixed at its initial value. The limiting velo-

city exhibits a rather complicated dependence on the friction parameter,

)( However, for the case of strong friction ( 1C ~') -l ) -,,' is given

approximately by,
- - '13

y' = )(

so ~ = ~I ()t'l,)

(2.43)

A = ~ ~ )( Y3 , for )( -:") I .



In the former case, the velocity is small and the pitch angle approaches

a value of 1ý2 ' that is, the stream axis points directly dowslope.

In the latter case, the velocity is near its geostrophic value ( ~-'= I )

and the pitch angle is very shallow, so the flow tends to follow bottom

contours. Notice, the direct dependence of ~ on it in both cases.

11.2.3 Downstream Limit for Zero Friction, i =0 , and Homogeneous
Environmen t, "f = 0

For the frictionless limit ( t i -- DO ), oscillations in the

source region decay due to entrainment. As demonstrated in ~ppendix B,

the only constant value of the pitch angle which is consistent with the

limiting form of the equations is /J=O. Therefore, in this limit,

the stream axis ultimately parallels bottom contours.

The behavior of the other variables for this case is evident from

their asymptotic forms:

l
r AI

- I 'l.
(2~t +c) ~, (2.45 )
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'\-' IV (2 ~ t .. c y '/i
,

,
as t.. QC. (2.46)

and

A l ,iv i.; ('l ~ ft -l c) ) (2.47)

The density contrast and ve10eity decay at a rate proportional to the

square root of downstream distance, whereas the cross-sectional area

grows linearly with L

It is possible to extend the results for this limit to include a

weak frictional effect if the pitch ~gle ~ is assumed to be small

but non-zero. The expressions for r' and V' given in (2.45) and (2.46),

which are based on the entrainment law and geostrophy, imply a non-

divergent downstream momentum flux. If friction is included for small

ß then the remaining balance in the downstream momentum equation

yields

-' ?lß:)tY N 'L
_ - '3/2-

(~~\'+C) 1 (2.48)

where the value of c is no longer constant but a function of 1l , i.e.,

c = c()( ). Note that this result is fully ~ompatible with the condi-

tion that fi vanish downstream. Assuming such a state may be achieved,

an estimate of the downstream point beyond which this balance holds is

given by

t/ Co fT/i. i: (:¿ i ßT) 213

Z ~
( c : c.) (2.49),

where ~ is the small pitch angle observed at the transition point, t =tT .
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II. 2.4 Small Friction, )(~" I , Weak Stratification, 'l¿,4.1 ,
Zero Entrainment, ~:: 0

Significant effects of external stratification can occur only in

conjunction with frictional effects since all terms in the model equa-

tions multiplied by t also contain sint- which vanishes as t.1-. QC

in the absence of friction. However, with friction, the current des-

cends the slope into a denser environment, and both the density contrast

and the flux of excess density are thereby reduced.

Using an expansion procedure entirely analogous to that used to

derive the results for the homogeneous case, with the same constraints

on the initial conditions, the perturbation analysls for the case of

t. t ",I yields the following expressions for the dimensionless variables:.
i

l-':.H: (1-11 ~o-¥) SL-î' + IiVo'Úb~il+'t t'~l +l),/'5),(2.50)

\'1 = i.. i( ~a-i) s~l .. AVo' oni' of ~t 1 J .. &(j'S) , (2.51).

v.l,: I + ~o- i) SlM í' .. fiV~1 (.~ tl + s.(j')
, (2.52)

f3 = Cf!o-::) Ces i' - A Vfj' Sl~ t -l -t -+ 6 (11)
,

(2.53)

A ': A~ r i-(io-i) Sl~t' .. AVo' (i-cast') + 8(12). (2.54)

Note that the secular terms in these results appear first at order 1)(,

, l.. _)-1
t = \.-)C .

so that the range of validity of this solution extends out to
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The pattern of steady meanders which arises in the solution for

~ i ~ ~~, is preserved here and appears also in the expressions for r' and

H' at higher order ( 1- ~ ). The mean rate of descent, )t , due to

frictional influence, is accompanied by diminishing trends in the density

contrast and excess density flux which also appear at order j. i . No-

tice that despite the expansion of variables in )(, the parameter which

appears in the final result is the modified friction parameter, ~: )C/Il~ .

The foregoing results will prove useful in interpreting the numer-

ical solutions which are to be compared with outflow data.
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11.3 Comparison with Norwegian Overflow Data

The observational data to be used for the comparison of the stream-

tube model with the Norwegian Overflow come from a series of hy~rographic

sections taken during cruise BIO 0267 of the C.S.S. Huds9n from January

to April, 1967 (see Grant (1968) J. Since the purpose of this cruise was

to define the course and water mass characteristics of the outflow, the

system of measurement within the current itself was quite compr~hensive.--- ",
~

An acoustt~ pinger was attached to the bottom of the wire on all casts

to allow the lowest bottle to be positioned less than 10 meters from

the bottom and the bottle spacing was generally 25 meters in the lowest

200 meters of water (see Mann (1969) J. Unfortunately, there are no

velocity data available to accompany the hydrographic survey despite

an attempt by Worthington (1969) to measure currents in the Denmark

Strait.

The locations of the stations used for this comparison are shown

in Figure 2-2. The sections cover the region from the sill of the Den-

mark Strait (Section I) to the vicinity of Cape Farewell (Section VII)

along the continental slope of Greenland. Sections I and II were run at

the end of January, Sections III and VII in early February, and Sections

IV, V, VI toward the end of March.

Using smoothed bóttom topography, a series of cross-sections of the

outflow current showing station locations is presented in Figure 2-3.

The overflow water is delineated by two contours. The solid curve is

the Gë -: i 1. q contour which accor~ing to Worthington (personal co~

munication) is a reasonable boundary for the overflow water. The dashed
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curve represents the boundary of maximum vertical extent of the Norwegian

Deep Water as determined by a detailed examination of the profiles of

~ê ' oxygen, and silicates. It is well known that the overflow waters

are characterized by low concentrations of nutrients, especially reactive

silicates, high oxygens, and, of course, large densities (Stefansson

(1968)). Typically, the profiles of potential density and the chemical

tracers show a marked variation at some point near the bottom, below

which these properties are relatively uniform (see Figure 2-4). The

vertical extent of the outflow is defined by the top of this gradient,

where the oxygen and silicates. in particular, take on values character-

istic of the local environment. The potential temperature-salinity

diagrams for these stations indicate that these contours contain pure

Norwegian sea water which has been degraded by mixing with the Atlantic

water, the East Greenland Current and water derived from the Iceland-

Scotland overflow (Mann (1969)). Figure 2-3 also illustrates one of

the fundamental difficulties in fashioning a steady model after obser-

vational data, namely the absence of ~: 21.9 water at Section III.

According to Mann (1969), this observed variability in composition may

be ascribed to the fact that waters from different depths in the Nor-

wegian Sea flow over the sill at different times. This conclusion is

supported by other observations of radical changes in the thickness of

the overflow layer in the Denmark Strait over a period of hours (Harvey

(1961)). However, in terms of the stream dynamics, it is significant

that a small but distinct density contrast and trace element anomalies

are evident along the slope at this section, indicating that a weak

flow still exists. Furthermore, except for this section, the continuity
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of average flow properties does not seem to be broken. Therefore, it

may be argued that the drastic departure of Section III from the overall

pattern results from an isolated cutoff of Norwegian Deep Water at the

sill and that further evidence of temporal variability of the source

conditions or the flow itself remains at or below the noise level of the

measurements. Hence, data from Section III is incompatible with data

from other sections and will not be considered in the following compar-

ison. Explicitly, it is assumed that the break in flow pattern at this

point represents a local disturbance which propagates along the stream

exerting a relatively minor effect on the average flow properties in

other segments of the stream or on the overall dynamical characteristics

such as the patry of the stream.

In order to produce a meaningful comparison with theory, the physi-

cal constants appearing in the model equations as well as the average

flow properties must be extracted from the hydrographic data in a way

that is consistent with the premises on which the model is based. First

of all, the bottom slope, S:: G.V\ d. , was computed by fitting a

straight line across each section through the observed depths of all

stations at which overflow water was present. The mean slope was then

obtained by averaging over all sections. Secondly, the mean Coriolis

parameter was taken to be twice the value of the vertical component of

the Earth 1 s rotation near the center of the outflow current at a lati-

tude of 640 N. Also the stratification of the ambient fluid was deter-

mined by fitting a straight line to the density field adjacent to the

overflow water at severàl typical downstream stations. This procedure

led to a quite small but stable value of the external stratification
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rate, T, and corresponding stratification parameter, t Finally,
~

standard values were adopted for the gravitational acceleration, ~~ ~ OD\~,

and characteristic density, fo These physical properties of the system

are compiled in Table I.

The measureable average flow properties are the density contrast, A f '

the cross-sectional area, A, and the pitch angle, ~ Using the profiles

of Oè ' oxygen and silicates and the temperature-salinity diagram to dis-

tinguish the transition between overflow and adjacent waters, the density

contrast at each station was determined as the maximum difference in potential

density across the interface, i.e., between the density at the top of the

strong gradient in properties and the maximum interior value. The station

values were then averaged over each section to obtain a sectional mean density

con tras t. However, in most cases it was found that these average values

were severely degraded by the small differences observed at stations near

the edges of the flow and that the estimates were, therefore, not truely

representative. To counterbalance this effect, the value of Al used for

the comparison with the streamtube model is the average between the density

contrast at the core station (maximum A~ ) and the sectional mean value.

This procedure tended to weight the relatively uniform values at and about

the core station more heavily in the estimate. An attempt was also made

to refine the values of AI at each station by integrating graphically the

area between the observed density profile and the extrapolated ambient density

profile and then dividing by the thickness of the overflow layer to obtain

a true vertically-averaged density contrast. The results derived by this

technique for stations near the axis of the flow agreed quite well with the
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TABLE I. Physical Constants, Initial Conditions and Scales for the

Norwegian Overflow Comparison

Quan ti ty Symbol

Bottom Slope s = tan ex

Coriolis Parameter f 2Q cos ex

Ambient Stratifi- "-

cation Rate T T cos ex

Dimensionless 2 .&Stratification y s 2
Parameter f

Characteristic
Density Po

Gravitational "-

Acceleration g g cos ex

Initial Density
Contrast tip

0

Ini tial Value of

Cross-sectional A
Area 0

Initial Pi tch Angle
ßo

Ini tial Veloci ty V0

Geostrophic sgtip
Velocity Scale U =

0
P f0

Topographic Length
Scale L U/f

Value + Error

(.58 + .26) x iO-2

(1.30 + .04) x 10-4/sec

-9
(.66 ~ .09) x 10 /cm

-3
(1.29 + .18) x 10

3
1. 00 gm/ cm

2
980. cm/sec

.38 x 10-3 gm/ cm3

27. 84 km

.112

16.0 cm/sec

16.6 cm/sec

1. 28 km



45.

sectional mean values; however, these estimates were very sensitive to the

layer thickness chosen and varied radically near the edges of the flow where

there was little excess density. This method was, therefore, rejected because

of its inability to produce stable estimates of average contrasts of the cross

section. In sumary, the density contrast used in the streamtube model

comparison was computed by averaging the potential density difference observed

at the core station (maximum value) with the sectional mean of those differ-

ences. This method is simple and relatively unambiguous and leads to stable

values of the average density contrast for each section.

The area of the stream cross section was computed by graphically inte-

grating the area between the dashed curve and the smoothed bottom contour

in Figure 2-3. By this technique irregularities in the true bottom topography

were neglected and the cross-stream profile encompasses all of the water whose

origin could be traced to the Norwegian Sea. Furthermore, at each section the

axis of the stream was assumed to pass through the core station where the

maximum density contrast was observed. In most cases, this point nearly

coincided with an alternate criterion, the centroid of the cross-sectional

are~ and differences between the two could be used as a measure of the error

involved in the estimate. Once the path of the axis was determined, the average

pitch angle between sections could be measured.

When the hydrographic data had been reduced to the appropriate set of

average flow properties, the initial conditions were selected and the numeri-

cal solutions to equations (2.20) to (2.25) were computed. Due to the distor-

tion of the outflow profile at Section I by the presence of the East Greenland

Current, the flow properties at Section II we~e adopted as initial conditions.

In fact, the integration may be started at any point in the stream since í
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does not appear explicitly in the equations. Furthermore, since there were

no velocity data available, the initial velocity was assumed to be in geo-

strophic balance, i. e. ,

-Vo =

"~o
fo f

~po (2.55)

The initial pitch angle, ßo , was derived from the path of the stream between

Sections I and II. The values of all the initial conditions plus the corres-

ponding velocity and length scales are tabulated in Table I.

Starting with estimates of the empirical constants (E , K) obtained
o

by matching initial trends in the data with approximate solutions for the

case b )(,.:1
i t=- 0,

, optimum values for E and K were sought by trial
o

and ~rror. The numerical solutions are compared to the average flow properties

derived from the hydrographic data in Figures 2-5 to 2-7. It is found that

all the observations can be adequately fit with a unique pair of empirical

cons tan ts ,

(Eo .-K) - (.o'=i; i IS) k.~ . (2.56)

Furthermore, all the data points may be encompassed by varying these optimum

values by less than a factor of two.

Figure 2-5 shows a comparison of the average density contrasts. As

expected, Åf is found to be a strong function of the entrainment rate, but

depends weakly on the magnitude of the friction coefficient. The error bars

on the data points represent the difference between the density contrast

observed at the flow axis and the sectional mean value. Next, the path of
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the stream is plotted in bottom-fixed coordinates in Figure 2-6. The coordin-

ates ()C 1'( ) of the observed stream axis were computed from geometrical

relations using the depth of the core station and the mean bottom slope.

This calculation implicitly involves the mean pitch angles between sections.

The error bars on the data points reflect the uncertainty in the axis position

as measured by the distance between the core station and area centroid at

each cross section. The trajectory of the stream axis is controlled strongly

by both the friction and entrainment constants. In Figure 2-7, the rate of

increase of cross-sectional area is seen to depend heavily on the entrainment

rate, but weakly on the strength of friction. The error bars attached to

the observational points represent uncertainty in the area measurements as

determined from the difference in the areas under the solid and dashed curves

in Figure 2-3.

, Lastly, for the sake of completeness, the theoretical mean velocity

distribution along the stream is presented in Figure 2-8. The locations of

Sections iv to VII are also indicated. According to this prediction, the

average current drops very rapidly near the source from its initial value,

Vo = I(,.G '1A/Uc , to a value of 10.8 cm/sec just 10 kI. downstream, then

diminishes gradually to a value of 3.26 cm/sec at Section VII. Combining

this information with the cross-sectional area results indicates that the

volumetric flow rate of the outflow current,

Q(i)= AV (2.57)
has increased from a value of 1.3 x 106 m3/sec at the source to roughly

6 3
4.6 x 10 m / sec at Section VII. In his water budget for the Norwegian

Sea, Worthington (1970) used estimates obtained from dynamic computations
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and neutrally buoyant float measurements to arrive at transport values of

4 x 106 m3/sec for the Denmark Strait overflow and 10 x 106 m3/sec for the

total transport sou thwes t of Greenland. Each of Worthington's values ex-

ceeds the corresponding value here but the ratios of the two, i. e., the

factors by which the transport is enhanced due to entrainment, are roughly

comparable. Moreover, in a separate computation designed to match a transport6 3 -ir r.
value of 4 x 10 m /see at the source ( 16: ~

Pto

transport grew to a value of 9.3 x 106 m3 / sec at

= 51 cm/sec), the

Section VII using the same

optimum pair of coefficients (E , K). This fact is further evidence of theo

consistency of this model with observational data.

The numerical solutions may be interpreted with knowledge of the values

of the modified entrainment and friction parameters,

~: 0.0 i \ (2.58)

and

'i =- '2.54- , (2.59)

which correspond to the optimum values of the empirical constants, (E , K) =o

(.065, 15) km. First of all, the strong frictional influence indicated by

the value of X accounts for the absence of oscillations in the flow proper-

ties and stream path near the source. Instead, the velocity and cross-

sectional area change rapidly from their initial values to levels appropriate

to the non-entraining downstream limit

y.: II. '3 CJ/". c.

A k I~ '5= lo:~ H'
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The initial pitch angle likewise adjusts to its limiting value,

ß = .94- .
The density contrast, on the other hand, is invariant in the non-entraining

limit. It, therefore, undergoes no drastic changes in the source region

but varies smoothly over the entire length of the stream. The sharpest

decrease in Af occurs within a distance of 100 or 200 km. from the source,

which corresponds generally to an entrainment length scale introduced in

(2.34), namely tE :: L/~" '0'. km.

The character of the downstream variations of Al, Y , ß ' and A,

and their dependence on the value of E , suggest the asymptotic behavior of
o

the stream is controlled by the entrainment with a weak frictional influenc~.

In fact, quantitative comparison of the linear variation in cross-sectional

area reveals that the slope of the numerical solution (.15 km2/km) between

Sections V and VI differs from that in the limiting case,

dA
dl.

= Z H~ ~ 1. : . 1"3 ~I k. .

Moreover, the inverse square root dependences of Af and -~ do not hold

exactly and the trend in ~ is different from that predicted by (2.48).

,.
However, a special computation for the case of T = 0 reveals that these dis-

crepancies can be fully accounted for by the presence of a weak ambient strati-

fication. It may be concluded, therefore, that the behavior of the solutions

in the downstream region is strongly controlled by the entrainment parameter,

b . The transition to this state appears to occur somewhat before

lT = 500 km., which is predicted by equation (2.49) for l!T = 0.1.
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The pronounced influence of the strength of friction on the path of the

stream axis is anticipated from the direct dependence of the pitch angle

on ~ for all limiting cases in which it is non-zero. The dependence

on E , however, is related to the damping of the flow by entrainment and
o

may be explained qualitatively by reference to (2.49). For fixed ~~~ i

strong' entrainment (large ~ ) helps damp the velocity and causes a rapid

transition to the asymptotic state of flow along bottom contours. If the

entrainment is weak, however, the transition is delayed, thereby allowing the

axis a larger excursion downslope.

Finally, with regard to the effects of ambient stratification, the

A
results of the computation for T o mentioned above showed relatively minor

differences (not exceeding 25%) in the flow properties at Section VII from

those corresponding to the stratified case) accompanied by a slight shift of

the stream axis downslope.

l
1\
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11.4 Comparison with Mediterranean Outflow Data

The data selected to define the structure of the Mediterranean Out-

flow comes from two sources. The first is a comprehensive hydrographic

survey and current measurement program conducted by Madelain (1970) aboard

the Jean Charcot during April and May of 1967. Accompanying a fine series

of hydrographic sections run across the outflow current are records from ten

current meter moorings from which a set of five has been chosen to represent

the mean velocity structure of the outflow current. The second source is

some unpublished hydrography data taken by F. C. Fuglister aboard the R.R.S.

Discovery II in November, 1958. In these observations, as with Mann's survey

of the Norwegian Overflow, great care was taken to resolve accurately the

properties of the outflow wate~ and bottle spacing near the bottom (within

5 to 40 meters) was usually 25 meters. The temperature and salinity profiles

for the Fug1ister sections have been compiled and published by Heezen and

Johnson (1969). In addition, these authors present a summary of four docu-

mented sets of current observations taken in the Gulf of Cadiz. The results

of these measurements are found to be entirely consistent with the velocities

quoted by Madelain. Notice that the use of two sets of data taken nine years

apart represents a strong test of the assumed permence of the flow field.

Upon inspection of the Mediterranean outflow data, several important

differences are immediately apparent between this current and its counterpart

in the Northwest Atlantic. First of all, the outflow water is recognized most

readily by its distinctive high salinity, rather than strong anomalies of

temperature, oxygen, or dissolved nutrients. Although salinity values ex-
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ceeding 38~ in the Straits of Gibraltar are severely degraded due to en-

trainment by the time the flow reaches Cape St. Vincent, the difference be-

tween the core salinity and that of the local environment never falls below

.4%0 along, the Spanish continental slope.

Secondly, it is evident that bottom topography exerts a strong influence

on the, course and integrity of the stream. In his analysis of the Jean Charcot

data, Madelain (1970) demonstrates that the stream is fragmented by the rugged

topographic features, with separate veins detouring down submarine canyons

then coalescing again further downstream. Indeed, at one point, the flow

is divided into, three branches separated by two large peaks. Yet, despite

these irregularities, the average bottom slope remains fairly uniform along

the entire Spanish continental margin. Moreover, in the regions where the

bottom water of highest salinity is found, the salinity contours lie roughly

parallel to the mean bottom slope. Dynamically, this implies that geostrophic

bottom currents, though splintered by the local topography, are guided in

an overall sense by the mean bottom slope, which also controls their magnitude.

Finally, a phenomenon unique to this outflow is the observed departure

of the main body of the flow from the bottom as it nears Cape St. Vincent

rHeezen and Johnson (1969)). Beyond this point, the current exists largely

as an interflow and the applicability of the streamtube model in this region

is highly questionable. In selecting the data for comparison, therefore, an

attempt was made to focus on sections taken across the flow upstream from the

breakaway point where the major portiones) of the current is clearly bearing

against the continental slope. This criterion was violated at the final
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section along 8°30'W, since only two of the stations there show maximum

salinity at the bottom. This section is included in the comparison, however,

along with this qualification.

The tracks of the sections selected for comparison with the streamtube

theory are plotted in Figure 2-9. The lines of stations cut across the current

as defined by the map of bottom salinity maxima presented by Madelain (1970)

and are roughly normal to the velocity vectors observed at the current meter

stations. In Figure 2-10, cross sections of the stream are displayed over a

highly smoothed bottom. The outflow water is delineated by two salinity

contours. The inner (dashed) curve, the 36.4~ contour, seems to enclose the

main body of the outflow, while the solid contour (36. O~ represents the

maximum vertical extent of Mediterranean water at each station. Following

the procedure outlined in the previous section, cross-sectional areas are

computed on the basis of maximum extent of the outflow water, while the

second curve is used to estimate the uncertainty of the measurement.

Also shown in Figure 2-10 is the deployment of the five current meters

used for the velocity comparison. The current meters used were Mecabolier-

type and each meter, with the exception of C.1, is located deep in the out-

flow water near the stream axis. The average current speed at each current

station was assumed to represent the mean flow velocity in the stream at

that section while the variations about the average speed were used to assess

its accuracy. The general compatibility of these estimates with other hydro-

graphic data from the area is indicated by comparing the volumetric flow rate

Q = A V = 2.02 x 106 m3/sec., calculated at Section I with Lacombe's estimateso 0

of the geostrophic transport in the Strait of Gibraltar, which ranged from

0.72 to 1.57 x 106 m3/sec (see Made1ain (1970)).
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The physical constants required by the streamtube model were computed

for this case as they were for the Norwegian Overflow and their values are

given in Table II. Of particular interest is the relatively large vertical

A
stratification rate, T, and the correspondingly high stratification para-

meter, t Based solely on the relative values of 1 , it is expected

that the nonhomogeneous environment will play a more significant role here

than it did for the Norwegian Outflow, provided the frictional forces are

comparable.

The presence of a strongly varying external density field made the

calculation of the mean density contrast more difficult than before since

the differences had to be computed between the actual density profile and

the extrapolated ambient density profile. However, the transition to Atlantic

water was usually well marked at each station by a distinct salinity mini-

mum or at least a rapid change in the salinity gradient. Within this boundary,

the mean density profile showed the maximm deviation from the ambient density

field, whether that point occurred at the bottom or somewhere above the

bottom for stations in the interflow. This difference was chosen to represent

the mean density contrast for that station. The sectional mean values were

then derived by averaging across the outflow profile. Finally, these results

were averaged with the maximum contrast at the core station to obtain the

value which weights the core more heavily for use in the comparison.

The path of the stream axis was defined to be the trajectory connecting

the core stations of each section except at Section VI where an insufficient

number of stations caused the axis to be located between two stations near

the depth of the centroid of the cross-sectional area.
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TABLE II. Physical Constants. Initial Conditions, and Scales
for the Mediterranean Outflow Experiment

Quan ti ty Symbol Value + Error

A

(1.43 + .40) x 10-2

-4(.854 + .060) x 10 /see

Bottom Slope s = tan a

Corio lis Parameter f = 2S1 cos a

Ambient Stratifi-
cation Rate

A

T = T cos a (1.00 + .15) x 10-8/em

Dimensionless
Stratification
Parameter

y
2 .&s 2

f
.275 + .041

Characteris tic
Densi ty po

3
1. 00 gm/ cm

Gravitational
Acceleration

A
2

980. cm/secg = g cos a

Ini tial Dens i ty

Contrast tJp
o

1.25 x 10-3 gm/ cm3

Ini tial Value of

Cross-sectional
Area

A
o

2.10 kn2

Ini tial Pitch Angle So

V
o

. 7185

Initial Velocity 96.0 cm/sec

Geostrophic Velocity
Scale

sgtJpu = 0
pof

205. 1 cm/ sec

Topographic Length
Scale L = U/f 24.02 km
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Choosing mean values from Section I as initial conditions (see Table II),

the numerical search for the optimum values of the empirical constants yields,

(IE Kì - (.05,. S) KM.
i.- 0 l - (2.60)

The detailed comparison of the average properties and path of the stream

is presented in Figures 2-11 to 2-14. Overall the agreement between data

and theory is reasonable. However, due to the qualifications with regard

to the way the data was reduced (e.g., neglecting influence of bottom top-

ography), the quality of the fit is not as good as that for the Norwegian

Overflow.

All of the velocity and density contrast data are covered well by the

range of numerical solution~ and the trends in the two seem to be quite

consistent. The most outstanding disagreement occurs in the comparisons of

cross-sectional area (Figure 2-14) and path of the stream axis (Figure 2-12).

The apparent lack of continuity between the measured areas at Sections V and

VI and those at upstream sections may be explained in part by the fragmenta-

tion of the stream. According to Madelain (1970), a small secondary vein

of outflow water escapes down a submarine canyon at Section III but rejoins

the main stream again by Section V. Thus, the value of A measured at Section

iv would underestimate the area of the entire stream cross section. Further-

more, the profiles observed at Sections V and VI include portions of the

interflow, which leads to overestimates of the cross section of the pure

bottom current. This uncertainty is manifested by the significant differences

between the areas bounded by the two salinity contours in Figure 2-10.
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The lack of correspondence between the theoretical and observed path

of the stream may also be attributed to the rugged bottom. In contrast to

the secondary veins which plunge down canyons, there is evidence from the

detailed topography at the upstream sections (Heezen and Johnson (1969) 1

that the descent of the main portion of the flow is blocked by high ridges,

forcing the axis of the current to remain up on the slope. In light of

these explanations, the agreement between the observed properties of the

outflow and the streamtube theory is judged to be satisfactory and, there-

fore, the optimum values of (E , K) are said to characterize the entrainment
o

and frictional processes in this outflow current.

A close examination of the numerical solutions used for this compari-

son reveals some further salient features of the streamtube model. The

modified dimensionless parameters corresponding to (E , K) = (.05, .5)km
o

are,
-
i = 1.11, (2.61)

and

(2.62)

r

í: -

!
í'
h

!

!,

)t = 11.2.

As with the Norwegian Outflow, the solution for this case is critically

damed and the velocity, area and pitch angle attain their asymptotic

levels for the non-entraining limit quite near to the source. However, for

the minimum frictional coefficient considered (K = 0.1 km), the value of

)G drops to 2.44 and a weak meander pattern appears. As evidenced by

the mean velocity contour, the damping is still rather strong since the
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amplitude of the oscillations diminishes rapidly with downstream distance.

Moreover, the topographic wavelength ( 2.1T i- ) which would characterize

meanders in the frictionless, non-entraining limit is 150 km. for this case.

Therefore, it is clear that frictional effects considerably shorten the

meander wavelength.

Also, notice that once again the flow variables exhibit features of

the strong entrainment limit (modified by stratification) for downstream

distances greater than 100 km. The predicted transition point from equation

(2.49) for ß-": 0.1 is further downstream at tT,:2.4-2. k."\, , whereas for

(h 'a t.o
, the value is tT& 5'2. 21cll .

Finally, the expected importance of stratification of the ambient density

field is confirmed by the results of a separate computation using the optimum

,.
values of (E , K), but with T = O. In particular, the theoretical valueso

at Section V are given by,

åf =
-\

, ~ ~ 'itO 'Y#lrm'l
)

A ,i. 1.,..'-= ,..~.o ~--
(2.63)

v.: ~ . c.u.c. )

óC,'í) .. Gi9 i 8 &) ,"",
which differ drastically from stratified results plotted in Figures 2-11

to 2-14. The most dramatic difference occurs in the cross-sectional area

where the value is increased by more than a factor of four. In addition, the

density contrast and average velocity are raised substantially and the path

of the stream is shifted downslope.



69.

11.5 Concluding Remarks

Before proceeding, it is appropriate to make a few concluding remarks

concerning the general character of the streamtube results and their implica-

tions about the nature of the two bottom currents.

First of all, it is clear that both outflows are characterized by the

effects of turbulent friction and entrainment. In the vicinity of the source,

strong frictional influence dominates the local dynamics: topographic meanders

are critically damed, and the flow variables change rapidly from their initial

values to levels appropriate to the non-entraining downstream limit. In each

ca.se, the constant properties associated with this limit are then gradually

modulated by the relatively weak entrainment rate in such a way that the

downstream behavior of the flow variables closely resembles that in the

asymptotic limt dominated by entrainment. However, to separate the flow into

two regimes is mis1eadin,g since it tends to minimze the importance of the

overall interaction between the two processes. For instance, numerical

solutions for )(= 0 indicate that, in the absence of friction, neither out-

flow would reach this slowly modulating asymptotic state over the downstream

range considered for the comparison. Instead the oscillations induced by

the initial conditions persist over the whole domain. Moreover, the axis of

the stream remains near the Y = 0 bottom contour in these computations.

With respect to the corresponding results with friction, the density contrasts

are significantly lower, and the velocity and area functions oscillate about

higher and lower values respectively. In short, the entire character of the

solution is changed when there is no friction. Indications of the onset of
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this radically different behavior were observed in the numerical solutions

for l( = 0.1 km. in the Mediterranean Outflow comparison (Figures (2-11) to

(2-14)). Evidently, therefore, in addition to a relatively weak influence

in guiding the flow and in determining the levels attained by the flow

properties in the asymptotic limit, the crucial importance of the viscous

forces lies in their ability to damp out irregularities in the source region

and allow transition to the entraining downstream state.

Several important differences are noticed between the two outflow

currents. As mentioned before, the strong stratification of the environ-

ment has a pronounced effect on the Mediterranean outflow while the weaker

ambient gradient in the North Atlantic has little influence on the Norwegian

overflow. Furthermore, strong frictional dissipation acting over a larger

downstream scale allows the Norwegian Sea water to descend along the Green-

land continental slope to the ocean floor, whereas the combination of en-

trainment and external stratification limits the descent of the Mediterranean

current to a depth of approximately 1200 m. where the actual flow is observed

to separate from the bottom and form an interflow. Finally, a larger total

range in density contrast, accompanied by a much sharper decrease near the

source, is observed for the Mediterranean case ( ~ = 1.22) than for the

Norwegian case ( i = .011) despite the fact that the entrainment constants

E and parameters
o ~, are roughly comparable. Therefore, as indicated by

the approximate solutions, the modified entrainment parameter ~ is the

appropriate measure of the strength of entrainment.

As noted at the beginning of this chapter, it is possible to compare
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crudely the values of dimensionless friction and entrainment constants

found in other oceanographic and laboratory applications with the correspond-

ing values for the outflows by dividing the optimum values of E and K by
o

observed cross-stream scales. The results of this computation are shown in

Table III. The dimensionless friction coefficients for the two outflows

(k N = .15, k~ = .01) bracket the value of .03 which was used by Bowden

(1960) and, according to Defant (1961), is an appropriate value for turbulent

bottom currents of this scale. The dimensionless entrainment coefficient eo

is known to be a function of the stability of the two-layer system, which

was measured in the experiments of Ellison and Turner (1959) by an overall

Richardson number

~\ =-o

!~ ~ n

fyt (2.64)

where h is the layer depth. This parameter was also estimated for the out-

flows using the observed layer thickness and other flow properties at the

source profile. These results indicate that the rather stable conditions

( ~~o ) l ) existing in both currents are responsible for the small values

derived for the entrainment coefficients. According to experimental evidence

compiled by Turner (1973), the value of e
o

less than 10-4 at Ri = 10.
o

-2drops from 10 near Ri
o

= 1 to

The magnitudes quoted for the outflow currents

in Table III not only lie in this range but also show the proper trend. It

must be emphasized, however, that these values are order-of-magnitude estimates

only, due to uncertainties in the observed outflow data and a detailed quanti-

tative comparison is therefore unwarranted.
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Finally, the disparity between the values of E and K maybe used to
o

make certain inferences about the structure of turbulence in the outflow

currents. First of all, it is important to note that the magnitudes of E
o

and K are both linked to the strength of the interfacial stresses, 1r ~ .

This quantity appears explicitly in the definition of K (equation (2.4) J and,

assumin.g horizontal homogeneity, it may be directly related to E by a simple
o

momentum balance at the interface,

'! =I f Eo vi¡
j. (2.65)

where 1 is the cross-stream scale. Therefore, the' fact that the optimum

value of K exceeds that of E by at least an order of magnitude in both
o

comparisons with outflow data signifies that turbulent stresses at the

bottom of the layer, ~~ ' provide most of the frictional resistance to the

current ( 'l~ o:~ 'tX ) while the interfacial turbulence which gives rise

to entrainment is much weaker on an overall basis. Furthermore, the turbulence

at the interface is believed to consist of locally generated disturbances

(e.g., by hydrodynamic instability) rather than residual turbulence which is

generated at the bottom and decays in intensity as it penetrates the layer.

This hypothesis is supported by the character of the downstream density

profiles for the Norwegian Overflow (Figure 2-4) which show broad zones of

nearly linear stratification above the relatively homogeneous interior portions

of the flow. A similar feature was observed by Ellison and Turner (1959)

in their laboratory study of turbulent flows down inclines and was interpreted

using di1Iensional argumen.ts as characteristic of a "self-regulated" flow which
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is influenced by turbulence generated elsewhere in the layer. In such a case,

the flow field near the interface is maintained in a marginally stable state,

the turbulence is there fore stro~gly damped and the entrainment is weak (see

Turner (1973), p. 186). In contrast, if turbulence generated at the bottom

were the primary cause of entrainment at the interface, then the density

gradient in the downstream profiles would be sharp, as it is near the source,

and the ent.ire layer would be well-mixed. This conclusion is reached by

analogy to the results of the. "stirring experimentstl quoted by Turner (1973)

in which mechanically generated turbulence was used to mix across a remote

density interface.

Based on the suggestion that turbulent bottom stresses playa dominant

role in the source region dynamics of outflow currents, a more elaborate

vi.scous model will be presented in the next chapter. The purpose of this

model is to isolate frictional effects and propose a detailed mechanism

by which they lead to the observed features of these flows.
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CHTER III

Formulation of Ekn-Layer Model

The dynamieal nature of the turbulent boundary layer which exists

beneath the outflow currents and transmits their momentum to the ocean

floor is not well understood. Most analytical attempts to investigate

boundary layer flow in a turbulent, rotating fluid fall into two broad

classes. Neither approach takes account of time dependence and both

assume the boundary layer is Ekmn-like in the sense that the flow above

the bottom is geostrophic and that the associated Coriolis forces remain

dynamically significant in balancing the divergence of the turbulent stress

field near the bottom. In the first class of analyses, certain structural

features of the turbulent Ekman layer are deduced using similarity hypotheses

and dimensional arguments. By these accounts (see Monin (1970)), the

boundary layer is divided into two regions, a logarithmic layer, characterized

by constant stress, overlain by a thicker Ekman layer. The similarity

arguments are used to provide relations among various properties of the flow

such as the stress at the boundary and the total veering angle between the

geostrophic velocity and bottom stress vectors (e.g. Csanady (1967)). The

empirical constants arising in these expressions are usually determined by

appealing to observational data and/or the results of numerical studies.

A field experiment designed to test the predictions of these Ekmn layer

theories against measurements taken at the base of the Florida Current was

carried out by Weatherly (1972). Among other things, he finds that although
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a mean veering in the correct sense does exist between the geostrophic

velocity and bottom stress vectors, it tak~s place entirely within the

logarithmic layer. The failure to observe the characteristic Ekman layer

features above the logarithmic layer is attributed to the presence of a

strong diurnal tide component, which modulates the flow faster than the

layer structure can form. Weatherly's results cast doubt on all attempts

to apply quasi-stationary Ekman layer theory to ocean-bottom boundary

layers. However, the observation of mean veering coupled with diminishing

velocity near the bottom supports the contention that at least some of

the aspects of a rotating boundary layer are preserved in spite of the

strong temporal variability. Moreover, characteristic Ekmn features have

been observed in other oceanographic contexts. For instance, some (un-

published) current profile measurements taken by J. Meincke of The Institut

fur Meereskunde, Kiel, Germay, during a cruise of the R. V. "An ton Dohrn"

in May and June, 1972, show a rapid turning of the velocity vector in the

proper sense within the deepest 30 meters of the Norwegian Sea overflow

water on the Iceland-Faroe Ridge. Thus conflicting evidence indicates

that Weatherly's single measurement may not be typical of bottom boundary

layers, especially those beneath the outflow currents where surface tides

are weak.

The second category of Ekmn layer analyses includes eddy viscosity

models and mixing length theories. The basis for these investigations is

an analogy drawn between turbulent and molecular processes. Specifically,

in the eddy viscosity models, a turbulent viscosity coefficient, Yt , is

used to relate stress vector to the shear of the mean velocity profile. In

contrast to the constant molecular coefficient, the eddy viscosity is known
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to be a function of space and time scales. It also varies with distance

from the boundary so that the structure of the turbulent layer is not exactly

the same as the lamnar Ekman spiral. Moreover, because of the dependence

on scale, the variation of Vi across the layer is not universal, but

depends to some, degree on the particular application. Using the results

of their laboratory study of the turbulent Ekman layer, Caldwell, Van Atta,

and Helland (1972) attempted to correlate observations of the planetary

boundary layer with measurements taken in the controlled laboratory environ-

ment using two variable eddy viscosity models. They conclude that these

models can predict the aspects of the turbulent boundary layer with varying

degrees of success, but that the overall agreement is not entirely satisfactory.

For the present model, the turbulent Ekman layer presumed to exist at

the base of the outflow currents will be parameterized by a constant eddy

viscosity. In view of the lack of unanimity about the proper mathematical

description of such a layer, the us~ of a more sophisticated model, which

incorporates variable coefficients or similarity hypotheses, is hardly

warranted. Moreover, in the absence of detailed velocity profile measurements

in the outflow currents, there would be no bas is by which the merits of an

elaborate model could be evaluated. Finally, the analogy of a constant eddy

viscosity with molecular friction allows direct comparison of theoretical

results with laboratory experiments carried out in the laminar regime. It

is hoped that this simplified analysis will furnish an approximate picture

of the influence of turbulent frictional processes at the ocean floor and

provide results which will serve as a basis for further investigation.

.
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Before proceeding with the mathematical formulation some representative

values of the turbulent eddy viscosity are needed. Since the streamtube

model results contain no information about the shear of the mean velocity

profile, it is difficult to obtain meaningful estimtes of Vi: from

the frictional constants K derived from the outflow data. However, an

alternate approach may be used. According to Faller (1971), the vertically

averaged eddy viscosity near the ocean floor varies approximately as the

square of the geostrophic velocity, V , such that the Reynolds numer based
g

'Rt 1: \J; ~/'Yt;f ) '/ion the scale height of the turbulent boundary layer

remins constant at a value of 103. He bases this conclusion on the results

of measurements in the atmospheric boundary layer which he claims should

apply to the oceanic bottom boundary layer for geostrophic velocities in

excess of 10 cm/sec. Applying his formula to the source conditions of the

and respectively. The corresponding

L

"\ = 4.0 C.""7S/
II

values of

Norwegian and Mediterranean
~

\It, -= 215' C:M/sac.
fo

.
outflows gives eddy viscosities of

the Ekmn layer scale height, A; ~:t)Y1 , are ~ = 2.46 m.

and ~ = 22.5 m. The degree of uncertainty about the magnitude of the

turbulent friction coefficient is clearly evident from the large difference

in these estimates.

In addition to the adoption of a constant eddy viscosity to characterize

the turbulent stress field, the flow field is assumed to be stationary,

the density stratification is approximated by two homogeneous layers, and

the Corio1is parameter is assumed not to vary significantly over the region

of interest. The upper fluid is in hydrostatic balance and based on the
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weakness of turbulence at the fluid boundary inferred from the streamtube

results (Chapter II), the interface is taken to be stress-free. With

these restrictions, the vector equations of motion for the turbulent Ekan-

layer model are:

v. ll = 0
I

(3. l)

~ . V l; + f x. u - - t V P + t. + '\ t \/2 ~ (3.2)

where i is twice the norml component of the Earth's rotation and f is

the density of the lower layer. As in most geophysical applications, the

centrifugal term in the momentum equation has been included in the gravitational

acceleration,~. However, in analyzing the rotating fluid dynamic experiments

described in the following chapters, it will be important to distinguish

these two terms.

The coordinate system employed in this analysis is the bottom-oriented

Cartesian set used in the streamtube model and shown again in Figure 3-L.

The inclination of t~e plane bottom is measured by ti , and the x-, y- and

z-axes lie along, down, and normal to the slope, respectively. The position

of the free surface is defined by z = d(x,y) and, for the general case,

the lateral edges of the flow are at ~= 'f~ eX) , '/: ()() The

component form of the governing equations in this system are given by

1Á)(4- tr'l -tWè =- 0 (3.3)
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~ ,
u.\jli - t (1Tt-~W) =- - f 'Plt +v\ '\ u (3.4)

" " 2.

~'\ii. + r l. = _i-, + j ~ "" Vi: V ll)
f '1

"
_ .1 P J. 2.

!l . '\ ùJ + t S tA =
l \

_. , + ))t \1 W )

(3.5)

(3.6)

y.v 2- + tT i r W l- lA â)(
''1 de:

V 

2.: "J 1. + l' 1. 'e'l

-r)t "2 ~'1"¡

+-
~ 1: 1.

The parameters appearing in th~ equations are the bottom slope S e "t 0( ,
,.

the Coriolis and gravitational constants f 'C 2,1.Q\ CcSc( and

~; \~l coSo( , and the turbulent eddy viscosity ~t

The constraints applied at the boundaries of the flow are listed below.

(i) The "no slip" condition at the solid surface is

u;: lr= W ci "l =- 0 . (3.9)
""
L
Ii

r

(ii) The zero stress, kinematic, and hydrostatic pressure conditions at

the free surface are

loè:: - W)( + ~ "' u,,) cJ,1 "" 'llÅ)C cl ~

,,~:: -w'l -+ 2111 d~ + (iic +u.,,) 'ix J

w: lA d)C .. \Td'l l

(3.10)

(3. 11)

(3.12)
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and
,.

l -= lo~Ho + lo~(s'l-d) o.t ë=d(t,') (3.13)

where the curvature of the free surface has been assumed small and

f~

(x = y

and H are the uniform density and depth at the origin
o

= 0) for the upper layer.

(iii) The edge condition is simply

d:- 0 a.T
- +

'/'= 'Ie ()() ) 'Ie. ()() .
(3.14 )

An auxiliary condition serves to specify the total downstream volumetric

i
flow which is constant in the absence of entrainment,

+

f'l&Q - d'l
,,;

d

r lA eli .o (3.15 )

It is convenient at this point to introduce an alternate representa-

tion for the edge and flux conditions, (3.14) and (3.15), which will be

used in the next chapter for the analysis of viscous dominated flows. In

this case, the velocity is directed primrily in the dowslope direction- +
so the edges of the flow are defined more conveniently by ')..=)(1 (y) l '/e(~)

as indicated by the dashed curves in Figure 3-l(b). The corresponding

mathematical constraints are,

d=o at
- ~

x.= Xe ('/) , Xe (,,)
(3.16 )

and

Q - r? ,li Lo "d 'iX. (3.17)
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Using scales derived from the source flow parameters, the variables

are made dimensionless in the following manner

(~i'i~) = L (X,~ l S~\ )

(u,\T,w) - -U- Cc.,Û-J SW) ~

and
t:: fo~ Ho +

ar= f-fe ~, f J
where

and

,.
1r =- ~l"A~

f
1- '= (tQ \"Z.

S'l'" , ),..

(3.18)

l~c ) ,. T "',.,.,.J ~'l--i + f~(S"" p()C.,1,~)

is the reduced gravity parameter, (3.19)

is the geos~rophic velocity scale, (3.20)

is the source flow length scale. (3.21)

These definitions will be referred to as the "source flow" scaling since,

in the resulting dimensionless system, the source strength is normlized to

one. In terms of these variables, the equations of motion take the following

form: A ,. ""
lA~ +\f~ + Wi -. 0 (3.22 )

A A (A. 2.") ,.
~ ~.'7 tA - "+S!A I: - px

A. ,. ,. ,.
f- !i . \J IT + t. = - Py

E .. " '1 '"U.qW+~"

.. E (it¡; ~('" ,. J+ S U ~'t -t Ui-i)
i

(3.23)

(A 1.(A. ~ 1+ E ut¡ + S lfJ(.i + lSii ) , (3.24 )

-= _ "p~ +S"lE (W!.l +S'Z(w~;~~~~)J (3.25)
i
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where

_ (a; sl\) '11
f - ..5

~ Q
is the source flow Rossby number, (3.26)

and

E :.

1\
\)~ ~ r

l1. Q
is the turbulent Ekman numer. (3.27)

The boundary conditions corresponding to (3.9) through 0.14) are given by:

(i) A ,. ,.t.:lf:W=O at 1\
'Z .. 0 (3.29)

A
(" (S A) ~

,. ,.
J ,(ii) U,. - ls"- - \A)e + ll~ + uq cl q +2 u,. d..

1. - )( )C

"' 1C g"i l-w~
" A.

+ ~~ + Û ~) a~ J0:'" + i U"A cl,.i 'I 'I
./ ,. 1\ ,. A
\A = u d~ .. U- cl'"

'f

~=-C9-d) ,. '" 10,.and at i:.. d(x.') , and

(iii) 1\ It "'_A A+~
d:: 0 at 'f = 'Ie (to) 'Ie (tt)

(3 . 30)

(3.31)

o. 32)

(3.33)

(3.34 )

Similarly, the volumetric flow

1 - i ~: d.'- 'I
'/"

rate is defined by,
,.
d

f \( cl~ .o (3.35 )

Estimates of typical Rossby numers for the outflow currents may be

derived from the flow properties at the initial profiles and the average

physical constants (Tables I and II). These results indicate that convective
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accelerations are small in the Norwegian Overflow ( ~ ~ ~ .03S ) ,

but because of weaker rotation and stronger density contrast, this assump-

tion is questionable for the Mediterranean Outflow ( E"" = 2.14 ) .

Similarly, the Ekman numbers for typical outflow conditions may be esti-

mated using turbulent eddy viscosities derived from Faller's criterion.

-4
The values obtained by this method are small in both cases (EN = .66 x 10 ;

-2
~ = 1. 72 x 10 ) . Since E measures the square ratio of the Ekman Layer

length scale ( 2. "t/~ )'It. to, a vertical dimension based on the sourceT ,. 'i&
flow length scale "i.:. (.ç,,~), these magnitudes indicate that turbulent

~'l

Ekman layer occupies only a small fraction of the outflow profile.

Attention will now be focused on viscous effects by assuming that

the bottom slope is gradual,

'1
S c:¿ I (3 . 36)

and by linearizing the momentum equations on the condition that the

Rossby number is small, i.e.,

E c:, I (3.37)

According to the scaling, the slope s is a measure of variations in

layer thickness in directions parallel to the bottom. In fact, for geo-

strophic currents on which the scaling is based, the criterion for uni-

directional flow in the layer is that the cross-stream gradient in thick-

ness not exceed the slope at any point, i. e. ,

c1'l ~ S .
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Therefore, the requirement that the bottom slope be slight implies that

the aspect ratio of cross-stream profile is small also. Both these

conditions are well satisfied by most of the outflow sections presented

in the previous chapter. (See Figures 2-3 and 2-10.)

With these restrictions, the reduced pressure field is hydrostatic,

" A
l = -(; - d ) (3.38)

and the governing equations reduce to

.. ,. A

l.~ + \fA "' WA - 0
'1

'! -

,. A ,.-lr :- - d~ +E.u....l:l.

,. A
A.

U = \- C!.. +E 0:" 0\'1 'll.

(3. 39 )

(3.40 )

(3.41)

with boundary conditions,

A. " " Á
(i) u= lTcW=O at 1:=ô (3.42)

(ii) .. " (3.43 )
u." - tJ -=0'l- A ,.~ ~"'\at i. ::" .... "J .,1

"'::udi+~ ~ (3.44)

(iii) ,. A "'-A. "+A) (3.45)d= 0 at
'I :: 'I fZ G.l ) 'I e( X .

The form of the flux condition, (3.35), is unchanged.
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Apart from the desire to isolate frictional influence, there is

strong mathematical justification for retaining the small viscous terms

in this system. Since E multiplies the highest order derivatives in

the momentum equations, the perturbing effects of small viscosity are

singular in the sense that the boundary layers required to match bound-

ary conditions which are not satisfied by the frictionless (geostrophic)

flow change the character of that solution completely.

To facilitate the following derivation, the parameter E will be

absorbed by redefining the vertical scale height in terms of the Ekman

thickn~ss, i. e. ,

s 1... (iE) 'l. s L. " (T)'4 = ~ . (3.46 )

The resulting normalization will be referred to as the "Ekman scaling"

and is defined explicitly by the following relations,

(, A (- - - )\.~i'l.'¡) - S ~,'ll'¡~)
(3.47)

eu l~ ui) : 1J- ( Õ J" . ~ W) J

and F: fo~"o", f î (~'f-i:) + f ~l" A ~ (~l'l)i)

where the velocity scale and hydrostatic pressure components are un-

changed from the source flow scaling (3.18). Under this system, no

parameters appear in the equations of motion,
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U~ + tJ q +Wi =- 0 (3.48)

- Lr = -dj +.L U.'i (3.49)2

I-d- + i. -
u. - lr~i (3.50)'l i.

or the boundaty conditions,

(i) l. '= t. - W :. 0 at è::o (3.51)

(ii)
U"l = \r¡

(3.52)-0
W :. U d¡ + U- dy

at i= cI(jr,9)

(3.53)

-
'I :; ~~ ()l) i ~:('~L (3.54)(iii) d. ~ 0 at

Instead, the Ekman number appears in the modified definition of the

dimensionless source strength,

-.. d
(~: d. ~ r ,¡ d"i -'It. 0

-\
(2. E )

,
:'1~
1..

t, ¡

(3.55)

It is worth noting that the .appropriate Rossby number under the Ekmn

s caling is,

~ - 1.- ~i.
,. 2-l (l- y' '" (iE)\2Vt ) (3.56)
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which measures the magnitude of the convective accelerations in the

Ekman layer.

A single equation governing the distribution of layer thickness,

d (j i ~ \ , may now be derived by a generalized Ekman layer analysis. The

procedure is based on the computation of the divergence of the local

layer fluxes. Using Leibnitz' rule and the kinematic condition in (3.53),

integration of the continuity equation from the solid surface ( 'l:. 0 )

to the interface ( i:. cl ) lead to the condition for zero divergence

of the integrated horizontal velocity components, i.e.,

trj: +y- =-0 (3.57)'I

where it =- l: u cl~ (3.58)

and -\f =- 1: ir d. ~ (3.59 )

Next the momentum equations are written in the form

U:¡'¡ + 2. tr - - i G¡ J

where t::. - c:)ë

lrii -i.U - ii:
and F :. d ~ - t These expressions may be com~

bined to give a single equation governing the complex velocity function

,. - -
V= u +iU' (t; ~) )

V; - - 2 i V ; - 'Z ((1- i F) .i. 1:



90.

The general solution to this equation is expressed in term of complex

exponen tials ,

",\f (l+i) ¡ -Q"i) i.- A e +"& e. (F + iG;) .

The complex constants, A and B, are determined by the appropriate bound-, .
ary conditions at the bottom and free surface, i. e.,

(i)
-
-,r'= 0 at i=-Q

(ii)
"-
V- :. ()'!

at i:. c! ( ~~p

After expressing each constant as the sum of a real and imaginary part,

the resulting horizontal velocity components are

lA:. - F + CAr c.~ ~ - Ai s(,~i)l +(r~..CI'l~ +Bí s~i) e.-i (3.60)

lr = - G, "" (A,. ~~"" i +-Ai Cl"S i) eO¡ + (S¡ Co,¡ - 'ßt~ÌM ¡) e-~'
(3.61)

where -l ( - -2d) -+ ~ SVl2d J lA = i= ( O!t-i cl + e ... 21)

Ai = -i
L F S.M 2. d - G¡ (c.'\ '2d .l e- i¡ ) 12.1)

-l (
- ~d) -1

"B r '= F€aiid of e. - G, s~id
2") '\

-i L ¡: s\.~ '1d
- 1¡ J

Di - + c: C c.~2.d + ~ )
2"' ,

'z

1':
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for F = d\j - i e: ~ -cl~

and 1) = CJ ~,~ '2 d + CD" 'l â

The layer fluxes may now be computed by direct integration over

the layer depth to give,

1f ~ ~ -êl-,1) ¡ _ ~ (s~~ ~ d - SU\!d: ) _ t -cl~ (Sl~2~ + s""i~\ (3.62)
2. C6,(A t d + Cl~2.d 2. Co~li 1.d + Cbsid 1

and

-v = J-d- ~ (~~"-k2.d -+~i"Z.d) + i-d~ L ~¡\\ti2.d -s\,,"ld ))t 2. ~~\iÚI +co~2cT 2. \ Cb~ 2d + co~id 0.63)

After extensive algebraic manipulation, the divergence of these quan-

tities was calculated and reduced to a single, nonlinear second-order

partial differential equation governing the layer thickness function

~i~ii1d -SllA2.d)(co\L\?d+co~'1d) (ai~ +ayy) + 4ciUtkid si~id(J:+Jt)

=L~I\\~2JSi""cJ d~ +i(sl"'~'ld - ,i:-id) cli. (3.64)

Due to the complicated dependence of its coefficients on d , this

most general form of the thickness equation was judged intractable by

analytic methods. Moreover, because the equation is elliptic, its num-

erical solution would require specification of the layer thickness pro-

file at two cross-stream sections boun~ing the region of interest, in
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addition to the conditions at the lateral edges of the flow (3.54). To

carry out such computations, based on a series of arbitrary source and

downstream thickness profiles, would contribute little toward understand-

ing the nature of the interaction between viscous and rotational forces.
'-

Instead asymptotic methods will be employed to obtain analytical solu-

tions to the two important limiting forms of equation (3.64), namely

for 1) flows controlled by viscous forces, and 2) flows dominated by

rotation. By isolating each effect in this manner, it is possible to

evaluate the role it plays in the 'overall dynamical balance of this

model and thereby gauge its importance in the oceanic case.

The mathematical definition of the viscous and rotational limits

is expressed in term of the ,magnitude of the normalized layer thickness

variable, d (i i ~) . For regions where d~, I , the layer thickness

is much smaller than the Ekmn scale ('1\)t¡r ) '/z. and the flow is

dominated by viscous forces. In this limit, the coefficients in equa-

tion (3.64) may be expressed to any desired accuracy by expanding the

trigonometric and hyperbolic functions about d = O. If only the lowest

order term in each coefficient is retained, the thickness equation takes

the form I~r-
- (-2 -I.)cl (dii+ dyV) + 3 die'" d'i = '3 d - l 4- d2 d- + Ö(J") (3.65)'I " )

for ct ~ £ 1

To derive the corresponding velocity components in this limit, it

is convenient to streamline the somewhat cumbersome expressions for the

general case, (3.60) and (3.61). Making use of the relations among the
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trigonometric and hyperbolic functions, the following simplified form

are obtained,

u=. (i-M) (i-clq) - N d¡ (3.66)

ll:: (I-H) ,¡ ~ .. f\ (\-d9) , (3.67)

where M: "D-1 (c.o,\\(?d - i) c.,. i .. ~t~d -i) CJ~'" i J

N :.1)' (sudt(iëI-i) Sl\.\1: + sl~(id-i)Si~kiJ

1) = ~S~ '2d + c./)~ 2. d .

Expansion of the term in these expressions for ï ~ d yields the

relations for the horizontal velocity components,

lA ': - di l: (i.d - i.) + ~ (d c. ) (3.68)

û- =- ú- J 1 ) ¡ (2-d - i) + 0 Cd ') . (3.69) "
"
"

J
The corresponding forms for the integrated layer fluxes are,

- ,,-'3 -1f::-=- d d;:
3

+ e(ct 7)
1

(3.70)

and
-\f ~ l- J:S C l- d't-) + e(J7)3 )

for cl.c Co \ . (3.71)
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With d(~)~) defined by the layer thickness equation (3.65) and

the appropriate boundary conditions, the horizontal velocity profiles in

the viscous-dominated flow are parabolic, while the local layer fluxes

- '3

are proportional to d . These are familiar results for two-dimen-

sional viscous flows down inclines (see Batchelor (1967) p. 183). Equa-

tions (3.65) and (3.68) to (3.71) provide a basis for the investigation

of the weak rotation limit pursued in Chapter iv.

In contrast to the thin layer viscous limit, if the local layer

thickness far exceeds the Ekman length scale ( d ~~ , ), then rota-

tional effects are dominant. In this situation, the hyperbolic func-

-
tions of d reduce to exponentials and the layer thickness equation

becomes a simple diffusion equation,

- - - - - G -tel)c1 iie- + d,,'i - 2-d 5( + (9e. for c1 ~~ , . (3.72)

The horizontal velocity field is mainly geostrophic with a thin Ekman

layer adj acent to the boundary,

u. ~ ('-d~) ( (. ,-d.,;) Ul~i + dy. !:\M~J ë=l + ~(e-2d ) (3.73)

and

li :: cl¡ - ( di Co~ ~ ( -d) . -) -1, - td )- \- 'i S\ll\ ~ e .. (9 (e .
l

for d~'" i

(3.74)

and the corresponding layer fluxes are given by
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- - - -) '2d1f = d (\-J.\j) - t (\- d~ + å"i + e(e- )
(3.75 )

and v': cl J 5r + t ( i-d'i -d¡) ~ cXe-ic ) for d ~~, (3.76)

These equations describe the flow in a thick geostrophic layer whose

development is controlled by a viscous Ekman layer at its base. The

singular nature of the inviscid limit is clear from these expressions,

since, in the absence of friction, the Ekman layer structure would dis-

appear from the horizontal velocity field and the diffusion term in

the thickness equation would also vanish, leading to a non-shearing

layer with an invariant thickness profile. These and other peculiar

aspects of the strong rotation limit will be explored in Chapter V.
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CHTER iv

Weak Rotation in the Ekman Layer Model

The foundation for the investigation of the weak-rotation limit

of the Ekman layer model is a study of flow in the non-rotating case.

A similarity solution for the asymptotic behavior of a steady, viscous

source flow on an inclined plane has already been derived and demonstrated

in the laboratory by Smith (1973) (hereafter referred to as Sl). In this

situation, the primary dynamic balance is between the downslope compon-

ent of gravity and retarding viscous forces. Lateral spreading of the

flow is caused by the pressure gradient induced by the cross-stream

variation in layer thickness. Furthermore, the decaying influence of

the source conditions in the downstream region leads to a self-similar

flow whose properties vary according to certain power laws of the down-

stream coordinate. A simple laboratory experiment confirm the follow-

ing major features of the similarity solution (using present notation):

i) a parabolic cross-stream variation in layer thickness; ii) spreading

of the flow according to a y3/7 power law; iii) thinning of the layer

-1/7a~ong streamlines like y ; and iv) surface velocities which vary as

,

f,

the square of the layer thickness.

The purpose of the present study is to extend the analysis of the

purely viscous case to include weak rotational effects. Within the

framework of a perturbation theory, corrections to the layer thickness

profile and horizontal velocity field will be derived in term of the

similarity variables. However, the validity of the perturbation scheme
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is limited to a finite downstream region beyond which the corrections

to the viscous solution can no longer be considered small. Physically,

the cumulative effects of the Coriolis force operating on the strong

downslope component of velocity results in a significant shift of the

current axis away from the centerline of the viscous flow. Thus, the

asymptotic state associated with the viscous case is ultimately destroyed

by any small amount of rotation. However, for sufficiently strong fric-

tton, the flow is expected to diverge very gradually from the basic solu-

tion and the conditions under which the weak rotation analysis is valid

would therefore apply over a significant portion of the downstream flow

field.

The derivation of the theoretical corrections to the viscous flow

will be presented in the next section followed by a description of a

laboratory experiment designed to test the important aspects of the

extended similarity solution. A comparison of the theoretical and ex-

perimental results will be discussed in the final section.
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IV.l A Similarity Solution Including Weak Rotational Effects

The formulation of the source flow problem including weak rotational

influence follows the lines established for the viscous case. The Car-

tesian coordinate system described in Chapter III is illustrated in

Figure 3-1. The appropriate fluid boundaries, ~ :. d(y. iO and )( :.

~e(~) , X~(y), are indicated by the dashed curve in Figure 3-l(b).

In the downstream region, the natural length scale associated with

the source dimensions has been eliminated. It is standard practice in

such cases to form a reference length from the external parameters of
,.

and rthe problem
A

,,. , ~t. , ~ ) S Two examples of this formal

technique for normalizing variables are provided by the source flow (3.18)

and Ekman layer (3.47) scalings presented in the previous chapter. How-

ever, because of the strong rotational influence implicit in these laws,

they will be rej ected in favor of an asymptotic scaling based on a char-

acteristic downstream distance, Y This procedure leads directly to

the appropriate downs tream balance for large Y and also serves to ex-

hibit the dependence of small rotational term on downstream distance

through the form of the dimensionless rotation parameter. Under the

t
T

asymptotic scaling, the variables are normalized as follows:

eX. , 'I) ë.) = "t C ~ ~, \j , pi) )

(4.1)

( tA) \T, w) :. 1A ( ~ ÎÁ , Ü-) ,. ÛJ) )

p = fo~ Ho .. l~ CS'f-è) + (p ~(~)~,i) J

u =
(~! s S" Q." ) '11

)): ..'C 2.

where



)= ( Q. v1; )' I-
99.

,. S4'f4~r

ß-= ( ~ ,,_: .) It~ ~r 'í )

C !õ ~~ ') 'hrP=
9'" ~tf s-'f .

The dependence of the scaling quantities on the external parameters

is determined by requiring the basic visco~s-gravitational balance in

the horizontal momentum equations, a hydrostatic reduced pressure field,

and unity dimensionless source strength. Note that the lack of a precise

definition for l( is justified since any length scale selected will be

artificial in the sense that it cannot appear in the solution.

Substitution of (4.1) into the equations of motion (3.3) to (3.6)

results in the following dimensionless system:

,.
lAi .l \T'f + l.~ -. 0 (4.2)

f ( lici;:4 U-~~ +W õ.¡) - 'R (.r+ ltw) ;: - ~i+~i+ ii'lí'lGi;;. ~"'lí55)(4.3)

f (kJ;:+ ü-õ;~ W iT¡) + S1.R Û = - t~~ + Úii .l ~~~' (Ù~ -l ~t.iT'ii) (4.4)

and

"L~ ~ -- .... .... 'l '1 ~ 't 'l r .. 1 1. ~
S"1 ~ ,( w.W;+\fW;+WWi) l S ~ Rü = - Pi + $ ~ L Wii+ ~ ~ (~KY-+ ~1.~~;)J(4.5)

where ,. (s"S G' \ 'l-E = ~~\)t,!ii) measures convective terms (4.6)
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and the influence of rotation is measured by,

( Q"3 ~1. y'i ì 'I, "
R-: ,,~~ ~~y Vt (4.7)

Recall that for geophysical applications the centrifugal term has been

incorporated into the gravitational acceleration.

The dimensionless boundary conditions are determined from (3.9)

to (3.13) and (3.16),

(i)
.. ,. ,.
tA~U-=lù::b

,.
, at Y. ~ 0 (4.8)

(ii)
..
u.-l = $-ifl-w~ +~+~~5)J~ -l2Ìt1.J~1

1 r.. .. ~ ~
SO¿) l - ~lI~ + i ~ Û"S d.~ l (Vi ~ ~i.Gj) cl~ ..

..
lri :: .- ,.

W = Ù d.~
.. ".

+ U" d'"
'1

(4.9)

"' ( -i ,.)p: - ~ q-d o.t i ,. dti,q) )

(iii)
'"

d:: 0 at ~:: ;. : ('í) l 'i ~ ( ~ ) (4. 10) ~-
Îë"

'!\
Furthermore, the dimensionless source strength is defined by,

--+

~~~
~Q

di rJ lr cl~
o

1 (4. 11)

The equations governing the dowstream flow are now derived by

assuming that the ~lope is small,

'1
S £~, (4.12 )
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the flow is jet-like in the sense that the downstream scale far exceeds

that in the cross-stream direction,

~ '1

L

'Z

) R£l!\ (4.13)

and the convective accelerations are negligible, i.e.,

,.~ ,£ \ . (4.14)

Note that the last two criteria will always be satisfied for suffici-

ently large '(. Under these conditions the pressure is hydrostatic

and the equations are simplified considerably,

"" .. ..
tl~-l lí~'" Wi ~ 0 ( 4 . 15 )

,. ,. ..
- K \r =- cl¡ -\ lA"" (4. 16)~n:

,.
o :: 1- If-'' (4.17):i'. \

with boundary conditions,

(i)
tv ~ ..
tA':lí': W=O at ~

è =- 0 , (4.18)

(ii) .. ,.
U~ =- tr.¡ :: 0 (4.19)

-i"'-' ,.-
W ': u c4i + If d G

at ~ .,,. ..
"l = c1 ( )C 1'1) ,

(iii)
-
d = 0 , at ~ ': xe-C'ïl 1 ~; (9'

(4.20)

(4.21)
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-
The momentum equations may be integrated twice with respect to 'l',

using the boundary conditions (4.18) and (4.19) to give the horizontal

velocity components,

.. ~ "' .- Ri (..3 dil. i!i)
U = - cl ~ 'i C d - è¡,,) -+ cl - -- + -,. ~ '3 2. 8 i (4.22)

and
..
U- :

f' ,. \
i ( cl - e./2. I \ (4.23)

while a third integration yields expressions for the local layer fluxes,

13- =

. -~
d'" d.L

3

+ 2R jS-iS , (4.24)

and

A.

-,t :.
.. '5

cl

3 (4.25 )

.. ..
The vanishing divergence of the layer fluxes ( U~ + V ~ :: 0 ; see

equation (3.57) J then provides a single equatinn governing the layer

thickness distribution,

AA, ..i.
elcli~ +"5d~

,l .. 1. '"
:: 3 d.~ + 2 t cl d ~ (4.26)

which is subject to (4.21) and the appropriate condition on the down-

stream flow rate,

--l

S:~
'tC2

~3
d
'3

di - \ (4.27)
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Note that the layer thickness equation (4.26) nearly corresponds to

equation (3.65), which was derived from the general case for arbitrary

rotation on the condition that the dimensional layer thickness be much

smaller than the Ekan length scale. However, in the present formula-

2
tion, the jet-like character of the flow ( ~ ~t' ) has been used to

eliminate downstream derivatives as compared to those in the cross-

stream direction. Also, the new factor multiplying the last term in

equation (4.26) arises from the difference in scaling laws. Moreover,

the expressions for the horizontal velocities and layer fluxes agree

to lowest order with the relations derived from ttie general case, (3.68)
,.

to (3.71), except for the absence of dj in the downslope component

and a factor of two in the integrated velocities. Thus (4.13) is the

only additional constraint that has been placed on the flow up to this

point.

A perturbation scheme will now be developed for the case of weak

rotation,

_ (Q"5 S7.y~) Y, ,.
R - ~~ L r

~r Vt.
L L- I .

(4.28)

Notice, however, that the direct dependence of R on y2/7 implies that

this assumption is ultimately violated at some dowstream point. There-

fore, rather than describing a true asymptotic state, the solution will

govern the behavior of the flow in an intermediate range where (4.13)

and (4.14) are satisfied, yet R remains small.

The analysis begins with an expansion of the layer thickness func-

tion and velocity field in powers of R,
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-
d (~ , 'l)

00
~

= 2- R dr- ( ~ ~)\'~ 0 i
(4.29)

(ù ,l;)
oa

L
~. 0

R." (k",) \1~ )

Since the edges of the flow are free streamlines, their positions must

also be expanded in the same manner, i. e. ,

,. +

y.e- ('1) =

~
~
h=o

R'" iXe "" (4.30)

At lowest order, the layer thickness equation takes the form

~

do dox~ + '3 do~ = 3 do~
)

(4.31)

. wi th boundary condi tions ,

(i) do ~ =- 0 at ,.
X ~ 0 (4.32)

(ii) do : 0 at ~
x:::! x.e

o
(4.33)

where the basic symetry of the non-rotating case has been utilized.

The corresponqing velocity components are given by

"'

'" 0:: - d ø i ~ (d 0 - TIt¿ ) (4.34)

u; =- i ( do - ~/1) ) (4. 35 )

and the transport condition is
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r O(C!o

; Jo do d~ - 1 . (4.36)

A similarity solution for this lowest-order system is derived in

81 (using slightly different notation). The resulting expressi?n for

the layer-thickness variable predicts a parabolic cross-stream profile,

do:: ~ (I - 't"1) l
(a~ )1(1

(4.37)

where
"" iL

't : )(/~~) ., is the similarity variable,

and 0.= '.~~4-' , with '3Q.C = "'

Furthermore, the value of ~ on the edge streamine has been normlized

to one, which implies that

rci'l .. )"311Xe.~ = ~ (4.38)

.. ~¡.

Therefore, the flow spreads like ,1"7 and thins along streamlines

( Yl = const.) as
,. - 'i,

'l in the non-rotating case.

Pursuit of the problem to first order in R leads to a linear second-

order equation for the layer-thickness perturbation, l:, (îi~) ,

dod'~i +~doî d't -\ dO~ì d, - '3d1q 'Z

= 2 do do ~ . (4.39)

The form of the inhomogeneity in this equation coupled with the require-

ment that the first-order correction carry no net transport implies that
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di is an odd function of x. Therefore the appropriate boundary condi-

tion on the centerline is,

d,:: 0 o.t
,.
'lc 0 (4.40 )

Further use of this antisymetry property in a Taylor series expansion

of the edge boundary conditions (4.21) about the lowest-order edge posi-

..tions ( )(:: :t Xe ) yields a relation between the edge perturbationso

and the value of di' i.~.,

+
)(Q. = x.e\ \ -=

(A;" ,4-"~ de ..)
ic. ' xeo,'1 -

Xe, . (4.41)

This result signifies that the first-order corrections to the ,edge

streamlines are equal in magnitude and the direction of shift is deter-

mined by the sign of the layer-thickness correction evaluat?d at the

non-rotating edge. The modifications to the velocity field at this

order are expressed in terms of the layer thickness correction as

( 7., ) ...."5 cl..i .."!
Lt, ~ - \&0 - i'l ~ cl,~ - dO; ~ cl \ -+ e3 (do - J. + È- ) )2. 9 (4.41)

U;=-id, (4.42)

Finally, the transport condition (4.27) is satisfied to order R, since

both edge-streamline and layer-thickness perturbations provide no net

contribution to the total downstream volumetric flow rate.

A solution for di was ~ought in term of the similarity variable,

, ' and ~ Its form was found to be,
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d, C"~) :: 4-e't ~q )'" (1,6\) i (4.43 )

where Gi satisfies the following equation,

'I ,
Q-'t1.) Ct, - b~ (" -4 ~,= - (\t-'2~; +~s) ) (4. 44)

with cq,(O)=O ( 4 . 45)

and x.e, :: i c (0. ~ ) ¥1 C, .0 ) (4 . 46 )

where ' denotes differentiation with respect to 1

The equatio.n for Gi is a non-homogeneous, second-order ordinary differ-

ential equation with regular singular points at ~=1 \. The general

solution consists of two complementary solutions to the homogeneous

equation plus a particular solution.

The complementary solutions may be readily obtained by a change

of variables: r=,1. ~(rl =- G¡,~). Under this transformtion, the

homogeneous form of (4.44) reduces to a hypergeometric equation,

r(\-r) ~" + (t-~ r-) ~'- ~ - 0 (4.47)

with ~(O) ~ 0 . (4.48)

The solutions to (4.47) are well known in term of the hypergeometric

function F(a,b;c;d) (see Abramowitz and Stegun (1970), p. 562)

~Cr)= 1) F ( a., b i ~ ; r) + E. F (dol ~ b +~.. ~ . r-)
, ) '1) '(4.49)



108.

where Pee)
00

~ +\, ) rCb+\')
F (a. h.c' r) - ~ r- ri, J) - fl(a.) rtb) w\" 0 r(c.+", L hI

and
0.+ b SIi. a b= = ( 4. 50)

The odd symmetry of di as expressed by (4.48) implies that D = O. More-

over, analytic continuation of the odd solution to the neighborhood of

r = 1 reveals that,

~6-) IV

r&.) r~/i)
ri~-l'h) rCb+'1J

-2-

Ü-r) as r-= \.

Therefore, the condition that the solution be bounded near r = 1 requires

that (b + 1/2) be a negative integer, i.e.,

b+'h ::-n V\~'I'2I~)".
but, according to (4.50), b + 1/2 = 1 or 5/2. Thus, the odd complement-

ary solution must be rejected on physical grounds due to its singular

behavior near the edges of the flow, i. e., E = O.

Lacking acceptable complementary solutions, the general expression

for Cf,~) reduces to the particular solution. Its form is found to be an

odd fifth-order polynomial whose coefficients are determined by balancing

like powers of '- in (4.44),

r: -iCT,~' =- 18C30 ('2:~, -"O'~4"55'~SJ (4.51)

The corresponding results for the layer-thickness and edge-streamline

perturbations are easily computed from (4.43) and (4.46),
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d,('t)~) -= ~45 (a.~) 1 ii~~-Ilb't +~S, i i (4.52)

and

Xe. ,
=. \, C

"3IS (0. q ) S"/~ (4.53)

Finally, these relations along with (4.37) and (4.38) may be combined

to give expressions for the layer-thickness function and edge-streamline

positions which are valid to order R. Upon converting to dimensional

form, the solutions are

(Q't l~ )'/1 C ( (, 1.) ,. ic. .. 1.1, ~dC,,'I) = s ~~ (ti'l ) It, \1- \\ + R. 94S(Cl'l ) (ii~ lt- 1I0't -l !)S,S)J(4. 54)

and
-+

)(e- 61'
: (~ )'1-~rS 4- (a. '0"3/i ( :t I + R.(~'f)"2,I'C 13 iS J

(4. 55 )

where
R:: R. y.2(, = (Q~ ~t1. )'t. r

~~ "t î

and -
M =. 1.1L ')ci6 :; ra: ~ 4 )'t.

\ "o r X/(g '1) ~Ii ""

¡,
~;

rwith
c =- "3Cl

,~ Q.= '.9'34'.

Note that, as anticipated, the artificial length scale, ~ , does not

appear in this result.

For purposes of comparison with experimental results, the surface

velocity components may be computed by combining (4.34) and (4.35) with

(4.41) and (4.42) and evaluating at i: d. Thus, the horizontal velo-



110.

city field at the surface of the layer is defined in dimensional terms

by
1. '5 '.;

(s q r Q) _C?J (\ _ '\ 1. )
U-s ("1"'() = '\ ))t'" (Cl\n Co/1 ( ~ (1-,,) + R. c C 0.'1 )'L/i9~á

and

(4.56 )

í 4.'ti.(li~-l\O\(+~5~+) - (i-,)(ri~-,)O''L+ l1Sl14)

+'~ (\_,i.)~ 11
A' S 4- 't, 1.

lr ( ) l~t" ~'\~) C. (1-,1.) Ll- 1-+ 24c.s Vi~ -: 11 11
, ~ti (()~) i L 945 ~..t1 (In,-iiOi(\~s,~)) ~4.57)

Furthermore, the rate at which surface streamlines diverge from the

non,.rotating streamlines ( , = const.) may be calculated from the

ratio of the surface velocity components

9. =
ll~

..
\.5-:
\l

..
= - cl¡

" 1.+ S" Rti
\ 1. \

or

b ~ -l L ~q ri cl! - 3.) 1:: i C't (59' - SIO\f'L + 115',1+) (4.58)d.'f Y d'1 7~ "3190 ~~)5¡7 .
This result implies that the effect of rotation is to cause all sur-

face streamlines (including the edge) to cross lines of constant ~

-
toward positive t at a rate proportional to Rand z"'I .

Confirmation of these and other features of the first-order solu-

tion was sought by means of the rotating fluid dynamic experiment des-

cribed in the next section.
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IV.2 Weak Rotation Experiment

iv. 2 . 1 Description of Experimental Methods

In order to examine the dynamical consistency of the extended

similarity solution, the source flow experiment described in Sl was

modified such that it could be performed on a rotating table. A square

(3 x 3 ft.) plane of 1/4-inch thick plate glass was supported by an

aluminum plate and mounted on a 4-ft.-diameter rotating table at an

angle of ~ = 11.5° to the horizontal (Figure 4-l(a)). Furthermore,

the plane was situated such that the axis, of rotation intercepted the

centerline of the viscous source flow (x = 0). The table turned on

air bea~ings and its speed was controlled by a Graham variable-speed

transmission coupled to the motor drive. Since the experiment was

carried out in the laminar regime, the appropriate value of Vt is

given by the molecular coefficient. The working fluid was a mixture

of silicone oils (Dow Corning 200 Fluid), blended to achieve the desired

viscosity (about 50 cs.). The kinematic viscosity coefficient of the

oil was measured using a Cannon-Fenske calibrated viscometer. Also,

since only a single liquid layer was used, the norml component of gra-

vi ty was not reduced by the density of the upper fluid (air) in this exper-

,.
iment, i. e., ~r == '\ c.~~

A uniform flow rate was maintained by a constant-head device, posi-

tioned at approximately the same radius as the top of the plane so that

the net potential difference between the two points is unaltered by the, .

centrifugal field due to rotation (see Figure 4-1(b)). The fluid eman-

ated from a 3/4-inch-diameter tube at the head of the plane and was col-

lected at its base in an aluminum trough. From there it was pumped back



Figure 4-1 (a) . Overall view of experimental apparatus.

Figure 4-l(b). Circulation system (right to left):
peristaltic pump, reservoir, constant-head device,
source at top of plane.

112.
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into the reservoir. The flow rate was determined by measuring the

volume of fluid samples taken at the end of the plane over intervals

of approximately 20 sec. A plexiglas cover was used to shelter the

flow from the wind field created by the rotation. To provide a basis

for determining rotational effects , the non-rotating source flow was

first established in each experiment and measurements were taken. Then

the system was spun up and the procedure was repeated with rotation.

Two sets of measurements were taken. The first series was designed

to trace the trajectory and velocity of surface particles. Small flakes

of thin, glossy paper were dropped onto the surface of the oil and held

there by surface tension as they were advected downstream. Using a

strobe to multiply expose a photograph, the position of the flakes was

marked periodically against a O.l-inch grid which lay beneath the plane.

The time lapse between strobe pulses was .394 + .007 sec. and a typical

exposure shows the flake at 12 different points in the flow. High-con-

trast Polaroid film (type 51) was used so that the small white particles

could be clearly distinguished against the darker background. The esti-

mated accuracy with which the surface flake positions could be measured

was + 0.1 inch. Unfortunately, attempts to determine the position of

the edge streamline from these photographs were frustrated by wetting of

the plane during the transient stages of the experiment. The apparent

edges in each picture indicated the boundary of maximum coverage by the

flow over all phases of its development, and despite careful spin-up

procedures, no consistent trend in the edge position could be discerned.

The aim of the second set of measurements was to determine the
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layer thickness profile at a point y = 63.6 cm (= 25 in.) downstream

from the source. For the purpose of traversing this section of the

flow, a mechanized cart was built to run along hardened steel rods on

linear bearings, driven by a small d.c. motor (see Figure 4-l(c)). The

cross-stream position of the cart was determined by counting the turns

of a potentiometer coupled to the driving mechanism. A depth micrometer

mounted on the carriage was driven in a direction normal to the plane by

another small motor. Two separate electrical contacts, which completed

a simple circuit containing a small battery, were attached to the verti-

cal drive mechanism in order to 1) register every full revolution of the

micrometer barrel (.025 in.), and 2) divide each revolution into twenty

equal parts (.00125 in.). By this technique the position of the micro-

meter could be resolved to better than 0.001 in.

A thermistor needle probe, fastened to the tip of the micrometer

arm, was used to sense the surface of the layer. Placed in one arm of

a Wheatstone bridge, the probe was balanced against an identical ther-

mistor mounted just above it in order to cancel the effects of tempera-

ture variations and local air currents. (See Figure 4-1 (d) . J Both the

bridge output and the signal counting the micrometer turns were trans-

mitted through the slip rings and displayed on a Mosley 7l00B dual-

channel chart recorder. When the probe entered the silicone oil, the

bridge balance was radically altered and the layer thickness could be

calculated using the micrometer reading at that point.

The reliability of the absolute thickness measurements hinges upon

accurate knowledge of the distance between the glass plane and the trans-

~
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Figure 4-l(c). Horizontal traversing mechanism:
motor~driven cart carrying micrometer.

Figure 4-l(d). Close up of thermistor needle probe.
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verse path of the micrometer. A small non-uniformity in this gap was

traced to bending of the steel rods under the weight of the cart and leads

to an uncertainty in the absolute thickness values of + .0038 cm. How-

ever, the measurement of relative thickness changes (due to rotation) at

a given horizontal position were limited only by the precision to which

the probe position could be determined and had an estimated error of

+ .0008 cm.

iv. 2. 2 Experimental Results

A. Streamline Data

Two surface-streamline experiments were performed with slightly

different flow parameters. These quantities are listed in Table iv below.

~
The trajectories of the surface particles in the non-rotating cases (f = 0)

are compared to the theoretical streamlines passing through the same ini-

tia1 point in Figures 4-2 (a) and (b). The lowest-order edge streamline

is also included for reference. Notice that the error bounds on the final

theoretical points derive from uncertainties in the measured parameters.

In both cases, the agreement on the lefthand side of the flow is quite

satisfactory in term of spreading and downstream displacement. Hmvever,

observed streamines in the negative half plane show a peculiar devia-

tion from theory, not only in these results but also in rotating cases.

The downstream displacements on this side of the flow are consistently

smaller than predicted, while the spreading is enhanced slightly. The

source of this discrepancy is believed to be related to a blockage of

the flow which occurred at the righthand edge of the plane, but the de-

tailed interaction is not understood. Fortunately, the trend is suffi-
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ciently systematic in the non-rotating experiments that the effect may

be accounted for in the rotating results by ?djusting the observed dis-

placements by the amount of the discrepancy found at the same point in

1\

the flow for f = o. The maximum correction called for by this method

was 16% of the total downstream displacement, and only points for which

,~- Q.i. were affected. The implicit assumption in this procedure is

that the spurious effect operates independently from the rotation, so

that the physical effects are separable.

In the absence of rotation, theory predicts that the downstream

coordinate of the last flake position is given by the following formula

(see 81),

\J ': 4.-1
1 .lCl " ( S "'! A. 'I, 1.) '1( ~'1i'" -+ 3t-"5 ~ t ~ Q) (,_~'l) åt 1lt ) (4.59)

where y. is the initial coordinate and A t is the total time elapsed.i
The most striking evidenee of rotation occurred in this integrated measure

of downslope component of surface velocity. These results are displayed

in Figures 4-3 and 4-4. For a given surface flake, the difference between

the final downstream positions, with and without rotation, ('ft- 'tHD ),

was normalized by the total downstream displacement in the non-rotating

case ( 'lito - 'Ii ) and plotted against the mean value of 't over the

particle trajectory. Experimental points for t ~ - 0.2 (about 25% of

the data) have been adjusted to account for the displacement anomalies

observed in the non-rotating results.

The basic antisymetric displacement pattern which indicates a

similar structure in the surface velocity field compares well with theory
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in all cases. For the lowest rotation rate (Figure 4-4 (a) ), this effect

is barely visible above the noise level of the measurement. At moderate

speeds (Figures 4-3(a) and 4-4(b)), the perturbations are more pronounced,

so the agreement with the theoretical points is more significant. However,

superposed on the observed perturbation profiles for these cases are

systematic deficits and excesses of downstream displacement in the central

and edge regions respectively. At the highest rotation rate (Figure 4-4

(c)), these discrepancies are even larger and rise substantially above

the experimental error. This phenomenon is attributable to centrifugal

effects which will be discussed further with regard to the thickness

measurements.

The error bounds on the displacement measurements arise both from

observational errors in ~L and imprecise knowledge of ~~~ due to uncer-

tainties in the flow parameters. The error limits tend to be augmented

near the edge of the flow and diminished in the center because of the

opposite trend in the total displacement, ( ~tto - ~i ). The inaccuracy

of the theoretical values corresponds roughly to the size of the triangu-

lar points except where error bars are shown explicitly.

At the small rotation rates required to minimize centrifugal influ-

ence on the surface-particle traj ectories, the distinctive cross-stream

features predicted by theory, i. e., the bending of the surface stream-

lines toward positive x, were effectively masked by observational errors

and uncertainties in the flow parameters. According to the integrated

surface velocity, the lateral shift due to rotation of the last particle

posi tion on the longes t streamline should vary from less than 0.1 in. for

the lowest rotation rates to nearly 0.4 in. at the highest speeds.
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Although the largest of these differences could have been resolved from

the photographs, the contamination by centrifugal effects was significant

in those cases and the expected trend was not observed. Therefore, there

was a need to corroborate the evidence offered by the downstream displace-

ment patterns with careful measurements of the layer thickness.

B. Thickness Data

The layer thickness data derive from three separate experiments in

which the thickness profile was measured at à point y = 63.6 cm down-

stream. To correct for the flow pattern anomalies observed in the stream-

line experiments, the source was moved closer to the center of the plane.

As a result, no such inconsistency appeared in the thickness data. The

parameters for each case are given in Table v. below.

Due to the excessive time (about 1 hr.) required to measure each

thickness profile, it was found that the viscosity of the silicone oil

changed significantly over the course of each experiment because of

selective evaporation of its more volatile (less viscous) components

from the large layer-surface area. The values of Vt quoted in Table V

represent mean viscosity for each trial as determined by averaging the

viscometer reaaings taken before and imediately after each profile

measurement.

A comparison between the thickness measurements in the non-rotating

cases and the parabolic theoretical profile is presented in Figure 4-5.

The agreement is striking in all cases, with minor discrepancies falling

wi thin the bounds of experimental error. Inaccuracies in the absolute

values of d (+ .0038 cm) result mainly from difficulty in gauging the

distance between the micrometer and the solid plane. On the other hand,
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confidence in the theoretical curves ranges from + 1.2% to ! 1.5% depend-

ing on the precision to which the flow parameters could be measured.

The thickness measurements made in the rotating system were taken

at symetric intervals across the flow and the results were decomposed

into a symetric mean profile and a skew component, i.e.,

d; cl i. -t A del (4.60)
where d is the average value for two symmetric data points and å cl Cl

m

is the observed deviation from the mean. Recall that the axis of rota-

tion in the .experiments intercepts the centerline of the non-rotating

flow. This renders the centrifugal effects on the thickness profile

symetric about the y-axis. Therefore, the decomposition facilitates

the comparison to theory by isolating the predicted Coriolis effects

in Aclci. Furthermore, an attempt was made to minimize calibration

errors in the data by removing from Ado. a small but systematic anti-

symetric component Ado which was noted in the non-rotating profiles.

By placing the entire traverse on a flat mill block, the cause of Ado

was determined to be the flexure of the traverse rods under the weight

of the carriage. Finally, the data were normalized by the theoretical

centerline thickness,

:. (Q.'L V, ~) I"
'1) 0 ,.

s (~?

c
Ca... )"1

(4.61)

where y = 63.6 cm.

The resulting measure of the influence of the Coriolis forces on
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the basic viscous flow field,

li =
åda. - ådo

'"o (4.62)

is plotted against the normalized cross-stream variable, 't ' in

Figures 4-6 and 4-7. Agreement with the theoretical curves is quite

satisfactory throughout the entire range of rotation rates. The only

significant departure from this pattern occurs near the edges of the

flow, particularly at the higher rotation rates. One possible explan-

ation is that horizontal position errors produce asymetries in the

measured profiles at the edge because of the steepness of the thickness

gradient there. In fact, for a typical gradient of 0.02 and positional

error of + .058 cm, the corresponding uncertainty in /i (about + .005)

is comparable to the observed discrepancies. Finally, the confidence

limits on the theoretical contours range in magnitude from + 3% to 7%

and are indicated by an error bar at the end of each curve. Where error

bars are not shown explicitly on the data points, the bounds correspond

roughly to the size of the point.

An estimte of the importance of centrifugal effects may be obtained

by computing the difference between the symetric mean profiles measured

in the rotating experiments and the parabolic profile that would exist

without rotation. The appropriate dimensionless measure of these dif-

f erences is,

~ ::~
d~ - dt.

')0
(4.63)
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II
where the subscript t signifies a theoretical calculation with f = O.

Again the thicknesses have been normlized by the centerline value given

by (4.61).

The centrifugal data for all three experiments is presented in

Figure 4-8. As might be expected, the centrifugal forces lead to a

"dishing out" of the layer-thickness profile, characterized by negative

values of àe in the center of the flow and positive deviations near

the edge. This effect is not discernible above the noise level at the

lowest rotation rate (( = . 216 sec -1) and is only barely visible atA -1
f = .478 see

A -1
However, at moderate rates (f = .750, .756 sec ), the

pattern emerges and the effects are quite pronounced at. the highest" -1
value, f = 1.316 sec Direct comparison of Figures 4~6and 4-7 with

4-8 reveals that at moderate turning rates the magnitude of the anti-

symetric perturbations is more than twice that of the symetric dis-

turbances, whereas at the highest rates the levels are comparable.

Therefore, the desire to maintain Coriolis forces as the dominant rota-

tional influence constrains the Coriolis parameter to these low values

for this experiment.
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IV.3 Discussion

The layer-thickness experiments, together with the surface stream-

line results, confirm most of the important aspects of the similarity

solution with weak rotation. However, in order to test the theory ade-

quately, a careful tailoring of the experimental parameters was required

to minimize extraneous influences. First of all, the rotation parameter

R= (_S:ayi.)I~ fA.
\. ~: "t'l

in each experiment had to be made small but finite

in the region of interest. Using the coordinate of the thickness pro-

file measurements as the downstream scale (Y = 63.6 cm), the value of

R ranged from .104 to .7-6 over all experiments. At the same time, the
,.

constraints on the convective accelerations (f'~ I

i.
character of the flow ( ~ ¿ Ll

) and jet-like

) had to be satisfied. These para-

-2
meters were typically of order 10 at the thickness-measurement station.

Furthermore~ the flow field was subject to the implicit restriction that

the interface remain stable. It was found that waves on the free sur-

face could be suppressed by adhering to the stability criterion for the

growth of long waves on a two-dimensional layer of thickness ,ir (see

Yih 0.969) p. 502), namely

's'R ~ \
5

(4.64)

where ~ =
,.~S

i.
'3~t ( 1. Yo 1. )""

Q , . -
s~~y -

11 f'l

3 "t
is the Reynolds numer

based on the average velocity in the layer. Specifically in the region
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where

y ~ . \18
, ~+

( q 'rYl,'

"
'. ''3

)
)

all irregularities in the interface were damped and the surface appeared

smooth.

Because of the intersection between the centerline of the viscous

flow (x = 0) and the axis of rotation, it was possible to discriminate

(at least qualitatively) the antisymetric Coriolis influence from the -

symetric centrifugal effects. As demonstrated by the thickness measure-

ments, the consequence of the centrifugal forces is a "dishing out" of

the thickness profile away from the mid-plane. Since the surface velo-

cities of the lowest-order flow field are proportional to d2, the dis-

crepancies noticed in the streamine experiments between observed and

theoretical downstream displacements (see Figures 4-3 and 4-41 may be

explained in term of the cross-stream pattern of centrifugal thickness

perturbations (Figure 4-8). Moreover, if the radial distance from the

rotation axis is represented by a Characteristic cross-stream length,

then a scaling arguent provides an estimate of the relative magnitudes

of the centripetal and Coriolis accelerations, i.e. ~

"- r' ~y
"

4 r,1A

A-

i.
4\ ( "t~ Y r¡ ) ''i,. 4 'Lt"-l .~y $ "', (4.65 )

Cl.kt .

C6T'.

Evaluation of this ratio at the thickness measurement station (Y = 63.6

em) for typical values of the flow parameters reveals that this ratio

A
approaches unity for f = 5/sec, which is in rough agreement with the

experimental evidence that the two effects are comparable at f = 1.3/sec.
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Since the theory is modelled after geophysical flows in which centri-

fugal effects are negligible, the desire to produce the same situation

experimentally requires that the quantity in (4.65) be small.

Finally, another influence which must be considered in the labora-

tory flows is surface tension Ü. In the rotating experiments, sur-

face tension held fluid on portions of the plane which were wetted

during the transient phases of the flow, thus disguising the position

of the true edge. Furthermore, it probably played a role in producing

the peculiar asymetry observed in the non-rotating surface streamline

patterns which seemed to be linked to a buildup of fluid along the

righthand border of the plane. The maintenance of this blockage effect

and its interaction with the rest of the flow are thought to involve

surface tension to some degree. Apart from this isolated feature, how-'

ever, surface tension is not expected to exert a strong influence on

the basic dynamcal balances within the layer. If term involving

are included in the theoretical formulation, then the parameter which

appears in the dimensionless sys tem to measure their importance is

r =
cr

f ~ r \'1'1-1.

i ff/fÔ..) '/'1
which represents the square ratio of the surface tension length ,I, I'

to the cross-stream scale. Using the average value of for the sili-

cone oil ( io.ca ~,1n( ¡(VI. ) r' is found to be of order 10-4 in,

the region of interest and ( rr / f~r

its gradients are neglected, the physical effects of surface tension

'It.
) =.15 cm. Furthermre, if
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are introduced at the edges of the flow where the layer-thickness grad-

ient must be adjusted to the proper contact angle with the solid plane.

The basis for ignoring these effects is that the resulting modifications

to the flow field are expected to be small (order r to some power) and

confined to within a surface tension length scale of the edges.

With the necessary conditions satisfied and special laboratory

effects accounted for, the experimental evidence of the surface-stream-

line and layer-thickness results demonstrates the following distinctive,

rotational features of the theoretical solution:

(i) the downstream component of surface velocity is enhanced

in the positive half-plane and diminished correspondingly

on the negative side, with corrections which grow with

dowstream distance like y2/7;

(ii) moreover, the layer-thickness perturbations also depend

on y2/7 and are distributed antisymetrically across the

stream according to a fifth-order polynomial in the nor-

malized cross-stream variable, lt

(iii) furthermore, the lateral shifting of mass indicated by the

perturbed thickness profile implies that the axis of the

flow as well as all surface streamines including the edges

are systematically bent toward positive x (Qr 1\, ), diverg-

ing from the non-rotating streamines ( , = const.) at a

-5/7rate proportional to y .

The magnitude of the deviations from the

is controlled by the rotation parameter

lowest-order viscous

_ ('37. Q~ y-i )'" ,.
R-, "1 ~ 4- r

~ t' t

solution

, and the
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corrections are therefore directly proportional to the rotation rate.

An estimate of the range of validity of the theoretical solution

is obtained by requiring R ~ , , or

y ~
( 4,. "! '/?.

Vt: C\r )

"i 'L ~ .
r S q

( 4. 66)

Although this constraint could be easily satisfied in the laboratory,

its application to the geophysical flows considered in this study is

severely limited. Specifically, if typical parameters from the Norwe-

gian and Mediterranean outflows (Tables I and II) are combined with

estimates of the turbulent eddy viscosity using Faller's formula

(Chapter III), the maximum downstream scale over which (4.66) would

apply is less than a kilometer. This assessment is consistent with

the small values of the source flow Ekmn numer derived from the out-

flow parameters in Chapter III, which indicates that while the weak

rotation analysis may apply to unusually thin outflow layers and pro-

vide useful insight into the dynamical balances which do exist, the
I .

actual outflow currents are dominated by rotation subj ect to weak fric-

tional effects. The treatment of this strong rotation limit is the

subject of the next chapter.
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CHTER V

Strong Rotation in the Ekmn Layer Model

The mathematical problem in the strong-rotation limit of the

Ekmn layer model is considerably more complicated than that for the

viscous limit. Unlike the rotational perturbations to the viscous

flow which could be made arbitrarily small in the limit as R ~O, the

frictional effects remain significant as the viscosity vanishes, but

become concentrated in a very thin region adjacent to the boundary.

Therefore, the major difficulties of this analysis occur near the edges

of t~~ flow where the thiek-layer approximation breaks down and the

general equation (3.64) must be applied .to account for viscosity. More-

over, the orientation of the edge streamline is not known apriori, but

must be determined as part of the solution.

Due to these complexities, an analytical solution valid over the

entire flow in this limit remains inaccessible. In its place, a simi-

larity solution for the thick central portion of the stream will be

derived using a multiple-scale expansion technique. The determination

of this solution is not complete however, but requires a single constant

to be specified by the upstream boundary condition. A similar problem

was encountered by Clarke (1968) in his analysis of two-dimensional

flow of a viscous liquid jet under gravity. He found that the asymp-

totic expansion for the dowstream flow could be fitted to a viscous

solution near the orifice by matching a single variable on the symetry

axis. In the present formulation, the quantity which governs the
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similarity forms is taken to be the position of the upper boundary of

the thick layer, and a parametric study of the similarity forms is pre-

sented in terms of this variable. The similarity solution for the cen-

tral core of the stream is supplemented by an approximte solution for

the viscous edge region, which is derived by the method of character-

is tics and predicts the formation of a front along the upslope edge

under certain conditions.

In addition to the mathematical treatment, a series of exploratory

experiments will be described whose purpose was to test certain aspects

of the theoretical results while providing further insight into the

analysis. Despite temporal variability in the laboratory flow, the

qualitative features of the approximate solutions are confirmed. How-

ever, the poor quality of the detailed measurements precludes making

a quantitative comparison with theory. The general picture whiCh emerges

from the combined results of theory and expe~iment is that viscous pro-

cesses acting along the lower boundary of the central core pump dense

fluid down the slope in a thin layer of Ekn scale and thereby drain

the geostrophic layer over a downstream distance proportional to
"

source flo_w length scale t - (1. (~ ,II¿
, - -rli'L)

~
E:. Pt.'!r 1(1. q

the

magnified by the inverse square

root of the Ekmn number, The similarity solution,

once determined, provides an estimate for the extinction point of the,

thick layer beyond which the strong rotation approximtion breaks down

and the equations for the general case apply.

The theoretical analysis will be presented in the next section,

followed by a description of the experiment and a discussion of the

results.
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V. 1 Approximate Theories for the Strong-Rotation Limit
of the Ekman-Layer Model

As demonstrated in Chapter III, the general equation (3.64) govern-

ing the layer-thickness distribution in the Ekman layer model reduces

to a simple diffusion equation, (3.72), in the limit where the layer

thickness greatly exceeds the Ekman scale. In order to make use of

this approximation, the flow field in the downstream region will be

divided into three regimes as illustrated in Figure 5-10 In the central

portion (region II), the layer is thick and the flow is basically geo-

strophic with an Ekman layer near the bottom. This region is assumed

to be simply connected and bounded by two contours ~= 'l': ()t) along

which the layer thickness approaches the Ekman scale ( c:= BCn land

the simple diffusion equation ceases to apply.

Bounding the central core are the upper- and lower-edge zones

(regions I and III), in which the thickness varies from the scale of the

Ekman layer at the transition lines to zero at the edge streamlines,

'I = '/: fl) . The disappearance of 
the overlying geostrophic current in

these regions means that the chara¿teristic Ekman spiral is no longer

required and the dynamic effects of rotation and viscosity are compar-

able throughout the layer. Although its orientation is unknown, the

existence of a distinct edge streamline near the upper boundary of the

thick layer is assured, since there is no physical mechanism in the

viscous regime by which the dense fluid can propagate up the slope.

Moreover, the downstream component of velocity in the adjacent geostro-

phic flow implies an Ekman flux away from the upper edge. Clearly, this

'IC:"~('I) , since the viscouscross-stream transport must vanish near
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zone has no sources of mass. Thus, the upper edge region is narrow and

passive and contains very little mass.

On the other hand, the shape of the lower-edge streamline is not

evident. The Ekman flux out of the geostrophic layer at 'l'= 'l~(lll contin-

ually feeds fluid into the lower edge region where its deceleration by

the viscous forces causes the flow to spread out in downslope direction.

The analysis of the weak rotation limit indicates that the free edge of

a source flow in this regime is deflected toward positive x at a very

2/7
slow rate proportional to y . Nevertheless, because of the limita-

tions of the perturbation scheme, it is not possible to state categor-

ically that a distinct lower-edge streamline exists at finite y over

the ,entire downstream range considered in the following analysis. The

point is moot, however, since the lowest-order solution in the central

region may be derived by specifying continuity conditions along the

transition contours,
"1

Y:. 'lor ()t) , and does not require a detailed knowl-
edge of the solution in the lower edge regime. Moreover, the treatment

of the viscous zone near the upper edge by the method of characteristics

provides a local solution which is based on initial data along the source

profile and is independent of the dynamies near the lower edge.

V.1.l Multiple-scale Analysis of the Central Region

For the purpose of applying a two-scale expansion procedure to the

flow in the thick geostrophic core of the stream, the dimensionless

variables of the source flow scaling will be utilized. The relationship

between these variables and those under the Ekman layer scaling is ex-

pressed in terms of the square root of the source flow Ekman number, i. e. ,
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(~) ~ l d) - '1 t ("~ l 'i i ;¡ ) (5.1)

where E~ ~~
In this system, the strong rotation limit of the layer thicknessequa-

't = ~/'l) '/~ and

tion takes the form,

t (d~~ + ~q1)

A

:. d, (5.2)

Notice that, in these terms, the transition to the viscous edge regime

occurs where the dimensionless layer thickness is order .,, that. is,

~
d = 6Ct) :t '" A+"C& 'f :: 'f; l1') . (5. 3)

To complete the formulation of the problem for the core region,

the vanishing of the cross-stream transport on the upslope side of the,

flow is specified, i.e.,

.l
v= 0 at

Jo ,. _ '"
'1= 'f,. (I() (5.4)

~.
'1'

Then the form of the conservation principle for the dowstream flow rate

may be revised as follows. If the integral in equation (3.35) is divided

into three intervals across the edge and central sections,,. - ;. " ""

p;: + L + (" j ÎJ d-i = ,. -l '1, (5.5)e 'IT 'h

then the mass carried in the upper edge zone is negligible. Moreover,
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the ambiguity associated with the position of the lower edge streamline

may be a~oided by relating the flux in the last segment of (5.5) to the

accumulation of cross-stream transport at the lower boundary of the core

region, i. e. ,
l" -t

S'l~ ,.UclA#0.. 1
''I

"

lll V\#o ~+ d~o 'f&'"
Thus, the modified version of the integral constraint appropriate to the

analysis of the thick layer is

" +

1~~
'l'T

,.
1f d~ = 1 - f~ -\ \ cl~

lo ~ =;~ (5.6)

where the expressions for the local layer fluxes in source flow variables

are given by

,. .. I\
11 = Ci - d~ ) d

,. ..
- i í \-d~ +-c!~ 1

(5. 7)

and
.l ,. ~
y =- cl¥. a -\ t (, - dG - j ~ 1 (5.8)

Notice that the flow rate in the central zone is not constant but is

diminished by losses due to the Ekman flux at its downslope edge.

The appearance of the small parameter, t ,multiplying the diffu-

sion terms in equation (5.2) indicates that the weak influence of fric-

tion acts over a long distance in the downstream direction. This implies

the existence of a long downstream scale defined by,

x=i'~ (5.9)
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and forms the basis for the multiple-scale analysis. Assuming the layer

thickness is a function of this variable as well as the other geometrical

"
coordinates, d is expanded in an asymptotic series of the form,

A

ct (X,~ ,X) =
co

~
t\o

.. 't "
o d~ (~)~;~) = do + i d, +- &(11.) . (5.10)

In addition, the locations of the transition lines depend on 1 and are

expressed by similar expansions,

"+ .. ~ +
'1T- (î)X), 1: ~ t - (K xl ="-=-o 'IT" J '/;0 + 1 'I;, + &(11.) . (5.11)

Notice that the lowest-order contours do not correspond to the inviscid

edge streamlines because of the explicit dependence of i:
,1To on X. These

asymptotic sequences are associated with the limit process, t.. 0 forA, .
fixed x, and represent an application of the general two-variable expan-

sion procedure set forth by C~le (1968).

The object of the two-variable technique is to construct an expa-

sion of the solution in such a way that the first term is uniformy valid

over the region of interest. In the present case this is accomplished by

allowing the basic solution to be modulated on the long downstream scale,

thereby eliminating secular growth of the first-order corrections on the

"
short dowstream scale, x. Substituting the expansions (5.10) and (5.11)

into (5.2) to (5.8) then equating like orders in 1 leads to the follow-

ing sequence of problems. At order one,

dol' = 0
)(

do = doCGi)t)
) (5.12)
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(5.13)

and ~
r 'lIToL do d ~
'1';0

= i - X + r cl~1 c. Xo ~ ~ 'f~o
t5. 14)

Thus; on the short downstream scale, 0 ~ ~ ~c. t , the layer thickness

,.
profile is invariant with x and the geostrophic flow parallels bottom con-

tours. According to (5.14), however, the initial dimensionless transport

of unity in the thick layer is strongly modified on the long downstream

scale. In fact, the form of the last two terms in this expression, which

represent an integratio~ of the Ekman flux at " u-+
'I;. TTo

over X , implies

that the core region is destroyed for X of order one. In dimensional

term, this means that the geostrophic layer is entirely drained at a

~-, ,
distance of approximately . ~ downstream.

At order 1 , the thickness equation leads to the following rela-

tion between the lowest- and first-order variables,

cl, ~ = clo~q -d oX

To insure uniform validity of d over the scale of)( , secular growtho

of di on the short downstream scale is eliminated by setting the right-

hand side of this equation to zero, i. e. ,

do" A -
'l'l

dox (5 . 15 )

Furthermore the vanishing of the cross-stream transport at the upper

boundary, (5.4), provides a value for the thickness gradient there,
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cl o~ = 1 at ~ :: 'l~o CX) . (5.16 )

This condition implies that, to lowest order, the interface of the dense

fluid intersects the sloping bottom horizontally (i.e., d = s) and the
y

flow stagnates, as demonstrated by substituting (5.16) along with (5.12)

and (5.13) into (5.7) and (5.8).

Thus the lowest-order layer-thickness distribution in the downstream

region is governed by (5.13) to (5.16). Although the present analysis

will not be extended to higher order, it is worth noting that all correc-

tions to the thickness profile in this formulation sâtisfy the same equa-

tions :

d 1\ A" = Aii V'
,1'1 ~ for n = 1, 2, 3, ....

due to the linearity of (5. 2) .

Because of the absence of a natural length scale for the rotation-

ally dominated flow in the downstream region, a similarity solution was

sought for d. The form of the similarity function was selected by ref-
o

erence to the transport condition (5.14),

,.
do( 'l.X): r(\) FQ) ) (5.17)

~.

,.
where r:: ,-X and í; ~(íi '1 The general form of f and g are

determined by substituting (5.17) into the governing equation (5.15) and

imposing the conditions of similarity, so that

and

_'II-/..

t = c ((tr + b)
)

- 'Iz.

~ = ~r" b ~

(5 . 18)
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where a, b, and c are free constants. If these expressions are substi-

tuted into (5.14), then a balance between the transport in the thick

layer and the first two term on the righthand side requires that

n = -1.

With this determination of the scaling funct~on, it is convenient to re-

define the similarity variable in order to eliminate free constants in

the equation for F, i. e.,

'k
tt = (~) ~:

"
'f I~t .. h' ) '/1. where b :2 \i

(l
(5.19)

Thus the similarity function, F (1\) , is governed by the following ordi-

nary differential equation,

" ' ,
F -'\~ -41==.0 (5.20)

where ' denotes differentiation with respect to i.

layer thickness is given by,

Furthermore, the

i.". ' )'/'Ldo ~ ) xì - I) (r+ b/i F t~)
1

(5.21)

where D = cal/2, and the transition contours are related to the constant

limiting values of 1 along which F vanishes,i. e. ,

F C,+) :: F C"() :; 0 (5.22)
,
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and

~

'IT 0 (Y-ì ::
'h

(tr-th') '\:t. (5.23)

In term of the similarity solution, the transport relation, (5.14),

may be rewritten as follows:

-l l't
(1."'1) (t+i,~\ I~ J:d, -,) - ( -¿h 1l r,Fd'l - \ + ~Oh. F(,+I)X = 0 .

In order to satisfy this condition ~n general, both the constant term

and the coefficient of X must vanish. This requirement leads to the

following expressions for the free constants,
,

b' =
F't\+) '/ ,1-

S t=cl,
,-

(5.24 )

and

1) =
i.'ii / ~

I (2. I; Fcl,\ + F 't,t)) (5.25 )

Finally, the boundary condition on the cross-stream thickness gradient,

(5. 16), reduces to

(5.26)

(5.27)
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Notice that the success of the similarity approach hinges on the disap-

pearance of explicit dependence of do; on )( . This insures t~e proper

form of the boundary condition at the upper transition contour, (5.26),

and allows the downstream integration in the transport condition to be

performed along the lower contour, ~:: ,+ .

As a result of the similarity transformtion, the shape of the cross-

stream thickness profile is governed by equation (5.20) with boundary

conditions (5.22) and (5.27). Recognizing that the similarity function

obeys Hermi te t s equation (y" - xy t + my = 0) for m =1, a change of var-

iab~es,
'" 1-

ëi: "L /1 G¡~) =: ¡:~) ,

transforms (5.2) into a confluent hypergeometric equation,

~ G¡~~ ..~ - è) G¡~ +-i C9 = 0 I

which has a regular singular point at z = 0 and an irregular singular

point at z = 00. The general solution to this equation is well known in

term of confluent hypergeometric functions (see Abramowitz and Stegun

(1970), p. 492). Returning to the similarity variables, the solution for

F ('l) is given by,

Fe,) - A, -t ß M ('\) i (5.28)

where

M (\ì - Mf.'h) ~ )~) : r (Vi) !
rE,.'i, ) ~ -; 0

f i~r 'k "tll) L
p(\I+l') z.rit1~ ) (5.29)
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is a convergent infinite series known as Kummer's function, and the lin-

ear term is the first Hermite polynomial. Noting that the amplitude of

the layer thickness is prescribed by D, the value of B may be set to one

without loss of generality, i.e.,

B_1 (5.30)

and A then measures the partitio~ing of d between its symetric and
o

antisymetric components.

The boundary conditions must now be used to determine relations

-l -
a.ong the free constants 1\ i l' and A which appear in 

the solution.

Notice that the expression given in (5.27) is not a true boundary con-

dition but a particular integral of the governing equation for F. To

, show this, (5.20) is written in the form

F ii - (l\ F l + i. F :: 0
) (5.31)

which on integration across the profile leads to (5.27). Therefore

this condition provides no independent information about the solution

and is automatically satisfied for any determination of the parameters.

Substituting the general form for F into (5.22) results in the

following conditions,

F C. ~+, - A yt-+ + t'(~t) = 0
(5. 32)

F (\f) = A 'r- + M (,,-) - 0 (5.33)
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These expressions may be combined to give a single relation between

tt.. and yt

~(ll+i~.) -:,'" M~r) - of t1Qt-l) - 0 (5.34)

Equa tion (5.34) was solved numerically on an IBM Sys tem 360 computer to

determine ,'" in terms of ~ using Newton's method of successive

approximtion. For a specified value of 11-, the magnitude of t+ was

first estimated, then corrected using a Taylor expansion of G about

zero. . This technique required the calculation of t1~1 and its first

derivative which were approximated by,

r~) N r(l-i +\\)
It\

M~.\= ~ - i
~ "'-i) K =-0 r ('/.. ~ ) i," y\ '.

~' '=
cl t' ~ ""

r'f-'l-'" M)
11\-\

E ..~ -
r ~"-D ":=..0 r~-l") i".' (V\-\) !

(5.35)

(5.36)

The results of the computation were found to be independent of the

order of the summtion for N~, 20 and the correction procedure was- -6i tera ted until the magnitude of G in (5. 34) was less than 10 . Once

the appropriate value of vt+ has been found, the other constants in

the similarity solution b' /2, D, and A may be determined from (5.24),

(5.25), and (5.32). These parameters along with ~+ are plotted for

the range -3~ \" 0 in Figure 5-2 (a) , where the free constant b' /2

in the similarity variable has been combined with one to form

X = 1+ bInE. i. (5.37)
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+
The results show that , decreases as the magnitude of ~ increases

whereas XE increases monotonieally. At the point where A is zero, the

profile is symetric (tt'i:-"f; ,.~ ) while the amplitude of the simi-

larity function D reaches a maximum near ll- = -I . Sample profiles of

Fe,) for it-= -\.0, -1. 3 and -1. 75 are displayed in Figure 5-2(b).

Outside of this range, the shape of the profile becomes highly distort-

ed with a steep slope on one side or the Qther due to the growth of

the antisymetric component.

The problem of determining the similarity solution for the

lowest-order downstream flow field has now been reduced to evaluating a

single constant by application of the upstream boundary condition. In

principle this may be accomplished by matching asymptotically with the

first term in the expansion for a single flow variable in the upstream

region at a point where both expansions are valid (see Clarke (1968)).

Once the specification is complete, the 'velocity and' transport functions

may be expressed in term of the gradients of the layer thickness var-

iable,

"-
t 1) (,i='-Fld~ - - i

i CXE-X)ii ,

and

c! " = ~ ç'
~ ilk .

(5.42)

(5.43)

The dimensionless horizontal velocity components in the source flow

variables are then given by,
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I\ ,.
u.= \-d.G ((\-~q)Cø~'i+~~ slA\l e-: (5.44 )

and

û- = Jî - ( dx Ce~\ - Ci-d~) S\M\l é\ (5.45 )
'-

where
A.

't = i.¡ i y. - Z Similarly, the transport functions

are expressed by (5.7) and (5.8). The corresponding dimensional form

may be obtained by inverting the flux scaling given by (3.18).

Several very interesting aspects of the downstream flow are evi-

dent from the form of the similarity solution. First of all, the thick

central core of the stream is extinguished at a downstream point defined

by

x. e. =
1., Xli

"t (5.46 )

Physically, this means that the cumulative effects of Ekman suction

and leakage from the lower edge of the geostrophic layer serve to re-

duce its dimension to the Ekman scale across the entire flow leading

to a breakdown of the thick layer approximation. Furthermore, notice
"

that the behavior of the downstream thickness gradient, d~ ' is singu-

lar as )( approaches )(E. This aspect of the solution is anticipat-

ed since the multiple-scale analysis neglects the highest-order down-

stream derivative in equation (5.2). The implication of this result

is that the downstream derivatives become important near the extinc-

tion point, X-X- -E , where the transition contours meet.

Before proceeding to a description of the laboratory experiment,
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the method of characteristics will be employed to obtain simple re-

sults for the viscous flow near the upslope edge streamline which gives

insight into the upper edge dynamics and provides justification for the

constraints applied at the upper transition contour.

V.1.2 Method of Characteristics for Flow at the Upper Edge

Because of the existence of a distinct edge streamline along the

upslope boundary of the flow in region I (see Figure 5-1), a more re~

strictive approximtion may be applied to the layer-thickness equation

(3.65) derived for the weak rotation under the Ekmn scaling. If the

second derivatives of d are well-behaved at the upper extremity of the

edge regime, then the vanishing of the layer thickness implies that an

approximte balance exists among the first .derivatives, Le.,

-~ -t.
cl'i + d~ = d" for d ~O. (5.47)/

The standard analysis of this nonlinear first-order partial differen-

tial equation by the method of characteristics is presented in Appendix

c. The initial data for the computation are specified on the source

profile along x = 0, that is,

ï.': X:. 0

and

å (0 J ~ i t) = 'i - q¡ (0) = t i

J (o,~) = u.li) i

~ (o,,i) = ~6Ci\ i

dq (0, ~~ : "Ctl J

(5.48)
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where t ': 'i -~t to") is the parameter for the initial data, (t. ,6 )

defines the trajectory in the (x,y) plane of the characteristic ema-

nating from the point t on the initial line, and u , p , and q are theo 0 0
initial values of the thickness variable and its first derivatives.

For physical and mathematical reasons, the cross-stream thickness grad-

ient on the source profile, q , must be bounded from above and below,o

i.e. ,

o ~ i' ~ ,
(5.49)

With this constraint, the solutions along characteristics may be in-

verted to yield expressions for the characteristic paths and the layer

thickness function in terms of the geometric coordinates (x,y) and the

initial data,

'l t j ) t) - ~; (0) -:
-¿4o-l-- X
~ "\0 U-cio)

T- t \ (5.50)

and

d (i, 'I ; t) - -k
i V \oii-io)'

X + tAo(l) .
(5.51)

The restrictions on the magnitude of q cause the value of d too

increase in the downstream direction, so that ultimately the assump-

tion of vanishing thickness will be violated and second derivatives

must be included. Furthermore, the characteristics issuing from the
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initial profile tilt downslope since

~ =
d~

~o-\ ~ ~ 0 .
'l 10(1-\0)

(5.52)

This ,result supports the contention that the dense fluid cannot move

upslope in the viscous edge regime. To obtain additional informtion

about the solution requires a more detailed specification of the source

profile. In particular, it is reasonable to assume that for a balanced

inlet profile, the thickness gradient decreases in the cross-stream

direction so that the interface tends to parallel the bottom. This

implies that the second derivative of d with respect to y is less than

zero, i.e.,

~ :: 01 'ii (o,y) ~ 0 .
cA

For steadily decreasing q , crossing characteristics are anticipated
o

because the characteristics nearest the edge pitch downslope most steeply.

This condition leads to the development of a front at the upper edge.

The envelope of characteristics which form the front is defined by

the locus of points that satisfy the traj ectory equation (5.50) and the

condition, dA:o , simultaneously. Thus the coordinates of the en-
d:t

velope (fe ) b.) are obtained parametrically in terms of the initial

d~ ta,

te. ::
2. '31~'~

'i~ ) (5.53)
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and

ß =C
~

ci~

( 'l1: - ~b() +,) + t 1 (5.54 )

where

i: ~ ~'d: 0 d (0 'l t).. d.t = - ~ ~ J - i .

Note that for 0 L i6L , and
i

i. ~ 6 , the intersection of charae-

teristics occurs dowstream from the initial line (t, ") 0 ) and also

downslope from the origin of the characteristic since

Åc. - t
:. ~

i~
C '2i. - I) C. io-l) '; 0

Mathematie~lly, the envelope consists of those points where the inver-

sion from characteristic to geometric coordinates first becomes multi-

valued. Beyond the intersection points, the method of characteristics

breaks down as the front develops.

In the laboratory experiments described in the following section ,
"""

a detailed knowledge of the source profile was unavailable, so that
i,
f

quantitative comparison with characteristic results was precluded.

However, confirmation was sought for the qualitative aspects of the

approximate solution, particularly the development of the front, in

addition to the salient features of the similarity solution, i.e., the

Ekman flux drainage leading to extinction of the geostrophic layer in

the downstream.
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V.2

V.2.L

Laboratory Experiments for the Strong Rotation Limit

Design of the Experiment and Apparatus

The strong rotation experiments were performed in the laboratory

of Dr. W. Malkus at M.I.T. on a turntable designed and built by Drs.

K. Saunders and R. C. Beardsley (1972). A view of the apparatus for

the experiment is given in Figure 5-3(a). The table rides on an air

bearing and is driven with a piece of magnetic tape by a small hyster-

esis synchronous motor. The 42-inch diameter basin consists of a sheet

of Masonite fastened to the perimeter of a circular piece of plywood

with a piece of 1/4-inch plate glass set inside, to form a flat bottom.

The tank is supported by three leveling screws above another piece of

plywood which in turn is raised from the table on aluminum posts. The

circulation system for the source flow is shown in Figure 5-3(b). A

reservoir with a capacity of approximately two liters is mounted on

the rotation axis and feeds dense fluid down through a solenoid valve

into the constant head device below. From there the descending fluid

is carried by a section of 3/8-inch Tygon tubing to the source point

on an inverted plexiglas cone, which is glued to the bottom of the basin.

The fluid is collected at the base of the cone and returned to the reser-

voir by two Cole Parmer Masterf1ex peristaltic pumps. The suction is

distributed evenly around the outer rim of the basin bottom by pumping

through the walls of a plexiglas tube which has been drilled with holes

of varying dimension depending on the length of the travel path to the

pump. This was done to avoid drawing in the light upper fluid th!ough

the thin layer of dense fluid at the bottom of the tank.
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Figure 5-3 (a) . View of apparatus for strong
rotation experiments.

Figure 5-3(b).
reservoir, solenoid

peristaltic pump.

Circulation system showing
valve, constant-head device, and
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The design of an experiment whose physics adequately matched that of

the theoretical model proved to be very ,difficult. First of all, to

achieve the right parameter range ( f~" I E((. I ), it is necessary
)

to reduce gravity in a two-layer system with a small density contrast.

The presence of a viscous upper fluid leads to a stress, which is ab-

sent in the theory, at the interface between the dense bottom current

and the resting layer above. An extensive search was carried out to

find suitable fluids for the two layers. Immiscible fluids were found

to be unsatisfactory because of the influence of interfacial tension

which controlled the dynamics of the edge regions and destroyed the

viscous-rotational balance there. Specifically, in an experiment using

a mixture of methanol and water over Nujol, a heavy mineral oil, the

source flow seemed to contract in the downstream and showed no evidence

of draining by the Ekman flux mechanism. A measurement of the inter-

facial tension by the drop-weight method (Davies and Rideal (1963),

p. 42) showed that the interfacial tension length scale ( \ri: Ift )'h.

exceeded the Ekman scale (1.VL ( i )'ii for this case. Therefore, the

dominance of interfacial forces is anticipated in the edge regime.

Moreover, attempts to blend different fluids to lower their interfacial

tension as described by Hart (1972) lead to a splintering of the stream

into thin veins. It was concluded that miscible fluids were needed if

viscous mechanisms were to be observed in the thin edge regions. How-

ever, care had to be exercised to main tain a laminar flow and avoid

unwanted mixing. After further study, the upper and lower fluids were

chosen to be salt water and a mixture of glycerine and water, respec-
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tively. The high viscosity of glycerine means that stresses at the

interface produce relatively weak shearing within the lower fluid.

Moreover, the viscosity of the glycerine-water solution could be easily

modified by changing its ~omposition, and the density contrast could be

adjusted by varying the salt content of the upper layer.

Another problem encountered was the strong centrifugal potential

field which accompanied the rapid rotation rates required in the exper-

iments. To account for this effect, the conical bottom slope was

machined with a parabolic correction in the radial direction, such that

l.e :-
'i 'l

H - 'l~ +.r R;i~

where 'le is the height of the cone surface above the glass bottom

and Re is the radial distance from the rotation axis. In this con-

figuration, the. potential surfaces due to gravity g and rotation

intersect the cone surface at a constant angle so that the body force

component along the cone is invariant. The equivalence of the govern-

ing equations for the laboratory flow and those derived in Chapter III

for the Ekma layer model may be easily established if the upper layer is

motionless and the curvatures of the cone surface are small. Notice that

choice of this form for the bottom shape fixes the rotation rate for all

experimen ts ( .n z: 2.. '2' NJ/su).

Finally, the laboratory flows show a strong tendency to be time

dependent. This was first noticed in some two-dimensional preliminary

experiments aimed at focusing on the Ekman drainage mechanism. A ring

of dense fluid, initially eontained behind a plastic barrier, was re-
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leased and allowed to adjust to a natural state. Using a stability

diagram derived experimentally by Saunders (1973) for the case of a

flat bottom, an attempt was made to avoid baroclinic instability in the

ring by fixing the Taylor and internal Froude numbers at stable values.

However, a steady azimuthal flow was never attained in the adjusted

state. Instead, the ring would break into a distinct number of vortices

which propagated around the cone. With reference to Saunders' results,

it is apparent that the slope exerts a destabilizing influence. In

spite of the unsteadiness, a thin layer was observed extending dow the

slope from the base of the larger vortices as they moved. In general,

though, the flow was too confused to discern a consistent pattern. The

temporal variability was not confined to the ring experiments. Attempts

to produce steady flow fields in the initial series of source flow ex-

periments were not completely successful and consequently the results

show some interesting transient features.

V.2.2 Procedures for the Source Flow Experiments

At the beginning of each sour~e flow experiment, the value of Q

was determined by adjusting the flow rate from the reservoir such that

the constant-head device was brimmed but not overflowing, then measur-

ing the volume of samples collected in a certain interval of time. The

viscosity was also measured with a Cannon-Fenske viscometer. Next the

flow was cut off by closing the solenoid valv~, the dense fluid was

pumped out of the basin, and the system was spun up. When the relative

motion in the tank had decayed sufficiently, the valve was opened again
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and the source flow was established. This usually occurred within

10 - 20 rotation periods. After another 10 periods, the measurements

of the flow were made. This procedure was followed in order to avoid

the strong mixing that would occur if the two fluids were in contact

during spinup. All measurements were completed before any of the dense

fluid was pumped back into the reservoir so that the properties of the

supply fluid would not be altered. At the end of the measurements, the

solenoid valve was closed and the dense fluid returned to the reservoir

before spinning down.

In the small number of exploratory experiments performed so far,

two types of measurements were made. The first was simply an overall

view of the downstream region obtained from a Polaroid photograph taken

from a point on the frame above the tank. For visualization purposes,

the dense fluid was dyed with blue ink and the conical bottom surface

was scribed with radial and azimuthal lines at 2-inch and l5-degree

intervals.

The second set of measurements was more detailed and made use of

a motor-driven micrometer similar to that shown in Figure 4-l(d). A

probe stem shown in Figure 5-4(a) was attached to the micrometer arm

and lowered in a direction norml to the local bottom slope. The stem

was constructed of stainless steel tubing and carried two types of

probes. Conductivity probes sensed the interface between the glycerine

solution and the salt water, while small tubes were used to inject dyed

glycerine solution into the flow for the purpose of measuring velocity.

The five conductivity probes are mounted at the corners of the frame

~,
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and in the center. Each consists of platinum wire (.014") soldered to

a lead wire and encased in a glass tube which is sealed with epoxy.

The tip of the probe has been ground off to expose the platinum so that

the current path through the fluid is from the probe tip to the central

member of the stem. When the probe entered the glycerine, the resis-

tance changed radically and the position of the interface was recorded.

The diagram for the probe circuit is, given in Figure 5-5. Velocity

measurements were made by injecting dyed glycerine solution into the

flowing layer with a motor-driven syringe shown in Figure 5-4 (b) . Care

was taken to make the dyed fluid neutrally buoyant in the glycerine

solution used for the source. The image of the dyed fluid was deflect-

ed by a series of mirrors to the lens of a Nikon camera which took a

rapid sequence of pictures as the dye streak lengthened. The displace-

mentof the tip of the streak between frames could be used to estimte

the local velocity at a known depth within the layer. The height of

each probe except the center one was adjustable due to a slip fit be-

tween the glass tube and its plastic carrier. Therefore the distance

of each probe above the solid surface could be gauged by lowering each

probe to touch the cone surface at the same point that the center probe

hit.
The flow parameters for the exploratory experiments to be discussed

below are given in Table VI. The source point for all experiments was

located at a distance of Rc = 9.1 inch = 23.1 cm from the axis of

rotation.
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Figure 5-4(a). Probe stem carrying conductivity
probes and injection tubes for dyed fluid.

Figure 5-4(b). Motor-driven syringe.
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Experimental Results

~
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Figure 5-6(a). Source flow for Experiment 7-30.2.

Figure 5-6 (b). Source flow for Experiment 7-30.3.
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waves was quite stable at a single probe, but the period was observed

to increase sharply with downstream distance. A plot of the variation

of ct , normalized by the rotation period, versus dimensionless dOvm-

stream distance ~ is given in Figure 5-7. The error brackets on certain

points indicate the variation in àt over several waves, while the ab-

sence of these bounds on the other points implies that only a single

estimate was available. The photographs for the velocity measurements

were taken at a constant rate of two frames per second but the changes

in the length of the dye streak in successive frames varied by as much

as 50%, indicating that the velocities are also irregular. In general,

the path of the streak tilted downslope and measurements at different

levels indicated that the magnitude of the velocity diminished toward

the solid surface. However, due to the variability, no consistent pat-

tern could be discerned, so these data will not be presented.

An attempt was made to use the qualitative data in Figure 5-6 to

determine the upstream boundary condition for use in the similarity

solution. In experiment 7-30.3, the upper edge begins to move down

the slope at a point roughly 300 downstream from the source and crosses

the downstream axis defined by the source position at 750 approximately.

If this point is taken as the extinction point for the geostrophic

layer, then the corresponding value of XE is computed to be 0.26, which

implies that the upper edge lies at '=-0.5 according to Figure 5-2 (a).

But if the value of ~ is calculated using this value of XE at the

point where the edge streamline begins its descent, is ~ = -2.3, which

corresponds to an extinction point much further downstream. Several
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reasons for this discrepancy may be offered. First of all, the stress

at the interface exerts a drag on the moving layer which decelerates

the flow and may cause it to move slightly downslope because of the

reduction in the Coriolis acceleration. If this were true, then the

point at which the upper edge crosses the downstream axis would not

represent the true extinction point for the thick layer. Moreover,

the' time dependent processes may influence the shape of the edge stream-

line such that the apparent descent of the upper edge is part of a weak

meander pattern in the flow.

Finally, an effort was made to analyze the thickness data in terms

of dimensionless variables. For each measurement, an average value of

"
the layer thickness d was defined by normalizing the mean height of

1\ ,
the wavy interface with ~L ': (~ ) ii. These results are plotted against

the dimensionless coordinates (X,y) in Figure 5-8. In the hope of ob-

tairiing information experimentally about the symetry properties of

the downstream thickness profile, the theoretical depth contours for

the symetric profile (A = 0.01, ~- = -1.3) in Figure 5-2(b) are super-

posed on the data. In view of the uncertainty in the thickness measure-

ment, the magnitude and general trend of the data are in reasonable

agreement with the theoretical distribution. However, due to poor cov-

erage in the downstream region and the ambiguities involved with the

waves, no statement can be made about the character of the cross stream

profile.

It is clear from these results that more definitive measurements

are required in order to analyze the detailed properties of the down-
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stream flow. Nevertheless, these pilot experiments are of value in

confirming some basic features of the Ekman layer model such as the

flux of dense fluid down the slope in a thin layer below the main cur-
~

rent. Moreover, the results are useful in demonstrating the feasibility

of the experimental techniques and in defining some of the problem areas

in both the theoretical and laboratory models. In the next series of

experiments, care must be taken to produce a steady flow for comparison

with theory. In reviewing the experimental results, it was noticed

that the average value of the exit velocity at the mouth of the source

A

exceeded a typical geostrophic velocity scale 1f: ~ by close to an

order of magnitude in most cases. In the streamtube model of Chapter

II, such an imbalance leads to the production of steady topographic

meanders, while in the laboratory flow it is believed to induce the

low-frequency waves observed in the experiment. Once a steady flow is

achieved, extensive thickness and velocity measurements must be made

to encompass the entire flow field for the thick layer. In this way,

the upstream boundary condition for the similarity solution may be

determined experimentally and the resulting theoretical predictions

could then be compared to the downstream measurements. Moreover, it is

of interest to investigate the structure of the flow in the lower edge

regime and near the extinction point to determine layer characteristics

where the effects of viscous and rotational forces are comparable.

Finally, some thought should be devoted to a mathematical treatment

of the flow in the source region for the purpose of defining the upstream

boundary condition analytically. If this can be accomplished then the
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need to rely on the accuracy of the experimental measurements is elim-

inated since the theoretical solution is completely specified.
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V.3 Conclusion

In closing, it is important to attempt some comparison between

the theoretical solution for the strong rotation Ekman layer model

and the observational data presented_ in Chapter II. The streamtube

model results provide an estimate of the strength of the frictional

forces in the outflow currents through the value of the empirical drag

coefficient K derived from the observations. Moreover, the Norwegian

Overflow data would be best suited for the comparison since the

entrainment and ambient stratification exert a weaker influence on

this current than in the case of the Mediterranean Outflow. Using

the optimum value of K for the Norwegian Overflow, it is possible to

estimate a value for the turbulent eddy viscosity on an order-of-magni-

tude basis. If the average velocity gradient in the outflow current

is approximated by the ratio of the geostrophic velocity scale to the

mean layer depth, then equating the resultant viscous stress' l ~tVi~

at the lower boundary to the cross-stream average stress in the stream-

tube model fKVJ gives Yt'= K-V"'t¡ 1- , where h is the character is-
tic layer depth and l is the cross-stream scale. For the quantities

listed in Table III, the value of the turbulent eddy viscosity is

2.4 x 104 cm2/sec, which is in sharp contrast .to the value of 4 cm2/sec

obtained in Chapter III by Faller's criterion. The former value is

undoubtedly high due to an underestimate of the shear at the base of

the outflow by use of the total layer depth, whereas the latter value

is small because of its dependence on the weak geostrophic velocity
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scale. Adopting a median value of Vt = 10~ cm2/sec for the calcula-

tion of the source flow Ekman number leads to

t ~ ~/'l) 'l- == o.o4~

whereas the appropriate source flow length scale is given by

L: (h)"~ -: '3 i k,l'.,. ~;1.~

For a representative value of the extinction point ~ = 0.5, the thick

geostrophic core of the Norwegian Overflow would be extinguished at a

point 360 km. downstream from ,the Denmark Strait where the stream would

begin to shift significantly downslope by the action of viscosity.

Despite the uncertainty in ~t' this hypothesis is not unreasonable

in view of the observed descent of the Norwegian Sea water along the

Greenland continental slope as demonstrated in Figure 2-3. Specifically,

the traces of outflow water which are observed high on the slope at

Section III are not present at that level in Section iv or V indicating

that the contour-following tendency of the geostrophic current has been

altered. Notice that the proposed mechanism for draining of the geo-

strophic layer by the Ekmn flux leads to a different picture of the

flow near the source from that offered by the streamtube model. Accord-

ing to the detailed model, the rotational forces are strongest in the

upstream region where the layer is thick and therefore a major portion

of the stream tends to run along the slope. In contrast, the stream-

tube model predicts that the maximum pitch of the flow axis occurs at the
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source followed by a gradual turning along the slope due to entrainment.

The qualitative aspects of cross-sectional data for the Norwegian Over-

flow suggest that the Ekman layer model provides a more accurate descrip-

tion of the dynamical balance in this deep boundary current, but a more

comprehensive survey of the flow in that vicinity is needed to test

this conclusion.

Finally, to emphasize the ongoing nature of this inves tigation,

it is fitting to close the present phase of analysis with a speculative

note concerning the low frequency waves observed in the strong rotation

experiments. In the data collected by Worthington (1969) during his

attempt to measure the overflow through the Denmark Strait, a distinct

oscillation with a period of approximately four days is observed in

the velocity and temperature records. This time scale is not inconsistent

with the measured oscillation of four rotation periods at the farthest

upstream points in the source flow experiments. However, the explana-

tion of this coincidence awaits further study.
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APPENDIX A

Streamtube Model Equations

The integral streamtube equations may be derived in a number of

equivalent ways. Here a formal approach will be taken, and the deri-

vat ion will proceed from the differential equations of motion in order

to emphasize the detailed assumptions made about nature of the flow.

In the geometry of Figure 2-1, the steady equations governingtbe

mean flow of a turbulent, incompressible, linearly stratified, rotating

fluid are:

t7. g = 0 I (A.l)

v. (t~)=O i (A. 2)

t(U' V~ of f)(!6)
~l',J

-V'P + )?C~ -l t'i, CA.3)

where

p ~ te. + A t (' e · to Ii -t T c n S 0( ( S Y - ž )1,
(A. 4)

and i = 2 .£

The stress tensor,
..lii (';.Ií =?C..1..~), includes both laminar and turbulent;) -

'lii y : /",; - t 14'41' ,where r is the mole-Reynolds stresses, i.e. ,
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cular viscosity coefficient and ' denotes a turbulent fluctuation.

Next, a hydrostatic component is removed from the pressure field

by writing,

l(')"YJi?):' l~(X1?) of p(')..'Y~) (A. 5)

where
'"

p.. (y J ~ ):: ('. ~ ( ( s y - ¡) + ¡ ( s y - i ? J
,.
í = T (.Sot ,

and p (7C, Y..) is the reduced pressure.

The following assumptions are now introduced:

(i) The bottom slope is assumed small (S: 'to.Q( Li' ).

(ii) Furthermore, in line with observed characteristics of

overflow currents, assume that the fields of excess density

and turbulence are concentrated near the bottom in a thin

layer, which implies that J

(iii) within the stress and pressure fields, variations normal

to the bottom exceed those in ~angential directions

( f!. ')~ ~ i fy, ), and

(iv) vertical velocities and stresses are small so that the

reduced pressure field is nearly hydrostatic.

Under these constraints, the component form of the equations in the

bottom fixed coordinates is:

1A,I -+ Vy l- II L. = 0 (A. 6 )
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( e l. \ + (t '\)" + (t w ) ~ = 0 , (A. 7)

t( LAt.k -+ 'V Uy ~ W ue - t "",J .:
;) 'r'l i

- PI( + ~ (A.8)

( r J - ~ 'i 1' ;.t ,tA~ l' N "ly ~ W Ni +- '" IA - - Py -+ ~l .. S~L)('J(A.9)

and
n-': 6ti (A. 10)

p~
=

where Dt ~ r' -~ i te (Y.. i!) = for t -+ -T(sy -~)J (A. H)

, and ,r:2.l (' es Of J
" :
~

j ('_SM,
".

-.JJ T:T CDSOC (A~12)

The equations are next transformed to streamwise coordinates (~ I~) .

(See Figure 2-1.) The transformtion associates every point (x,y) in

the neighborhood of the current with a distance from the axis, "' ' and

a corresponding point on the axis, J ' where f is the distance from

the source measured along the axis. Since the f low is steady, the value

of ! defines a unique point in the fixed coordinates (X l~) .J y(,) 1

and a pitch angle, ~('l), between the stream- and x-axes. Hence the

equations for the path of the stream are given by:

clX- II e C)$ (3
J 's

and lY = s~~.-
J~

(A.13)

(A. 14 )

Analytically, the coordinate transformation has the form,

.

c/_
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-x = XC'S) - ì s"" elt) , (A.I5 )

y = y (~) +; co s ~(í) J (A.16)

and the tangential velocity components,

,r ("S i "1,-l) = \A ce5 ~ .. 'I' s~ ~ i (A.I7)

and )) (~I "l ,ii) = - l. S~(J + ~' rcS (1, (A.18)

represent a local rotation of the coordinate axes through the pitch

angle, (S

The form of the equations in streamwíse coordinates contains addi-

tional term relating to the curvature of the stream axis:

~. /"! -i ))"1. + W1! - t ~' =0 I (A. 19)

-l (p r) of (l,))) + l- 'i) - ~ p)) = 0,k ! l , i in \ (A.20)

r J. , . ~\ Ie . 'l, J - .1. ) tt'Sr
tL k r ri + 11/"; -+ w~ii .. h \)~ -l \\- k p~ + ~ (A.2l)

., S; bt S W (J ,

r i '. . ..\ '\, ,k l. " J. è) 1:
fl ~r))3 + ~ ui -l W u~ -+ k r +.çr .: - P"1 .. 'l~.,tE

.. S5' 6p ('os~,

(A. 23)

(A.22)

and '"

pI! · - ~ Ót J

where "'(~ i i) = (1- i l~) and kC!): 1f is the curvature of the stream

axis.
(A. 24)
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The stress components are given by,

'TS~(~l;12)= CcPS(3lr'Xi! -t S~ f3 'LylE i and

""l ( ) - 'rr r.
"1~ "' J i j l - - S "" ~ ?tæ + CDS P L'y J!

(A.25)

and

6t(ŠJ~J~)= t-te i t~(!J"1J~)= til-lT(SY(~J,)-i)I(A.26)

To derive the integral form of these equations, further explicit

assumptions are made concerning the structure of the flow field:

(v) A strong axial velocity 
dominates the component in the

cross-stream direction, i. e. ,

r = V(~,i J~) ))V
Similarly, the magnitude of the turbulent Reynolds stresses

is related to the intensity of the mean current in that

direction, so

~ ..-LL'S'!";.. ~,!'
(Note, this assumption is related to the self-similar char-

acter of the turbulent velocity profiles. See (vi).)

(vi) The velocity and excess density fields are confined to a

region adjacent to the bottom, bounded by the contour,

l .. J(~J"1)' along which both quantities are negligible, Le.,

6~ :: 0 )
at ~:d(~ii)'

v == () )
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Furthermore, the profiles of these quantities exhibit a

self-similar form, so that the structure of the turbulence

and specifically the frictional stresses and rate of en-

trainment may be related solely to the mean velocity and

density contrasts. For convenience, these properties will

be assumed uniform over the cross sectlon, i.e.,

v = V(S J. d) and b t = .6 t ('5 ; c1) .

Otherwise, unknow form factors must appear in the integral

equations.

The aspect ratio of the cross section is small, which implies

that the pressure gradient terms are negligible with respect

to the gravitational accelerations. Specifically, if the

half width of the cross section is i

dli Li' S.

Then, since the pressure is hydrostatic and l;t is uniform

in z,

P" = 3 tJf dxJ

I.t dy

LJ.
'"

S j bt.
..

Py = ~

..
This also implies that T Z is negligible in the expression

for external density, i. e.,
te. (~ J ., ) - to( i -l T 4& Y J .

(viii) Finally, the current is narrow in the sense that the cross-

streat scale is much less than the local radius of curva-
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ture of the stream axis, i. e. ,

1 .((. ~-l : 'I f2
cI r

This condition insures that the transformation to stream-

wise coordinates exists for the entire flow, and further-

more

h = l-"'k == I .

Also, if the amient stratification is s~fficiently weak,

the external density may be evaluated at the stream axis,

,that is,

t~ = ~ø f I of T s Y (i)l · te ( ~ )1
provided

I y (~J ì) - Y ('5 ) J = l i (~J ~, ot ( , / ST.

With these restrictions, the differential equations (A.19) - (A.22)

take the form,

V's .. Wi = 0.

(A. 27)

( t V)~ 1- (t w ) ¡ = c) , (A.28)

tVVt + t W Va · ~ò;i:i + S S lo(: 4l ~(J,
and (A.29)

( .. 4. )
'"

,Ct C-ØS(3 .tV ç .. V .IS :.
; c:

(A. 30)
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Equations (A.27) - (A.30) may then be suitably combined and integrated

over the stream cross section giving:

f 1.+

1. (A V):: \l~ cI,cI~ i- (A. 31)

~(eAV) r .Ii'
= (" Jr "'~ J1

Ji'
S5 4tA SlN~ -1 (T. · 'I:r1J¡, (A.33)

i-

and (A. 32)

L(eAV"l) =
d"S

where W~(~I"1): \N(~J"1Jd)is the entrainment velocity atthe inter-

face, and the stresses Te = 1! i~,j, 0) (bottom) and 'ti. : '1/"51 jJ d) (inter-

facial) are defined in a sense opposing the mean motion. The edges of

the flow are at ,. l-(~ ) J i+(!) and

.i" J
At ~ ) = t- J '1 t d i , CA. 34)

Finally, the turbulent entrainment and friction laws are adopted

based on the similarity form of the profiles:

(x)

if
E. V = t- w.. d¡ and

i ..

t I( V z = r ( T G + 'T 1 ) d "1
" -

CA. 35)(ix)

(A. 36)

Hence, the integral form of the streamtuhe model equations, based on

the set of constraints and assumptions (i) - (x), are given by,
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sL (AV) :: E Vd~ 0 i CA. 37)

~ ( P A V) :: te. Eo V , CA. 38)

CA. 39)

CA.40)

where f (~ ) = te +.A f' J te (1 ) ~ (. r i + sTY (~ )1 CA.4l)A A
and f = Z .l t"l-S 0( J '3' j (es 01 J i :: T ('os C J

s = T"" ti .
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APPENDIX B

Derivation of Approximate Solutions
to the Streamtube Model Equations for Certain Limiting Cases

Approximate solutions are sought to the streamtube model equations

(2.20) - (2.25) subject to initial conditions (2.26). Due to the highly

nonlinear character of these equations, analytic solutions are precluded

except in certain asymptotic regimes. Those solutions which are acces-

sible may be divided into two categories:

(i) Linearized solutions may be derived for small values of

the parameters and restricted initial conditions using

perturbation expansions valid in the vicinity of the source.

The results to first order give wave-like solutions plus

secular terms which indicate initial trends in the exact

solution along with amplitude and scale of the waves.

(ii)
i

Asymptotic solutions valid in the downstream region (~- 00)

may be found since the waves present in the source region

are damped by friction or entrainment and ~ attains a

constant value. With this simplification, certain closed-

form solutions may be found.

In all cases, the results obtained for these limiting cases are confirmed

by numerical solutions to the exact equations.

In the absence of external stratification ( t = () ), the flow

. I ~T' u'
is characterized by a constant flux of excess density, H = A. v. :: riÐ 0
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and it is convenient to redefine the entrainment and friction parameters

slightly,

I ~

.and

-
k

l/H~

= K/H:

-- Eo IL H~ (B.l)

= I(/ L Ho' (B.2)

The approximate solutions for four limiting cases are derived below.
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B.l Small Entrainment and Friction, & , R 1.4 I
Environment, ~::O.

Homogeneous

In this limit, the governing equations (2.20) to (2.23) reduce

to the following form:

A'V' - r' H~ (B.3)

~' - r V '
cli'

(B. 4)

and

",'V'I ii
d5''V' -) ,3,.' Vi ä- = c\. ~ _ (Š -t K V .elf I;

iV'= C'c:S ~ - r , (B. 5 )

(B. 6)

Expand the dimensionless flow variables in bilinear perturbation expan-

sions of the form,

Cl eo

$'(~) = ~~~oG -- ~~ a.-r!) (B.7)

Also, to make the problem tractable and obtain a self-consistent result,

set A -0
r&~O

and restrict the initial values of
,

~ and V' .

f3l) 6: S ( f , ië) i

and (B.B)

v:' = , + d V. 'o c where ~V~ ~ é)(r,R).

After substituting the expanded variables into equations (B.3) -

(B.6) and the initial conditions, the resulting ordered set of problems
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yields constant values at lowest order:

"',0 = ~,o = A~d Ao,ø = A I. (B. 9)

-
At order ~ , the solution contains topographic meanders of length

(Z1 1. ) and predicts a mean pitch angle,

(J.#, .:
~ - R 'IW. ~e" Š +

It
A ~.l $ "" ~d+ l i

K

~., -- - (3. - i. s ~ S l +
W.

A \1' 

K

1

c-s ~ , (B.lO)

AJ, - (A~/i)( ((30- \ë) ;~~'''A,,l(l_c.i!I)J i

and '-0 l :: 0-l

While at order i secular term appear in the density, velocity and

cross-sectional area expressions.

_1''7"ø .),

v'o =-'S',J
(B. 11)

A 1.0 = (A~ ~' ) Z J i ,

and

(Jl"Ø = o.

Hence, the full solution to first order in both f
-

and tc is given by,
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- I
,.' = I .. i 'O J (B. 12)

v ' = 1- Š S' - ( ~. - K) '~1 l .. 4 V.' t. ~ '5 ' (B.13)

(J = (~.- ¡) (cs:f + Â1l' S,-~l -+ ~ J (B. 14)

and A' = A~ ( ,+ 2 Š '!' -l (~o- R), ~ l' +A,,'(I-c.j3')J. (B.15)

Note that the perturbation scheme breaks down where the secular terms

'r i ir- Igrow to be order one, i.,e., at J "".) . The validit¥ of this solu-

tion is therefore confined to within a distance of order L/¡ from the

source.
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B.2 Downstream Limit for Zero Entrainment G =0, and Homogeneous
Environmen t, y=:O .

In the asymptotic limit (5'.. co ) for the case &., ~ = 0 , the

waves induced by the source conditions are damped by friction and all

flow variables attain constant values. These values are governed by

the following expressions which are easily obtained from the model

equations and initial conditions:

..' =

A' :: Ho' lv' (B. 16)

t~ ~ :. R V'I i

and
- 1.' V' " V' i 0tt + -I =- .

,z
Solving the cubic equation in V yields

v · = ,~ R"" f (J of ,Í.. 'M. i')"3 of ( I-/I+ "I'-~f'J3 J ,(B.ll)

as the only positive real root for the dimensionless velocity. There-

fore all the variables in (B.16) are specified by (B. 17).
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-
B.3 Downstream Limit for Zero Friction, tc=O, and Homogeneous

Environment, t =0 .

For this case, waves induced by the initial conditions are damped

in the downstream by the entrainment and the pitch angle lh approaches

a constant value. The limiting forms of equation (2.21) - (2.23) are,

d~'
cI S i

- ,
- cSV , (B.18)

~ ' V' = (' oS (9 J (B.19)

and, r'
,

v'd.
, dS-1

~ Š V,-3 = S '- (3 . (B~ 20)

By combining (B.18) with (B.20) and making use of (B.19), it is easily

seen that the only constant value of p which is consistent with this

limit is (3 =0 Once this fact is established, asymptotic expressions

for the other variables are easily derived by integrating equations (B.18)

and (B. 20),

( - I ,) '/1 (-') '1zr-l = 2S S -+ C \, iS- ~
J (B.2l)

i,

( -~ ) lj, - i /2 -, -''lV = 2£3 tC) '" (2.~-S J (B.22)

and

A' = (A~V~ )(i$'SI+C)\.:iA~~'Š'S'1 as 1'- bd J (B.23)

where C is an arbitrary constant.
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The balance in equation (B.20) with ß = 0 implies that the

, .z
dimensionless downstream momentum flux, A V , is non-divergent.

Assuming this condition holds downstream, it is possible to include a

weak frictional effect in this limit by assuming the pitch angle is

small but non-zero. Then the viscous and gravitational forces in the

imomentum equation are balanced to order ~ ' i. e. ,

S~f t= f3
i

:: R V' K (Z š i' of c r :llz (B. 24)

Since ï' is no longer zero, the arbitrary constant appearing in the

limiting form is formally a function of K , i.e., C- C( R).
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B.4 Small Friction, K L.l1 Weak Stratification, 't LL I
Zero Entrainment, ~ = 0

The appropriate limiting equations for this case are,

cli-i i I HI ,
d~'

= -,. $'- ~

d r' 'I
11

S '- (-~I = r ,

ViI. Ú = ~t!~~ - ~ 'V'\,1 dS' J

y-' V' JV'
,3

and - t¡ \. fi - tc V-
d~' H'

(B. 25 )

(B. 26)

(B. 27)

(B.28)

The expansion procedure used to solve these is entirely analogous to

that used in Section B.l except that the small parameters are 't and

'I rather than ~ and "K If the initial conditions are again

restricted as in (B.8) and the assumption t. = 0 is made, then the
\..0..0

set of ordered problems leads to constant values at lowest order as

before in (B. 9). At first order k the wave-like solutions again

result as in (B.IO), however, there is no contribution to r' or H' at

order ~ since s lA (3: oC K). Variations in these quantities first

appear at second order where,

H~.ci - - H: ( jo 5'- ~' of

iA~-
r ('c:~~i) , (B. 29)

and r. -2,D
¡ao S""~' -I ~V.. (C'.s-SlY r a t order ~ Z

i
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also Ii ~, Ir- ',' - - J + ~\, ~ "
(B. 30)

and ~ I.j
.. (!'- S~T')J..' :i at order 't k.

These corrections to the constant values at lowest order yield an

approximate solution of the following form,

I- i :: H ~ ¡ I - ~ f ((-. - k ) ~':! I .. ~ ~ I (" 0 So ! 1-+ K ~ i l 1 (B. 31)

r' = , + )( 1 ( (.0 - K.) S \A ~ i -t IJ Yo' (' 0 S 'S' of \. ~ I) j (B . 32)

( -) , v.' ,T)' = I + r. - ic s "" 3 + Ll . ro S '!
J (B.33)

, ( - ) "l /I V. ' 1-(3 = ~. - tc ('0$,) - t. 0 S i. ~' -l K J (B. 34 )

and

A' = A; f t - ((30 - ie) \ '" 3 ' of Li v.' ( , - co S ~ i ) 1 ' (B. 35)

where R. K./H.'

The secular terms in these expressions are of order i ~

validity of the solution extends out to ~ \, Yt k. .

so that the

r

t
, T
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APPENIX C

Method of Characteristics for Flow
near the Upper Edge in the Strong Rotation Limit

The analysis of nonlinear first-order partial differential equa-

tions by the method of characteristics is quite well known. Following

the notation of Garabedian (1964), equation (5.47) may be expressed in

general form as,

F - p" of c:"Z - ci - 0 (C.l)

where p=lx" and ci =- dp Then the characteristic paths for

the first-order equation are defined in terms of the characteristic

coordinate, r, by

while the solution is governed by differential equations along the

characteris tics

J u. - 'P Fp .. i F-
= Zp'~;211-i=i, (C.4)- -

d r

b - - F~ - P 1='" = o J (C.5)-
d ,.
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4 = -~ -bF"~ =0,
J l'

(C.6)

where u = d is the layer thickness and ( X, Y ~ Y¡ (0 ) ) = (~i4 )
are the eoordinates on the characteristic path. Initial data for the

integration of this system is specified along the source profile at

x = 0, in term of the initial value parameter, t, which measures the

distance from the upper edge of the layer:

!(OJi:)=O/'

A(D,i:)= t,

lA (~J -l) = &.o (-t) , (C.7)

'P (OJ -l ) = 'Po (~) = *, ¡ i 0 ( , - fo ) . )

and i (Ci j -t) = i 0 ( of J i
where t:- 9 - Yë (0) along x = o.

Equations (C.6) and (C.7) indicate that p and q are constant along

characteristics. Integration of the remaining equations gives

!( f") -l):1 :I 2,/ i. (i - to)r- (C.B)

~ ( r) -l) =- ("-i. -I) r -+ t
~ (C.9)

and lA ( r-j i:).: to r + lA ~ (t-) (C.10)
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The multiplicity of solutions to the nonlinear equation is evi-

denced by the two possibilities for the sign of the radical in (C. 8).

For the present case, the positive sign is chosen in order that the

characteristics be traced in the downstream direction. Moreover, in

order that the layer thickness grow in the cross-stream direction, qo

must be positive. Then for real solutions to (C. 8), q must be boundedo

as follows,

() ~ to ~ i .

Finally, the inversion from characteristic variables to geometric coor-

dinatesrequires that the Jacobian of the transformtion be non-zero,

i.e.,
~A': ,. ,.J - -- z ¡ i. ( , - io )' :I o.
5~ 6~

Therefore, q ~ 0,1, so,a

o L f. L J . (C.ll)

With q suitably constrained, equation (C.8) may be solved for r, and
o

substitution into (C.9) and (C.10) yields expressions for the trajec-

tory of the characteristic and the corresponding layer thickness variable,

A (i .. Y ; t ) = y _ * (0)= (:21.- ,)e -,/Z, (, _rII ) 'i4-i (C. 12)
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and

J(oXJYj-t) -
to

2/f.(1 -t.)'
x -+ lAo ( t: ) (C.13)

If the second cross-stream derivative of the layer thickness is

negative, then characteristics in the downstream region are expected

to intersect since the trajectories nearest the edge pitch most steeply

downslope. Points on the envelope of characteristics so formed satisfy

simultaneously the path equation (C.12) and

t:- i" i
( "t )'/2 Co~ io - to

where i: (i:) 1/ .~ = Jy¡ (OJ Y ~ t) , (-Se J.le ) are the points in

the envelope. Solving for these coordinates in terms of the initial

() = Åc
-t (C.13)

data gives,

'S, If (to - ,: )"1/i.
)

1:

(C.l4)
,
""0,

and t
'i

-
'rc. - 3n (2 ,. "i - i 9 -t i) .

f,' O' 60
(C. 15 )

Downstream from the locus of points given by (C.14) and (C.15) the

method of characteristics breaks down as the inversion from character-

istic variables to geometric coordinates (r') ~) .. (~J A) becomes

multivalued.
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