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ABSTRACT

OCEANIC MICROSTRUCTUR OBSERVED NEAR BERMUDA
US ING A TOWED SENSOR

~ by

BRUCE ARTHUR MAGNELL
';

Submi tted to the Department of Meterology on

May 4, 1973 in partial fulfillment of the

requirements for the degree of Doctor of Science

in Oceanography.

Many hypotheses have been advanced to explain the
formation of mixed layers in the ocean~ the salt finger
type of double-diffusive convection, in particular, has
received much attention. Because of their uniquely
ordered nature, salt fingers should be readily identi-
fiable in the deep thermocline, if in fact they exist
there. A relatively limited experiment could thus
produce a definitive evaluation of the importance of
salt finger convection in the ocean, at least in
certain places and at certain times. Such an evalu-
ation, which would help to direct future work on
oceanic microstructure, was the primary objective of
this thesis.

A secondary and more general objective was to
measure the intermittency of mixing events in the
ocean~ and also, by measuring the RMS gradients of
temperature and salinity in such events, to evaluate
directly the intensity of vertical mixing.

Since a horizontally-towed sensor is essential if
salt fingers are to be observed directly, a. new instru-
ment has been designed and built which can resolve
fractional-centimeter structures of electrical con-
ductivity while being towed at speeds of several knots.
The design of this instrument is described in this
report.
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The instrument has been towed in deep water near
Bermuda. It is believed that salt fingers were ob-
served in the main thermocline on several occasions ~
but they were so rare as to be negligible in the total
vertical mixing. An analysis of one such possible salt
finger event is presented.

Numerous other small-scale fluctuations of elec-
trical conductivity were observed, which can be recon-
ciled only with a turbulent model. Intermittency
statistics for these events are presented. The eddy
diffusivi ty has been calculated from the data to be
approxima tely 0.075 cm2/sec.

Thesis Supervisor: Henry M. Stommel

Title: Professor of Oceanography
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GLOSSARY OF ABBREVIATIONS AN TERM

ct : voltage representing d/dt (electrical conductivity)

Tt voltage representing d/dt (temperature)

Cg vol tage representing gross conductivity

T voltage representing gross temperature
g

Cz : voltage representing the vertical gradien t of conductivity

T voltage representing the vertical gradient of temperaturez

Z depth, usually downward from the surface; or, a vol tage

represen ting depth

V velocity of the instrument package; or data to that effect
~ density, gm/cc

üT ( ~ - l) x 1000

VCO: voltage -c on trolled-osc ilIa tor

'rM : frequency modulation

IRIG: Inter-Range Instrumentation Group (a military classificat-

eX

ion pertaining to telemetry systems)

change of density 0 for sea waterper C

change of density per ~o for sea water

change of electrical conductivity
0 for sea water;per C

f3

A

also eddy diffusivity

B change of electrical conductivity per tlo for sea water

k wavenumber

£

i)

: specific energy dissipation rate for turbulence

k' t. . . t 2/inema ic viscosi y, cm see

K
2

kinematic thermal diffusivity, cm /sec
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CHAPTER I

INTRODUCTION

A. Objectives of the Project

Within the last decade, it has been found that the vertical
profiles of temperature and salinity in the ocean are not
smooth, as previously supposed, on scales of meters. Ra-

ther there are numerous irregularities in the profiles. In
many locations these irregularities, or microstructure, are

quite regular, so that the profiles have the appearance of a

"stair cas e" .

This type of microstructure is most often found in the
thermocline. Stommel, for example, reports that a regular,
layered structure existed in the ther mocline at several loc-

ations near Bermuda. (Co?per and Stommel, 1968).

Much attention has recently been given to the question
of the creation and maintenance of these layers. One or
more active processes must be at work locally, although

perhaps intermittently; otherwise, diffusion would be expected

to smooth out the profiles within a relatively short time.
Moreover, these active processes certainly are associated
with or result in vertical mixing; and although the gross ocean-
wide magnitude of vertical mixing may be surmised from
considerations of the thermo haline circulation, its details on
the local level are quite obscure.

The "salt-finger" type of double-diffusive convection, which

will not be described in detail here (fora physical explanation,

see Stern, 1960) has been suggested by several investigators as
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a possible cause of layering in the thermocline in the

Central Atlantic. M.E. Stern and J.S. Turner have

demonstrated in the laboratory that salt fingers can

produce a layered structure, having relatively sharp

II interfaces" between turbulent mixed "layers". (Stern

and Turner, 1969). Salt finger convection is an

attractive explanation of the layers in the ocean for

several reasons: (1) it is a purely local phenomenon,

using the potential energy stored in the destabilizing

salinity field to produce a downward flux of buoyancy~

(2) it can be shown that if salt fingers are reasonably

commonplace, the effective kinematic diffusivity may be

large enough to account for nearly all the vertical

mixing in the ocean (Turner, 1967). But there have

been no previous direct observations of salt fingers in

the ocean, and no way to determine whether or not salt

finger convection is in fact important.

This project is intended to provide more infor-

mation about the oceanic microstructure in general, and

in particular to detect the presence of salt fingers

if they exist.

B. INSTRUMNTATION

Since salt fingers are vertical columns of water

moving alternately upwards and downwards, it is neces-

sary to use a horizontally-towed sensor in order to

detect them directly. An instrument has been built to

do this ~ it is comprised in essence of two major parts:

a specially designed microstructure probe which is

capable of resolving fractional-centimeter structures
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at speeds of several knots ~ and an auxiliary instrument

package which provides the necessary background infor-

ma tion to establish the context in which the mi cro-

structure is observed. All the instruments are

mounted on a towing "fish" which maintains the correct

- attitude and direction as it is towed. Data is trans-
mi tted to the surface and recorded.

The microstructure probe measures electrical con-

ducti vi t y. The rea son~fnr_the_cho_ic8-of_this_parame_ter
are discussed in detail in the Appendix and in Chapter

II: The Instrument. The design of the conductivity

instrument and its performance are discussed in the

first part., of Chapter II. An effort was also made to

measure temperature with the same resolution and speed

of response as the conductivity probe, but it was not

successful. The temperature probe is discussed in

Chapter II as well.

The auxiliary instruments measure the local ver-

tical gradients of electrical conductivity and temper-

ature, as well as depth and velocity. The necessity

of measuring the local gradients, using a differential

type of sensor, is a consequence of using a horizon-

tally-towed instrument. A sensor was designed and

built to perform this, function. The auxiliary instru-

ments are also discussed in Chapter II, as is the

design of the fish itself.

C. STRATEGY

The wa ters around Bermuda were' selected as the

loca tion for the experiment. In addi tiQn to its con-
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venience and accessibility, two main scientific factors

dictated the choice of Bermuda. Firstly, it was

thought to be important to use the instrument in a

place where distinct layering had actua lly been ob-

served~ such a location would maximize the probability

of finding salt fingers. Secondly, the Bermuda area

has been extensively surveyed over the years by a

variety of different oceanographic methods ~ and although

it is known tha t conditions around the island can change

very rapidly, nevertheless it was thought that these

previous surveys would aid greatly in interpretting

the microstructure data. This was all the more im-

portant since this project had not the resources to

undertake even a limited hydrographic survey.

The genera 1 procedure during the field operations

at Bermuda was to steam out to the 1000-fathom depth

contour south of the island, and there commence towing

the instrument in a southerly direction at speeds of

2 to 4 knots. The lOOO-fathom depth line marks the

bottom of the steep part of the island slope~ and in

order to avoid any risk of the instrument striking

the bottom, all the tows were done in water of at least

this depth. During a tow, the instrument was made to

ascend and descend slowly, relative to its forward pro-

gress, so as to survey the water column vertically.

"Yo-yo" experiments, in which the instrument is alter-

nately raised and lowered over a limited depth range,

were also performed, in order to determine the hori-

zontal extent of certain features. The data was

monitored in real time to permit immediate evaluation,
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and to permit active investigation of interesting

fea tures .

A total of about 10 hours of useful data will be

presented for analysis here. Detailed descriptions of

these lowerings and of the general oceanographic con-

ditions in the area are given in Chapter III: Des-

cription of the Experiment.

D . SUMMRY OF RESULTS

The vertical profiles were observed to contain

microstructure in all the lowerings, in the form of

considerable variations in the vertical gradients of

conducti vi ty and tempera ture. In the main thermocline,

there were seen in almost every lowering several well-

mixed layers from 2 to 20 meters thick. Gradient peaks

of 5 times the mean local gradient were commonplace

(measured over a 30 centimeter vertical separa tion) ~
these gradient regions were typically 1 or 2 meters

thick in the thermocline. Gradient maxima of greater

than 10 times the mean gradient were occasionally ob-

served. But no regular steplike structure, such as

that found by Cooper and Stommel (1968), was seen

during this investigation.

The relatively uniform water above the main ther-

mocline (the so-called 18° water) also was observed to

contain vertical microstructure, although the peak

gradients were considerably less, and the well-mixed

regions there were thicker.
These vertical profiles are consistent with pre-

vious observations near Bermuda and in the deep ocean,
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and suggest that conditions in the towing region were

typical of deep-ocean microstructure ~ the nearness of

the island is not thought to be a direct cause of the

observed microstructure in most cases.

Numerous "bursts" of high-frequency conductivity

signal were observed during the tows. It will be dem-

onstrated in Chapter V that these bursts must repre-

sent small vertical structures in the ocean, not thin

horizontal layers. They must therefore be due to one

or another dynamically active process.

The bursts were observed primarily in the main

thermocline and in the surface theIm ocline ~ bursts
were not observed in the iSo water in most lowerings.

By far the largest and most sustained bursts occurred

in the surface thermocline, but these are somewhat dif-

ficult to interpret since the actual structure of the,

water near the surface is obscure and variable. A total

of about 50 significant bursts were observed in the main

thermocline.
A few of these bursts may have been caused by salt

fingers. But most of the bursts are too wideband in

wave number to be definitely identified as salt fingers.

Consequently, it is concluded that, although salt

fingers do exist in the thermocline, they are probably

not a major factor in the vertical mixing near Bermuda.

Turbulent mixing processes, possibly due to overturning

or shear from internal waves, are thought to be more

important. Relatively large-scale shear due to the
mean flow, especially in the vicinity of an island,

may also be a cause of the turbulence in some cases.
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Bursts were observed less than 1 percent of the

time in the thermocline, and not at all in the 18°

water (except on one anomalous lowering). Computation

of an eddy diffusivi ty, averaged over the thermocline,

yields a value A=0.075 cm2/sec. The eddy diffusivity

in the 18° water is apparently zero.

Significant differences were observed between

lowerings, which yield additional circumstantial evi-

dence regarding the origin of the microstructure.

The horizontal extent of turbulent patches is

found to be as great as 600 meters, with thicknesses

of about 1 or 2 meters of active turbulence.
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,CHAPTER II

THE INSTRUMNT

A. THE CONDUCTIVITY PROBE

1. FUNDAMENTAL CONSIDERATIONS

Consideration was given to two basic methods of

measuring oceanic parameters on a very small scale,

name:Ly, optical methods and electrical cond:uctivity

(in conjunction with temperature). The optical system

was rejected, for reasons which are detailed in

Appendix 1.
Electrical conducti vi ty is a function of temper-

ature, salinity, and pressure ~ unlike the refractive

index, however, it is an increasing function of both

tempera ture and sa lin i ty. Therefore conducti vi ty is a
good indicator for salt fingers, which are character-

ized by downward-moving fingers of higher temperature

and salinity and upward-moving fingers of lower tem-

perature and salinity. The temperature, salinity, and

pressure (depth) coefficients of conductivity are

typically: (Gregg and Cox, 1971)

~c
+ o. c¡ ~ I'VV ho. C ~/ 0c . de.

=- + 0.9 9 mYYho'c~- - -
~t - J ~$ °Á.o

de ã c. Jp
"" \ 0- (, \' WI h u' C "" - 'I

- - l-~ Z èlp J it
- CM

It is not possible to separate both temperature

and salinity information from conductivity alone, but

the required temperature and salinity resolution of

about .001 °c in 30 C and .001 0100 in 35 0100 implied
that a conductivity resolution ofl part in 30,000

would be adequate. This is a feasible resolution from
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an e1ectronic point of view, even at low excitation

levels. The major problem was to design a sufficiently

quiet and stable sensor.

The required volume resolution or cell size is 1

cm. diameter. This requirement is unfortunate because

the most stable noise-free type of conductivity sensor

is the inductive variety, which would have to be no

larger than 2 or 3 millimeters overall in order to

sense 1 cm. structures. The difficulty of constructing

and maintaining such a tiny sensor was considered to be

formidable ~ and furthermore, the impossibility of

flushing water through it rapidly enough to achieve

high frequency response was evident. Therefore an

electrode-type probe, which can more readily be made

small, was the only alternative.

The required frequency response depends upon the

speed at which the instrument is being towed through

the ocean. At three knots (150 cm./sec.), for example,

the frequency response of the probe would have to be

300 Hz in order to resolve half-centimeter conductivity

variations. The major limitation to the frequency re-

sponse lies not in the electronics but in the speed

with which the probe can be flushed with water. Con-

ductivi ty measurements are purely electrical in char-

acter and do not involve thermal time constants or

other physical sources of delay.

SINGLE-ELECTRODE PROBES

The ordinary type of electrode probe (referred to

hereafter as the single-electrode type), illustrated
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in Figure 2. 1, suffer~ from several major deficiencies.
Firstly, its sensitivity depends critically upon

maintaining the lowest possible contact resistance

near the spherical surface of the probe. The voltage

measured between the electrode and ground is composed

of tiie voltage drop in the water, which is the desired
quantity, plus undesirable voltages arising from the

flow of electrons from the metal electrodes to the sea

water. The ground plane electrode is assumed to be so

large, and the current density over its surface so

small, that no significant voltage develops there.

Such is not the case at the small spherical electrode,

however, where the current density is high and the area

relatively small. The actual volume resistivity of sea

water is mainly resistive in character, having only a

small capacitive reactance~ but the contact impedance

is highly capacitive due to polarization of the water,

and therefore frequency sensitive. The electrode is

commonly constructed of or coated with porous platinum

(platinum-black) to maximize its surface area, and is

exci ted by the highest practicable frequency to mini-
mize the effect of the polarization. However, the

performance of the electrode is seriously degraded by

fouling, even by microorganisms, because such growths

drastically reduce the effective surface area. Further-

more, a fouled probe can be restored to its original

sensitivity only by being soaked in acid ~ occasional

recoating with platinum black is also necessary. Such

difficul ties precluded the use of this type of probe

in a deep ocean-going instrument.
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Platinum sphere J
coated with ('
platinum black --

Conductivity is proportional to r/v

Ground Plane

AC

Figure 2. 1 Single-Electrode Type of Conductivity Probe

I
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DOUBLE-ELECTRODE PR~BE

Acting upon a suggestion by Neil D. Brown, (private
communication), the author investigated the properties

of double-electrode conductivity probes. Such a probe,

illustrated schematically in ingure 2.2, has two elec-

trodes in addition to the lar~,e ground contact. One

electrode supplies electrical current, which flows in

the water to the ground plane but is. constrained to.
issue through a small orifice. The second electrode,

which is connected to a very high impedance amplifier,

measures the voltage between the ground and the orifice.

The current-supplying electrode may have any desired

size and shape since its contact impedance is unimpor-

tant. The voltage-measuring electrode draws negligible

current~ moreover it may have a relatively large sur-

face area in contact with the water even though its

opening at the orifice is small. The effect of its

contact impedance is thus negligible, and an accurate

and stable measurement of the resistivity of the sea

water path between the orifice and ground may be made.

This type of probe eliminates the most serious

objections to the single electrode probe ~ therefore

it was chosen for the microstructure sensor.

~(-
"t",
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Figure 2.2 Double-Electrode Type of Conductivity Probe

/

+
Vi

I i



,-' 24

2. ;:'ROBE DETAIL

The physical design of the probe was determined

primarily by the requirements that the probe should

traverse undisturbed water and that its response

should be fast. To meet these requirements the probe

was clesigned as a long, thin pointed object mounted on

the instrument so as to precede all other parts. Con-

ductivi ty is measured in a small volume of water ahead

of the probe tip. Provision also had to be made for

active flushing of the probe tip so as to prevent the

formation of a stagnation layer.
Figure ~.3 illustrates the details of the design.

Important features to note are: (1) The probe is ex-

cited by A-C current (5 KHz), which flows from the

cylindrical current-supplying electrode through the

annulus to the 'large outer ground electrode. The

current density is highest at the outlet of this

annular orifice, decreasing approximately as radius
-2 from the tip. Thus most of the voltage dropaway

occurs very near the probe tip~ ( 2) The vo 1 tage is
measured between the center m the annulus and ground.

Negligible current flows in the inner electrode tube ~

that is, the potential is the same everywhere inside

the inner cylinder, and is equal to the potential at

the probe tip~. (3) The current density is uniform and

vanishingly small over the surface of the ground elec-

trode, and hence no error voltage arises there.

3. ELECTRICAL CONSIDERATIONS

Conductivity, being the inverse of resistivity, is
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prope,rtional to the ratio of current to voltage applied

across a fixed-geometry sample. This suggests that an
electrical output directly proportional to conductivity

may be obtained if the amplitude of the voltage is held

const.ant and the current is measured. Therefore a
circuit was designed having the probe in the feedback

loop of an operational amplifier as shown schematically

in Fi.gure 2.4 ~ see also the circuit diagram; Appendix

1, Figure A-I. A constant-amplitude A-C voltage is

applied to the amplifier's non-inverting (+) input, and

the voltage-measuring electrode is connected to the

inverting (-) input. The amplifier's output is con-

nected, via a current-sensing transformer, to the cur-

rent electrode of the probe. The amplifier, having

very high gain, will supply whatever current is neces-

. sary through the probe to make the voltage a t the (-)
inpu t track the vo 1 tage a t the (+) inpu t. The impe-
dance in the probe between the current-supplying elec-

trode and the orifice is unimportant (provided that the

amplifier is capable of driving it within its linear

operating region).
Since it is vital to the correct operation of this

probe that the voltage-measuring electrode should have

a very high impedance, consideration has been given to

minimizing capacitive coupling between this electrode

and all other points. The connection between the (-)

terminal of the amplifier and the electrode was made,

as shown in Figure aI, with coaxial cable, whose out-

side conductor was driven by the input oscillator.

This cable extended as far as possible toward the

i

I.
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voltage-measuring electrode, leaving less than two

inches of unshielded wire.

Lastly, it was necessary to design a special

transformer to measure the electrical current flowing

through the probe. The necessity of flushing wa ter
through the probe (discussed in more detail in the

next section) means that there will be two electrical

paths to ground from the current-supplying electrode,

the second path being through the pumping system.

Therefore some means had to be found to measure onl V

the current flowing out of the probe. For this purpose

a special transformer, shown schematically in Figure

AI, was constructed, whose primary winaing is a coil of

stainless-steel tubing (four complete turns) through

which the sea water flows. One end of this tubing

coil is connected to the probe, the other end to the

pump. The amplifier output is connected to the pump

end of the winding, so that the magnetic flux linking

the core is proportional only to the current flowing

through the probe. The secondary winding consists of

100 turns of copper wire ~ its connection and the asso-

ciated electronics will be described later in Section

5 of this chapter.

The core of the transformer was a high-permeability

laminated iron "C" core (2 mil laminations). This con-

struction was preferred over a ferrite core because the

laminated core could be expo,sed to high ambient pres-

sures in an oil-filled housing with no risk of a change

in its properties.
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4. PROBE FLUSHING

Laboratory tests on a prototype probe revealed

the necessity of continually drawing water through the

annulus. If this was not done, the water in the vicin-

i ty of the probe tip would become heated and its con-

ductivity thereby raised. Small changes in the water

veloci ty past the probe tip would then result in large

spurious signals (ventilation noise). Moreover a stag'-

nation layer tended to form on the blunt tip of the

probe when it was being moved forward, which degraded

the sensi tivi ty and the response speed in an unpredic-
table way. For these reasons it was necessary to de-

sign a water-pumping system to suck "new" water into

the annulus continuously.

The flushing rate was determined primarily'by the

necessity of completely avoiding any stagnation layer

on the probe tip, regardless of the velocity of the

instrument. At the s'ame time it was not desirable to

suck too much water through the probe since that would

destroy the spatial resolution. The criterion thus

was that the entire volume of water intersected by the

cylindrical tip of the probe should be sucked through

it. (Refer to Figure 2.3 for dimensions). This of

course implies that the pumping rate must be proport-

ional to the towing velocity. The nominal rate was cal-

culated to be (O.l)'V mIl sec. where V is the speed of

motion in cm/sec.

The method chosen to accomplish this was to mount

at the rear of the instrument carriage a large propel-

ler, turned by the motion of the instrument through
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the water, coupled tå a constant-displacement pump.

The propeller was made sufficiently large (30" dia.)

that the drag of the pump was small, and therefore the

propeller turned at a rate proportional to the velocity.

A commercial bronze gear pump was used because it of-

fered the best combination (in a çonstant-displacemen't

per revolution type pump) of uniform non-pulsating

pumping and low friction. The smallest pump (and the

highest RPM) consistent with reasonable propeller blade

pi tch was chosen in order to minimize leakage, which is
a major problem of gear pumps turning at low speeds.

Towing tank tests demonstrated that the pumping

rate was not in fact proportional to the velocity,

owing to leakage in the pump and drag on the propeller.

The rate, however, was within 20% of nominal at all

velocities tested ~ and in the absence of a more accurate

pumping scheme, it was regarded as acceptable. Consid-

eration had been given to a velocity-controlled, elec-

trically powered pump~ but the high power consumptionN

electrical noise, and complexity of such a system ruled

it ou t .

5. SIGNAL-CONVRSION ELECTRONICS

The output of the probe (regarded hereafter as in-

corporating the probe-driving amplifier), is an A-C

current whose amplitude is proportional to conductivity~

this signal is available from the secondary winding of

the special transformer. The signal-conversion elec-

tronics shown in Figure 2.4 consists of the following:

(1) a current-to-7oltage converter which converts the
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A-C i:~urrent flowing in the secondary of the transformer
to an A-C voltage~ (2) a bandpass filter to remove

noise outside the frequency band of the A-C signal ~
(3) a demodulator, incorporating a precision rectifier

and a low-pass filter, to convert the A-C voltage into

a lo~'-frequency signal proportional to conductivity~

and (4) a differentiator, which takes the time derivative

of the conductivity signal (up to 500 Hz) .

The necessity of differentiating the conductivity

signal arises out of the fact tha t the energy spectrum

in the ocean decreases rapidly toward higher frequen-

cies, whereas the higher frequencies (corresponding to

small structures) are the desired quantity. Since the

dynamic range and signal-to-noise ratio of the tele-

metry and recording systems are limited, it is neces-

sary to pre-emphasize these higher frequencies by dif-

ferentiating the signal before transmitting i t~ other-
wise the higher frequencies will pe lost or degraded.

6. MECHANICAL CONFIGURTION

The mechanical design of the microstructure sensor

is shown in Figure 2.5. The conductivity probe is

mounted so as to project about six inches beyond (for-

ward of) a stainless steel end cap which forms part of

the ground plane. Behind this cap is an oil-filled

housing, enclosing the special sea-water transformer

and the coaxial cables, which is connected to an ex-

ternal oil-filled bellows in order to keep the housing

at ambient pressure. Mounted behind this housing is

the pressure housing containing the electronics ~ bulk-

""
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head feedthrus provide connection between the electronics

and the wiring in the oil-filled section.

7. OUTPUT SPECIFICATIONS OF CONDUCTIVITY PROBE
INSTRUMENT

Two signals are taken from the conductivity micro-

structure sensor and transmitted separately. One is

the voltage proportional to conductivity (referred to
hereafter as "gross" conductivity, Cg), and the other

is the time derivative of the conductivity signal

(referred to as C i ). In each case it should be under-
stood that symols such as Cg and C i refer to voltaqes
which in turn are proportional to that particular

physical variable.
The sensitivity at the Cg output is +0.077 volts

per mmo. cm-l. The Cg output was intended primarily as
a check on the operation of the instrument, since it

was felt that the inherently spiky C i signal might not

give a clear indication of an instrument malfunction.

This instrument was not intended to be an accurate ab-

solute conductivi ty sensor~ hence no effort was made

either to provide a convenient output sensitivity, or

more importantly to stabilize the instrument against

small changes in sensitivity and leyel due to varying

ambient temperature and pressure. To have done so,

particularly in the case of temperature stabilization,

would have required a vastly greater effort, probably

involving quartz or glass probe construction and ultra-

stable electronics. This effort was not thought to be

justifiable because the instrument was intended pri-

marily to observe small-scale horizontal variations in
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conductivi ty.

The sensitivity of the C. output is 0.034 volts

per mmo .cm -1 Isec. The lack of absolute stability of

the conductivity signal, Cg, results in a small gain

error in C., which is less than 1%.

B. AUXILIARY INSTRUMNTS

The conductivity-type microstructure sensor des-

cribed above is intended to be the primary instrument

for detecting the presence of microstructure. But in
order to interpret and understand any signals (or the

lack of signals) from the conductivity probe it is

necessary to know the context in which they occurred.

Thus it was considered desirable to measure simultan-

eously: (l)\temperature~ (2) vertical gradient of
conductivity; (3) vertical gradient of temperature~

(4) depth~ and (5) forward velocity. A brief descrip-

tion follows of the design consideration of each of

these instruments. Details on the actual performance

of the instruments are given at the end of each section.

1. SELECT ION AND DES IGN OF THE TEMPERA TU PROBE

Ideally, temperature should be measured at the

same location at which the electrical conductivity is

measured, and with sufficiently good precision and fre-

quency response to enable the calculation of salinity

on the microsca Ie. This would require temperature ac-

curacy down to 0.001 °c and a frequency response ex-
tending up to several hundred hertz. Temperature, how-

ever, is inherently more difficult to measure rapidly
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than conductivity, b~cause it involves the diffusion

of heat~ in particular, temperature probes for use in

sal t water must be electrically insulated from the
water, commonly by glass encapsulation, which is not

conducive to fast response.

Metal film resistance probes were considered first.

These are commercially available in the form of tiny

quartz fibers plated with a thin metal film and insulated

with another layer of quartz only a few angstroms thick.

Their frequency response extends to about 100 Hz with-

ou t compensation, and they have the stability and lin-

earity common to larger metal resistance thermometers.

But they have two serious drawbacks, namely: their

low sensitivity, and their low resistance. The former

means that the percentage change in resistance per de-

gree is low (typically 0.5% per °C) which is not serious

in itself provided that sufficient exci ta tion voltage

can be applied. The'low resistance, however, implies

that the excitation voltage must be kept very low in

order to avoid self-heating of the probe and consequent

sensitivi ty to velocity (ventilation noise). It can be

easily calculated, for example, that in order to re-. -30solve temperature differences of 10 C it would be nec-

essary to resolve voltage differences of about 0.15 micro-

volts (assuming 1 K probe resistance and 1 micro-watt

power level). To resolve such infinitesimal voltages at

frequencies ranging from zero to one hundred hertz is

beyond the capability of commercially available amplifiers

(a t least those which will fit into an underwater

housing). Therefore the metal film probe was regret-

fully abandoned.
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Thermistor-type probes are the remaining al ter-
native. Even the smallest thermistors (0.010 inches

in diameter) are considerably larger and slower than

the metal-film types, but fortunately they offer much

higher sensitivity (typically 5% per degree) and very

much higher resistance (available up to several mégohms).

These factors result in a sensi tivi ty of about 50 micro-

volts per 10-3°C, for frequencies up to about 30 Hz.

The slowness of the response can be electronically com-

pensated to frequencies above 100 Hz~ this is possible

because up to that frequency the resolution-level sig-

nal is above the total noise level. Laboratory experi-

ments disclosed that the response to a thermal "step"

could be as short as five to ten milliseconds, with corn-

pensa tion .
The circuit used is a resistance bridge with a low-

drift D-C amplifier, . whose output is (approximately)

proportional to temperature. The design sensitivity is

0.667 volt per degree C (0 - 30°C is full scale). This

output is known as Tg ("gross" temperature) and is

analogous to Cg, in tha tit was not tlo ught necessary

to stabilize the sensor against the effect of pressure,

nor to remove the small non-linearity present in this

type of sensor.

The D-C coupled section is followed by the fre-

quency compensation circuit, which is designed to

boost the overall gain at frequencies above 30 Hz at a

rate of 20 db per decade up to 300 Hz. Above 300 Hz

the gain rolls off to prevent oscillation and excessive

sensi ti vi ty to noise.
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Lastly, there is a differentia tor circuit which

produces a T' signal analogous to C'. Its output is

0.55 volts per °c per sec., for frequencies up to 300

Hz. Above that frequency the gain rolls off. A block

diagram of the entire temperature electronics is shown

in Figure 2.6.

The mechanical design was determined largely by

the need to put the thermistor as close as possible to

the conductivity probe without interfering with the

free flow of water around it. Furthermore it was

desirable to make the thermistors interchangeable,

since they are easily broken. Therefore each thermistor

is mounted at the end of a 1/8 inch diameter stainless

steel tube which is shaped and positioned so that the

thermistor is as close as possible to the tip of the

conductivity probe. The other end of this tube leads
into a small pressure housing containing a calibrated

resistor~ the entire assembly constitutes half of the

bridge circuit. The small housing is mounted on the

body of the conductivity probe. The electronics are

located elsewhere (in the power supply cylinder) and

connected by waterproof cable to the thermistor housing.

Each thermistor was matched with a resistor, such

that the ratio of resistance was correct at 15 degrees

Centigrade. Matching was accomplished by immersing

the thermistors in a circulating water bath held at

15 degrees, and adjusting a resistance trimpot until

the bridge balanced. Each thermistor and resistor was

then assigned a number. The thermistors, being all of
the same type, have the property that the proportional
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chan~Je in resistance per degree is the same for all

units, although the actual resistance at 15 degrees

may vary by 20 percent from unit to unit. Thus the

combined thermistor-resistor pair consti tu tes one-half
of tiie bridge circuit, having th e property that both

the zero point (at which the bridge balances) and the

sensitivity do not change if a different pair is sub-

sti tuted. This allowed complete interchangeability of

thermistors without the necessity of recalibration each

time one broke.

In practice, the T i signal was contaminated by

noise of large amplitude. The tiny thermistors func-

tioned rather well as gross temperature sensors, as

will be seen in the next chapter, except for the in-

evi table breakage problem~ but the differentiated and

. frequency-compensated T i signal contained large amounts

of high frequency energy, mostly rather narrowband.

Whether this oscillation arose in the thermistor itself

or in the circuitry following the D-C amplifier is not

known. The differentiation and compensation circuits,
which have an inherent tendency to oscillate, were

specifically designed and checked beforehand to ensure

their stability, even under overload conditions. Sus-

picion therefore points toward the thermistor itself as

the origin of the noise. A microphonic condition due

to the strumming of the cable may have been responsible,

aggravatêd by the high impedance (1 Megohm at 20 C) of

the thermistor, and the relatively long wire between it

and the ampl if ier .
This problem was perceived during the sea trials.
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Efforts "\.¡ere made to solve it, but none succeeded.
However, it was carefully determined that no corre-

Ia tion existed between this T i noise and the vastly
more infrequent bursts of signal on C i .

2. VERTICAL CONDUCTIVITY GRADIENT SENSOR

For the purpose of the investigation it was es-

sential to measure the local vertical gradient of

electrical conductivity andlor temperature. It is ex-

pected, for example, that if salt fingers are an im-

portant causative agent for the formation of layers in

the thermocline, then they will be found primarily on

the interface separating these layers ~ hence a test

for salt fingers would be a significant correlation

between the occurence of microstructure and the pres-

ence of sharp local maxima in the vertical gradient.

This instrument, being intended for horizontal

towing, requires a differential type of sensor. The

"gross" conductivity cannot be relied upon to give a

clear indication of the local gradient unless the in-

strument is being raised or lowered at a uniform rate.

The instrument to be described below was con-

structed by a different investigator, Dr. John C. Van

Leer, for another microstructure project~ the design

cri teria are not necessarily those of the author.
The differential conductivity sensor measures the

difference in conductivity between two vertically sep-

arated heads (in this case, 30 cm. apart). The heads

need not be very small, so use was made of ordinary

inductive-type conductivity sensors (manufactured by
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the ::\issett-Berman Corporation for use in their S.T.D e

instrument). Amplitude-stabilized A-C excitation (at

10 KHz) is applied equally to the primary windings of

the sensors, and a differential amplifier senses the

imbalance current in the secondary windings. ,Assuming

that the sensitivity of the heads is the same, this im-

balance current is due solely to a difference in con-

ductivity between the heads. A synchronous demodulator

with a low-pass filter converts the A-C signal into a

slowly-varying D-C level proportional to the local

gradient. A block diagram of the system is shown in

Figure 2.7.
The sensi tivi ty of the instrument is 20 volts per-1 -1mmho.cm (~.5 mmo.cm full scale), which, with a

vertical separation of 30 cm. between the heads, cor-, -1responds to 0.6 volts per)Woocm Icm. This differ-
ential technique yields an accurate estimate of the

gradient only for vertical scales. larger than 30 centi-
meters. Conductivity variations occuring on smaller

scales will yield gradient estimates that are too low.

It should be noted tha t the zero of the conduc-

tivity differenqe depends upon the tracking of the

heads. The sensitivities of the two heads must always

be identical ~ otherwise the difference between them will

contain a signal proportional to conductivi ty itself.

An error due to this cause was discovered during the

investigation, and will be discussed in more detail in

Appendix 3.
The conductivity gradient sensor is installed in

the same package as the temperature gradient sensor,
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and share a common power supply. This package was

mounted alongside, but aft of, the microstructure

sensor, so as to sample undisturbed water but not in-

terfere wi th the flow pa s t the micros tructure probe.

The entire gradient-sensing package is illustrated

in Figure 2.8.

3. VERTICAL TEMPERATUR GRADIENT SENSOR

For the temperature gradient sensor a thermopile

design was chosen, because of its inherent lack of

zero error. The voltage generated by a thermopile

whose junctions are vertically separated is propor-

tional only to the temperature difference between the

junctions.
A thermopile comprising 90 pairs of iron-constantan

junctions was used in order to achieve maximum reso-

lution of the temperature gradient. The junctions are

located in tiny (.047" dia.) stainless steül tubes

which protrude from a pair of flat cylindrical heads.

The tubes are in the form of semi-circular loops ~ each

loop contains two junctions which are insulated from

the tube by a thin insulating sleeve.

The heads are mounted 30 centimeters apart on

hollow oil-filled tubes which contain the wires. The

ou tput wires are led through a pressure bulkhead to the
amplifier. This entire assembly mounts forward of and

in line with the conductivity gradient sensor. Refer

to Figure 2~8 for the illustration.

The electronics for the temperature gradient sen-

sor are simple, consisting of one chopper-stabilized
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D-C amplifier. The output sensitivity is 20 volts per
degree Centigrade (~O. 5 C full scale) which corres-

ponds to a gradient sensitivity of 0.6 volts per 10-3CC

per cm. The resolution of the instrument is 5 x 10-4oc,

and its response time was designed to be approximately

50 milliseconds.

Due to an oversight during the modification of

this instrument from its previous configuration, the

frequency response was degraded. The intent of ii

designer was to extend the frequency response of the

amplifier to about 40 Hz~ in fact, however, the ampli-

fier as used after modification had a frequency response

of only 0.2 Hz. The result is that the Tz signal is
somewha t II smeared II and the amplitude of its peaks is

reduced.
Were it nòt for the presence of higher frequency

noise, primarily due to the telemetry and recording

systems, this error could have been corrected almost

completely in later analysis. A matching filter to do

this was built and tested, using the defective ampli-

fier itself to provide the lagged response. This sys-

tem, which boosted the gain at higher frequencies,

provëd capable of restoring the lost frequency response

up to about 20 Hz. But unfortunately the response had

to be limited .in practice to about 1Hz if the noise

(which is also boosted) was not to become excessive.

This improvement, while noticeable, was not entirely

satisfactory, since the Cz signal was not similarly

frequency limited.
en

Consequently, it has not bei feasible to calculate
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the salinity gradient from the temperature and con-

ductivity gradients, as originally intended. However,

the temperature gradient signal has proven to be ex-

tremely valuable as a means of verifying the reality

of observed conductivity gradient features, since tem-

perature and conductivity gradients are qualitatively

similar.

4. VELOC ITY METER

Clearly it is necessary to know the. veloci ty of

the instrument package, so as to be able to convert

the da ta from a function of time to a function of
spatial position. For this purpose a simple impeller-

type velocity meter was chosen. The meter has small

magnets attached to the backsides of two of its blades ~

a pickup coil attached to the meter housing produces

two' pulses per revolution. Thes~ pulses are amplified

and transmitted. The circuit used is shown in Appendix

3.

The principal advantage of an impeller-type meter

is that it produces pulses which are (approximately)

constant-distance. These pulses provide a handy dis-

tance scale when displayed on a strip-chart record in

conjunction with other variables. Furthermore, pulses

are much easier to transmit accurately than an analog

vol tage would be ~ telemetry requirements are much less
cri tical.

The velocity meter was tested by towing the entire

instrument at various calibrated speeds. The towing

carriage used for this purpose would not safely go
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faster than about 85.cm/sec., which was only half of

the desired range, and only one-third of the maximum

velocity actually attained during the sea-going exper-

iment. Fortunately the velocity meters (of which there

were three to allow for breakage) exhibited a reason-

ably constant number of revolutions per centimeter

traveled (13.0) except at low speeds.

5 . DEPTH

Depth is measured with a Bissett-Berman pressure

gauge. This commercially available unit has a range
of 0 - 2200 p.s.i.g., corresponding to 0 - 1500 meters.

The unit contains its own FM oscillator, working in

the frequency band of 9712 - 11288 Hz.
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C. POWER, TELEMETRY,' AND REC,:)RDING SYSTEMS

1 . POWER

The instruments require altogether about 20 watts.
The operational amplifiers used in many of the circuits

require +15 and -15 volts with respect to ground (sea

water). Other instruments OpE!rate from +27 volts, such

as the depth sensor.

D-C power is sent down the cable from the surface

ship. Owing to the great length of cable, a high-

vol tage power supply is required to drive the necessary

current (1.1 amperes D-C) into the cable. The actual

vol tage required depends of course upon the particular
cable used~ in this investigation about 150 volts was

necessary.
The main power in the instrument is established by

a 27 volt zener diode in the power supply cylinder. The

D-C current from the surface is applied to this diode.

All of the circuits draw their power from this 27 volt

supply, and the zener diode sinks the excess current so

as to maintain the correct voltage. Some circuits op-

erate directly on 27 volts ~ +15 and -15 volts (regu-

lated) for the remaining circuits are provided by DC-

to-DC inverters which operate from 27 volts. A block

diagram of the entire power, telemetry, and recording

systems is shown in Figure 2.9. A circuit schematic

of the power supply (and the telemetry oscillators

which are described in Section 2 is shown in Appendix 3.

Each instrument requiring +15 and -15 volts is

supplied from a separate inverter, so as to provide

maximum power-supply isolation between instruments,
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and also to prevent a fault in one instrument from

affecting others.

It will be noted that this system is somewhat in-

efficient. The power supply at the surface produces

about 180 watts, of which only 32 reach the input to

the power supply cylinder on the instrument, the re-

mainder being dissipated in the cable. Approximately

12 watts are dissipated in the zener diode and the

inverters. Moreover, of the 20 wa tts actually supplied

to the circuits, about two-thirds (12 watts) is re-

quired to power the amplifier which drives telemetry

signals up the cable to the surface. Thus the cable is

by far the greatest source of inefficiency.

2. TELEMETRY SYSTEM

For this instrument the telemetry system must si-

multaneously transmit eight variables (C i, T1, Cgross,
Tgross, C-i Tz , V, Z) to the recording system

aboard the surface ship. C' and T' must have trams-

mission bandwidths from D-C to 500 Hz~ the others need

only D-C to 40 Hz or less.
Clearly, if a nine-conductor oceanographic cable

were available, it would be possible to transmit each

signal and the power over a separate conductor~ then a

telemetry system, as such, would be unnecessary. But
multi-conductor cables are not readily available, and

are extremely expensive and bulky. Moreover if the

cable is long there is a strong likelihood of "cross-

talk" between conductors. Therefore a telemetry system

had to be designed which could transmit all the signals
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simultaneously over a single-conductor cable, while

also allowing D-C power to be sent down the same con-

ductor from the ship to the instrument.

Narrowband, frequency-m~dulated, frequency-multi-

plex telemetry was selected. Briefly, this system con-

verts each analog variable into a narrowband frequency-

modulated sine wave, whose maximum frequency deviation

is ~ 7.5% of its center frequency. The center fre-

quencies are chosen such that there is no frequency

overlap. The sine waves are then summed electronically¡

producing a composite or multiplex signal which, by

means of a power amplifier, is superimposed upon the

D-C voltage from the surface ship.

The conversion of the information from its original

analog form to FM is accomplished with voltage-controlled

oscillators (VÇO's), which are contained in the same

pressure housing as the power supply. The outputs of

the VCO i S are summed in an amplifier and sent up the

same cable used for D-C power, by means of a series line

driver circuit. A block diagram of this system has been

shown in Figure 2.9. Refer to Appendix 3 for circuit

details. Provision is also made for sending the multi-

plex signa 1 through a separa te conductor, if mul ti-con-

ductor cable should be ava ilable.
Commercially available oscillators are used (Bosch-

Arma Model 1270 BY-I). These were tested in the labor-

atory for frequency stability, and were found to have a

temperature coefficient of -0.76xlO-4 per degree C.

Thus these oscillators are expected to drift less than

1.3% with respect to full scale over the entire oceano-

graphic temperature range of 5-30 degrees C.



Sn. ".:1. ,~,

In terms of analog output voltages, which are xlO

volts full scale for all channels, the VCO frequency

drift amounts to 0.26 volts over the full 5 - 30 degree

C. range. Referring to Figure 3.2, p. 74 , it may be

seen tha t the actual tempera ture range encountered in

this experiment was no more than 16 degrees C. (0 -

1000 meters); the corresponding VCO drift should amount

to no more than 2:0.16 volts with respect to the value

a t the surface.
The effect of this VCO drift ppon the data may be

more or less serious depending on the signal variations

and the required accuracy. For the Cg data, which

varies by only 1.2 volts over the entire depth range, a

telemetry oscilla tor drift of 0.16 volts is significant

indeed ~ and this must be borne in mind when inspecting

the Cg da ta . For the Tg da ta, on the other hand, which
varies by about 11 volts over the 0 - 1000 meter depth

range, the VCO error is an order~of-magnitude less

serious. For the Tz and Cz data, the VCO drift amounts
-1to 0.027 degrees C. per meter and 0.027 mm 0 cm. per

meter respectively; these are approximately equal to

the mean gradients in the deep thermocline. For the

velocity signal, which consists of a series of pulses,

the drift has no significance. The depth sensor contains

its own oscill~ tor, and hence is not subject to these

considerations at all. The all important C i signal,

being a time derivative, is essentially A-C coupled any-

way~ however, this telemetry drift (plus other drifts)

make it much more difficult to integrate C i later.

The original analog signals are recovered at the

, .
",,
t
I
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surface. First the telemetry signals are separated

from the D-C current. This is done by a signal-
splitter, to be described later in this section. Then

the various frequencies are separated from the composite

signal by bandpass fil ters ~ and lastly each frequency

is demodulated to produce a replica of the original

analog input. The overall telemetry system gain is

adjusted to one (i.e., voltage input=voltage output).

The demodulator is shown schematically in Figure 2.9.

Standard IRIG frequency bands are used. Table A-2

in Appendix 3 lists the center frequencies used, to-

gether with the upper and lower frequency excursions.

Slip rings are of course a necessity at the winch,

in order to get the signals off the rotating winch

drum. Slip ring brushes, however, can be a major source

of noise, particularly if they are carrying heavy current.

Therefore, in order to avoid degradation of the multi-

plex signal by slip ring noise, a "signal-splitter" cir-

cuit was employed, which mounted on the winch drum on

the cable side of the slip rings, so that the A-C and

D-C flow through separate brushes. The circuit, shown

in Appendix 3, consists of a large filter choke and

capacitor, through which the D-C current flows. This

filter provides clean, noise-free D-C and a high A-C

impedance. A capacitor provides A-C pick-off.

, ¡o
~i

'i

3. RECORDING SYSTEM

The information coming up the cable from the in-

strUment must be recorded in two separate ways. Firstly,

it must be recorded on magnetic tape in the simplest

and most direct ~ay possible so as to be fully recover~
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able in the future. . Second ly, it must be recorded on

a chart recorder so as to be immediately visible in

rea 1 time.

TAPE RECORDER

The frequency-modulated signals coming up the

cable are in a form sui table for recording directly on

magnetic tape. Essentially, the method chosen is to

record the entire multiplex signal on a single direct-

record channel. A constant-frequency reference signal
(5.4 KHz - IRIG Channel #10) is added to the multiplex

signal before recording i this reference provides a means

of eliminating the undesirable effects of tape speed

varia tions upon playback.

Unfortunately, however, the linearity of most tape

recorders is only fair, which tends to contaminate the

higher frequencies with distortion products of the lower

frequencies. Therefore, in order to produce the clean-

est recording of the valuable C' and T' signals, it was

decided to record these signals separately, each on its

own channel of the four-channel recorder.

Moreover, if the 22.0 KHz and 14.5 KHz FM signals,

which contain the C' and T i information, were to be
recorded without modification, it would be necessary to

use a high tape speed (15 inches per second). The sig-
nals, however, are narrowband and the modulating fre-

quencies do not exceed 500 Hz, so that the wide band-

width of the 15 i. p. s. tape speed is unnecessary.

Therefore, in order to conserve tape, it was decided to

record the analog (demodulated) C i and T' signals at
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3 3/4 i.p.s. via separate FM-record channels on the tape

recorder. Refer to Figure 2.9 for a block diagram of

the recorder connections.

Recordings made with this system may be played

back to recreate the experiment exactly as it occurred.

The mi:ltiplex signal from the recorder is connected

into the demodulator, which processes the FM signals to

obtain all the original variables except C i and T'. De-

modula tion is done with respect to the reference fre-

quency (5.4 KHz) to eliminate the effect of tape speed

variations. The C' andT i signals are obtained directly

from the tape recorder.

STRIP-CHART RECORDER

Any of the eight variables can be displayed on the

strip-chart recorder. A six-channel machine was used

because an eight-channel one was not available; but the

lack of the full channel complement has not been a

serious defect. The strip-chart recorder is meant to

be an on-line monitor, enabling the investigator to

inspect the data (in a somewhat crude fashion). Such

inspection is vital to the successful conduct of the

experiment: not only can the investigator detect instru-
ment malfunction, but more importantly he can alter the

course of the experiment if an interesting feature or

event should occur.
The strip-chart recorder also enables the investi-

gator to select interesting events for further analysis.

Horizontal microstructure is an intermittent phenomenon,

and the record is bound to contain large stretches where-
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in nothing happened. The inf::equent places where micro-
structure occurs must be marked and later analyzed one

by one, and the strip-chart record provides this im-

portant first step in the data analysis.

The machine used in this project is a Brush Instru-

ments Co. Model 260. The essential requirements were,

firstly, that the instrument be capable of recording

high-speed signals (above 100 Hz),. and secondly, that
it have a wide range of useful chart speeds. For ex-

ample, it was found to be convenient to run the chart

recorder at speed s of less than one centimeter per

lIinute during the experiment, to provide a "picture"
encompassing several hours of operation~ yet in order

to get a detailed look at a microstructure event it is

necessary to run the recorder ,a t speeds as high as 25
centimeters per second. Inkless recording is mandatory

under these conditions.
The recorder is used in conjunction with a Sanborn

Co. eight-channel pre-amplifier.

D . TOWING VEHICLE

The towing vehicle or "fish" is the carriage on

which the instruments and components are mounted. Its

primary function is to hold the instruments in the

correct orientation as the instrument package moves

through the water. In particular, the C i and T i sensors

must always protrude ahead of the instrument package so

that they will sample undisturbed water. Moreover,

since the vehicle is relatively light, the fish must

actively pull itself downward if it is to be towed at
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great depths. The necessity of this downward lift did

not become apparent, however, until sea trials com-

menced .

There are four separate instrument housings of

substantial size: (1) the conductivity microstructure

sensor~ (2) the gradient sensors ~ (3) the depth sensor;

and (4) the power supply and telemetry unit. In

addition there are two smaller objects, namely: the
velocity meter and the temperature probe. Lastly
there is the rather large pump-and-propeller assembly

described in Chapter III.
Wherever possible the larger units were installed

in long, thin cylindrical pressure housings. These are

mounted with their axes parallel to the direction of

motion so as to minimize drag.

The complete instrument is illustrated in Figures

2.10 and 2.11 (without diving pl~nes). Note that the

conductivi ty sensor (with the temperature and velocity
sensors attached) is mounted furthest forward, with the

gradient sensor package further aft and to the side.

The other cylinders are mounted underneath and out of

the way. The pump and propeller are a t the extreme
after end. The cable is attached, as shown, somewhat

forward of amidships. The fish is steered and made to

tow correctly by the combined effects of the vertical

stabilizing fin (not shown) and the drag of the pro-

peller.
The diving planes consist of simple, flat, rec-

tangular plates (14 inches by 12 inches each) attached

to the frame of the vehicle opposite the point of
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attachment of the cable. They are mounted parallel to

the frame. A horizontal fin, placed as far aft as
possible, maintains the angle of attack of the vehicle

at 5 degrees (tail up) .
The fish tended to tow in a slightly "tail-up"

attitude even without the fins, because the point of

attachment of the cable was above the center of drag,

as can be clearly seen in the Figures. This arrange-

ment was necessary to avoid fouling the cable on the

delicate instruments during launching and recovery.

Rather than try to overcome this tendency with the tail

fin, it was decided to adopt the tail-up position as

the normalatti tude, and depend upon the tail fin only

to maintain that attitude.

Sea triais revealed the necessity of incorporating

diving planes or wings to increase the downward force

on the cable, thereby enabling the instrument to go

deeper for a given length of cable. This was an im-

portant objective, since the cable used was only 1500

meters long. Without diving planes, the instrument

could not be towed steadily at depths greater than 600

meters, at least not at speeds which our research vessel,

the R/V Panulirus II, could achieve. The Panulirus has

diesel engines and fixed-pitch propellers and cannot

steam slower than about three knots, even with a head

wind.

r
,
,

i

I

I

The wings were constructed of one-eighth inch

steel plate, having a total area of 340 square inches.

A simple calculation, assuming a maximum velocity of

250 centimeters per second, 5 to 10 degree angle of

".~

I ;
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attack, an aspect ratio betwE!en 1:1 and 1:2, and a

lift coefficient CL of 0.3, (Prandtl, 1952) gave a net

downward "lift" of only 50 pounds. In comparison with

the 100 pound weight of the instrument, this dynamic

force would not seem large enough to be worth the bother.

Larger planes, however, would offer a serious risk of

excessive strain on the cable due to the rolling of the

ship, particularly if the instrum~nt should be near the

surface. Flat pIa tes certainly do not have the optimum

lift-to-drag ra tio ~ however, the instrument itself is

not streamlined, so that its drag is much larger than

the drag of the wings anyway. Therefore the effect of

the wings is to multiply the lift-to-drag ratio of the

instrument by about 1.5 at maximum speed.

At any rate, wings of this size were tried and found

to have a beneficial effect on the performance of the

vehicle. Depths of 800 meters w~re achieved at steady

speeds~ moreover, the sensitivity of the instrument's

depth to slight changes in ship speed decreased.

A horizontal stabilizer fin was mounted at the

rear of the frame, just forward of the propeller, to

control the angle of attack of the wings. It performed

its function well ~ the vertical angle between the frame

and the streamline of the flow was much more nearly con-

stant than it had been previously. This may have re-

""

L,
. !

. .suI ted in a further reduction of the net drag of the
instrument.

The completed instrument in the water and under

tow is portrayed in Figure 2.12.
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E . TANK TESTS

Preliminary tests of the completed instrument were

carried out in a fifty-foot long salt water tank at

Woods Hole Oceanographic Institution. This tank was

equipped with a towing carriage to support and propel

the instrument. The tank had previously been filled

with a highly-stratified salt solution (NaCl, not sea

water) of approximately 20 0100 salinity. This was by

no means an ideal test fluid ~ but the time available

would not permit of draining, cleaning, and refilling

the tank, and then allowing it to equilibrate, the

harbor water at that time (April 1972) being less than

50°F. Moreover, the problem of biological fouling in

the stagnant, warmed sea water might have proven

severe. For these reasons the existing water was re-

tained .
The water tended to stra tify itself if left undis-

turbed because the bottom of the tank, which rested in

a concrete foundation, was considerably colder than the

walls~ initially the temperature difference between top

and bottom was 10 degrees Centigrade, and even after

the tank had been stirred thoroughly a temperature dif-

ference of several degrees would re-establish itself

overnight. These large gradients, combined with the

low average salinity, often produced confusing results

from the instruments, particularly the gradient sensors.

Consequently, the performanqes of these sensors was not

thoroughlyinvestiga ted in the tank.

CONDUCTIVITY PROBE TESTS
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The most extensive tests were carried out upon the

conductivity sensor to verify its sensitivity and speed

of response. Simple tests, such as sprinkling salt
crystals into the water, allowing them to sink, and

then running the instrument through the trai1.s they
left, demonstrated that the sensor was capable of re-

solving structures of fractiona I-centimeter size. Such

tests, however, were too crude to check the instrument's

response quantitatively.

More quantitative measurements were obtained by

injecting vortex rings of water differing from its sur-

roundings across the front of the stationary probe.

These "underwater smoke rings" provided a more-or-less

controllable means of varying the conductivity rapidly

enough. The setup is illustrated schematically in

Figure 2.13. A typical record of a C' signal resulting
from a "smoke ring" is shown in Figure 2.14. The con-

ductivity of the watér issuing from the jet could be

altered by adding fresh water to a sample of tank water.

The copper coil shown in Figure 2.13 was intended to

prevent any temperature difference from arising between

the ambient water and the "smoke rings". It was also

necessary to draw water through the probe by the action

of a siphon, to prevent formation of a stagnation layer,

which would have been highly velocity sensitive.

It became apparent as the testing proceeded tha t

reproducible results were difficult to obtain for small

conductivity variations. The design sensitivity of the

probe is 3 parts in 105 and thus to measure its reso-

lution level, the temperature would have to be known

;. .
"",
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c' time TI

Tracing of excerpt from run of 22 April 1972.
Passage of 1 "smoke ringtl vortex past C aad T probes.

Initial Composition of "smoke ring" (at Nozzle):

S = (0.95)S where S = ambient salinity = 15.5 o/~o 0
T = unknmYn (not equilibrated)

AS = -0",780/00 from initial conditions

AS = -0.43~o calculated from area under A and B above,

and from Riley and Skirrow (1965).
Spatial Extent of "smoke ring" : less than spacing between

C and T probes, which is 0.8 cm.

FIGURE 2.14 TANK TEST CALIBRATION RECORD
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to that accuracy. Such temperature control, however,

was impossible in this large, unevenly-heated, con-

vecting body of water, copper coils notwithstanding.

Moreover, the spatial resolution of the probe was

seriously degraded in this setup because of its sta tion-
arity. Sucking water from a still tank through a

stationary probe produces a much more diffuse and ac-.

celera ted flow pattern than tha t which results from
sucking water through a moving probe. This had the

result of smearing the "smoke ringsll as they approached

the stationary probe, thereby producing a lower rate-of-

change of conductivity than would have been the case if

the probe were moving but the rings stationary.

Nevertheless, the tank tests demonstrated that the

conductivi ty probe could resolve small structures ¡the
signal level at the output due to the intersection by

the probe of a 1 cm. diameter conductivity structure

is about 9iflo of the signal due to the intersection of
a much larger structure. The sensi tivi ty of the instru-
ment agreed with the design value within the errors of

the tank test setup.

SEA TRIALS

Owing to scheduling difficulties and the need for

deep water, sea-going trials of the instrument were not

undertaken in New England waters. Instead the trials

were combined with the data-gathering expedition itself,

which was based at the Bermuda Biological Station. The

vessel used was the R/V Panulirus II, a 65 foot twin-

diesel boa t equipped for research.
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Normally it is no"t good practice to attempt to

combine trial runs with data gathering~ electronic

equipment is rarely cooperative enough. But in this

case shore-based laboratory facilities were available

at thE~ Biological Station, and Panulirus made qay trips
out to sea. This arrangement was extremely satisfactory

both for the trials and data collecting, except for the

necessi ty of shipping all the required supplies to

Bermuda.
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'CHAPTER III

DESCRIPTION OF THE EXPERIMNT

A. LOCATION

Several investigators have reported finding a step-

like structure of temperature and salinity in. the main

thernocline near Bermuda. This region is characterized
in general by the fact that both temperature and salinity

decrease with depth in the permanent thermocline, con-

ditions which favor the salt finger type of double-

diffusive convection; and it has been proposed that

salt fingers may account for the forma tion of the layers

and sharp interfaces. The purpose of this investigation

was to gather more information on the nature of such

microstructure, and in particular to see if salt fingers

could be found between the layers. Bermuda is there-

fore a sui table if not unique place to use the micro-

structure instrument.

Bermuda offers certain practical advantages to the

oceanographer. The 1,OOO-fathom depth line is only six

nautical miles off the south shore of the islands. Day

trips using relatively small vessels are thus entirely

feasible, in contrast to New England waters, where the

continental shelf extends 200 miles offshore, and where

larger, sea-going vessels are mandatory. The climate

is generally favorable in Bermuda, although it can be

qui te rough especially in the winter and spring. (This
advantage, however, is offset to some extent by the use

of small ships which require better weather for any par-

ticular operation than larger ships). Bermuda is also

fairly easy to get to by air. Most importantly, ex-

I
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cellent shore-based laboratory facilities are available

at the Bermuda Biological Station. The combination of

onshore laboratories with a small ship for day trips

is ideal for a project such as this one which involves

instrument "debuggingll and tri.al runs as well as data

ga the ring .
The area near Bermuda is certainly not unique in

having microstructure ¡indeed, many other parts of the

ocean exhibit more clearly defined steps in the verti-

cal profiles than do the waters near Bermuda. But in

view of the advantages of operating from Bermuda, the

known existence of microstructure in the thermocline

there, and the availability of numerous oceanographic

observations of various kinds made in the vicinity, it

was decided that Bermuda was the best place to carry

out the experiment.

A chart of the Bermuda Islands is shown in Figure

3.1, indicating the place southeast of the island where

most of the deep-sea work of this investigation was

done. Most of the data to be analyzed in this section
were ga the red there in June, 1972.

On each of the cruises ¡the R/V Panulirus II
steamed around the eastern end of the island, and then

south-east into deep water. The launching and towing

of the instrument commenced when the lOOO-fathom depth

contour was passed. This point, which is about 6 nau-

tical miles southeast of St. David i s Light, is marked

on the Bermuda chart, Figure 3.1. The instrument was

towed at the slowest speed at which the ship had ade-

quate steerageway~ this naturally depended upon the

c



71,. :-

z
0

P5 (§:J'0
::

'0

a:
'0 (\

~

'0 Ii, 'I

c

0

W (/

(\

IO .I- z ~
~N

"' 0:i

g~ r-:!

1:
Cf

.0

0 "

~

NI ..

~
'"

'0

ó
~ i

Ii

c HCL ~ ~CL
~"'

i

'0

;. .
"",.

'0
'I

'0l(

3:
o
10
l.

'0
(\



~.(2,
";-..' .

wind velocity. The direction of the tow was determined

by the wind direction~ it was found that if the wind

w~re kept on the starboard bow, the ship. s motion was

least offensive ~ and moreover the course, speed, and

wire angle could be held steady with a minimum of cor-

recti.on. This resulted in a southerly course, away

from the island, because the wind was almost always out

of the southwest. A typical towing track is also shovm

in Figure 3.1.

No towing opera tions were conducted in wa ter of

less than 1000 fathoms, primarily as a safety pre-

cau.tion. When towing in the thermocline, it was neces-

sary to let out the entire 1500 meters of available

cable i and if the ship should stop fc.r some reason, the

instrument would descend to that dep'th. Considering

the navigational uncertainties and the steepness of the

island slope at that point, it was decided not to tow

in less than 1000 fathoms.

Owing to the slowness of the R/V Panulirus II, and

the necessity of making day trips, it was not feasible

to venture around the island to sample the microstruc-

ture on the other sides. It required one-and-one-half

hours steaming from the Biological Station dock merely

to cross the nearest 1000-fathom contour, south-south-

east of St. Dayid. s Light~ to have steamed around to

the northwest side would have required a several-day

trip. But there was no a priori reason to suppose that

the microstructure would be any less pronounced on the

southeast side, so it was decided to concentrate on

tha t area.
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B. GENERAL OCEANOGRAPHIC CONDITIONS

Figure 3.2 is a vertical profile of temperature,

salinity, and conductivity as a function of depth~ the

data are from hydrographic sta tion #362 taken by R/V

Panulirus II, the research vessel of the Biological

Station on 7 June, 1972. This hydrographic station was

taken, as shown in Figure 3.1, at the approximate lo-

cation of the microstructure work. The T-S relation

for this station is plotted on Figure 3.3, along with

lines of constant density and electrical conductivity.

From these figures it is clear that temperature is the

primary influence on the conductivity, and that con-

ductivi ty is a monotonically decreasing function of

depth in the large scale.
It should be noted that the detailed distribution

of temperature and salinity in the upper layers of the

ocean is quite variable. Certainly the surface salinity

minimum of Figure 3.2 is not a permanent feature. Other

Panulirus stations show surface salinities ranging from

36.20 to 36.70~ it evidently depends upon the recent

history of the weather. In fact, the entire upper

layer, from the surface dmm to the IS-degree water, is

rather confused, and may contain substantial tempera-

ture and salinity inversions.

The area around Bermuda fa s been surveyed exten-

sively by hydrographic methods, and also by the use of

moored current meters, Swallow floats, parachute drogues,

vertical current meters, and a temperature micro-pro-

filer. Wunsch (1972), for example, has conducted an ex-

tensive investigation of the flow around the island. He
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found, in essence, that "microstructure", loosely de-

fined as a steplike structure in vertical profiles of

temperature and salinity, appears to increase as the

island is approached. He ~ound furthermore that this
microstructure is not uniformly distributed azimuthally

around the island ~ rather it seems to be most pronounced

on whichever side of the island lies to the right of the

mean flow. But the direction of the mean flow can vary

abruptly; it has been observed at various times to flow

out of the west, northeast, and southwest.

The direction of the mean flow past Bermuda is not

known for the period June - July, 1972, when this work

was carried out.
In the'same paper, Wunsch also asserts that there

appears to be more structure wi thin the 18 degree water

(200-400 meters depth) than in the water above or below.

C. GENERAL PROCEDURE DURING EXPERIMT

As had been expected, it proved to be very dif-

fîcult to tow the instrument at a constant depth. The

large amount of cable, hanging on a wide catenary be-

tween the ship and the instrument, meant that unat-

tainably precise control of the towing speed and di-

rection were essential if constant depth were to be

maintained.
Active depth control using the winch was tried and

found wanting, largely because of the slowness of re-

sponse of the system to changes in cable tension. There

was also an extreme communication problem between the

ship's lab and the winch~ to effect a change in the
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wincrt speed, the author was obliged to leave the lab and

shout his request into the winch operator i s ear in
order to be heard above the noise of the engines.

Constant-depth towing was not the most desirable

proce:dure anyway, since it provided little information

about, conditions in the water above or below the instru-
ment. The optimum procedure was to tow the instrument

at a shallow vertical angle. This was best accomplished

by running the winch slowly in or out, making occasional

changes in its speed to compensate for variations in

ship speed.

The rolling and surging of the ship introduced dif-

ficulties, especially when the cable was being run out.

Under these conditions the velocity of the cable was at

a minimum, being the difference between the ship's

speed and the winch speed. Consequently, changes in

the ship i s speed had a much greater effect on the cable
tension when the cable was being let out than when it

was being hauled in. The pump which flushes water

through the conductivity probe proved to be sensitive

to these speed changes, so that the lowering had to be

kept very slow. This in turn decreased the depth sta~

bili ty.

The procedure adopted to combat these difficulties

was to lower the instrument quite rapidly to the maximum

desired depth, ignoring any data taken during this low-

ering. T.hen the instrument was raised steadily at a

modera te rate. A reasonably steady monotonic ascent

could be achieved in this way. Vertical velocities of

15 to 30 centimeters per second in combination with for-
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ward velocities of 100 to 200 centimeters per second

were typica 1 .
Exceptions to this policy of steady ascent were

made on occasion. IIYo-yo" type experiments were done,
in which the instrument was repeatedly raised .and low-

ered through an in teres ting fea ture . The ra te of low-
ering was kept rather low in order to prevent stoppage

of the pump~ nevertheless the sudden change in cable

tension as the winch reversed direction often caused

spurious signals on C i .
The six-channel high-speed strip-chart recorder

with electrostatic writing was used to monitor the data

as it unfolded in real time. The variables monitored

were usually C i, T i, Cz, Tz, V, and Z. This chart
record was manually marked with numbers corresponding

to the tape footage indicator, so as to be able to lo-

cate events again later without having to play back an

entire tape.

D . THE LOWERINGS

The lowerings of the instrument were made during

the period 4 June - 6 July, 1972. A total of 13 sep-

arate lowerings were made, on 7 short cruises of the

R/V Panulirus II. The first few lowerings must be re-

garded as trial runs for the purpose of "debugging" the

instrument. Persistent leakage in the underwater elec-

trical connectors was the major problem~ and this prob-

lem continued intermittently throughout the series of

lowerings.
A calendar of events covering the period of the
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lowerings is shown below in Table I. The lowerings

which provided useful data are indicated by asterisks

(*). A profusion of excessively windy days and major

storms, both of which are rather unusual in Bermuda in

June, were the major cause of delays. Relatively calm

weather was essential, since severe motion of the ship

had a serious effect on the performance of the towed

sensor package.

The four useful lowerings are shown schematically

as a function of time in Figures 3.4 through 3.7. Only

useful sections of the lowerings are shown. Certain

parts of each lowering are generally not useful, particu-

larly down-going sections where the instrument tended to

stop dead in the water momentarily owing to the roll and

surge of the ship. But there are exceptions, however,

such as the down-going portion of Lowering 11, which was

made on an extraordinarily calm day. Occasional instru-

ment malfunction, and time-outs for tape changing, caused

the remaining gaps.

The locations of the "bursts" of microstructure on

the C i conductivity record are indicated on the lowering
diagrams by numbered arrows, except where the micro-

structure was too dense. The first two digits of each

number indicate the tape reel numer, and the last four

digits indicate the approximate tape footage at which

the burst occured.
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TABLE I

CHRONOLOGY OF FIELD OPERATIONS - BERMUDA 1972

(lowerings marked with * contain useful data)

JU
4 Lowering 1

7 Hydro. S ta tion #362

9 Lowering 2 ~ 3. 4,

10 Lowering 5

16 Lowering 6 ~ 7. 8*,

28 Hydro. Station #363

29 Lowering 9

l
i

JULY

3 Lowering 10* ~ 11*

6 Lower ing l2~ 13*

9 Return to Boston

f.
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. CHAPTER IV

PRELIMINARY DATA ANALYSIS

A. AN OVERVIEW OF THE DATA ANLYSIS

NATUR OF THE DATA

~~e conducti vi ty microstructure record (C') con-

sists mostly of background noise, . wi th occasional

IIburstsll of high-frequency signal appearing above the

noise level. The cause of these bursts is not immedi-

ately apparent~ inspection using a high~speed chart re~

corder reveals that the bursts differ in amplitude,

duration, and frequency content. The bursts all have a

rather II spikeyll appearance, as might be expected from
a time-derivative signal~ but some are rather more

narrowband than others. The difficulties of eyeball

in terpreta tion are compounded by the fact that the towing
speed is not constant; this influences both the amplitude

and frequency content of the C' signal for a given con-

ductivi ty field.

In the next section of this chapter we present some

samples of the raw analog record, showing bursts of

signal on C'. It is not feasible to present in this

paper all the original data, because even at the slowest

recording speed, a great deal of paper is required.

Therefore the location of each significant burst has

been marked on the lowering schematics, Figures 3.4

through 3.7.

OBJECTIVES OF THE DATA ANALYSIS

The primary objective of the data analysis is to

determine the cause and significance of the bursts of
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microstructure signal' (C i ), using the auxilia.ry data
(Cg, Tg, CZ1 Tz, Z, and V) to provide the necessary

larger-scale information, without which the C' signal

cannot be interpreted. In addition, the auxiliary data
is informative in its own right: since it yields a

picture of the vertical distribution of temperature

and conductivity in the ocean. This information in

turn i.s useful in understanding how the C i data fits

in to the overa 1 1 picture.

BURST ANALYS is STRA TEGY

The analysis of the bursts .proceeds, in essence,

through a succession of increasingly complex models or

theories, beginning with a passive-ocean model, then a

salt-finger model, and lastly a turbulent model. The

details of the burst analyses are given in Chapter V:

Horizontal Microstructure Models.

The auxiliary data, particularly the vertical grad-

ient data, is essential in distinguishing between the

various models. But before this auxiliary data can be

used in the C' analysis, it is first necessary to come

to some understanding of it separately. This is done in

the third section of this chapter. There, the gross

temperature and conductivity, and the vertical gradients,

are plotted as functions of depth. From these plots

one can best comprehend the performance and limitations

of the instruments, and thus avoid misunderstandings

and confusion when the data is used in succeeding chap-

ters in the C' ana lysis.

Moreover, by plotting the auxiliary data as func-
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tions of depth, we can learn quite a bit about the dis-

tribution, variability l and horizontal extent of the

vertical microstructure. Tnese matters are also dis-

cussed in the third section of this chapter.

Finally, there is the all-important matter of the

significance of the microstructure data with respect to.
vertical mixing in the ocean. The distribution of the

microstructure as a function of depth is important in

this connection~ likewise the intermittency, or per-

centage of the ocean which is undergoing mixing, must

be discussed for each dynamic model. From this an es-

timate may be made of the effective mixing coefficients

for each type of convection. This analysis will be

given in Chapter VI: Significance of the Microstructure.

B. BASIC APPEARANCE OF THE HORIZONTAL MICROSTRUCTURE

It is not feasible to present here all of the

bursts of conductivity microstructure, since more than

300 more-or-less separate bursts have been catalogued.

But an example might aid the reader in understanding

what this analysis is all about, and in acquiring con-

fidence as to the performance of the instrument. More

examples will be presented later in the analysis to

illustrate specific cases.

Figure 4..1 is an excerpt from Lowering 13, 6 July,
1972. The record shown is not the original monitoring

record ~ rather it is a re-run of the data, played back

as a function of time. Three variables are presented:

C', Cz, and Z.

The record displayed here is a II yo-yo 
II experiment
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in t.he thermocline. From the records of these "yo-yo"

experiments with the instrument we can estimate the

horizontal extent of turbulent pa tches ~ this record

represents the widest such patch. The microstructure

region was intersected 3 times, at depths of 733 :l3¡

726:t3, and 746 :i3 meters, respectively. The distance
between the first and second intersections was 110

meters ~ the average slope of the isopyncnal surface was

therefore +1/16, with a range of 119 to 1/110. The dis-

tance between the second and third (less distinct) burst

was 185 meters~ the average slope was -1/9, with a range

of -1/7 to -1/13.

The total distance between the first and last inter-

section is therefore about 300 meters horizontally.

Since the first burst was the largest, and the last one

was much smaller, it is reasonable to suppose that the

instrument was approaching the edge of a mixing patch.

If the patch were symetrical, i ts horizontal extent
would be 600 meters. It is possible, of course, that

the 3 events are unrelated, in which case their hori-

zontal extent must be less than 100 meters each.

It is more difficult to define the vertical extent

of the patch. The first intersection contains many

small events and one large one. Assuming that the in-

terfaces are not tilted, the thickness can be inferred

from the vertical velocity to be 10 meters overall for

the entire event, and 1.4 meters for the large central

burst. Of course if the interface was tilted these

estimates will be too high.

The depth of successive intersections is seen to
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vary by as much as 20 meters, although the errors in the

depth sensors (primarily hysteresis) may reduce this

somewhat. Assuming that the 3 intersections do indeed

represent crossings of a single, wavelike interface,

then we must postulate an internal wave having a 20

meter amplitude and a 300 meter (at least) wavelength.

This is not inconceivable~ bu1: it is equally likely

that the 3 events are merely local. instabili ties em~

bedded in a larger turbulent region. In this case the

differences in depth between the intersections would be

irrelevant, although the range of depths would then

imply that the turbu lence had a vertical extent of at

least 20 meters.

The largest burst shown in Figure 4.1, namely the

one labeled 19 1340, is analyzed in detail in Chapter
V to see if it is consistent with a turbulent model.

This burst is shown in greater de.tail in Figures 5.4

and 5. 5 .

",
L
L
"

. .1

r
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C. AN~.LYSIS OF THE VERTICAL PROFILES

This section provides a detailed look at the per-

formance of the auxiliary or background sensors , namely,

the gross temperature (Tg) and conductivity (Cg) and

the vertical gradients of temperature (Tz) and conduc-

tivity (Cz). These data illuminate the environment in

which the microstructure occurred ~ hence it is essential

to investigate them first.

GROSS TEMPERATUR AND CONDUCTIVITY

Figures 4.2 throuth 4.5 are plots of gross temper-

ature (Tg) and gross conductivity (Cg) versus depth (Z).

Absolute values of temperature and conductivity have

not been plotted ~ instead the sensitivity or scale factor

is given. Neither Cg nor Tg was intended to be an ac-

curate absolute sensor~ as described previously, both of

these outputs possess various sources of drift and error.

The four-digit numbers again refer to tape footag'e.

The Cg trace, although distorted i.n the large scale,
shows the same irregularities and even inversions as Tg,

although the instruments are completely separate, even

having separate power supplies ~ furthermore, these san~

irregulari ties and inversions are clearly visible as
positive and negative gradients on Tz and Cz. For ex-
ample, referring to Figure 4.5, note the inversion in

temperature and conductivity near Z=840 meters. Then

refer ahead to Figure 4.9 which is a chart of Cz versus

Z, and observe the negative-going gradient signal at the

same depth.
We may thus conclude from Figures 4.2 - 4.5 that:
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first and most importantly, the conductivity micro-

structure probe was working correctly at least during

the lowerings shown~ secondly, that an irregular,

vaguely step-like structure did exist, both in the

thermocline and near the surface, at the time these

lowerings were made ~ and thirdly, tha t infrequent in-

versions in temperature and conductivity did occur.

The significance of this data will be discussed later

in this chapter, following the analysis of the Tz and

Cz data.

CONDUCTIVITY GRADIENT

In this section the data gathered by the vertical

conductivity gradient sensor will be examined from

several points of view. This instrument, described in

Chapter II, measures the difference in electrical con-

ductivity between two sensing heads separated vertically

by 30 centimeters. The vertical conductivity gradient
data is extremely important in the interpretation of the

microstructure ~ hence it is ess6ntiál to analyze and

understand this data before proceeding to the C' data.

Figures 4.6 - 4.9 show the conducti vi ty grad ien t
signal (hereafter referred to as "CZ") plotted against

depth (Z) for each lowering. It is clear from the

Figures that the entire Cz trace is offset toward

higher Cz values with increasing Z, a fact which does

not accord with oceanic reality. Some probable reasons

for this offset have already been discussed in Chapter

II ~ among them is the presence of a spurious signal

proportiona 1 to conduc ti vi ty i tse If .

L,
'f
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ME'IODS OF CORRCTING THE C7, DATA

Efforts have been made to use the gross conduc-

tivity data, Cg, (properly scaled) to correct the error

in the Cz data. The Cg data, however, is not suffi-

ciently accurate in itself, as discussed previously in

Chapter II, to be of much use as a corrective agent.

Moreover, it was found that the residua 1 error in Cz

could not be explained by errors in Cg. The tempera-

ture data (Tg) effects a greater improvement in Cz~ but

significant error still remains. Consequently, it is

concluded that the error in Cz is complex and cannot

be cured by any simple additive correction.

'Another method of correcting the Cz data is to

compare its large-scale features with other independ-

ently-derived data. Refet to Figure 3.2, p. 7q which

shows profiles of temperature, salinity, and conductivity

as functions of depth. These data are from R/V Panulirus

hydrographic station #362 (7 June, 1972), taken off
Bermuda in the vicinity of the microstructure work and

at about the same time. Nansen-bottle stations such as

this do not reveal much detail, but average gradients

may be calculated with considerable accuracy. The "knee"

in the profiles is clearly visible at about 450 meters

depth~ above it the average conductivity gradient is, -1nearly constant for 200 meters at 0.0056 mmho.cm. per
meter (0.056lfo cm. -2), while below it in the main
thermocline the gradient is 0.024 mmho-cm. -1 per meter

(0.24 pho cm. -2) .
An examina tion of the Cz versus Z plot from lower-

ing 13 (Figure 4.9) will reveal that these mean gradi-

ents are consistent with an envelope which passes near
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the minima (leftward deflections) of Cz. Such a line

is illustrated in Figure 4.9, and it may be seen to

vary smoothly with depth, except in the vicinity of 500

meters where the structure is somewhat confused.

The conductivity gradient trace is quite c'.symetrical.
Generally, the minima form a clearly defined envelope,

except for an occasional negative-going aberration. Thi~

maxima, however, are not at all regula r. One may well

ask why there should exist such a well defined minimum

of conductivity gradient, and whether this minimum is

in fact zero. Figure 4.10 is a plot of density gradient
d-r ~and conductivity gradient in dè. de. space.

(This plot is entirely analogous to an ordinary T-S plot

except that all the quantities are vertical gradients).

Assuming that the water column is gravitationally stable

(i.e., all points lie above the line r =0) one can

draw the following conclusions: (note that z is positive
upWard)

l. that if
dr. oc 0
d z. , then

d.c
cI;r .ç 0 always

2.
(Region 1).

dT
that if ~ is large and positive, it is extremely. 1 (b . . . bl ) f de b t'unlike v ut not impossi e or di to e nega ive.

This would require disproportionately large neqative

salinity gradients. This, plus the preceding con-

clusion, implies that the conductivity gradient is

generally similar to the temperature gradient, ex-

cept possibly for small positive temperature gra-

dients.
h . f dT dtat i dZ an

layer, the siqn

3.
d~ . d
J~ are small, as in a well-mixe

jc
of Ji may be indeterminate, but
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its maqnitude is likely to be small; that is, ::

may lie in Region 2 or Region 3, but in either case

it will be small. Even with a small positive tem-

perature gradient, however, it still requires a sub-

stantial salinity inversion to produce a negative

conductivity gradient. No other investigator has

ever observed such an inverse correlation between

temperature and salinity gradients.

Consequently, we should expect the conductivity

gradient to be similar in appearance to the temperature

gradient, except that in mixed regions the conductivity

gradient may occasionally become negative by a small

amount, even though the temperature gradient remains

positive. For a more quantitative illustration of the

correspondence between temperature and conductivity

structure, consider Figure 4.11 which shows a section

of a microprofile record taken by another investigator

in the Atlantic, southwest of Bermuda (28 02 J N, 70 04'

W) (Neil Brown, Private communication). The close re-
lationship between temperature and conductivity vari-

ations on scales of meters is obvious. This particular

record, however, shows no inversions in ei ther tempera-
ture or conductivity. Note also that the temperature

jumps appear to be smaller than those of Figures 4.2 -

4.5.
Finally, in order to verify that the peaks shown

on the Cz records do fairly represent actual conditions

in the ocean, consider Figures 4.12 and 4.13. The

former is a section of the Cz versus Z data of Figure

4.9 (in the thermocline) enlarged along the depth axis

to show greater detail~ Figure 4.13 is a temperature
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profi.le over a comparable depth interval, made in May,

1971, in the vicinity of Bermuda (32 10' N, 64 30' W)

by the same microprofile device (conductivity data is
not available) (Neil Brown, private communication). The

gradient of temperature, computed on the basis of a 33

centimeter vertical separation, has also been plotted

on Figure 4.13. Note that these two gradient plots are
not supposed to be identical~ indeed, the data were

taken more than a year apart by entirely different in-

struments. They are, however, intended to show that the

C z trace is enti.rely consistent, both in amplitude and

in the thickness of layers and interfaces, with previous

observations from the same vicinity.

In conclusion, a simple rule may be stated for

dealing with the Cz data, namely that the minima of Cz

tend to lie on a slowly-varying line ~ and that line is

the local origin of Cz within ~.Ol mmo-cm. -1 per meter.

This rule is of great value when.the data must be played

back as a function of time, as for example in the anal-

ysis of C' signals. The Cz data thus corrected is en-

tirely adequate to investigate possible correlations

between the occurence of "bursts" of C' signal and the

local vertical gradient~ but it is not sufficiently

accurate to enable the calculation of salinity gradient,

even if the temperature gradient data (Tz) were per-

fectly reliable.
Since the salinity gradient cannot be calculated,

there is no point in presenting both temperature and

conductivity gradient data in later analyses. Cz and

Tz may be regarded as equivalent insofar as this in-
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vestigation is concerned. The choice of Cz as the pre-

ferred quantity is dictated, firstly, by the fact that

the temperature gradient has short-term time-constant

errors, and secondly, by the fact that the microstruc-

ture data (C i) is itself a conductivity signal.

A

COMM~NTS ON THE VERTICAL PROFILES

It is clear from the foregoing Cg, Tg, Cz, and Tz

records that vertical' "microstructure" is present at

all depths in the ocean near Bermuda, if the definition

of microstructure is taken to be the presence of thin

"sheets" of high vertical gradient. But it is also

clear that the IS-degree water is by far the least

structured, in the sense that the sharp maxima in the

gradient there are smaller in amplitude and much more

widely spaced than in the water above or below. Typi-
cally, the gradient peaks in the IS-degree water are

only one-third as great as those in the thermocline.

On the other hand, the mean gradient in the IS-degree

water is less than one-fifth of the mean gradient in

the thermocline ~ thus the ratio of peak gradients to

mean gradients is somewhat higher in the IS-degree water

than in the thermocline.

The fact that the vertical profiles of temperature

and conductivity are most steplike in the thermocline

and the surface waters is not entirely in agreement with

the conclusion drawn by Wunsch (1972). As the result

of a hydrographic survey conducted in the Bermuda area,

using an STD, Wunsch concludes that the IS-degree water

contains more structure than the waters above or below.
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Furthermore he asserts that a mechanical mixing process

associated with the mean flow past the island is the

source of the microstructure, and that this mixing pro-

cess acts most strongly where the Richardson number is

lowest, namely, in the l8-degree water on the side of

the island that lies to the right of the current.

The reason for this discrepancy between our results

and those of Wunsch is not ent.irely clear. There are

probably several regimes for microstructure in the ocean,

especially in the vicinity of islands~ perhaps our data

are typical of a different generating process than the

one suggested by Wunsch. SID records from Wunsch's sur-
vey indicate that in regions other than those where

mixing due to the mean flow is taking place, the con-

ditions resemble ours much more closely; that is, the

microstructure is less intense. and it is more evident

in the thermocline than in the l8-degree water.

If this interpretation is correct, then it would

appear that our experiment was carried out on a gener-

ally quiet side of the island. The observed microstruc-

ture may thus be regarded as the normal or undisturbed

variety~ it may be the result of the breaking of inter-

nal waves on the island slope, or it may be due to some

other variety of mixing which is not directly related

to the presence of the island.

The latter possibility deserves more attention.

Wunsch's. data indicates that in all cases the micro-

structure is more intense near the island than it is

I

i

I
i

I

i

i

i

i
i
I
i
¡

further out to sea. This implies that the island it-

self is somehow a cause of the microstructure. However,

records from various deep-sea locations far from land
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also show microstructure in the thermocline ~ an example

has already been given in Figure 4.11. This figure,

which shows vertical profiles of temperature and con-

ductivi ty in an area 300 miles southwest of Bermuda,

indicates that the vertical distribution of microstruc-

ture far from land is similar to the distribution found

by tiie author near Bermuda, although generally less in-

tense . Obviously, this microstructure cannot have been

advected all the way from the nearest land ~ the process

which generates it must be active everywhere.

Thus, on the basis of the evidence from various

types of vertical profiles, it seems that microstruc-

ture is normally present in the ocean, especially in the

thermocline ~ furthermore this type of microstructure

tends to become more intense as an island is approached.

The most likely interpretation of this is, not that the

island is the cause of the microstructure, but rather

that the process which generates ,the microstructure is

merely strengthened near the island. Turbulence due to

the breaking or shear of internal waves is certainly a

likely suspect: it could be active everywhere~ and it

would be intensified over an island slope.

Of course, microstructure due to other causes may

be present in addition to this observed "background 

II

microstructure. Salt-finger convection may be active~

and in the vicinity of islands and shorelines there is

probably strong mixing due to the dynamics of flows

around obstacles. This latter type of mixing, being

mostly due to large-scale shear, will tend to occur in

weakly stratified parts of the water column.
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CHAPTER V

HORIZONTAL MICROSTRUCTURE MODELS

In order to help determine the cause or causes of

the bursts of horizontal microstructure, we will analyze

selected individual bursts on the basis of a series of

models. We \tlish to establish the extent to which each

model is applicable, if at all: and we must calculate

the important parameters regarding the intensity of

vertical mixing during such events. Inevitable, this

model-matching technique involves a certain amount of

sorting and categorizing of the bursts: but the bulk of

the statistics regarding the occurence of events is re-

served for Chapter VI: Significance of the Microstruc-

ture.
The analys,is of individual bursts relies heavily

on spectral analysis. Therefore a discussion of the

spectral analysis method is given in Appendix 4. Par-

ticular attention is given there to the discussion of

the noise spectra, and the error limi ts of the ana lysis.

A. MODEL ONE: PASSIVE LAYERS

ANALYSIS OF C i BURSTS ON THE BASIS OF HORIZONTAL LAYERS

In this section we shall postulate the first (and

simplest) of a series of models or theories to account

for the IIburstsll of high-frequency signal that occur on
the C i record. We shall test this model for consistency

wi th the data. It will be shown unequivocally that this

model is not valid.

This model assumes that the C i signals are caused
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by the quasi-steady vertical motion of the instrument

through a series of thin, gravi ta tionally-stable layers.
This is essentially a passive explanation of the bursts

of C' signal: the water need not be in motion, and no

dynamic process is involved. The ocean is assumed to

resemble a stack of pancakes through which the probe

moves at a shallow angle. We are not concerned with

the origin of such layers.

The C' signal is the total time derivative of the

electrical conductivity seen by the moving probe, which

may be written thusly:

de ~
d t òi:

-
+ if.' V C

c. = c(x)y)t:)i:)
where v is the velocity of the instrument, x and yare

horizontal coordinates, and z is a vertical coordinate

(positive upward).

In all that follows we shall assume ;~ = 0 , i. e.,
tha t conductivity in the ocean does not change at any
fixed location during the time interval of interest.

Moreover, we shall assume that the conductivity field

is horizontally isotropic, and the X coordinate will be

taken to represent the direction of forward motion of

the in s trumen t . Thus the C' expression may be simpli-
fied, becoming:

J t-
el c.

Ô c. cix + de
if. \Ie

- -'= -
~x dt ~n d t

,l t . de
This model assumes that èlx = 0 and that

is constant over the interval of the burst.

The actual C i signal as it is available for anal-

'6 c
dr vJ
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ysis contains the above information plus noise and off-

set. The first order of business therefore is to de-

termine the location of the true zero line of C'. To

do this we make use of the Cz signal and the vertical

veloei ty: J c
d~

l'l
Jt c~. w 'de. i

J-t \'ei-t.

The Cz signal is relatively slowly-varying compared to
d Co

C', so in order to compare J t- as seen by the micro-

structure probe with the ~~ calculated from the

gradient sensor, it is necessary to filter the C' sig-

nal very heavily. Moreover the C' sensor does not

have much sensitivity at low frequencies, so that it is

necessary to select a C i signal which occurred in a

region of high vertical gradients andlor high vertical

velocity.
Figure 5.1 illustrates the calculation. The C'

signal, played back as a function of time, is on the

left. The same signal, filtered and amplified, is

next on the right, followed by Cz and Z respectively.

In this case a large peak in Cz occurs which is matched

by a similar peak on C'. The vertical velocity is 29

cm/sec. (upward) ~ the rate of change of conductivity

from valley A' to peak B' is calculated from Cz to be
-1i ~O )Wo. cm. per second. The same variation is

clearly visibl~ in the filtered C' signal (note, how-

ever, the polarity inversion) ~ here the change can be
-1

read off as 350 ~ho. cm. per second. The discrepancy

between the amplitudes is due to the fact that the in-

terfaces in question are thinner than the 30 centimeter

spacing between the heads of the gradient sensor ~ this
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results in too Iowan output on Cz in terms of gradients.

For example, it may be seen by inspection of the fil-

tered C i trace in Figure 5. i that the entire peak labeled
B is over and done with in about one second (30 centi-

meter:s) ~ the averaqe value of this gradient over 30
centimeters, which is the quantity measured by the Cz

sensor, will clearly be less than the peak value.

This exercise demonstrates in essence that the

vertical gradient of conductivity as measured by the Cz

sensor is also seen by the C' sensor ~ and since the zero

of Cz is known, we can set the zero of C i to correspond.

Such a zero line has been drawn on both C' records in

Figure 5.1.
It is abundantly clear from the placement of this

zero line that during the burst ~~ changes sign re-

peatedly and by a large amount. In fact, the zero line

is buried in the background noise. Hence, we may con-

clude that any burst of signal o~ the C' record would

represent micro-scale inversions in conducti vi ty. The

amplitude of such inversions is large: for the burst

shown in Figure 5.1, labeled C, the peak amplitude of
C' expressed a$ a vertic Ie gradient is ~3.4 mmo.cm.-l

per meter. positive and negative vertical conductivity

gradients of this magnitude superimposed on a mean ver-. . f -1 d btical gradient 0 .05 mmho.cm. per meter woul e

qui te extraordinary. Certainly, such massive conduc-

ti vi ty inversions would require ridiculously large
salinity andlor temperature inversions. Intuitively,

very thin stably-stratified layers having major inver-

sions in temperature and salinity would not be stable

in the long run anyway. Molecular diffusion would wipe
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out i::he temperature differences between adjacent layers
very rapidly, thereby destroying the stratification and

causing the layers to break up and seek new levels.

In conclusion, it has been established that the

bursts of C i signal cannot be explained as stable hori-

zontal layers intercepted by the vertically-moving

probE:!. These bursts must therefore be due to some dy-

namically-active convection process. Several different

dynamic models will be examined in succeeding chapters.
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B . MODEL TWO - SALT FINGERS

In this section we shall investigate the possi-

bili ty that at least some of the bursts may be due to

salt finger convection. The model we postulate is that

of salt fingers across a sharp interface between two

relatively mixed layers. This is not the only salt

finger model that we could postulate~ salt fingers are

not constrained to occur only between mixed layers. But

one of the original objectives of this project was to

determine to what extent salt fingers are responsible

for the creation and maintenanèe of the layered struc-

ture~ hence it is most important to look for salt fingers

on well defined interfaces. It is also easier to check

for consistency between the data and the theory if the

event is isolated.

Sal t fingers are unique among oceanic phenomena in

that they must have a bandlimited spectrum in wavenum-

ber space. The convection depends upon the lateral dif-

fusion of heat from the hotter, saltier, downward moving

fingers to the cooler, fresher, upward moving ones~ and

if the system is to be quasi-stable, the diameter of

the fingers must be about equal. This has been demon-

strated repeatedly in laboratory experiments (Shirtcliffe

and Turner, 1970), where the fingers appear to form in

clumps ~ wi thin each clump they' have a roughly square

planfòrm, as viewed from above. Therefore they will

have a horizontal spatial spectrum which is strongly

peaked.
The horizontal spectrum which results from towing

a probe through a salt finger field at a random angle



119

will be broader and less peaked than the intrinsic salt

finger spectrum, but it will be bandlimi ted neverthe-

less. Thus the existence of a significant spectral

peak above the ordinary background noise is strong evi-

dence of salt fingers.

The analysis for salt fingers in this model has been

done as follows. First, the records have been searched

for C i bursts which are correlated with isolated posi-
tive peaks in the vertical gradient, Cz. These are

denoted as "class A" events~ there are 24 altogether,
out of more than 300 sl?parate bursts. Of this 24, 5 are

in the surface water, above 200. meters (the surface

water is confused and difficult to analyze, and there

may actually be more class A events there). Of the 19

class A thermocline events, the majority are in the im-

mediate vicinity of other, larger events. Only a few

events could truly be described as occurring on an in-

terface between two layers.

Secondly, all of these class A bursts (as well as

other interesting events) have been subjected to spec-

tral analysis. Those class A bursts whose spectrum ex-

hibi ted a strong peak were considered to be possible
salt fingers. There were only 5 which met this cri ter-

ion.
Lastly, these 5 events were then tested for internal

consistency and compared with salt finger theory, using

the auxiliary data such as Cz. An example of such an

analysis is given below.

First, in Figures 5.2 and 5.3, we see the C i signal

as a function of time. Also shown are the vertical

gradient of conductivity, Cz, and the depth, Z. The
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velo(~ity signal, not shown, demonstrated that the in-

strument was gradually speeding up during the event.

Actually, Figure 5.2 shows two quasi-separate bursts

encorapassed by the single peak in Cz. The spectrum of

bursi: #14 - 1102 - 2 is shmvn in Figure 5.4. 'The in-
formation derived from all sources is summarized in

Table II.

COMPARISON WITH THEORY

The first calculation is that of fiJtr diameter,

which is given by the expression: (Stern, 1960)

1 ~ (JJ k-r ) Y4- Ti J 2 'å "' Tz.

where ~ is the thermometric coefficient of expansion of

sea water~ v and KT are the kinematic molecular viscosity

and thermal diffusivity of sea water, respectively~ and

Tz is the average temperaturegradient across the inter-

face.
We need to know Tz' but we have only Cz available.

However, if the water is stable, the ratio j3 ~~ /oe ~:

is always less than unity. In the thermocline near

Bermuda the average value of this ratio is 0.55. It

may easily be shown that in consequence, any particular

conductivity gradient in the thermocline is composed of

about 6 parts 'temperature effect to 1 part salinity- -1effect~ that is, a Cz of 1 ~o'cm Icm most likely- -30
corresponds to a Tz of 0.86 x 10 C/cm.- -1'In this case Cz is O. 83 ~o' cm Icm. Therefore- -30we should expect T z = 0.71 x 10 C/cm. This calcu-
lation is crude, but since all the parameters enter as
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TABLE II

ANALYSIS OF POSSIBLE SALT FINGE? EVENT

Lowering 10

3 July, 1972

Event # 14-1102-2

Time: 1558 hrs. Atlantic Standard Tine (Bernuda Local Time)

FROH RECORD AS FUNCTION OF THE:
Depth :: 600 meters + 5 meters
Vertical velocity: 18 cm/sec ( upward) +. 1 cm/sec
Spe ed: 116 c m/ s e c + 10 cm/sec

Burst ~l14-1l02-2 only:
-1/

Maximum Amplitude of Burst, peak-to-peak: 26 )J,mho -cm cm

Duration of Burst: 1 second

Number of cycles invelved in spectral analysis: about 20

Vertical Gradient Peak:

Amplitude: +0.83 pmho.cm-l/em

Thickness, corrected for 30 cm vertical separation of sensor

heads: 60 çm

Conductivity Differnece across interface: -1
50 fl!!iho L'cm

FROiI POWER DENSITY SPECTRUH

Spectral ~eak: centered at 0.21 cycles/cm

Bandwidth: approx. 0.16 - 0.27 cycles/cm

Amplitude: ap-arox. 220 ( ,timho-cm-l) 2i cm
cye le/ em

Total Energy in peak: 20 (_Mmho-cm -1 \ 2" em 1
RHS Horizontal Gradient at 0.21 cycle/em:

-1
4.47 umho .cmi cm

Calculated comductivity amplitude, peak-to-peak, at 0.21 cycles/em:
-1

9 . 6 ¡i mh 0 r C il

Cell size or finger diameter: centered on 2.4 em

Bandwidth: 1.85 - 3.1 cm
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the fourth root, it doesn i t really matter. Assuming-2 2 -3 2
J = 10 cm Isec and KT = 10 cm Isec, we find that

J = 2.3 cm. The agreement with the observed value

is startlingly good.

The agreement between the calculated and observed

ampli tudes of the conductivity difference between
-1fingers is not quite as good. With 50~ho'cm con-

ductivity difference across the interface, there should
-1be about 7 ~mho'cm difference due to salinity, by

the above reasoning~ this difference should appear be-

tween the fingers as well, since salt diffusion is neg-

ligible. Thus, unless all of the temperature difference

should diffuse away laterally, we should see more than
-1the observed 9.6 ~ho'cm difference between fingers.

. -1
In fact, we should expect to see about 25 ~mho' cm

between fingers, considering that there will be a tem-

pera ture difference between fingers as well.
But the calculated amplitude is derived from, and

is very sensitive to, the thickness of the gradient

region. This thickness was calculated simply by multi-

plying the duration of the Cz peak by the vertical ve-

locity. Clearly, however, if the interface is sloped

so as to parallel the path of the instrument somewhat,

the apparent duration of the Cz peak, and hence the ap-

parent thickness, will be greatly increased. The in-

strument was ascending in this case on a 1: 10 slope ~
consequently, if the gradient region is sloped at only

1: 16, the CZ peak might appear to be 2.5 times thicker

than it actually was. If this were the case, then the

conductivi ty difference across the interface would be
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-1only 20 ~mho cm ,which would be consistent with the
observed salt finger amplitude. The finger diameter

seen by the instrument would be affected but little by

these slopes. The ratio of finger length to diameter

would be about 10.
An isopyncnal slope of 1: 16, due to the presence

of internal waves, is entirely reasonable. Garrett and

Munk (1972) assert, on the basis of their universal hor-

izontally isotropic energy spectrum, that the typical

R.M.S. slope due to internal waves is 1: 38. The peak

slope due to random superposition of waves may be much

higher. This line of argument, while certainly not

conclusive, does indicate that the apparently small

ampli tude of the fingers need not be a serious flaw.

VERTICAL TRANSPORT DUE TO FINGERING

We will now estimate the vertical flux of salt by

several methods. To do so we mu~t make certain assump-

tions regarding the distribution of temperature and

salinity. Let us suppose the observed conductivity

differences between fingers, ~C, which equals 9. 6~ho~
-1

cm , is composed of 2 parts temperature to 1 part

salini ty~ for this case, that amounts to ~ Si = .0032

0100, ~Ti = . 00640C. This is based upon the earlier

assumption that for vertical gradients the ratio of

temperature to salinity gradient is about 6: 1, and

further assuming also that only one third of the layer-

to-layer temperature difference appears between fingers.

Then we can calculate the amplitude of the vertical com-

ponent of velocity in the fingers, after Stommel and
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Fedorov (1967):

v.
~.6) .l";
~o iJ 4--T;t

.0 1\ c:'\ /ç~(;

This result, however, is sensitive to the temperature

and salinity differences assumed. The Reynolds number

of this flow is about 3, so that the assumption of

laminar flow is justified. The flux of buoyance due

to salt transport may then be calculated as:

f3Fs, = j3 L:s'. ~" 1.""5" x
-8,10 C I' jSf¿C

On the other hand, we can use the results of

Turner (1967), in which he finds a flux law of the form

ß Fs~ ( \ ~/3C j36Ç,,)

where l12 is the salinity difference across the inter--
-1

face, and where C ~ 10 by experiment. Using the same

AS = .0032 0100 as before, we find that F S2 = 0.34 x
-810 cm/sec. Neither of these calculations is very

reliable, however ~ Turner i s experime~ts do not extend
0(6T /to high enough values .of / (3,bS and our value

is very sensitive to the velocity calculation.

For comparison, if we assume that the entire con-

ductivi ty difference between the fingers is due to salt,

then S = .01 0100. F calculated by the first method-8 s 8
is 42 x 10 ,and by method of Turner is 1.5 x 10- .

These numbers demonstrate more than anything else how

desirable it would have been to have measured the tem-

perature field as well as the conductivity field ~
The flux of buoyancy associated with heat may be

calculated in the same way as the salt buoyancy flux.



128 .

We aEsumed LiT = .0064 C between fingers, and using
-4 00( = 2.2 x 10 I C, we have

0\ Fy o(l:T . ~
;;

.7r¡S- x 10-8 eM /¡'See-

Thus the ratio of heat flux to salt flux is 0.57, which

is not far at all from Turner's (1967) value of 0.56.

Clearly, however, we can achieve nearly any desired

value of this ratio merely by postulating a slightly

different balance between ~s and ßT in the fingers;

the point is only that a reasonable assumption regarding

~s and ~T does not lead to an inconsistency.

The simple molecular diffusion of salt across an

interface 20 cm thick, having a salinity difference of

.004 0100, is

/2 F;jJ MOL. Ks ß
ó$

In
~ ."

_ 12-~ \0 cw.!
See.

EVALUATION OF THE SALT FINGER MODEL

The foregoing analysis has demons'trated that for

this particular event, a salt finger model is entirely

reasonable and consistent. The event chosen for this

analysis, however, is the clearest such case of the

five (out of 3-00) which were selected as possible salt

fingers. From this we conclude: (1) that the instru-
ment is capable of detecting, and the analysis technique

is capable of resolving, salt fingers in the ocean;

(2) that salt fingers are so rare in the thermocline

near Bermuda that they must represent only a tiny
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fraction of the vertical mixing. Strictly speaking, of

course, the latter conclusion refer s only to the thermo-

cline near Bermuda, at the time the experiment was done~

but insofar as we believe conditions at Bermuda to be

typical of other parts of the ocean, we may apply these

resul ts more widely. It should be noted in this con-,

nection that some investigators, notably Cooper and

Stommel (1968), have observed a far more regular layered

structure in the thermociine near Bermuda than we did.

It is possible that sometimes a different mixi.ng regimE:

is set up, and sa 1 t fingers might then be important.

Further field work in a regularly-layered structure

would be necessary to resolve this question.

c . MODEL THEE - TURBULENCE

A turbulent model is essentially a statistical

model. Rather than searching through the data for
individual events having distinctive features, as was

done for the salt finger model, we npw wish to look at

the general spectral shape of a large class of events.

We expect that no two bursts will be exactly alike; and

we will not attach significance to the details of any

individual spectrum. We do expect, however, that tur-

bulent bursts should generally have wideband gradient

spectra.

A PRICRI EXPECTATIONS FROM THEORY

According to the universal similarity hypothesis

of Batchelor (1959), the turbulent power density spec-

trum of a weakly diffusive scalar property such as tem-
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perature (or conductivity) can be divided into three

regions. If E is the average specific energy dissipation

rate (the rate at which kinetic energy is being con-

verted to heat) i and if.i is the kinematic viscosity,

and K .the kinematic diffusivity, then Kolmogorovl s

wavenumber is defined to be:

(E/i."3 \Y4kil - ) v-o.J ¡ G\\\ $/
C. 1N

CfT (k)
131- E: -'13 k ~.% (0 c- )"'

c'r,le /cV\

where B is a universal constant, and ~ is the average

temperature dissipation rate,

1- = ). K (r7 T- y-

This is the so-called inertial subrange of turbulence.

Clearly, this spectrum can be expressed in terms of

gradients:

~Î ~ (k)
~2. ~T (R ') 1 -1// ~- 1 /3 (c.°c". y

13 1- s 3 R. .~ )

Co! c.lejc"I

If we define Batchelor's wavenumber as:

(~)I/.i. kkB - K" K (~ )'h k-Yz
.""Jio.\\s/

/ew.

then according to Batchelor's theory, the spectrum falls

off very rapidly for wavenuwbers above ~ß' This cutoff,

which is associated with the dominance of diffusive

processes on small scales" should cause the spectrum to

go as (Grant, Hughes, Vogel, and Moilliet, 1968)
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~T (~) ~ L~I\0( . e
-CI ~~

In terms of gradients, this region of the spectrum goes

as
L +-1

ceT (k ) -- r~ .~

_o.k:i
e.

that is, it must go to zero eventually.

In between k K and ~ \3 the spectrum of tempera tureh ld h 1- -1 h"s au s ow a K dependence ~ t is region of the
spectrum arises because for water the Prandtl number
D iJIt-:: K ;; 7 is not unity. Viscosity begins to cu't

off the motion on scales long-er than the temperature

cutoff scale ~ this means that temperature fluctuations

will extend to higher wavenumbers than velocity fluc-

uations, before they too are cut off by diffusion. In

this region the spectrum of the gradient should go as
~+I .

Cox, Hacker, Johnson, and Osborn (1969) estimate
the diffusive cutoff, iz ß -i, to be typically 1. 6 cm in

the thermocline, based upon a dissipation rate, ~ ~ 10-S

ergsl On the same basis, Kolmogorov's scale,g. sec.

~K -1, is estimated to be 4.8 em. Both of these scales
are within the resolution of our conductivity micro-

structure probe, although it cannot resolve scales much
-1smaller than Rß .

CA VEA TS

The foregoing discussion has been based upon tiie
assumption of three-dimensional isotropy,' which is
probably not valid in a stratified ocean. Certainly

the "inertial subrange" of the spectrum, if it exists at
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all, must be valid only for wavenurr~ers greater than a

typical buoyancy wavenumber, Ro , defined as:

~o (E/N~YY2-

where N is the Brunt-Vaisala frequency

N (-~-
~ ,\'/2
J 7 )

In fact, however, such a length scale can easily be

about the same as the Kolmogorov scale, particularly

if one uses locally high values of N Thus it is

doubtful whether an inertial subrange can exist at all

in the vicinity of high vertical gradients in the ther-

mocline. Qualitatively, we would expect horizontal

isotropy~ but the stratification would tend to suppress

vertical motions. A purely horizontal spectrum would

. no doubt differ greatly from a vertical spectrum, al-
though both should show a sharp cutoff at R ß .

The matter is further compliçated by the presence

of salt, whose molecular diffusivity is nearly two orders

of magnitude smaller than the thermal diffusivity. Thus,

if the salt were merely a trace element, having no in-

fluence upon the dynamics of the process, we should ex-

pect to find a diffusive cutoff in the salt spectrum at

a wavenumber of

""
~

1

L

~ (351ti- ( % )1t k' -Yi5

which is almost 10 times higher than the temperature

cutoff wavenumber. This would correspond to scales of

0.16 cm. for salt. However, neither salt nor heat is a

trace element~ both affect the density and hence the
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dynamics of mixing. We expect that at very high wave-

numbers, where the temperature variations have diffused

away, the salt variations will strongly influence the

dynamics. The remnant salt variations will cause re-

newed density variations on those small scales, so that

the water will tend to restratify itself instead of

breaking up into infinitesimal filaments. What effect

this has on the spectra of temperature and salinity is

not clear. One might expect that since the salt tends

to restore orderliness in the fluid, the spectrum would

not extend to wavenumbers as high as it would if the

salt were merely a tracer. This conclusion is highly

speculative, however, since very little work has been done

on the problem of turbulence in fluids as complex as

sea wa ter .

The spectra 1 shape of a particu lar mixing event

must also depend very strongly on its history. Mixing

is intermittent in the ocean~ we do not expect a sta-

tistically-stationary cascade of energy from lower to

higher wavenumbers, as the theory assumes. 1l0lder"
turbulence, for which the driving shear has weakened,

may also have greater vertical anisotropy than newly-

minted turbulence.
As a final disclaimer, it should be remembered that

the instrument moves vertically as well as horizontallyi

and at different rates. The spectra will contain con-

tributions from horizontal and vertical conductivity

varia tions i and if the statistics of the process do
indeed differ from vertical to horizontal, the spectrum

will be smeared.
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REPRESENTATIVE SPECTRA

Three examples of possible turbulence are illus-

trated in Figures 5.5 through 5.12. For each case the

burst is shown both as a function of time, together with

the vertical conductivity gradient, and as a power

density spectrum of the horizontal gradient of conduc-

tivi ty.
The similarity of the three events is unmistakable,

even though the spectra are not identical in detail.

Moreover, the difference between these spectra and that

of the possible salt fingers, Figure 5.4, is very

striking~ the turbulent bursts have much more energy at

higher frequencies. The energy in all three cases ap-
pears to peak somewhat between k=.5 and k=l. At higher

wavénumbers it appears to decline.

Figure 5.13 is a composite gradient spectrum, made

by graphically averaging the above three spectra. It

shows more clearly the rolloff at wavenumbers above

Sh f . h k+ 1/3 ,0.5-0.6. own or comparison are t e. line,

which represents theoretically the spectral shape in

the inertial subrange, and the k +1 line, which repre-

sents the viscous-convective subrange. The spectra are

not inconsistent with these lines, but the agreement is

not overwhelming.

If the rolloff at wavenumbers above 0.5-0.6 cyclesl

cm is assumed to be the diffusive cutoff, then we can

calculate the energy dissipation from the formula for

Batchelor i s wavenumber, i. e.:
1. I 4

C - ¡) K Rß

,
"

I
I

I

I

I.

I

l
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For a full description, see Appendix 4.
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This spectrum is an average of the preceding three spectra,
Figures 5. 7, 5.10, and 5.12. Before being averaged together,

these spectra were smoothed individually in the wavenumber
domain by averaging in bands equal to twice the resolution band-~dfu. +~ + 1

Also plotted are lines of k :3 and k i whose slopes corres-
pond theoretically with the inertial subrange of isotropic turbulence,
and the viscous-diffusive subrange, respectively.

The vertical error bars represent twice the sample standard
deviation at each averaging point; these have been computed by the

formula: r v ~ ( ~~ J y~2. ~~ = Z'L/2 ~ x.(k~) -X(l~t\)
.. . ,

where X; (kn) is the value of the power density function at each wave-
number, kn. Clearly, the sample size (3) is too small to obtain
a meaningful spectral estimate in this case. NeverthJ:less. the

basic shape of the spectrum is apparent.
The noise spectra (dotted lines in Figures 5.7, 5.10, and 5.12)

have not been subtracted from the data before averaging and plotting.
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We assume -2 -3V =1.4 x 10 , K =1.5 x 10 in e. g. s. units,
and after converting the wavenumbers to radian measure,

we get

£: (. 3 i ~. (,4) x. i D s- ~ r~s /'2'M' S eç

This value seems consistent with the 10-5 value of Cox,

Hacker, Johnson, and Osborn. But there is an inconsis-

tency here. We have used spectral results from a few

selected large bursts of activity to find kB. Thus

our calculated ~ should refer to the rate of energy

dissipation within a turbulent patch. The average dis-

sipa tion rate over the whole thermocline must be sev-

eral orders of magnitude less, since the turbulence is

highly intermittent (say 1%, about which, more later).
-7Therefore, € should be, very roughly, 0.5 x 10 ergslave

gm' sec. This value is low by most previous estimates.

Munk (1966), for example, calls for an energy dissipation
-6ra te in the thermocline of 1.8 x 10 ergs/gm' sec.

This inconsistency would be resolved if the mea-

sured value of kB were only higher by a factor of three.

It is possible that the observed spectral rolloff is

due partly to the characteristics of the conductivity

probe , whose spatial response is limited to structures

of about 1 cm size for full output.

The important point here is that attempting to

measure the energy dissipation rate by measuring kB'

if it is possible to do so at all, will require vastly

more data than we have here, because of the 4th-power

sensitivity of the dissipation to the measured value

of kB.

"
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If we then assume that the diffusion cutoff scale

is 1.7-2.0 cm, then Kolmogorov's scale must be 4.2-6.0

cm (wavenumbers 0.17-0.24 cycle/cm). In between

Kolmogorov i sand Batchelor i s scales the spectrum of the

gradient should, according to theory, go as k +1 It is

difficul t to believe, from Figure S. 13, that it does so

in these particular bursts. It is even more difficult

to believe that the spectrum goes as k +1/3 for wave-

numbers less than 0.2. There appears to be more energy

at lower wavenumbers than the theory calls for.

The mean value of N in the thermocline is 4.3 x

10 -3 radians/sec., which implies a typical buoyancy

wavenumber k =0.02 cyclelcm, if € is taken to be O. S
. 0-S

x 10 as calculated above. However, N can locally be

as high as 10-2 on sharp interfaces in the thermocline,

which implies that for turbulence occurring at an inter-

faceiko=.07 cycle/cm. The use of a locally high value

of N is required by the fact that shear instability is

most likely in regions of high gradient, and by the

fact that the € used is a local maximum value, not an

average value. This buoyancy wavenumber is only a

factor of 2 or 3 smaller th~n the Kolmogorov wavenumber

i tself ~ thus the inertial subrange would seem to occupy

less than 1 decade in wavenumber.

What would be the effect of the stratification on

the quasi-horizontal spectrum? Vertical motions will

tend to be suppressed ~ this means that for a particular

total energy dissipation, e , horizontal motions will

tend to be increased for wavenumbers less than k . Thuso
the purely horizontal gradient spectrum will qualita-

tively be increased at lower wavenumbers, in accordance
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, CHAPTER VI

SIGNIFICANCE OF THE MICROSTRUCTUR

Having looked in detail at individual events, we

now turn to the larger scale, and try to reconcile the

miscrostructure with the larger fea tures of the ocean.

A. EVIDENCE AGAINST SALT FINGERS AS A MAJOR MIXING

HECHANISM

In the first place, we must discard salt fingers as

an important convective process. It is believed that

sal t fingers were observed in the main thermocline on

several occasions, as described. in Chapter V. But they
occupied only about 10 seconds out of a total of 21,000

seconds of towing time in the thermocline. It was cal-

culated in Chapter V that the vertical flux of buoy-

ancy due to salt in the fingers was approximately 0.5
-8x 10 cm/sec. Purely molecular diffusion, assuming a

-5typical thermocline salinity gradient of 3 x 10 % Icm,-5 -12and ks=l' 5 x 10 , is 0.35 x 10 cm/sec. Thus the
transport of salt due to fingering, averaged over the

entire thermocline, is only about equal to the (negli-
gible) molecular flux. We must regard salt fingers

merely as a fascinating curiosity, at least at the

time and place of this experiment.

Why are there not more salt fingers in the thermo-

cline? Fingers should automatically form everywhere in

the thermocline in the Atlantic Ocean, since the verti-

cal gradients of temperature and salini,ty are in the
right sense. But evidently they are inhibited almost

completely, and the cause is probably externally-imposed
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vertical shear. The exact me~~hanism of inhibition,

however, is unclear. A great deal of theoretical and

laboratory has been done to find how the fingers behave

once they are started, but very little data exists on

the question of how to prevent: fingering. In light of

our present results, this problem deserves further at-

tention. Also, for further sea-going experiments it

would clearly be desirable to construct a vertical ve-

locity gradient sensor analogous to the vertical con-

ductivity gradient sensor.

EVIDENCE FOR THE PRESUMPTION OF TURBULENCE

Turbulence is the remaining alternative. We have

seen in Chapter V that the bursts are individually con-

sistent with a turbulent hypothesis. In addition,
evidence of the turbulent nature of the bursts comes

from another source.
The bursts always occur in regions of irregular

vertical gradient. This true without exception in the

thermocline. Typically, the vertical conductivity gra-

dient sensor, Cz, will show multiple sharp peaks in such

a region. These peaks may have amplitudes as high as
-1i ~ho.cm Icm, and thicknesses ranging from 30 cm (the

resolution of the instrument) to 100 cm. Half of the
patches exhibit neqative gradient peaks in these regions

as well~ these typically have a smaller amplitude, about
-1

-.3 )Æo'cm Icm, but similar thickness. Some examples

have already been shown (see Figures 5.5, 5.6 and 5.11).

These patches of irregular gradient are rarely more than

a few meters thick.

"",
¡,
!i
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Those parts of the Cz record which contain mul-

tiple, sharp, but always positive, gradient peaks have

been denoted as "class BII regions; irregular parts

which contain both positive and negative gradients have

been denoted "class C". Examination of the data re-

veals that: (1) every class C gradient region in the

thermocline, without exception, is associated with a

burst of horizontal microstructure (C i ) ~ (2) every
burst of C i is associated with either a close B or a

class C region in the thermocline~ and (3) there are

numerous class B regions which have no C i bursts.
We believe that irregular negative vertical gra-

dients, in conjunction with horizontal microstructure,

are the manifestation of active turbulence. Thus,

every burst in a class C region is assumed to be tur-

bulent~ and since there is no apparent difference be-

tween bursts from class B regions and those from class

C regions, the presumption is that they are all tur-

bulent.
A plausible hypothesis is that class C regions are

undergoing violent but temporary mixing. Class B

regions are older, and although they are still turbu-

lent, gravity has begun to re-establish the stratifi-

cation ~ the motion here is probably mostlytwo-dimen-
sional. When the turbulence has died out altogether,

some gradient maxima are left~ and if the shear is low

enough, salt fingers may occasionally form across these

remnant interfaces.
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C. DISTRIBUTION OF MICROSTRUCTUR AS A FUNCTION OF

DEPTH

Table III shows the number of bursts of micro-

structure, and their duration, in the thermocline, the

l8°water, and the surface thermocline for each lowering.

Lowerings 10, 11, and 13 are very consistent; Lowering .
8 is quite unique. It is believed that the difference

between Lowering 8 and the others is significant~ and

upon examination, this will be seen to provide further

justification for the assumption that most of the bursts

are turbulent.

D. DIFFERENCES AMONG THE LOWERINGS

Even a casual inspection of the records clearly

shows that Lowering 8 differs significantly from the

other three lowerings. This difference is apparent in

the vertical profiles of Cg and Tg (see Figure 4.2),

which appear to be qualitatively more irregular than

those of the later lowerings. It is also apparent in

the vertical gradient profik Cz (see Figure 4.6) which

contains patches of high-amplitude gradient fine-struc-

ture, including negative vertical gradients ~ this is
referred to as a class "C" gradient region. All of the

lowerings contain such features, but they are far more

prevalen t in Lowering 8. Moreover, these patches occur
even in the usually placid 18° water in. Lowering 8,

whereas no such patches were observed in the 180 water

during any other lowering.

From the conductivity microstructure probe itself
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TABLE III

~ISTRlBUTION OF BURSTS AS A FUNCTION OF DEPTH FOR EACH LOWERING

No. of Tatal Total Percentage of
Lowering # Bursts Duration Durat ion Tire Occupied

of Bursts of Record by Bursts

(seconds) (seconds)

THEIDlOCLINE

( Below 450 m.)

8 73 124 3120 4

10 8 29 3600 0.8

11 22 4300 0.5 I

13 30 77 10,260 0.75

180 ¡dATER
.

(200 - 400 m.)

8 22 37 900 4

10 0 0 720 0

11 0 0 1140 0

13 0 0 1080 0

SURF ACE vi A TE R

(Less than 200 m.)

8 5 10 420 2.4

10 9 28 360 7.8

11 130 222 2220 10

13 19 76 1080 7

;. ,
""
,1
¡,,
!
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comes further independent evidence of a significant

difference in Lowering 8. With reference to Table III,
which lists the burst statistics for the three main

regions of each lowering, it may be seen that Lowering

8 had 5 times as much horizontal microstructure in the

thermocline as the other lowerings, (although there

appears to have been somewhat less horizontal micro-

structure in the surface layer). Furthermore there was

extensive horizontal microstructure in the 180 water

as well, a feature never observed on the other lowerings~

and this microstructure occurs relatively as frequently

as it does in the thermocline. Most significantly, this
horizontal microstructure occurs in the patches of ir-

regular, class "e" vertical gradient.

Naturally, the first question to be answered with

regard to Lowering 8 is: are these features real or

instrumental? That they are indeed real is proven in
several ways. Firstly, the vertical temperature-gra-

dient record (see Chapter II, Section B. 3 for a dis-
cussion of Tz) exhibits the exact sáme structure as Cz

in the patches, peak-for-peak, including the negative

vertical gradients. The two gradient sensors are

separate instruments in all respects, except that they

share a common power supply. Secondly, the gross con-

ductivity signal, Cg, shows a "bumpy" structure with

inversions in these patches, indicating that it is the

ocean itself which is irregular. The conductivity

probe is a completely separate instrument, even having

its own power supply. Consequently, there can be no

doubt but that Lowering 8 is fundamentally different
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from the others.
We can only speculate as to the reasons for this

difference. Lowering 8 must stand alone ~ we have no

large-scale survey to elucidate the context in which

it occurred. Not even the direction of the mean flow

past the island is known. But: a likely conclusion can

be drawn nevertheless.

Wunsch (1972) has found that conditions are not, .
uniform azimuthally around Bermuda. He found that
microstructure is present everywhere in the vicinity,

but that one side of the island is generally quite dif-

ferent from the others. On this "active" side the ver-
tical profiles are much more irregular, particularly in

the 18 water, than the profiles from the "quiet" sides.
The active region was always found on the side of the

island lying to the right of the mean flow (Wunsch, 1972).

The vertical profiles from Lowering 8 very much re-

semble those from Wunsch i s active region, whereas Low-

erings 10, 11, and 13 more closely resemble those from

quiet regions. The most likely hypothesis is, there-

fore, that a change in the mean flow pattern occurred

between Lowering 8 and the others, and thatthe south

side of the island, where the lowerings were made, was

active at the time of Lowering 8.

Lowering 8 was made on 16 June, 1972, 17 days prior

to Lowerings 10 and 11. It is knovm (Wunsch, 1972) that

the mean flow can reverse direction completely in .less
than one week. On the other hand, Lowerings 10 and 11

were made on 3 July, and Lowering 13 was made on 6 July~

it is not surprising that these lowerings reserr~le one
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another more closely.

The consequences of this .hypothesis are very im-

portant. Wunsch has asserted that the active side of

the island is undergoing violent mechanical stirring

due to large-scale, shear-induced instability. If this

is correct, then it is inescapable that the horizontal

microstructure and the patches of large positive and

negative vertical gradients of Lowe~ing 8 must be the

actual mixing process itself, caught in the act, as it

were. But similar events occur in the other lowerings;

and so these events probably represent mechanical

mixing a Iso.
This conclusion is reinforced by the spectral evi-

dence. Large bursts which occurred in class "c" regions
generally have a wideband spectrum, consistent with a

turbulent mixing process. This is true of such bursts

from all the lowerings, not only L~wering 8. This cor-

relation of wideband spectra with class "c" gradient

regions must be regarded as qualitative and subjective,

because there are not enough independent spectra to

make a good statistical estimate. Moreover, we do not

know the past history of any event. But no larqe burst

in the thermocline was found to have a band-limited
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spectrum~ and so the above conclusion seems intuitively

right.
The details of two such mixing events from Lowering

8, including spectra, have been shown in Figures 5.8

through 5.12. The first of these is from the thermo-

cline, and the second is from the 18° water.
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E. VERTICAL MIXING DUE TO TURBULENCE

'le mean-square conductivity gradient along the path taken

by the probe,(~).z ,can be found for each burst by integrating

its power-density spectrum. The average value of (C%At)?

over all the thermocline bursts were analyzed is 115:t 30 .vho'
cm -1 I c';)2. The three-dimensional mean-square gradient,

I vet , would equal 3 x (~..i,~ if the turbulence were isotropic.
We should not expect it to be isotropic except perhaps at high
wavenumbers (ie, well above the buoyancy wavenumber); but
since most of the energy in the gradient is in fact in the high

wavenumbers, it seems reasonable to use the factor of three.
This yields 117c./:: = 345:! 90 ).mho cm -1 I cm)2.. The square

::of the mean gradient, (ve) , is 0.048 (same units) in the
thermocline. ,. The ratio Kr. :. I%):l is therefore 7200 for
thermocline bursts.

For want of a better assumption, it will be assumed that
Rc. is the same as the corresponding ratio for temperatures, R.. .

This amounts to assuming that temperature and salinity fluctu-
ations are proportional on all scales of motion, which is clearly
wrong at very high wavenumbers. But conductivity is mostly

temperature anyway; so the conductivity ratio, J?c , will at worst
be a slight overestimate of the temperature ratio, Rr .

From Table III, it may be seen that turbulence occurred
in the thermocline O. 69 percent of the time, not including the
anomalous Lowering 8. Using the method of Gregg and Cox

(1972) we compute the time averaged turbulent heat transport

by the formula:
~ = - ) cp KT R-r(Y'T) I

where T represents the mean temperatur e, cp is the specific
heat of water, and I is the intermittency factor. For this case:- .1- ij Ll/-3
VT = d: :: 1.'12 ;¡ 10- Xi'; Cp = o.r:~ C'l~p''1 j KT:: 1.5' x 10 c"'Xec
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-6 2The result is: q = 13.6 x 10 call cm sec. The effective eddy

diffusivity, A,

d'T~ = ~ cp A .i ë

may then be calculated from the expression:

which gives A = 0.075' -. O.OÄ 2cm I sec.

For Lowering 8, the equivalent calculation yields q = 64. 5 x 10 - 6
cal/cm2sec, and A = 0.36 cm2/sec. Considering that Lowering 8

probably represents strong mixing due to the flow past the island,

this value seems low.

For comparison, Gregg and Cox (1972) found that in the San

Diego Trough, the eddy coefficient was 0.5 - 1. 0 cm:2 I sec in

regions where localized overturning was suspected. However,

the Trough is thought to be an area of very strong mixing, par-
ticularly in the upper layers where the measurements were made,
so that their 'data may not be entirely comparable to ours.

..

In connection with global-scale thermocline theories, it has

been postulated that the vertical eddy diffusivity should be of order

(1) (Munk, 1966). But recent efforts to measure the effectiveness
IIof vertical mixing, by Rooth and Ostlund for example, have pro-

duced estimates of the vertical eddy diffusivity which are less
2than O. 2 cm I sec. Our data thus tend to confirm these lower

measured diffusivities, rather than the higher theoretical ones.
The low values from our daia are presumed to be real, since

no known quirks of the instrument or the data analysis procedure

can account for an error in the mean - square gradient of a factor
of 13, which is what would be required to produce an eddy dif-

fusivity of 1 cm2/sec.

Because the calculated eddy diffusivity depends directly
upon the measured intermittency of the turbulent events, it is
possible that a significant error could have arisen if by chance
the instrument failed to pass through a representative number of
turbulent patches. This would be a type of sampling error. The
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fact that the frequency-of-occurrence statistics (Table III) are
nearly the. same for Lowerings 10, 11, and 13 would tend to dis-

credit this objection, however. Also, the fact that data could
only be gathered on calm days could conceivably have biased the

measurements as well. But before these doubts can be fully re-

solved it will be necessary to know much more about the station-
arity in time and space of the mixing processes. This will re-
quire much more data, and is clearly beyond the scope of this
thesi s.

The low measured value of the eddy diffusivity, and the vir-
tual absence of mixing in the l80water (except on the anomalous
Lowering 8), are evidences of the sporadic na ture of mixing in
the ocean. Thus, strictly speaking, the results obtained in this
investigation are only applicable to the waters south of Bermuda
in the summer of 1972; and clearly further work in the field

of vertical mixing must deal with this intermittency and local-
ization of mixing, before reliable average diffusivities can be
calculated.

,.:._,.:.:". '-..~
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APPENDIX 1

OPTICAL METHODS FOR DETECTING SALT FINGERS - A CRITIQUE

Salt fingers are an ordered spatial array of water

colunins moving al terna tely upward and downward, and the
clear:est demonstra tion of their existence would be a

"photograph" of an array of vertical columns in the

ocean. Apart from this subjective credibility of
visual evidence, however, optical methods offer two

great advantages, namely: that such methods can be

extremely sensitive to varia tions in the index of re-

fraction of light~ and they can be used to investigate

very small structureR.
The shadowgraph technique has been used to inves-

tigate salt fingers in laboratory experiments with con-

siderable success, particularly those involving sugar-

salt solutions. This technique consists, in essence,

of shining a collimated beam of ~ight through the wa ter

onto a ground-glass plane. Gradients in the index of

refraction cause the rays to bend, resulting in patterns

of light and dark on the screen which may be photographed.

Regularly-spaced structures of index of refraction re-

sult in geometric patterns on the screen (Stern, 1970).

Shadowgraph instruments are relatively easy to con-

struct because they do not require precise alignment of

the optical path~ but they do require a rigid, bulky

structure, which is difficult to tow through the ocean,

enclosing the optical path. Moreover, it would be ex-

tremely difficult to avoid disturbing small structures

in the water before the instrument could "see" them.
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The only application of the shadowgraph in oceanic

microstructure investigations to date has been as a

vertically-dropped sensor.
communica tion)

The shadowgraph has, however, a more fundamental

(A.J. Williams III, private

limitation than its mechanical configuration, namely

that there are several sources of ambiguity in the in-

terpretation of the photographs. Firstly, the index

of refraction in sea water is a decreasing function of

temperature but an increasing function of salinity, as

given by the following:
6\' = ón \.~S

() S +- ~ \ . ATø.T
.= c.Co~ST' S =-Co-.s T"

(approximate values near 35 0100, 15°C) (Riley and

Skirrow, 1965 )

Unfortunately the detailed temperature and salinity

structure within salt fingers is not known~ but since

the difference of temperature and salinity across a

thermocline interface may be, for example, 0.2 °c and

0.03 0100 (Tait and Howe, 1971), it is clear that the

structure of the index of refraction in a salt finger

field may have more inflection points than the salinity

field. At best this may lead to an incorrect estimate

of the diameter of the fingers ~ but, since the temper-

ature must vary vertically as well as horizontally, it

may result in a very confusing three-dimensional struc-

ture that would not be interpreted as fingers at all.

Furthermore, there may be an ambiguity due to a

spatial filtering effect. This arises because, for a
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given index of refraction field having a particular regular

planform, there is one optimum position for the ground-

glass screen, at which the rays diverge and converge most

strongly. If the glass is not in this optimum position with

respect to the sample, the image will be less clear, or may
disappear altogether. Worse yet, this focus position of the

glass is a function of the wavelength of the refractive index

variations. Therefore the shadowgraph system is sensitive
to a particular combination of refractive index amplitude
variations, and the scale or wavelength of these variations,

and the position of the groundglass. Different combinations

of these parameters mayor may not result in a focused image.
This makes quantitative evaluation of the data very difficult,
even if a clear image of fingers is seen.

Finally, shadowgraph data would be extremely difficult
to interpret if no clearly-defined salt fingers are found. No
structure larger than about one-half the diameter of the

light beam can be resolved; and since the light beam in

any practical device is unlikely to be very much larger in
diameter than, say, 10 centimeters, it is clear that the
shadowgraph would be poorly suited for a general-purpose
microstructure sensor.

For these reasons the shadowgraph technique was dis-

carded for this project. 'Te Schlieren technique, which in

essence senses the first derivative of the index of refrac-
tion rather than the second derivative like the shadowgraph,

was also considered briefly. It was rejected because any

slight misalignment of tæ optical path, due to temperature
gradients affecting the supports for example, would result

in no data at all. This danger wa.s unacceptable.
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APPENDIX 2

A SHORT HISTORY OF THE PROJECT

A brief ca lendar of even t.s leading up to the 1972

Bermuda expedition is presentød in Table A-I. A much

more detailed calendar of ever~ s during the field

operations in June and July o~ 1972 will be found in

Chapter IV.

TABLE A-I

SHORT CHRONOLOGY OF THE MICROSTRUCTUR PROJECT

Summer 1969: Discussions with H.M. Stommel,

J .S. Turner, M.E. Stern re-
garding salt fingers and the

desirabili ty of trying to
find th em in the ocean.

Fall 1969: Began feasibility study re-

garding microstructure probe.

Optical methods investigated.

Conductivity and methods of

measuring it investigated.

",
,~
L,
r

Winter 1970: Construction of first double-

electrode type conducti vi ty
probe, after a suggestion by

N.D. Brown.

Spring and Summer 1970: Tests revealed the necessity



Fall 1970:

Jan. - Feb. 197 1 :

March - April 1971:

May - July 1971:

July - August 1971:
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of flushing water continuously

through the probe. Des ign and

testing of special sea-water

transformer begun.

Design apd construction of

electronics and equipment.

Cruise to Barbados - R/V

Atlantis II. Mechanical and

electronic difficulties.

Ship time aboard R/V Knorr

(buoy cruise). Electronics

improved but still unsatis-

factory. Poor launch con-

di tions - instrument damaged.

!, I~.\ . .~"

t
Bermuda I. Debugging and

testing. Instrument lost

when cable parted, cause un-

known. Some data obtained
before loss, showing "bursts"

of conductivity signal.

Analysis of records from

Bermuda. "Bursts" were re-
vealed to be instrumental,

probably due to strumming of

cab le .



Sept. 1971 - March 1972:

April - May 1972:

3 May - 9 July, 1972:
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Building new instrument of

improved design. Labora tory
tests carried out.

Towing tank tests at Woods

Hole Oceanographic Insti tut.:ion.

Bermuda II. Details in

Chapter III.

t
'r
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. APPENDIK 3

INSTRUMNT DETAILS

Details of the instruments have been relegated to

this Appendix to avoid cluttering up the text. How-

ever, the basic outline of thø instrument designs has

of necessity been included in the text, in order that

the reader may understand how the data was obtained.

Therefore, reference must be made to the block diagrams

of the instrument in Chapter II, if the circuit diagrams

in this Appendix are not self-evident.

Details are shown here only for those instruments

which performed satisfactorily, and whose design was

original.

PERFORMNCE OF THE CONDUCTIVITY GRADIENT SENSOR

As mentioned earlier, the gradient sensors had been

constructed for another investigator and another project.

Their electronics were modified slightly for use in this

investigation, and laboratory tests 'were carried out to
determine their performance.

The inductive heads used on the conductivity gra-

dient sensor have an impedence of 116 ohms when the con-
-1ductivity of the water is SO mro'cm. . This sea-water

impedance was modeled in the laboratory by using one

turn of wire through each head coupled to appropriate

resistances. One was a fixed resistor of 116 ohms ~ the

other was variable. These resistors war e adjusted for

balance (zero output), then interchanged. By this means

it w~s determined that the instrument error at balance
-1

was less than O. OOS mmo cm. ,which is one-fourth of

"
:s.

L,
'F
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one percent of full scale.

Sensitivity was checked by placing 11,600 ohms in

parallel with one of the resistors ~ this increased the
-1effective conductivity by 1%, or 0.5 mmo cm. The

output was adjusted to be 10 volts D-C.

It was discovered later that the designer of this

instrument had not taken full account of the influence

~

R

t.

I
ti .

~t
K
f:
L
l:

W

~

~
¡j;
¡;

~~
t
~

of temperature upon the electronics. A calculation by

the author indicates that the drift of the zero point
-1

due to temperature may be as great as 0.067 mmho'cm.

per meter over the 20 C oceanographic temperature range.

In addition, the two sensing heads apparently dif-

fered slightly in sensi tivi ty when the instrument was

mounted on the towing fish. The difference in sensi-

tivities arose, not from the heads themselves, but from

the relative proximity of the lower head to part of the

vehicle frame. This effectively altered the cell con-

stant of that head by substituting a metallic object

for a part of the sea water loop. As a result, the

lower head produced a higher output voltage for a given

conductivi ty than did the upper head. Thus a signal is
present at the output proportional to conductivity it-

se'lf, i.e.:

,
+:,
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k
,.
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Ci: = CLI ¿c + Q2. e

where subscript u. refers to the upper head and "L" to

the lower head. The first term of the last equation is
the desired signa 1 ~ the second is the error, which is

due to the fact that au is not equal to aL'
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The sensi tivi ties differ by only a small amount,

but the error in the difference voltage is significant.

In order to account for the average offset observed at

the surface, one must postulate a coefficient for the

error term in the above equation as follows:

Cc (volts) ).0 . L:c.
\- ~ c

ficients are also such as to account for most of the

observed net drift over the entire depth range, at

least in the large scale.

The proportion in which the two sources of zero

drift enter into the data is not known. Moreover, the

matter is complicated by the fact that there may be a

considerable time lag in the temperature-related drift

because the electronics is not in good thermal contact

wi th the water ~ as a result the offset may depend upon

the vertical velocity of the instrument. However, it

is not known whether the temperature effect tends to

augment or counteract the conductivity error.

The extent and significance of these errors did

not become evident until the experiment had ended.

Fortunately the data is not too seriously degraded,

since it may be corrected to a certain extent by in-

spection. This process has been demonstrated in Chapter
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TABLE A II

TELEMETRY SYSTEM FREQUENC IES

DATA IRIG CH.# £0' Hz. -: DEVIATION LBE, Hz. UBE, Hz.-
C' 14 22,000 1650 20, 350 23, 650

T' 13 14,500 1088 13,412 15,588

Z 12 10,500 788 9,712 11,288

V 11 7,350 551 6,799 7, 901

9 3, 900 293 3, 607 4, 193

C 8 3,000 225 2,775 3,225

7 2, 300 173 2,127 2,473

T 5 1,300 98 1,202 1, 398

It should be noted that the depth sensor provides

its own frequency-modulated signal which is (conven-

iently) Channel 12.
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APPENDIX. 4

SPECTRAL ANALYS is METHOD

For the purpose of this investigation the spectra

were desired in the form of the power density of the

spatial gradient versus wavenumber. The data, however,

exists most conveniently as a function of timei and

moreover the microstructure signal, C', is itself a

time derivative, not a space derivative. For conven-

ience, therefore, it was decided to perform the spec-

tral analysis in the frequency domain first and convert

to wavenumber space la ter. The. spectra are made by

feeding the time function C' into an electronic spectrum

analyzer, which yields a spectrum whose axes have units

of ~ho-cm-l Isec) 21HZ, and HZ. Dividing both the fre-
quency axis and the denominator of the ordinate by V

(the local velocity in cm/sec) converts those quantities

to units of cycle/cm. Dividing the numerator of the

ordinate by v2 converts it to a spatial derivative or

a gradient. Thus, the desired spatial gradient spec-

trum in wavenumber space may easily be produced from

the frequency spectrum of C' simply by scaling both axes
-1

by V

We are primarily interested in how the bursts differ

from quiet regions ~ and in order to see this most

clearly, all the spectra are plotted as dual spectra.

The second spectrum in each case is. that of an immedi-

ately-adjacent quiet region, made in exactly the same

way and with the same settings as the burst spectrum

itself. This technique is extremely useful in deter-

mining the significance of spectral features, and in
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eliminating common and/ or spurious peaks from the final plots.

DESCRIPTION OF THE SPECTRUM ANALYZING EQUIPMENT

Power-density spectra were computed for 25 bursts sel-
æted from various lowerings, using an electronic autocorrel-
ator and Fourier analyzer (Princeton Applied Research Co. ,
Inc., Model 101 Correlator and Model 102 Fourier analyzer).

These machines use analog circuit techniques for the multipli-
cation and storage of discrete or "quantized" information. Brief-
ly, their operation is as follows: aftier the operator has selected
a total delay time, T, the correlator samples the input signal

100 times in that interval. The sampling frequency is thus
A'Y = 100 / T, and the highest frequency that can be resolved is

50 / T (the Nyquist frequency). Prefiltering of the data above

this Nyquist frequency is done in each case to avoid aliasing;
an RC filter having a 6-db/ octave roll-off was found to be ade-
quate. The samples, which are quantized, are clocked serially
through a 100 -position shift register. At each sample time, all
the samples in the register are multiplied non-destructively by
the current (instantaneous) value of the input data; then the

samples are shifted one place, and the process repeats. The

multiplied values are RC averaged in the output storage circuits.
The resulting correlation function consists of 100 voltages, each

representing the value of the autocorrelation function at a part-

icular delay interval, 'f .l'Y.

Many individual computations are required for the correl-
ator's output to acheive its final values. Moreover, tæ cor-r-
elator's output tends to degrade with time because an analog memory
is us~d, so that it requires frequent updating. For these reasons
the input data must be presented repetitively to the correlator
via an endless tape loop. The bursts being analyzed in this work
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are very transient and frequently do not completely occupy even a

small tape loop; so it is necessary to gate or synchronize the

correlator so that it only correlates when the burst is present.

The Fourier analyzer computes the transform of the correl-
ation function; it presents the power density spectrum in the form
of voltages (also quantized) which are used to drive an X-Y plotter.

The frequency axis is quantized into about 500 discrete steps, and

the amplitude is quantized into 100 levels. A single-sided Hanning
window of the form Fh(1") = .0( 1 + cos 1i~-" ) is applied to the

correlation function before the transform is taken, to prevent side
lobes.

Owing to the rather low dynamic range of the correlator, it is
crucial that the input signal be pre-amplified to be as large as pos-
ible without overloading the circuitry. Now, for this investigation
it was desirable to compare the spectrum of a burst with an iden-

tically-made spectrum of an adjacent quiet region; but if the burst
was amplified to the optimum level, then the quiet background sig-
nal was inevitably too small. In consequence. the background noise
spectra shown in this thesis are more a measure of the spectrum
analyzer noise level than of the true background signal strength.

The resolution in the frequency domain is 2/T; that is, it is

a fixed percentage of the upper frequency limit, 50/T, of that

particular plot. Each final plot, such as those shown in the text,

is made by patching together on log-log scales a number of over-
lapping spectra of the same burst. This is why the resolution

bandwidth on these final plots appears to change abruptly at cer-

tain wavenumbers. The exact wavenumber at which the crossover
occurs depends on the velocity during that event.

Instrument velocities ranged from about 75 cml sec to 250

cml sec. with the median being about 150 cm/ sec. In order to re-

solve wavenumbers as high as 2 cycle I cm, the upper limit of the
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frequency analysis had to be tailored to the velocity in each case.
For most of tte bursts, an upper frequency limit of 250 Hz was

about right, This corresponded to a total delay time, T, in the
autocorrelator of O. 2 sec. Overlapping spectra having upper freq-

uency limits of 100 Hz (T = O. 5 sec) and 50 Hz (T = 1. 0 sec) were

generally made also, to obtain better resolution at the low end.

ERRORS IN THE SPECTRAL RESULTS

Owing to the manner in which the autocorrelator performs its

multiplications (which will not be discussed in detail here) the cor-

relation function exhibits fluctuations at each of its 100 points. The

amplitude of these fluctuations is normally distributed, and is pro-

portional to the output amplitude. In consequence, the amplitude of
the power density spectrum is slightly different with each sweep of
the frequency scale. Thus if repeated spectra are made from the

same input data, an ensemble of spectra is generated whose ampl-

itudes may differ somewhat in a random fashion. The best estimate

of the true spectrum is an average over this ensemble. The variance

of the spectral ensemble around its mean value provides an estimate
of the instrumental error in the analysis. These are the error limits
shown on the figures in the text. It should be borne firmly in mind
that although this error arises randomly, and requires averaging in
the frequency domain to obtain a good spectral estimate, it is never-

theless solely instrumental in nature, since only one particular chunk

of input data is involved in each spectrum (except for the composite
spectrum, Figure 5.13). That is, each burst has been analyzed

separately, in the manner of a deterministic function, to determine

its frequency content; however, each determination is imperfect
due to analyzer noise and error:.

In the case of the còmposite spectrum, there is an estimation

error as well, due to the fact that only a finite number of individual

spectra are contained in the composite. This estimation error would. .
exist even if there wepe no instrumental error.
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Furthermore, the correlator output decays in time,
although it is continuously updated; but this degradation is
not the same for all values of delay, ti A 1". As a result,

the spectrum shows spurious peaks at certain fractions of
full scale frequency. But these peaks have Been proven to

be completely additive; and the use of the dual spectrum tech -
nique allows their removal completely within the rated accuracy
of the equipment.

It should be noted that spectral analysis using an ana-
log -to -digital converter and a digital computer to calculate
the spectra would have provided greater dynamic range and
flexibility, and hence better performance on wideband signals.
However, the original intention of the investigation was to det-
ermine whether or not salt fingers are present in the thermo -

cline, and therefore an analysis technique having the capability

of positively detecting the presence of bandlimited energy was
deemed satisfactCl y. Moreover, in view of the limited amount
of data (limited from a statistical viewpoint, anyway), it is
doubtful whether the improved resolution of digital processing

could have provided much better understanding of the causes
of the wideband processes. It was recognized from the start

that a proper statistical treatment of turbulence in the ocean

would require vastly more data than this project could gather;
but that even a simple measurement such as the intermittency
of turbulence would be extremely valuable.

PLOTTING PROCEDURE

The final spectra which are presented here are made in the

following way: each burst is played into the spectrum analyzer

repetitively by means of the tape loop. The analyzer scans over the
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desired frequency. :iange, producing an ensemble of spec-
tra for each burst. A similar ensemble is generated

for the background noise spectrum. Then an average

smooth curve is drawn through each ensemble, one curve

for the burst and one for the noise. These smoothed

spectra are then replotted, af:ter being purged of the

spurious peaks, and scaled correctly including the v-i

factor.

DISCUSSION OF THE NOISE SPECTRA

The noise spectra shown here are intended as a ref-

erence, to indica te clearly the difference in frequency

content between a burst and a quiet region. The noise

spectra in most cases are not well resolved; nor should

they be interpreted as oceanic structure. The true

oceanic background noise is masked by instrument noise.

The output noise of the cond:uctivity microstructure
sensor is approximately constant in amplitude, and inde-

pendent of velocity. This noise is mostly electronic in

origin. The telemetry, recording, and playback system

introduce a small amount of additional noise (mainly 60

Hz), also independent of velocity, of course. Thus, even

if the spectrum analyzer could resolve this noise fully,

the resu 1 t wou ld not have any oceanographic s ignif icance .
But the spectrum analyzer also introduces noise of its

own, which is dependent on the various control settings ~
this noise can be equal to or greater than the actual

noise being analyzed.

Consequently, the noise spectra shown are mostly

analyzer noise, especially in cases where the burst i t-
self is large relative to the background noise. In such
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cases the true signai:.to-noisi:! ratio is much qreater

than the plots indicate. In other cases, where the

burst itself is relatively small, the noise spectrum is

closer to the background noise~ but, as described above,

this noise has no oceanographic significance either.

To further compound the confusion, the magnitude

of the noise signal is divided in each case by the mag-

nitude of the velocity, in order to convert the time

derivative, C., into the spatial gradient, Cx. Because

of this, the background noise level, in terms of gra-

dients, is not constant from spectrum to spectrum, when

in fact the noise vol taqe actually is constant.
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Bendix power supplies
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FIG. # 4-E:

1) Sola voltage transformer (upper left)
2) Gates D. C. power supply (upper right)
3) D.C. to D.C. converters, note heat sink (lowerríght)
4) Filters, regulators and signal driver on heat sink (lower left).
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Figure 5-E: Complete deck unit including two track tape recorde~ signal
unscrambler, cons tant current mas ter power supply and borrowed
coun ter to moni tor data.



FIG. # 6-E The cons tant current regulator and signal
separator together wi th this set of six
slip rings rides in rotation with the winch
drum. These units are enclosed in the slip
ring hous ing seen in figure #5.
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FIG. Ifl~F

Bendix platinum resistance thermometers and housings.
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