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ABSTRACT

An experimental study of the interaction of metal ions with the
surface of hydrous manganese dioxide has been completed. The results of
these experiments have greatly improved our qual i tati ve understandi n9 of
the adsorpti on mechani sm and have also provi ded a means of testi ng quanti-

- tatively the proposal that the concentration of cobalt in manganese rich
marine samples is due to adsorption of cobalt from sea water by hydrous
manganese di oxi de.

Thfs study has shown that there are two reasons why manganese
di oxi de is an effi ci ent scavenger of metal ions from sea water. These
are coulombic attraction and specific adsorption. The coulombic attrac-
ti on is in response to the surface charge that ori gi nates because of aci d-
base reactions at the surface. The surface charge is pH dependent, and
the pH of zero poi nt of charge for the hydrous manganese di oxi de used in
this study was 2.25. The surface charge increases rapidly for pH values
greater 2han the pH of zero point of charge and reaches values of -ioa
~coui/cm by pH 8.0. However, the high surface charge cannot explain all
the adsorption. This is because some metal ions exhibìt a strong specific
adsorption on the surface. This specific adsorption is a direct reaction
of the metal ions with the surface, releasing one proton from the surface
for each metal ion adsorbed. The energy of this specific interaction is
frequently greater than the energy of el ectrostati c attracti on. Adsorp-
ti on on hydrous manganese di oxi de and the magni tude of the speci fi c ad-

sorpti on both increased in the order:

Na = K ~ Mn ~ Ca ~ Sr ~ Ba ~ Ni ~ Zn ~ Mn ~ Co

Thi s suggests that the speci fi c adsorpti on potenti al controls the adsorp-
tion selectivi ty of oMn02.
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An adsorption isotherm was constructed for cobalt, and these data
were used to test the hypothesis that the enrichment of cobalt in the
suspended matter of the Bl ack Sea and in ferroman9anoan sediments from
the East Pacific Rise is due to adsorption of cobalt from sea water by
manganese dioxide. The calculations indicate that adsorption is a
feasible explanation for these examples.

Thesis Supervisor: Derek W. Spencer
Sen i or S ci en ti s t, Depa rtmen t of Chemi s try
Woods Hole Oceanographic Institution
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I. INTRODUCTION

Most trace metals are known to pass relatively quickly through the

oceans to the sediments. Barth (l952) originated a concept of residence

time, later redefined by Goldberg and Arrhenius (1958) as:

1= A
dA/dt

where A is the total amount of the element in suspension and solution in

the oceans and dA/dt is the amount introduced into the oceans each year.

If it is assumed that (1) the present chemical composition of the oceans

represents a steady state system in which the amount of material intro-

duced per year is compensated by an equal amount deposited in the sedi-

ments, and (2) there is complete mixing of materials introduced into the

oceans in times that are short with respect to the residence times, then

the residence time calculated uSing the input rate and that calculated from

removal date should agree. These values were calculated using the fluxes

tabulated in Table 1 and are given in Table 2. Despite the difficulties

involved in quantitatively assessing these fluxes, there is surprisingly

good agreement between estimates of ~ made by the two methods. It is

reasonable to assume that each metal has long been at steady state with ,

respect to a balance between the processes addi ng it to sea water and

processes removing it from sea water.

If no other removal mechani sm were operati ng, the concentrati on of

a metal in sea water would be regulated by the solubility of its least

soluble compound. Goldschmidt (1937), however, noted that several trace

metals are soluble in sea water. This is not a problem of supply since

he cal cul ated that the amount of metal weathered from the conti nents
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during geologic time far exceeds the quantity present in sea water (see

also Rankama and Sahama (1952), 294-296; and Krauskopf (1956)). To

explain this discrepancy, he suggested that the metal concentrations in

sea water were removed by adsorpti on, parti cul arly on iron oxi de preci pi tates.

The comparatively short residence times of the transition elements

(Table 2) suggest that their removal mechanism from sea water is extremely

efficient. Krauskopf (1956) found that Pb, Ni, Co, Cu, Zn and Cd were

all undersaturate9 with respect to their least soluble solid phase in sea

water by factors rangi ng from 102 to 107, i ndi cat; ng that the processes

of removal are more effi ci ent f6r some metal s than for others. A compari-

son of the metal concentration in sea water with the solubility of the

least soluble solids is shown in Table 3 for Co, Ni, Cu and Zn.

I I . MASS BALANC E FOR METALS

When the metal input fl uxes are compared wi th the removal fl uxes, it

appears that steady state has been achieved. A summary of these fluxes is

shown in Table 1. The predominant input flux is the dissolved and particu-

late load of streams. The inputs from low temperature weathering of basalts,

hydrothermal emanations associated with spreading ridges (Appendix I-A),

glacial weathering, and airbornedust can be shown to be negligible on a

global scale (Garrels and MacKenzie 1971). The major removal pathways are

through sedimentati on and manganese nodul es. Cons i deri ng the uncertai nti es

in the metal concentration of rivers and the possibility of recycling metals

in the sediments, the agreement is qui te good. If the system is at steady

state and metals in sea water are undersaturated wi th respect to thei r

least soluble solid phase, then some other mechanism must be operating to

control the trace metal concentration in sea water.



T
A

B
L

E
 1

i

M
A

SS
 B

A
L

A
N

C
E

 O
F 

M
E

T
A

L
S 

IN
 S

E
A

 W
A

T
E

R
 (

l)
,

A
D

JA
C

E
N

T

D
IS

SO
L

V
E

D
SU

SP
E

N
D

E
D

A
IR

B
O

R
N

E
T

O
T

 A
L

M
A

N
G

A
N

E
SE

D
E
E
P
 
S
E
A

SE
A

T
O

T
 A

L

M
E

T
A

L
R

IV
E

R
R

IV
E

R
D

U
ST

IN
PU

T
N

O
D

U
L

E
S

SE
D

IM
E

N
T

S
SE

D
IM

E
N

T
S

R
E

M
O

V
 A

L
--

M
n 

( 
2 

)
1
.
4
5
 
x
 
i
O
l
1

1.
74

xl
O

13
5
.
4
5
 
x
 
1
0
1
0

1.
76

 
x 

10
13

 
2
.
7
 
x
 
1
0
1
1

5
.
3
 
x
 
1
0
1
2

1
.
4
3
 
x
 
1
0
1
3

1
.
9
6
 
x
 
1
0
1
3

C
o

5
.
7
9
 
x
 
1
0
9

4
.
5
7
 
x
 
1
0
1
1

1 
. 5

0 
x 

10
9

4
.
6
4
 
x
 
1
0
1
1
 
.

4
.
 
1
 
x
 
1
0
9

4
.
9
 
x
 
1
0
1
0

2
.
1
8
 
x
 
1
0
1
1

2
 
.
 
7
1
 
x
 
1
0
 
1
 
~
,

N
i

9
l
.
3
7
 
x
 
1
0
1
2

4
.
5
0
 
x
 
1
0
9

1
.
3
8
 
x
 
1
0
1
2

7.
0 

x 
10

9 
1
.
5
5
 
x
 
1
0
1
1

9
.
2
4
 
x
 
1
0
1
1

1
.
0
9
 
x
 
1
0
1
2

8
.
6
9
 
x
 
1
0

C
u

1
.
4
5
 
x
 
i
o
l
l

1
.
0
2
 
x
 
1
0
1
2

3.
 3

0 
x 

10
9

1.
17

 
x 

10
12

 
4
.
0
 
x
 
i
0
9

1
.
6
9
 
'
x
 
1
0
1
1

8
.
0
6
 
x
 
1
0
1
1

0
.
9
8
 
x
 
1
0
1
2

(
1
)
 
A
l
l
 
f
l
u
x
e
s
 
i
n
 
g
r
a
m
s
/
y
e
a
r

(
2
)
 
N
o
t
 
i
n
c
l
u
d
e
d
 
i
s
 
a
n
 
e
s
t
i
m
a
t
e
 
o
f
 
t
h
e
 
i
n
p
u
t
 
r
a
t
e
 
o
f
 
M
n
 
a
s
s
o
c
i
a
t
e
d

w
i
t
h
 
h
y
d
r
o
t
h
e
r
m
a
l
 
a
c
t
i
v
i
t
y
 
a
t
 
m
i
d
-
o
c
e
a
n
 
r
i
d
g
e
s
.
 
A
n
 
e
s
t
i
m
a
t
e
,

f
o
r
 
M
n
 
m
a
y
 
b
e
 
a
s
 
h
i
g
h
 
a
s
 
1
.
2
 
x
 
1
0
1
2
g
/
y
r
 
(
A
p
p
e
n
d
i
x
 
I
-
A
)
.

...
..'

...
"'~

~
_"

:..
;i:

";
l;:

:-
".

 -
,



-16-

TABLE 2

ESTIMATED RESIDENCE TIMES OF METALS IN THE OCEAN

AMOUNT IN OCEAN(l)
INPUT(2) REMOVAL (3)

ELEMENT (yrs ) (yrs )

Fe 10 iig/kg 140 702

Mn 2 II 1 . 89 x 1 04 2
3.52 x lO

Co 0.03 II
7.10 x i03

25. 70 x 10

Ni 2 II 5 1. 19 x i043.15 x 10

Cu 2 II 1 . 89 x 1 04 1. lOx 104

Zn 5 II
2.'36 x 104

4
1.90 x LO

Mg 1. 326 g/kg 2.2 x 107 4.50 x 107

Ca 0.422 II 1.0 x i06 8.0 x 106 .

Sr 8.5 mg/kg 1.0 x 107 1.9 x i07

Ba 30 iig/kg
5 41 . 89 x 1 a 2. 45 x 1 a

(1) Spencer and Brewer (1970)

(2) and (3) Appendix I-A
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TABLE 3

A COMPARISON OF THE METAL CONCENTRATION OF SEA WATER
WITH THE SOLUBILITY OF LEAST SOLUBLE SOLIDS.

CONCENTRATION ' SOLUBILITY
METAL IN SEA WATER CONCENTRATION (1) SOLID

Co 0.03 x 10-6 g/l -3
COC030.5 x 10 g/l

Ni 2 x 10-6 g/l 658 x 10-3 g/l Ni (OH)"
t.

Cu 2 x 10-6 gll 21.6 x 10-6 g/l CuO

Zn 5 x 10-6 g/l 28.8 x 10-6 g/l ZnC03

(1) Solubility calculations made using solubility and
stability constants from Sillen and Martell (1964).

pKso(CoC03) = +9.63, pKso(Ni(OH)2) ~15.21, pKso(ZnC0:Ì= +10.84

pH8~ C03= = 2 x 10-5 mil

yMe+2 = 0.12 Latimer (1952)

yOH- = 0.68 Burns (1965)

Yea; = 0.20 Garrels & Thompson (1962)
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I I I. EViDENCE FOR ADSORPTION

Adsorpti on is one of the mechani sms most frequently proposed to

account for the removal of metals from sea water in order to maintain the

observed steady state. Riley and Chester (1972, p. 404) concluded that

as the variations in the lattice-held trace elements of continental and

submari ne vol cani c rocks are too small to account for the observed vari a-

tions in deep sea sediments, adsorption of trace elements from sea water

by river-borne iron and manganese oxides may be a major pathway by which

they are removed.

Many workers have observed correlations among certain elements in

manganese nodul es, in sediments, and in suspended matter. These corre-

lations have been established using statistical techniques,such as simple

linear correlation coefficients (ag. Cronan and Tooms 1969, Willis and

- Ahrens 1962, Carvajal and Landergren 1969), by more sophisticated multi-

variant analysis such as factor analysis (ag. Turekian and Imbrie 1966,

Cronan 1967, Spencer et ale 1972), and by studying in situ rel ationships

using the electron-probe X-ray microanalyzer (ag. Burns and Fuerstenau 1966.

Cronan and Tooms 1968, Aumento et ale 1968, Friedrich et ale 1969). These

correlations are summarized in Table 4.

The correlations most frequently observed are those of various ele-

ments with manganese or iron. This supports the suggestion that the enrich-

ment mechani sm is adsorpti on onta the oxi des of iron and manganese.

Goldberg (1954) was the first to point out inter-element relation-

ships in nodules. Using bulk chemical analyses and scatter plots, he

found correlations of nickel and copper with manganese, and of titanium,

zirconium and cobalt with iron. Riley and Sinhaseni (1958) suggested that
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TABLE 4

*
A SUMMARY OF METAL CORRELATIONS IN MARINE SAMPLES

REF ERENC E

NODULES

1. Goldberg (1954)

2. Willis and Ahrens (1962)

3. Burns and Fuerstenau (1966),

4. Sevast1yanov and Volkov (1 ~66)

5. Barnes (1967)

6. Aumento et a 1 . (1968 )

7. Cronan (1967)

8. Cronan and Tooms (1968 )

9. Cronan (1969)

10. Ca 1 vert and Pri ce (1970 )

11. Brown (1971)

SEDIMENTS

1. Tureki.an and Imbrie (966)-

2. Carvajal and Landergren (J 9681-

3. Cronan (1969J

4. Watson and Angi no ( 1969)

5. Bos trom (1970)

6. Ca 1 vert and Pri ce (l970 )

CORRELATIONS

Fe ~ Co - Ti - Zr; Mn - Ni - Cu

Ni - Cu; Fe - Co

Mn - Fe (negative)

Fe - Co - Ti - Ca

Mn - Ni - Cu - Zn - Mg - K - Ba - A 1

Mn - Ni - Co - Cu - Mo

Pb - Co; Co - ôMn02

Mn - Co - Ni

Fe - Ti - H20; Cr - Detrital.

Mn - Cu - Ni. - Ca - K

Mn - Ni - Cu - Mo; Co - Pb

Mn - Ba - Co - Ni - Si - Mo

Fe - As - Pb - Y - Zn - P

Pb - Co; Mn - Cu - Ni - Co

Mn -, Co - Nt

Cu - CaC03

Mn - Co - Nt

Mn - Co

Fe - Ni; Fe - Co; Co - Ni

Mn - Cu - Co - CaC03

Cu - Ni - Pb - Zn - organi c matter

*Positive correlations unless otherwise stated.
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his correlations of iron with zirconium, or of manganese with copper,

were not statistically significant. However, later workers (Table 4)

substantiated the correlation of manganese with copper.

Goldberg proposed that adsorption onto particulate Fe and Mn species

accounted for the covari ances. He suggested, that the sorpti on depends

on the re 1 ati onshi p between the charge density of the adsorbed i on and

that of the adsorbing surface. Adsorption will only take place in response

to electrostatic forces (i .e. only ions with a charge opposite to the charge

of the surface will be adsorbed); those ions with the largest charge den-

sities will be most effectively s~avenged. If Mn02 were negatively chargec

and iron oxide positively charged, the 'distribution of adsorbed ions

between these two phases shoul d i ndi cate whi ch elements are present in sea

water as cations and which as anions. ~

Adsorpti on onto iron and manganese oxi des was also invoked by

Dasch et ale (1971) and Sayles and Bischoff (1973) to explain the enrich-

ment of metals in sediments from the East Pacific Rise, and by Aumento et

ale (1968) to explain the enrichment of Co and Ni in manganese pavement

from the San Pablo seamount. Sevast'yanov and Volkov (1966) used similar

arguments to explain the correlation of Ni, Co, Cu and Mo with Mn in Black

Sea nodul es. They further hypothes i zed that the 1 arge adsorpti on capaci ty

of solid manganese hydroxide (MnO(OH)2) is due to the acid properties of

the solid which will tend to form" salts with divalent metals.

A strong correlation of Co and Sb with Mn was observed in particulate

matter of the Black Sea (Spencer et ale 1972). Adsorption or co-precipita-

tion of Co and Sb on solid Mn02 was invoked to explain the associations.

Riley and Sinhaseni (1958) observed that if the majority of the minor

elements in nodul es are adsorbed di rectly from sea water, concentrati on
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factors relative to sea water may prove useful in elucidating this mechan-

ism. Their calculated concentration factors ranged from over 3 x 107

for manganese and iron to values 1 ess than 40 for elements that occur as

major elements in sea water. They suggested that those elements with low

enri chment factors are not strongly adsorbed, from sea water because they

tend to form hydroxi des wi th ioni c bonds, whereas those el ements that

have the highest enrichment factors (Co, Ni, Cu, Zn, and Pb) have high

ionic potentials (i.e. charge/radius) that lead to their enhanced adsorp-

tion. If adsorption from sea water is the controlling mechanism, then

the adsorption ~electivity sequence found in the laboratory experiments

should compare well with concentration factors observed in natural materials.

Concentrati on factors, us i ng recent values for the metal concentrati ons

in sea water (Spencer and Brewer 1970), have been ca 1 cul ated and are shown

in Table 5. Values for Atlantic and Pacific manganese nodules were taken

from Arrhenius (1963), and the values for Pacific seamount nodules were

taken from Goldberg (1954), Cronan and Tooms (1967, 1969), Mero (1964),

and Menard ~t al. (1964). These results suggest that the selectivity sequence

may be Co ~ Ni ~ Cu ~ Zn ~ Ba ~ Sr ~ Ca ~ Mg.

Carvajal and Landergren (1969) studied the interrelationships of

manganese, cobalt and nickel in marine sediments and found that there is

a strong correlation between these three metals. Their results further

indicated that Co was relatively more enriched than nickel. If the removal

of these e 1 elTents from sea water is by adsorpti on on manganese phases, thi s

implies that Co is more readily adsorbed than nickel. This implication

is amenable to testing in laboratory experiments.
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TABLE 5

ENRICHMENT FACTORS

AVERAGE PACIFIC ATLANTIC PACI FIC
SEA WATER DEEP SEA DEEP SEA SEA MOUNT

ELEMENT CONCENTRATION NODULES NODULES NODULES

Mg 1.294 g/kg 13. a 13.0 11.9

Ca 0.4l3 g/kg 46.0 65.5 69.0

Sr 0.008 g/kg 1.01 x 102
. 2

1.60 x 1021.12 x 10

Ba 40 lig/kg 4.5 4 4
7.22 x 104x 10 4.25 x 10

Mn 2 lig/kg 1.21 x 108 0.85 x 108 0.85 x 108

Fe 10 lig/kg 1 . 40 x 1 07 7 1 .53 x 1071.75 x 10

Co .03 lig/kg 1 .17 x 108 1. 03 x 108 1.42 x 108

Ni 2 lig/kg 6
2.10 x 106 1 .68 x 106. 4.95 x 1 a

Cu 2 ~g/ kg 2.65 x 106
6

0.42 x 1061 .00 x 1 a

In 5 lig/kg 9.4 x 104

Average sea water values from Spencer and Brewer (1970).

Atlantic and Pacific nodule values from Mero, quoted in Arrhenius (1963).

Sea mount nodule values from Goldberg (1954), Mero (1965)

Cronan (1967, 1969), and Menard et ale (1964).
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iv. SCOPE AND ORGANIZATION OF THIS THESIS

The preceding discussion has indicated the importance of metal

adsorption onto iron and manganese oxides in marine geochemical cycles.

Unfortunate ly, 1 i ttle quanti tati ve research has been done to el uci date

the chemical properties of the adsorption mechanism. The purpose of )

this thesis is to provide experimental evidence to help understand the

adsorption process of metals onto manganese dioxide. Only with this

knowledge can we evaluate this mechanism in the oceans.

In colloid and interfacial chemistry, manganese dioxide could be an

important phase in the general understanding of the surface chemistry of

meta 1 oxi des. Work on the surface chemi s try of metal oxi des has pro-

gressed rapidly in the last few years, and several models have been pro-

posed to explain the interaction of metal ions with these surfaces

(e.g. Stumm et ale 1970, James and Healy 1972). Surface chemistry is

an important field for oceanographers. It is clear that many of the

reactions that take place in the sea occur at the air-water or water-

sediment interface.

A feasible approach is to integrate these two fields of study and

apply our knowledge of surface chemistry to chemical oceanographic problems.

The interaction of metal ions with the hydrous manganese dioxide-solution

ínterface was selected as an aspect of the general problem of adsorption

that could be looked at in detail in the laboratory. This study should

provide a test of some of the hypotheses regarding the controls on trace

metal concentrations in the oceans, and a test of previously proposed

models for the interaction of metal ions with metal oxides. Clearly,
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extrapolation of the laboratory experiments to explain all aspects of

the metal distribution in marine samples will not be possible. Many

factors such as mineralogy and the gource of the metals (i .e. submarine

volcanism, low temperature weathering of basalts and sedimentary diagene-

s is) can i nfl uence the metal content of mang~nese-ri ch depos its. The

question I hope to examine most closely is how effective is adsorption as

an enrichment mechanism.

Experiments have been done using a carefully and specially prepared

manganese dioxide, first to understand the origin of the surface charge

(chapter 2) and second to investigate the interaction of various metal

ions wi th the surface (chapters 3 and 4). I have also made a reasonable

attempt, beari ng in mi nd the problem in extrapo 1 ati on, to use the experi-

mental results to test and invoke explanations for various metal distribu-

- tions in marine deposits (chapter 5).

Each chapter is presented as an independent uni t for ease of reference

and to facilitate publication (for example, chapter 2 has been submitted

for publication in ~. Colloid.lnterface Chemistry). However, to develop

the thes is cogently and 1 ogi ca 1 ly, cross referenci ng between chapters has

been necessary and redundancy has thus been kept to a mi nimum. Necessary

experimenta 1 detai 1 s have been assembled in speci a 1 appendi ces so as not

to detract from the discussion of the experimental results.
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CHAPTER 2

THE SURFACE CHEMISTRY OF HYDROUS, MANGANESE DIOXIDE
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Abstract + -
An experimental investigation has shown that Hand OH are

potential-determining ions for the 8Mn02 surface. The pH(ZPC) was

determined using electrophoretic mobilities and Na+ and K+ adsorp-

tion and found to be 2.25. Alkalimetric titration curves failed to

provide a direct determination of the pH(ZPC); however, when combined

wi th the Na + adsorpti on data, theyprovi de a means for estimati n9 the

surface charge. Surface charge val ues of approximately -lOU pcoul/cm2

were found at pH 8, considerably hjgher than the charge on Si02 which has e

a 'similar pH(ZPC).

Below pH 3.5 manganese was released to solution, and the experimental

data suggest that this is due to the reduction of Mn02. 8Mn02 is tharmo-

- dynamically unstable with respect to H20 below that pH.
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I. INTRODUCTION

Manganese dioxide is an import phase in marine geochemistry.

Together wi th hydrous iron oxi de, it is a maj or component of manganese

nodul es, rangi ng from II to 63% by wei ght (Mero 1965). I t has also

been found to be an important component in the sedi ments of the East

Pacific Rise where Bostrom and Peterson (1969) have suggested that it

is the result of precipitation following the injection of volcanic emana-

ti ons into the seawater near the crest of the ri see In another context,

Spencer and Brewer (1972) have found relatively high concentrations of

suspended manganase just above the- oxic-anoxic interface in the Black Sea.

In sedimentary materials, positive correlations between manganese

and other elements are common (Riley and Sinhaseni 1958, Cronan 1969),

and adsorpti on onto the manganese di oxi de surface is one of the mechani sms

frequently proposed to explain these relationships (Goldberg 1954,

Krauskopf 1956~ Jenne 1968). Unfortunately, relatively little is known

about the electrochemistry of the manganese dioxide surface that can be

used to evaluate this explanation. In fact, several different factors)

such as the source of the elements and the structures of the minerals

present)could also explain some of these correlations.

The nature of the electrochemical double layer separating metal

oxides from aqueous solution has been studied for a number of metal oxides.

DeBruyn and Stumm and thei r co-workers have been especi ally successful in

looking at the oxide-solution interface in the same way that an electro-

chemist views the interface at a polarized electrode (Grahame 1947).

Construction of reversible metal oxide electrodes is not always feasible



-32-

(Covington et ale 1963), and when direct measurement of the double layer

parameters is not possible, the reversible interface model can be used

(Stumm et ale 1970). The distinction between the reversible interface

(metal oxides) and the polarizable interface (Hg) is a function of the

mechanism by which the separation of charge originates. . For a polar-

izable interface, the potential difference across the double layer is

applied externally using a potentiometer. The change in electrostatic

potential across the reversible interface results from the transfer of

potential-determining ions across the solid-solution interface.

For the rev~rsible metal oxid~ interface, it has been observed that

hydrogen and hydroxyl ions playa unique role in determining the sign and

magni tude of the surface charge and are, thus, the potenti a l-determi ni ng

ions for the surface (Berube and deBruyn 1968). As a consequence, metal

- oxides can be characterized by a solution pH for which the charge on the

surface is zero. This pH, the pH(ZPC) (at the zero point of chargeh is a

conveni ent reference poi nt that characteri zes the amphoteri c nature of the

metal oxide. For a pH below the pH(ZPC), the surface charge is positive,

and for a pH above the pH(ZPC), the surface charge is negative. Further-

more, the pH(ZPC) is useful in predicting the nature of the surface reactions

(Stumm et al. 1970) since it is a function of the acidity of the central

metal ion and the electrostatic field strength of the solid (Healy et ale 1966).

Healy et al.(1966) determined the pH(ZPC) for a number of different

crystal modifications of manganese dioxides using electrophoresis and

coagulation techniques and found that it ranged from 1.5 for Mn(II)-Manganite

to 5. a for ~Mn02. Several adsorpti on experi ments have been performed us i ng
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a va ri ety of i norgani c electrolytes (Gabano et a l. 1965, Murray et a 1 .

1968, Possejt et ale 1968, Kozawa 1959). In particular, Morgan and

Stumm (1964) have reported measuri ng di rectly the adsorpti on of H+ and

OH- ions using the alkalimetric titration method initially used by Parks

and deBruyn (l962) to study the ferric oxide-solution interface. However,

Morgan and Stumm1s results were incomplete in that the net OH- bound to

the solid as a function of pH was obtained at only one ionic strength.

The values that have been reported for pH(ZPC) of hydrous manganese dioxides

(oMn02-Mn(II)-Manganite) range from 1.5 to 4.5. Some of this variation

could be due to the effect of crystal structure on the polarization of

the surface as noted by Healy and Fuerstenau (1965). However, an equally

important source of variation may be the sample preparation and subsequent

agi ng effects, and nei ther has been well documented in the 1 i terature.

In order to evaluate the sign and magnitude of the charge on the

hydrous manganese di oxi de (oMn02) surface and to eval uate poss i b 1 e roles

adsorption and/or reaction play in metal ion enrichments and correlations,

a detailed study of the oMn02- solution interface has been undertaken. In

this paper, the direct measurement of the adsorption density of H+ (OH-)

ions on a preparation of oMn02 and the use of these measurements to con-

struct a model for the electrochemical double layer at the surface are

descri bed and di s cussed.

I I. MATERIALS AND METHODS

A. Preparati on of Mn02

In any surface chemistry experiment, it is important that the history

of the sample be described thoroughly, because the dehydration of the
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surface with drying or aging while in solution can have a pronounced

effect on the location of the pH(ZPC) of the solid (Parks 1965).

The manganese di oxide used in these experiments was prepared by

the oxi dati on of manganous i on by permanganate.
,I"i

+2 - /..._- +3 Mn =+ 2 Mn04 +( 10 ~20 = 5 Mn02 + 4 H
(l )

A known amount of NaMnO 4 (Mall i nkrodt, reagent grade) was added

to a 4-liter Erlenmeyer flask. An equivalent amount of base (NaOH) was

added initially to neutralize the acid that is evolved by the above reaction

and to keep the pH of the solution basic throughout the preparation. This

tends to create a situation kinetically favoring the oxidation of Mn(II)

(Morgan and Stumm 1964). Distilled water was added to bring the volume

up to approximately 3 1 i ters, and then the requi red stoi chi ometri c amount

of standardized MnC12 (B & A, reagent grade) was added dropwise while the

entire solution was well mixed with a magnetic stirrer. The NaMn04 was

standardized uSing sodium oxalate (Skoog and West 1963 , p.437) and the MnC12

was standardized using the method of Lingane and Karplus (1946). Several

. suspensions of Mn02 were prepared at a concentration level of 5 x 10-3M.

The co 11 oi da 1 Mn02 was allowed to settl e, and the supernatant was removed

and replaced with distilled H20. This washing procedure was repeated

until the ionic strength was approximately 1 x 10-4M:, After the final

removal of the supernatant, the Mn02 was transferred to a 4-liter Erlenmeyer

flask. This preparation and transfer procedure was repeated until the

final 4-liter stock suspension c~ntained 4.8 x 10-2M Mn02. The stock

suspension was well mixed before each experiment, and then a suitable
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aliquot wa~ withdrawn. Twenty-five ml a1iquots (containing 0.106 gms of

Mn02)of the stock suspension were used for the majority of the experiments

described in this paper. To prevent possible dehydration of the surface

due to drying, the Mn02 was kept in suspension at all times.

B. Characterization of the Mn02

The stoichiometry of the hydrous manganese dioxide ~as determined

by using the O-tolidine method (Morgan and Stumm 1965)(Appendix II-A).

The )(-ray powder and oriented diffraction patterns were obtained using

Cu radiation with a curved crystal monochromator to reduce seconåary

~-ray fl uorescence (Appendi x II-BL

The surface area was obtained by using the B.E. T. (Brunaeur et ale

1938) and t-plót (deBoer et al: 1966) methods (Appendix ii-e). To obtain

a suitable sample for these measurements, a suspension of Mn02 was cantri-

~ fuged, and the separated Mn02 colloid was freeze-dried. The sample was

resuspended in acetQne and dried again under vacuum. The gas adsorption

data were obtai ned usi ng N2 gas with a He carrier.

C. Location of the pH(ZPC)

In order to determi ne the amounts of Na + and K+ adsorbed as a func-

ti on of pH, s us pens ions of Mn02 were s pi ked wi th NaC1 and KC1. The pH

?f the suspensions was adjusted by dropwise addition of 3N NH40H. After

equilibration, suitable aliquots of the suspensions were withdrawn, filtered

and analyzed by atomi c absorpti on" spectrometry.

The electrophoretic mobilities were measured using a Briggs micro-

electrophoresis cell. The electrochemical cell can be represented by

(Pt), Hg, Hg(N03)2' KN03 / suspension / KN03, Hg(N03)2' Hg (Pt)

and the mobil i ty was ca 1 cul ated as

U = d X
i R. T

i"
i'
1
i

(-i)
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wher~ U = mobi1 i ty (mi crometer sec- Vi (vo 1 t cm-1 )

i = applied d.c. current (amps)

~= specific, resistance (ohm-em)

, = average time for a particle to travel 69 micrometers (sec)
. d = dist~'ce across grid (69 micrometers)
X = cross sectional area of cell (cm~)

The a 1 ka 1 i metri c ti tra ti ons were performed us i ng 25 m1 of the Mn02

stock suspension. After adjustment of the ionic strength using NaCl, the

total volume was brought to 200 ml. The acid and base portions of the

titration curves were done in different experiments. Small a1iquots

(0.03 - 0.15 m1) of standardized O.lM HC1 or O.lM NaOH were added to the

titration cell and the pH read after 2 minutes. The blank titrations

were prepared in an identical manner. The Mn02 was removed by centrifu-

gation and the titration was performed on the supernatal't'. solution. . To

ca 1 cul ate the adsorpti on dens i ty, the pH values were corrected to concen-

trations using the Debye-Huckel equation..

I II . RESULTS

A. Characteri zati on of the Mn02

The stoi chi ometry of the hydrous manganese di oxi de was found to be

Mn01.92' X-ray diffraction patterns of the air-dried (250) oxide showed

a'iow degree of crystallinity with reflections at approximately 7.4 ~,

4.04 R, 2.43 ~ and 1.63~. The stoichiometry and)(-ray analyses indicate

that this synthetic manganese-dioxide is similar structurally to the

natura 11y occurri ng mi nera 1 bi rnes i te (Jones and Mi 1 ne 1956) and the

synthetic products studied by Giovanoli ét a1. (1969,1970) called manganate-IV,

by Morgan (1964) called ôMn02, and by Healy et al. (1966) called Mn(II)-

Manganite. For ease of reference, the manganese dioxide used in these

experiments wi II be referred to as ôMn02.

- ----.-_..-,/.-.:-:; ~
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Transmission electron microscope pictures (Figure 1) show that the

particles of ~Mn02 range from 0.2 to 1.O~ and appear to be aggregates of

much smaller,spherically shaped,particles. Triplicate measurements of

the surface area gave a val ue of 263 t 5 m2/gm by the B. E.T. method ~ A

t-plot calculated from the N2 adsorption dat~ gave a surface area of

270 m2/ 9 .

B. Electrophoretic Mobilities

The electrophoresis measurements were made at low ionic strength

-(
(1 x 10M) except below pH 4 where the i oni c strength was contro II ed by

the strong acid added to adjust the pH. The surface area of oMn02 used

2
was 1.15m /1. Measurements were not possible for pH values less than

about 2.5, because the combi ned effects of the reducti on in surface charge

and increase in ionic strength made the óMn02 suspension unstable causing

- the colloidal particles to settle out of the plane of focus. The calculated

electrophoretic mobilities are plotted against pH in Figure 2. A positive

mobility was never observed. The mobilities were strongly negative over

most of the pH range and decreased rapidly below about pH 4. Extrapola-

check on

+
and K

with the oMn02 surface is completely electrostatic, these cations should

be completely desorbed at the pH (ZPC). The amounts of Na + and K+ adsorbed

as a function of pH are shown in Figure 2.
+ +Na and K were completely
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des orbed from the surface at pH 2.25 and 2.l5 respectively. The kinetics

of adsorpti on and desorpti on wererapi d and compl etely revers i b 1 e.

D. Alkalimetric Titration Curves

1 ) Ki neti cs

Before undertaking the alkalimetric titration experiments on the

oMn02 surface, it was necessary to evaluate the rate of response of the

surface to the addition of various amounts of acid or base. Berube

et aL. ',' ( 1967 ) . ;," have found that the reacti on of protons wi th

the metal oxi de surface appears to be a two-step process. For pH values

greater than the pH(ZPC), an aliquot of base produced a rapid rise in pH

(although not as large a rise as would ,take place in an unbuffered solu-

tion), followed by a slow downward drift. The slow drift was found to

last about 80 hours for Ft203 and 800 hours for Ti02. A similarly rapid

_ drop in pH occurred after the addi ti on of aci d for pH val ues 1 ess than the

pH(ZPC). However, the occurrence of the slow step was only found for

Fe203. Figure 3 shows the long term drift after the pH has been adjusted

from 3.25 to 8.4. Equilibrium, in this example, appears to have been reached

after 200 hours. In Figure 4, the H+ ion activity is plotted against

k
the square root of time (t2). After rapid equilibration of the solution

with the surface following the addition of base, protons are released to

the bulk solution (or OH- is consumed by the surface) giving a linear

k
response against t2 for approximately LO minutes, whereupon the drift

assumes an exponential character. Similar time plots have been used by

others ( Gallagher and Phi 11 ips 1968, Wyttenback 1961, Luce et a 1. 1972,

Berube et ale 1967) to demonstrate diffusion controlled processes.
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Berube and de B ruyn (1968) and Onoda et a 1 . (1967) showed

that if the titration is performed fast enough, the slow, diffusion con-

trolled step may be suppressed. They concluded that under these condi-

tions the experimental results should reflect only changes characteristic

of a surface process. In this study, the short-term response of the oMn02

surface after the addition of small aliquots of base was found to be rapid,

and as a result of adding small aliquots, the pH drift was minimized. When

the ti trati ons were performed wi th the al i quots (.05 - .15 ml) of base and

acid added at regular two-minute intervals, they were found to be reversible

to within O.L pH units.

2) Ti trati on Curves

Recording the pH during the course of a titration of a suspension of

oMn02 provi des data that can be interpreted in terms of adsorpti on of* If
-, hydrogen or hydroxyl ions. The adsorpti on dens ity (TH+ - TõH-) is

obtained from a mass balance between the titration curve of the suspension

and that of the supernatant of the suspension.

CB - CA + rH+J - (OH-J

. s
=

ç~ - ç* =
,~

F

(3 )

c =
B

C =
A

S =

concentrati on of strong base

concentrati on of strong aci d
:isurface area (cm )

~* = specific adsor~tion density (equiv~lents)
em

(H+J, LOHJ = concentrati on of H+ and OH-

ao = surface charge (coul/cm2)

F = Faraday constant (9.65 x 104 coul/eq.).
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The quanti ty of aci d or base that cannot be balanced in the sol uti on

phase and is present in the system is ascribed to the surface. Figure 5

shows the alkalimetric titration curves, and Figure 6 the net adsorption

curves for the oMn02 surface at several different ionic strengths. The

net adsorption curves result from subtracting the blank titration curves

(Figure 5b)from the suspension titration curves (Figure 5a). Such a

procedure takes into account any strong aci d or strong base present in

the system. The error in subtracting these curves increases at low pH

va 1 ues because of the decrease ins lope.

3) Extrapolation of Titration Curves

The surface charge is conventionally calculated relative to the inter-

secti on of the ti trati on curves determi ned at di fferent i oni c strengths

(Parks and de Bruyn 1962). This intersection generally agrees well (e!cept

-, in the presence of specifically adsorbable cations or anions) with the

'- pH(ZPC) located by other methods such as electrophoresis. For oMn02, the

pH(ZPC) located by electrophoresis and Na + and K+ adsorption cannot be

reached by the alkalimetric titration method used. Thus, the surface

charge calculated directly from the data gives only a minimum value as the

correct value must be calculated from the pH(ZPC). In order to obtain a

quanti tati ve value for the surface charge, an alternate method must be

used for extendi ng the net ti trati on curves to the pH(ZPC).

+
In this instance, the adsorption of Na has been found to be a suit-

able means of extrapolating the titration curves. For a charged solid-

solution interface, the surface charge on the solution side is equal but

opposite in sign to the charge on the solid (Stumm and Morgan 1970, p. 459).

When the surface is negatively charged, the charge on the solution side



-41-

is given by the sum of a+ (charge due to a surplus of cations) and a-

(charge due to a deficiency of anions) in the absence of specific adsorp-

ti on.

a sol uti on = (a + + a -) (4 )

Assuming that both CL- and Na+ react non-specifically with the surface

and that the number of equivalents of Na + adsorbed on the surface equals

the number of equi va 1 ents of CL des orbed , the surface charge can be approxi-

mated at constant ionic strength and low surface potentials by:

a surface = F (2 ~a +*) (5 )

Ffgure 7 shows the net titration curves foroMn02 extrapolated to pH 2.25

on the basis of measurements of Na+ adsorption for I = ia-3M and I = 10-~.

The surface charge has been calculated relative to this intersection. . The

- data in Figure 7 might also be described by the charge balance equation:* * * *
TOH- - G+ = Të- - TNa+

however, electrophoresis experiments showed that the mobility was controlled

by the pH and that variations in the NaCl concentration had little effect.

Thus, it appears that the i nteracti on of Na + and CL wi th Mn02 is in

response to the charged surface that is produced by the di ssoci ati on of

surface protons.

4) Aging

The al kal imetri c ti tration experiments were repeated after one month,

and it was found that the volume of base that mus t be added to reach a

given pH had decreased by approximately 10 - 15%. Parks (1965) has noted

that treatment likely to lead to bulk or surface dehydration often results

in more acid pH(ZPC). It is likely that the decrease observed above is

due to the aging of the freshly precipitated lIactivell form of oMn02.
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iv. DISCUSSION

The thermodynami cs and coordi nati on chemi stry of the metal oxi de-

electrolyte interface have been described in detail (Parks and de Bruyn

1962, de Bruyn and Agar 1962, Berube and de Bruyn 1968~ Atkinson et ale

1967~ Stummet ale 1970).

The ori gi n of the charge at the metal oxi de-sol uti on interface is

vi ewed as a two-step process . The surface hydrates by pull i ng H+ ions,

OH ions or water molecules from solution as the surface atoms attempt

to complete their coordination. The metal hydroxide groups formed in

thi s manner parti ci patei n acid-base reactions to produce a posi ti vely

or negatively charged surface. The surface metal hydroxide groups can

ei ther di ssoci ate or accept H+ or OH- ions.

o-Me-OH + H 0
2

= -Me-O- + H 0+
3 or

-Me-OHo + OH- = -Me-'(OH)-
2 (6 )

o + +
-Me-OH + H30 = -Me-OH2 + H20 or

o +--Me-OH = -Me- + OH (7) Î,
!

It is impossible to determine experimentally whether the reaction is due

to the adsorpti on of H+ and OH- ions or to the di ssoci ati on of surface

sites. The exact location of the pH(ZPC) will depend on the relative

aci di ty of the surface groups,

Me - OH + = Me-OHo + H+ = Me - 0- + 2H+2 Ki K2 ( 8)

and the pH(ZPC) will lie at the pH value for which an equal number of
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+ -
Me-OH2 and Me-O groups are present, i.e. when the surface is uncharged.

USing reaction (8), the pH(ZPC) will be characterized by:

(Me- OH iJ = (;e- O~

and
+
H ZPC = K K 1/2

1 2
or pH(ZPC) = J/2(pKi + pK2) (9 )

where Ki and K2 defi ne the aci di ty constants of the surface sites (Stumm

et ale 1970). The location of the pH(ZPC) will thus depend on such factors

as the acidity of the metal ion and the electrostatic field strength of

the solid (Healy et ale 1966, Healy and Fuerstenau 1965). Table 1 compares

the pH(ZPC) of several metal oxides. In general, the pH(ZPC) is inversely

proportional to the charge of the metal (Parks 1965) and the size of the

unit cell of the solid (Healy et ale 1966).

As shown in reactions (6) and (7) l only H+ and OH- are potential~

determining. This is a simplification of the more general model proposed

by Parks and de Bruyn (1962) in which the establishment of the surface

charge can also be explained by the adsorption from solution of dissolved

metal hydrolysis species. If the affinity of all the dissolved metal hydrol-

ysis species in equilibrium with a metal oxide for the surface of that metal

oxi de were equal, then one woul d expect good agreement between the pH (ZPC)

and the isoelectric point of the complex solution.

The results of this study indicate that H+ and OH- are potential-deter-

mi ni ng ions for the oMn02 surface and that the pH (ZPC) is located at approxi-

mately pH 2.25. As 8Mn02 is highly insoluble (Kso= 10-56j (Charlot and Bezier

1957), the adsorption from solution of dissolved Mn(IV) hydrolysis species can

be neglected. The hydrolysis of Mn+2 can also be neglected as *Ki= 10-10.6(Perrin

1962). This low pH(ZPC) implies that,compared with most other metal oxides, 8Mn02
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is a relatively strong acid. Combining reactions (6) and (7) gives an

overall reaction for the surface of:

-Mn-OH2 + (surface) = -Mn-O- (surface) + 2H+

which has an equilibrium constant of:

K12 = (-Mn-O"" (s urface)1

EMn-OH~+ (surface~
( -) ,2

x~cxH+ (lO)

where y_, y+ are the activity coefficients of the two surface sites, and

cxH+ is the activity of hydrogen ions. Assuming that at the pH(ZPC) the

pos i ti ve and negati ve sites are equal and the acti vity coeffi ci ents for

the sites are equal, K12 = iO-4.5 for ôMn02. This value compares with a

-17K12 of lO ca 1 cul ated in a simi 1 ar manner for Fe203 (Parks and de Bruyn

1962) and shows that oMn02 attracts protons much less strongly than

Fe203.

A more ri gorous theoret i ca 1 treatment of the oMn02 surface is not

feãsible because of the uncertainties in the extrapolation of the titration

curves. An additional uncertainty is related to the assumption that H+

and OH are the sale potential-determining ions. As discussed previously,

the solubility of oMn02 is extremely low, and thus Mn(IV) solution species

can be negl ected. However, at low pH values, Mn is released to sol uti on.

Morgan (1964) reported that Mn(II) is released from oMn02 in acid solution,

and he attri buted thi s to H+ /Mn +2' exchange and to reducti on of Mn02 by

H20. Figure 8 shows the release of Mn to solution versus time for suspen-

sions adjusted to different initial pH values. With time, Mn was released

to solution in increasing quantities suggesting that the release of Mn from

the solid is not due to H+/Mn+2 exchange. The release of Mn versus time
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woul d decrease as the gradi ents decreased if it was di ffus ion contro 11 ed.

That the release ofMn was not observed for any samples above pH 3.5

suggests an alternative mechanism for the release. Figure 9 shows a

pE - pH diagram for manganese constructed with calculations using thermo-

dynamic data available in Sillen and Martell, (1964). From the relative

positi ons of the oMn02- Mn+2 and O2 - H20 1 ines, it is apparent that

Mn02 becomes unstable with respect to the oxidation of water at pH values

below 3.5. This suggests that the reduction of ÓMn02 by H20 takes place

1 i berati ng Mn +2, + -- u.oMn02(s) + 2H = ~02 + H20 + MN (ll)

This instability may be enhanced by CL-. For example, the reaction

~ oMn02 + Cl + 2H+ = yvn+2 + ~Cl2 +H20; log K = -2.6. (12)

might occur at low pH (W. Stumm, personal communication). Though there

is a considerable time lag before any Mn can be detected in solution for pH

values between 2 and 3, it is possible that small amounts of Mn+2 are

released during the course of an alkalimetric titration and re-adsorbed

specifically by the negative surface, thus acting as another potential-
t
+

determining ion. As a consequence, the alkalimetric titration results can-

not be used below pH 3.5 unless the assumption is made that the reduction

is slow compared with the duration of the titrations. Participation of

Mn+2 as a potential determining ion below pH 3.5 would mean that the loca-

tion of the pH(ZPC) at 2.25 is not entirely due to reversible H+ (OH-)

adsorption, thus indicating that oMn02 has even less affinity for protons

than was previously calculated. The pH(ZPC) has been located for ßMn02
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using the alkalimetric titration method (Jenkins 1970), so it is reasonable+ -to expect that Hand OH should be considered the potential-determining

ions for oMn02 for pH values greater than 3.5.

Table 1 indicates that the material with a pH(ZPC) closely similar to

that of oMn02 is Si02. Figure LO compare,s the charge-versus-pH values

for amorphous Si02 (pH(ZPC) = 3.0) obtained,by Tadros and Lyklema (1968)

with the charge-versus-pH data for oMn02 obtained in this paper. The

calculated surface charge increases much more rapidly for óMn02, reaching

approximately -100jlcoul/cm2 by pH 8.0, demonstrating the much greater sur-

face activity for oMn02 compared wJth Si02 even though they have similar

pH(ZPC). A possible explanation for this difference is the fact that Mn+2

may be acting as a potential determining ion below pH 3.5.

It is also possible that although the pH(ZPC) of óMn02 is similar to that

-ofSi02, its second intrinsic acidity constant K2 for reaction (8) may

be markedly different. Stumm and Morgan (1970) report that Si02 has an

intrinsic acidity constant (PK2) of about 6.8. Thus, this surface loses

significant H+ only above that pH. If pK2 for óMn02 were markedly lower,

(for example pK2 = 3), then H+ would be lost much earlier from óMn02 than from

$i O2.

This surface charge (-100 pcoul/m2) is equivalent to 1 x 10-5 eq/m2

or 260 meq/100g. The upper limit of the ion exchange capacities for

kaolinite and smectite are l5 meqjlOOg and 150 meq/100g respectively

(Grim 1968, p. 189). Thus at pH 8, dMn02 is almost twice as surface

active as the most surface active clay mineral.

V. SUMMARY AND CONCLUSIONS

An experimental investigation of the pH(ZPC) and surface charge was

made for a sample of hydrous manganese dioxide (óMn02). As for other metal
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oxi des, H+ and OH- were found to be potenti a l-determi ni ng ions; however,

below pH 3.5, Mn+2 may be acting as a potential-determining ion as well.

The alkalimetric titration curves failed to provide a unique loca-

tion for the pH(ZPC). In order to locate the pH(ZPC), electrophoretic

mobilities and Na+ and K+ adsorption measurements were used. These

methods agreed well and gave a pH(ZPC) of approximately 2.25 for the

sample studied. Once the pH(ZPC) was located, the net alkalimetric titra-

tion curves were extrapolated to that point using the adsorption of Na+.

The charge values calculated by this procedure give values of approximately

~OO ~coul/cm2 at pH 8, considerably higher than the charge on Si02, which

has a similar pH(ZPC). The difference 'in surface charge for these two

substances gives a possible explanation of why manganese rich sediments

and manganese nodul es have much 1 arger concentrati ons of rare metals than

- silica rich sediments (Krauskopf 1956).
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TABLE 1

COMPARISON OF THE pH OF ZPC FOR VARIOUS METAL OXIDES

OXIDE pH (zpe) REFERENCE

W03 0.5 El Wakkad and Ri z k ( 1957)

&Mn02 2.25 Thi s work

Si02 (qtz.) 2.0 Li (1958)

(amorphous) 3.5 Bolt (1957)

" 3.0 Tadros and Lykl ema (1968)

Ti02 6.0 Berube and de Bruyn (1968)

¥-A 1203 7.6 Stumm, Huang and Jenkins (1970)

ot-Fe203 8.5 Parks and de Bruyn (1962)

-, ZnO 8.9 Blok and de Bruyn (1970)

A920 11.2 Pàrks and de Bruyn (1962)
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Fi gure 1

Transmi ssi on electron mi croscope photograph of oMn02

Magnification: 15,000 x
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Fi gure 2

Electrophoretic mobilities and Na+ and K+

adsorpti on measurements for 8Mn02. _

t
i
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Fi gure 3

Long-term pH Dri ft
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Fi gure 4

Change in H+ concentrati on wi th ti me~
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Fi gure 5a

Alkalimetric titration curves for oMn02 at several ionic

strengths. The titrations were performed using 0.1 g (26m2)

of oMn02, and the ionic strength was adjusted using NaCl.

Total vol ume of the ti trati on cell was 200 ml. The aci d

and base porti ons of the ti trati on curves were done in di f-

ferent experi ments .

Fi gure 5b

Bl ank ti trati on curves performed on the supernatent sol u-

ti ons after the removal of the oMn02.



/
I

I

o 0-.... I~ 0... I0.. 0.0 I~ 0 .... ~ ~.. 0'0 ~ ......0 I I 7° .. 00.. 0 "" · .0. ~ ~ S?
'.0.. .... 0.. 0.. ..... )(0.. 0_.. 0.. ..O~..O.. q-

0.. 0.... ..0 . .... .... ..o ° .. ° '- 0 · q~ ..0.. ° '- ....° -.. ,-"..~ 0.. 0 ° °
° ..0 '0 \.0.. .., " '.0.. 0, ° ° °

~, '0 \ å
° '0 \\ Ö

'o~~;Ô
~o\~

~i~
t\\~0°.

\aO
O.
t ·

&:
\~o
\¥ .t
ro
o
!
o
t.
o

,
°

u-
Ct
l-
w.2--l u4,~ Z-l 0c: -

~
0:
l--
I-

(f
W~
0:
=:

C\oc
~
00

I

~~

Hd

~

. ~..
0 CJ.
0

~.
0w

I0 f' C\ ~d ""
C)'-..
~

ff
I0

l
;:
~
~

C\ "i

C)'-..
~

~

C\



8 6

=
t ~

4 2

B
L

A
N

K
 T

IT
R

A
T

IO
N

C
U

R
V

E
S

o o
.
 
0
 
0
0 I 
:

o 
.. .. .. .. .. ..

4 
X

 1
0-

4

10
-3

--
--

-
10

-2

10
-1

¡

I
 
~

i 0
.. . 0 .. . ..

o 
I.

i .
.

I 
.

I
 
0
 
:

01
 \ 

I ò

)
'
 
0
 
·

o
 
I
 
0
:

, 0
 ø

:
,
 
.
 
0
 
,

F
ò
 
0
 
0
 
0

,Q
: I

 8
 .'

0
0
0
 
.
 
·

~
'
 
0
 
0
v
 
0

,
~
/
 
0
 
O
'

cF
', 

"0
0 

",
.

_ 
_,

,¿
¡id

 ..
0

o
 
0
_
0
-
0
-
0
-
0
-
0
0
0
-
0
"
.
?
0
.
.
0
.
0

0.
.0

.. 
-0

...
 ..

0.
. .

.0
. .

. .
0.

0.
7

...
e.

...

4
 
2
 
0
 
2

m
l
(
0
1
N
 
H
e
i
)
 
c
:
 
~
 
m
l
(
O
!
 
N
 
N
o
O
H
)

,



-60-

Fi gure 6

Net alkalimetric titration curves for ôMn02
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Fi gure 7

Surface charge calculations for the alkalimetric titration

,curves extrapolated to the pH(ZPC) using Na+ adsorption data.

Charge values in pcoul/cm2 were calc~lated relative to the

intersection of the titration curves using equation 3.
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Fi gure 8

The release of manganese to sol uti on from suspens ions

of ôMn02 adjusted to different i~itial pH values.

Curve pH
I 1. 50
II 2 . 30

I II 2 . 45

"
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Fi gure 9

pE - pH di agram for manganese
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Figure 10

A comparison of the charge-versus-pH values for oMn02 and

Si O2. The charge values for oMn02 were ca 1 cul ated using

alkalimetric titration curves extrapolated to the pH(ZPC)

using Na+ adsorption. The charge values for Si02 were

taken from Tadros and Lykl ema (1968).
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CHAPTER 3

THE INTERACTION OF METAL ¡ONS AT THE

MANGANESE DIOXIDE-SOLUTION INTERFACE
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ABSTRACT

The adsorption of metal ions was measured and alkalimetric titra-

tions were performed on a synthetic sample of hydrous manganese dioxide.

The pri nci pa 1 characteri s ti cs of thi s phase, its stoi chi ometry, X-ray

diffraction pattern and surface area, resemble closely the mineral

birnessite.

Both sets of experiments i ndi cate that the affi ni ty of the metals

for the surface fo 11 owed the order:

Mg ~ Ca ~ Sr ~ Ba ~ Ni ~ Zn ~ Mn ~ Co

Linear Kurbatov plots indicate that the interaction can be characterized

by its pH dependence. A compari son of the amount of metal adsorbed wi th

the amount of acid released by the surface showed that the interaction of

'. metals with the hydrous manganese dioxide surface involves (1) the separa-

tion of a proton from the covalent bond at the surface, and (2) the associ a-

tion of a solute cation with this site.

- Mn-OHo + Co +2 = - Mn-O-Co + + H+i i
The relative degree of the bond strength is reflected by the specific

adsorption potentials,which are determined from the amount of metal that

is adsorbed by the surface, in the absence of any electrostatic attraction,

at the pH of zero poi nt of charge ~
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I. INTRODUCTION

Manganese dioxide is a well known scavenger in marine and fresh

, water environments (Goldberg 1954, Krauskopf 1956, Morgan and Stumm 1965,

Jenne 1968). Field observations show that Mn02 is very sensitive tq

changes in pE, and it is only found in oxi di zing envi ronments; thermo-

dynamic calculations show (Stumm and Morgan 1970, p. 533) that at pH 8, it can

become reduced at values of pE less than 8. The combination of the two

characteristics of Mn02, its scavenging ability and its limited stability

field with respect to pE, make it both an important source and sink for

trace elements. Under oxidizing ~onditions,' ~~02 will immobilize those

metals that are attracted to its surface. If the environment is made

,reduci ng, the Mn02 wi 11 be reduced re leas i ng its adsorbed meta 1 ions.

Several authors have investigated the interaction of metals with

-- Mn02. In an attempt to understand the cata lyti c effect that Mn02 has on

the oxidation of Mn(II) and to understand the colloidal stability of Mn02,

Morgan and Stumm (1 964~ studi ed the adsorpti on of Mn (I I) and other cati ons

on oMn02. D.J. Murray et al. (19GB) investigated the adsorption of Co,
o

Cu, Ni, Ca, Ba, K, Na, and Li on 10 Ä manganite in the vicinity of the pH

of zero point of charge pH(ZPC) in order to obtain quantitative data on

the specific adsorption potentials of these ions. Studies of the coagu-

1 ati on and fl occul ati on of hydrous manganese di oxi de i ndi cate they are

strongly dependent on the presence of slightly hydrolyzed metal ions

(Morgan and Stumm 1965, Jenkins 1970, Posselt et al. 1968). Previous

research on the surface charge characteri sti cs of oMn02 has shown that
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H+ and OH- are potential-determining ions and that the pH(ZPC) ranges from

1.5 to 2.7 (D.J. Murray et ale 1%8, Morgan and Stumm 1965, see also chapter 2),

however, a simple model of revers i b 1 e H+ and OH- adsorpti on is comp 1 i cated

below pH 3.5 because of the reduction of Mn02 by H20. Results of the

surface charge determinations indicate that 8Mn02 has a much higher surface

charge than Si02 in the pH range of natural waters (Chapter 2).

In addition to the electrostatic attraction of cations by the high surface

charge, the positive adsorption of some metal ions at the pH(ZPC) indicates

'that some form of specific adsorption can enhance their adsorption (D.J. Murray

et ale 1968). Loganathan and Burau (1973) suqgested that this is substitu-

ti on of the adsorbing di val ent metal ions for Mn (I I) and Mn (I I I) i ncl uded

in the structure of the ôMn02.

In this paper, I report on the interaction of several metal ions

with the surface of ôMn02. These interactions were studied directly by

measuri ng meta i ion adsorpti on by atomi c absorpti on spectrophotometry and i n-

directly by using alkalimetric titrations. From these experiments, I will

describe the reactions that take place at the ôMn02-s01ution interface and

suggest the chemical factors that must be considered in order to explain

them.

I I. MATERIALS AND METHODS

A. Materi a 1 s

The oMn02 used in these experiments was prepared as descri bed in

Chapter 2 by the reacti on:+2 - +
3 Mn + 2 MnO 4 + 2 H20 = 5 Mn02 + 4 H (1 )
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The õMn02 from several preparations was combined to produce a stock

suspension that was used for all the experiments presented in this paper.

The oMn02 was kept in suspension at all times since the results cited in

Parks (1965) indicate that drying the materials used in surface chemistry

experiments wi 11 affect the response of the surface.

Surface area determinations by the B.E.T. and t-plot methods both

gave a surface area of 260 m2/g (Appendix II-C), and )(-ray diffraction

gave weak reflections at 7.4 Â, 4.04 A, 2.43 ~, and 1.63 A (Appendix II-B)

which are characteristic of hydrous manganese dioxide. The stoichiometry

of Mn0i.93' was determined by _using 0-t01idine to measure the oxidized

equivalents (Morgan 'and Stumm 1965) and atomic absorption spectrophotometry

to measure the total manganese (Appendix ii-Al.

The pH(ZPC) for this preparation was determined by electrophoresis

- and Na+ and K+ adsorption (Figure 1) and was found to be approximately 2.25.

Alkalimetric titrations of the surface with NaCl as a background electrolyte

showed that the surface charge increased rapi dly for pH val ues greater

than the pH(ZPC) and reached over-lOa ~coul/m2 by pH 8.0.

B. Adsorption Experiments

The adsorption-desorption and alkalimetric titration experiments

were prepared by adding appropriate amounts of CO(N03)2' Ni(N03)2' MnC12,

ZnS04, CaC12, MgS04, SrC12 or BaC12 stock solutions to a suspension of

õMn02. If the i ni ti a 1 pH was adj us ted, it was done before the addi ti on of

metal ions. Each experiment contained 0.10 g of Mn02, and the total volume

was 200 ml. The ionic strength was adjusted using NaCl.

In the adsorption experiments, 5 ml aliquots were drawn from the

suspension, the õMn02 was removed by centrifugation (30 min. 15,000 rpm),
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and the supernatant was analyzed by atomic absorption spectrophotometry

(Appendix III-A). After each sample was drawn, the pH was adjusted

using 0.1 N NaOH or 0.1 N HC1, and after equilibration, another sample

was taken.

Each adsorption experiment was begun at about the pH(ZPC). The

pH was increased in increments, and samples were taken up to approximately

pH 7. Then the pH was lowered in increments, and samples were taken to

meas ure the amount desorbed. The supernatant sol uti ons were analyzed for

Mn as well as the metal bei ng studi ed.

C. Alkalimetric Titration Experiments

The suspensions for the alkalimetric titration experiments were pre-

pared in the same way as those for the adsorpti on experiments. The experi-

ments were performed using standardized O.l N NaOH. The addition of aiiquots

of ti trant were made at regul ar three mi nut~ i nterva 1 s, and pH measurements

were made using a combination glass electrode(Fisher Scientific Co.). Blank

ti trati on curves were performed on the supernatant sol uti ons after removal

of the 8Mn02 from the suspensi ort by centri fugati on.

I I I . RESULTS
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tration. Posselt et al. (1968) found similar rapid kinetics, equi-

librium was reached in less than five to ten minutes in their experiments.

On the other hand, D. J. Murray et ale (1968) and Loganathan and Burau

(1973) found that final attainment of equilibrium was often very slows in

some .cases lasting from several hours to a few days.

The kinetics of adsorption of alkaline earth and transition metal ions

on the oMn02 used in the experiments in the present study was reasonably

rapid. Thus, adsorption equilibrium was reached within an hour after the

addition of metal ions to a suspension of oMn02 at an ionic strength of 0.1 N.

When the pH in the adsorpti on expari ments was increased in small increments c

eqÜi 1 i bri um was reached very rapi dly; however, the time to reach equi 1 i-

bri um was a functi on of the amount of the pH change. Fi gure 2a shows the

adsorption kinetics of cobalt on oMn02 following arr increase in pH from

- 3.88 to 4.72. In this example, adsorption equilibrium was reached after

approximately 15 minutes.

The adsorption of metal ions onto oMn02 results in a release of protons.

A general reaction involving the exchange of metal ions in solution with H+

bound to the oxide surface has been used to explain the adsorption of metal

ions on metal oxides (Kurbatov et ale 1951). This results in a pH drift that can

also be used to monitor the kinetics of metal ion adsorption. The termina-

tion of the pH drift and adsorption kinetics were found to coincide.

In order to evaluate the reversibility of the metal ion adsorption,

desorption kinetics were studied. Figure 2b shows the amount of cobalt

released after the pH was lowered from 6.49 to 3.24. The rate of desorp-

tion of metal from the surface was slower than the adsorption rate. For
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coba 1 t and the other trans i ti on and a 1 ka 1 i ne earth metal ions s tudi ed,

between 6 and 12 hours were necessary to reach equilibrium.

2) Adsorption of Alkaline Earth and Transition Metal Io~

Figure 3 shows the adsorption of the alkali ne earth metal ions on oMn02

as a function of pH. The data are plotted a~ adsorption density (moies/m2)

to facilitate comparison with the alkalimetric titration €xperiments. The

concentrati on of total metal was 1 x 10-3 M, and the i oni c strength was

10-l N. The amount of metal adsorbed increased wi th pH, and the observed

selectivity sequence was Ba ~ Sr ~ Ca ~ Mg. The ease of desorption re-

flected the adsorption selectivity; Mg adsorbed more reversibiy than Ba.

The desorpti on of the a 1 ka 1 i ne earths by 1 oweri ng the pH was not complete.

The adsorption-desorption results for calcium are shown in Figure 4. The

initial pH of the experiment was approximately 2.0. The pH was adjusted

- upward to approximately 7. a and then lowered agai n to pH 2.5. The arrows

in the figure indicate which parts of the curves are adsorption and which

are desorpti on. The adsorpti on~desorpti on results for cabal t, manganese

and nickel are also given in Figure 4. A comparison of the adsorption

results for Co, Mn, Cu, Ni and Zn at 1 x 10-3 M is given in Figure 5.

The adsorpti on resul ts for cobalt at concentrati ons rangi ng from

2.5 x 10-4M to 1 x ia-3M are shown in Figure 6. The amount of cobalt

adsorbed at low pH values was very high compared with the alkaline earths.

For 1 x 10-3M)at pH 3, over 50% of the cobalt was adsorbed. Only 30% of

the barium and less than 10% of the magnesium were adsorbed under the same

conditions. Increasing amounts of cobalt were adsorbed with increasing

pH, and by pH 7.0 essentially 100% of the cobalt had been adsorbed. Some

manganese was released to solution with the adsorption of cobalt. The. -3
amounts released for 1 x 10 M cobalt are also shown in Figure 6. Approximately



-83-

10% of the cobalt adsorbed at pH 3 can be accounted for by the Mn released,

and thi s percentage decreased wi th i ncreas i ng pH.

The adsorpti on of cobalt was hi gh ly i rrevers i b 1 e as shown by the

amounts of cobalt released to solution With a decrease in pH (Figure 6).

The inability to desorb the cobalt is apparently not due to the short

term kinetics of desorption; as Figure 2 indicates, for all practical

purposes desorption equilibrium was reachec within a few hours. This

hysteres is was a very pronounced feature for all of the trans i ti on metal

ions studied (see Figure 4).

B. Alkalimetr~c Titration Experiments

The ai kal i metri cti trati on curves and the bl ank ti trati on curves

are shown for the a 1 ka line earth metal ions at 1 x 1 0~3M in Fi gure 7 ~ for

cobalt at concentrations ranging from 1 x ia-3M to 2.5 x 10-4M in Figure 8,

and for Co, Cu, Ni, Zn and Mn at 1 x ia-3M in Figure 9. All of these titra-

tion curves were done in an ionic medium of 10-lN NaCl. Included for com-

parison in each figure is a titration curve of the oMn02 surface in 10-lN

NaCl in the absence of any metal ions. The res ul ts for Cu, Ni, Zn and Mn

at different concentrations were similar to the cobalt results and can be

described by using the cobalt data alone.

~,
, r

Net titration curves, obtained by subtracting the blank titration

curves from the titration curves of the surface, are shown in Figures 10,

11, and 12. These curves show the amount of strong base that has reacted

wi th the surface in the absence or presence of the di fferent meta 1 ions.

The presence of metal ions shifts the titration curves to the right of

the ti tration curve of the surface in the absence of any metal ions

(Figures 7, 8, 9). At 1 x 10-3M the titration curves were shifted to the

right in increasing amounts following a sequence of:
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Cu ~ Co ~ Mn ~ Zn ~ Ni and Ba ~ Sr ~ Ca ~ Mg.

When the net ti trati on curve for the surface in the absence of metal ions is

subtracted from ,the net ti trati on curVE of the surface in the presence of

metal ions, the resul ti ng curve shows the excess amount of base consumed

by the surface and must be due to the presen'ce of the metal ions. Thi s

excess base for cobalt, at four concentrations, is shown in Figure 13.

iv. DISCUSSION

A. Alkaline Earth ~etal Ions

The adsorpti on results (Fi gure 3) i ndi cate that the affi nity of

the alkaline eaiths for the 'Mn02-surface is in the order Ba ~ Sr ~ Ca ~,Mg,

which is similar to the results of Posselt et al.(1968). The amount of

H+ released is found by adding the amount of H+ released by the initial

adsorpti on of al kal i ne earth metal i on to the equival ent amount of aci d

obtained from the shift in the alkalimetric titration curves (Figure 7).

These calculated values for the amounts of H+ released can be compared

wi th the amounts of metal adsorbed, gi vi ng the resul ti ng H+ rel eased/metal

adsorbed ratios plotted in Figure 14. The ratios of H+ released to metal

adsorbed are less than or equal to 0.5 for all the alkaline earth metal ions.

Stumm et ale (1970) found that alkalimetric titration curves of a oMn02

suspension were affected by the presence of Ca +2, and they proposed that

the interaction of Ca+2 with the oMn02 surface involves (1) the separation

of a proton from the covalent bond at the surface, and (2) the association

of a solute cation with this site.

-M~-OHo + Ca +2 = -MnO-Ca + + H+i i (2 )
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. +2Their observations that Ca is able to reverse the electrophoretic mobility

of a ~Mn02 suspension at pH = 7 indicates that the ratio of the concentra-

tion of protons released from the surface to Ca+2 adsorbed is less than

2. This proposal is supported by the results shown in Figure 14. If an

i oni c speci es was adsorbed ì n response to the coul ombi c attracti on of the

surface aìon~, it would not be possible to reverse the surface charge.

However, by replacing a monovalent proton by a divalent cation, such a charge

reversal can occur. The fact that the proton to metal ratio is consider-

ably less than 1 indicates that a significant amount of the alkaline earths

adsorb wi thout penetrati ng close to the surface to react wi th s peci fi c

sites and relea5e protons.

Kurbatov et ale (1951) applied the law of mass action to explain

the type of reaction shown above (eqn. 2). They found that in the region

of adsorption isotherms where Henry.s law applies, i.e. where the activity

- of the sorbent is unchanged by the sorpti on reacti on, equati on 3 can be

used to characteri ze the pH dependence of the sorpti on reacti on.

j (HX) + M+z =~X.z-j
J

+ j H+ (3 )

HX = unassoci ated neutral hydrous oxide si te wi th one di ssoci abl e proton,

H, and sol i d ma t r ix, X.

M+z = metal i on wi th +Z va 1 ence

MX,z-j = surface complex
J

Equation 2 can be rewritten as:

(H+)j (MX. )z-j (4 )
b. = J

J
(HX) j (M+z)

wh ere b, = equilibrium constant.
J



-86-

Taking the log of both sides gives:

'log (MX. )z-jJ =
(M+z)

log b. -j- j log
J

(HX)

(H+)

-(5 )

Under ideal conditions, a plot of log (MX,)z-j against log (HX)~-
(M+z) (H+)
+

can be used to obtain the value of the H released/metal adsorbed ratio.

Such a plot was successfully used by Huang (1971 ) for studying the inter-

action of metal ions with yAl203 because he was able to predict the con-

centration of protonated surface sites from his alkalimetric titration

data, thus enabl i ng hi m to cal cul ate bj for reacti on 4 di rectly. Unfor-

_ tunately, the experimental determi nati on of the concentrati on of proton-

ated (undissociated) surface sites is difficult, thus most authors use a

plot of log (metal function of pH. This adaption of the
meta 1 adsorbed

mass law equation has been found to give linear plots for many hydrous

oxide systems: e.g. Sr+2 on Fe203 (Kolarik 1961), S/2 on A1203 (Bonner+2 . +2
et ale 1966), Mn on Mn02 (Morgan and Stumm 1964b),Co on Fe203 (Kurbatov

et ale 1951), and UO; on silica gel (Stanton and Maatman 1963).

In my experiments, (HX), the total exchange capacity, could not be

estimated. Thus, log b. and (HX) are combi ned, and equati on 5 becomes:
J

log (metal) solution
= Z + n

+
log H

(6 )
(meta 1 ) adsorbed

where Z is a constant dependent upon the total mass of sorbent and upon

the equilibrium constant for reaction 3.
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Figure 15 shows the Kurbatov plots (log ((metal) solutionl(metal)

adsorbed) versus pH) for the alkaline earth metal ions. A linear relation-

ship exists from pH 2 to 8, indicating that the type of mass action des-

cribed by reaction 6 probably describes the interaction of alkaline earths

with the âMn02 surfacè. Reaction 6 indicates that the slope of the

Kurbatov plots should indicate the amount of H+ released per mole of

meta 1 ads orbed. The value of n in eq ua ti on 6 (obtai ned from Fi gure 15)

is approxi mate ly 0.30 for all of the a 1 ka 1 i ne earths. Thi s agrees reason-

ably well with the H+ released/metal adsorbed ratios (Figure l4) calculated from

the alkalimetric titratio~ data (Ej~ure 7). This independent agree-

mènt suggests that the assumption in the theoretical model xhat the

activity of the sorbent _is constant ,is obeyed for the alkaline earths.

The selectivity sequence observed for âMn02 in these experiments

- (Ba ~ Sr ~ Ca ~ Mg) is the re~erse of the sequence found for yA1203

(Huang 1971). This suggests that there is no easy way to predi ct the

relative adsorption from solution without some knowledge of the solid

phases involved. This difference in selectivity is due to basic structural

differences between these two solids and can be described by the semiquan-

titative electrostatic model proposed by Stumm et al. (1970). This model

is similar to the one proposed by EisenmanM1965) to explain the selectivity of

gl asses.

In this model, the free energy change of an ion exchange reaction

is the sum of the caul ombi c work done and the energy i nvo 1 ved wi th the

parti a 1 change in hydrati on that accompani es the exchange process depi cted

in Fi gure 16. The free energy for the process:
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BaX + Mg + (aq) = MgX + Ba +2 (aq) ; KMg/Ba (7)

where X is an anionic surface site, is given by:

~G + -RT ln KMg/Ba - ( e2
RX + RBa

e2 )
RX + RMg

-(~GHYD - ~GHYD ). 8a Mg
(8)

weak acid. This model should apply, therefore, to metal oxides with

relatively high pH(ZPC) such as yA1203 and ßMn02. In fact, both of these

solids exhi~it the selectivity of M~ ~ Ba (Jenkins 1970, Huan~ 1971).

2) Weak Field Strength

When the radius of the fixed anionic site is large and the field

strength, and thus the polarity of the solid, is low, the ~G of equation

8 is controlled by the free energy of hydration. Under such conditions

the fixed anion associates preferentially with the less hydrated cations

(Ba ~ Mg). The decreased polarity of the solid decreases the acid strength
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of the protonated surface sites. Such weak field strengths are repre-

. sented by strong acid, cation exchangers such as ôMn02, Si02 and most

clay minerals.

B. Transition Metal Ions

Morgan and Stumm (1964~ found that the addi ti on of Mn +2 to ôMn02

suspensions led to a shift in the alka1imetric titration curves similar

to the shifts shown in Figures 8, and 9 and that adsorption increased

with pH. Experiments they ran at constant pH, with the aid of an automatic

titrators revealed that as Mn+2 was adsorbeds protons were released to

solution in approximately equal ,amounts. Their calculated ratios of H+

released to Mn +2 adsorbed were approximately 1, except for pH val ues

greater than 8.0 where they increased slightly. They suggested that this

increase may be due to the oxi dation of Mn(II).

Loganathan and Burau (1973) sugges,ted that when all the' cations (i.e.

'. K+, and Mn+2) i~ the system ~re taken into account,and when allowance is

made for replacement of structural Mn(II) and Mn(III), the ratio of

equival ents of charge rel eased to equivalents of charge adsorbed is very

close to 1. Stumm et al. (1970), however, observed that -at pH 7, Ca+2

is able to reverse the electrophoretic mobility of ôMn02. This observation

~ndicates that the charge on the surface is not conserved during the

adsorption of metal ions and that the ratio of charge equivalents released

to charge equivalents adsorbed ii less than 1. Huang (1971) has also

demonstrated that for y-A1203 the molar ratio of H+ released to divalent

metal adsorbed is close to 1 for Zn(II), Co(II), Ni(II) and Cu(II), and

that these ions penetrate the compact part of the double 1 ayer and react

specifically with the surface. He ,found specific adsorption potentials

.,
Na ,
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up to 10 kcal/mole.

My experiments indicate that adsorption increased with pH and that

there is a selectivity sequence for the metal ions investigated of Cu)-

Co ~ Mn ~ Zn ~ Ni over the pH range 2 to 8 (Fi gure 6). Thi s sequence

agrees with the results of D.J. Murray'et aT. (1968), who also found

Co ~ Cu ~ Ni at 5 x 10-4M; however, a 1 tho~gh my studi es i ndi cated the

adsorpti on of Cu at 1 x 1 Q-3M was greater than Co, under these condi ti ons Cu

forms various hydrolysis and pólymeric species that can greatly enhance

metal ion adsorption (Stumm and Q'Melia 1968, James and Healy 1972).

Similar species are not formed by ,the other transition metal ions under

these conditions. Thus) the results of the Cu experiments should not be

considered in this sequence.

The adsorption isotherms (Figure 6) in moles per unit area as a

function of pH at constant equilibrium concentration can be compared with

calculated monolayer values. James and Healy (l972) found that for Si02

and Ti02 the isotherms converged toward the precipitation region. They

compared thei r isotherms wi th monolayer coverages ca 1 cul ated as:

a. the bare ion plus an inner coordination sphere of water

i.e. (Y"ion + 2fH20) ,and,

b. the bare ion plus inner and outer coordination spheres of water

(Y"ion + 4rH2Q)

For both oxi des, the maximum adsorpti on coverages corresponded to the

monolåyer coverages that would be predicted for bare ions being separated

by two to four water mo 1 ecul es. They interpreted thi s as implyi ng that

a single layer of water molecules on the surface limits the distance of

closest approach and that loss of the inner coordination sphere is appar-

ently energetically prohibited.
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Table 1 shows the calculated monolayer coverages predicted for

cobalt under three different conditions. The value used for the radius

of water was 1. 38 ~.
TABLE 1

CALCULATED MONOLAYER COVERAGES

Condi ti on Rad ius

FOR COBALT

Monolayer
Coverage

1.08 x 10-4 moles/m2

-5 2
1.22xlO moles/m

-6 2
4.40 x 10 moles/m

'( ion + 1 í H20

.ion + 2 . H20

- 100.70xlO m

2.08 x la-lam

3.46 x la-lam

-rion

The maximum ad~orption densities õf the metal ions shown in Figure 6 are greater

than those predi cted assumi ng the ions retai n thei r inner hydrati on

sphere, i.e. (Y"ïon + 2' H20) and appear to be converging on a value

between coverages predi cted assumi ng 1 ion + '( H20 and y- ion + 2 Y"H20.

Adsorption and alkalimetric titration data for the transition

elements (Figures 4,6,8, and 9) can be used to calculate the H+ released/

metal adsorbed ratios as discussed earlier for the alkaline earth data

(Figure 14). The resulting ratios are shown in Figure 17 for Cu, Ni, Co,

-3
Mn and Zn at 1 x 10 M, and in Figure 18 for cobalt at three different

concentrati ons.

.In the adsorption experiments, Mn was monitored as well as the metals

of interest, because of the possibility of some exchange of metal for Mn(Ir)

in the 8Mn02 structure. For cobalt, the amounts of Mn(II) released amounted

to about 10% of the adsorbed metal at 1 x 10-3M (Figure 5). However, this

percentage decreased with increasing pH, possibly because the Mn(II) that

was rel eased was bei ng readsorbed by the 8Mn02 surface) whi ch becomes

increasingly negatively charged with increasing pH. For the other trans-

ition metals studied, the release of Mn to solutions during the adsorption
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experiments amounted to less than 2% of the metal adsorbed. It is not

possible from these results to determine if the cobalt and other transi-

tion metals are penetrating into the layered structure of the cSMnO~ toreplace

Mn(II) or are exchanging for Mn(II) in sites on the surface. Regardless,

the release of Mn(II) appears to be less important than estimated by

Loganathan and Burau (1973). The fact that the (H+) released/(metal)

adsorbed ratio is also approximately 1 for Mn+2 clearly indicates that

the exchange of metal ions for structural Mn(II) will not drastically

affect the resul ts.

The (H+) ~eleased/(metal) aasorbed ratios can also be determined by

using the drop in pH that occurs after the addition of metal ions to a

oMn02 suspension. The moles of H+ released, , the moles of metal adsorbed

and the cálculated ratios for various metals at different con centra-

- tions are given in Table 2. When manganese was found to be released

duri ng the adsorpti on, it was subtracted from the mol es adsorbed of the

metal of interest on an equal molar basis on the assumption that the

rel ease of Mn was due to the exchange of one metal i on for one manganese

ion. The ratios calculated in this manner are also close to one and the

the release of Mn has little effect on the calculation.

All of these experiments were run at a constant 'ionic strength ( 1=

O.lN, NaCl); thus it was not possible to determine directly if Na+ was

released during the adsorption process. The results in Figure 18 show

that a decrease in the cobalt concentration by a factor of 2, while main-

taining I constant at O.lN NaCl, increased the (H+) released/(Co+2)

adsorbed ratio slightly. One would expect that if exchange with Na+ were
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TABLE 2

THE RATIO OF PROTONS RELEASED TO METAL ADSORBED

METAL CONCENTRATI ON
MOLES H+ ~ELEASED MOLES CB ADSORBED,

RATIOm m-

Co 1 x 10-3M 3.84 x lÓ-6 3.75 x 10-6 1.02
. -4

3.84 x 10-6
-6 1.097.5 x 10 M 3.52 x 10

5.0 x 10-4M 3.l8 x 10-6
-6 0.993. 22 x 1 a

Mn 1 . 0 x 1 0- 3M 3.76 x 10-6 4.31 x 10-6 0.87

5.0 x 10-4M 3.18 x 10-6 3.38 x 10-6 0.94

Ni 1 . a x 1 a - 3M
-6 -6 1.182. 46 x 1 a 2. 08 x 1 0

Zn 1.0 x ia-3M 2.22 x 10-6 3.02 x 10-6 0.74
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important, the H+/Co+2 ratio would decrease as cobalt exchanged for

proportionally more Na+, relative to H+, as, the Na+/Co+2 ratio was

increased.

c. Speci fi cAds orpti on

Adsorpti on onto ôMn02, as for other metal oxi des, is in part a

response to a pH dependent charged surface. My previ ous experiments indi-

cated that the pH ot- zero- l)oint, of charge for the ,~,:MnO used in these, ex-

+ +
periments is 2.25 (Chapter 2) and that Na and K are completely desorbed

from the surface at that pH. The experiments described here indicate that

there may be some adsorption of the alkaline earths at the pH(ZPC) (Figure 3)
0.. -

and that very large amounts of transition metals are adsorbed at the

pH(ZPC) (Figure 6). Experiments designed to measure this specific adsorp-

tion m~st approach the pH(ZPC) from lower pH values because the amount of

_metal adsorbed is much larger when the pH(ZPC) is approached from higher

'. pH values. The total free energy of adsorption, ~Gó d ' is the sum of the
a s

electrostatic work, ÁGocoui' th~ total specific adsorption energy, ÁGochem'

and the change in secondary solvation energy, ÁG 1 (James and Healy 1972) ~
so v

ÁGoads = ÁGochem + ÁGocoulom bic + ÁGosolv
(9)

= ZF~ + ZF~w~ + ÁGosolv (10)

If the potential difference across the double layer is 100m~ the coulombic

contribution (ZFÂ~ is 2.3 kcal/mole. For a positive ion to adsorb on a

positive surface withAWx= lOO MV, it must have a specific adsorption energy

of attraction greater than 2.3 kcal/mole. This is a minimum value since it

neglects the change in secondary solvation energy that would also act to

inhibit adsorption. The ~ochem portion of the.free energy of adsorption

can be estimated by combining equation 10 with GrahamLs (19~7) equation
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for the adsorption density (equation 11).

As shown by Graham (1947), we can' express the adsorpti on of cati ons as

r+ = 2 r (c) exp -ze (1/ + lj) (11)
kt

where r+ is the adsorption density at the pH(ZPC) "r is the radius

of the adsorbed ion, (el is the ~quilibrium concentration, ip~isthe double

layer potential, given by)

RT

t= F
aH+

ln
aO +

H

(12)
0"_

where aO H+ represents the acti vity of hydrogen at the pH (ZPC) and lj is

the specific adsorption potential of the ion. At the pH(ZPC), ~¡ is zero,

so equati on 11 simpl i fi es to:

+
r = 2 r Ccl

,-ze 4iexp
kt

(13)

Table 3 shows the calculated values of cp from these experiments using the ,

specific adsorption densities at the pH(ZPC) in Figure 6.

These lj values were calculated using for r the sum of the ionic

radius plus the radius of two water molecules (each 1.38 ~). The selectiv-

ity of transition metal ions for oMn02 (Mn ~ Co ~ Cu ~ Zn ~ Ni), as demon-

strated by the specific adsorption potentials, does not follow the

Irving-Williams order (Zn ( Cu ~ Ni ~ Co ~ Fe ~ Mn) as found by Huang (l971)

on y-A1203. The Irving-Williams order is a reasonably well ,established

rule for the sequence of complex stability that is explained using crystal

field theory. Thus, it appears that the factors controlling the selectivity

involve more than than crystal field stabilization energies as proposed by'

Logariathan and Burau (i973).
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TABLE 3

Specific Adsorption Potentials on oMn02

Meta 1 Concentrati on cf ( k ca 1 / mo 1 e )

Cob a lt
. -3 -5.271.0 x 10 M

7.5 x 10-4 M -5.50

5.0 x 10-4 M -5.52

Manganese 1.0 x 10-3 M -5.44

5.0 x 10-4 M -5.48

Ni cke 1 1.0 x 10-3 M -4.25

Zinc 1.OxlO-3 M -4.85

Copper 1.0 x 10-3 M -5.17
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D. Comparison with Si02 and Ti02

James and Healy (1972) have recently proposed a model for the adsorp-

tion of metal ions at solid-solution interfaces that describes the adsorp-

tion of hydrolyzable metal ions at the solid-solution interface in t~rms

of changes in the coulombic, solvation and specific chemical energy inter-

actions (equation 10). In their model, there are basically two types of

meta 1 oxi des: those wi th a hi gh di ~ 1 ectri c constant and those wi th a 10w

dielectric constant. For solids with a low dielectric constant such as

Si02 (g solid = 4.3), ion-solvent interactions present a barrier for close

approach of highly charged ions to_~he solid-solution interface. According

ta this model, the characteristics of the interaction of metal ions with

metal oxides can be described using the dielectric constant of the solid.

For solids with a low dielectric constant, work must be done to remove part

- of the secondary hydrated layer of the cation and replace it with interfacial

water of very low dielectric constant. This involves a large positive, and

therefore unfavorable, change in solvation energy which opposes the coulombic

and specific interactions favoring adsorption. Specific adsorption of metal

ions does not appear to occur on low dielectric solids. When the ionic

charge is lowered by hydrolysis or complex formation, this ion-solvent inter-

action is decreased, thus lowering the energy barrier.' For high dielectric

solids such as Ti02 (g solid = 78), the change in solvation energy for the

adsorption of an ion is small compared with the adsorption onto silica. The

coulombic and specific chemical interactions dominate the free energy of adsorp-

tion, and thus) significant amounts of specific adsorption can occur on Ti02.

The comparison of the data for the interaction of metals with 8Mn02 presented

in this paper with the data of James and Healy (1972) on the metal interactions

with Si02 and Ti02 is useful in understanding the oMn02 surface.
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In Table 4, several properties of Si02 and oMn02 are compared.

Using purely a classical approach, one might expect that because Si02 and

oMn02 have a similar pH(ZPC), they would have basically the same surface

chemistry. However, they differ markedly in several important aspects:.

the surface charge increases much faster as pH increases for oMn02 than

it does for S i O2; trans i ti on metal ions and a 1 ka line earth metal ions

. exhibit large specific adsorption potentials on 8Mn02 (Table 3) which are

absent on Si02; the adsorption densities on oMn02 are not limited by

monolayer coverage corresponding to the bare ion plus an inner coordina-

tion sphere of water (\-ion + 2'f~20) as they are for Si02. The adsorp-

tion isotherms for oMn02 appear to pl ateau somewhere between monol ayer

coverages predicted using 'lion + 2rH20 and 'ion + irH20. The failure

of the isotherms to be limited by the expected monolayer coverage corres-

- ponding to the metal ion plus its first hydration sphere ('rion + 2YH20)

may be due to an error in the surface area by a factor of 2. However,

it appears equally feasible that because of the large specific adsorp-

tion potentials exhibited by these metals, the distance of closest approach

of the metal ions to the surface is not limited by a single layer of water

molecules as it appears to be for Si02.

From the resul ts reported here, 8Mn02 appears to have adsorpti on

characteristics resembling Ti02 rather than Si02. This is concluded from

the fact that specific adsorption of transition and alkali earth metal

ions takes place on6Mn02 and Ti02 and does not take place on Si02. Values

of £ foròMn02 are not available. ¡iMn02 has been used in the construction

of electrodes; thus following the reasoning of James and Healy, it should

have a large dielectric because it is a conducting material. Measurements

done in this laboratory (Appendix III-B) indicate that the dielectric
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constant of òMn02 is close to 32. This is not as high as the value of

the dielectric for Ti02 (78.5); however, it is higher than the value for

most metal oxides.

Because the dielectric for 8Mn02is high, this suggests that oMn02

should behave more like Ti02 than Si02. The evidence from the surface

chemi stry experiments confi rms that the oMn02 surface behaves more 1 i ke

Ti02 than Si02, even though 8Mn02 and Si02 have similar pH(ZPC). Thus,

it appears that it would be misleading to try to predict the interaction

of metal ions with metal oxides si~ply on the basis of the pH(ZPC) alone.

V. CONCLUSIONS

The resul ts of the experiments presented in thi s paper have improved

, greatly our understanding of the mechani sm of adsorpti on on 8Mn02. These

resul ts can be used to construct a model for the adsorpti on mechani sm

that can help explain why oMn02 is such a strong adsorbent in the marine

environment.

Trans i ti on metal ions were found to adsorb much more strongly on

8Mn02 than alkaline earth metal ions when compared at equal concentrations.

The selectivity order observed was:

Co ~ Mn ~ Zn ~ Ni ~ Ba ~ Sr ~ Ca ~ Mg

Thi s sequence provi des a poss i b 1 e expl anati on for the observati on that the

Ni/Co ratio in sea water is approximately 100, while in manganese nodules

it is 1. The degree of adsorption was also related to the reversibility

of adsorption. Na+ and K+ adsorb the leas~on oMn02, and their adsorption iso-

therms are completely reversible against pH. The alkaline earth metal ions
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adsorb to a greater extent than the alkali metals and also exhibit a slight

degree of irreversibility, which is reflected in the fact that they also

show some specific adsorption at the pH(ZPC). This specific adsorption

increases from Mg to Ba. The transition metals show the greatest attrac-

tion for oMn02. They also show the greatest amount of irreversible adsorp-

tion and the largest specific adsorptionpotentials. Some Mn is released\ 'i
concurrently with the adsorption of Co on oMn02 ,however, the amount released is

insufficient to explain the specific adsorption potential in terms of

that the metal ions from Mg to Co can penetrate in i ncreas i ng amounts into

the compac~ part of the doub 1 el ayer to react with protonated sites on

the oMn02 surface. This type of reaction involves the replacement of a

proton on the surface by a divalent metal ion, thus explaining the reversal

of charge of oMn02 by Ca+ observed by Jenkins (1970). The available data

can be explained by invoking a model with only one type of site for which

the various metal ions have different affinitie~. There is no ~efinitive evi-

dence that suggests that these'metals penetrate into the øMnO~ structure

to replace Mn (I I) or Mn (I I I) .

The model of James and Healy (1972) that describes the characteristics

of the i nteracti ons of metal ions wi th metal oxides on the bas i s of thei r

dielectric constants is supported by these experiments. The large specific

adsorption of metals on oMn02 suggests that oMn02 is a high dielectric
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solid like Ti02. Although &Mn02 and Si02 have similar pH(ZPC), their

surface chemi stry characteri s ti cs are very different.
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TABLE 4

~
1. pH(ZPC) = 2.0 to 3.0

2. H+(OH) are potential-determining ions

vs. ~Mn02

pH(ZPC) = 2.25

H+(OHl are potential-determining
ions

3. large unit cell and low electrostatic
fi e 1 d strength

large unit cell and low electro-
static field strength

4. low specific surface area hi gh speci fi c surface area

5. € 1 ow ( 4. 5 ) € hi gh ( 32 )

6. Co does not specifically adsorb Co and other metals exhibit
specific adsorption. Specific
adsorption potentials are comparable
to values for Ti02.

Adsorpti on coverage not 1 imi ted
by the condi ti on (r + 2rH 0)

2

7., Adsorpti on coverage 1 imi ted by the
radii of the metal ion plus its inner
hydrati on sphere (r + 2rH20 )
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FIGURE 1

Electrophoretic mobility values and Na+ and K+ adsorption

measurements as a function of pH for oMn02.
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FI GURE 2a

Adsorpti on ki neti cs of Goba 1 t on oMn02 fo 11 owi ng an increase

in pH from 3.88 to 4.72.
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FI GURE 2b

Desorpti on ki neti cs of cobalt from oMn02 fo 11 owi ng a decrease

in pH from 6. 49 to 3. 24 .
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FI GURE 3

Adsorption of alkaline earth metal ions.on 6Mn02 as a function

of pH.
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FI GURE 4

Adsorption-desorption results for cobalttmanganese, nickel,

-3
and calcium on òMnO~ . The metal concentrations were 1 x 10 M,

and the ioni c strength was O. 1 N (NaCl). The experiments were begun

at approximately pH 2.25. The pH was first adjusted upward using

D.i N NaOH, and then downward using 0.1 N HCl. The arrows indicate

which porti onsof the curves are adsorpti on (~) and which are

desorpti on (~) .
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FI GURE 5

Adsorption as a function of pH for cobalt, manganese, copper,

zi nc and n; ckel. The experiments were begun at pH 2. 25 and

the pH was adjusted upward usingO.1M NaOH.
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FIGURE 6

Adsorption-desorption results for cobalt at concentrations-A -3from 2.5 x 10M to 1. a x 1 a M. Adsorpti on was increased by

upward adjustments of the pH from the initial value of

approximately 2.25 using 0.1 N NaOH. After reaching approximately

pH 7.0, the pH was decreased using 0.1 N HC1.

adsorpti on (-?), desorpti on (~)

The amount of manganese released during the adsorption of

-31 x 10 M cobalt is shown in the lower part of the figure.
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FI GURE 7

Alkalimetric titration curves and blank titration curves of

oMn02 in the presence and absence of the alkaline earths. The

metal ion concentrati on was 1 x 1U-3M.' The ti trant was 0.1 N

NaOH. Each experi ment contai ned 26m2 of Mn02. Total vo 1 ume was

200 m1. The total ionic strength was 0.1 N (NaCl).
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FI GURE 8

Alkalimetric titration curves and blank titration curves of

oMn02 in the presence and absence of cobalt at concentrati ons

-4 -3
from 2.5 x 10 M to 1.0 x 10 M. The experimental conditions

were the same as for Fi gure 7.

l
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FIGURE 9

Al kal i metri c titrati on curves and bl ank ti trati on curves of

ôMn02 in the presence of 1 x 10-3M cobalt, copper, nickel,

zinc and manganese. The experimentai ,condi ti ons were the

same as for Fi gure 7.
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FIGURE 10

The net titration curves for the alkalineearths.These curves

were obtained by subtracting the blank titration curves from

the alkalimetric titration curves in rigure 7.
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FIGURE II

The net ti trati on curves for cobalt at di fferent concentrati ons.
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FIGURE 12

The net titration curves for copper, cobalt, manganese, zinc

and ni ckel .



e~. . ~~ \0\ '
~~. ~.
~ . ~"' ~:~

. "'. ~~.

~~.
e~fI 0. 0

~rt

".

\
'. '"'

- .

~.
rt

I0'~
)(., ~
II,. -. u uz

e"" 0 0 _ .

.. "'.GO' ..~ ~ "!.o . ~ I
' ~ 0

q
I'

L
o
CD

~
to

L L

Hd

,

o
q-

.',-

o
~

~ ~
rt ÇJ

ts
~
~.~

.
ÇJ
"'~o .. -.

C\ ~

'-

~
~
h.

o ~
..



-l29-

FIGURE 13

. -4 -3Excess base for cobalt at 2.5 x 10 M to 1 x 10 M. This

represents the amount of base that is consumed by the surface,

that is due to the presence of cobal t r
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FI GURE 14

H+ released/metal adsorbed ratios for the alkaline earths as

a function pH. The metal concentrations are 1 x iO-3M.
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FIGURE 15

Kurbatov plots for the a 1 ka 1 i ne earth metal ions. Metal concen-. -3trations equal 1 x 10 M.
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FIGURE 16

Ion exchange at a fixed anionic site. The free energy change

involved is a combination of the coulombic work and the energy

involved in the change of the state of, hydration.
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FI GURE 17

+H released/metal adsorbed ratios for copper, nickel, cobalt,

manganese and zi nc.
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FI GURE 18

+ -4H released/metal adsorbed ratios for cobalt at 5 x 10 M,

7.5 x lO-4M and 1.0 x lO-3M.
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CHAPTE R 4

THE INTERACTION OF COBAL ~ WITH oMn02
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ABSTRACT

Because geochemical correlations have been found between cobalt

and manganese, experiments were performed to look in detail at the

interaction of cobalt with the solid-solution interface of a synthetic

sampl e of hydrous manganese di oxi de.

Adsorption of cobalt on the hydrous manganese dioxide was studied

as a function of pH and surface area in NaCl solutions and solutions

contai ni ng sea water concentrati ons of Na, Ca and Mg. 58Co was used,

and the total cobalt concentration was varied from 1 x lO-3M to

-8
lx 10 M. The amount of cobalt adsorbed increased sharply at pH 6, a

significantly lower pH than that required for precipitation in bulk

solution or significant hydrolysis of Co(II). Sea water concentrations

- of Na, Ca and Mg have little effect on adsorption until the cobalt con-

centration is less than 10-7M.

Micro-electrophoresis experiments from 1 x iO-3M to 1 x 10-5M

show three charge reversals. The first is the pH of zero point charge

of dMn02. The second correlates well with the abrupt increase in adsorb-

tion at pH 6. The third agrees well with literature values for the pH

of zero point of charge of Co(OH)2. This suggests that the abrupt increase

in adsorption and the secor.d charge reversal are caused by the precipita-

tion of Co(OH)2 on the &Mn02 surface. The fact that this precipitation

occurs at a much lower pH than precipitation occurs in bulk solution sug-

gests that the solubility product is reduced by the presence of the strong

electric fields in the interfacial region.
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This process is complicated, however, by the fact that unhydro-

+2lyzed Co ions can reduce the charge of the surface. Thus, the second

charge reversal probably refl ects both specifi c adsorption of Co (I I)

and precipitation of Co(OH)2 on the surface.
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I. INTRODUCTION

Geochemical relationships have been found between cobal t and

manganese in the marine environment. Spencer at ale (1972) found an

enrichment of cobalt and manganese in the suspended matter of the Black

Sea just above the anoxic interface. They s,uggested that it was due to

the precipitation of Mn02 followed by subsequent scavenging of cobalt

from sea water. Cobalt is one of the elements most enriched relative

to sea water in manganese nodules, and adsorption onto the surface of

manganese and iron oxides has been suggested as the mechanism of enrich-

ment (Goldberg 1954). Similarly, in deep sea sediments, a correlation

has been found between manganese and cobalt (Turekian and Imbrie 1966,

Carvajal and Landergren 1969). The efficacy of the adsorption mechanism

has been shown by Fukai (1968), who used Mn02 to pre-concentrate cobalt

- from sea water as part of an analytical procedure.

The ; nteracti on of cobalt wi th Mn02 is also a useful sys tem for

evaluating models for the adsorption of metal ions by metal oxides. It

has been suggested that the formation of metal hydrolysis species enhances

the adsorption of metal ions (for example: Matijevic et al. (1960,1961);

Hahn and Stumm 1968). Most results indicate that the hydrolysis products

of multivalent ions are adsorbed more readily than nonhydrolyzed metal

ions at solid-solution interfaces. James and Healy (1972~ recently pro-

posed a model to explain this phenomenon based on experiments on the Co(II)-

Si02 and Co(II)-Ti02 systems. The comparison of the results presented in

this paper with their model can provide a test of the generality of their

J

mode 1 and increased unders tandi ng of the surface characteri s ti cs of oMn02.
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The imp 1 i ed geochemi ca 1 re 1 ati onshi p and the need for a better

understanding of the interaction of metal ions with metal oxides promp-

ted a detailed study of the interaction of cobalt with the oMn02-s01ution

interface, the results of which are reported in this chapter. The pur-

pose of these experiments was 1) to examine ~he adsorptive characteris-

tics of Co(II) with oMn02 over a wide range of concentrations and to

establish whether or not adsorption and hydrolysis are related, 2) to

compare the adsorpti on of cobalt in the presence and absence of sea

water to see if adsorption can take place at trace concentration levels

in the presence of sea water conc~ntrations of Na+, Ca+ and Mg+2, and

3) to test the hypothesis proposed in the previous chapter that the adsorb-

tion of Co+2 results in the release of H+ on a one to one molar basis

thus enabling unhydrolyzed Co(II) to reverse the charge of the oMn02

surface.

Cobalt is convenient to use because 1) it hydrolyzes, but the hydro-

lysis products are relatively simple and weii characterized; 2) its hydro-

lysis products are not important below pH 8, and its solubility is not

restricted until about pH 9 when Co(OH)2 precipitates; 3) it does not appear

to form polynuclear species that might greatly enhance the adsorptive pro-

cess; and 4) it can be studied at low concentrations through the use of

58Co.

I I. MATE RI ALS AND METHODS

The åMn02 used in these experiments was prepared in the same manner

as described in chapter 2. The characterization of this material is de-

scribed in Appendices II-A, II-B and II-C .,
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A. Tracer Experiments

Coba 1 t-58 (Amersham Searl e Corp.) was used for the tracer experi-

ments because of its suitable half life (71d), its_d~cay mode (y, 0.810

MEV (99%)), and its availability as a carrier free isotope ()2 x 10-3

Ci/~g Co). The details of the tracer preparation, counting and experi-

menta 1 procedures are presented in Appendi x I V-A.

B. El ectrophores i s Experiments

The electrophoretic mobility measurements were made using a Briggs

microelectrophoresis flat cell. A detailed discussion of the cell and the

experimental procedure are discussed in Appendix IV-B.

I I I. RESULTS

A. Tracer Experiments

1) Kinetics

Kurbatov and Wood (1952) have studied the kinetics of the interaction

of cobalt with hydrous ferric oxide under a variety of conditions. They

found that the rate of adsorption was slower at low adsorbent concentra-

tions, at high pH values, at high ionic strengths and low cobalt concen-

trations. In most of their experiments, adsorption equilibrium was reached

within 24 hours. As discussed in chapter 3, there is a large difference

in the equilibrium kinetics done on oMn02 by different workers due to the

di fference in preparati on of the oMn02. Those workers who dri ed thei r oMn02

after preparation (Loganathan and Burau 1973 ~ D.J. Murray et ale 1968)

found slower kinetics than those who left the oMn02 in suspension (Morgan and Stumm

1964, Posselt et ale 1968 ; chapter 2). In order to properly simulate

the natural aqueous envi ronment, the oMn02 used in these experi ments was

kept in suspension at all times. In order to ensure that the adsorption

curves represented equi 1 i bri um adsorpti on, the ki neti cs of adsorpti on were
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tested for the experimental conditions used in these experiments.

Three types of kinetics were investigated: the initial equilib-

ration after the experiment was set up, the equilibration after an in-

crease in pH, and the equilibration after a decrease in pH. The initial

adsorption was studied using 1 x 10-5M and 1 x 10-7M cobalt, and 0.208m2

of Mn02 (9.6pM Mn02) at an ionic strength of 0.1 M (NaCl) and pH of 2.50.

-5 (,Equilibrium for 1 x 10 M Figure 1) was reached in less than 2 hours.

The results for 1 x 10-7M were approximately the same. Thus after being

set up, all the experiments reported in this chapter were left more than

2 hours for equilibration. The kinetics after pH adjustment are shown

in Figure 2. This experiment was performed on the same suspension used

in the initial equilibration experiment. The pH was adjusted from pH 2.48

to 6.50. Equilibrium was reached after approximately one hour. Again

similar results were found for 1 x iO-7M cobalt. In all the ensuing ad-

sorption experiments, more than one hour was allowed for equilibration.

After the equilibration shown in Figure 2 at pH 6.50, the pH was adjusted

back to pH 2.48, and the amount of cobalt adsorbed was monitored against

time (Figure 3). The rate of desorption was approximately three times

slower than that for adsorption. In addition, the desorption was incomplete;

only 75% of the adsorbed cobalt was desorbed by the d~crease in pH.

2) Effect of Surface Area

If the re~oval of cobalt is. due to a surface reaction, the amount

removed should double if the surface area is doubled. In addition, if the

results are to be compared with results from the natural environment, it

is necessary to approximate natural concentrati ons in the experiments. In

order to study this effect, four experiments were set up with a cobalt
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concentration of 5 x lO-~M and varying amounts oföMn02- The ionic

strength was O.lN (NaCl). The amounts of ôMn02 used were 96.0, 48.0,

24.0, and l2.0llM as Mn02. It was impossible to work at lower concentra-

tions of ôMn02 as the colloid was lost to the walls of the container and

to bubbles, thus affecting the results. For comparison, the maximum

particulate manganese concentration above the anoxic interface in the

Black Sea is approximately 1. OllM (Spencer et ale 1972).

In Figure 4, the amount of cobalt adsorbed is plotted as a function

of, pH for various amounts of solid. In figure 5, the same data are plotted

as a function of the concentration of Mn02 for various pH values. For com-

parison, two lines are drawn in Figure 5 to show the predicted amount ad-

sorbed if doubling the amount of solid (i .e. surface area), doubles the

amount adsorbed. These 1 i nes were ca 1 cul ated wi th reference to hypotheti ca 1

starting points having 0.5l1~ and O. 75~MCo adsorbed by l2.0llM of oMn02.

The agreement of the experimental 1 i nes wi th the predi cted doub 1 i ng 1 i nes

is good. The deviation of the,highest surface area is due to the fact

that 100% adsorpti on is approached above pH = 4.5.

In Figure 6, the results of Figure 4 are plotted as adsorption density

(mo1es/m2) calculated 'using a surface area of 260m2/g. Although there is

a large difference in the percent adsorbed by the different amounts of Mn02

when these amounts are normal i zed to surface area, the resul ti ng coverage

at any gi ven pH is constant i ndi cati ng that the amount adsorbed is pro-

portional to the surface area.

3) Effect of Cobalt Concentrati on

The amount of cobalt adsorbed as a functi on of pH for vari ous cobalt

concentrati ons at a constant surface area '( 48. Oll~1 Mn02; 1. 04m2/l) is shown

in Figure 7. The ionic strength was O.lN. The results show that for a
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given surface area the percent adsorbed increases as the cobalt concen-

tration is decreased. This points out the necessity of scaling the amount

of oMn02 to the cobalt concentration in each experiment. If too much

oMn02 is used at low cobalt concentrations, all the cobalt is adsorbed,

and the data are not very useful. Thus, sep,arate experiments were done

with the oMn02 concentration scaled to cobalt concentrations ranging from

1 x ia-3M to 1 x ia-8M, and the results were then normalized to surface

area (Figure 8). Also shown in Figure 8 is a line corresponding to mono-

layer coverage predicted assuming that the cobalt retains its inner hydra-

tion sphere (i. e. r Co +2 + 2 rH20)._

+ +2 +2
4) The Effect of Na , Ca , and Mg

Tewari et ale (l972) studied the adsorption of cobalt on Mn02 at-4 +2 +25 x 10 M. They found that the presence of O.lM Ba and Mg had no

- s i gni fi cant effect on the amount of cobalt adsorbed between pH 6 and pH 8.

Simi 1 ar resul ts were found in the experiments reported in chapter 3, whi ch

were done over a cobalt concentration range of 1 x 10-4 M to 1 x ia-3M

(Figure 10), and 5 x ia-8M (Figure ll) cobalt in O.lM and 0.6M NaCl and

in sea water concentrations of Na+, Ca+2, and Mg+2 (Na+ = 0.47M, Mg+2 = 0.055M,+2 ) -6Ca = 0.01 M. At 5 x 10M cobal SO. 6M NaCl and the sea water mi xture decrease

the amount adsorbed slightly between pH 6.5 to 8.5. At 1 x 10-7M, there is

again little difference between O.lM and 0.6M NaCl; however, the presence

of sea water concentrations of ca+2 and Mg+2 produces a significant sup-

pression in adsorption over the entire pH range. At 5 x 10-8M, both

+2 +20.6M NaCl and sea water concentrations of Ca and Mg suppress the adsorption.

B. Electrophoresis Experiments

The ability of hydrolyzable metal ions to reverse the charge of
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anionic colloidal substrates has been of considerable theoretical interest

in elucidating the mechanism of metal ion adsorption (Matijevic 1967).

James and Healy (l972~measured the electrophoretic mobility of Si02

~nd Ti02 in the presence of various metal ions and concluded that the

role of the free cations or first hydrolysis product in charge reversal

could be dismissed. They concluded that there is no evidence that

specific chemical interaction sufficient to lead to charge reversal occurs.

The results of the electrophoretic mobility experiments using ôMn02

are shown in Figures 12 and 13. In Figure l2, the mobility values are

shown as a function of pH for dissolved cobalt concentrations of 0,

1 .x iO-5M, 1 x 10-4M, 5 x 10-4M, ;~d 1 ,x ia-3M. The surface area used in

these experiments was l.13m2/i, which corresponded to 0.004g/l. In order

to compare electrophoretic mobilities, it is essential either to use a

constant surface area or to vary the surface area in a systematic manner.

The ionic strength was kept constant at 1 x ia-3M (NaCl).

The surface area effects on the electrophoretic mobility were studied

by varying the area of solid from 2.26m2/1 (.00889/1) to 0.56m2/1 (.0022g/1)

Figure 13). It is clear that the available surface area per unit volume

must be controlled precisely if metal concentration and pH effects are to

be interpreted correctly. This is due to the fact that the sign and

magni tude of the mobil i ty is determi ned by the adsorpti on dens i ty of the

metal ions.

IV. DISCUSSION

A. The Interaction of Cobalt with cMn02 and Si02

There is a marked increase in cobalt adsorpti on on oMn02 over a narrow

pH range as shown in Figure 7. This increased adsorption begins between pH 6
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and 8. When compared with the solubility diagram for Co(II) (Figure 14),

it is clear that this increase cannot be explained by an increase in

the relative concentration of the first hydrolysis species, CoOH+. This

abrupt increase is also well below the pH at which Co(OH)2(s) will pre-

cipitate in free solution. A similar sharp increase in cobalt adsorp-

tion was found by Kurbatov et ale (195l) on hydrous ferric oxide, by

. Hodgson (1960) on montmorillonite, and by James and Healy (1972a)on Ti02

and Si02.

Coincident with the sharp increase in adsorption is the negative to

positive revers~l of the surface ~harge of oMn02, which also occurs over

the pH range of 6 to 8 (Figure 12). This charge reversal (C.R.2) is only

the second of three charge reversals commonly found in systems involving

the interaction of hydrolyzable metal ions with an anionic metal oxide

- surface. The first charge reversal (C.R.l) commonly is the pH(ZPC) of

the metal oxide~ and the third charge reversal (C.R.3) is the pH(ZPC)

of the metal hydroxi de that has preci pi tated and compl etely coated the

surface. Incomplete coating due to lower concentrations of metal or higher

concentrations of colloidal substrate will result in a dual surface of

coated and uncoated areas. Thus, C.R.3 will occur at or below the pH(ZPC)

of the metal hydroxide depending on the coverage achieved. Similar charge

reversals were found by James and Healy (1972b)with the Co(II) - Si02

system.

The interaction of Co(II) with Si02 appears to lack any pronounced

specific adsorption. In fact, there appears to be a large positive, and

therefore unfavorable, change in solvation energy that tends to prevent

metal ion adsorption (James and Healy 1972a). The available evidence for
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metal interaction with Si02 indicates that adsorbed species are separated

from the surface by at least one layer of water molecules precluding

di rect chemi ca 1 bondi ng wi th the surface. The second charge revers a 1 in

the Co(II) - Si02 system appears to be caused by precipitation of Co(OH)2

on the Si02 surface. 'This charge reversal o~curs at a lower pH than

that at which Co(OH)2 would be expected to precipitate in bulk solution

and can be explained by the effect of the high electric field at the

solid-solution interface on the solubility product of Co(OH)2. Under

the influence of the high electric field at the surface, the dielectric

constant of the interfacial medium is reduced well below the value for

bulk aqueous solution. The solubility product of the metal hydroxide

will be smaller and thus more insoluble in the presence of the surface.

A more rigorous treatment of this effect is outlined in Appendix iv-c.

To check this conclusion, James and Healy (1927b) assumed that

C.R.2 is caused by surface precipitation and determined C.R.2 as a function

of surface area for constant cobal t concentration (10-4m/i). The extrapo-

lated value for C.R.2 at zero surface area gave a value of pH 7.8 which is

well below the expected precipitation pH for the cobalt concentration used

assuming a solubility product of 10-15.0 for Co(OH)2 in bulk solution. If

pH 7.8 can be assumed to indicate precipitation, a solubility product of

ìO-l6.4 is indicated for the Co(OH)2(s) surface precipitate. As their

other experiments failed to indicate any specific interaction of a covalent

nature, it seems likely that the reduction of the solubility product at

the Si02-s01ution interface is the best explanation for the sharp increase

in adsorption and associated charge reversal observed between pH 7 to 8

for the Co( i I) ~ Si O2 system.
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To test this hypothesjs for the Co(Il) - oMn02 system, C.R.2 was measured

as a function of surface area at a constant cobalt concentration of

-4 (5 x 1 a M Fig u re 1 3) . When the values of C.R.2 are plotted against the

surface area and extrapol ated to zero surface area, the extrapol ated

value, pH 6.18, is well below the expected pH of precipitation in bulk

solution. In fact, if the extrapolated value ofC.R.2 is assumed to

indicate precipitation, and have no contribution due to specific adsorp-

tion, a value for Kso of 10-18.9 is calculated for the Co(OH)2 surface

precipitate. The argument that Co(OH)2 (solid) is being precipitated

at the surface is supported by the third charge reversal (C.R.3) shown in

Figure 11. This charge reversal agrees very well with literature values

(Parks 1965, James and Healy 1972b) for the pH(ZPC) for Co(OH)2 (solid)

of 11.0t.2. Nevertheless, the interpretation of the second charge reversal

- is complicated by the observation that Co(II) exhibits strong specific

adsorption on oMn02. The value of C.R.2 for 1 x lO-3M Co Qf5.J. is less

than the extrapolated pH of precipitation (6.l8), and the electrophoretic

mobility curves do not exhibit the sharp break in slope at C.R.2 that would

be expected if precipitation were the only process occurring.

B. The Adsorption Model

Previous experiments using Mn(II), Co(II), Ni(II,), and Zn(II) at

concentrati ons between 1 x lO-4M and 1 x 1 a-3M have been used to propose

a model for the adsorption process for ôMn02 (chapter 3). The results of

the experiments presented in this chapter using cobalt at concentrations

down to 1 x ia-8M support this model and indicate its validity for metal

):

concentrations approaching sea water values. In addition, they also point
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out important differences between the adsorption model presented here and

the one presented by James and Healy (1972c)for Si02.

The principal points of my model are:

(l) The surface charge and the amount of cobalt adsorbed tend to increase

with pH, indicating that as the surface becomes more negatively charged,

more cobalt is electrostatically attracted to the surface. This pH depen-

dence was shown by the linear nature of the Kurbatov plot in chapter 3

for metals at 1 x ia-3M and can also be shown to exist at the lower con-

centrati ons used in these experiments. The deri vati on and assumptions

of the Kurbatov plot were discussed in chaptei' 3. A Kurbatov plot is

shown in Figure 15 for the 1 x 10-5M cobalt data from Figure 7. The

linearity of the data in Figure 15 is good up to approximately pH 7, and

the devi ati ons at hi gher pH values appears to be due to the onset of

preci pi ta ti on.

(2) Specific adsorption of transition metal ions (and to some extent

alkali earth metal ions) takes place on oMn02 (chapter 3). Specific

adsorption potentials of approximately -5.5 Kcal/mole were calculated for

cobalt at concentrations between 1 x 10-4M and 1 x 10-3M. When specific

adsorpti on occurs, it adds to thecoul ombi c attracti on to enhance adsorp-

tion. The adsorption experiments in this chapter do not quite extend to

the pH(ZPC) (2.25); however, extrapolation of the results shown in Figures 7

and 8 suggests that significant amounts of specific adsorption can occur

at lower concentrations. No specific adsorption was found to occur on Si02

by James and Healy (1972~). This is a significant point of difference between

the model presented here and the model of James and Healy, and it suggests

that the value of the second charge reversal (C.R.2) may not be entirely

due to the inducement of preci pi tati on by the charged surface.
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(3) This specific adsorption, as measured by the amount of adsorption

at the pH(ZPC), cannot be accounted for by the substitution of a divalent

metal ion for structural Mn+2 or Na+ but must be due to a specific reaction

with the surface resul ti ng in the rel ease of approximately one proton for

each cobalt ion adsorbed. Thus, since this reaction does not maintain

a constant charge on the surface, it shoul d be poss i b 1 e for the unhydro-

lyzed metal ion. i.e. Co+2, to react specifically with the surface. As

unhydrolyzed Co+2 does not specifically adsorb on Si02, it should not have

an effect on the charge of that surface. Comparison of the electrophoretic

mobility curves of the Co(II) - oM_~02 and CoOi) - Si02 systems indicates

that this important difference in the adsorption models is substantiated.

C.R.2 for the Co(II) - Si02 system is an abrupt transition, as it should

be if due to precipitation; and at lower pH values, the presence of metal

~. ions has little effect on the mobility values. For the Co(II) - oMn02

system, C.R.2 is not ~s sharply defined, and at pH values below C.R.2,

increased amounts of cobalt significantly reduce the electrophoretic mobility

(Figure 12). The two electrophoresis experiments using Mn(II) at 1 x ia-3M

and 1 x 10-4M (Figure 12) prove that it is possible for an unhydrolyzed

metal ion to reverse the charge at the surface. Manganese was chosen because

it has a very low stability constant for the first hydrolysis species

(*Ki(MnOH+) = 10-10.6 (Perrin 1962)), and because it will oxidize to oMn02

before precipitating as Mn(OH)2 (Morgan and Stumm 1964). Thus, any reversa-i of charge.

using Mn(II) must be due to specific adsorption of the unhydrolyzed metal

ion. On oxidation to oMn02, the mobility should drop to the highly negative

va 1 ues expected for oMn02 rather than rever~e the charge by the preci pi tati on

of the soli d hydroxi de as expected for other metal ions such as Co (I I) .
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The mobility curves in Figure 12 show that increasing amounts of

Mn(II) can reduce and reverse the potential at the surface below pH 8.0

where the Mn(II) begins to oxidize to oMn02. As there was little dif-

ference in the specific adsorption potentials for cobalt and manganese

calculated in chapter 3,it appears reasonable to expect that unhydrolyzed

Co(II) can also reverse the potential on the surface of oMn02.

(4) The resul ts of both thi s chapter and chapter 3 show that the adsorp-

ti on of oMn02 appears to p 1 a teau at a monolayer value that is greater than

what would be calculated assuming that the cobalt ions retained their

inner hydration sphere (Figure 8): This is consistent with (2) above, as

it indicates that because specific adsorption occurs cobalt ions are not

necessarily separated from the oMn02 surface by a layer of water molecules

as found by James and Healy (1972a) for Co on Si02.

c. Oxidation of Co(II) to Co(III)

It has been suggested that oMn02 and FeOOH can catalyze the oxidation

of Co(II) to Co(III) (Burns 1965, D.J. Murray et al. 1968). In chapter 3,

it was observed that Co(II) adsorbes much more strongly than Ni (II) on

oMn02. The solution chemistry of these two elements is practically iden-

tical, thus suggesting that the enhanced adsorption of Co(II) is due to

its oxidation at the interface to Co(III).

Using thermodynamic calculations, Burns (1965) showed that reaction

1 is favorable in sea water at 20C when the Co+2 ion concentration exceeds

-8
3.0 x 10 M.

2Co+2aq + 40H-aq +Vi02 (g) + H20 = 2C~(OH)3 (solid) (1)

Fi gure 16 shows the free energy of reacti on 1 as a functi on of pH and
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This cannot be taken as unequivocal proof that Co(III) does not or

cannot form on the ôMn02 surface, because the conditions under whi ch the

electrophoresis experiments were done are such that Co(OH)2 may be precipi-

tated at the surface at a critical pH, thus masking the influence or pre-

sence of any Co(OH) 3 that may be present.
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D. The Effect of Ca +2 and Mg :2

The competi ti ve effect of sea water concentrati ons of Ca +2, Mg +2+ -7
and Na is only effective at and below cobalt concentrations of 1 x 10 M.

At 5 x iO-8M, the lowest concentration for which 0.6M NaCl and artificial

sea water (ASW) were compared, approximately' 40% of the cobalt was adsorbed

in the ASW mixture. This was approximately half of the amount adsorbed

in 0.6M NaCl (Figure 10) showing that Ca and Mg do have some effect at

these low concentrati ons.

The most important impl i cati ons of these experiments are thei r exten-

sion to problems in the marine environment, and this will be the subject

of the next chapter.

V. CONCLUSIONS

The amount of cobal t adsorbed by oMn02 shows a sharp increase between

pH 6 and 8. Coincident with this sharp increase is a charge reversal

(C.R.2) in the electrophoretic mobility of 6Mn02 in the same pH range.

The value of the third charge reversal (11.0) indicates that the precipita-

tion of Co(OH)2 contributes to the increase in adsorption and the second

charge reversal.

In addition, unhydrolyzed Co+2 ions can significantly reduce the

charge of 6Mn02. The proposed reacti on is an exchange of Co +2 ions in

solution for protons bound on the surface on a one to one molar basis,

thus reduci ng the negati ve charge of the surface. Thils, the value of the

second charge reversal is a combination of two effects: the specific ad-

sorption of the metal ion with the surface, and the precipitation on the
-

surface of the metal hydroxi de.

It has been found that Co(II) adsorbs much more strongly than Ni (II)
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on ôMn02, and although direct evidence is lacking, this relative

enhancement is possibly due to the oxidation of Co(II) to Co(III).

Thermodynamic calculations presented by Burns (1965) show that this is

a feasible explanation under the conditions of these experiw.ents.

The comparison of these experiments o~ the Co(II)-Mn02 system

with the Co(II)-Si02 system done by James and Healy (1972~indicates

that ôMn02 can absorb Co(II) much more strongly than Si02 even though

oMn02 and Si02 have a similar pH(PZC). This gives further support to

the conclusions of chapter 3 that the pH(ZPC) can not be the sole indica-

tor of the ability of a metal oxide to adsorb metal ions from sÓlution.
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Fi gure 1

Initial adsorption kinetics for 1 x 10-5M cobalt and 1.0~l of

6Mn02 in an ionic strength of O.lN(NaCl) at pH 2.50. Total vol-

ume was 200 ml.
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Fi gure 2

The adsorption kinetics following an increase in pH from 2.48 to 6.50.

Thi s change in pH was made on the same experiment shown in Fi gure 1

after it had reached equilibrium.
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Fi gure 3

The desorption kinetics for the same experiment shown in Figures 1

and 2. After the adsorption had equilibrated in Figure 2 at pH 6.50,

the pH was adjusted back to pH 2.48, the initial pH of the experiment.

J



30
0

..
:.-

 Ii

" 
".

 ..
.."

i
I,

t
 
.

,
 
E
Q
U
I
L
I
B
R
I
U
M
 
V
A
L
U
E
 
A
T
 
p
H
 
6
.
4
7

~
 
2
0
0
 
t

è5
 -

~
V

) ~ \: ~ Q
. \.

10
0

E
Q

U
IL

IB
R

IU
M

 V
A

LU
E

 A
T

 p
H

 2
.5

0

t~

10
0

30
0

50
0

l.

.~

5
C
o
 
=
 
1
 
X
 
1
0
 
-
 
.
 
M

i
 
=
 
0
.
1
 
M
 
N
 
a
 
C
'
£

1,
 a

 m
 2

/,e
 0

 f
 M

 n
 0

 2

F
IN

A
L 

E
Q

U
IL

IB
R

IU
M

 V
A

LU
E

 A
T

 p
H

 2
.5

0 
. sr

~
, .. ~ c: \

70
0

T
I
M
E
 
(
m
i
n
)

" 90
0

'"

,

Sf
'

,
 
_
I

13
00



- 169- .

Fi gure 4

The percent and moles/l of cobal t adsorbed as a function of pH

for surface areas ranging from 0.26 m2/1 to 2.08 m2/1. The ionic

~ strength was o. 1 M (NaCl) and the total volume was 200 ml.
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Fi gure 5

The data from Figure 4 replotted as moles of cobalt adsorbed

as a function of the amount of solid for different pH values.

Daub 1 i ng the surface area doubles the amount adsorbed except

as 100% adsorption is approached. The dotted lines marked

a and b represent the expected slope if doubling the

surface area doubles the &mount adsorbed. Lines a and-& . -,
b assume 0.15 x 10 moles and 0.10 x 10 moles ad-

:J
sorbed on 0.60 m of ~mO:J as initial conditions5
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Fi gure 6

The data from Fi gure 4 plotted as adsorpti on dens i ty as a functi on

of pH. The surface area used in this calculation was 260m2/g.
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Fi gure 7

The amount of cobalt adsorbed as a function of pH for a cons tant

surface area (1.04 m2/1). The cobalt concentrations were varied,
from 1.0 x 10-5M to 1.0 x iO-6M, and the ionic strength was 0.1 M

(NaCl) .
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Fi gure 8

~

The adsorpti on data for cobalt plotted as adsorpti on dens i ty (mol es/m2)

as a function of pH and cobalt concentration0. The surface areas used

in each experiment are shown in parentheses., The ionic strength was

0.1 M (NaCl).
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Fi gure 9

The adsorption of 5 x 10-6M cobalt on 1.04 m2/1 of oMn02 in O.lM

NaCl, 0.6 M NaCl and sea water concentrati ons of NaCl (0. 47M) ,

MgS04 (0.055M) and CaC12 (O.OlM).
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Fi gure 10

The same conditions as the experiment in Figure 9 except-7 2
cobalt = 1 x 10 M and the surface area = 0.52m /1 of oMn02.



, .

'~"

i

;0 ~~

Na
c:

:: :E
. r-i ..oa ,-"~

x Ñ'.
.. E
II NIto .U 0

-rt/-
e.

..
. . .\

\
\
\
\

\

\
'Q

,

,

,

\ ;
,

\

,

,

,

\-. .
\
\
\ c:

\0o
\ "t
'\~

ú) .\ .
\ 0 .

~ '-\
o ~.z ,.~ ,

,o
I

,

,

. . . . . . . .
. .'.

.
.

.
.
.
.
."." .

.
.
.
.
.
.

... .
..

..

.
.
.
.
.

..
..
.e. ~ '. .

.. ú)
: cd

.

,
o

.
.
.
.
.
.

~.

oo o
CO

o
w

n :: R ). () .ç'n b' qt.

o
~'

.
.

.
.

CD

o
C\

$,

o
()

o
cO

o
r-

o
W

o
to

q
"T

q
r0

, .

:t
~

I '



-182-

Figure 11

The same condi tions as the experiment in Fi gure 9 except

cobalt = 5 x ia-8M and the surface area = 0.52m2/1 of oMn02.

.
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Figure 12

Electrophoretic mobility values for oMn02 in the presence of

· cobalt(II) (1 x lO-5M to 1 x lO-3M) and ffanganese(II) (1 x 10-4M

to 1 x ia-3M). The surface area for all these experiments was

1.13m2/,1 and the ionic strength was 1 x ia-3M (NaCl).
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Fi gure 13

,

The el ectrophoreti c mobi 1 i ty as a functi on of surface area for

a constant cabal t concentrati on (5 x 1 0-4M) . The insert shows

the values for the second charge reversal (C.R.2) plotted as a

function of surface area. The extrapolated value for C.R.2 at

zero surface area is 6.18.
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Figure 14

Solubility diagram for Co(OH)2 (solid) at 25öC and infinite

dilution. Constructed frcm Co(II) hydrolysis constants given

*
, in Sillen and Martell (l964). pKso = 14.9; p Ki = 9.6;* *

P K2 = 9.2; pKs2 = 5.7; P K3 = 12.7.
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Fi gurel5

A Kurbatov Plot (Kurbatov et ale 1951) constructed using the adsorption

data from Figure 7 for 1 x 10-5 Mcobalt.
,
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Figure 16

,

The standard free energy for the reaction

2Co+2aq + 40H-aq + ~02(g)'+ H20 = 2Co(OH)3 (solid) as a function

of pH. The pH which this reaction is favorable is compared with

with the pH of precipitation of Co(OH)2(s).
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CHAPTE R 5

THE INTERACTION OF METAL IONS

WITH HYDROUS MANGANESE DIOXI DE IN

THE MARINE ENVIRONMENT
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i. INTRODUCTION

The evidence for adsorption of metal ions on manganese dioxide

in the mari ne envi ronment was revi ewed in chapter 1. Though the evi dence

is abundant, the hypothesis has yet to be adequately tested. We lack
..

both a qualitative understanding of the mechanism of adsorption (i .e.

the types of reactions that take place on the surface) and a quantita-

tive means of predicting how much adsorption can take place. Those few

models proposed to explain this process (e.g. -Gbldberg'1954, Goldberg and

Arrhenius 1958) have been based on little or no experimental evidence and

do not adequately expl ain many of -the important observations.

Research has been done on the surface chemi stry of hydrous manganese

dioxide (e.g Posselt et ale 1968, D.J. Murray et ale 1968, Morgan and

Stumm 1964); however, little of it is useful for extrapolation to expl'in

phenomena in the marine environment. Krauskopf (1956) was the first to

attempt to quantify the adsorption mechanism. He performed some simple

qualitative experiments in an attempt to evaluate Goldschmidt1s (1937)

su9gesti on that rare metal concentrati ons in sea water were kept 1 ess than

the limiting solubility concentration because of removal by adsorption.

Mn02 was the most efficient of the various adsorbents he tested; however,

quantitative interpretation of his data is difficult because he used

metal concentrations two or more orders of magnitude higher than found in

sea water. Evaluation of the effectiveness of the various adsorbents is

also difficult because he used different concentrations and presumably

different surface areas for each. He made two important observations, how-

ever~ that indicate the complexity of the adsorption mechanism. He found

that the anion forming elements Cr and Ware as effectively adsorbed by
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Mn02 as are the cation fanning elements Ni and Co, and that elements

that possess similar charge densities in sea water frequently exhibit

large differences in their degree of adsorption. It had previously

been proposed (Goldberg 1954) that negatively charged Mn02 adsorbs, only

the cation forming elements, while positively charged iron oxide attracts

only anions.

Kharkar et a1. (1968) did some adsorption-desorption experiments as

part of their study of the supply of metals by streams to the ocean. Metals

were taken up on various adsorbents in distilled water, then transferred

to sea water and the rel ease of the metal s monitored. Unfortunately, the

manganese phase they used was ßMn02 (pYrolusite), which is not found in

the mari ne envi ronment and has very different surface properti es from ôMn02

,(Healy et aL. 1966, Jenkins 1970, Stumm et aL. 1970).

My experiments were performed using a syntheti cally prepared hydrous

- m~nganese dioxide that was similar structurally (broad )(-ray diffraction, 0 0 0
peaks centered at 7.4A, 2.43A and L.63A) and in oxidation grade (Mn0L.93)

i

to manganese phases found in nature. It is referred to here as ôMn02

o
rather than 7A manganite because of controversy in the 1 iterature (Brown 1971)

o
regarding the existance of 7A manganite.

In this chapter, I will use the experimental data presented in

chapters 2, 3 and 4 to close some of the gaps in our understanding of the

adsorption mechanism and to provide quantitative estimates of the metal

enrichment in natural manganese deposits.
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II. ELECTROSTATIC ASPECTS

The importance of the aci di c properti es of the surface of 8Mn02

was suggested by Sevast1yanov and Volkov (1966). They hypothesized that

.;

because solid Mn02 behaves like an acid, it will tend to form salts with

metal ions in solution. The results presented in chapter 2 indicate

that to some extent this is true.

The surface charge of oMn02 is pH dependent and the pH of zero

point of charge, pH(ZPC), is located at pH 2.25. This means that for pH

values greater than 2.25, the surface of oMn02 has a negative charge.

Electrophoresis measurements indicate that the surface charge is a function.

of pH and that variation of the concentration of NaCl has little effect

on the mobility uf the particles. Thus H+ and OH- are the potential deter-

mining ions for the surface of oMn02, which behaves like a weak acid ~n

-- solution. Surface metal hydroxide groups participat~ in amphoteric acid-

base reactions to produce a positively or negatively charged surface.

i + 10 + 1_ +
-M~-OH2 = -M~-OH + H = -M~-O + 2H (l)

Though eqn. 1 is written as a dissociation reaction, one cannot distinguish

by conventional analytical means between dissociation of protons from the

surface or the binding or sorption of OH- ions from solution.

Using alkalimetric titration curves to obtain the amount of strong

base consumed by the surface, surface charge values were ca 1 cul ated that

approached -100f'coul/cm2 at pH 8.0 in O.OlM NaCl. This would be equivalent

to an adsorption capacity of 1 x 10-5 eq/m2 or 5 x 10-6 moles/m2 of dival ent

cations. Using the surface area of 260 m2/g, this electrostatic ad-

sorption capacity can be expressed in the same units used to express the

ion exchange capacity of clays (meq/100g). The ion exchange capacity of
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oMn02 is compared with kaolinite and montmorillonite in table 1.

TABLE 1

Materi a 1 Ion exchange capaci ty

.; Kaolinite

ôMn02

5-15 meg/100g

50- l50 meq/100g

250 meq/100g at pH 8.0

Montmori 11 oni te

Thi s 1 a rge negati ve charge produced by the aci d-base properti es of the

surface only explains in part the high adsorption capacity of ôMn02.

It cannot account for all the adsõrpti~n, as much higher adsorption den-

sities (at least 1 x iO-5 moles/m2) were found for the transition metals

(chapters 3 and 4).

I I I. CHARGE DENSITY

The Gouy-Chapman Theory (see Stumm and Morgan 1970 p.458) predicts that

multivalent ions are concentrated in the double layer to a much larger

extent than monovalent ions. On the basis of this theory" it is frequently

proposed (e.g. Goldberg 1954, Goldberg and Arrhenius 1958) that the degree

of adsorption is a function of the charge density of the ions. However,

this is apparently not reflected in the selectivity sequence shown earlier

for òMn02. For example, Mg+2 has a higher ionic potential (charge to radius

ratio) than Ba+2 but adsorbs much less (see chapter 3). However, using

the unhydrated radii to calculate charge density may be unrealistic because

of the large energy of hydration of some ions. When hydrated radii are

used to calculate ionic potential, Ba+2 has a larger value than Mg+2

(Table 2), and this might explain its greater adsorption. But, if charge
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density were the controlling factor, it would also be difficult to explain+2 . +2 ( )
why Co adsorbs much more strongly than Ni see chapter 3. Both ions

have similar radii and solution chemistry. There are obviously other con-

trols on the adsorption of metal ions than simply coulombic attraction

and charge density.
+'

iv. SPECIFIC CHEMICAL ASPECTS

Goldberg (1954) suggested that if Mn02 were negatively charged and

iron oxide positively charged, the distribution of adsorbed ions between

these two phases should indicate which elements are present in sea water

as cations and which as anions. Those metals that exist in sea water as

cations would adsorb on Mn02, and those as anions would adsorb on hydrous

iron oxide.

The surface of iron oxi de has a pH dependent ~urface charge (Parks and de Bruyn

1962), however the pH(ZPC) of colloidal iron oxide in sea water is uncer-

tain (Harvey 1937). Goldberg (1954) and Goldberg and Arrhenius (1958)

have stated that iron oxides in sea water are positively charged. How-

ever, experimental determi nati ons of the pH (ZPC) of vari ous modi fi cati ons

of iron oxide indicate that it can range from pH 6 to 9 depending on the

mode of formation and subsequent aging. In general, samples with more

prdered structures have a more aci d pH (ZPC) (Schuyl en~org and Arens 1950).

Most of the values for goethite, the most common form of iron oxide in

sedi ments, fall between pH 6 and pH 7. A summary of the 1 i terature values

of the pH(ZPC) of iron oxides is shown in Table 3.

In addition, such a classification is complicated by the fact that

adsorption can be due to more than electrostatic forces. For example,
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TABLE 2

Charge Densiti es

Crystallographi c(l) Hydrated(2)
i oni c Hydrated

ch a rge charge
Meta 1 ion radi us radi us dens ity dens ity

Mg+2 0.65 4.4 3.08 .454.;

Ca+2 0.99 4.2 2.02 .476

Si+2 1.13 4.2 1. 77 .476

Ba+2 1.35 4. 1 1.48 .488

Mn+2 0.80 2.50

Co+2 0.72 2.78

Ni+2 0.69 2.90

Cu+2 0.96 2.08

Zn+2 0.74 4.4 2.70 .454

(l) Crystallographic radii are from Pauling (1960) p 518.

(2) Hydrated radii are from Robinson and Stokes (1959) p 126.
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TABLE 3

LITERATURE VALUES FOR THE pH(ZPC) OF SYNTHETIC IRON OXIDES

PHASE INVESTIGATOR
~-

()Fe203

(Hema t ite)

Parks and De Bruyn (1962)

Albrethson (1963)

Korpi (1960)

yFe203 Iwasaki et a 1. (1962)

ctFeOOH

(Goethite) .
Flaningham (1960)

Iwasaki et ale (1960)

Lengweiler et al.(196l)

. Schuyl enborg and Arens (1960)

yFeOOH
(Lepi docroci te)

Iwasaki et ale (l960)

Schuylenborg et ale (1950)

Amorphous iron
Hydroxi des

Schuylenborg et ale (l950)

Hazel and Ayres (1931)

Mattson and Pugh (1934)

pH (Zpe)

8.4%0.1

8. 7tO. 1

9.04:t0.05

6. 7.: 0 . 2

6. liO. 1

6 . 7f 0 . 2

6.7

5 . 9 to 7. 2

7 . 4! 0 . 2

5.4 to 7.3

8.5

8.6

7.1
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so;~' and HPO¡ are known'to adsorb on negatively charged iron oxide surfaces

. (James, personal communication, and Hingston et aL. 1967).and MoO¡ on

negatively charged Mn02 surfaces (Chan and Riley 1966). C~early, we can-

not state that metals associated with Mn02 exist as cations and that metals

associated with iron oxide exist as anions in sea water.

The interaction of metal ions with metal oxides is best explained

in terms of both chemical and coulombic attraction (Grahame 1947, Stumm

et al. 1970, James and Healy 1972 ). The total standard free energy

of adsorption, ÄGo, is the sum of the total specific (chemical) adsorp-

tion energy, ~ , and the electrochemical adso'i'ption energy ZFij, (eqn. 2)-0 .L\G = - ~ + ZFij¡' (2)

where ij¡ is the potential drop at the surface, F is the Faraday, and Z

is the charge. Experimentally, it is very difficult to separate the

energy of adsorption into its chemical and electrostatic components. Ionic

species adsorbed in response to.coulombic attraction alone obviously cannot

adsorb in amounts greater than the number of equival ents necessary to

neutralize the surface charge.

The experimental resul ts presented in chapters 2 and 3 indi cate that

the alkali metal ions have no specific adsorption contribution, thus

they only react electrostati cally with the surface. No Na + or K+ were

found to adsorb on ôMn02 below the pH(ZPC). As a group, the transition

metal ions react more strongly with oMn02 than do the alkaline earths.

Within each group there is a well defined selectivity sequence. Among the

a 1 ka 1 i earths, Ba interacts more strongly than Mg, and among the trans i-

tion metals, Co interacts more strongly than Ni. The selectivity sequence

for all of the metals studied is:
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Na = K ~ Mg ~ Ca ~ Sr ~ Sa ~ Ni ~ Zn ~ Mn ~ Co

~

Those ions that are most easily adsorbed by increasing the pH are the

most difficult to desorb by decreasing the pH. This is a reflection

of the specific adsorption potentials that increase from the alkali

earths to the transi ti on metals (chapter 3).

Speci fi c adsorpti on is thus the mos t 1 i ke ly exp 1 anati on for the

selectivity sequence. Unfortunately, the chemical processes controlling

it are not well understood. Loganathan and Burau (1973) maintain that

during the adsorption process ,charge is conserved. When a metal ion is

adsorbed, equiv~lent amounts of protons and structural cations are released.

In their model of the surface, a metal ion that exhibits specific adsorp-

tion must penetrate into the structure of the oMn02 and replace structural

Mn(II) or Mn(III). The experiments reported in chapter 3 demonstrated

that thi s mechani sm is much 1 ess important than sugges ted by Loganathan

and Burau. In the most extreme case, only LO% of the cobalt adsorbed

coul d be accounted for by manganese re' eased to sol uti on. Furthermore,

electrophoresis experiments using Co(II) and Mn(II) demonstrated that

charge was not conserved during adsorption (chapter 4). Thus, the most

consistent explanation for specific adsorption on oMn02 is that it is a

chemical reaction of the metal ions with the surface.

Alka'imetric titrations of oMn02 in the presence of metal ions

(chapter 3) indicated that the metal ions can penetrate in increasing amounts

from Mg +2 to Co +2 into the compact part of the double , ayer to react wi th

protonated sites on the oMn02 surface. Any ion that enters the compact

1 ayer can modi fy the doub' e' ayer in such a' way that the charge of the
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diffuse layer may become reversed. This reaction involves the rep 1 ace-

ment of a proton on the surface by a divalent metal i on on a one to one

molar basis as shown by reaction 3.

i 0
Co+2

i +
H+ (3)-~-OO + = -M~O- Co +

~ i I

It is possible that the metal ions are associated with more than one

surface group. However, using a formation curve (a plot of ligand number

versus the 1 igand concentrati on), Stumm et al. (1970) demonstrated thati .
only monodentate associations (-MnO-Co') are formed. A similar reaction

i

was found by Huang (1971) for metaJs interact~~g with y-A1203.

This reaction is supported by the observation that monolayer adsorp-

tion is larger than would be expected if the adsorbed metal ions retained

thei r inner hydrati on sheath (see chapters 3 and 4). Thi s suggests that

- when adsorbed species exhibit direct chemical bonding with the surface,

they are not separated from the surface by a 1 ayer of water mol ecul es as

suggested by James and Healy (1972).

Thus, my experimental evidence suggests we can explain the adsorption

process as a combination of electrostatic attraction and specific adsorption.

On the basis of its surface charge alon~, oMn02 is an exceptional adsorbent.

It has almost twice the electrostatic adsorption capacìty of the most sur-

face active clay minerals (Table 1). This adsorption is enhanced greatly

for some metals by specific adsorption.

V. EXTENSION OF THE MODEL TO LOW CONCENTRATIONS

Cobalt adsorption was measured as a function of pH over a wide range

of cobalt concentrations. These experiment~ verify the proposed adsorption

model and justify its extension to sea water metal concentrations. Cobalt

adsorption was pH dependent, and specific adsorption occurred at all cobalt
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concentrati ons.
-7At cobalt concentrations greater than 1 x 10 M,

precipitation of Co(OH)2 may be induced, above pH 6, by the presence

of the charged surface. This possibility, which was discussed in

detail in chapter 4, must be c0nsidered when evaluating adsorption data

,; for cobalt and other metals at hi gh concentrati ons.

VI. A QUANTITATIVE EVALUATION OF THE ADSORPTION MECHANISM

The proposal that the removal of metals from seawater by adsorption

on oMn02 is an important enrichment mechanism was made in chapter 1. An

important aspect of this experimental study was to provide a quantitative

evaluation of how much metal enrichment can be accounted for by adsorption.

Clearly, these calculations will neglect the effect of factors such as

organic complexing and other phases present that may also remove metals

from sea water by adsorption. However, these calculations will provide

- an estimate of how effective the adsorption of uncomplexed metals by

~Mn02 is as a removal mechani sm.

Bear; ng ; n mi nd the problems of extrapo 1 a ti on, I wi 11 use the experi-

mental results of chapters 3 and 4 to explain the observed metal distribu-

tions in two examples: the suspended matter of the Bl ack Sea and manganese

rich sediments on the East Pacific Rise.

A. The Bl ack Sea

Spencer et ale (l972) observed a correlation between Co and Mn in the

suspended matter of the Bl ack Sea, and they suggested that thi s correl ati on

is due to the adsorption of Co by oMn02 that is precipitated just above

the oxygen zero boundary. The resul ts of the tracer experiments can be

used to test this explanation. Values for adsorption density as a function

of pH for cobalt concentrations from 10-3 t~ ia-8M have been determined
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(chapter 4). A separate experiment showed that the adsorption density

was independent of the amount of solid oMn02 for solid concentrations

that approach the maximum amount of parti cul ate Mn found in the Bl ack

Sea (chapter 4). An adsorption isotherm, adsorption density as a function

of equilibrium cobalt concentration, is plotted in Figure 1 for pH 8.

Wi th i ncreas i ng cob a 1 tin sol uti on, the amount adsorbed increases unti 1

. monolayer saturation is reached at 1 x 10-5 moles/m2. The data for this

figure were obtained in O.lM NaCl; thus, for applications to sea water, a

correction factor must be appl ied because of the competitive effect of

Na, Ca and Mg. At 1 x ia-8M Co, this correction factor is approximately

50%, and it decreases to zero at 5 x 106M (chapter 4). The corrected re-

lationship for artificial sea water is given in Figure 1. The precision

of these curves as determi ned by tri pl i cate ana lyses at 1 x 10-8M and

- 1 x 1 0- 6M i s ~ 25%.

We can now use these experimental data to compare with actual observa-

tions from station 1449 from cruise 49 of the R.V. Atlantis II in the

Black Sea. The dissolved cobalt values were reported in Spencer and Brewer

(l971) and the particulate values in Spencer et ale (1972).

Figure 2 shows the suspended Mn concentration, the total suspended

matter concentrati on, and the observed rati 0 of cabal t to manganese in the

suspended matter. The expected ratio of particulate Co to Mn can be calcu-

lated using the experimental data in Figure 1. The adsorption density was

converted to grams of cobalt adsorbed per gram of Mn (as oMn02) assuming

a surface area of 260m2/g. This was the experimentally measured surface

area for the adsorption experiments reported in chapters 2, 3 and 4. The

experimentally predicted ratio of particulate Co to Mn is shown in Figure 2.
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The predicted ratio agrees well with the observed ratio at the

poi nt correspondi ng to hi gh suspended Mn concentrati ons; however, it is

much lower than the observed r~tios at low Mn concentrations. At depths

,; above and below the parti cul ate Mn maximum, both Mn and Co concentra-

tions are low. The Co/Mn ratio for average crustal material ranges from

4 x 10-1 to 1 x 10-2. The slightly higher ratio observed suggests there

may be some additional cobalt adsorbed on the detrital material or assoc-

iated with another phase such as a sulfide or with biological material.

Figure 3 shows the profile of the observed values of particulate Mn

and Co and predicted particulate Co calculated from the ratios in Figure

2. Except for where particulate Mn is at a maximum, the observed Co is

larger than that predicted. It is conveivable that this anomaly between the

experimenta lly predi cted and the observed value is i nfl uenced by the con-

'. tribution of Co and Mn in detrital phases. In order to estimate the

detrital component, the average of the samples at 50m, 300m, 400m, and

500m was used. The detri ta 1 manganese was found to be 91 ng/kg and the

detrital cobal t 9 .lng/kg. The resul ti ng detri tal Co/Mn rati 0 is 10-1.

These estimated detri tal components were subtracted from the observed values,

and the resulting IInondetritalll Mn and Co values are given in Figure 4. The

agreement between observed and predicted values isn't perfect but is now

substantially improved.

It is only proper that we consider the alternate hypothesis that the

parti culate Mn and Co val ues are unrel ated. Total suspended matter al so

increases with increased particulate Mn at 250m, and the latter only accounts

for 5% of the total suspended matter. Thus', the possibility exists that

the particulate Mn increases by precipitation of Mn02, and the Co increases

by some other reason such as adsorption on precipitated iron oxides. It
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appears, however, that there is no large increase in "nondetrital" iron

as there. is for Mn. Figure 5 shows the particulate Fe, Sc, and La values

for station 1449. The high correlation of Fe with Sc and La suggests that

the increase in Fe is due to ar increase in detrital iron as a silicate.

" Using an advection-diffusion model, Brewer and Spencer (1973) have calcu-

lated the upward flux of iron from the anoxic water. If the oxidation kinetics

for iron and manganese are the Sàme, they predi ct a standi ng crop of pre-

cipitated ferric hydroxide of approximately 4mg/m3 in the water column

just above oxygen zero. The maximum observed values are about 70 mg/m3,

thus the precipitate is being masked by the iron associated with the sili-

cate detri ta 1 fl ux from above.

The hypothesis proposed by Spencer et ale (l972) that the correlation

between parti cul ate Co and Mn is due to adsorpti on of Co by Mn02 appears

substantiated by the experimental evidence in spite of some gross assump-

'. tions in comparing the experimental data with the field data. These assump-

tions are that the surface area of the experimental Mn02 and the parti cul ate

Mn in the Black Sea are similar, that the mineralogy of the phases is

similar, and that cobalt is incorporated only by surface adsorption and that

no Co is included in growing Mn02 particles. The coefficient of variation

of the dissolved cobalt measurements is ~ 15%. No esti.mate was given for

the coefficient of variation for the particulate Co; however, for the blank

nucleopore filters, the value was 50%. Thus considering the errors in extrap-

01 ati on and the errors in the ana lyti cal measurements, the~agreement between

the observed and predicted particulate Co values is quite good.
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B. East Paci fi c Ri se Sediments

Geochemical studies of iron and manganese rich sediments from the

East Pacific Rise have been reported by several authors (Revelle 1944,

Bos trom and Peterson 1966, 1969, Das ch et a 1. 1971, Bender et a 1. 1971,
~

Sayles and Bischoff 1973). The metal enrichments are associated

primarily with the acid insoluble fraction. This fraction varies widely;

the samples studied by Bostrom and Peterson were primarily carbonate

oozes (up to 90% CaC03), while those studied by Sayles and Bischoff often

contained little or no carbonate. The CaC03 content appears to be control-

led primari ly by the water depth as CaC03-free metal 1 iferous sediments

occur only at depths greater than 4200m. This observation along with the

fact that these sediments are also Al poor (Boström 1966, 1969) suggests

that the metal enrichments are not due to normal detrital or biogenic

inputs.

Bostrõm .and Peterson (1969) suggested that the source of the meta 1 s 0as vol-

canic emanations that debouch from the crest of the ridge and react with

sea water to precipitate oxides of iron and manganese. The deposition

rates of iron and manganese in these deposits are several times higher than

in average pelagic sediments suggesting a local source and supporting

,Bostrom et al:5 proposal (Bender et ale 1971, Bostrom 1970). Further

diagenetic reactions in the sediments may be possible as Sayles and Bischoff

(in press) found that most of the iron occurs as a poorly crystalline sili-

cate (smecti te), and the manganese is primari ly in mi cro-manganese nodul es.

The origin of the minor elements in these sediments is problematical.

The isotopic data of Dasch et al.(1971) suggests that while volcanogenic

Sr apparently contributes less than 3% of the total Sr, most of the Pb is
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of magmatic origin. The 234U¡238U ratio of 1.16 indicates that the uranium

in these cores comes from sea water (Bender et ale 1971, Veeh and Bostrom

1971), and the rare earth distribution ,occurs in the same proportions as

in sea water with the depletion of Ce being a diagnostic feature (Bender

et ale 1971). Whether the ultimate origin of the metals in these sediments

is from hydrothermal solutions or from sea water is not important to this

study. The critical point ìs that the likely transport mechanism to the

sediments is by adsorpti on onto manganese and iron oxi des.

The fact that the Co/Mn ratio falls within the range of ratios re-

ported for manganese nodules (Cronan and Tooms 1969) suggests that the

same removal mechanism is operating in these sediments as in manganese

nodul es.

Further leaching experiments done by Sayles (personal communication)

support the hypothesis that the minor elements are associated with man-

ganese. The resul ts of some of these 1 eachi ng experiments (usi ng the

acid-reducing solution suggested by Chester and Hughes 1967) are shown in

Table 4. Fot each sample, the total amount of Mn, Fe, Co, tu and Ni 1 eached

is shown. In Figure 6, the amount of cobalt leached is plo~ted against

the amounts of manganese leached. Clearly, there is a significant

correlation of cobalt with manganese. The linear correlation of cobalt

with manganese suggests that there is indeed a genetic relationship between

these two metals that could be due to the adsorption of cobalt by solid

Mn02.

The average cobalt concentration in sea water is 30 ng/kg (Robertson

1970) or approximately 1 x 10-9M: Using this concentration and the adsorp-

tion density data calculated from my experimental data as shown in Figure 1,
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TABLE 4

EAST PACI FIC RISE SEDIMENTS (l)

Mn ( 2 ) Fe Ni Co Cu
~. SAMPLE LEACHED LEACHED LEACHED, LEACHED LEACHED

11/6-23 2. 06% 2.94 540 ppm 241 ppm 577 ppm

11/3-137 6.67 5.62 1650 245 912

11/1- 140 3.93 2.81 982 229 774

l4/4-12 .5.33 5.49 832 118 64l

14/3-44 1. 75 2.58 259 106 249

14/2-70 2.75 3.61 272 77 359

l4/1-110 4.14 4.79 554 102 544

(1) Analyses by F. Sayles, Mn, Fe, and Cu by X-ray fluorescence;

Ni and Co by emission spectroscopy.

(2) Samples were leached with a combined acetic acid (25%v/v) and

hydroxylamine hydrochloride (1M) solution at 25C.
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we can predict an expected Co/Mn ratio assuming adsorption is the sole

control on the Co concentration. Unfortunately, this ratio (2.5 x 10-4)

is about one to two orders of magnitude smaller than the ratio observed

in the East Pacific Rise. Thus, this ratio only predicts 10% of the

Co observed in these sediments. Thi s impl i es that Co is bei ng removed
".

from sea water by other mechani sms.

The difficulty in making such estimates for these natural samples is

in the validity of the comparison of the experimental results with the

field observations. The adsorption experiments were performed on discrete

particles of a finite size. On the other hand, the manganese micro-

nodules in the East Pacific Rise sediments may grow continuously (perhaps

one uni t cell at a time) and dependi ng on the growth rate, they have the

opportunity to equilibrate continuously with sea water. Thus, from com-

parison with the laboratory experiments, we would predict less Co because

a major part of the Mn in the colloidal particles in the experiments would

be tied up in the interior and never have a chance to adsorb cabal t. That

If we assume that the experimental results reflect non-availability

of surface, then we can correct by calculating the relative volume of the

o
surface layer 7 A wide (the basal spacing of the experimental Mn02) and

comparing it with the total volume sufficient to give a surface area of

260 m2/g. Then only 25% of the experimental Mn02 is in contact with the

solution and the estimates can be increased by a factor of 4.
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Another problem is that the Co/Mn ratio is a strong function of the

Co concentration in sea water. If the Co concentration at the site of

~

formation was 1.4 ~g/kg (a factor of 50 greater than Robertsonl s average

value), it would be possible to explain all of the cobalt in the East

Pacific Rise. Cobalt concentrations in pore, waters from oxidizing sedi-

ments on the East Pacific Rise have been reported up to 20 ~g/kg

(Pres ley et a 1. 1967).

Finally, there is no a priori reason why all of the cobalt should

be explained by the manganese concentration. Iron oxide may also adsorb

significant amounts of cobalt, and cobalt may also be leached from other

ph.ases. Unfortunately, correcti on factors cannot be ca) cul ated as they. coul d
for the Black Sea particulate matter.

Using the correction for surface availability, then 40% of the cobalt

in the East Pacific Rise sediments can be accounted for by the adsorption

process as determi ned experimentally. Al lowi ng for the uncertai nti es in

the Co concentration at the adsorption sites and the availability of other cobalt

containing phases, then this is a reasonable estimate. It certainly sup-

ports the hypothesis that adsorption of cobalt onto manganese oxide is

a major process in the East Pacific Rise sediments.
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Fi gure 1

Adsorption density as a function of equilibrium cobalt con-

~'

centration at pH 8.0. The curves for oMn02 were calculated,

from experimental data presented in 'chapter 4. The cobalt

concentration scale is in molarity.

t
f
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FI GURE 2

Profiles for suspended Mn and total suspended matter for station

1449 in the Black Sea. Also shown are the observed and predicted

Co/Mn ratios. The predicted Co/Mn ratios were calculated using

the dissolved Co concentrations for this station (Spencer and

Brewer 1971) and the experimental data in Figure 1.
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FI GURE 3

~

Thi s fi gure gi yes the observed part; cul ate Mn and Co profi 1 es

for station 1449. The predicted particulate Co values were ob-

tained by multiplying the particulate Mn, concentration by the

pred; cted Co/Mn rat; o.
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FI GURE 4

The nondetri ta 1 Mn and Co values were ca 1 cul ated by subtracti ng

the estimated detrital concentrations from the total concentra-
~

tions. The predicted nondetrital Co was calculated by multiplying

the nondetrital Mn times the predicted Co/Mn ratio.



50

Co (~~) detrital Co
10 20 30 40 50i I( ng) i I I

Mn k9 detrital Mn
100 ) ) 2000 3000 4000I( (I I i

\,\ "\' - ~
\\
\
\\ nÚr-detritale-. /'\ ',.. .,\ "
è- "" '/predicted

- ~\- __ _ nondetrital\ --
\
\.'"

o
i

60
,

70
,

80
i

90
i

~

o
i

)) 50000(( I

100
nondetrital Mn/

150

200
..-
~ 250

;:
h.- 300

~
~ 350

'"

-- -----~--".
'"

'" -=-

400
ii '
,: ,

450 ii

,:
I

"

500 ~



-225-

FIGURE 5

The La, Sc, Fe profiles for station 1449.

,.;
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FI GURE 6

~

A plot of the amount of Co 1 eached vers us the amount of Mn

leached. Data from F. Sayles (1973 personal communication).
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Appendi x (I - A)

MASS BALANCE CALCULATIONS

.~

I) I NPUT FLUXES

A) DISSOLVED RIVER INPUT

River volume = 2.9 x 1016 l/yr
(Garrels and Mackenzie 1971, p.1 19)

Dissolved river concentrations (including desorbaole

fraction) (Riley and Chester 1971 p. 64-67 )

METAL CONCENTRA T I ON

Mn

Co

\ 5 llg/l
O. 2 ~g!l

a . 3 ~ g/ 1

5 ~g/l
Ni

Cu
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B) SUSPENDED RIVER INPUT

Suspended load of rivers = 1.83 x 1016 g/yr

(Garrels and MacKenzie 1971 p.105)
,.;

Assume composi ti on is the ,same as the average

crustal composition (ParKer 1967)

AVERAGE

CRUSTAL
METAL COMPOS IT ION

Mn 95,0 ppm

Co 25 ppm

Ni 75 ppm

Cu 55 ppm
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C) ATMOSPHERIC DUST INPUT

13Total amount of dust = 6.0 x 10 g/yr

(Garrels and Mackenzie 1971, p.lll)

Assume composition uf dust is same as continental crust

D) HYDROTHERMAL EMANATIONS ASSOCIATED WITH SPREADING RIDGES

Assume the rate of heat loss of the cooling lithosphere

is = 4.2 x 1012 cal/sec (D. Williams, personal communication)

and that all of this heat is removed by sea water circulating

through this lithosphere. If the sea water is warmed from

UOC to 1000C and the heat capaci ty of water is 1.0 ca 1/ g 0C,

then the amount of water requi red is:

124.2 x 10 cal/sec
(100°) (1.0 cal/g °C)

= 4.2 x i010 g H20/yr

18 '
= 1.2 x 109 H20/yr

= 1.2 x 1015 l/yr

The average concentration of Mn in thermal springs from basalts

is 1.0 ppm. (Whi te et a 1. 19631. Thus the input fl ux of hydrotherma 1 Mn woul d be

(1.2 x 1015 l/yr) (1.0 x 10-3 g/l) = 1.2 x 1012 g/yr
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II) REMOVAL FLUXES

A) ADJACENT SEA SEDIMENTS

Area of adjacent seas = 40'x 1016 cm2 (Sverdrup, Johnson and Fleming

1942, p. 15)

Sedimentation r.ate = 42 g/cm2/100oyr

This rate' was estimated by subtracting the amount of sediment

deposited in the deep sea from the total suspended river load.

The remaining sediment is deposited in adjacent seas.

Sedimentation rate = (l.83 x 1016 g/yr)- (321 x 1016 cm2)(0.5 g/cm2/1000yr)

= 1.67 x 1016 g/yr

and then dividing this by the area of the adjacent seas16 21.67 x 10 g/yr = 42 g/cm /lOOOyr

40 x i016 cm2

The metal content of adj acent seas was taken from Ri 1 ey and Chester (1971).

p. 391.

MET AL .

Co

CONCENTRATION

13 ppm

48 ppm

55 ppm

850 ppm

Cu

Ni

Mn
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B) DEEP SEA SEDIMENTS

Area of deep sea sediments = 320 x 106 km2 (Sverdrup et ale 1942 p.15)

If 1/4 is covered by manganese nodules

then the remaining area = 243 x 106 km2.

Assume an average rate sedimentation of 0.5 g/cm2/1000yr

(Riley ancl Chester 1971, p. 289)

Assume 50% of the sediments are CaC03 and 50% are red cl ay.

Use CaC03 and_,red clay metal compositions',from Riley and- , '
Chester (1971, p. 390) , then the average of these two represents the

composition of deep sea sediments.
DEEP SEA DEEP SEA

MET At CARBONATE CLAY AVERAGE

Co 7 ppm 74 ppm 40 ppm

Cu 30 ppm 250 ppm 140 ppm

Ni 30 ppm 225 ppm 127 ppm

Mn 1000 ppm 6700 ppm 4350 ppm

C) MANGANESE NODULES

The average composition of manganese nodules is (Riley and

Chester 1971, p. 362)

MET AL CONCENTRATION

Co 0.34%

0.57%Ni

Zn 0.35%

Mn 22.06%



REFERENCES
Bender M.L., Ku T-L, and Broecker W.S. (1970) Accumulation rates of manganese

in pelagic sediments and nodules. Earth Planet. Sci. Let., 8 143-148

Garr(~ls R.M. and Mackenzie F.T. (1971) Evolution of :-edimentary Rocks

Norton, 397 pp.
Parker P.L. (1967) Composition of the Earth!s crust in Data of Geochemistry

(editor M. Fleischer) , U.S.Geol. Prof. Pap. 440-D.

Riley J.P. and Chester R. (1971) Introduction to Marine Chemistry
,.;

Academi c Press, 465 pp.

Sverdrup H.U., Johnson M.W. and Fleming R.H. (1942) The Oceans

Pre';,tice-Hall , 1087 pp.

White D.E., Hem J.D. and Waring G.A. (1963) Chemical composition of subsurface

waters, in Data of Geochemistry (editor M. Fleischer) U.S.Geol.. Surv., Prof.
Pap. 440-F.

L

!



-238-

APPENDIX (II - A) STOICHIOMETRY OF MnOx

Introducti on

~

I t was necessary to determi ne the oxi dati on grade of the MnOx

used in the experiments in this thesis in order to verify that the experi-

mental solid resembled phases found in nature. Unfortunately, fewanal-

yses of oceanic manganese nodules include the oxidation grade, and none

has been related to the mineral phases of the nodules. The values that

have been reported have been summarized by Manheim (1965). Figure 1

(taken from Manheim's paper) is a plot of available literature values of

the O/Mn rati 0 plotted as a functi on of depth. The O/Mn rati 0 for deep

ocean nodul es appears to average a~proximately 1.90, whi le near-shore

concretions show appreciably lower oxidation grades.

Method

The method used to determi ne the oxi dati on grade was suggested by

, Morgan (l96~). It consists of measuring the equivalent concentration

of oxidized manganese by the O-Tolidine method (Morgan and Stumm 1965)

and the tot a 1 manganese by atomi c absorpti on spectrophotometry.

The oxidized equivalents of manganese ( (OX.) = 2(Mn(IV) ) +

(Mn (I I I)) were determi ned as fo 11 ows. A small amount of soli d MnOx

(the exact weight is not necessary) was placed in a 100 ml volumetric

flask. Then 25 ml of 3M perchloric acid plus 10 ml of 0.1% O-Tolidine

perchlorate were added, and the solution was brought to the mark using

distilled-deionized water. After 15 minutes, the solution was read at
1"

440 m~ on a Beckman DU Spectrophotometer using 1 cm cells. A standard

curve was prepared using NaMn04 solutions previously standardized using

sodium oxalate (Skoog and West 1963, p. 436.)

i;
r:
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Fig u re

The oxi dati on grade of manganese concreti ons

plotted as a function of depth. The O/Mn ratio

may be regarded as denoti ng the exponent in MnOx.

Explanation of symbols: (references cìted in Manneim 1965)

1. Baltic Sea (Gulf of Finland); Samoilov and Titov, 1922.

2.

3.

4.

5.

6.

7.

8.

9.

1 o.

11.

Barents Sea; Samoilov and Titov, 1922.

White Sea; Gorshkova, 1931.

Bl ack Sea; Samoi lov and Ti tov, 1922.

Lochs Striven and Goil (Clyde Estuary); Murray and Irvine, 1894.

South Paci fi c and Loch Fyne (Clyde Estuary); Buchana, 1891..
II

Ceram and Timor Seas; Boggild, 1916 (Analyst: Niels Bjerrum).

Paci fi c Ocean; Skornyakova and others, 1962.

Paci fi c Ocean; Skornyakova and others, 1962.

Pacific Ocean; Riley and Sinhaseni, 1958.

Atlantic Ocean; Murray and Philippi, 1908.
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The total manganese was determined on the same samples used for the

O-To1ldine measurements by Atomic Absorption Spectrophotometry. The

solutions were aspi rated di rectly and compared with a standard, 
curve pre-

pared using MnC12 standard solutions.

The coeffi ci ent X for Mn~was ca 1 cul ated as:

X = 1 + L Mn oxid.e~J
,. Mn total)

where it is assumed that all the oxidized manganese is present as Mn(IV),

i.e. Mn(oxid.) = Mn(IV). There is no evidence for the existence of Mn(rir)

l

in ,manganese nodules or in solution in the absence of strong chelators, and

thermodynamic data suggest that Mn-(III) should disproportionate into Mn(II)

and Mn(IV) according to reaction 1 (Stumm and Morgan 1970, p. 525).+3 +2 +.,2Mn + 2HZO = Mn + Mn02 (s) + 4H ) 1 og K = 9 ((1)\
.

Resul ts

The results of these determinations are shown in Table 1. The average

stoichiometry of four MnOx samples was 1.93. This value falls within the

range observed for deep sea nodul es (Fi gure 1).
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Table 1

Samp 1 e Mn ( oxi d. e~-: Mn ( tota 1) X

1 14.6.eq/l 7.4 mil 1.95

2 ,8.0 eq/l 4.25 m/l 1.89

3 7.5 eqll 4.0 mil 1.88

4 12.4 eq/l 6.25 mil 1.98

average 1.93

-'

.
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APPENDIX (II-B) X-RAY DIFFRACTION

~

Introducti on

A 1 though the oxi des of manganese have been studi ed extens i ve ly

(~user et ale 1954~'Buser and Graf 1955~ Buser and Giuttef 1956, Buser 1959,

Manheim 1965, Bricker 1965, Giovano1i et'a1., 1969, Giovanoli and Stahli

1970) ~ many ambiguities concerning their structural
properties still exist. This is due to the fact that many of these oxides

are poorly crystalline. The basic structure of these minerals appears to

consist of sheets of Mn02 interlayered with Mn+2; H20, OH- and other metal

ions. A review of synthetic and n~turally occurring ~,anganese oxides is

given by Manhei m (1965).

The x-ray di ffracti on spaci ngs for phases reported to occur in nature

and for syntheti c ferromanganese materi a 1 have been summari zed by Hathaway

-, (personal communication) and are shown in Table 1. The synthetic ôMn02

used in the experiments of thi s thesis waS analyzed by x-ray di ffracti on

to verify that it was structurally similar to the naturally occurring phases.

Methods and Resul ts

A slurry of &Mn02 was air dri ed at room temperature and then ground

with a mortor and pestle until the sample could pass through a Tyler 400

mesh sieve. The sample was then x-rayed using Cu radiation (Ni-filter)

at 45kv and 30 ma. A curved crystal monochrometer was used to minimize

background fl uorescence.

The 2-8 peak 1 ocati ons and correspondi ng spaci ngs in angstroms are shown in

Table 2. For comparison, the peak locations of the naturally occurring

minerals todorokite and birnessite are also shown.
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(1) birnessite from Jones and Milne (1956)

(2) todorokite from Manheim (1965)
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Conclusions

Though the compa ri son is not exact, the syntheti c Mn02 used in

these experiments resembles closely the naturally occurring mineral

birnessite. This result agrees with the stoichiometry results as birnes-

site is consi dered to have a hi gher ratio of oxi dized to reduced manganese

than todorokite.
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APPENDIX (II-C) SPECIFIC SURFACE AREA DETERMINATIONS

Introduction

In order to express the resul ts of chapters 2, 3 and 4 in terms of

quanti ti es per unit area, it was necessary to determi ne the specifi c

.; surface area (m2/g )of the oMn02 used in the, experiments. One of the

most widely used methods, and the method used here, is the gas adsorption

technique of Brunauer, Emmett, and Teller (1938). This method is based on

Sample Preparation

A major difficulty with using the N2-adsorption method is that the

so 1 i d 8Mn02 must be dri ed . Two dryi ng methods were used.

-, l) A slurry of oMn02 was allowed to dry in a covered evaporating dish

at room temperature. It took the sample several months to reach complete

dryness. The sample dried into a hard brittle mass that had to be ground

in a mortar and pestle and then brushed through a Tyler 400 mesh sieve

(37 micron).

2) A slurry of óMn02 was freeze dried under vacuum. The dry solid was a

granul ar power that di s integrated into fi ner pa rti cl es' when brushed wi th

a stiff brush. A portion of this solid was used for surface area deter-

minations. The rest of this dry 6Mn02 was resuspended in acetone, agitated

using an ultrasonic vibrator and again freeze dried. The resulting solid

was fluffy and extremely finely divided, and the entire sample passed

easily through a 400 mesh sieve with no additional treatment.
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It is possible that drying the samples reduces the available surface

area through particle agglomeration. However, confirmation of the B.E.T.

results on dried solids has been obtained using negative adsorption, (Scho-

~ field, 1947), a technique in which the solids remain in solution (van den

Hul and Lyklema, 1967 and Huang, 1971). The negative adsorption technique

is based on the condition that ions with the same charge as the surface are

repelled from the surface, leading to an increase in their concentration in

the bulk solution. An attempt was made to determine the surface area of the

ôMn02 by negative adsorption, however it was unsuccessful because the anion

~sed, SO¡, exhibited specific adsorption on the negative oMn02 surface.

The B. E. T. Plot

The interpretation of the B.E.T. method involves essentially two steps.

(1) From the amount of material adsorbed under various conditions (adsorption

isotherm), the number of molecules adsorbed in a monolayer is established.

(2) After assigning the approximate value to the molecular cross section,

ao' the surface area is calculated. The assumptions of the B.LT. Theory

have been critically reviewed by McMillan and Teller (1951).

The B.E.T. equation (Brunauer et al.1938) can be expressed as:

P
=

Va(Po-P)
(C 1) P
V C Pm 0

+
1

V C
m

adsorpti on

(1)

where P = parti a 1 pressure of the gas

P = saturation pressure of the adsorption gas at the temperature of
o

the coolant, liquid nitrogen.

V~ = Total volume (ml at S. T. P.) of adsorbed gas on the surface of

the adsorbent.
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v = volume (S. T. P.) of adsorbed gas when the enti re adsorbent
. m

surface is covered with a monomolecular layer. The cross

sectional area of the adsorbed nitrogen molecule is assumed

to equal 16.3 ~2.
,.;

C = A constant expressing the net'adsorption energy.

The N2 ~ adsorption measurements were made a method similar to the

one described in Nelsen and Eggertsen (1958). Three samples of the freeze

dri ed and acetone freeze dri ed, one freeze dri ed sample, and one ai r dri ed

sample were weighed into glass sample tubes. The samples were degassed for

12 hours with helium gas at 2011 press,ure before the N2 - adsorption measute- .

mente To measure the amount of N2 gas adsorbed a known mixture of nitrogen

and helium was passed through the sample, the effluent being monitored by
.

a therma 1 conducti vi ty probe. The output signal was moni tored by a Perki n

Elmer Sorptometer (model 2l2D) and was recorded with time on a recorder chart

(Sargent) .

When the sample is cooled in liquid nitrogen, the adsorption of nitrogen

is indicated by a peak on the recorder chart. After adsorption equilibrium is

reached the recorder pen returns to its original position. The sample tube

is allowed to warm by removing the liquid nitrogen, causing desorption of

ni trogen and produci ng a peak on the chart whi ch is in the reverse di recti on

of the adsorpti on peak. The adsorpti on and desorpti on peaks shoul d be of equal

area and thus provi de a check on the measurement. The absolute vol ume of N2

gas adsorbed is calibrated by two loops with a given volume built into the

sorptometer.
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The average speci fi c surface area for the three freeze dri ed and

acetone freeze dried samples was 263 m2/~. The sample that was only

freeze dried had a surface area of 160 m2/g and the air dried sample

had a value of 43.9 m2/g .

~

The t-plot

The universal multimolecular adsorption curve has shown to be a

useful means of looking at the size distribution of porous capillaries of

solid particles (de Boer et ale 1966). This method expresses the quanti-

ti es of adsorbed gas as a functi on_of t, whi ch is the average thi ckness

of'the adsorbed layer in Angstroms. Hence V = f(t) instead of V = f(P/P 0)

as in the B.E.T. method. In any normal case of multimolecular adsorption,

the experimental points should fallon a straight line through the origin.

The slope of this line gives the specific surface area (m2/g) by means of

equation (2):

S = 15.47 Va/t

S = specific surface area (m2/g)

where V = adsorbed volume of gas (S.T.P.)
a

t = the average thickness of the adsorbed layer. The statistical

( 2)

o

value for one layer of adsorbed N2 gas is 3.54 A; therefore

t = n x 3.54 where n = V /V layers. V is the monolayer volume.. a m m
Va 1 ues for t were obtai ned from the ni trogen adsorpti on data as descri bed

in de Boer et ale (1966) and Huang (1971), and the t-curve for oMn02 is

shown in Figure l. The linearity of the t-plot suggests that there was no
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Fig u re 1

,.;

The nitrogen gas adsorption data for two samples of oMn02 plotted

as at-plot.
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~

capillary condensation or closing of micropores during the adsorption

process, and there were no porous cap; 11 ari es wi th openi ngs 1 arger than
o

the diameter of the nitrogen gas molecules (3.54 A). In other words,

the colloidal particles of oMn02 are flat and don't have large pores. An

additional value for the surface area can be calculated from the slope of

the t-plot using eqn. 2. The value obtained ~as 270 m2/~ .

Conclusions

As a result of these determinations, a value of 260 m2/g was used

for the surface area of the oMn02 used in this thesis.



-254-

". _ ..p_-,';

BI BU OGRAPHY

,.;

de Boer J.H., Lippens B.C., Linsen B~G., Broekhoff J.C.P., van den Heuvel A.

and Osinga Th.J. (1966) The t-curve of multimolecular N2-adsorption.

J. Colloid Interface Sci. fl, 405-414.

Brunauer S., Emmett P.H. and Teller E. (1938) Adsorption of Gases in

Multimolecular layers. J. Am. Chem. Soc. 60, 309-319.

Huang C.P. (1971) The chemistry of the aluminum oxide-electrolyte interface.

Ph.D. Thesis, Harvard University.

McMillan W.G. and Teller E. (1951) The assumptions of the B.E.T. Theory.

J. Phys. and Colloid Chem. 55,17-20.

Nelson F.M. and Eggertsen F.T. (1958) Determination of surface area. AnaL.

Chern. 30, 1387-1390.

Schofield R.K. (1947) Calculation of surface areas from measurements of

negative adsorption. Nature 160, 408-410.

Van den Hul H.J. and Lyklerna J. (l967) Determination of specific surface

areas of dispersed materials by negative adsorption. J. Colloid

Interface Sci. 23, 500- 508.



,..

-255-

APPENDIX (III-A) ATOMIC ABSORPTION ANALYSES

Experimental Set Up and Sample Collection

The adsorption experiments were set up by addi ng the appropri ate

amounts of Reagent Grade Co(N03)2' Cu(N03)2' MnC12~ ZnS04, CaC12, Mgs04~

SrC12 or BaC12 stock solutions and 0.10 g of 8Mn02 to an acid washed

polyethylene beaker. The ionic strength was adjusted by adding NaCl,

and the total volume was brought to 200 ml using distilled-deionized

water. The pH was adjusted to approximately 2.25 before the addition

of the metals. After equilibration, three ml aliquots were withdrawn

from the suspension, the 8Mn02 was-removed by centrifugation (30 min at

15000 rpm), and the supernatant was analyzed by atomic absorption spectro-

photometry. After each sampl e was drawn, the pH of the experiment was

adjusted using O.lN NaOH or O.lN HC1. Equilibration took less than

10 minutes when the pH was increased by less than 1.0 pH units.

Atomi c Absorpti on Ana lyses

The concentrati ons of Co, Cu, Ni, Mn, Zn, Ca, Mg, Sr, and Ba were

determi ned by atomi c absorpti on spectrophotometry. Two to three ml a 1 i quots

of the separated supernatent solution were aspirated directly into a Perkin

Elmer model 403 Atomic Absorption Spectrophotometer equipped with a digital

concentration readout. An air-acetylene flame was used for all the metals

except Ba, which required nitrous oxide-acetylene. Wavelength settings

and the other operati ng adjustments were made as descri bed in the Perki n

Elmer operators manual.

The sample absorbances were compared with standards prepared from the

same reagent grade sa 1 ts used in the experi ments. The standards were

prepared to have the same ionic strength as the experiments. The samples

and standards for the alkaline earths were prepared containing'l% lanthanum

in 5% v/v HCl to act as interference-suppressing electrolytes.
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APPENDIX (III-B) DIELECTRIC CONSTANT MEASUREMENT

Introduction

The dielectric constant, g, of solids can be measured by comparing

the capacitance of a capacitor filled with a vacuum (C).

., 'C'6:=_
(1 )

C

James and Healy (1972) have proposed a model for the surface chemistry of

metal oxides in ~hich the dielectric constant of the solid is one of the

most important parameters that can be used to predict the types of reactiorys

that might occur on the surface. No value could be found in the literature
CI.. -

for the dielectric constant of Mn02. Thus in order to compare the results

of this thesis with the model of James and Healy, a value for the dielec-

tric constant had to be measured.

Method

A capacitor was .made of two 311 x 311 copper plates with a fiberglass
, ,

ce 11 des i gned to hold the powd~red Mn02..

, I
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~

The capacitance of the cell was measured with only air in the cell

and then with the cell packed with the solid sample. The volume of the

sample was calculated from its weight and density. The measurements

were made us i ng a General Radi 0 Company Capaci tance B¥idse (Type 1615-A)

at 10KHz.

Resul ts

The dielectric for both ßMn02 (Baker Chemical Co.) and oMn02 (made

us i ng the method descri bed in Chapter 2) were measured, and the resul ts

are shown in Table 1. For an estimate of accuracy, the dielectric

Tab 1 e 1

ßMn02

dMn02

NaCl

32.1

28.5

7.5

of NaCl was measured, and it agreed to wi thi n 20% its known di e 1 ectri c (6 f 12) .
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APPENDIX (IV-A) TRACER EXPERIMENTS

Materi a 1 s

~

The oMn02 used in these experiments was prepared in the same manner

as described in chapter 1. The resulting solid has a B.E.T. surface area

of 260 m2/gm (Appendix II-A) and a stoichio~etry of MnOi.93 (Appendix II-B).

A stock suspension was prepared with a oMn02 concentration of 1 x lO-3M

and di 1 uted when necessary for the subsequent experiments. The oMn02 was

kept in suspension at all times and was not allowed to dry, as this would

cause the surface to dehydrate, thus changing its adsorptive properti es

(Parks 1965). Na+ adsorption, electrophoresis and alkalimetric titration

experiments on this preparation of 8Mn02 gave results similar to those

reported in chapter 2, thus indicating that both precipitates are equivalent.

The cobalt solutions were prepared from analytical grade Co(N03)2 salts.

Distilled-deionized water was used in all the experiments. When necessary,

the pH was adjusted using A.R. HCl or NaOH, and A.R. NaCl was used to ad-

just the ioni c strength. For the sea water experiments, the appropri ate

amounts of NaCl, CaC12 and MgS04 stock solutions were added to bring the

. +2 +2 +2concentrations of Na , Ca ,and Mg up to sea water concentrations.

All tracer and electrophoresis experiments were done at room tempera-

ture (25l20C).
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Tracer Experiments

Cobalt-58 (Amersham Searle Corp.) was used for the tracer experi-

ments because of its suitable half life (71d), its decay mode

(y, 0.8l0 MEV (99%)), and its availability as a carrier free isotope

t ~ 2mCi¡~g C~. The 58Co was purchased in the form of cobal tous chl ori de

in O.lN HCL. The decay rate of the purchased isotope was checked, and

the resulting half life was found to agree well with the expected 71 day

half life.

The 58Co was quantitatively (84%) transferred from the delivery

vial to a polypropylene erlenmeyer flask containing 5 gm of HCl (cone.). -2and 95 grn of H20. A stock solution of 1 x 10 M CoC12 was prepared and

di 1 uted when necessary for the experiments. The 58Co was added to the

diluted stock solution by adding approximately 0.2 mlof the tracer solution.

The volume of tracer solution added was increased slightly during the course

of the experiments because of decay. The total count rate of i ndi vi dua 1

experiments (total vol ume - 200 ml) was kept between 10000 to 20000 counts

per mi nute (c. p. m.) above background (5- 1 a c. p. m. ) . Each experi ment con-

tai ned approximately 2 x 10-3 mCi of 58Co.

The samples were counted in a NMC-Well Scintillation Counter

(NaI(Tl), yield 50%) combined with a RIDL-single channel analyzer. By proper

adjustment of the upper and lower energy discriminators, the 0.808 MEV

peak of cobalt-58 coul d be counted wi th the background decreased by a

factor of 33 (270 to 8 c.p.m.) (Figure 1). The efficiency of the NaI(Tl)

crystal is a function of sample volume, so this effect was checked in order

to obtain the optimum counting volume. The, results illustrated in Figure 2

show that the count rate is independent of volume up to greater than 5 ml.
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Fi gure 1

Determination of the upper and lower energy discriminators for optimum

counti ng condi ti ons of the 0.808 MEV peak of 58Co wi th the di fferenti a 1

.~ mode (the width of the energy window) set at 50, the threshold (lower

edge of energy wi ndow) was vari ed from 200 to 700 to defi ne the peak

location. Then with the threshold set at 450 (the lower energy side of

the 0.808 MEV peak), the di fferenti a 1 mode was increased from 50 to 200

to open the energy wi ndow so that it i nc 1 uded all of the 0.808 MEV peak.

The inflection in the curve at .differential mode = 150 indicates that the

0,808 MEV peak ls included on the window. The differential mode and

threshold settings are in arbitrary instrument ~n;ts.
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Fi gure 2

The count rate as a function of sample volume.

,.;
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~

Some of the samples counted contained solid 8Mn02, and a comparison of

the count rate of the sample with and without the reduction of the oMn02

revealed a slight difference due to the difference in geometry. Thus,

before counting samples with solid oMn02, the solid was reduced by the

addi tion of hydroxyl ami ne hydrochl ori de.

The experiments were carri ed out in 500 ml po lypropyl ene beakers.

The ionic strength was adjusted using 1.OM NaCl, the pH was adjusted to

approximately 2.5 by 0.1 HC1, the proper amount of oMn02 was added from

the stock suspension, and finally the labeled cobalt solution was added.

The pH was adj usted before the cobalt was added, because the res ul ts of

chapter 3 showed that adsorption was partially irreversible as a function

of pH. Thus, all experi ments were begun at low pH, and the pH was adj us ted

upward for each successive sample by the addition of O.lN NaOH. The samples

were prepared for counting in the following manner. After equilibration at

a given pH, a 5 ml sample of the supernatant was withdrawn, using a

calibrated 5 ml polypropylene pipette and placed in a polypropylene centri-

fuge tube. The sample was then centrifuged (2000 rpm, 5-10 min) to remove

the solid. A 2 ml sample of the supernatant was withdrawn using

a calibrated plastic pipette, and transferred to a second centrifuge tube.

Three ml of H20 was added to bri ng the total volume up to 5 ml. Two ml of

a 10% hydroxylamine hydrochloride solution was added to the original centri-

fuge tube to bring the total volume to 5 ml and to reduce the solid 8Mn02.

By counting both centri fuge tubes, it was poss i b 1 e to determi ne the amount

of cobalt adsorbed on the 8Mn02 and to moni tor the total counts to ensure that

cobalt was not being lost by adsorption onto the walls of the experimental

beaker. One rinse of the plastic pipettes with a 1M HN03+ 10% hydroxylamine
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hydrochloride solution after the transfer of cobalt-58 solution was suffi-

ci ent to bri ng the count rate of the ri ns i ng sol uti on to background.

It was found that during the course of the experiments using low

,.; cobalt concentrations there was some loss of activity that could not be

accounted for by decay (the average experiment lasted approximately 16 - 18

hours). After the experiments were completed, the solutions were removed,

and the empty beakers were ri nsed wi th 3 ml of a 10% hydroxyl ami ne hydro-

chloride solution. This rinse process recovered the lost activity. Blank

experiments with no oMn02 present showed no loss of activity. Thus, it was

assumed that the loss was due to the adsorpti on of some of the oMn02 wi th

its adsorbed cobalt onto the beaker wall s. As woul d be expected if thi s

were the case, the loss was greatest at the lowest concentrations of oMn02

used. This loss amounted to 5% at 5 x 10-6m Co and 7% at i x iO-8m and

thus was not enough to seriously affect the interpretation of the experiments.

To ensure that the cobalt )removed by the centrifuging ')was

adsorbed by the oMn02 and ,not -removed by the formati on of radi 0-

colloids (Schweitzer and Jackson 1952), experiments were designed to test

this possibility. Cobalt solutions of 5 x 10-6m and 5 x ia-8m were set up)

buffered at pH 3.7 (acetic acid-sodium acetate) and 8.1 (bicarbonate)) with

ho oMn~2 present. Samples were withdrawn and centrifuged at high speed

(15000 rpm) for one hour. After ,centrifuging , the sample was split as

menti oned in the previ ous paragraph and counted. No evi dence was found for

the exi s tence of radi oco II oi ds.
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APPENDIX (IV-B) ELECTROPHORESIS EXPERIMENTS

.;

The meas urements of e 1 ectrophoreti c mobil i ty were obtained us i ng

a Briggs microelectrophoresis flat cell (Figure 1). The potential

di fference was appl ied by a Beckman Duostat power supply, and the current

was measured with a Kiethley 610B electrometer. The resistivity was

measured using a Schlumberger Type EMT-C resistivity cell. The electro-

chemi ca 1 cell can be represented by:

(Pt), Hg, Hg(N03)2' KN03/ suspension / KN03, Hg, (Pt)

The mobility is calculated from the equation:

d x
-- = t I Rs

(l)

where d is the wi dth of the gri d, xis the cross secti ona 1 area of the

- cell, t is the time for the particle to traverse the distance d, I is

the current, and Rs is the specific resistance of the suspension.

Scrupulous cleaning of the cell and the electrodes is an essential

part of the electrophoretic technique. The electrode cavities were closed

with ground glass stoppers and the cell filled with a 10% solution of

hydroxylamine hydrochloride, rinsed thoroughly with distilled-deionized

~ater, and filled with concentrated HN03. After allowing the acid to stand

in the cell for fifteen minutes, the cell was thoroughly rinsed again

with distilled water. The electrodes were cleaned by washing with 3NHCl

and distilled water. After washing, the electrodes were allowed to dry

before use.

In most of the experiments, the surfa~e area of 8Mn02 used was

1.15m2/1. For comparison of the experiments done at different metal ion

concentrations, it was necessary to use a constant surface area since the
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Fi 9ure 1

(Upper) A side view of a Briggs microelectrophoresis

fl at eel i.

(Lower) Electrical schematics for the electrophoresis

measurements.
,.;
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characteristic charge reversals of the electrophoretic mobility curves

are a function of surface coverage. The effect of surface area was

studied in a separate experiment. The experiments were set up by adding

20 ml of O.lM HC1, the required amount of ia-1M or ia-2M stock Co(N03)2,.; '-3 .or MnC12 solutions, and 50 ml of a stock 1 x 10M oMn02 suspension to a

1 1 iter beaker. The total volume was then brought to 1 liter by di s ti 1 1 ed-

deionized H20. After equilibration of the cobalt with the oMn02, approxi-

mately 100 ml were withdrawn and placed in the electrophoresis cell for

measurement. The pH of the experiment was then adjusted upward using

O.lM NaOH. In Iiliiking the mobility-measurements, ten particles were timed

goi ng in one di recti on, and then wi th the pol ari ty reversed, ten readi ngs

were taken in the opposite direction. With the electrodes and the cell set up

properly, there was good agreement between these readings. In the mobility

calculations, the average of the 20 velocity determinations was used.
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APPENDIX (iv-c) THE EFFECT OF SURFACE CHARGE ON THE SOLUBILITY

PRODUCT OF Co(OH)2

.;
Consider the system of solid, interface and bulk aqueous solution.

At equi 1 i bri um in free sol uti on, we can wri te:

CO(OH)2 (solid) = C +2 2 OH (l)o +

with Kso = aCo + 2
2

( 2)aOH-

and liGo = -RT ln Kso

since liG = a at equilibrium

The activity of the solution species is represented by a and the solubility

_, product by Kso. The change in free energy and the change in standard free

energy for the di sso 1 uti on of the hydroxi de at constant temperature, pressure,

gravi tati onal potenti al and el ectri cal potenti al are represented by liG and

liGo. The same conditions are not satisfied at the solid-solution interface

because of the effect of the large electric fields present. At sea water,

ionic strength with a double layer thickness of 3.5 ~ (Stumm and Morgan 1970,

p. 459) and a hypothetical surface potential of 100mV, the electric field

is 2.9 x 108 volt/em. The primary consequence of this field is to lower

the dielectric constant of the interfacial medium to a value well below that

of the bul k aqueous sol uti on.

If the interface can be regarded as a separate phase, then in the

presence of an el ectri c fi eld at constant temperature and pressure
o .

_liG01 = (GCo+2 + G1Co+2 + GOH~ + GOKo' - GCoo - GCo' ) (4)
( OH ) 2 ( s ) ( OH ) 2 ( s )
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where the primed quantities are the excess contributions due to the electric

field. In free solution, in the absence of the electric field, the G1

quantities are zero, thus

,.;

0'
-boG ~ boGo

I i
(GCo +2 + GOH) ( 5)

The effect of the fi e 1 d on the soli d Co (OH) 2 has been negl ected. The G i

terms represent the excess free energy, of the ions in a medi um where the

electric field is not zero. Thus, the solubility product of the hydroxide

in the presence of an electric field is:I ,
RT ln Kso i = RT ln Kso (G Co+2 +G OW ) ( 6)

The G i terms can be expressed in the form of the Born chargi ng equati on

where the free energy is:

G1 = (ze)2N
81T r i on EO (1 - 1)Ei Eb gee)

where z is the charge on the ion, e is the electronic charge, N is

Avogadros number, r. is the i oni c radi us, E is the permi tti vi ty of freeion 0
-12space (8.85 x 10 coulomb/volt/mole, Ei and Eb are the dielectric con-

stants of the solvent at the interface and in bulk solution and gee) is a

geometrical function. The dielectric constant, E., i~ a function of the
1

square of the electric field; thus Ei is less than Eb for a charged surface.

Since Ei is less than Eb and the valence is squared, both terms are

positive. Thus from equation 6:

K :; Kso so

Thus Co(OH)2 is more insoluble and will precipitate at a lower pH in the

presence of the electric field at the interface.
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