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ABSTRACT

The flow produced by an infinitely long horizontal
heated strip in a thermally stratified fluid is examined
theoretically. For strong stratification a long flat
convection cell or tongue results. Profiles of velocity
and temperature anomaly are displayed and contrasted
wi th the profiles which would obtain if the temperature
anomaly were only a passive tracer. The effects of
small nonlineari ties are computed by perturbation methods
and the profile alterations thus produced are discussed.

A laboratory experiment set up to demonstrate the
maj or features of this circulation is described. Quali-
tative agreement between theory and experiment is obtained,
and certain of the predicted nonlinear effects are observed.
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Chapter I IntrOdUction

In descriptive oceanography, one often encounters

references to lltongues,". or long, thin horizontal bodies
of water differing from surrounding water in some measured

property, usually temperature and/or salinity. Indeed,

since temperature and salinity can be measured more

easily and precisely than velocity, such tongues are

'often taken to be evidence for the existence of similar

tongues of velocity, i.e., slow flow along the axis of

the observed tongue of temperature of salinity. The

implicit idea is that temperature and salinity serve

essentially as tracers or diffusive substances carried

along by the flow but playing no part in its dynamics.

If the water in the tongue is, say, saltier than the

surrounding water, salt would be expected to diffuse out-

ward, leading to a decrease in salinity in the downstream

direction, and knowledge of the hori zontal salinity

,gradient in the tongue then determines the direction of
"

flow. Some examples of tonguelike distributions of

properties calculated by assuming particular flow patterns

are given by Defant ~ (l96i) and by' Sverdrup, Johnson, and

Fleming (l9~2). Many authors have made application of

such ideas to field observations in attempts to determine
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flow patt,erns.Wils,tCl.959, ,l960, 1961) for e.xample has

, given extensive descriptions of the hydrography and in1'erences

about the flow of the Levantine Intermediate Water in the

Mediterranean Sea. This is a subsurface tongue of hot,

salty water emanating from the eastern basin of the Medi-

terranean which extends westward past Gibraltar and forms

the well-known Mediterranean outflow that is observed

far into the Atlantic.

On the other hand, temperature and salinity are

not true tracers;' these properties affect the densi ty of

seawater and thu,s can influence the dynamics.. One then

wonders how tongues in which density diffusion is impor-

tant might behave. Some work in this connection has been

done. Koh (1966) considered a source of mass in a s trati-
fied fluid both theoretically and experimentally. His

model balances the diffusion of density against the (linear)

advection of the mean density. Because he used salt, which

has extremely low diffusivity, as the stratification agent

and yet let his experiments run only a very short time

(5 - LO min.) there is some doubt that a truly steady flow

wi th dynami cally imp ort ant diffusion of density was actually

obtained. Listtl97l2 has, given some calculations of thB

1'lows produced by sources of ~omentum in a weakly strati-

1'ied fluid. Both Kohand List have limited their theoreti-
cal work to the linear problem. Wunsch (l970) has dissussed
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flows driven in stratified l'luids by boundary temperatures

which differ f.rom those in the interiox. Hîs interest
has been primarily in effects near the boundary and he has

1'ocused on the properties of a nondivergent buoyancy layer

at the boundary; no "tongue" is forced Jtnto the fluid

interior in this case.

In this thesiis we examine both theoretically and

experimentally a very simple case of a tongue in which

diffusion of density is of paramount importance. The

mathematical model is of a thermally stratified fluid

in which an infinitely long horizontal strip is heated

slightly above the mean temperature. In chapter II we

solve for both the linear motion and the firs t nonlinear

corrections, presenting plots of the results in some

detail and noting the ways in which the velocîty and

temperature anomaly profiles differ from those one would

expect if temperature were a passive tracer. In chapter

III we present results of a laboratory experiment set up

to demonstrate this circulation. The results are rough

but tend to confir~ important aspects of the theory.

Chapter iv contains a briei' sumary and some suggestions

for extension of the work.

¡:
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Chapter II Theory

Formulation

In this chapter we examine a very simple mathematical

model of a long horizontal tongue produced in a thermally

stratified fluid by a source of heat. We consider an

infinitely deep, nonrotating, Boussinesq fluid bounded by

a single vertical rigid wall at x = 0 as shown in figure l.

In the absence of motion a mean stable temperature T ,
m

linear in z, is assumed to exist:

Trn (l) - i: +b" Z (II-l)

where ~ and TO are positive constants. Fluid motion

introduces perturbations of this mean field, and the total

temperature T(t) is 'written as the sum of Tand an anomaly
m

T:

T(t) := Tm -¡ T (II-2 )

A two-dimensional heat source is modelled by imposing

a simple boundary condition on T:
.

T (0, Z) - ~ F (z) (II-3)

Here T is some positive constant and f(z) is a dimension-s
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less form function intended to specify a localized source.

Specifi~ally, we require of f:

F(z) F( - z) (II-4)

F (0) l 1 (II-5 )

tJ

I ~ Ç'Zydi.l o ( \ ) (II-6 )
-GO

\fl decays smoothly as I zl-+oo and (11-7)

has an e-folding length L

Thus L is the length scale of the region over which

forcing is applied to the fluid. It is the only externally

imposed length in the problem and will be used to nondimen-

sionalize the governing equations. One might expect that

such a localized source would produce, at large x, the same

effects as a delta-function source, i. e., a source for

which

T (0 I Z) oC $ l Z) (ii-8 )

This matter is dis cussed in appendix I.

We assume the motion, like the source, to be steady and

two-dimensional ~ and we assume the Boussinesq approximation

to hold. The governing equations then are the x and z
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momentum equations:

11 U x + W U Z -: - ~ -r/tJ + V 'i'Z1.
(II-9 )

L (t) 1, ('¿) V'lJ wx r W ii z :: -to fz - /0 l .¡.o úI (II-lO)

the continuity equation:

Ux .. W'% :: 0 (II-ll)

the heat equation:

-i (~) T. WU./~ +w z. :: K, r:'I Tft)
(II-l2 )

and an equation of state:

t (-l~ to (I - oc (TllJ_ i;) J

:: fo(/- eX (KZ + T)J

(II-l3)

where:

\71.
';1.

:: JX 1-

"' 1-

+ d'Zl. (ii-i4)

(t ) c+J'Here p is the total pressure, f the total density, fø
the densi ty at T(t) = TO' u and w the fluid velocities in

the x and z directions respectively, g the acceleration of
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gravity, ~ the kinematic viscosity, ~ the thermal diffusivity,

and oi the coefficient of thermal expansion. ß, \l , J(, ol ,
and g are assumed constant. We write p (t) as the sum of a
hydrostatic part independent of the motion and an anomaly p:

?(/J -: - f~J7. + t J fIJ Yd. Z1. + t (II-l5)

We now introduce essentially the same nondimensi'onalization

scheme used by Veron1s (l967a, b) in studies of the analogy

between stratified, nonrotating fluids and homogeneous,

rotating fluids. We nondimensionalize x ahd z with L, P

wi th a typical weight per unit volume due to densi ty anomalies

fofJJL Ts ' and T with Ts' u and ware nondimensionalized
with ITs/L J SelL ïsi. The first radicand is a measure of the~ -\V
source strength and the second is proportional to the

pres sure anomaly scale. With these s cales the set of

equations (II-9) - (II-L3) becomes:

~ (lII1X + úJtlz) =- -fJ' + é2 iJ1.1J (ii.,i6 )

-l ( I1Wx +WtlhJ - -?z. 1- T ~ é!t72.W (II-l7)

11)( + Wz = 0 (ii-i8)

s(uT; t-tvT-z) :: _ ¡g + (l. 172-T (II-l9 )
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,
In (ii-i6) - (II-L9) and in what follows unless otherwise

noted, all variables are nondimensional and all deri vati ves

are with respect to nondimensional coordinates. The equation

of state has been vsed to eliminate the density anomaly.

The parameters appearing in the equations are:

S -: ls/L't
is the ratio of a typical gradient of

temperature anomaly to the mean temper-

ature gradient and is thus a measure

of the source strength.

'Z (_ K V )~é ~5at¥ ~ is the inverse square root of a Rayleigh

number based on the mean temperature

gradient and L.

() =
v-
\0(

is the Prandtl number.

In what follows we shall take ~ and E to be small and

(J = O(l). We are thus studying the motion produced by a

. weak source in a strongly stratified fluid with both

vis cosi ty and heat conduction acting to dissipate the flow.
The boundary condi tions to be satisfied are:

u(O,z) = w(O,z) = 0 (II-20)

T(O)z) = fez) (II-2l)
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~

u, w, p, T ~ 0 as fx2 + Z2'.- 00 (II-22)

Linear problem

To solve (ii-i6) (II-22) we adopt a perturbation

s qheme . We firs t solve the line ar prob lem obtained by

setting & = 0 and then we calculate the lowes t order

e ffe cts of fini te nonlineari ties by perturbing in " .

With S = 0 (ii-:i6 ) - (II-l9 ) can be reduced to a single

equation in any of the dependent variables:

( ë V& + lx~ ) r * 1 D (II-23)

An exact solution of (II-2 3), valid for any finite value of

f , can be obtained by Fourier techniques. The result is

unwieldy and we present only a brief sketch of this approach

in appendix II. List (l97l) has used a combination of

Fourier analysis, contour integration, and numerical com-

putation to' solve a similar problem and present results for

E of order l. In our case € is small and boundary layer

techniques yield more readily interpretable results with

less effort. We res cale the x coordinate to reveal the

various possible balances between the several terms of

(II-23). Let e stand for any of the dependent variables

and let:
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x = E.n A
)

~ := f_n ~ (II-24)

Then (II-2 3) be comes:

~'e
e.'l i 'dz6

a.

" ~'
-In 0 e 3 -'Ill ê

+ 3 t. 'ti.'ló).1. + ~ ~ z& ~l).'lb '- t -'n ~'ei -2" ~i.9f )))i +~ -&-:D(II-25)

cI e
The only possible balances are:

1 . For n = 1 term d b a 1 an ce s term e.

2. For n = -2 term a balances term e.

Other balances are ruled out as follows. A balances of

any two of the terms a, b, c, and d requires n = O. But

then these terms are O(E'l ) while term e is O( / ) and

must therefore vanish by itself. Thus

B = Cdz)).1o +- c.-z (i.) À +- C.3(Z) (II-26 )

and to have e de cay as h-ê + z2l.. eO we must take cl =
c2 = c3 = O. The only remaining possibilities are to

balance term e with either term b or term c. A balance

f

with b requires -2n = -2n + 4~ which is impossible. A

balance with c requires n = 2. But then term d is the

largest term, O(~-g), and must itself vanish. This leads
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"
8-=.2. a: (iJX (II-27)

J=- i j

and as in (II-2 6) the a. mus t vanish. Thus all b alan ces
J

except 1 and 2 are ~mpossib le.

Balan ce 1 obt ains when e varies by 0 (l) over the

short horizontal distance x = O(é) and is commonly known

as a buoyancy layer. We can expect such a balance to be

important near the source in adjusting the dependent var-

iables to their prescribed values at x = O. Balance 2,

in which e varies by 0(1) over the large horizontal distance

x = 0 (~.1.), governs the flow far from the source and we re fer

to this re gion as the far fie ld. More formally, we write

any dependent variable as the sum of a buoyancy layer

component and a far field component, denoted by a caret

and by an overbar, respectively:

e -
A
BlJJZ) + e(s,i.) (IT-28)

where

'X

J -: E: ) s = X (;'l (II-29)

Introducïng (II-2 8) and (II-29) into (ii-i6) - (II-l9)

(wi th S = 0) the equations for the buoyancy layer components

in the linear prob lem are:
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_ .. ,¡ (0) " (0)0-= G 11 fLJf1 f E-2.í1COJ
;i 'Z

(II-30)

O - _ p~ to) T"" (0) /:l (v) L.2. A (0)- '7'¡ +- (/1 f ~ c; W 7. "l (II-3l)

o - .L I: to)" w,r + ~ Co)
'Z (II-32 )

6 = - iJ (oj + .A lo)Tfr + ¿i. T (0)
zz (II-33)

where the supers cript 0 indi cates that these are f~eidsQof

order zero in b. Similarly, we have the far field equations:

0 - (0)
+ U (0)

+ ~ Il U tol
(II- 34)=

- -ps Z. 'Z S5

0 - (0) -(0) Z. - Co)
+- f &¡; Co) (II-35):: -'7. + T + t WZ"l 55

0 -
f'l ¡¡ ~O) +-

- (0) (II-36)- Wz.

0 = - (0) é z. T. tø) é'?:CO) (II-37)-tv -r z 'Z .¡ 5~

The boundary conditions on (II-30) - (II-37) are:

"\(0)1 ) - (0) A (0) - ( )
U \OIZ + Ii (O,Z) ': W '(a, Z) l- tv () (C,Z) = 0 (II-38)

T (oJ( (;1 Z) -l - (ojT ( 0" Z ) = f (2.) (II-39)

~CCJI -toJ .-10\ - (oj -'11.1 - (oj -'(øl -(01 r;
LA J /, J W 1 fA i i ) T J f J f -) 0 as J x. i- -"7 oö ( I 1-4 0 )
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We begin with the buoyancy layer equations. We expand

each dependent variab le in a power series in ~:

"" (/) )e e"" (0)0\ e'" (0, iJ i.e" (c),i.1+€ +-é. +...., (ii-4i)

Then collecting coefficients of like powers of E we find

1-
terms in E:

PfO,OJ = 0 (ii-42 )

" (O¡o)Uf o (ii-43)--

Then (Ii- 42) and (Ii- 43) together 1'ri th (ii-40) imply:

terms in fO

¡ '0, 0) . = Û. £ 0,0) :: 0 (ii-44)

0= -~ (o,d A( ~o). r f -l U55 (II-45)

O ,,(0,0) TA(n,OJ -" (n,o)=1z + -rWrf (ii-46 )

() = i2 (0,/) l- iJ (0,0), 'Z (II-47)

o - - tJ ( 0, 0) + T. (0,01
11 (ii-48)

"'Cq 0)
Since p = 0, (II-46) and (II-48) combine to give a
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( ~'4~~

A (00) T"" (010)
tJ' or

0(0,0) )
i- 1 ) i T (OiD) ) = 0 (II-49)

single equation in

(II-49) will be recognized as the Ekman equation. The

solutions which decay in rand satisfy (ii-46) and (II-48)

are:

A () - ~ I (D,Ol
T 0,0 = e F l~)CQS ~ +- G(lJ,(7.) Sin Ut J (II-50 )

IJ"" l a,o) -~lí L - (0,0) (0 oj J= e ~ ¡- (l) Sin ff - C; I (z) ÛJ !k (II-5l)

The functions F(O,O) and 0(0,0) are to be determined.

(~I-47) gives the horizontal velocity required by continuity:

1'" (0,1) J "' io,o' J d 1\)
U -- Wz. (;.Jt) r'+U(°t'OI7.) (II-52)

o

Next we turn to the far field equations, (II-34) -

(Ii- 37) . Making a power series expansion in € as before we
find:

terms in €o

0= _ . ~ (D, 0 ) + /) (010)zz.

0 -
- Pi.lO,O)

r T (o,OJ-

o -: ~ ( 0, 0)

(II-53)

(II-54)

(II-55)
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0:: W (0, () J (II-56)

(II~53) and (II-54), give:

¡¡(Oif))
z. z. %.

=- T. ((), 0)s (II-57)

terms in E'

O = .: 1) ~ 0,,) - (0; 11
/ '" -+ U Zz:

(II-58)

o :: - f iOII) + T (0,11 (II-59 )

o = Wi(dil) (ii-60)

o ;: W (01 i) (ii-6i)

(II-58) and (ii-60) give:

Ü (0,/)zzz.
-- T (0)1)

S
(ii-62 )

L' 2-terms in c:
0= -piolV r l) ~J1."l)

o = - f:' 0, 1) -l 7' (0) 2. )

(ii-63)

(ii-64)

o = f1 5(010) .r WiolZJ (ii-65)
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(0"') T. (0.0)0:- - 1.1 I' I 'vv T" Zz. (ii-66)

where (II-56) has been us ed to obtain (ii-6 4) . (ii-65)

and (II-66) give:

T. (OiD)
'Z 'Z Z - - Ú (°1°)s (ii-67)

while (ii-6 3) and (iI-64) give:

¡¡ (£1,2.)
z,'z z. -= 7; (Oi?") (ii-68)

where (ii-6i) has been used to obtain (II-70). (II-7L)

and (II-72) give:

T (Oil) -_ i:(Oil)iz. 1. (l S (II-73)
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N ow from (II-5 y), (11-62), (ii-6 7), and (II-73) we can

deri ve:

(d'ò-z'

¡ T (0,0)
Ü ((Jill)

oJ ()~) T (0,1)ê).s - ( 0 d/J l
=0 (II-74)

which is the form referred to as a far field balance above.

Elementary solutions of (II-74)' which tend to zero at large

s are in the form of products of a de caying exponential in

s and a trigonometric function in z, and these can be

summed in Fourier integrals .We expect the temperature

anomaly to be symmetric in z in view of the boundary con-

-(0 0) -(0 l)di tion at x = 0, hence u " , and u" should be anti-
symmetric, from (ii~67) and (II-73). We can therefore

work with half-range Fourier integrals and write the

solutions of (II-74) satisfying (II-57), (ii-62), (ii-67),

an d (I I - 73) as:
co

'T(O,D) =- _ J J(O¡l)(k)e-1t3S~tz d~
oøo ,

¡¡fo/oJ :: J ~(()JØ) (k) e-Ils s/ii ki. dko ". Øl
,'T-(Oil) _j rr(O)I)IL) -k3s Jd - -l ( "e (!" s k Z de.

ò

ìi (0,,) ~ j 1/.") (¿ e.-lis Sin kz elk.

o

(II-75)

(II-76 )

(II-77)

(II-78)
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Finally, we expand the boundary conditions (II-38) and

(II-39) in power series in e, which leads simply to:

.A(Olj) ) _(oj) ""(ojJ (c 'J
U. .(i', i 1- U 1 (01 i) =- Ú) I (0, 'Z) + ÚI l) iJ (0, i) = 0 J ( I I - 79 )

... - () J Z. ""- I i ,
T (o¡o)(o,Z)i- T(OIO'(O,Z):: tCi.)

(II-80)

T/\(Ol l J(, ) T- (OleJ( ) - 00, Z. r- l), Z -
) 1=/12.3""

1 1 (ii-8i)

Now from (II-76):

1'OI()) (ft) =

GD , . ,
z I - (00)
;¡ IJ i (01 Z) Sift ÆZ d-z

o

But from (ii-44) ~(O,O) ;: 0 and thus to satisfy (II-79)

Ü (0,0) (0 , z) = 0.' Hen ce :

;¡ ( 0,0 )
- (0 a' -= T- lOlo) = 0- u ' i (II-82 )

t

and the far field is not affected in any respect by the

source to this order in é. Then~(O,O) and~(O,O) must
-,

satisfy (II-79) and (II-8o) by themselves, so that in

(II-50) and (II-5l):

G (0,0) - 0
)

f (010):: ~\i.) I"-i T
\. .L.. ~.

,



and thus (II-5L) and (II-52) give:

u."'(O/I):; I t'( J -Yfi( .1/1f z e Sin -¡rz
.¡ C¡)$ * )

Then from (II-78) and (II-79):

40

J 11(0.1) 'd J itj (ri) ~/1l ki k .¡ 7L t (z. = 0
o

or

cfCOli)(k) -= ~ f r' k i
rf -.¡ - ¡-z.) Sin i dZ.

o
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(II-83)

(II-84 )

Thus iff (z) is spe ctfied we have all the expressions needed

to calculate the lowest order (in é ) terms of the linear

buoyancy layer and the linear far field. We collect these

expressions for convenience of reference:

T"" (0;0) F - va 1/, :: L z.) e ÚJS 7 vL

A (D/O) r - 'J1li r~
tv = riz) e SlFJ 'ÝIÏ

~ (Oil) I t' ) -rki rl. f/. )
U = Jt (i e (S/n lrï + Cos 1fi

""

T (Oil):: J 1(O/I)(k) e-lls COS kz. elf¿
cJ

(II-85)

(11-86 )

(ii-87)

(II-88)
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"

IJ (0,/)

-Ð

:= ,j ¡ID/d (k) e _k3s Sin kz dk

o et" ,
~ - j k2 .;(o¡')(k) e- b!s Cos kz. dk.

o

(ii-89)

I. J (013) _ =r (Ui')w - I zz (II-90)

Computations for a particular f(z)

To illustrate the results just derived, profiles of the

various fields have been computed and plotted for the simple

source function:

_ -i 1-

F(z) -= e.
,,(0,,)( -l L _ Ie7l
d k) =- GfCe (II991 ))

The integrals involved in the expressions (ii-88) - (ii-go)

were computed using a trapezoidal routine; the program

is given in appendix III. This program also computes the

buoyancy layer components and the nonlinear corrections

in both buoyancy layer and far field; these corrections are

discussed in the next section. In all the plots, only the , T
;.

L
region z ~ 0 is shown, since each field is either symmetric

or antisymmetric in z. Figure 2 shows vertical profilesA(O 0) A(O,O)of T ' and figure 3 shows 'horizontal profiles of w .
We see that the hot source pr~duces a rising motion confined

to a thin layer (x ~ 4~) and that at the outer edge of this

buoyancy layer the temperature anomaly tends to zero, to

this order in ~. Figure 4 shows vertical profiles of the
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OlO/d(r)Z) + U'OII) (OIZ) (II-92 )

For x = O(~), i.e., for stations in the buoyancy layer,

this is a good approximation of the quantity

Û lOld ( ), z) +- U (01 I) (5, Z) (II-93)

which is the total horizontal velocity, to order G. We

have chosen to plot (II-92) rather than Ü (0, l) alone in
order to exhibi t the actual velocity. We see that the

motion is toward the source in the region z ~ 0 and away from

it for z ~ 0 and that the motion is confined to a range in

depth of about 4 scale lengths L. The z-dependence of

the horizontal veloci ty is that of the temperature anomaly

gradient, from (II-87), and this is apparent in the figures,

Thus the zero of velocity coincides with the maximum of

temperature anomaly, and we shall see that this holds in

the far field, as it must from (II-88) and (II-89). Stream-

lines of the motion in the buoyancy layer region are shown in

figure 5. The streamfunction is defined by:

- i!D,I) = û (O")(f/Z) .¡ ¡¡(D,/) (d,z.)

(II-94)
~ (0,1)

r W (0,0)

so that the streamlines are distorted in x. If one imagines
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compressing the figure in the x direction by the factor

€, one has the picture of the streamlines in (x, z) space.
Explicitly, from (II-86) and (II-87):

ø (~II) -li r(zlLI- e-Jl~ (COS"* l-Sin r~il

F. 6 h th f f' . -( 0, l)igure sows e ar ield horizontal velocity u
at several different values of s. We see that the profile

nearest the origin, that at s ~ 0.0078, is quite similar

to the profile at f = 3.5 in figure 4. As s increases

the profiles retain their basic shape while broadening in

z and decreasing in amplitude. Figure 7 shows profiles

of the tellperature anomaly ¥( 0, l) . Note that this quantity

is not the far field extension of the buoyancy layer
A( a 0)

temperature anomaly T ' . plotted in figure 2 but is one

order higher in E. An O(~) buoyancy layer component- not

discussed here- exists to adjust T(O,l) to zero at x = O.

In figure 7 we again see the broadening and decrease of

amplitude with increasing s. The central core is warmer
i

than the mean temperature at each level, but there are

relatively cooler ~ay ~rs above and below this core. The

maximum of T(O,l) lies at the level of zero horizontal

velocity, z = O. Contrast this situation' with the usual

pattern in a tongue identified by a dynamically unimportant

tracer subject to advection and diffusion; in that case
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maxima of velocity and txacer concentrationcoincide(e. g. ,

Sverdrup, Johnson, and Fleming, pp. 503 ff).

The existence of the relatively cooler layers may seem

odd. They are not due to numerical error, for in fact all

these far field profiles' have an infinite number of zero

crossings in z, as the following argument indicates.

-(0 l)Consider u., ; from CiI-89) we can see that at large s

k3the factor e- s decays rapidly in k and for purposes of

1(0 I) .the integration ~ i may be replaced by the first non-

vanishing term 01' its Taylor series about k = O. (ii-84)

shows that th~s term is just

T Frz.J di.
Ek
1í (II-95)

()

so tl ~ 3
¡¡ tD,/) ~ f lti.)Ù' / k e~ ksS"; kz JIeo ()

Let ~ = k3s. Then

ii (Oil) ,; lj~K.ih · ty, j (f~ e-sU S.¡, 'lcf~ dl

" "

(II-96 )

- V ('l ) S - V::
where

vr - z.Ä)) (Il-97)
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Thus a line along which ü(O,l) = 0 must be a line of V = 0,

i. e., a line of constant '-, say 'I ;:fo or

z:: % S Y3 (II-98)

If there are several such lines they clearly spread farther

apart as s increases, so the spacing between zeroes of üf 0, l)

increases. Similarly, lines for which ü(O,l) = 0 are linesz

of const an t 'Í; these lines conne ct points at whi ch \ u (0, l)(

reaches a maximum in z. Let ~ be the value of ~ on such a

line; then on this line

I Û. (0,,) L

~"r"

~ . Vi!) 5- (II-99)

i.e., 'ü(o,l)1 decreases along the line as s increases.

In short, we have shown analytically what we have already

seen in the computations, that as s increases the spacing

'between zeroes increases and the amplitude decreases.

Now suppose that the ü(O,l) profile in fact has some
)

number N of zeroes; the case N = 5 is shown in figure 8.

At a slightly larger value of s the profile will have

dotted lines in figure 8.

amplitude as indicated by the

Thus ü(O,l) has either N or N + 2s

broadened and decreased in

zeroes depending on whether one draws the outermost lobes

of the profile as in figure 8a or 8b, The zeroes of ti( 0, l)s
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are indicated by the horizontal marks in figure 8. Further-

more, a profile gains one zero by each differentiation in z.

Such considerations used in conj unction with the far field

equations lead in sequence to the entries in table l.

Tab le 1

Numbers of zeroes in far field profiles

starting with assumption of 5 zeroes in u(O,l)

Variable N

_(O,L)
5u.

_(O,l)
7uzz

-(O,l) _. --(0,3)
5 7u '.' = -w ors z

-(0,3) = T-( 0 , 1 ) 4 or 6w zz
ir(O,l) = -(:O,L) 2 or 4Pz
-(O,l) 1 or 3p

_(O,l) = -(O,l) 1 or 3 3 or 5Ps u zz

Any choice of the last entry contradicts the second entry

and the contradiction arises for any fini te value of N.
We conclude that N must be infinite.

Figure 9 shows profiles of the vertical velocity w(0,3).

Along the s axis the velocity is everywhere downward and is

of the correct amount to recirculate the upward flux of
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fluid in the buoyan cy layer:

~
J W(D) (X,D) dx :: J -Ió )bwes.s order ¡II G J
o

DO

l (w lo,oJ (to) . +- (; fA (O,j)(s,o)) d¡t
00

:. E- ( r w (ø¡ó) ( Š ,0) d f

~

co.' r ( -Jf(i I= f t 10 es in ui d f

0\

+- ~6 W(Ol-3)(oIS) ds 1

+lJ.sr_J. k3e-~e-~Sd~1
i 1 ~ . S

(ii-ioa)

- 0
Note that this velocity is very small- two orders in G less

than the horizontal velocity. Qualitatively, because the

fluid is strongly stratified in the vertical only a slight

vertical motion is needed to produce an advecti ve change

of heat content in balance with that given by conduction".

Comparing figures 9 and 7 we see that this central region

of sinking fluid is associated with the region of anomalously

warm temperatures. Above and below are regions of rising

motion which are regions of conductive heat gain.

The streamlines of the far field motion are drawn in

figure la, where the streamfunction is defined by:

_ ¡¡ (Oid
= ¡¡ (0)1 J

Z.

e¡ (0,,) - W (d,3)-
oS

If one stretches this plot in the horizontal by the factOr

€-i one has the picture of the streamlines in (x,z) space.

The flow is thus in the form of a very long cell of limited
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vertical extent, with much weaker cells ab'ove and below.

For example, if € = O. 1 the ratio of length to height of
,

the loop formed by the 0.20 streamline is about 200. In

figure LO are also drawn a few lines of cons tant T( 0, l)

so that the course of a fluid particle through the field

of temperature anomaly can be seen. We see that in the main

cell particles gradually become relatively warm as their

paths lose the upward slope imparted on leaving the buoy~

ancy layer, become horizontal, and finally bend downwards,

be coming vertical at z = O.

Nonlinear corra6tions

We next turn to -calculating the effects of small but

fini te nonlineari ties on this flow. We write any dependent

variab le e as the sum of its linear part, calculated in the

previous sect~on, and a nonlinear correction term of o( S) :

$= (ê(O) +e'Ø)) + Seli) (II-lOl)

In the. basic equations (ii-i6), (II-l7), and (II-L9) the

nonlinear terms on the left sides are all multiplied by ó

while the right sides have &0 as coefficient . Substitution

of (II-lO l) leads to terms of the form

c ( A (0) _ (0)) ~ (I\ (0) _ (0) )
o l, + u. d x l, ~ L. (II-l02 )
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on the left sides, while the unknown correction fields and

their deri vati ves) multiplied by S, appear on the right sides.
We suppose that these corrections may be expanded in power

series in ~ and split into buoyancy layer and far field

components, just like the linear fields; First superscript

1 indicates nonlinear correction~

eli): ê(/'O)("z) +-bê(IJ¡)(TJi) +- .."

+ e(liO) (5, Z).l t-e(Jll) (~tJ +,.. .

(II-lO 3)

Making such substitutions in (ii-i6) - (II-l9) we have:

i (E (1(0", ,JCL.Û(Oit) + ... + E-Ü(Oil~ f1U.(OI?) 11,)2 (/ I,,Cii,d -(",i) )+- d)( C"IA .¡..... fU .¡..
+ /r (W(tJiOI.¡ ~íJ(oli.. të¡;(()li~(-y~(øIYl.)';i (G-~COII~... +f¡¡(oi"+... )

=_;J (fAcliel ,.6(1,1' -(',0), -(Ill ) J\1"l/Alllø) -(/IG)) (ii-i04)
hi;, -4l:r ....-tt 9"é'P '+'" 'Tt:v llJ .¡ ...,tlA l.'"

i- ( l: ~ Co, 

1)+ f i ÛIO\'Z~ ... + é= ÙCOll?¡ "i ¡¡ (1)IrJ.;...)t L ci.(OIO~... .. ~ W (Oii~..,)

t g:(~lO,O).¡ &-~i(J,il-'" +t¡¡(OI1i~'1tJ(Øi'!...)-h(W(Olø~... +-lW(ØI~". J

:: -l (All,O) A(II) -(,) _( \ ) ""L \.., -( \ (II-lOS)
~ë-.1' +-"1' l.....+~ .(J+",~ I"i... + T 11°.l~T"'III.¡....¡T Ii0-l'=;:(I'~",

+ f-1n"(QCl10\+-6-C,(iII).¡... +- W(I,(/\.~(III)+...)

~ (A.(IIO\ Aliil ) '; )a'¡ \J -l/:u.' +'" -+ U,0,O)+ "t~5"'"",,,) +1fz.(wCl,Oi~~(II~.. + W(I,.~f.W C'~L) (ii-i06)

': 0

( fû (O/l)~ f1.Clo,i)+... oJ (-u (O¡d.¡,/l¡¿lOll¡' ".):- (T"(Øio) LA¡(()II\ /l -(.1') )I: ~ (IX + t' +.. 04 t: T .....
+-(i3lci/OI+,-WCOI/\.¡...+ f3ï:(()13)+€Y~(O''lJ.)f (T..(O,OI L""r(O,I) r(fI.iJ I (II-107)+. i. .i .. .,... or (: l" )

- -l i". (~,o\ i." i~,) - (i 0\ -(I') )- w .i I; W +'0' -+ W ¡ ., C: Le i.,. _ .

+ E't V'2 (~ (1,01 T~ (I,ii T C1 0) T (! '1 )'1 -l~ -l....¡ · +-f i.,...
In (ii-i04) - (II-107) we have left out fields such as W(O,O)

known to be zero from the linear calculations. Performing
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the indicated differentiations we obtain:
-l (fiZ(O/I)..... + L;;(O,/J II ~(o,i) + ~3U-(ølil )..1 (/~(Dj'l li-:((¡I'I))/ ~t':løl'l -(0 ,) )
tr .. ".. .,...1 b(, .l'" t; s..... tr IP .,.. of i. ,¡.. \.~.. z, l-" +l:1A '1' +-~

~ _(-ifA:',O)+- ~:"il.. 1- éz'f-((ioi- .if-Oid ) '+Ll.I-A/~(/,l)J J.;,,(I,d-, f ioST" f:. S +-... C.. 11 H oJ é- IAff +..
+- £'1 jj(I,o)+ LS',"7 (1,') , ""(1'0' - (f,o) 1t; "' $S ç lAse +.~..¡ U of' - + U. + .. -.. t1. ~'Z (ii-iO 8)

.. (t. ~ (0,,) I' - (I)¡l) ) ( J. i~ (0,0) cS:-; ((Jl~) ) + J. (wA (0,0) +) :~.. (0, i) )(i~ Idie) .1 ,:: co;i) J(Jt"fA +"+t"tl .... f""~ .....+1;..$01.. cr .,...... l-Q W-i+"TE:""i+--

__(.:(I'II).", +ñ(/¡o) ) t ""Tliiol -,,(1,6\ + ,'IJ.. W"UIO\ i "'(II)- I 'E r 1. l-' ~ ..... ,. l-' . . ç lE: (\.. - rJ '.¡ ,. .
+ ~ 'I -(',(J) S"-'ii \ A (1,0) - (/,ó) J €: n (ii-iog)~ bJ .. t: I.~ ''/ + .., +- LV -l .. . .¡ W .¡ . . .S S r" SG 1. 'Z Z 1.

.1::(10) '1(..,) --/i.-(l,/)) ;'US-O,I) -"(1,0) -(to)
€: "" f' + U ~ .¡... T C lAs .. (; ~.. + W.. +... .. W .. l :¡ i" = 0I .. ~ (II-llO)

I '\(01) -10,1) )(lA(giÒ) i-(i,i) \
l. f U '+... +- f () + .. , Eo T L +... + Eo TS + ... )
iJl~ lo¡o) , 1.1 i: to,3) Ji4-(O,ol. € T ((),,) )i Li. +- ." .. o¡ VV +-... '.' -i l- . .... 'Z .¡. ..

-= - ( W (1,0) +. -- + w (1.0) + '.. ) ,L E:'2 L t\! -T ~ r~ t ~~ll\~." (II-lll)

+ E:'" TOil)) L.5' r(I'I) +~(I/O) -(¡,O) J. Ss + C; Ss +... , 1. -i of" + T z. -i .;.. .

Since the linear temperature anomaly has already satis fied

the only inhomogeneous boundary condition in the problem,

(II-80), all these nonlinear corrections must satisfy

homogeneous condi tions at all orders in E., i. e. :"(I') 0') ) )U iJ(o,i.)+-U IJ (6,2) :: ~('.jÜiZ\+W(I,j((jI"i)

-TC11i\OIZ\ +1 (\IJ \(01'21 -: 0 (II-ll2)
.
J'" 0''' '"~f '''i

and of course all must tend to zero as ~x2 + z2' ~ 00.

For large x all buoyancy layer fields decay rapidly

to zero and the far fields alone must satisfy (ii-i08) -
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.'

(II-lll) by themselves. We assume that they do so for all

x. Collecting coefficients of like powers of E we then have:

. terms in EO

o :: -fs( 1,0) + U (JIO)
i. 'Z

(II-ll3 )

o = -? ~,o) 7- T (/,0)
(ii-ii4 )

. 0 =. - W ~',o) (II-ll5 )

0= ¡; (1,0)
(ii-ii6 )

and thus:

- (/,0)
U1.1.i. Tc"IO)s (II-ll7 )

terms ih E i
0:: - t/"i) + z¡ i'~) (II-ll8)

O -l (1,/) T (1,,)-=-r1- .t (II-ll9 )

o =- W (/,1),:1. (II-l20)

o W (I. i) (II-l2 l)

and thus:

Ú-(I,I) ": T(/')'Z ~ 7. oS (II-l22)
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terms in G2.

.1 Lü-to¡,) -Co,d -,olilj~(O,l) 1 _ -(l,t) - (1,2.)fS Us + W '- Z J - - f s + (,"Z1. (II-l23)

o = -:¡ ~/, z.) 4- T (I, z. J
(II-l24)

0= II £1,0) -l i., (/,2.)""S tN-i (II-l25)

o = - W (1,'2) + T. (1,01
'U. (II-l26)

where (ii-li6) has been used to obtain (II-l2 4) . From

(II-L25) and (II-l26):

r- (1,0)i:z. 1.
- (/,0)

-= -u. s (II-l27)

terms in E: '3

!. r i: (01') ¡;(o,i) II lO,'t) ,-(01\1 .. (oia) - toii)' - (OI'1)¡:(OII) 1u L l. IA S + \1 i. S + w ""s + w .. S
:: _ ~ ~I,l) i; il,l)

is + ""-i"1

(II-l28)

c - .. ..~1,3 ) -l =r t111\
(II-l29 )

IJ tli') (1'3)0:. V\,S + Wi. i
(II"'l 30)

o ': - W ( i ,3 ) T (I,,)+ Zz. (II-l3l)
where (II-l2l) has been used to obtain (II-L29). From

(II-l30) and (Ii- l3l) :
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T (I,d -.zzz -b(I'I)S (II-l32)

From (II-ll7), (II-l22), (II-l27), and (II-L32) we have:

¡ T (.I,ø) J

(~C. "l) ¡j1.11o)"'" + f.. . 1 ti, I) ': 0ai .5 _ (' ,)
u. ¡

(II-l33 )

(II-L33) is of exactly the same form as (II-74), so these

nonlinear correction fields are governed by the same dynamics

as the basic linear fields. In (ii-i04), (II-L05), and (II-

l07) we can establish the symmetry properties of the left

sides by referring to the linear results (ii~85) - (11-90).

On the left side of (ii-i04) is the expression:ø ~. ~
ï?l (Ûlo~lÃ(Ol).r (ú'io)+i7(ol) +C~IO).¡w(b))¡;1-(o.(o)~¡¡ (0)) J (II-l34 )

Since n(O) and ü(O) are odd in z while ~(O) and w(O) are

even, the entire expression is even, so that on the right

side of (ii-i04) we can expect a(l), ü(l), p(l), and p(l)

to be even. Similar considerations in (II-L05) and (II-l07)

show that T(l) T(l) ~(l) and w(l) are odd. In short,, , '"
each nonlinear corre ction field has the opposite symmetry

to its linear counterpart. With this information we can
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"

T(I/O) = j ¡(I")(k)e-k3s Sin ti dkø

Cl

¡¡ (J,fJ) = J _¡(frO) (kJ e- kJs (OS ki OIL!

d

f (1.')= 1 ¡(I"7k) e-k~ Sin ki dkooø 3
ú. LJII)= l-.Ju¡IJ(kJe,-ks Cos ki dk

(II-l35 )

(II-l36 )

(II-l37)

(II-l38 )
I ()

We next ext~act from (II-108) - (II-lll) the equations

governing the nonlinear corrections to the buoyancy layer

fie lds .

terms in E-I

O A lhD)
= - fr

(II-l39)

0= Û (1,0), (ii-i40)

whence by the requirement that buoyancy layer fields tend

to zero as
i~ øO :

c (I, (J) :: -p (¡,a) _ 0 (ii-i4i)

and the same reasoning that led to (II-82 ) gives:

¡il/O) -(i) 7-,(10)- I, /0 - " - 0- (A -' (ii-iLI2 )
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£,0

", : .... ' : -' (i'')",,0 = f1 (ii-i43)

terms in
, ~'- ..

N (û""~ ÜI"'I) Wi"" + WiD,.) W~")J ~ f(l..i., w;t (ii-i44)

o -= zi ~/,') + íJ ~rO) (ii-i45)

('" (0.'\ - (01'))1"" (0,0) /\ (o,/)) AT (0,0)LA +u 1 +w 1- _ ~ (I,D) ~ (1,0)- -Io .. in (Ii-i"46 )

(ii-i44) and (ii-i46) are just the Ekman equations with

inhomogeneous terms on the left sides. On these left sides

we can make the approximation:

U"'iO,I) -co,,) _ ""CO,I) -iO,O( )+ U. - U .¡ U 0, 'Z (ii-i47)

which is good. to O( é)), since the fields to be determined

decay on a scale î = O(l) or s ~ 0(~3). Using (II-84) -

(II-90) (ii-i44) and (ii-i46) become:

.L d (1 rz-Je-Vfi( " rL ti -rl(l) '_ 1~(lIf1) TA (1,0)C1 di. 'l r $1 ~ tli - Co$ 1(i + e - "Vn + (ii-i48)

J (1 F1) - Vñ.( v. 't - ý' fi)
Jí q e Sï)' 11i + Cosl(; - e -: _(J(I,O~ tÚ,oJ

H
(ii-i49)

/ .,

The solutions of (ii-i48) and (ii-i49) must satisfy ",1.1,
~(i,O)(O,z) = ~(i,O)(O,z) = 0, since T(l,O) = w(l,O) = O.
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These are:

T"" (I, ()) = d (.1 fI'l) - V¡¿ (( ~ - 1 ) ~I (1. - .2 ) ~' ~hdi 'fr e s $6" Cos rfZ - If: Lod ~ 111 /(1.

- ~.( I + ~) CoS lr - ( ~ -1-0-) e- n'l1 J (II-l50)

;; (1,0):: d / 1 t 1) - J!fi r (.1 l 'Z 'i ( r '3 \ :5/-W d1- l4 e - S'.?) (oS rr' - iõ - i;õJ ~ill 7'fÏ

- r¡; (It~) $iV\5k + (~ + h)e-~ J.

(ii-145) then gives the horizontal velocity set up

divergence of ~(l, 0) :

"" (f I) / Ji.(lt2.\ -Vr; (f.l .. 7) r/
I. i = ÝI iii. c. ) e '-io ¡; (j S"¡~ 7rï

- ( ¡ i- i) (os fÆ - rlZ (i+~) Sì~ Jr

- lí ( Il-~) cosff + (~ . i- S2~.) e- r'r¡ 1

, (II-l5l)

by the

(II-l52 )

Using (II~l52) and (II-L38) to satisfy the boundary condition

(II-ll2) we find:

cf

l Jllll)(~) Cos k 2.dk
o

L(3 i \d1-(If't)
+ v:-Š+Štr)di"L ~r ==D

or

or (Iil)( ) fi (s 1.) (' £-(1 ç'l\ L d
~ Ie ': - ri -S + Stt J d~1. ~ ) (os £(2. L.

o

(II-l53)

(II-l54)

(II-L54) determines i(lll) and hence, via (II-L37) and (II-l38),
. -( 1 l) - (l l) .determines T ' and u" the lowes t order non line ar,
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corrections to the horizontal velocity and temperature anomaly

fields. We collect all these correction fields for convenience

of reference:
" (ii 0 I d. (i r i I w l~ r _, .L l i) 'Í/. (1 _ "3 ) r/
úJ :: di. '4 r ie L I..r U (OS l'tí - 10 IC~ Sin 7(i

-J¡li+~) SiYYr¡ 1- (¡- ~ hr) e- Y't? J

9(1,0) :: ~ (..p-'I) -I¡(tf.b 1.) 1U (:i 9) l/oil. 'l r I e ~ - S"q- (os 7rî - ~ - í6d- S"f1 Tri

-.i~ (It ;)CO.s)h oj (~ - ?",) e- Vr~ J

;i(I,1l .1 J'l J L r. i) - lli r/J. 1-) . 'i/. ( !: r i ) t(
/) =, íi.¡-i.1. \ 4 r e ß.IC) + I,; ir Sin 711 - S ora- cds 'Tf-i

- k (i + -;) (5 in Yrz +Cos ¥r,) ~ (:i + ,~q") e- !/fi J

(II-l55 )

(II-l56)

(II-157)

-
ìi Oil) = - J ;C!II)(kJe- Ps Cos fez die

ó
(II-l58)

T qJ) -: j 1 (I,i) (Iz) e -k~ 5,11 ki- df
o

(II-l59)

øO .
W(lia) -: -f.k2-1C1")(k) e-J:sS'Ì1 Jez. Jk

(J
(ii-i60)

¡ (I,i) (k) ~
00 2.

- ~ l ~~ja-)!ii (lfY Caskz jz
cJ

(ii-i6i)

Computations for a parti cular f (z)

Profiles of the nonlinear correction fields have been
2-zcomputed for the same source function f = e ~sed to

illustrate the linear fields. In these computations we

take Õ = l. In figure II are plotted horizontal profiles

of the vertical velocity -O(L,O) in the buoyancy layer.

We see that the basic upward flow of the linear buoyancy
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Figure II Nonlinear correction to buoyancy layer
vertical velocity.
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layer (figure 3) is enhanced by this correction for z ~ 0

and retarded for z (0. The horizontal velocity which

results from continuity is shown in figure l2. In simi-

larity to (II-93) the quantity plotted is the total non-

linear correction velocity in the buoyancy layer, ~(i,i) +

-(i,i)(O ) P f'l f "T(l'O) d . f' l3u ,z. ro i es 0 are rawn in igure .
For z ~ 0 there is near the wall a region of posi ti ve
values, and at larger r a region of negative values, the

reverse being true for z , O. The streamlines of the

motion in the buoyancy layer are shown in figure i4; the

streamfunction is defined similarly to (II-94).
In figure l5 profiles of the far field horizontal

velocity correction ~(i,i) are plotted. We see,the usual

broadening and decrease of amplitude with increasing s.

The amplitude ,decreases faster with s than the amplitude

of the linear field u(O,l), which is reasonable in view of

-(l l) ,the fact that u ' varies more rapidly in z and should

therefore suffer dissipation try viscosity more strongly.

The same comment applies 'to the other nonlinear correction

fields. The total horizontal velocity in the far field

is ü(O,l) +~u(i,i), and in figure i6 we plot this quantity

for b = 5/8, a large value chosen to emphasize the nonlinear

effect. We see that the profile in the region of the

outflow (z ~ 0) is sharpened, the profile of the ret~rn flow

is broadened, and the level of zero velocity moved up to
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z

-().6 -O,:J- -D.'! -(),3 -0,2 -0.1 o 0./ o.~ 0,3

0(111)+ iJ(t,t)(O/7.)

Figure l2 Nonlinear correction to buoyancy layer hori-
zontal yeloci ty.
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f= O,2S

b 1= 0.75
C

J = 1,2.5

d f = I, 1S
e . j= Z,2.S-

f
! = 2,7S

g f = 3,2.S

h f = $"00

-0,0& -o,os -0.0'1 -0.03 -O~02 -().ai o f),OJ

Figure l3 Nonlinear correction to buoyancy layer
temperature anomaly.

o.oz.

f (110)



6i

(/

~ tl 0 \t ~

()

\n I; t' 0 N

i:

~ o 0..': ""

.r!

Ò ÖÒOC)

ÅJ rl

0

S
cÙ
Q)
H

~..
(/

H,
()
~
cÙ
rl
~
C)

i:
cÙ~
0
::
,Q

0
~

.¡

i:
0
'r!~
.¡
C)
()
H
H
0
C)

~

H
cÙ
()
i:
'r!

ct

rl
i:
0

,,~;.

:z

.:
rl
()

"
H

.

::
bD
.r!
¡:0..NN



z
'I

~..~,

-o.t¡ o-0.2 0.2-

iJ no

Figure l5 Nonlinear correction to far field hori-
zontal velocity.
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z

2

I

o'~ 0.6

1l(0)0+ í /1 (iit) -~--

lj lo,/)

Figure i6 Total far field horizontal veloci ty
for S = 5/8.
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posi ti ve z. For a cold source the linear fields reverse
2

sign but the nonlinear corrections, dependent on (f(z)) ,

do not; in this case the out flow (z ~ 0) is again sharpened,

the return flow broadened, and the level of zero velocity

moved to negative z. The nonlinear correction to the

temperature anomaly, T(l'l), is plotted in figure l7 and

the total temperature anomaly "T(O,l) +bT(l'l) with ~ = 5/8

is plotted in figure i8. The nonlinear correction leads.

to an elevation of the core of relatively warmer fluid;

with a cold source the central core of relatively cold fluid

would be depressed. The profiles of w(l, 3) are presented,
in figure 19 and the streamlines in figure 20.

The computed elevation of the maxima of horizontal

ve loci ty and of temperature anomaly is not pe culiar to
2

our e-z source but is a general effect of the nonlinear

corrections. . Refer to (II-l5S):

U-U/1)(OIZ.) - -l ('3 .J.1 ) l-"L (1 Pl.).J "5 J(J di.i. 4 r

This is the value of ü(l,l) at the outer edge of the

buoyancy layer. Likewise from (II-84) and (II-89)

U(o/d(OIZ) = --k FI

Thus the total velocity is:

-
IJ it I-iI -I ¡8(pjll J i '~(3 1~-- -+' )t':: I. S S"õ
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0.'"

T(1,1)

Nonlinear correction to far field tempera-
ture anomaly.
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T (0'/)+ f T(lII!.- ---

T(O,,) _

Total far field temperature anomaly for S = 5/8.
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Nonlinear correction to far field streamlines.
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Hence;

l.i.~ k(r 1- ~(içç/ll +U'tiiJ)

-
and u therefore has its maximum at z such that

c

fll-
r'll

;2 (3

l-'ß~I
Now f ~ 0 and in z -; 0, fl.c 0, so the ratio fll/flll is

positive at z = z .
c

A glance at figure 2 l, whi ch shows

the qualitative forms of f and its derivatives, reveals

that z must lie above z , which is the level of thec a
maximum linear velocity.

Summary

The linear calculation results in a long flat

convection cell or tongue containing two distinct regimes

of flow. Near the source is a buoyancy layer, a region

in which vertical advection of the mean temperature

is balanced by horizontal heat conduction and the buoy-

ancy of fluid parcels is balanced by the horizontal gradient

of the vertical component of stress. The vertical velocity

and temperat ure anomaly are O(l) in the power series ex-

pansion in ~. Variation in z of the imposed 1'lux of heat

into the 1'luid gives rise to z-yariation of the vertical

velocity, which in turn, by continuity 01' mass, results

in a horizontal velocity of order E:. This horizontal
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veloci ty then extends into th.e second region, th.e far
field. Here vertical advection of the mean temperature

is balanced by vertical heat eonduction, the horizontal

pressure gradient by the vertical. gradient of the
horizontal component of stress ~ and the buoyancy force

by a hydrostatic vertical gradient of pressure anomaly.

The pres sure and temperature anomalies in this region,

like the horizontal velocity, are O(E:); the vertical

veloci ty is two orders smaller.
The central feature of this tongue is that the

scalar which "marks" the flow, the temperature anomaly~

is not simply a tracer but also gives rise to a dynami-

cally important force, buoyancy. Because of this,

distributions of ve,locity and temperature anomaly bear

quite different relationships to each other from those

found in a tongue marked by a passive tracer., The

level of largest temperature anomaly and the level of

zero horizontal velocity coincide~ at the level of the

center of the source. The vertical velocity in the far
field is everywhere downwards at this same level.

Inclusion of the most important nonlinear terms

through a perturpation expansion leads to a modification

of the balance of forces in the buoyancy layer ~ adye ctions

of heat and 01' vertical momentum becoming important there.

No modification of the far field balance of1'orces occurs¡ .
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however; this region simply accepts the now slightly

altered horizontal Yelocity pumped out o.f the buoyancy

layer and dissipates it and its associated temperature

anomaly through viscous action and conduction. The

profile shapes are altered by the addition of the non-

linear corrections, more so near the source than far

from it, as the nonlinear corrections decay fas ter in

s. For a hot source, the outflow lifts upward and

intensifies, as does the central core of posi ti ve
temperature anomaly.

It is instructive to trace the overall flow of heat

through this system.. The net flux g of heat (dimensional)
into the fluid takes place' by conduction

0. "( ~ (0)6)

Q 7. -t.er \(l)XA d i!A

_ t6 c.l ~ ~
EIî - (J

at x = 0:

-
, \ A (Oiil)d

~ -toep K-Ts)_Tr z.ø-

r ~L z) J i.

where the subscript d indicates a dimensional variable.

There is no additional contribution to Q due to the ver-

tical integral of the nonlinear correction ~(L,O), since

this field is odd in z.

This amount or heat then 'enters the i'ar 1'ield by

horizontal advection with the yelocity ~tO,i) ~ the out-
flowing fluid havitil_ higher mean temperature than the

returning fluid. That i~:
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.' Ql

¡ - (0..) -- I
foep Ud (O",Zcl) Jl\lld)dt¿- ""

01

J ~l-~' J - (0 I) ) ( ) I=. Ltoc.p b é 0-, _00 l. i (0, z. To + Llf'2 d i

(li-l62 ).

eo c'li¿Ts

E:

Cl

) \) lOil) (0 i i.) -i d2
- t;

1 - L ç '(~ d i.__ f2 Q

-: to c.? i¿ Ts
~

At values of s ~ o this integral decreases, vertical

conduction and advection in the far field taking up

part of the flux. The conductive heat flux in the

horizQntal is ~ ~'
-toCj' K-r e J TS(O,I) ,h "-('.Cp ioTs? ~ \ f~')hd .J (ii-i63)
=- - (0 Cp "TS f i bs L fCO")(SJob) - f (011)( '.J-co)J =: 0

The nonlinear corrections do not contribute any net

horizontal advecti ve or conductive flux in the far field

because ~(l, l) is even in z and ¥(l, l) is odd and the

integrals corresponding to (ii-i62) and (ii-i63) therefore

vanish.

Ultimately the far field, gets rid of the flux Q by

vertical conduction. The conductive heat 1'lux toward

z = + 00 at a leyel z= a is, in dimensional .form:



( r A (010) - ((J L) J \
-foC, KTs ~ L T -i L)ial) + E: Ti. i (S,td d)(no c:
-=-l~Cllc1j~t- ~ T~()ld)(~Ja.)d) +-;) T;o~')(Slci)d5)L u 0

c;
~ - .foCp KTs 1 T (01')( ) Jê 11. Sia., So
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Adding a like ter~ l'or the flux toward z = - tJ across z = -a

we have for the flux out of this region:

(7 ,
..' 1 to c'l \G 15 i T-" (oid d

'6 J z. (silt) oSo no ,
~ -~"f':1s i -k1(.")(li) r e-k.3SJsJ $"; b. Jk, ~ L 0, ,,0
:: 2. tocp ~T5 (Nj ~ ("I)(~ ~ kc. At

~ /z 1-oNow from (II- 84)Q ri
.f ~(1.) cli ~ ~ ¡o 0 1 (011)( ic)

li ~ - ç ì)l ~ Q. d k.

so our conductive flux is

a. '
~o Cp k-l-s ¡'if'l) dz

G l-
-a,

and as a -)00 this becomes just Q. There is no advective

flux to z = i: (J , l'ox

)I'rr rJ¡ t)
W 0/3 (S, c.) T,. (c.) d sa ~Oö ()
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Chapter III Laboratory Experiment

Description

In this section we outline the design of the laboratory

experiment setup to model the thermally-driven tongue

dis cussed theoretically in chapter II. It should be

mentioned at the outset that thè experiment was not

expected to yield precise results over a wide range of

the several parameters of the problem. Rather it was

intended to demonstrate that the long flat convection

cell or tongue actually exists and to exhibi t some of

its grosser features,. and these obj ecti ves have been

achieved. A more elegant apparatus, capable of yielding

better data, could be built now, in the light of experience

gained in this effort.

As is usually the case in designing an experiment,

several compromises on dimensions, values of parameters,

etc., must be made. We begin by settling on water as the

working fluid because of its transparency, its 0 (l) Prandtl

number as per the theory, and its convenience. The

silicone fluids often used in convection experiments are

rejected because all except the lowest viscosity ones

have high Prandtl n~bers, while the low viscosity ones

would require a huge experimental tank in order for the
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weak dissipative effects to bring the flow in the far

field to zero.

Next we recall that the parameter & , which should

be kept small for the model to correspond to the theory,

is T jL ~ It is desirab le, however, to have T larges s
in order that the temperature anomalies in the flow

may be measurable and that they may dominate over any

spurious temperature anomalies introduced at the sidewalls.

Thus we want to keep L ~ large. Llf is limi ted, though,

since the total top-to-bottom temperature difference

cannot exceed 96°C without producing either boiling at

the top or instability at the bottom, and in practice

a difference of 850C seems reasonable. Thus we set

" = 850C/D

where D is the depth of the tank in centimeters. Now L

must be some small fraction of D at most so that the

circulation does not feel the top and bottom of the tank,

for the theory is concerned wi th how the flow is dissipated

in the absence of boundaries. Referring to the far field

profiles (e. g., figure 6) at s = 4 we see that the circu-

lation may extend over a range in the vertical of about

lOL and still retain about LO% of the amplitude present near

the source. A safe choice seems to be
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L = D/20

So

,'iL = 4°C (III-l)

Another consideration involving L is that if it is

chosen too small the dye lines will be difficult to

photograph and interpret. The dimensional far field

horizontal velocity on linear theory is 0(~l5~¥L2) and

hence is proportional to l/L. If, for example, ~ = (: = O. 1

this velocity is about O. olfV cm/sec and to have observable

dæsplacements of a dye line before it is obliterated by

diffusion it seems necessary to keep L of O(L cm) or

larger. Referring now to figure 22.:we can see how limi ted

our choi ces are. The curved line is the locus of points

for which ~ = f ; ideally we would like to o~erate in the

region i(~ so that our theoretical perturbation scheme

would be valid. The vertical lines denote various choices

of L subject to the condition (III-L), and on account of

the dye diffusion problem we would iike to operate weii

to the left on this plot. The farther to the left we go,

the smaller T becomes. We finally come to what is at roots
an ad hoc choice and select the operating point shown by

the cross in the figure. This gives the following values

to design around:
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So

~ = f = , o. oS

T = 0.33OCs

¥ = SOC/cm

L = 0.5 cm

D = lO cm

Then if we plan the tank long enough for s = 4, as seems

sensible from the far field profiles, we have

Lx -z= tank length, = 4L6 = 200cm

The choice of a width for the tank is made as follows.

Ideally we would like' the width much larger tha~ any other

dimension, large enough for any extraneous temperature

perturbations introduced at the sidewalls to decay to zero

before reaching the axis of the tank, leaving an undis-

turbed interior region in which to observe the flow driven by

a source on one end wall~ This would be a prohibitively
large tank. We must therefore try to insulate the sidewalls

thermally and to check that any secondary flows introduced

by the presence of sidewalls are small. For a perfectly

insulating, vertical sidewall there is no direct adj ustment

of the interior temperature field required, but there is

a velocity boundary condition to be met. It is straight-

forward to show that there exis ts a vis cous boundary layer
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which can bring the interior horizontal velocity (the

far field horizontal velocity of the theoretical two-

dimensional problem) to zero and which introduces neglì-

gible alterations of the other dependent variables.

This boundary layer is discussed in appendix iV. At the

end of the tank opposite the source (s = 4) this boundary

layer alters the flow LO cm in from the sidewall by only

about 5%. Thus a tank width of about 20 cm should suffice.
Wi th these features of the design rationalized we proceed

to describe the actual hardware of'the experiment.

The experimental tank and maj or pieces of auxiliary

apparatus are shown in figure 23. The upper plate, base

plate, and icebath plate were of anodized aluminum, l",

1/2", and l/2" in thickness , respectively. Cemented to

the top surface of the upper plate was a custom-made

electric heating pad (Electroflex Heat) covering the entire

plate. The heating wires were spaced about i/4" apart

to give' very uniform heating. A proportional temperature
contro ller (not shown ~ YSI Model 72) was us ed to regulate

the power supplied to the heating pad and hold the upper

plate at a fixed temperature (~O. 050C). The thermister

probe of this unit was placed in a blind hole in the upper

plate center along wi th some Dow Corning heat sink, grease

to ensure good therIDal contact between probe and plate.

i6 copper-constantan thermocouple junctions, two per hole
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to provide spares in case 01' damage to the fine wires (#40)

were placed in 8 blind holes in the upper plate. These

holes were arranged in a pattern as shown in figure 24

and were dril led from above to wi thin i/i6 i of the lower

face of the upper plate; the thermocouples thus sens~ very

nearly the temperature at the water-aluminum boundary, for

the te~perature drop across i/i611 of aluminum at the planned

heat flux is only about 0.004°c. The junctions were

electrically insulated wi th a bead of Devcon 5-Minute epoxy,

and the remaining space in the holes, was filled with heat
sink grease. An exactly similar array of junctions was

placed in the baseplate; the wires were led out in fine

grooves cut in the lower face of this plate. These arrays

were used to che ck on lateral temperature differences in the

plates by connecting junction #3 to any of the other junctions

to form a thermocouple. Special thermocouple switches (O~ega

Engineering) were used for' this purpose and were housed in

a thermally insulated box. In addi tion junction # 6 of the
Thase plate could be connected to junction #3 of the upper

plate to find the temperature difference across the depth

of the tank. Voltage readings were made o~ a Kiethley

Model i49 milli-microvol tmeter. Several small holes were

drilled through the upper plate to allow dye particles to

be dropped; a few of these holes are indicated schematically

in figure 23. The holes were plugged when not in use.

l
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The bottom of the tank was a sandwich consisting of

an aluminum base plate, a glass plate, and an aluminum

icebath plate. Thin layers of heat sink grease on both

sides of the glass plate ensured thermal contact. The

original plan was for the icebath plate to be~in contact

wi th a reservoir of ice-water mixture and thus to be at

OoC. The glass would then provide enough thermal resistance
so that the base plate would be at about 9 or iOoC, well

o 'above the 4 C point. In this way it was hoped to avoid

the more usual cooling system of thermostatted water

circulating in channels cut in the base plate. To carry

away the heat flux through the tank (about 40 cal/sec)

with, say, a O.ioC temperature rise between inlet and outlet

of the cooling water, would have required a flow rate of

400 cc/sec, and this flow would have had to be distributed

evenly through a large number of channels. The ice-water

scheme, in principle, would have solved these problems

through the natural downward convection of the melt water

formed underneath the ic~bath plate, and one day 1 s operation

would have only required the melting of about LOO lbs of

ice to absorb the heat flux through the experiment. In

practice, however, the ice chips clumped and remained sub-

merged by s ticking to the support columns in the bath, and

enough additional heat leaked into the bath that the ice

supply was depleted in half a day, The author feels, however,
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that with a bit more work this technique can provide effective

cooling for similar experiments much more cheaply than

conventional thermostatted circulators and it is for this

reason that he mentions a device which did not work.

The arrangement finally used to provide cooling is

sketched in figure 23 and is essentially a circulated water

system. A l/3 hp circulating pump maintained the bath

temperature uniform at about 6°c and freezer coils in the

bath plus a second ice bath heat exchanger in the pump

circui t provided additional cooling. Despite its make-

shift look this apparatus maintained the temperature ofo 'base plate steady (change of 1 Cover 30 hours) and laterally
cons tant (,~ 0.25° C difference between junction #3 and nos.

4,5,6; ~ 0.50C between junction #3 and nos. l,2,7,8 which

are in the extreme corners of the tank).

The tank walls were made of 0.005" Teflon FEP film,

backed by i/4" Lexan, panels for strength and flatness, as

shown in figure 25. The film, which can stretch slightly,

was used because the upper plate elongated. by about 3mm

at its working teL.perature of 850C. A rigid wall fixed

to the upper and base plates would suffer severe stresses

under these conditions; the Lexan panels we~ not thus

clamped. A second Teflon wall 3/4" outside the panels

trapped a dead air space for thermal insulation. In

addition 2" thick styrofoam insulation was placed outside the
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outer Teflon wall. Small sections of the styrofoam were

removed briefly to permit photography.

The heat source was a strip of Chromel resistance

ribbon 3/8" wide x '0.005" thick mounted at mid-depth on

one end wall and spanning the width of the tank. The heat

supplied, to the fluid by the source was determined simply

by measuring the electric power dissipated in it. Chromel

was chosen because in water it neither corrodes nor reacts

significantly with aluminum and because it is fabricated

in ribbons to close tolerances.

The entire apparatus was supported on a rigid frame-

work of 4" steel I-beams, the upper plate and the lower .
sandwich being independently suspended. The levels of the

various plates relative to the framework were checked

during runs by micDometer measurements and found not to

vary observably. The overall tilt of the framework

relative to a level surface (a trough of still water) was

also checked. The largest effect was found to be due tbe

the bending of the building by solar heating and amounted

'at most to an angle of iO-4 radians or a difference in
level between the ends of the tank of about 0.02 cm.

This is about the order of magnitude reported by Simon and

Strong (l968).
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Conduct of experimental :runs

To begin a run the tank was filled with distilled water.

A large immersion heater was inserted via the fill slot

and the water was boiled for several minutes to drive out

dissolved air. The heater was then removed, short vertical

pipes were fi tted into the dye holes, and boiled water from

an outsiLde reservoir was fed into the fill slot 'at a slight

pressure. The temperature of the upper plate was set above

boiling and thus the water being added at the fill slot

boiled at the lower surface of the upper plate, the steam

venting through the pipes and sweeping away residual air.

,After several minutes the temperature of the üpper plate

was lowered to its operating value of 8SoC and the cooling

apparatus was turned on. Residual bubbles of steam under

the upper plate condensed leaving the tank very free of

bubbles. The author is indebted to Mr. Bruce Magnell

and to Mr. John Van Leer for suggesting this method of

dealing with a mundane but mos t troub lesome prob lem.

The reservoir of boiled water remained connected to the

fill slot to maintain the water level against the volume

contraction during the cooling and stratification process.

The tank ~as allowed about l2 hours to equilibrate to a

static, stably stratified condition.

To check on the static equilibrium in the absence of

forcing by the source the tank was stratified once before
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the heat source was built in. All 'four walls were then

insulators; had the metal heat source been present, even

with no power supplied to it, it would have constituted

a thermal short-circuit and consequently a temperature

anomaly. In this fully insulated configuration dye streaks

exhibi ted no appreciable movement , either along the length

of the tank or transversely, and this was taken as evi-

den~e that the desired motionless stràtified equilibrium

existed in the absence of forcing. The heat source was

then built into the tank and runs with forcing could be

made.

The actual gathering of the data was straightforward.

A value of forcing (voltage applied to the source) was

set up and the flow allowed to equilibrate for about 2 hours.

Then a~isirâ.íl (UO /3ri) !parti:Cle of potassium permanganate

dye was dropped through one of the upper plate holes. After

a few seconds to allow the flow to readjust the dye st~eak

was photographed at two separate times, usually about one

minute apart. This process was 'repeated at other holes

and then a new value of the forcing was set up. Velocity

profiles were determined from the photograph pairs simply

by measuring displacements of the dye line.

Expe~imehtal ~~sUlts

The data obtained are now presented. The mean tem-
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Observed temperature distribution in the

tank during the runs. Calculated values

are based on tabulated values of thermal

conductivity of water (International
Critical Tables, 1928).
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perature profile, measured with a thermocouple probe, is

shown in figure 26, and is seen to deviate only slightly

from a profile based on tabulated values of the heat

conductivity of watBr. The line in figure 26 is simply

a straight line connecting the two endpoints. These

measurements are far too crude to reveal any temperature

anomalies due to the flow and are presented only to show

that no gross departure from the equilibrium profile is

present. One could, for example, have homogeneous layers

with sharp interfaces. With insulating sidewalls this is
a motionless state but not one in which we want to conduct

experiments. From figure 26 we also determine the value

, 0of '¿ , 7.2 C/cm. The parameter ~ is then calculated using
L = 0.49cm ( the half-width of the source strip) and values

of, V, " , ot appropriate to the mid-depth temperature of 490C;

'the result is f. = 0.08. (International Cri ti cal Tab les, 1928),

The variation of the fluid properties with temperature

is a significant, but hopefully not catastrophic, departure l

from the conditions of the theoretical model, The worst

offenders are the viscosi ty and the thermal expansion
vary

coefficient whichAin the opposite sense with temperature

and whose ratio enters into f. This ratio varies between, 0 0æ.06 cgs .at 35 C and 0.82 at 63 C; these temperatures

represent the vertical limits of the observable flow.

Thus (¡~ ' to which t: is proportional, varies from 1.2
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~

to 0.96 or by about 25%. Alternatively on~ can estimate

from the observed profiles and tabulated values of V the

term "uzz and compare it with the, term Vi.uz neglected
in the basic equation (II-9). The neglected term is about

10% of the term retained. Certainly any attempts at more

precise experiments should be compared to computer,

solutions of the equations with variable fluid properties

and not to the constant-coefficient model developed here.

, The parameter & is determined by an approximate

calculation as follows. From (II-85) the dimensional

horizontal temperature gradient at x = 0 is:

Ts t-
€Lf2T" ::

We do not know the exact form of f in the experiment;

let us suppose f = lover the entire source ribbon. Then

the total heat flux into the fluid,' Q, is:

Q =- to C~ K A Tx

where A is the area of the source and c is the specifi c
p

heat of water. From this expression we have

IS
Õ:: è(L

fQrL
to '-r " A

and S is thus determined by known constants and the

electric power dissipated in the source; we assume that

the Luci tè backing permits heat from the source to go
nowhere except into the water.

The velocity profiles are presented in figures 27
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and 28. In these figures the origin has been placed at

the point of coincidence of the two dye traces from which

the profile was determined and thus does not correspond to

a fixed geometrical level. An oversi~ht in the photographic

alignment technique left the photographs devoid of a

sufficiently accurate reference for such a level, but the

point of dye line coincidence is unambiguous. The primary

observation to be made is that the profiles do look quali-

tati vely as expected from the theory. The decrease of

ampli tude with increasing s is apparent in the series of

three pròfiles at 5 = 3.6 (figure 28) and in the pair of

profiles at ~ = 0.9 (figure 2 7b ) . Dye lines were also

photographed at s = 0.64, 1. 28 for S = 0.225 and at s = 1. 28

for S = 0.9 but the lines did not moye by as much as their
own width during the time allowed by dye diffusion; the

veloci ties were thus less than about 0.002 cm/sec, and this
number is a reasonable estimate of the error in the profiles

in figures 27 and 28.

A few rough quanti tati ve comparisons with theory

are possible. In Table II we show three quantities. The

first is the observed value of the vertical distance

(nondimensionalized with L) between the velocity maximum

and the v~locity zero. The second is the computed value
2

of this quantity fox the e -z source on linear theory,

and the third is the computed value using both linear
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and nonlinear terms . We see that in the , = 3.6 series

(figure 28) the observed values agree rather well with

the values from the full computation, better than with

the purely linear computation. This indicates that the
expected narrowing and intensifying of the outflow by

nonlinear effects actually occurrs.

In Table III we show the difference in level of

zero velocity between the value at b = 0.225 and the values

at b = 0.9, 3.6, both observed and computed. The magni-

tudes do not agree well but the trend at s = O. l28 toward

greater elevation of the zero level with increasing Ò
is observed, again indicating the presence of the calculated

nonlinear effects.
In Table IV we show the values of the maximum posi ti ve

(outflow) velocity, observed, computed on linear theory,

and computed in full. The observations have been non-

dimensionalized with the velocity scale factor ~ Jj~rL~

to make them commensurable with the theory! The agree-

ment is not good. The S = 3.6 series disagrees with the
full comput ation by a factor of about 2; the S = 0.9

series by a factor of about l. 5. Wi thin the S = 3.6

series and the S = 0.9 series, though, the ratios of
velocity maxima at, different s values agree fairly well

with computed ratios, indicating that the theoretical

rate of decay of amplitude with s is observed.



, 'Table 'II

Values of the nondimensional vertical distance be-

tween level of zero velocity and level of maximum

veloci ty

Linear N'onlinear
Observed computation c omp uta t ion

6 = 3.6

s = O. l2 8 1. 06 1. 42 0.97

0.64 1. 49 1. 87 1. 44

1. 28 2.35 2.25 1. 83

ó= 0 9.

s = 0.l28 1. 38 1. 25

1. 62

1. LO

s = 0.64 1. 27 1. 50

s= 0.225

s = O. l2 8 1. 60 1. l2 1. LO

98



s = O.l28

s = 0.64

Table TII

Differences in level of zero velocity

Height of zero level for
, S = 3.6 less height for

,= 0.225 (nondimensional
distance)

99

Height of zero level for
~=3.6 less height forS = 0.9 (nondimensional

dist änce)

Ob served Computed

1. 3 0.35

Observed

1. a

0.4

Computed

o. 3

0.3
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'Table iv

s= 0.9

s = O. l2 8 0.232" ' 0.329 0.345
2.3 '1. 9

s = 0.64 O. l02 /' o. l79 O.l8i"

S = 0.225

s = 0.l28 0.306 0.329 0.329
l

ratio
l

ratio
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2-zThe use of the computations for the e source

instead of computations based on the (unknown) experimental

fez) as a standard of comparison for the observations is

not as bad a device as might be thought, for at large

distances from the source the details of fez) affect the

profiles only slightly. What matters are integrated
(J

properties of fez) such as ~ fez) dz (cf. (II-96) and--
the discussion immediately preceeding; also appendix I).

In figure 29 we show the profile of ü( 0, l) (s = O. l2 8~z)
2

calculated for the e -z source and also calculated for
an extreme source function:

fez) = l, ..l,t z S 1
= 0 elsewhere

This is a source function which inj ects delta-function

horizontal velocity profiles into the far field at z = fi.

The calculation was made using some tabulated functions

due to Koh (l9 66) and the units on the ve loci ty axis are

his nondimensional uni ts. The point to note is that the

two profiles are quite similar even at this modest value of

s; the pathological profile ihtroduced at s = 0 is quickly
,

smoothed out. Our experimental source is undoub tedly

not so pathologi cal and thus it is a reasonably good
, 2

approximation to use the computations for the e -z source.
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Figure 29 Comparison b~tween far field hori-
2-zzontal velocity due to e source

(dotted line) and rectangular source

function Golid line).
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It should be pointed out here that some of the

observed profiles appear not to conserve mass, e. g. ,
the profile at s = 0.l28, .~= 3.6 (figure 28). Errors

in tracing dye line's cannot account for such a large

dis crepancy; moreover, there is a pronounced reversal

above 1 cm which is not observed on the other profiles

of the series. Some local perturbation of unknown

origin is suspected, perhaps related to bubbles which

had begun to form when this, the final profile, was

measured.

Finally, in figure 30 we present three profiles

taken wi th S = 3.6, s = 0.64 at different times after the
initiation of forcing. Note that there is very little

difference between them; the flow was steady during this

time. Thus our procedure of making photographs 2 hours

after setting up the forcing seems certain to have avoided

observing transient flows; there is no doubt that a

dynamical balance between heating at the source and dissi-

pation in the far field was achieved. The 2 hour wait

is more than sùffi cient on theoreti cal grounds also,

for the flow should become steady at least in the

conductive time scale 0(L2/K = i60 sec).



(
0.01 em/ see

a. b c.

Figure 30 Three profiles taken at S = 3.6, s = 0.64,
and at l/2 hour (a), 1 hour (b), and 2 hours

(c) aft er starting the forcing.
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Chäpter iv ConcTU:ding Remarks and Sugge'stiOns

We have seen that the predicted tongue of Chapter II

is in fact observed in the laboratory, and that certain

of the primary ef1'ects of nonlineari ties are also found.

We now outline several ways in which both theory and

e.xperiment could be extended and improved.
,

The mathematical scheme and fluid geometry of

chapter II can be. used directly to solve for the flow due

to other kinds of sources. We can, for example, set

li(O,Z) = fez), and thereby model a source of mass. If

we specify T( 0, z) and w( 0, z) correctly, we can avoid

having a buoyancy layer (cf. appendix I). With a

symmetric f( z), we will obtain in the iinear solution a

a symmetric u' and an antisymmetric T; the highest veloci ty

will now coincide with the zero of temperature anomaly.

The model of chapter II could be solved numerically

with the actual variable fluid parameters 0., K, and V.
These are in principle functions of the total temperature

but in practice, in this strongly stratified system, can

be, given quite accurately as functions of z alone. For

small forcing we can thus obtain a linear proble~ again,

but one with variable coefficients. Solution of this
Ii

problem and of the corresponding problem for the nonlihear



io6
"

corrections should be, undertaken if more precise experi-
ments are to be interpreted by such a th~ory.

A wide range of new theoretical problems ~pens up

if we admit a second stratification agent, e.g., salt.

We distinguish two types' of such problems. There are

truly laminar problems in which the greatly different

diffusi vi ties of heat and salt will be of prime importance.

Thorpe, Hutt, and Soulsby (l969) have discussed what

happens when a salt-stratified solution is heated uniformly

from one side. If the stratifi cation were thermal we

should obtain jus t a nondi vergent buoyancy layer, but the

salt stratification leads to a double-diffusive ins tabili ty

and a series of flat cells which gradually push out into

the interior. Such effects are likely to be central to

any theory of source flows in such a fluid.

On the other hand, if we interpret the heat and s al t
diffusivities as edtly coefficients, with an eye to

examining larger scale flows, and suppose them to be equal,

we can combine the heat and salt conservation equations

to get a similar conservation equation for density anomaly

t'

~ I V l i + J. L t() tr- ttJoI '-lJ :: lt E. \/7. t I

t i _ to ( ¡3 5/- 0( T)
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h

in dimensional 1'or~, whereKE is the common eddycoe1'ficient,

T' is the temperature an'oJUaly, 8' is the salinity anOJualy"

~ is the thermal e~pansion coefficient, ß is the analo-

gous coefficient for salinity and' 2fT and (~ are the

mean gradients of temperature and salinity , respectively.
Provided the density anomaly gradients are small relative

to the mean stable density gradient, the equation can

be linèarized ,and the dynamical proplem solved as in chapter

II. One then has a subsidiary calculation to determine

T' and S' from their conservation equations. If these

fields are both 'strongly stratified, both conservation

equations can be line.arized and the calculation is simple.

If only one field is strongly stratified the other must

be computed by substituting the calculated velocities

into its full conservation equation and solving the

resulting lineRr problem with variable coefficients.

The field in this case acts like a passive tracer, the

density being influenced primarily by linearized advection

of the strongly stratified field. If the unstratified

field develops large gradients, advections of density

anomaly become important and the dynamical problem is

nonlinear at the outset.
The matter of includi~g rotation in the model should

be taken up, especially if comparisons to actual oceanic
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situations are sought. They-momentum equation must be

retained in the basic set. Scaling as in chapter II then

leads to a nondimensionalized Coriolis term ~ in this

equation and a term -J.r in the x-momentum equation. Here

'1 = ZJl/~~, where .. is the (constant) rotation frequency
and NB = J~cit' is the Brunt-VãisãHI. frequency. Wunsch

(1970) has shown how these terms, for 1 = O(l), can modify

a nondi vergent buoyancy layer. In important '. ocean regions,

such as the main thermocline, the ,ratio~ may be fairly

small and we can expect rotational effects to modify but

not dominate the flow. This suggests one possible appli-
cation of the theory. Suppose in the main thermocline

a region of, say, 5 meters in depth gets mixed due to the

breaking of an internal wave or some other cause and that

in the surrounding fluid small-s cale turbulence leads to

2eddy vis cosi ty and eddy conducti vi ty of 0 (lcm /sec). If

NB is iO-3 sec-l, a reasonable value, we obtain é~ 0.06 and

"1 =- O. l. b = 0 (l) if the mixing is fairly complete, less

if it is partial. These are values of S and ~ not unlike

those of the laboratory experiment and 1 is at least not

huge. Perhaps the subsequent flow from such a region of

disturbed temperature gradient would occur in a quasi-

steady fashion and obey the dynamics of chapter II. We

hasten to add that this is a speculation only, intended as

a notion for further investigation.
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The experimental apparatus shOuld 1'irst be much improved.

The basic size and operating values of stratification and

forcing seem feasible enough, but a multitude of the author's

errors in mechanical design make it an extremely difficult

and tedious apparatus to operate. This is not the place

to catalog these errors in detail but simply to note

that such matters as levelling adjustments, cooling machinery

occasional sidewall leakage ~ dye line visibility, and

photographic tech~ique all stand in need of attention and

refinement if more and better data are to be collected.

If a way can be devised to measure the small temperature

anomalies in the presence of the large mean field it

would add greatly to the experiments ; the author has not

been successful in finding such a method.

Wi th an improved apparatus one could immediately

drive the heat source hard~r and study th~ transition f~om

the laminar convection cell to the turbulent plume which

must occur at sufficiently strong forcing. All that is

needed is to build a new, higher resistance heat source.

One could try to make a salt source using a semipermeable

membrane, or one could stratify the tank in salt and apply

the existing heat source. It would also be interesting to

study the effects of time-varible heating.
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AppeÜdTx I Del ta'-TUnction SOÜrces

In previous analytical work on similar source flow

problems the idea of delta-function sources has been used

to simplify the mathematics. Koh (l966), in analyzing

the 1'low from a mass source, assumed that what we have

referred to as the far field balance applied everywhere and

then matched a solution of the linear problem (II-74)

to a condition uCb;z) = Õ (z)¥ This form of boundary

condi tion also fixes T and w according to the far field

balances and the net effect is thus to exclude any buoyancy

layer. List (l971) has analyzed momentum sources simply

by adding terms like &t~) to the right sides of the momentum

equations as inhomogeneous terms.

These approximations are useful, but one must use care

in choosing the correct source condition to correspond to

ones physical idea of how the flow is driven; the flow

from the heat source is a case in point. One might reason

intuitively that the localized heat source fez) would

produce, atlarge x, the same"effects asa delta-function

* Koh's analytical method is dif1'erent than ours. He
transforms the linear 1'ar 1'ield equations into ordi-
nary differential equations in the similarity variable
1' of (11-97) and solves these numerically.



iii
,¡.

source of te~perature anoinaly. This is not the' case; the
far field shOuld instead b~ approximated as being driyen

by a S'(z. source of horizontal -velocity. From (11-95);
-( 0 l)where we approximated u" for large s:

øO

.. (Oil) 'J k _1i1s k dk14 (S,2) -: Co e Sm Z
()

.
.)

fi 0#
Co = 1i / t(z)Jz.

o

If this is ass~ed to hold for all s:

00

filo,i) (0,7-) -: CCJ J k Sin kz -: - lTCo S'(Z.)o '
which is exactly what we obtain if, like Koh, we solvet ,
(II-7J-t subject 'to u(o,z) = -Tít()$ (i). The expression (ii-88)

for the far field temperature anomaly, subjected to the

same approximation, gives:
00

=¡ (0,1) (0,2.) = Co f k Ct~ k2 d k

Ò
whlch is not proportional to $(~.

If we were to mat ch a far field solution to a con-
, ~

dition T(O,z) = Slz.) we would have:

T :: 4 fo~ t- k3s Ccs k¿ j L

Then

lJ3z. - Ts == -

co
.. / 1e3 _his /)171 Jò ~ C4slèi. Ii

or
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tJ

Ii= f¡ / e-Jess/17 ¿z/!z
l) ,

From the usual rules for asymptot ic estimation 01' Fourier

transforms (Lighthill, p, 56) we have for large z:

lJ 'Y -# L -l + (+eílHS IJr i.,. i n ~ I) J
~

and thus \ u dz , the net transport above some level
1.0

is infinite.

z ,
o

It is thus clear that the wrong choice of

a delta-function source condit~on can lead to highly unphysi-

cal results. The reason of course is that the buoyancy

layer is the physical agency which adjusts the far field

to the actual source condition, and the far field mathematics

'cannot des cribe this adj us tment. The actúal source condi-
tion can be directly matched to far field solutions by a

del ta-function approximation only in those cases, such as
Kohls, in which a buoyancy layer is not required, i.e.,

when the source condition is such as to~introduce vertical

velocities and temperature anomalies only in balance accor-

ding to far field dynamics, or at least to introduce them

out of such balance only at some higher order in the

perturbation scheme.

Note Thexe is a 1'urther peculiarity 01' Kohl s solution
which is not related to the use of deita~functions;

the' pressure anomaly is infinite at s =+ 00. This,
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1'act was pointed out to, the author b:y .Dr. S. Martin.
The singularity occurs because 01' the con1'lict between

assuming a steady 1'low and assuming a steady source

oi' mass; the llreserYoirll has been llfilling Upll since

t = - 00. The singulari tycan be removed by speci-

fying an equal and opposite source of mass Ca sink)

at s = So and then let ting So approach or co. The

other fields are unchanged by this device.
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Appendix II Full Linear Problem

It was mentioned on p. 20 that the full linear problem

posed by ,(11-23) can be solved by Fourier techniques.

List (l97l) has done this for certain delta-function

sources by using a combination of residue theory and

numerical integration to invert the Fourier integrals

and has presented calculations for the casè € = 0 (l) .
We outline below a less subtle approach involving no

contour integration. We begin with (II-23) applied to

the str'eamfunctlon I defined by:

l. = - ~"Z .
.)

w:= ~x

In the usual way we look for separable solutions pro-

p~rtional to cos kz and decaying in x. The general

solution is a Fourier superposition of these:
oI

~:: l lc,tk.)eA1(1c) X+Cz.itz)et\J.tix +-(~(b)e.~~(k.J1o~bdk. (AII-l)
o

where * indicates complex conjugation. ~
~\ ' ).i., ~i- are

the three roots with nonpositive real parts of the separa-

bili ty condition:

À" - 3 kl.¡\'l + 3 ~'f )."l -~" + ¡.-l E. -4 - 0 (AII-2 )

is real for k ~ o.
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The boundary conditions take the following for~s..

u(O,z) = 0 gives:

C, + Ci. + e: =0
(AII- 3)

w(O,z) = 0 gives:

C\À, +- C1. À~ 1- ct ~~ = 0

T (0, z) = f (Z) gives:

hie, hi.c-i h'* '* -=1+ + 1. Ci. -=

where

(AII- 4)

( AI I - 5 )

L _ _
Yll. -

E;l. (Ãf- k"l)l.
Àl- i i. -: I, "Z (Aii-6 )

and

ç(i.) ::

oø

~ + (ii) ~ ~ i. d k.
() (AII-7 )

(AII-5) is derived using the vorticity equation

f. 1. \J ~ 9r - - T)( (AII-B)

obtainable from (Ii-i6) and (II-L7) with S = O. The three

simultaneous equations (AII-3) - (AII-5) give:

C. 1

~ (~1- - ).t)

D (AII-9 )
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c -z.
1- (~~,- ~,')

o (AlI-lO)

ct -1 (~~ -)..)
o (AlI-ll)

where

J I I

D ). I ~2. ).t (AII-l2 )

hi ~ 1. h-i*

Expansion of D shows it to be imaginary, as it must be

for (AlI-lO) and (AlI-ll) to hold.

Wi th these expressions, and given a (not necessarily

small) choi ce of ~ and f (z), evaluation of (AII-l) is

just a matter of algebra and numerical calculation of the

integral. The other fields w, u, T can of course be

written as similar integrals.
One reason for presenting this unwieldy, but exact,

solution of the linear problem is to show that for small €

(AII-l) reduces to the solution found by boundary layer and

perturbation methods in chapter II. From that work we

know that there are two horizontal scales in the problem,

the buoyancy layer scale and the far field scale. For
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(AII-l) to exhibit these two s cales one or IDoxe of the ).¿

must be OCE-/) and likewise one or more must be O(é~).
We use this fact to find approximations for the À¿. First

let:

~ E: À

Then CAII-2 )

1L-
é'

becomes:

x~
.: 31ei. ~

~i.
t' 3 Ie 'l f: 1.

~ 1-

+- -
€: "

-k.' -= 0

and the underscored terms are the largest ,for k (:O(~_I), so

that we have, approximately:

" toÀ +
1\ 1.

À = 0
The two nontrivial root s leading to x-de cay are the conj ugate

ones:

A
À1.

:u
:. e l.

A irrt:,'- ~ ---
À"L =- e Lf (AII-l3))

The remaining root À. mus t give the far field part of the

solution. Res cale, letting:

~ =- ).E:-'?

Thus CAII-2) becomes:

E. 11. . ~ l. -"3 \e'l e r1 t" 3 \a l- E- 'l ~ 1. + À 1._ k. L = 0
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and the unders cored terms for~ the ~ain balance, again for

k (: OCG-1 ). The desired root is:

1 -= - k,3
(AII-l 4)

Alternatively we could obtain (AII-l3) and (Aii-i4) by

solving (AII-2) directly and expanding the results for smaii

E. With (AlI-l3) and (Aii-i4) (AII-l2) gives:

D =.
2.¿--
t: i. +- 0 (E:li3) (AII-l5 )

and CAII-9) - (AlI-ll) become:

c .. Ui ri )
~ '+ e17Tl; f:1 e-3rrl:A+,. AJ C-¥..~2. - k ) z. -;2 (Aii-i6)

Wi th (AlI-l3) - (AII-l 6) (AII-l) be comes:

()b r 1 '( Its - 'Vii \1
g¿ ~ Vi ~ .,(12) e- - e (G6S Vií .. 5 i)\ Uï ~ CoS ki J k. (AI I;l 7 )

where sand 1 are as defined in (II-29). For 5 = O(l),
, - i.1ss = 0 (f,! ), i. e., in the buoyancy layer,e -. 1 until k = 0 ((:-1) )

and then 4 ,is very small. S~ approximately:

W = 1t ~ (.1 (I - e - tlí.( CB V,r +-51. Vr.)) C.Aii-i8)
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For s= 00), l = OCe.-3), 1. e., in the 1'ar field, e-Yh.-:o
and (AII-l7) becomes:

~
()

it J 1(,,) e -k\øsh die
o

(AII-l9 )::

We. see that (Aii-i8) and (AlI-l9) are just the linear buoyancy

.. (0 .) , ,
layer streamfunction ~ ' and the linear far field straamfuncti~~

( /. ,€I,d,i respectively.
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App'e'ndix TITC'ompUtei' 'Progr'am

The computer program used to, make the calculations

for the plots in chapter II was one of the author IS

firs t at tempts at the art; it does its job but is awkwardly

written, and we present here only its essential features:

The computations were performed at the MIT Information

Processing Center on the IBM 360.

Values of the fields, when computed, were placed

in two-dimensional arrays (array indices corresponding

to values of x and z) prior to being printed out. The

program begins by initializing all arrays to zero and

then starts the calculation of the buoyancy layer fields;

the array names correspond to the fields as follows:

DLBL is _T(O,O), WLBL is ~(O,O), ULBL is C(O,l) + ü(O,l) (O,z),

:'io,i)
SILBL is T , and the same names with an 1lN" inserted

are the corresponding nonlinear corrections in the buoyancy

layer. The computation is performed for a cold source,
2-z-efez) =

C NEXT WE READ LOOP PARAMETERS AND COMPUTE THE LINEAR
C AND NONLINEAR BOUNDARY LAYER FIELDS AT THE POINTS IN
C SPACE FIXED BY THESE P ABAMETERS

l5 READ (5,2) IXLBL,IXUBL, INCXBL, IZLBL, IZUBL, INCZBL,
lFACXBL,FACZBL

2 FORMAT(6IlO,2FlO. 5)
FACXBL =FACXBL*O .lOll?
DO LOO KK=IXLBL,IXUBL,INCXBL
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PHI=FACXBL* (KK-l)
EX=EXP (-PHI)
EXCOS=EX* COS (PHI)
EXSIN=EX*SIN (PHI)
DO 200 LL=IZLBL,IZUBL,INCZBL
ZBL=FACZBL* (LL-l)
PZLIN=EXP (- ZBL* * 2)
DPZLIN=-2.0*ZBL*PZLIN
PZNL =0. 5*PZLIN*DPZLIN
DPZNL=PZLIN*PZLIN* (4. O*ZBL*ZBL-l. 0)
DLBL (KK, LL) = P ZLIN *EXC OS

WLBL (KK ,LL)=-PZLIN*EXSIN
ULBL(KK,LL)=O. 707l7*DPZLIN* (l. O-EXCOS-EXSIN)
SILBL (KK ;LL) =-0.70 717 *PZLIN* (l. O-EXCOS-EXSIN)
DNLBt CKK, LL) =PZNL* (EXCOS* (PHI-O. 2 ) -0.6 *EXSIN

1 + 0 . 2 *EX * * 2 )
WNLBL (KK, LL)=PZNL* (~O. 6*EXCOS+EXSIN* (0. 6-PHI)

l+0.6*EX**2)
UNLBL(KK,LL)=-l.4i42l*DPZNL*

1 (EXCOS * (0. 7+0. 5 *PHI) +EXSIN* (0. 5 *PHI-O. 4) -0.3 *
2EX**2-0. 4)
SINLBL (KK, LL )=l. 4i42l *PZNL*

l(EXCOS*(o. 7+0. 5*PHI)+EXSIN*(0. 5*PHI-0. 4)-0.3*
2EX**2-0.4)

200 CONTINUE
LOO CONTINUE

Some output statements follow and then we begin the

routine which calculates the far fields by a trapezoidal.

rule: "

1
~

C WE READ LOOP PARAMETERS FIXING THE POINTS AT WHICH
C THE FAR FIELDS WILL BE COMPUTED

l7 READ (5, 7 ) BASE, F AC ZFF

7 FORMAT (2FIO. 5)
READ (5,8) IDIFF,NMAX, INd', IZLFF, IZUFF, INCZFF

8 FORMT(6IlO)
DO 300 MM+l,NMAX,INC
INT*MM-TDIFF
S=BASE**INT
DO 400 NN=IZLFF, IZUFF, INCZFF
ZFF=FACZFF* (NN-l)
BIGK;"O.O
DELTAK= 1 . 0
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C

C

C

C

C

C

COMP;"O .,0
HAVING FIXED ONE POINT, THE 50 LOOP SETS. AN
APPROPRIATE UPPER LIMIT, OF INTEGRATION AND THE
60 LOOP.. SETS AN INCREMENT OF THE INTEGRATION
VARIABLET SMALL ENOUGH TO GIVE AN ACCEPTABLE
ERROR IN THE RESULT THESE NUMBERS ARE ENTERED
IN ARRAYS AFTER STATEMENT 60 FOR REFERENCE
DO 50 ix=l, ioa
BIGK=0.5*IX
COMP=COMP+S*BIGK**3+0. l25*BIGK**2
IF(CO¥d-30. 0)50,55,55

50 ,CONTINUE
55 DO 60 IY=l,lOO

DELTAK=DELTAK/2.0
TESTNO= (BIGK*DELTAK** 2) /l2. 0
IF (TESTNO-l. OE-4) 65,60,60

60 CONTINUE
65 NSTEP=IFIX(BIGK/DELTAK)

UPLIMIT (MM, NN) =BIGK
SPACE (MM,NN )=DELTAK
LOOPNO (MM, NN) =NSTEP
'T= O. 0

SILFF(MM,NN )=-0. 1994 7l *DELTAK
THE ACTUAL INTEGRATION BY TRAPEZOIDS BEGINS HERE
AND CONTINUES THROUGH STATEMENT 300
DO 550 III=l,NSTEP
T=T+DELTAK
TRIGl=COS (T*ZFF)
TRIG2=SIN (T*ZFF)
EXPNT=EXP (-0. l2 5*T* *2)
AMPL=-0.398943*EXPNT**2
AMPNL=-0.0282095*T*EXPNT
FA C = E XP ( - ( T * * 3 ) * S )
DLFF(~~,NN) =DLFF(~~,NN) -T* AMPL*FAC*TRIGl *DELTAK
WLFF(~1,NN) =WLFF(MM,NN) - (T** 3) * AMPL*FAC*TRIGl *DELTAK
ULFF (MJ1,NN) =ULFF (MM, NN) +T* AMPL*F AC*TRIG2 *DELTAK
SILFF (l.1M, NN), SILFF (MM,NN)+AMPL*FAC *TRIGl *DELTAK
DNLFF (MM,NN) =LNL~F(MM,NN )+T* AMPNL*FAC*TRIG2*DELTAK
WNLFF (MM,NN) =WNLFF (MM,NN )+T* *3 * AMPNL*FAC*TRIG2*DELTAK
UBLFF(MM, NN )=UNLFF (m~,NN )+T* AMPNL*FAC*TRIGl *DELTAK
SINLFF(MM,NN) =SINLFF (MM,NN) -AMPNL*FAC*TRIG2 *DELTAK
CONTINUE

C

C

550

There follow 8 statements which reduce each far field array

by one half the last increment so that the area of the

last trapezoid is not added twice, and then the 300 CONTINUE
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and 400 ,CONTINUE statements terminate the loops . These

far field array names have the same pattern as the buoy-

ancy layer array names. The upper limit of integration
BIGK is chosen such that the integrands are O(e -30) there.

T0e choice of DELTAK, the spacing in k of the bases of the

trapezoids, is taken from Hildebrand 1 s (p. 75) error

cri terion for this method:

\ t\ ": ( ~ ;~~3 i ç h (x) \

where (a, b) is the interval of integration, n is the

number of points at which the integrand is calculated,

and fit (x) is the value of the second derivative of the

integrand somewhere in the interva1. If fit is bounded

the error goes to zero as n -")00. To check that out

ad hoc choice of a limit for this error was satisfactory,

addi tional computations (not shown) were made in which the

integrals were simply computed again and again at successively

smallSrr values of DELTAK until the results stabilized.

No significant differences between these results and the

ones from the program listed oabove were observed. The

amplitudes of the nonlinear corrections in the far 1'ield

(proportional to AMPNL above) were computed too small by

a fact or of two; this has been adj usted ìn making the

plots of chapter II.
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Appe'ndix' iv TnTTÜen'ce 'oT 'a Sidewall

We write the l.inear equations of motion in the usual

nondimensional far field form but retain y-dependence,

where y is distance perpendicular to a sidewall, made

nondimensional with L.

0:: - t s + u.~ J ~ U. i.l. l- e. 'f U.u (AIV-l)

6 :: "'f~ + €:"t( 1J~i l- l'i,i. + f: 'l I($S ) (AIV-2 )

O:~-1z. +T tf.'tlW~i""Wii.,E'ftJ~$) (AIV-3)

o -= e'U~ + 1)'1 + W-i (AiV-4)

0:: - LJ + E:"l ( T~1 f- T i. i + c'fTss) (AIV-5 )

We use these to find a boundary layer solution, i. e. ,
one which vanishes as y ~OO, capable of adj usting the

interior velocity to zero at the sidewall. This interior

velocity we take to be the linear horizontal far field

-CO l)veloci ty u - , , 01' the two-dimensional problem; we ignore

the much smaller two-dimensional vertical velocity.

Expanding variables in power series in é in the standard
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Way we find from (AIV-2),:

f(OJ (I)J :. f:1 - 0 (AIV -6)

and thus for a boundary layer solution:

i (0 1 :: f td =- 0 (AIV-7 )

Then from (AIV-3):

T lo) _ Tt.) = 0
(AiV-8)

(AIV-5) now shows that w is 0(6~ ) at most, and thus from

(AiV-4) we see that v is at most 0 (E-'u. ) . U will be 0 (é )
since this is the magnitude of the interior velocity, so

v ~ o( E:J ). (AIV-2) then shows p ~ o( é~). Thus to find
u(l) we have only to solve the reduced form of (AIV-l):

, u. ~ J + U. t~lz. :: 0 (AIV-9)

The appropriate solution is:

I. ( i)
': -
00 3
~ 1l011)(~) e-k $ eJej Si~ ~7. J k
o

(AIV -lO)

and thus the tot al velocity is:
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ØI i-J 1_ )
lA c.o,1) + l,(.L) ~ ~ 1 (o,d (li) e _If S ( 1- e- I&i , S ìyi ~"Z J k.o

(AIV-ll)

Some machine calculations of (AIV-ll) were made, but

it is a simple matter to show analytically that (AIV-lO)

, -( 0 l)constitutes a small correction to u ' along the centèr-
line of the tank where observations are made. Set s = 4,

cprresponding to the' end of the tank opposite the source,

and set y= 20, corresponding to the centerline. Set z =

2.5, corres~onding to the level of maximum u(0'l)(4,z);

-z,:fq.:"tn,e".e.,~~')S9llrce. Then (AIV-lO) is:'

_ -i -'1 _Iz~ - 4h.J _:¿k .i-lI):: .JZ,TT ke e e . SlA i.. 5/e J It (AIV-l2). Ô

Now - :i 0 Ie '"
\ - '1 k.

J () ~ k ~ O. \5"
e ..
e -20 \c ~ O.CS' ) Ie ~ 0.1':

s. .2. 5 Ie ~ ,i.Sn. J
'e~/o

So an upper bound for /u(l)(4,2.5)lis:
0.1';

J\.c.I)(~/1.s)1 ~ ~ J k(l-~Jk) (i.s-le) d~
o
~

+ Jïrr ~ ke-IeÄe-~1t3(i1.DS-)S~.z.)kdli
l),I :r

-4The first term is about 3.25 x LO and the second is
",

I
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obviously less than 0.05 \u (0, 1)( 4,2.5 )Ls,o:

\ \.l'lllf,2.5) \
(.. -1.

3. ~~ x ID
_ - (0;1)( _)r o. (J í: u. 4, 2..)

Since ü(0'1)C4,2.5) = 7.5 x 10-2, the relative error is

J u Li) (4, ,. S) i

i7t 0 i I) i _)
I. l. ~ i.J

~ 4.33 )(/0-3 -.¡ 0.0;)

i. e.) less than about 5%. In short, this boundary layer

makes the required adjustment of velocity while intro-

ducing small alterations of observed values of ü( 0, l)
and quite negligible alterations of the other dependent

variables.
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