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ABSTRACT

The flow pfoduced by an infinitely long horizontal
heated strip in a thermally stratified fluid is examined
theoretically. For strong stratification a long flat

convection cell or tongue results. Profiles of velocity

and temperature anomaly are displayed and contrasted
with the profiles which would obtain if the temperature
anomaly were only a passive tracer. The effects of
small nonlinearities are computed by perturbation methods
and the profile alterations thus produced are discussed.

A laboratory experiment set up to démonstrate the
major features of this circulation is described. Quali-
tative agreement between theory and experiment is obtained,

and certain of the predlcted nonlinear effects are observed.
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Chapter I "~ TIntroduction

In descriptivé'oceanography; oné often éncounters
references to "tongues;"_or long; thin horizontal bodies
. of water differing from surrounding water in some measured
property;-usually temperature and/or salinity. Indeed,
since temperature and salinity can be measured more
easily and precisely than Velocity, such tongues are
often taken to be evidence for the existence of similar
tongues of velocity, i.e., slow flow along the axis of
the observed tongue of temperature of salinity. The
implicit idea is that températuré and salinity serve
essentially as tracers or diffusive substances carried
along by the flow but playing no part in its‘dynamics.
If the water in the tongue is, say, saltier than the
surrounding water, salt would be expected to diffuse out-
ward, leading to a decrease in salinity in the downstream
direction, énd knowledge of the horizontal salinity
.gradient in the tongue then deﬁermines the direction of
flow. Some examples of tonguélike distributions of
properties éalculated by assumﬁng particular flow'patterns
are given bj Defant ((1961) and by Svérdrup; Johnson; and
Fleming (19“2); Many authors have made application of

such ideas to field observations in attempts to determine
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flow patterns. Wlst (1959, 1960, 1961) for example has
‘given'éXtensivé désCriptions of thé hydrography and inferences
about the flow of the Levantine Intermediate Water in the
Mediterranean Sea. This is a subsurface tongue of hot,
salty water emanating from the eastern basin of the Medi-
terranean which extends westward past Gibraltar and forms
the well-known Mediterranéan outflow that is observed

far into the Atlantic.

On the'other hand, temperatﬁre and salinity are

not true tracers; these properties'affeqt the density of
-seawater and thus can influence the dynamics.. One then
wonders how tongues in which density diffusion is impor-
tant might behave. \Séme work in this connection has been
done. Koh (1966) considered a source of mass in a strati-
fied fluid both theoretically and experimentélly. His
mbdel balances the diffusion of density against the (linear)
advection of the mean density. Because he used salt, which
Has extremely low diffusivity, as the stratification agent
and yet let his experimenfs run only a very short time

(5 - 10 min.) there is some doubt that a truly steady flow
with dynamically important diffusionrof density was actually
obtained. List‘(l971) has given some calculations of the
flows produced by sources of mOméntum in a weakly strati-
- fied fluid. Both Koh and List have limitéd their théoreti—

cal work to the linear problem.  Wunsch (1970) has dissussed
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flows driven in stratified fluids by boundary temperatures
which differ from those in the interior. His interest

has béén primarily in éffécts néar thé boundary and he has
focﬁsed on the propertiés’of a nondivérgént buoyancy layer
at the boundary; no "tongue" is forced into the fluid
interior in thié case.

In this thesis we examine both theoretically and
experimentally a very simplé case of a tongue in which
diffusion of dénsity is of parambunt importance. The
mathematical model is of a»thermally-stratified fluid
in which an infinitely long horizontal étrip 1s heated
slightly above fhe mean temperature. .In chapter I we
solve for both ﬁhe liﬁear motion and the firsf nonlinear
correqtions, presenting pioté of the results in some
detail and noting the ways in which the velocity and
témperature anomaly profiles differ from those one would
expect if temperature were.a passive tracer. Iﬁ chapter
III we present results of a laboratory experiment sef up
to demonstraté this circulation. The results are rough
but tend to confirm impbrtant aspects of the theory.
Chapter IV contains a brief summary and some suggestions

for extension of the work.
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Chapter II Theory

Formulation

In this chapter we examine a.very simple mathematical
model qf a long horizontal tongue produced in a thermally
stratified fluid by a source of heat. We consider an
iﬁfinitely deep, nonrotating, Boussinesq fluid bounded by
a single vertical rigid wall at x = 0 as shown in figure 1.
In the absence of motion a mean stable temperature Tm,

linear in z, 1s assumed td exist:
Im@z) =T, + ¥z | (II-1)

where ¥ and T, are positive constants. Fluid motion

0
introduces perturbations of this mean field, and the total

()

temperature T is written as the sum of Tm‘and an anomaly

T:

(¢)
T = Tm 7 T (I1-2)

A two-dimensional heat source is modelled by imposing

a simple boundary condition é@ T:
[ (0,2) = Fiz) (11-3)

Here TS is some positive constant and f(z) is a dimension-
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less form function intended to specify a localized source.

Specifically, we require of f:

F(Z) = F(_*Z) | | (II-4)

I.F(o)l = 1 | (II-5)

I S RZ)A'I.‘ = 0(1) | (11-6)
-0 .
£l decays smoothly as |z|9 e aﬁd (Ii-?)

has an e-folding length L

Thus L is the length scale of the region over which

forecing is applied to the fluid. It is the only externally
imposed length in.the problem and will be used to nondimen-—
sionalize the governing equations. One might expect that
such a localized source Would produce, at large x, the same
effects as a delta-function source, i.e., a source for

which

[(0z) « §(z) (I1-8)

This matter is discussed in appendix I.
We assume the motion, like the source, to be steady and
two-dimensional, and we assume the Boussinesq approximation

to hold. The governing equations then are the x and z



momentum equations:

Uux +wiz = -5p 4 y2y

(-4

Ul + Wy = - /” (t) i/o + DV

the continuity equation:

Ux + We

]
O

the heat equation:

e (4) (t)
uly +wl® = kv T

and an equation of state:

P plialr-n)1
= pel /- (42 +T)]

where:

> L
v* R O P

(t)

Here p

17

(I1-9)

(I1-10)

(I1-11)

(II-12)

(I1-13) |

(II-114)

¢ L
is the total pressure, f’ the total density, /%

the density at T(t) = TO, u‘and w the fluid velocities in

the x and z directilons respectively, g the acceleration of
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gravity, » the kinematic viscosity, # the fhermal diffusivity,
and & the coefficient of thermal expansion. f%, vV, K,o,
(t) '

and g are assumed constant. We write p as the sum of a

hydrostatic part independent of the motion and an anomaly p:

) ?(1‘) = __/00\?2 +.Z£y/0°a/d Z'Z +f (II—-lS)

We now introduce essentially the éame nondimensionalization
scheme used by Veronis (1967@, b) in studies of the analogy
between stratified, nonrotating fluids and homogeneous,
rotating fluids. We nondimensionalize x and z with L, p

with a typical weight per unit volume due to density anomalies

/%&3[,73 , and T with TS. u and w are nondimensionalized

ra -

source strength and the second is proportional to the,

with /Ts/b Sfﬂﬁgiﬁ . The first radicand is a measure of the

‘pressure anomaly scale. With these scales the set of

equations (II—9) - (II-13) becomes:

. -
—&-(uux +wuz7 = -—fbx + €t Viu _ (II-16)
35-_( Uy +We) = =Py + T + VW (1I-17)

, Ukt Wz = O (1T-18)

s(ul + wT) = -w+ T (II1-19)
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In (IT-16) - (II-19) and in what follows unless otherwlse
noted, all variables are nondimensional and all derivatives
are with respect to nondimensional.éoordinates. The equation
of state has been used to eliminate the density anomaly.

The parameters appearing in the equations are:

_ Ts/u : . : . .
S-— —“gr“ is the ratio of a typical gradient of
temperature anomély to the mean temper-
ature gradient and is thus a measure

of the source strength.

2 kv _\k
€= ('3&4{L§} is the inverse square root of a Rayleigh

number based on the mean temperature

- gradient and L.
C = Kk is the Prandtl number.

In what follows we shall take & and € to be small and

o = 0(1l). We are thus studying the motion produced by a
.weak source in a strongly stratified fluid with both
Viscosity and heat conduction acting to dissipate the flow.

The boundary conditions to be satisfied are:
u(0,z) = w(0,z) = 0 (II-20)

T(0,z) = f£(z) | (II-21)
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Z

u, w, p, T => 0 as X + —» &0 (II1-22)

Linear problem

To solve (II-16) - (II-22) we adopt a perturbation
scheme. We first solve the linear problem 5Btained by
settingrs = 0 and then we calculate the lowest order
effects of finite noniiﬁearities by perturbing in § .
With & = 0 (II-16) - (II-19) can be reduced to a single

eQuation in any of the dependent variables:
wy

T (64'576 , Ja} ) :; - () :
Sx* LS - (II-23)
An exact solution of (II-23), valid for:any finite vaiue of
¢ , can be obtained by Fourier techniques. The result is
unwieldy and we preéent only a brief sketch of this approach
in appendix II. List (1971) has used a combination of
Fourier anaiysis, contour integration; and numerical com-
putation to solve a similar problem and present results fpr
érof order 1. In our case e.is small and boundary layer
techniques yield more readily interpretable results with
less effort¥ We-rescale the x coordinate to reveal the
various poséible balances between the several terms of
(II-23). Lét 8 stand for any of the‘debendent variables

and let:
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X = én/\ < Ix = é_n oA (II-24)
Then (Ii—23) becomés:

Sz * 3 spme Y3 ST € S{+ € 5720 (11-25)
a b : c ' Jd e

‘9 6 . -nbse ‘-n‘g .1_
eq{a Séz,,be +3¢ 4); 2% Y0

The only possible balances are:

1. For n 1l term d»balances term e.

2; For n -2 term a balances term e.

Other balances are ruled out as follows. A balances of
any two of the terms a, b, ¢, and d requires n = 0. But
then these terms are O(éq ) while term e is o( / ) and

must therefore vanish by itself. Thus
Oz Clz) N +Ca(Z) N + C5(Z)  (11-26)

and to have @ decay as JXE + 2°5w we must take cy =

c = 0. The only remaining possibilities are to

2 = C3
balance term e with either term b or term c. A balance
with b requires -2n = -2n + I, which is impossible. A

balance with c requires n = 2. But then term d is the

largest term, O(é’s), and must itself vanish. This leads
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to ,

6 . .
0L 9 @x - az-en

and as in (II-26) the 25 must vanish. Thus all balances
except 1 and 2 are'imposéible.

Balance 1 obtains when @& varies by 0(1) over the
short horizonﬁal distance x = O(é) and is commonly known

as a buoyancy layer. We can expect such a balance to be

important near the source in adjusting the depeﬂdent var-~
iables to their presﬁribed values at x ? 0. Balance 2,

in which © varies by 0(1) over the large horizontal distance
x = 0D, gdverns'the flow far from the Source and we refer
to this,region as the far field. More formally, we writ¢
any dependent Variable as the sum of & buoyancy layer
component and a far field component, denoted by a caret

and by an overbar, respegtively:

6 = @(},Z) + D(s,z) | '(11'_28>

- where

n X

S = Xe* (I11-29)

f—;

s

Introducing (II-28) and (II-29) into,(II—l6) - (II-19)
(with § = 0) the equations for the buoyancy layer components

in the linear problem are:



L A (o) °
0= — ¢ f; + U;; i Ezé?z‘z’
) ) N
0= -py +7T9 »in « 0,7
°) A (0)

"
§
&
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(IT-30)

(IT-31)

(I1-32)

(II-33)

where the superscript 0 indicates that fhese are fieldsuof

order zero in § . Similariy, we have the far field equations:
o - _755"” +a$, + e Ry (11-34)
0 - —73{” LT é‘a’zz“;’ €400, (11-35)
o = E—’ﬂé‘" +¢D§_°’ (II-36)
0 = -w® +é".7_:2;_’) + €8 715;0) (11-37)
The boundary conditions on (Ii—30) - (II-37) are:
0% 2)+7%,2) = & “lo,7) a-.&')“”(o,z) =0 (11-38)
?{0)/":;) + T%0z2) = F-(z) (II-39)
[:‘\u:’ L-l—(oj ,\,:,) —-(o') _;_\w)u —-to/) %\(d:f(o'ﬁo as G 7> ot (TT-40)
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We begin with the buayancy layer equations. We expand

each dependent variable in a power series 1n E£:

A(0) _ Afoo)

& =6

Afo,1) 20,2}
€ 9 ! +é,"9 ’1'+~~v (II‘—Ml_)

Then collecting coefficienté of like powers of € we find

R
terms in €

Alo,0)

p,— = 0 (II-42)

A (0,0)
= oo (11-43)

~w
{

Then (II-42) and (II-43) together with (II-L40) imply:

A to,0) ~ (0,0)

7)‘ =’} =0 | ‘(II—MM)
~terms in 6?

o= A" 2l (11-45)

0 :-ﬁ;’w + T +Lf;‘;;'.°) (II-46)

oz a" ripgl” (II-47)

0= ..&:}/0,0) +7’_;;o,o) o (TT-18)

Mgo)

Since 4§ 0, (II-46) and (II-48) combine to give a
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2 (0,0)
s:.ngle equation in w/a,o) or 7 :

A (0,0)

) Y = |
(b_{"‘ +1){?(a,o)5 -0 | (II-49)

(IT-49) will be recognized as the Ekman equation. The
solutions which decay in f'and satisfy (II-46) and (II-48)

are:

A e | _S/r- ) (o,0)
T('“ ze L[F(?;)Caf%_ + & (1)51»%.] (II-50)

7o - 37& [ F (0. (0,0)

&) sn¥h - G C z)Cas%:] (II-51)

#(050) 4 (0,0)

The Tunctions F are to be determined.

(“II-M?) gives the horizontal velocity required by continuity:

u = j (3 Z) ;+U(o'(.a)z)(II—52)
o
Next we turn to the far field equations, (II-34) -
(II-37). Making a power series expansion in € as before we
find:

terms in ¢°©

- '—(0'0) _(010) _
: - B, 7 (I1-53)
— (o, —_
0= - » 7@ (TT-51)

W' (I1-55)

S
)



(II-53) and (II-54). give:

~-.(O,D) - —_ (0)0)
u zZzz - 7;
terms in E’
- _(o’l) _-(O)l}
O ]Dé L(ZL

(II-58) and (II-60) give:

Uzgz = »7;
terms in &%
- - (0,2) —(92)
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(I1-56)

(II-57)

(11-58)
(I1-59)
(I1-60)

(II-61)

'(11—62)

(II-63)

(TI-64)

(II-65)



- = (0,0)

‘where (II-56) has been used to obtain (II-64).

and (II-66) give:

—'(0)0) _ — (0,0)
7—-’Z.ZZ. -7 a s

while (II-63) and (II-64) give:
[7 (0,2) - Fs:(o,z)

ZZ 7

terms in 63

where (II-61) has been used to obtain (II-70).

and (II-72) give:

= (0,1)  _ —(o,)
7r;zz = TUs

27

(II-66)

(I1-65)

(II-67)

(I1-68)

(I1-69)
(I1-70)
(IT-71)
(II—72)

(II-71)

(II-73)
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Now from (II-57), (II-62), (II-67), and (II-73) we can

derive:

= (9,0)
~(0,0)

va‘ D'L “ _

526 T st T((”o",), =0 (II-74)
U

wﬁich is the form referred to as a far field balance above.
Elementary solutions of (II-74) which tend to zero at large
s are in the form of products of a decaying exponentilial in
s and a trigonometric funétion in z; and these can be
summed in Fourler integrals. ‘We expect the temperature
anomaly to be symmetric in z in view of the boundary con-

(0 0) ~(0,1)

dition at x = 0, hence U should be anti-

and u
symmetric, from (II-67) and (II-T73). We can therefore
work with half-range Fourier integrals and write the
solutions of (II-74) satisfying (II-57), (II-62), (II-67),

and (II-73) as:

B

(0,0) |
./‘7 lo(k)é’ éz cz/é (II-75)
~ (0,0 6,0 - 3
U 00 _ f%ﬂ )(/é) e'kssm ez d (II-76)
= 0, (o)1)
T ;’Z (k) P

o
()

0,1)
i (o) jg" k)& smbzdb  (1118)

o

l;7=(Qd
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Finally, we expand the boundary conditions (II-38) and

(II-39) in power series in €, which leads simply to:

~ (0, —(0,}) (o,j) —ln
04 02) 5% 0,2) = “lo2)+is®o,2) =0, (11-79)
NEEUPRE

(0,0} (0,0) ,
0,7)+ !
7 (0,2)+ 7T (0,2)= Ftz) (TT-80)

Ao, 1) (6,¢)

02) v T (62z) = O, 4z12,3

Now from (II-76):

(0,0) 2 il | » |
Z (k) = ‘770/ (oz Sin #2z a/Z

But from (TI-u4) 1¢050)

~ ) -
u(O,O,(O’Z) = 0. ::Hence:

= 0 and thus to satisfy (II-T79)

1 (0,0) - — (0,0) _
J oz gee T 2 g (1I-82)

and the far field i1s not affected in any respect by the

A(0,0) _ o #(0,0)

source to this order in €. Then w must

- satisfy (II-79) and (II-80) By-themselves, so that in

(II-50) and (II-51):

10) 0,0
G(o =0 F "2 Y—(L)

-
i
-
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and thus (II-51) and (II-52) give:

N (o) _ / ! -—-;//E_ .
u "— = Fe) e “(sndf + s} ) (11-83)

Then from (II-78) and (II-79):

o

J ¥ snbs db « 10 =0

or

F Sméza/z.‘ (II-84)

0,1) | V=
97( (k) = — 7

Thus if f(z) is specified we have all the éxpressions needed
to calculate the lowest order (in & ) terms of the linear
‘budyancy layer and the linear far field. We collect these

expressions for convenience of reference:

N (0,0) Nz '

7" =F(z)€ /&@S}/ﬁ_ - (11-85)
(0,0) -3

' = Fiz ) € 4 Sin 5//2 (11-86)

&\(o,;) L F(Z)é 7y[Sm/ﬁ, +Cos//—) (11-87)

—_ p (o,1) 3
7 © )f d_/? | /é)@“ksCos £z Jb (I1I-88)
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,0',) f\;[/o”)(k)é'ks&n bs Jé (II-89)

— ' {0, : ‘
5O T //84"( E b db 10

Computations for a particular f(z)

To i1llustrate the results just derived, profiles of the
various fields have been computed and plotted for the simple

source function:
| ot (0,1) /] k
fa)=- % 7 (k) =/§‘7,,ée" A (11291)

The ihtegrals involved in the expressions (II-88) - (II-90)
were computed using a trapezoidal routine; the program

is given in appendix IIXI. This program also computes the
buoyancy 1ayer‘components ahd the nonlinear'correotions

in both buoyanoy layer and far field; thsse corrections are
discussed in the next section. In all the plots, only the
region 2z 2'0 is shown, since each field i1s either symmetric
or antisymmetric in z. Figure 2 shows vertical profiles

of T(o 0) a0, o)

and flgure 3 shows hOPlZOﬂbal profiles of W
We see that. the hot source produces a rising motion confined
to a thin 1ayer (x & Lhe) and that at the outer edge of this

buoyancy layer the temperature anomaly tends to zero, to

this order in €. Figure 4 shows vertical profiles of the



Figure 2 - Linear buoyancy layer temperature anomaly.
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Figure 3 Linear buoyancy layer vertical velocity.
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&\(a,:)(;lz) + a_(o,l) (0,2} .(11-92)

s

For x = 0(€&), i.e., for stations in the buoyancy layer,

this is a good approximation of the quantity
N (o,1) — (0
u™ (5,2) + 7 (s, 2) (11-93)

which is the total horizontal velocity, to order €. Ve
have chosen to plot-(II—92) rather than'ﬁ<0’1) alone in
order to exhibit the actual velocity. We see that the
motion is toward ﬁhe source 1in the region z & 0 and away from
it for z » 0 and that the motion is confined to a range in
depth of about 4 scale lengths L. The z-dependence of

the horizontal velocity is that of the temperature anomaly
gradient, from (II-87), and this is apparenﬂ,in the figures.
' Thus the zero of velocity colncides with the maximum of
temperature anomaly, and we shall see thét this holds in

the far field, as it must from (II-88) and (II—89). Stream-

lines of the motion in the buoyancy layer region are shown in

figure 5. The streamfunction is defined by:

Noyr) ) —
- sLZI = L’z(o,l (;’Z) - “(ﬂ,l)(d'z)

(II-94)

a _
(0,1) _  A(o0)
= '
s

so that the streamlines are distorted in x. If one imagines



Figure 4
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Linear buoyancy layer horizontal velocity.
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compressing the figure 1n the x direction by the factor
£, one has the picture of the streamlines in (x,2) space.

Explicitly, from (II-86) and (II-87):

(9,1)

$2 = ?i‘ﬁ(z)[/— e~ (¢os 34 +sin 5/,;)}

Figure 6 shows the far field horizontal velocity E(O’l)

at several different values of s. We see that the profile
nearest the origin, that at s = 0.0078, is quite simllar
to the profile at i = 3.5 in figure 4. As s increases

the profiles retain their basic shape while broadening in

z-and decreasing in amplitude. Flgure 7 shows profilles

=(0,1)

of the temperature anomaly T Note that this quantity

is not the far field extension of the buoyéncy layer

~(0,0)

temperature anomaly T plotted in figure 2 but is one

order higher in €. An 0(&) buoyancy layer component-— not

discussed here- exists to adjust T(O’l)

to zero at x = 0.
In figure 7 we again Fee the broadening and decrease of
amplitude with increasing s. The central core is warmer
than the.mean temperature at each level, but there are
relatively cooler .ay:rs above and below thils core. The

maximum of E(O’l>

lies at the level of zero horizontal
velocity, z = 0. Contrast this situation with the usual
pattern in a tongue identified by a dynamically unimportant

tracer subject to advection and diffusion; in that case
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Figure 6 Linear far field horizontal velocity,



Figure 7 Linear far field temperature anomaly.
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maxima of velocity and tracér.cqncentration coincide£e,g.;
Sverdrup; Johnson;'and Fléming; pp: 503 ff).

The existence of thé rélatively eoolér layers may seem
odd. They are not due to numérical érror; for in fact all
these far field profiles-have an infinite number of zero
cfoSsings in_z; as the following argument indicates.

Consider ﬁ(Q’l); from (II-89) we can see that at large s

the factor e—k3S decays rapidly in k and for purposes of
the integration JUM) may bé replaced by the first non-
vanishing term of its Taylor series about k = 0. (II-84)
shows that this term is just

"J%k f Feidz o (11-95)

o

SO

) go 3 -
Lo = ‘,l,-:/ﬁ[z)c/a -//ze‘ksméz dk.
© o

00 o
_ - ; v
& ) = 7l s 'SSV’}CP ‘ol sarghdy  m-00)
. ,
where :

T = z/sy3 . (I1-97)
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(0,1) _

Thus a line along which U 0 must be a line of V = 0,

i.e., a line of constant 9§, say 7 =7 or

7= 75"

(II-98)

If there are several such lines they clearly spread farther

apart as s increases, so the spacing between zeroes of 5(0,1)
increases. 'Similafly, lines for which ﬁ;o’l> = 0 are lines

(0,14

of constant 7 ; these lines connect points at which lﬁ
reaches a maximum in z. Let % be the value of 7 on such a

~ line; then on this 1line

l a(a,\) l . VL;'-;) S"% ( | (I1-99)

i.e., ,ﬁ(o’l)l de¢rease§ along the line as s increases.
In short, we have shown analytically what we have already
seen in the.computations, that as s increases the spacing
‘between zerbes increases and the amplitude decreases.

=(0,1)

Now suppose that the u profile in fact has some

number N of zeroes; the case N = 5 is shown in figure 8.

At a slightly larger value of s the profile will have
broadened énd decreased in ampiitude as indicated by the
dotted 1ineé in figure 8. Thus Héo’l) has elther N or N + 2
zeroes depénding on whether one draws the outermostrlobes

of the profile as in figure 8a or 8b. The zerces of Eéo’l)
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are indicated by the horizontal marks in figure 8. Further-
more, a profile gains one zero hy each differentiation in 2z.
Such considerations used in conjunction with the far field

equations lead in sequence to the entries in table 1.
Table 1

Numbers of zeroes in far field profiles

starting with assumption of 5 zeroes in u(o’l)

Variable N

5(0,1) ;

«(0,1) .

u,., 7

vﬁég’l)_g ;ﬁéo’g) 5 or 7

7(0,3) .- 70, 1) o N oor 6
22

T(O’l) - 520,1)
5(0’1) 1 or 3

f)(oal) - ‘1‘1(0;1)

S 7 1 or 3 3 or 5

Any choice of the last entry contradiéts the second entry
and the contradiction arises for any finite value of N.
‘We conclude that N must be infinite.

Figure 9 shows profiles of the vertical velocity W(O’B).

Along the s axis the velocity is everywhere downward and 1is

of the correct amount to recircﬁlate the upWard flux of



Ly

. (0,3)
W

Figure 9 Linear far field vertical velocity.
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fluid in the buoyancy layer:

fw(O)(x,a) dx =, do huwest order in €,

[ (8 (500 + € TP50)) dx

o
Co oo : ' (II-100)
0,8)
= é{ [ AR (§.0)c17 ¥ S B3 s) Js}
[7] . /S

1.

e“ 3/{ism/r dy +SJs“§‘;"ﬂ 33% 'ESCH;}

Note that this velocity 1is very small- two orders in € less
than the horizontal Velocity; Qﬁalitatively, because the
flﬁid is sfrongly stratified in the vertical only a slight
vertical motion is-needed to produce an advéctive change
of heét content in balance with that given by conduction.

Cbmparing figures 9 and 7 we see that this central region

of sinking fluid is assoclated with the region of anomalously

~warm temperatures. Above and below are regions of rising
motion which are'regions of conductive heat gain.
The streamlines of the far field motion are drawn in

figure 10, where the streamfunction is defined by:

~ (o) _ _
_(& - “'(0)/’
z = AU

o, (o) _ = (63)
% = W

If one stretéhes this plot in the horizontal by the factor
6”z one has the picture Qf the streamlines in (x,z) space.

The flow is thus in the form of a very long cell of limited

et Al
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vertical extent, with much weaker cells above and below.
For example, if €= 0.1 the ratio of length to height of
the loop formed by the 0.20 streamline is about 200. In
figure 10 are also drawn a few lines of constant T(O 1)
so that the course of a fluid particle through the field'
of temperature-aﬁomaly can be seen. We see that in the main
cell particles gradually'becomevrelatively warm as their
paths lose the upwerd slope 1mpartéd on leaving the buoy-

ancy layer, become horizontal, and finally bend downwards,

becoming vertical at z = 0.

Nonlinear corrections

We next turn to.calcuiating the effects of small but
finite nonlinearities on this flow. We write any dependent
variable § as the sum of its linear part, calculated in the

previous section, and a nonlinear correction term of 0(§):
5 L5 ) - |
o= ( ) +s0 (II-101)

In the basic equations (II-16), (II-17), and (II-19) the
nonlinear terms on the left sides are all multiplied by &
while the right sides have 50 as coefficient. Substitution

of (II-101) leads to terms of the form

% ( ﬁ‘°’+a‘°’) %{ (a‘."){'-‘:‘-‘“) > | (17-102)
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on the left sides, while the unknown correétion fields and
their derivatives, multiplied by §& , appear on the right sides.
We suppose that these corrections may be expanded in power
series in & and split into buoyancy layer and far field
components, just like the linear filelds, First superscript
1 indicates nonlinear correction.

Q(')'—'_ é\('.VO)({lZ) -Péé(”')(}', Z) PR (17-103)

£ B9 (s,2) + €8 (s2) + 1
Making such substitﬁtions in (II-16) —-(II—19) we have:
(éaw"’+é AL B LA gator, -)z(éu_""’ (_u(a,n)

-— ) !
(w(aa) é/\(a,l’ é w(o) éqb("q) ) Z G‘U-ta" +éu(0i +"‘.)

(B B ) B8 O] (2Eot0b

L o1} nlo 7.) 9_
= (ébz. Heolu™ +€£¢(°"+e u(a,v.) Xl‘?’_w'o’ np: w(o,si )

¢ 52( P éwm) +é3“ (0,3 A (oq) )Qai(t?)“p:-m L 8o (p,;)m)

- —9— A‘n ) R
= 32(.? |0+é%<l W) ?OdLé?(h) .)+ ?Uw-\l-&’?u'” +T“’° eT( ,

+ é“V"(!:s(“uew(' My 4 0% (5 G0y )

(II-105)

aé(A(\O\ A“l"

=0

LTl (gl .>+3‘L(Q“'°) s +oMen ) (11-106)

(a,1) 2
(er ™ et L entol g a“’"’ '-)52(?‘“)6-4(0"‘
( Lmu A(oﬂ

5 seT)
63 (a,a)+€ b(o,ql )3 (..[".(o,o) é__..l..(o i wreT f‘l}) (II—-].O?)

. +w(l,o\ e_w(u) __)

4 0,00 Al - —
+el Vl (-T ‘obéT“' ,.}.-. +T(/l°)+, G‘T(I‘I’.P.--)

In (II-104) - (II-107) we have left out flelds such as W

_(awm\ o0

+ew

=(0,0)

known to be zero from the linear calculations. Performing
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the indicated differentiations we obtain:

%(é;;w,. ez O, )(‘\(w.)*”, i (o.-) )+6_( LAY gw(n) )(Eulom +(—u‘°"’ )
i Al Aud —mu _.AM) I
( f; - ,- " éi‘F (’I) . +é[ }';0 é/ ’\T(flll .
)
* 6"u§'5°+ el ... ;,,Q::o“_m -u.e) ] (1I-108)
/ ! | -
(e, . 4 g™, .)(-e—w"(;o,a) +€ Us(a,i) )+ L (A(o.o) 3500a) )(A(dd) w;o:lj
( (!o) +$E(.h°3') + f‘-‘u,on LT, L ?{a\*-l’ A{(;.
A IT-10
+ R S v B0 e ‘--_7 ( )
_L’*tz.o) AU A m(h) "“»0) (o), _ :
Gk; +u?" S* %P + W 2 P oo ‘/'wz) J'"‘-O (II—'llO)
(.M =
(éu(o a) +€_u(ol) )(GTTO ek €3Ts(hl)+“_3
HE O s @moal JFE oy e
A6l A(“ (II-111)

= —(Gc«.ou e W) LTS T

4 _(l,03 5""'(]‘|) /\(l'a} h(l’O)
e Ty ve Tog % + Ty 4o T, “_]
Since the linear temperature anomaly has already satisfied

the only inhomogeneous boundary condition in the problem,

(II-80), all these nonlinear corrections must satisfy

homogeneous conditions at all orders in &€ , i.e.

oY 3! — ;)
1l (O,Z)+u(,1 (d Z) - w aJ (02’4_"0 ,J)(O_L)

)
T.“” (o 2\ +1—(h3 (0.2 -~ O

]. oM,
and of ccocurse all must tend to Zero as j -—> 0 .

For large x all buoyancy layer fields decay rapidly

(II-112)

to zero and the far fields alone must satisfy (II-108)
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_(iI—lll) by themselves. We assume that they do so for all

x. Collecting coefficients of like powers of € we then have:

“terms in E°

0= _fsu,o>+ &Zu;_w | (II-113)
0= -')3(7:'0) #T (IT-114)
0O =- LF.;"O) (II-115)
O= i tho (II-116)
and thus:
| _‘zcz’);) = 7’;("") | (II-117)
terms in €'

0= - 735("" .,.[;‘2"7:’ o © (IT-118)
O - _—’57_(;,,) L T ) | (11-119)
o= - ES,_“) | (11-120)
O = it B (I1I-121)

and thus: :
- gl = T - (II-122)



terms in €%

_/. “(07')—(01') l Y= (o, t) —('7‘) "'()17-)
G‘LU us %3 ocj 1z

—=(42) . 7:(/,;)

Pz

— (4,06} —
o= u” + Gl

0= - w(lz)+ 7_(/o)

where (II-116) has been used to obtain (II-124).

- (II-125) and (II-126):

T‘Lzz = U

terms in €3

0" [u(op) to,1) ELOJ—)E‘SSO»‘) +a->(6.3\aéo,1) +B(°N)|IL;‘\)1
=2 - (‘\3) \(‘03) -
'S + W

T2 . )
o = ~piioFu

O = as(,") -+ Dé'i?ﬁ)

- [ 3) = U,1)
o W +'TZZ

where (II-121) has been used to obtain (II-129).

(IT-130) and (II-131):

51
(Ii—123)
(IT-124)
(I1-125)
(IT-126)

From

(II—lé?)

(I1-128)
(I1-129)
(;1;130)
(11-131)

From
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) - _ —{41)
[r2: = —4g (II-132)

From (IT-117), (II-122), (IT-127), and (II-132) we have:
T Le)

uum)
(Za + 3—3 | e [ =0 (I11-133)

(IT-133) 1s of exactly the same form as (II-74), so these
nonlinear correction fields are governed by the same dynamics
as the basic linear fields. In (II—lOM), (II 105), and (II-
107) we can establish the symmeﬁry properties of the left
sides by referring to the linear results (II-=85) - (II-90).

On the left side of (II—IOH) is the expression:

4 A(),(; 2 Do), 1ot Ato) —(a\ S [ Ale) —
o"é( s o) ( 0 0)) +Q»0‘°’*w(°)>}1<u-(°)+u(°))Z (11—131‘)
Since ﬁ(o) and 3(0) are odd in z while ﬁ(o) and W(O) are

even, the entire expression is even, so that on the right
side of (II 104) we can expect u(l) <1), ﬁ(l), and p( )

to be even. Similar considerations in (II-105) and (II-107)
show that T<1) T(l), ﬁ(l), and W(;) are odd. In short,
each nonlinear correction field has the opposite symmetry
to 1ts 1ineer counterpart. With this information we can
write the selutions of (II-133) satisfying (II-117), (II-122),

(II-127), and (II-132) as:
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7" zq(,'o)(k)efk3$5;n b di (11-135)
T =Z“~7("O)[/z)e" & os bu ok (TI-136)
7 <'~>=j FUWe smbide e
B 7 e s b ol i)
e ' |

We next extract from (II-108) —'(II—lll) the equations

governing the nonlinear correctlons to the buoyancy layer

fields.
terms in G‘I
O - /\“;0)
= f; (II-139)
- (o)
o u{ N (IT-140)

whence by the requirement that buoyancy layer fields tend

to zero as f-> D

Al1,0) A (,0)

U = 7) = 0 (II-141)

and the same reasoning that led to (II-82) gives:

(/15) ‘_. = )
‘7 = e 7—-(./,0 =0 ' (TI-1L2)
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terms in 6

0 75‘;"" | - (‘II‘[—143)

_[(&}w.:) -(o,:)) {o,0) "(o.o)’\lo,o)J "“M i Lol (FI-1Lb)
Y33

0= &\;;,:)+ u/)i{,o) (IT-145)

{a(on E(a,:))T;°'°)+ a’w.u)f—gnoi - —G“"’)f??{"") | (II-146)

(IT-144) and (II-146) are just the Ekman equations with
inhomogeneousferms on the left sides. On these left sides

we can make the approximation:

A } - AL (OI) -
u(onfu(o,u) ~0 ol , A (o,z) (IT-147)
which is good. to 0(63), since the fields to be determined
decay on a scale f = 0(1) or s = 0(e3). Using (II-84) -

(II-90) (IT-14L4) and (Ii—1u6) become :

L 4112~ v o) A |
7 &G gin¥: - Casyr;_+e /"'-)z 13{(;” , Tl (rpqu8)

d ity -Yn ,
Ji(ﬁLF )8 /"(Sm%;_ +c°s% -e /f) MIO’+ 7;;”') (IT-149)

o)

The solutions of (II-148) and (II-149) must satisfy RERERE

%(1’0)(0,2) W(l O)(O z) = 0, since §(1 0) -(1’0) = 0,
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These are:

?({'0) :d%[?:pz) e',/"'_‘ [( %"5‘_6') Cos IE/G., "(/e /oo') S'm/ﬁ_
- Z
ﬁ'(“é—)&sg/ﬁ. ‘(}g‘.sj"o-)ej/ﬁ] (IT-150)

41/}“0)' Hé( [7-) yﬁ[ (5' .5’6)(057(‘ (IO lfr‘)Sm/fi
“Hr (e8] sinfp v (o )]

(II-145) then. gives the horizontal Ve1001ty set up by the

divergence of w(l O)

¥
L) = f;/: 4 (lﬂ) T [(ro /ot S'V‘/ﬁ'.
(L d) st - zﬁ(’*“") sin S (11‘152)

Tt +(E e 2)e M)

| Using (II-152) and (II-138) to satisfy the boundary.condition

(II-112) we find:

JJ“”)('?)COS kzlk + %(%4_5(__5)%’;(%’?1) =X, (11._153)

or

j(!n)&)': '7—7@ (3+4) Lié;”( FL) cos ke dz (II-154)

(II-154) determines gfh' and hence, via (II-137) and (II-138),

—(1,1) —~(1,1)

determines T and U , the lowest order nonlinear



56

corrections to the horizontal velocity and temperature anomaly

fields. Wé collect all thesé correction fields for convenience

- of reference:

s & (»’P) e [Go &)t -(-35) vk

D sy + (3o 2)e V] (II-155)

7'“"’) =G (5P e e - LY st - (3 -2 ) s |
““(H,.)-cas/{; - (% - —,)e“y@] ' (II—i56)
af""=_ AL LY e VR e 2 sin 0 - (242 )V |
& (10 8) [sin¥hs +osFR) + (é‘- &) e ] (11-157)

e = ff“”)(/z)e Scoskz b - (11-158)
T _ f 7(/‘ (b)e Sm ¥ Jé . (11-159)

_'("3) J}e j(m)(U bgssm 25 a/é | (11-160)

jm (k) = ( 25) /dz (vﬁj@séz dz (11-161)

Computations for a particular f(z)

Profiles of the nonlinear correction fields have been

2
computed for the same source function f = e ? used to

illustrate the linear fields. In these computations we
take ¢ = 1. 1In figure 11 are plotted horizontal profiles
~(1,0)

of the vertical velocity w' in the buoyancy layer.

We see that the basic upward flow of the linear buoyancy
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Figure 11 Nonlinear correction to buoyancy layer
vertical velocity.
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A

layer (figure 35 1s enhanced by this correction.for z > 0
and retarded for z £ 0. The horizontal velocity which

results from continuity is shown in figure 12. In simi-
1arity to (II-93) the quantity plotted is the total non-

linear correction velocity in the buoyancy layer, G(l’l) +

— - A
u(l’l)(O,Z). Profiles of T(l’o)

are drawn in figure 13.
For z > 0 there is near the wall é region of positive
values .and at larger ;’a region of negative values, the
reverse being:true for z € 0. The streamlines of the |
motion in the buoyancy layer are Shown in figure 14; the
streamfunction is defined similarly to (II—9M).
invfigureHIS profiles of the far field_hofizontal
=(1,1)

velocity correction o are plotted. We-éee~the usual
broadening and decrease of amplitude with increasing s.
‘The amplitude .decreases faster with s than the amplitude

of the linear field E(O’l)

, which is reasonable in view of
the fact that ﬁ(l’l) varieé more rapidl&iin z and should
fherefore suffer dissipation by viscosity moge strongly.
The‘same comment applies to the'other nonlinear correction
fields. The total horizontal velocity in the far field

ﬁ(o’l) +$E(1’1), and in figure 16 we plot this quantity

is
for § = 5/8, a large value chosen to emphasize the nonlinear
effect. We see that the profile in the region of the

outflow (z > 0) is sharpened,>the profile of the return flow

is broadened, and the level of zero velocity moved up to
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Figure 12 . Nonlinear correction to buoyancy layer hori-
zontal velocity.
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Figure 13 ~ Nonlinear correction to
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temperature anomaly.
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Figure 15
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Nonlinear correction to far field hori-
zontal velocity.
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Figure 16 Total far field horizontal velocity
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stitivé z. For a cold séurce the linear fields reverse
sign but the nonlinear corrections, dependent on (f(z))2,

do not; in this case the outflow (z & 0) is agaln sharpened,
the return flow broadened, and the level of zero velocity
moved to negafive z. The nonlineér correction to the

T<1’1), is plotted in figure 17 and

the total temperature anomaly E(O’l) (1,1)

temperature andmaly,
+&T with § =.5/8
is plo@ted in figure 18. The nonlinear correction leads’ '
to an elevation of the core of relatively warmer fluid;

with a cold source the central core of relatively cold fluigd

would be depressed. The profiles of W(1’3)

are presented .
in figure 19 ahd the streamlines in figure 20.

The computed elevation of the maxima of horizontal
velocity and of temperature anomaly is not peculiar to
“our é—Z2‘sourqe but is a general effect of the noﬁlinear

corrections. - Refer to (II-158):

a2 o) = 7= (% *J‘o‘)JZ‘(HPL)

This is the wvalue of ﬁ(l’l) at the outer edge of the

buoyancy layer. Likewise from (II-84) and (II-89)

F9%02) = % F

Thus the total velocity is:

T o= E[ 0] =5 (3L
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Figure 20 Nonlinear correction to far field streamlines.
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Hence:
B (6 ol o)

and U therefore has its maximum at z, such that

B 28
?l” l_é@Pl

Now f > 0 and in z » 0, f*< 0, so the ratio f"/f"' is

positive at z = Z ., A glance at figure 21, which shows
the qualitative forms of f and its derivatives, reveals
that z, must lie above 2. which is the level of the

maximum linear velocity.

Summary

The linear calculation results in a long flat
convection cell or tongue containing two distinct regimes
of flow. Near the source ié a buoyancy layer, a region
in which vertical advection of the meanvﬁemperature
is balanced by horizontal heat conduction and the bﬁoy—
ancy of fluid parcels is balanced by the horizontal gradient
of the vertical component of stress. The vertical velocity
and temperatﬁre anomaly ére O(l) in the power series ex-
pansion in e . Vériation in z of the imposed flux of heat
into the flgid_gives rise to z-variation of the vertical
Velocity; which in turn ; by continuity of mass; results

in a horizontal vélocity of order € . This horizontal
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velocity then extends into the second region; the far
field. Here wvertical advection of the mean temperature
is balanced by Vértical héat eonduction; the horizontal
preésurevgradient by the vertical gradient of the
horizontal component of stress, and the buoyancy force
by a hydrostatié vertical gradient of pressure anomaly.
The pressure and temperature anomalies in this'region,
like the horizontal velocity, are O(€& ); the vertical
velocity is tﬁo ordérs smaller.

The central featgre of this tohgue is that the
scalar which "marks" the flow, the temperature anomaly,
is not simply a-tracer but also_gives.rise to a dynami-
cally important force; buoyancy. Because of fhis,
distributions of velocity and temperature anomaly bear
quite'different relationships to each other from those
found in a tongue marked by a passive tracer.a Thé
level of largest temperatufe anomaly and ﬁhe level of
zero horizontal velocity coincide, at the level of the
center of the source. The vertical velocity in the far
field is everywhere downwards at this same level.

Inclusion of the most important nonlinear tefms
through a perturpation expansion leads to a modification
of the balénce of forces in thé buoyancy layer, advections
of heat and of vertical momentum becoming important ﬁhere.

No modification of the far field balance of forces oceurs, .
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hgwever; this regiqn simply accepts the now slightly
alteréd horizontal yélocity pﬁmped out of the buoyancy
layer and dissipates it and its associated temperature
anomaly through viscous action and conduction! The
profile shapes are altered by the addition of the non-
linear.corrections; more'so near the source than far
from it , as thé nonlinear corrections debay féster in
s. TFor a hot source,'the outflow 1lifts upward and
intensifies, as does the central core of positive
temperature anomaly.

It is instructive to'traée the overall flow of heat
through this system.. The.ﬁet flux Q of heat (dimensional)

into the fluid takes place by conduction at x = 0:
= :Fé(o,o) -

Q= —(Jacr\ciﬁd dz, - -’ooéP KTSS”/\\';‘”AZ

s kT, b -
- e:f"‘ f Y—(_z)clz
| z |

where the subscript d indicates a dimensional variable.

There is no- additional contribution to Q due to the ver-

' A
tical integral of the nonlinear correction T(l’o)

, 8ince
this field is odd in z.

This amount of heat then'énters the far field by
horizontal advection with the velocity TiC»1). the out-
flowing fluid haviﬁg higher @éﬁg temperature than the

returning fluid. That is:
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—(o,1)

(0,7,) T (%) AEA

L{""P% e IV-“"’(O.Z) (To+sz)Jz

e | (II-162)
_ Co¥Ts ¢
= 61_%;——? g .-(md(o 2) Z.Jl
-7 ')
= PolpkTs dz = 0

3 'z
At values of e >'O_this integral-decreaées, vertical
conduction and advection in the far field taking up
part of the flux. The conductive heat flux in the

horlzontal is
="

B [T i
b

(I1-163)
- 3 &= "Coll) —'(°|)]
= o CP KTS € oS [f .(S)ob)— ? _ (S,-w)] =
The nonlinear corrections do not contribute any net
horizontal advective or conductive flux in the far field

-=(1,1) =(1,1)

because u is odd and the

is even in 2z and T
integrals corresponding to (II-162) and (II-163) therefore
vanish. |

Ultimately the far field gets rid of the flux Q by

vertical conduction. The conductive heat flux toward

zZ = to at a level z = g is, in dimensional form:
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~pocp KT ﬂT )(3)0,) +eT, " s0)] dx

Adding a like term for the flux toward z = -e& across z =

= -a
we have for the flux out of this region:

T
- CGCEK s ST(O‘)(S&) CJS

o

- zpen Tog ][ P ke o
.__. .2 oCl KTs 0 g“") _
A L —FE-(H ke db

Now from (II-84)

Q ‘°"’(k,
f Ciyde = (7 [ 7 b )Smlfeacba

SO0 our conductive flux is

CP KIS / Hz)o/z

and as a —>o0 this becomes just Q. There is no advective

flux to z =te , for

xl‘m 70

a->=

Sc) 'T,,,(a) ds
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5

vanishes. . The nonlinear corrections also give no net
flux contributions, advectiyve or conductive. Finally,

all vertically integrated fluxes toward x = +e vanish as

X —=>ob.
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Chapter III Laboratory Experiment

Description
| In this section we outline the design of the laboratory
experiment set up to model»the thermally-driven tongue
discussed theoretically in chapter II. It should be
ﬁentioned at the outset that the experiment was not
expectéd to yield précise results over a wide range of
the Severai pérameters of the problem. Rather it was
intended to demonétrate that the 1ong flat convection
cell or tongue dctually exists and to exhibit some of
its grosser features,. and these objectives have been
achleved. A more elegant apparatus, capable of yielding
better data, could be built now, in the 1ight of experience
gained in this‘effort. |

As is usually the éase in designing an experiment,
sevefal compromises on dimensions, values of parameters,
etc., must be made. We begin by settling on water as the
working fluid because of its transparency, its 0(1) Prandtl
number as per the theory, and its convenience. The
silicone fluids often used in convection experiments are
rejected because ali except the lowest viscosity ones
have high Prandtl numbers, while the low viscoslty ones

would require a huge experimental tank in order for the



77

wéak dissipative effects to bring the flow in the far
field to zero.

Next we recali that the parameter & , which should
be kept small for the model to correspond to ﬁhe theory,
is TS/LX. It is desirable,vhowever, fo have TS large
in order that the temperéture anomalies in the flow
may be measurable and that they may dominate over any
spurious temperature anomalies introduced at the sidewalls.
Thus we want to keep L ¥ large. L¥ is limited, though,
since the total top-to-bottom tempefature difference
cannot exceed 96OC without producingveither boiling at
the top or instability at the bottom, and in practice

a difference of 8500 seems.- reasonable. Thus we set
¥ = 85°/D

where D is the depth of the tank in centimeters. Now L

must be somé small fraction of D at most so that the
circulationidoes not feel the top and bottom of the tank,
for the theory is concerned with how the flow is dissipated
in the absence of boundaries. Referring to the far field
profiles (e;g., figure 6) at s = 4 we see that the circu-
lation may éxtend over a range in the vertical of about

10L and stiil retain about 10% of the amplitude present near

the source. A safe choice seems to be
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L = D/20
So
. ¥L = 4% ' (III-1)

Another consideration involving L is that if it is
chosen too small the dye lines will be difficult to
photograph and interpret. The dimensional far f;eld
horizontal velocity on linear theory iS_O(%%,saXLF) and
hence is proportional to 1/L. If, for example, § = €= 0.1
this velocity is about 0.0l{ﬂ cm/sec and to have observable
displacements of a dye line before it 1s obliterated by
diffusion it seems necessary to keep L of 0(1 cm) or
larger. Referring now to figufe 22..we can see how limited
our choices are. The curved line‘is.the locus of points
for which & = € ; ideally we would like to operate in the
' region 84€ so that our theoretical perturbation scheme
would be valid. The vértical lines denote various choices
of L subject to the condition (III-1), and on account of
the dye diffusion prbblem we would like to operate well
to the left on this plot. The farther to the left we go,
the smaller Ts becomes. We finally come to what is at root
an ad hoc choice and select the operating point shown by
the cross in the figure. This gives the following values

to design around:
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= ¢= 0.08

0.33°C

8°¢/cm

i

0.5 cm

w] = ¢ m'% oN
It

10 cm

Then if we plan the tank long enough for s = 4, as seems’

sensible from the far field profiles, we have
" Lx = tank length = 4LES = 200cem

The choice of a width for the tank is made és follows.
Ideally we would like: the width much lanrger than any other
dimension, large enough for any extraneous temperature
 perturbations introduced at the sidewalls to decay to zero
before reaching the axis of the tank, leaving an undis-
turbed interior region in which to observe the flow driven by
a source on one end wall., This would be a prohibitively
large tank. We must therefore try to insulate the sidewalls
thermally and to check that ahy seéondary flows introduced
by the presence of sidewalls are small. For a perfectly
insulating, vertical sidewall there is no direct adjustment
of the interior temperature field required, but there is
a velocity boundary éondition to be met. It is straight-

forward to show that there exists a viscous boundary layer
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which can bring the interior horizontal velocity (the
fér field horizontal velocity of the theoretical two-
dimensional problem) to zero and which introduces negli-
~gible alterations of the other dependent variables.
This boundary layer is discussed in appendix IV, At the
end of the tank opposite the source (s = 4) this boundary
layer alters the flow 10 cm in from the sidewall by only
about 5%. Thus a tank width of about 20 cm should suffice.
With tﬁese featureé of the design rationalized we proceed
fo describe the actual hardware of the experiment.

The experimental tank and major.pieces of auxilliary
apparatus are shown in figure 23. The upper plate{ base
plate, and icebath plate were of anodized aluminum, 1",
i/2", and 1/2" in thickness,'respectively. Cemented to
the top surface of the upper plate was a cﬁstom—made
electric heatihg pad (Electroflex Heat) covefing the entire
plate. The heating wires were spaced about 1/4" apart
to.giveivery uniform heating. A proportional temperature
controller (not shown; YSI Model 72) was used to regulate
the power supplied to the heating pad and hold the upper
plate at a fixed temperature (% O.OSOC). 'The thermister
probe of this unit was placed in a blind hole in the upper
plate center along with some Dow Corning heat sink grease
- to ensure good thermal contact between probe and plate.

16 copper-constantan thermocouple junctions, two per hole
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to provide spares in case of damage to the fine wires (#40)
were placed in 8 blind holes in the upper plate. These
holes were arranged in a pattern as shown in figure 24
and'were drilled from above to within 1/16' of the lower
face of the upper plate; the therﬁocouples thus sensedvery
nearly the temperature at the water-aluminum boundary, for
the temperature drop across 1/16"'of aluminum at the planned
heat flux is only about 0.004°C. The junctions were |
electrically insulated with a»bead of Devcon 5-Minute epoxy ,
and the remaining space in the holes,was filled with heat
sink grease. An eXactly similar array of Junctions was
placed iﬂ the.beseplate; the wires were led out in fine
grooves cut in the lower face of this plate.' These arrays
were used to check on lateral temperature differences in the
'plates by connecting junction #3 to any of the other junctions
to form a thermocouple. Special thermocouple switches (Omega
Engineerihg) were used for this purpoeerand were housed in

a thermally insulated box. In addition junction # é of the
Base plate could be connected to junction #3 of the upper
plate to find the temperature-difference across the depth

of the taﬁk. Voltage readings were made om a Kiethley

Model 149 milli-microvoltmeter. Several small holes were
drilled through the upper plate to allow dye particles to

be dropped; a few of these holes are indicated sehematically

in figure 23. The holes were plugged when not in use.
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The bottom of the tank was a sandwich consisting of
an aluminum base plate, a glass plate, and an aluminum
icebath plate. Thin layers of heat sink grease on both
sidés of the glass plate ensured thermal contact. The
original plan was for the icebath plate to belin contact
with a reservoir of ice-water mixture and thus to be at
0°C. The glass would then provide enough thermal resistance
so that the base plate would be ét about 9 or IOOC, well-
above the MOC\point. In this way 1t was hoped to avoid
the more usual cooling system of ﬁhermoétatted water
circulating in channels cut in the base-plate. To carry
away thevheat fiux through the tank (about 40 cal/sec)
with, say, a 0.1°C tehperature'rise between inlet and outlet
of the cooling water, would have reqdired a flow rate of
’HOO'cb/sec, and this flow would have had‘tb'be distributed
évenly through a 1érge numbef of channels. The ice-water
scheme, in principle, would have sleed fhese problems
through the natural downward convection of thé melt water
formed underneath the icébath_plate, and one day's operation
would have only reguired the melting of about 100 lbs‘of
ice to absorb the heat flux through the experiment. In
practice, however, the ice chips clumped and remained sub-
merged by sticking to the support columns in the bath, and
enough additional heat leaked into the bath that the ice

supply was depleted in half a day, The author feels, however,
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that with a bit more work this tephnique can provide effective
cooling'for similar experiments much more cheaply than
conventional thermostatted circulators and it is for this
reason that he mentions a device which did not work.

The arrangement finally used to provide cooling is
sketched in figure 23 and is essentially a circulated water
system[ A 1/3 hp circulating pump maintained the bath
temperature uniform at about 6°C and freezer coils in the
bath plus a second ice bath heat exchanger in the pump
circuif provided additional cooling. Despite its make-
shift look this apparatus maintained the temperature of
base plate steady (change of 1°C over 30 hours) and laterally
constant (<(L2SOC difference between junction #3 and nos.
4,5,6; <0.5°C between junction #3 and nos. 1,2,7,8 which
are in the extreme corners of the tank).

| The tank walls were made of 0.005" Teflon FEP film,
backed by 1/4" Lexan panels for strength and flatness, as
shown in figure 25. The film, which can stretch slightly;
was used because the upper plate elongated-by about 3mm
at its working tenperature of 8500. A rigid wall fixed
to the upper and base plates would suffer severe stresses
under these conditions; the Lexan. panels wefe not thus
clamped. A second Teflon wall 3/4" outside the panels
trapped a dead air space for thermal insulation. In

addition 2" thick styrofoam insulation was placed outside the
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outer Teflon wall. Small sections of the styrofoam were
removed briefly to permit photography.

The heat source was a strip of Chromel resistance
ribbon 3/8" wide x 0.005" thick mounted at mid-depth on
one end wall and spanning the width.of the tank. The heat
supplied. to the fluid by the source was determined simply
by measuring the electric power dissipated in it. Chromel
was chosen because in water it neither corrodes nor reacts
significantly with alumlnum and because 1t is fabricated
~in ribbons to close tolerances.

The entire apparatus was supported on a rigid frame-
work of 4" steel I-beams, the upper plate and the lower
sandwich being iﬁdependently suspended. The levels of the
various plates relative to the framework were checked
during runs by micwometer measurements and found not to
vary observably. The overall tilt of the framework
relative to a level surface (a trough of still watef) was
also checked. The largest effect was foﬁnd to be due toe
the bending of the building by solar heatihg and amounted
at most to an angle of.lO—L-l radians or a difference in
level between the ends of the tank of about 0.02 cm.

This is about the order of magnitude reported by Simon and

Strong (1968).
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Conduct of experimental runs

To begin a run the tank was filled with distilled water.
A large immersion heater was inserted via the fill slot
and the water was boiled for several minutes to drive out
dissolved air. The heater was then removed, short vertical
pipes were fitted into the dye hbles, and boiled water from
an outside resérvoir was fed into the fill slot 'at a slight
pressure. The temperature of the upper plate was set above
boiling and tﬁus the water being added at the fill slot
bolled at the lower surface of the upper plate, the steam
venting through the pipes and sweeping away residual air.
- After several minutes the temperature of the upper plate'
was lowered to its operating value of 8500 and the cooling
apparétus was turnedron. Residual bubbles of steam under
~the upper plate condensed leaving the tank very free of
bubbles. The author is indebted to Mr. Bruce Magnell
and to Mr. John Van Leer for suggesting this method of
- dealing with a mundane but most troublesome problem.
The reservoir of boiled water-remained connected to the
£fill slot to maintain the water level against the volume
contraction during the cooling and stratification process.
The tank was allowed about 12 hours to equilibrate to a
static, stably stratified conditioh.

To check on the static equilibrium in the absence of

foreing by the source the tank was stratified once before
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the heat source was built in. All four walls were then
insulators; had the metal heat source been present, even
with no power supplied to it, it would have constituted
a thermal short-circult and consequently a temperature
anomaly. In this fully insulated configuration dye streaks
.exhibited no aﬁpreciable movement , éither along the length
of the tank or transversely, and this was taken as evi-
dence that the desired motionless stratified equilibrium'
existed in the absence of forcing. The heat source was
then built into the tank and runs with forcing could be
made.

The’actuél:gathering of the data was straightforward.
A value of forcing (vbltage applied to the soﬁrce) was
set up and the flow allowed fo equilibrate for about 2 hours.
Then éﬂsméil (4043 mm)iparticle of potassium permanganate
dye was dropped through one of the upper plate holes. After
a few seconds to allow the'flow to readjuét the dye streak
was photographed at two separate times, usually about one
- minute apart. This process was repeated at other holes
and then a new value of the forcing was set up. Velocity
profiles were determined from the photograph pairs simply

by measuring displacements of the dye line.

Experimental results

The data obtained are now presented. The mean tem-
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p;rature profile, measured with a thermocoﬁple probe, 1is
shown in figure 26, and is seen to deviate only slightly
from a profile baséd on tabuiated values of the heat
conductivity of water. The line in figure 26 is simply

a straight line connecting the two endpoints. These
measurements are far too crude to reveal any temperature
anomélies due to the fiow and are presented only to show
that no gross departure from the equilibrium profile is
present. One_could,'for example, have homogeneous layers
with sharp interfaces. With insulating sidewalls this is
a motionless state but not.one in which we want to. conduct
experiments. From figure 26 we also determine the value
of X-, 7.2OC/cm. The parameter € is then calculatedbusing
L = 0.49cm ( the half-width of the source strip) and values

of- v, K ,N appropriate to the mid-depth temperature of 49OC;

the result is € = 0.08. (International Critical Tables, 1928)

The variation of the fluid properties with temperature
is a significant, but hopefully not catastrophic, departure
from the conditions of the theoretical model, The worst
offenders are the viscosity aﬁd the thermal expénsion
coefficient whicﬁiii the opposite sense with temperature
and whose ratio enters into € . This ratio varies between
2.06 cgs at 35°C and 0.82 at 63°C; these temperatures

represent the vertical limits of the observable flow.

)
Thus (}&)4 , to which € is proportional, varies from 1.2
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to 0.96 or by about 25%. Alternatively one€ can estimate
from the observed profiles and tabulated values of VY the
term \JuZZ and compare 1t with the term q;uz neglected
in the basic equation (II-9). The neglected term is about
10% of the term retained. Certainly any attempts at more
precise experiments should be.compared to computer
solutions of the equations with variable fluid properties
and not to the.constant—cbefficient model developed here.
The parameter & is determined by an approximate
calculation aé follows. From (II-85) the dimensional

horizontal temperature gradient at x = 0 is:

| Ts ¥
.TX= cLJ2

We do not know the exact form of f in the experiment;

let us suppose £ = 1 over the entire source ribbon. Then

the total heat flux into the fluid, Q, is:

where A is the area O6f the source and cp i1s the specific
heat of water. From this expression we have

T cQlz

O = YL T pcprA
and § is thus determined by known constants and the
electric power dissipated in the source; we aséume that
the Lucité backing permits heat from the source to go
nowhere except into the water.

The velocity profiles are presented in figures 27
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and 28. In these figures the origin has been placed at
the point of coincidence of the two dye traces from which
the profile was determined and thus does not correspond to
a fixed geometrical level. An oversight in the photographic
alignment technique left the photographs devoid of a
sufficiently accurate reference for such a level, but the
point of dye line coincidence is.unambiguous. The primary
observation tovbe made 1s that the profiles do look gquali-
tatively as expected’frbm the theory. The decrease of
amplitude witﬁ ihcreasing s 1s apparent in the series of
three profiles at 5== 3.6 (figure 28) and in the pair of
profiles at §=0.9 (figure 27b). Dye lines were also .
photographed at s = 0.64, 1.28 for & = 0.225 and at s.= 1.28
for § = 0.9 but the lines did not move by as much as their
own width during the time allowed by dye diffusion; the
~velocities were thus less than abou£ 0.002 cﬁ/sec, and this
number 1s a reasonable estimate of the error in the profiles
in figures 27 and 28.

A few rough quantitative comparisons with theory
are possible. 1In Table II we show three quantities. The
first is the observed value of the vertical distance
(nondimensionalized with L) between the velocity maximum
and the velocity zero. The second is the computed value
of this quantity foxr the e—Z2 sourbe on linear theory,

and the third is the computed value using both linear
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and nonlinear terms. We see that in the 8§ = 3.6 series
(figure 28) the observed values agree rather well with
the values from the full computation, better than with
the purely linear computation. This indicates that the
expected narrowing and intenéifying of the outflow by
nonlinear effects actually oceurrs.

In Téble III we show the difference in level of
zero velocity between the value at & = 0.225 and the values
at §= 0.9, 3.6, both observed and computéd. The magni-
tudes do not agree well but the trend at s = 0.128 toward
greater elevation of the zero level with increasing 8
is observed, again indicating the presencé of the calculated
nonlinear effects.

In Table IV we show the Valueé of thermaximum positive
(outflow) Velocity; observed, computed on linear theory,
and computed in full. The observations have been non-

dimensionalized with the velocity scale factor —E';j_-j ’jo{b’L"

to make them commensurable with the theory. The agree-
ment is not good. The § = 3.6 series disagrees with the
full computation by a factor of about 2; the § = 0.9
series by a factor of about 1;5. Within the § = 3.6
series and the § = 0.9 series, though, the ratios of
velocity maxima ati:different s values agree fairly well
with computed ratios, indicating that the theoretical

rate of decay of amplitude with s is observed.
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Values of the nondimensional vertical distance be-

tween level of zero velocity and level of maximum

velocity
Linear Nonlinear
Observed computation computation

3.6 :
s = 0.128 1.06 1.42 0.97

0.64 1.49 1.87 1.44

1.28 2.35 2.25 1.83
0.9
s = 0.128 1.38 1.25 1.10
s = 0.64 1.27 1.62 1.50
0.225
s = 0.128  1.60 1.12 1.10
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0.128
0.64
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Differences in level of zero velocity

Height of zero level for
8 = 3.6 less height for

§ = 0.225 (nondimensional

distance)

Height of zero level for
8= 3,6 less height for
$= 0.9 (nondimensional

Observed Computed

1.3 0.35

Observed Computed
1.0 0.3

0.4 0.3
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" Table TV

Values of the maximum positive nondimensional velocity

Linear Nonlinear
Observed computation computation
&= 3.6
s = 0.128 0.225 0.329 ©0.h25
Ne.2 N2.1
s = 0.64 0.102C 0.179 0.200
N1y | N5
s = 1.28 0.071 0.123 . 0.132
$= 0.9
s = 0.128 OL232\\ . 0.329 0.345\
,,2.3 : ;19
s = 0.64 0.102 0.179 0.181
$= 0.225
s = 0.128 0.306 0.329 T 0.329
| 7 7

ratio ratio
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The use of the computations for the e~ 2  source
instead of computations based on the (unknown) experimental
f(z) as a standard of comparison for the observations is
not as bad a device as might be thought, for at large
distances from the soﬁrce tﬁe details of f(z) affect the
profiles only slightly. Whi? matters arevintegrated
properties of f(z) such as g f(z) dz (cf. (II—96) and
the discussioh immediately.;;eceeding; also appendix I).
In figure 29 we show tge profile of E(O’l)(s = 0.128;2)

calculated for the e-Z source_and also calculated for

an extreme source function:

f(z) =1, =14 zg1

0 elsewhere

This is a'source function whiéh injects delté—function
horizontal velocify profileé into the far field at z =% 1,
The calculation was made using some tabuléted functions

due to Koh (1966) and the units on the velocity axis are
his nondimensional units. The point to note is that the
two profiles are quite similar even at this modest Qalue of
s3; the pathoiogical profile introduced at s = 0 is quickly
smoothed out. Our experiméntél source is undoubtedly

not so path@logical and thus it is a reasonably good

: 2
- approximation to use the computations for the e™? source.
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It should be pointed out here that some of the
observed profiles appear not to consérve mass, €.g.,
the profile at s = 0.128, $= 3.6 (figure 28). Errors
in tracing dye lines cannot account for such a large
discrepancy; moreover, there is a pronounced reversal
above 1 cm which is not observed on the other profiles
of the series. Some local persurbation of unknown
origin is suspected, perhaps related to bubbles ﬁhich
had begun to form whén this, the final brofile, was
measured.
_ Finally, in figure 30 we present three profiles
taken with & = 3.6, s = 0.6 ét different times after the
initiation of forcing. Note that there is very>little
difference between them; the flow was steady during this
time. Thus our procedure of making.photographs 2 hours
~after setting up the forcing seems certain to have aﬁoided
observing transient flows; there is no déﬁbt that a
dynamical balance between heating at the source and dissi-
pation in the far field was achieved. The 2 hour wait
is more than sufficient on theoretical grounds also,
for the flow should become steady at least in the

conductive time scale O(L2/K = 160 sec).
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| cm

6.0l ¢mfsec

Figure 30 Three profiles taken at & = 3.6, s = 0.64,
and at 1/2 hour (a), 1 hour (b), and 2 hours

(c) after starting the forcing.
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'Chéﬁfer'ly"'ConCluding Remarks ‘and Suggestilons

We have seen that thé predictéd tongﬁe of Chapter II
is in fact observed in the laboratory; and that certain
of the primary.effects of nonlinéarities are also found.}
We now outline several ways in which both theory and
experiment could be extended and improved.

The mathematical scheme and fluid geometry of
chapter II can be- used directly to éolve for the flow due
to other kinds of sources. We can, forvexample,_set
1(0,z) = f(z); énd thereby model a source of mass. If
we specify T(0,z) and‘w(O,z) correctly, we can avoid
having a buoyancy layer (cf. appendix i). With a
symmefric £(z). we wiil obtain in the 1inéar1301ution a
é symmetric u and an antisymmetric T; the highest velocity
will now cocincide with the.zero of tempeféture anomaly.

The model of chapter II could be solved numerically
with the actual variable fluid pérameters A, K, and V.
These are in principle functions of the total temperature
but in practice, in this strongly stratified system, can
be given quite accurafely as functions of z alone. For
small forcing we can thus obtain a linear problem again,
but one with variable coefficients. Solution of this

3

problem and of the corresponding problem for the nonlinear.
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corrections should be undertaken 1f more precise experi-
ments are to:bé'interpretéd by such a theofy.

A wide raﬁge of néw théorétical probléms‘opens up
1f we admit a second stratification agént; é,g., salt.

We distinguish two types-of such problems. There are

truly laminar problems in which the greatly different
diffusivities of heat and salt will bé.of prime importance.
Thorpe, Hutt, and Soulsby (1969) have discussed what
happens when a salt—stratified solution is heated uniformly
from one side. If the stratification Were thermal we
should obtaiﬁ Just a nondivergent_buoyancy layer, but the
salt stratification leads to a double—diffusive instability
and a series of flat cells which gradually push outtinto
the interior. Such effects are likely'to Be_central to

any theory of source flows in such a fiuid.

On the other hand, if we interpret the heat and salt
diffusivitiés as eddy coefficients, with an eye to
examininé larger scale flows, and suppose them to be equal,
we can combine the heat and salt conservation equations

to get a similar conservation equation for density anomaly

, o o

B'V:f" +U[(Ja(3,);/—{0‘,al'2¢) >=,‘1<.E‘Vz{°’
ple /90(/85/-’0¢le
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in dimensional form; where Kgis the common éddy,coefficient,
T' is the temperature anomaly, §' is the salinity anomaly,
! is the thermal éxpansion coéfficiént; g is the analo-
_gous coefficient for salinity and ¥ and ¥s are the
mean gradients of temperatufe and salinity, respectively.
Provided the density anomaly gradients are smali relative
to the mean stable density»gradient; the équation can
be 1inéafizedland the dynamical problem solved as in chapter
II. One then has a subsidiary calculation to determine
T' and S' from théir conservation eqﬁations. If these
fields are both -strongly stratified, both conservation
equations can be linearized and the calculation is simple.
If only one field is strongly stratified the otﬁer mus?t
be computed by substituting the calculated velocities
into its full conservation equation and solving the
resulting linear problem with variable coefficients.

The field in this case acts like a passive tracer, the
density being influenced primarily by.linearized advection
of the strongly stratified field. If the unstratified
field develops large gradients, advections of density
anomaly become important and the dynamical problem is
nonlinear at the outset.

The matter of including rotation in the model should

s

be taken up, especially if cbmparisons to actual oceanic
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situations are sought. The_y-mqmentum équatiqn_must be
retained in the basic set. Scaling as in chapter II then
ieads to a nondimensionalized Coriolis term 4u in this
equation and a term —?V in the x—moméntum equation. Here
,-v = ZQ/N3; where f0is the (constant) rotation frequency
and NB = J§;§7 is the Brunt—Véiéélﬁ frequency. ‘Wunsch
(1970). has shown how these terms, for 4 = O(l); can modify

a nondivergent buoyancy layer. In important  ocean regions,

such as the main thermocline, theuratian may be fairly
small and we can expect rotational effects to modify but
not dominate the flow. This suggests one possible appli-
cation of the theory. Suppose in the main‘thermocline.

a region of, say, 5 meters in depth gets mixed due to the
breaking of an internal wave or some other cause and that
in the surrounding fluid small-scale turbulence leads to
eddy viscosity and eddy conducti&ity of O(lcm2/sec). Ir
NB is ILO"3 sec_l, a reasonable valﬁe, we obtain €% 0.06 and
Y = 0.1. $ = 0(1l) if the mixing is fairly complete, less
if it is partial. These are values of § énd €& not unlike
those of the laboratory experiment and 4 is at least not
huge. Perhaps the subseQuent flow from such a region of
disturbed temperature gradient would occur in a quasi-
steady fashion ahd obey the dynamics of chapter II. We
hasten to add that this is a speculation only, %ntended as

a notion for further investigation.
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The experimental apparatus should first he much improved.
Thé basic sizé'and operating Valﬁés of stratification and
forcing seem feasible enough, but a multitude of the author's
errors in mechanical design make 1t an extremely difficult
and tedious apparatus to Opérate; This is not the place
to catalog these errors in détail'but simply to note
that such matters as lévelling adjustments, cooling machinéry
occasional sidewall leakage, dye line visibility, and
photographic technique all stand in need of attention'and
refinement if more and better data are to be collected.
If a way can be devised to measure the small temperature
anomalies in the presence of the large mean field it
would add greatly to the eiperiments;=the author has not
‘been Successfu; in finding such a method.

With an improved apparatus one could immediately
drive the heat source harder and study the transition from
the laminar convection cell to thenturbulent plume which
must occuf at sufficiently strong forcing. All that 1s
needed is to build a new, higher resistance heat éource.
One could try to make a salt source using a semipermeable
membrane, or one could stratify the tank in salt and apply
the existing heat source. It would also be interesting to

study the effects of time-varible heating.
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Appendix T  Delta-function Sources

In previous analytical work on similar sourcé‘flow
problems the idéa of delta-function soﬁrcés has been used
to simplify the mathematics; Koh (1966);_in analyzing
the flow from a mass sourcé;'assumed that what wé have
referred to.as the far field balancé applied everywhere and
-then matched a solution of the linear problem (II-T4)
to a condition uéO;z) = 9 (z)¥ This form of boundary
condition also fixes T and W according to the far field
balances and the net effect ié thus to excludé any buoyvancy
layer. List (1971) has anélyzed'momentum sources simply
by adding terms like &z)to the right sides of the momentum
equatiohs as inhomogeneous terms. ‘

These approximations are useful, but one must use care
in choosing the corréct source condition to correspond to
ones physicél idea of how the flow is driven; the flow
from the heét source is a case in point. One might reason
intuitively that the localized heat source f(z) would

: produce,.at.large_x,.the,samé.effects.as.a delta-function

* Koh's analytical method is different than ours. He
transforms the linear far field equations into ordi-
nary differential equations in the similarity Varlable
1 of (II-97) and solves these numerically.
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source of temperature anomaly. This is not the case; the
far field should instead be approximated as being driven
by a $(2) source of horizontal velocity. From (I1-95),

=(0,1)

where we approximated u for large s:

o0

- (0,1 ' - k3 7
U )(S,Z) = COJ ke SS/riéZ o/k 5 o= %‘20//1(2)4/2

If this 1is assumed to hold for all s:

. e
G02) = 6 [ ksinkz = - 7¢,5'2)
A T

which is exactly what we obtain if, iike Koh, we solve

{ / .
(II-74) subject to ulo,z) =-Md(2). The expression (II-88)
for the far field temperature anomaly, subjected to the

same approximation, gives:

o) '
T " (0,2) = Co//ZCosﬁ‘ZZc”a
which is not proportional to §(z).
If we were to match a far field solution to a con-

dition T(0,z) = §(z) we would have:

7 = 7'71/0 f‘/z%cosézo/é

Then

U, = T3 = "#/dlezc'kgsas,ézc/é

or
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# Z,e‘ S sm bz b

From the usual rules for asymptotic estimation of‘Fourier

transforms (Lighthill, p,56) we have for large z:

/ A -
U ~‘77£:[’z' + (Lerms i zn n>i) ]
o , :
and thus & u dz , the net transport above some level Z >
_ 7, :

is infinite. It is thus clear that the wrong choice of

a delta-function source condition can iead to highly unphysi-
cal results. The reason»of course 1is that the buoyancy

layer is the physical agency which adjusts the far field

to the actual source condition, end the far field mathematics
"cannot describe this adjustment. The actual source condi-
tion can be directly matched to far field_soiutions by a
delta-function approximation only in those cases, such as
Koh's, in which a buoyancy layer is not required, i.e.,

when the soﬁrce condition is such as &to-introduce vertical
velocities end temperature anomalies only in balance accor-
ding to far field dynamics, or at least to introduce them
out of such balance only at some higher order in the

perturbatlon scheme.

' Note There is a further peculiarity of Koh's solution
which 1s not related to the use of delta- functlons

the pressure anomaly is 1nf1n1te at s =+ 00 . This.
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fact was pointed out to the author by Dr. S. Martin.
The singularityioccurs because of the conflict hetween
assuming a steady flow and assuming a steady source

~of mass; the "reservoir" has been "filling up" since

£ = - e . The singularity can be removed by speci-
fying an equal and opposite source of mass (a sink)
at s = 84 and then letting 5, approach +e ., The

other fields are unchanged by this device.
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Appendix IT Full’Linéar Problem

It was mentioned on p.20 that the full linear problem
posed by_(II—23) can be solvéd by-Fourier techniques.
List (1971) has done this for certain delta-function
sources by using a combination of residue theory and
numerical integration to invert the Fourier integrals
and has presented calculations for the casé € = 0(1).
We outline below a less subtle apprbach involving no
contour integration. We bégin with (11423) applied to

the streamfunction ZE defined by:

w = "gzz_ LU = §§x

In the usual way we look for separable solutions pro-

)

portional to cos kz and decaying in x. The general

solution is a Fourier superposition of these:
~©

.

(o)

X, (k) X M |
[C\U?-)@ +CL(£z)¢)“‘Lk)xfcf(g)€ ILk’ﬂ@sth (AII-1)

where * indicates complex conjugation. X , A, )i:are
the three roots with nonpositive real parts of the separa-

bility condition:
N3 a3k okt et =0 (ATI-2)

is real for k > 0.
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The boundary conditions take the following forms.

u(0,z) = 0 gives:

C, +c1_ +Q* =0

(ATI-3)
w(0,z) = 0 gives:
GA + Ch, +CFXE =0
(AII-4)
T(0,z) = f(z) gives:
: : % |
k|C, + hg_c"z_ +le,cz_¥: ‘i (AII—B)
where |
et (aF- k)E
hL = : A y i':/ll (AII-6)
and o
oo
f = S’vf(k) e bz Ak
| c (AII-T)
(AII-5) is derived using the vorticity équatioh
A A vA -
€TV Qf - "~Vx (ATI-8)

obtainable from (II-16) and (II-17) with % = 0. The three

simultaneous equations (AII—B);— (AII—S)_give:

T (ne- 2¥)

C, (AII-9)
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D | (ATI-10)

(ATI-11)

where

! i /
D — )l _ )L | >‘7._*
h, he ha

(AiI—l2)

Expansion of D shows 1t to be imaginary, as it must be
for (AII-10) and (AII-11) to hold.

With these expressions, and given a (not necessarily
small) choice of € and f(z), evaluétion of (AII-1) is
just a matter of algebra and numerical oalculation‘of the
integral. The other fields w, u, T can of course be
written as similar integrals.

One reason for presenting this unwieldy, but exact,
solution of the linear pfoblem is to show that for small €
(AII-1) reduces to the solution found by boundary layer and
perturbation methods in chapter II. From that work we
know that there are two horizontal scales in the problem,

the buoyancy layer scale and the far field scale. TFor
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(AII-1) to exhibit these two scales one or more of the A
must be O(&"') and likéwise one or more must be O(éz).
We use this fact to find approximations for the A;. First

let:

YA /\‘L' : AR Al
) A A b
-%; < 3k v +3k i * P kS =0

and the underscored terms are the largest, for km(O(éJ), S1o)

that we have, approximately:

. A A
A_d + A" = O
The two nontrivial roots leading to x-decay are the conjugate

’one's:
A T € (AII-13)

The remaining root ), must give the far field part of the
solution. Rescale, letting:

- _ o

N T XE

Thus (AII-2) becomes:

"N -3k ER R3St £ 3R =0
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4

and the underscored terms form the main balance, again for
k & 0(¢='). The desired root is:

= -k
(ATI-114)

Alternatively we could obtain (AII-13) and (AII-14) by
solving (AII-2) directly and expanding the results for small

&€ . With (AII-13) and (AII-14) (AII-12) gives:

2.8 L)
D= “ex +0 (ek}) | (AII-15)
and (AII;Q) - (AII-11) become:
.- . 3 . . ‘3”'
L ¥ Ne‘lc T . €le %
&= m, T Gy (AII-16)

With (AII-13) - (AII-16) (AII-1) becomes:

00

o % .
D = Vé‘{ g}(h)[e'&—@ 7 (cos Y2 +Sin ;/,r,,ﬂ teskz dk (AII=17)

where s and I are as defined in (II-29). For 5 = 0(1),
s = O(ez ), i.e., in the buoyancy layer,€ =i until k = 0(e™Yy,

and then 4';15 very small. So approximately:

@ :.v.. %_ {_(7_1 (l - e‘}—/ﬁ(cas Vi +sm r/ﬂ)) (AII-18)
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For s= 0(1), y= ,0(6’3), i.e., in the far field, € ;/1'%0

and (AITI-17) becomes:

oo _ ’/23 )
T - F f?(ia)e “coskz db (ALL-19)

We. see that (AII-18) and (AIT-19) are just the linear buoyancy
A _ .

(o,4) :
layer streamfunction ¥ '’‘and the linear far field streamfunctisn

(/w") , respectively.
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The computer program used to -make the calculations
for the plots in chapter IT was one of the author's
first attempts at the art; it'does its job but 1s awkwardly
written, and we present hére only its essential features:
The computations were berformed at the MIT Information
Processing'CeAter on the IBM 360;
Values of the filelds, when computed, were placed

in'two—dimensional arrays (array indices corresponding
to values of x and z) prior to being printed out. The
program begins by initializing all arrays to zero and
then starts the calculation of the buoyancy layer fields;
'the array names correspond to the fields as follows:
DIBL 1s -1¢0:0)  yrBL 1s #0000 " yrpr as 60051 4 g(01) (g 4y,
SILBL is ‘?ﬂ%', and the same names wiﬁh an "N" inserted
ére the corresponding nonlinear corrections in the buoyancy
layer. The computation ié perfdrmed for a cold soufce,
£(z) = e
C NEXT WE READ LOOP PARAMETERS AND COMPUTE THE LINEAR
C AND NONLINEAR BOUNDARY LAYER FIELDS AT THE POINTS IN
C SPACE FIXED BY THESE PARAMETERS

15 READ(S,Z)IXLBL;IXUBL,INCXBL,IZLBL,IZUBL,INCZBL,

1IFACXBL,FACZBL ,
2 FORMAT(6I110,2F10.5)

FACXBL = FACXBL*0.70717
DO 100 KK=IXLBL,IXUBL,INCXBL
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PHI=FACXBL¥ (KK-1)

EX=EXP (-PHI)

EXCOS=EX*COS(PHT)

EXSIN=EX*SIN(PHI)

DO 200 LL=IZLBL,IZUBL,INCZBL

ZBL=FACZBL* (LL-1)

PZLIN=EXP (-ZBL¥#¥2)

DPZLIN=-2,0%ZBL¥*PZLIN

PZNL =0.5%PZLIN¥DPZLIN

DPZNIL=PZLIN¥PZLIN#* (L4, 0¥ZBL*¥ZBL-1. o)
DLBL(KK,LL)=PZLIN¥EXCOS
WLBL(KK,LL)=-PZLIN*¥EXSIN , ’
ULBL(KK,LL)=0.70717#*DPZLIN¥ (1, 0-EXCOS~-EXSIN)
SILBL(KK LL)=-0.70717*¥PZLIN#*(1.0-EXCOS~EXSIN)
DNLBL (KK, LL)=PZNL¥ (EXCOS* (PHI-0.2)=0., 6 *EXSIN
1+0. 2*EX**2)

WNLBL (KK,LL)=PZNL¥* (-0.6*EXCOS+EXSIN¥*(0.6-PHI)
1+0, 6*¥EX®%D)

UNLBL (KK,LL)=-~1. 41421 ¥DPZNL#*
l(EX”OS*(O 7+0. 5*PHI)+EXSIN*(O S5¥PHI-0.4)-0.3%
PEX¥%2.0.4)

SINLBL(KK,LL)=1. 41421 %PZNL¥*
1(EXCOS* (0. 7+0, 5*PHI)+EXSIN*(O 5¥PHI-O0. u> 0.3%
PEX¥%2-0,14)

CONTINUE

CONTINUE

Some output statements follow and then we begin the

routine which calculates the far fields by a trapezoidal

rule:
C
C,
17
7
8

WE READ LOOP PARAMETERS FIXING THE POINTS AT WHICH
THE FAR FIELDS WILL BE COMPUTED
READ(5,7)BASE ,FACZFF

FORMAT (2F10.5)

READ(5,8)IDIFF,NMAX,INC IZLFF IZUFF, INCZFF
FORMAT(6110)

DO 300 MM+1,NMAX,INC

INT=MM-TDIFF

S=BASE#¥TNT :

DO 400 NN=IZLFF,TZUFF,INCZFF

ZFF=FACZFF* (NN-1)

BIGK=0.0

DELTAK=1, 0
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COMP=0.0
HAVING FIXED ONE POINT THE 50 LOOP SETS AN .
APPROPRIATE UPPER LIMIT,OF INTEGRATION AND THE
60 LOOP.SETS AN INCREMENT OF THE INTEGRATION
VARIABLE T SMALL ENOUGH TO GIVE AN ACCEPTABLE
ERROR IN THE RESULT THESE NUMBERS ARE ENTERED
IN ARRAYS AFTER STATEMENT 60 FOR REFERENCE
DO 50 IX=1,100
BIGK=0. 5*IX
COMP=COMP+S*BIGK¥¥3+0, 125*BIGK**2
IF(COMP~30.0)50,55,55
50 CONTINUE
55 DO 60 IY=1,100
DELTAK= DELTAK/2.0
TESTNO=(BIGK*DELTAK¥*¥2)/12.0
IF(TESTNO-1.0E-4)65,60,60
60 CONTINUE
65 NSTEP=IFIX(BIGK/DELTAK)
UPLIMIT (MM,NN)=BIGK
SPACE (MM, NN )=DELTAK
LOOPNO (MM, NN )=NSTEP
‘T=0.0
SILFF(MM,NN)=-0.199471¥DELTAK
C THE ACTUAL INTEGRATION BY TRAPEZOIDS BEGINS HERE
C AND CONTINUES THROUGH STATEMENT 300
DO 550 III=1,NSTEP
T=T+DELTAK
TRIG1=COS (T*ZFF)
TRIG2=SIN(T*ZFF)
EXPNT=EXP(-0.125%T%%2)
AMPL=-0.398943*EXPNT*%2
AMPNL=-0.0282095¥T¥EXPNT
FAC=EXP(-(T*#3)¥g3)
DLFF{MM,NN )=DLFF(MM,NN)-T¥ AMPL¥*FAC*¥TRIGL¥DELTAK
WLFF(MM,NN)=WLFF(MM,NN )~ (T#%¥3) ¥ AMPL¥*FAC¥TRIGL*DELTAK
ULFF (MM,NN)=ULFF(MM,NN)+T*¥ AMPL*FAC*TRIG2*DELTAK
SILFF(MM,NN) SILFF(MM,NN)+AMPL¥FAC*TRIGL¥DELTAK
DNLFF (MM,NN)=LNL"F(MM,NN )+T* AMPNL¥FAC*TRIG2 ¥*DELTAK
WNLFF (MM ,NN )=WNLFF (MM, NN ) +T#* ¥ 3%¥ AMPNL¥FAC¥TRI G2 ¥DELTAK
UBLFF (MM, NN )=UNLFF (MM,NN)+T#*AMPNL¥FAC¥TRIG1 ¥*DELTAK
 SINLFF(MM,NN)= SINLFF(MM NN )-AMPNL¥FAC¥TRIG2 ¥DELTAK
550 CONTINUE

Qoo

There follow 8 statements which reduce each far field array
by one half the last increment so that the area of the

last trapezoid is not added twice, and then the 300 CONTINUE
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and MOQ,CONTINUE.statements,terminaté.the loops. These
far field array names havé thé same‘pattérn as the buoy-
ancy layer array names. The uppér limit of iﬁtegration
BIGK is chosen such that the integrands are O(e_BO) there.
The choice of DELTAK, thé spacing in k of the bases of the
trapezoids, is taken from Hildébrand“s (p. 75)-error
criterion for this method:

|E| - "(b'“’)3lF"(x)\

[ 2n®

where (a,b) is the interval of integration, n’is the
number of points at which the integfand is‘calculated,

and f"(x) is the value of the second derivative of the
integrand somewhere in the iﬁterfal. If " is bounded

the error goes to zero as n —»eo. To check that our

ad hoc choice of a limit for this error was satisfactory,
additional Qomputations (not shown) weré“made in which the
integrals wére>simply computed again and again at sucéessively
smalierr values of DELTAK until the results stabilized.

No significant differences beﬁween these results and the
ones from the program listed above were observed. The
amplitudes of the nonlinear cdfrections in the far field
(proportionél to AMPNL above) were computed toc small by

a factor of‘two; this has been adjusted in making the

plots of chapter II.
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Appendix IV ~ TInfluence of a Sidewall

We write the linear equations of motion in the usual
nondimensional far field form but retain y-dependence,
where y is distance perpendicular to a sidewall, made

nondimensional with L.

0= s 4 Uy Uk €1 Uss | (AIV-1)
O = Py +e".(1)334-4;u+’e" Wss ) ' (AIV—Z‘)
| O-= A-—*P?_ + T +€&° Lwﬁg—wu + e"td;s) , (AIV—S)F
O = €*us + Uy + (;)1_ | (AIV-14)
Oz -Ww +e+ (TTJ +—T1~; + é"»Tss_) . (AIV-5)

We use these to_find a boundary layer solution, i.e.,

one which vanishes as y —>ao,'capable of adjusting the
interior velocity to zero at the sidewall. This interior
velocity we take to be the linear horizontal far field

velocity ?CO’l)

of the two-dimensional problem; we ignore
the much smaller two-dimensional Vértical velocity.

Expanding variables in power series in € in the standard
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way we find from (AIV-2):

f(‘g,:' 103) - 0 (AIV-6)

and thus for a boundary layer solution:

) o a0 = ' :
‘f“ 'f' -© (AIV-7)

1

Then from (AIV;3):

T(O‘) - —r(_s) - O
. - (AIV-8)

(AIV-5) now shows that w is O(&Y ) at most, and thus from
(AIV-4) we see that v is at most O('W ). U will be 0(&)
since this is the magnitude of the interior velocity, so

m———

v & 0(&). (AIV-2) then shows p & O( &%), Thus to find
(1)

u "we have only to solve the reduced form of (AIV-1):
W Lour (ATV-9)
(A..” + Wy, =0

The appropriate solution is:

oo ot 3
L = - s?')(l’z)e‘k Se‘kj sinkLA{Z (AIV-10)
o _ '

and thus the total velocity is:
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1 3
e u= & gw'()(k) e‘ks(l—e' &) sinkz dk (ATV-11)

[o}

Some machine calculations of (AIV-11l) were made, but

it is a simple matter to show analytically that (AIV-10)

(0,1)

constitutes a small correction to U along the center-

line of the tank where observations are made. Set s = 4,
corresponding to the end of the tank opposite the source,
and set y= 20; corresponding to the centerline. Set z =

2.5, corresgonding to the level of maximum u(o’l)(ﬂ,z)g

.iTQr_,»itl(Le-;;;-e-—f3;source. Then (AIV-10) is: -

_Eh _9K3 _ 20k
k' = Ve ! ke é € Sumaskdb (AIV-12)

' -20k : -
Now e $1-6ik | osheons

-20%
e $0.05 k> o5

Swm2.5k 25k |, kyo

S0 an upper bound for ‘u(l)(H,Z.S)Iis:
o5

ju}"('—/,z.s)} < é_:n_ j k(1-(5k) (25k) i

o

o0
\ _kj 3
S | ke A - te (s.05) sin 2.5k d R

oy

The first term is about 3.25 x 10_1’l and the second is

R
\

f) (
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obviously less than O;OS‘u(O’l)(M,Z.S)L s0:

0,1/

w425\ € z2sxi07? ro.05 £ (425

Since H(O’l)(ﬂ,2.5) = 7.5 % 10"2, the relative error is

_)Q“’ (Q,z.s‘)l

3 43303 +o0.05
- (o,V)
W (%ZJ)

-

i.e., less than about 5%. 1In short,'this boundary layer
makes the required adjustment of velocity while intro-
ducing small alterations of observed values of 5(0’1)

and quite negligible alterations of the other dependent

variables.
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