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ABSTRACT

Recent sedimentation in the eastern Angola Basin includes calcareous
oozes in the north and south (Guinea Rise and Walvis Ridge) and hemipelagic
lutites and terrigenous turbidites on the Congo Cone and on the Angola rise
and abyssal plain. Slumped and ponded sediments are dominant within the
Angola diapir field. Illite and montmorillonite are abundant in the south-
ern part of the basin, reflecting the source in soils of South West Africa
and northward transport in the Benguela Current system. Kaolinite dominates
the clay-mineral assemblage in the north-central part of the basin, reflecting
a source in the tropical-humid Congo Basin and transport to the deep-sea

through the Congo River and canyon systems.
Piston cores from the continental rise revealed major fluctuations in

the surface oceanographic conditions, primary productivity, and near-bottom
depositional environment during the late Quaternary. Sediments deposited
during glacial intervals contain markedly lower carbonate, higher levels of
organic carbon, and more abundant siliceous biogenic componen§s, fecal pellets,
and pyrite. Sedimentation rates during the past 200-300 x 10 years re-
mained relatively constant on the rise, averaging 3-5 cm/103 years.

Oceanographic changes from interglacial to glacial periods, based on
sediment composition and geochemistry, include:

(1) northward extension and intensification of the Benguela Current and
associated high primary productivity off southern Angola;

(2) onset of upwelling and high surface productivity off northern Angola,
Congo, and Gabon; and

(3) major influx of bottom water into the Angola and Guinea Basins.
These conditions resulted in higher benthic productivity, a shallower

lysocline, and a more reducing near-bottom environment, as bottom water in
the Angola Basin, produced during glacial maxima, became isolated. This
"climax" bottom water was eventually mixed with the overlying water by ge:)-
thermal heating.

Thesis Supervisor: Dr. John D. Milliman

Title: Associate Scientist
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INTRODUCTION

The purpose of this investigation is to study the modern conditions of

sedimentation in the Angola Basin and the changes brought about by variations

in the climate of western Africa and in the oceanographic regime during the

late Quaternary. Present sedimentation was studied by attempting to relate

the composition and dispersal of suspended matter in the surface and deep

water and the composition of surface sediments to the prevailing oceanographic

and climatic conditions. Variations in sedimentary conditions and paleo-

environments during the late Quaternary were investigated by studying the

composition of sediments in piston cores from the Angola Basin.

The interacting influences of climate and oceanographic conditions can

have profound effects on sediment sources and volumes, on sedimentary pro-

cesses, and on the environment of deposition. Until recently, studies of

Quaternary marine sedimentation have been concerned primarily with establish-

ing the details of paleoclimatology on the basis of planktonic assemblages,

oxygen isotopic composition of foraminiferal tests, or calcium carbonate con-

tents. Only within the past few years has attention turned to the influence

of changing surface and deep-sea circulation patterns on the nature of marine

sedimentation (e. g., McIntyre and Ruddiman, 1972; Kennett and Brunner, 1973;

Watkins and Kennett, 1972; Broecker, 1971).

The Angola Basin is well suited for a study of both paleoclimatological

and paleooceanographic effects on sedimentation. The climate of tropical

west Africa underwent major changes during the Quaternary, from tropical-humid

during the interglacial periods to arid-semiarid during glacials. The cir-

culat ion pattern of surface waters includes two contrasting current systems,
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the cold, productive, northward-flowing Bengue la Current in the south and

the warm, eastward-flowing South Equatorial Countercurrent farther north;

models of Quaternary climatic variat ion based on studies of the adjacent areas

of Africa, postulated important changes in this scheme. In addit ion, the

nearly complete restriction of bottom waters of the basin at the present

time offered the opportunity to study the effects of major changes in deep

circulation on the nature of sedimentation during the late Quaternary.

Sediment samples used in this study include both piston cores and bot-

tom samples and were acquired from several sources. Piston cores were ob-

tained from the Lamont-Dòherty Geological Observatory, the Centre Oceanologique

de Bretagne, and the Woods Hole Oceanographic Institution; grab samples were

from the Centre Oceanologique de Bretagne, Dr. Howard Sanders (WHOI), Woods

Hole Oceanographic Institution, Bureau of Commercial Fisheries (courtesy of

Dr. G. Keller), Institut Royal des Sciences Naturelles de Belgique, and M. P.

Giresse (Congo Republic). The locations of these samples are included in

Appendix I and are shown in Figure 1. The suspended-matter samples were taken

from the N/O "Jean Charcot" during the WALDA expedition of 1971 and from the

R/V "Atlantis II" during the Eastern Atlantic Continental Margin study of

1972.



Figure 1.
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Location of bottom samples and core descriptions used in

the investigation.
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PHYSIOGRAPHIC SETTING

The coastal areas of Angola, Congo, and Gabon are characterized by a

narrow zone of Cretaceous to late Cenozoic sedimentary rocks (10-100 km

wide) to the east of which rises a long high plateau of Precambrian age.

This plateau has its highest elevations in the south, averaging 1500 to

2000 m, with the highest point (2620 m) being east of Lobito, Angola. The

plateau descends towards the north, where it lies at 500 to 1000 m above sea

level. The coastal plain is broadest in areas of major Tertiary embayments

such as the Moçamedes, Cuanza, Cabinda, and Gabon Basins that have received

considerable geological attention in view of their petroleum potential. The

Congo River and its tributaries drain a large interior basin of Tertiary to

Recent continental sediments.

The continental shelf in the study area is generally very narrow (Figure

2), particularly off southern Angola and immediately south of Luanda ( ~ 5 km).

It is wider off the Kunene River~ South West Africa, and in the large reentrant

of the coastline between Lat. l3°S and Luqnda, Angola where it is 40 to 50 km

wide. The shelf broadens steadily northward towards the mouth of the Congo

River where it reaches a maximum width of about 80 km. The shelf remains 40

to 60 km wide off Gabon and the Congo Republic.

The offshore area can be subdivided into six major physiographic regions;

(1) the Guinea Rise; (2) the Congo Cone; (3) the Angola diapir field; (4) the

Angola continental rise; (5) the narthern Walvis Ridge; and, (6) the Angola

abyssal plain.

Guinea Ris e

The Guinea Rise is a broad swell separating the Angola Basin from the





Figure 2.
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Bathymetry of the Angola Basin and adjacent continental

margin. . Depths are in corrected meters with a 400-meter

contour interval (after Uchupi, 1972).
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Guinea Basin, thereby marking the. northern boundary of the study area. It

rises to approximately 4400 m depth from the Angola abyssal plain ( ~ 5200 m)

on the south and is characterized by numerous seamounts and volcanic islands

of the Cameroon Line (Annabon, Principe, Sao Tome, and Fernando Poo). Con-

t inuous seismic profiling data show that the Guinea Rise has a highly ir-

regular sub-bottom topography of very high relief, covered by a thick blanket

of sediments (Heezen et al., 1964; Emery et al., in prep). This topographic

feature is believed to have been built primarily during the Cenozoic as a

fracture zone-ridge system (LePichon and Hayes, 1971).

Congo Cone \ .
2The Congo Cone occupies an area in excess of 250,000 km to the north-

east of the Angola abyssal plain (Figure 2). The cone and in particular the

associated canyon system have been the subject of a detailed investigation by

Heezen et al. (1964).

The cone is characterized by the undulating topography typical of an

abyssal cone, being dissected by several canyon distributaries, especially
,
j: .

west of 9°E. The overall shape of the continental rise and slope is convex

seaward in this region, in contrast to the slope and rise farther south which

""
0,

¡,
h

. :l ~

are concave seaward. A positive free-air gravity anomaly () 40 mgal) is

associated with the area west-southwest of the Congo River (Rabinowitz, 1972).

The following are the important aspects of the Congo canyon system and

its deep-sea fan:

(1) the canyon extends 30 km into the mouth of the river and thus di-

verts virtually all of the river's bedload into the deep sea;

(2) the total length of the canyon system is 800 km and is made up in
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its lower parts of 8 to 10 branches (below 3500 m);

(3) the canyon is V-shaped to a depth of about 3500 m, with the floor

between 200 and 700 m below the leve 1 of the adjacent sea floor;

(4) below a depth of 3500 m, the channel is defined primarily by

natural levees.

Angola Diapir Field

The Angola diapir field has been the focus of several recent studies

(Baumgartner and van Andel, 1971; von Herzen et al., 1972; Leyden et al.,

1972; Rabinowitz, 1972; Emery, 1973) in the light of the area's possible

economic significance and of its position in the reconstruction of the South

Atlantic. The evaporitic nature of these diapirs is supported by gravity,

magnetics, heat flow, seismic refraction, and similarity to known salt

diapirs.

The diap ir fie ld, which extends from about Lat. 13.50 S to at leas t as

far north as Cape Lopez, lies at depths between approximately LOOO and 3500 m

and is characterized by relief of up to several hundred meters. The field

terminates abrupt ly on the seaward side as a steep scarp up to 1200 m in

height. Articles by Leyden et al. (1972) and Mascle et al. (in press) suggest

that this zone of diapirs may extend into the northern Gulf of Guinea, pos-

s ibly as far as the Niger delta. This latter view is also supported by more

recent geophysical data (Emery, personal communication).

On the basis of sediment ponding observed in seismic reflection pro-

filing (Figure 3), detailed surveys of individual features, and gravity deter-

mina tions, it has been concluded that many of these individual diapirs must

form linear ridges up to 15 km long and roughly parallel to the bathymetric

contours.





Figure 3. 3.5 kHz echo-sounding record showing ponded sediments

within the Angola diapir field.
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Angola Continental Rise

The Angola continental rise includes the region bounded by the Congo cone

to the north, the Angola diapir field to the east, the Walvis Ridge to the

south, and the Angola abyssal plain to the west. It has smooth topography,

broken only by occasional canyons, seamounts, and small, poorly developed

continental rise hills (Figure 4). The last are most apparent at depths of

about 4000 to 4500 m in the southeastern part of the area. The largest ap-

pear to be approximately 1500 m long and 30 m high and are thought to be the

products of deep currents. For reasons to be presented in a later section,

these features are believed to be relict, dating from before the last major

transgression.

Walvis Ridge

The Walvis Ridge, a major topographic and structural feature exhibiting

rugged volcanic relief of several hundred meters, trends approximate ly NN-

SSW from the Mid-Atlantic Ridge to the African continent, and separates the

Cape Basin from the Angola Basin. Its northern sector is a more or less con-

tinuous unit with an average minimum depth of approximately 2500 m. West of

the study area (at about Long. 2°E), the ridge is cut by a deep valley which

reaches a depth of 4000 m. The ridge is a less continuous feature west of

this gap.

The steep north flank merges abruptly with the sea floor of the Angola

Basin (Figure 2). Slump structures and the continental rise hills continue

at least along the northeastern part of the Walvis Ridge.



Figure 4. 3.5 kHz echo-sounding record showing continental rise

swells off southern Angola.
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Angola Abyssal Plain

The abyssal plain occupies an area of approximately 15 x 105 sq km and

lies at a depth of 5200-5600 m. It is essentially flat and featureless in

its central portions. On the west it merges with the abyssal hill province

of the Mid-Atlantic Ridge, on the north with the Congo cone, and elsewhere

with the Angola continental rise or the similar topographic feature on the

north flank of the Walvis Ridge.
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CLIMATE

The coastal region adjacent to the Angola Basin belongs primarily within

the Class V or Tropical Climatic Zone of Landsberg et al. (1963) and embraces

four of their five subdivisions within this zone, from "tropical humid-sumer

climate" to "tropical semi-desert and desert." These zones are arranged with

the most humid in' the north and the driest in the south (Figure 5); the

southernmost sector of the area lies within Class iv or the Warm Temperate

Subtropical Zone and in the "semi-desert and desert If subdivision of this zone.

Inland, the climatic zones penetrate far south of their coastal positions

due to the presence of the nearby Precambrian plateau, located less than 100

kilometers inland (see page17). The major effect of this plateau is to in-

crease rainfall in the interior; in southern Angola four major climatic zones

occur within 400 kilometers of the coast. In the northern interior much of

the Congo's drainage basin lies within a tropical-rainy climatic zone. This

distribution of climatic zones has a profound influence upon the hydrologic

regimes of the rivers in this area and c ~ their contribution of sediment to

the adjacent continental margin.

The climate and hydrographic conditions of this area are controlled prin-

cipally by the presence of a major high-pressure area, the center of which

is located at about Lat. 28°S and Long. 9°W in January and at about Lat. 24 Os

and Long. l3°W in July (Figures 6 & 7). In January, a major low-pressure

area is centered over central equatorial Africa but moves far to the north-

east by July.

Offshore, the anticyclonic circulation associated with this configuration

gives rise to dominantly southeast trade winds in the entire area. These





Figure 5. Climatic zonation of Africa (after Landsberg et al.,

1963). Details for eastern Africa are not shown.
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Schematic interpretation of the important climatic

features during an interglacial southern sumer in

western Africa (after van Zinderen Bakker, 1967).

Horizontal hatching indicates pluvial conditions; dia-

gonal hatching indicates upwelling.
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Schematic interpretation of the important climatic features

during an interglacial northern summer in western Africa

(after van Zinderen Bakker, 1967).
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southeast trade winds are particularly important in driving the Benguela

Current (see below). As a result of the presence of a major cold water mass

adjacent to shore, convectional winds very near the coast tend to be relatively

dry.

The prevailing ocean winds are from tre south or southeast. Winds

average between Beaufort force 4 and 5 but are slightly stronger during the

winter. North of lSoS the winds are more southerly and weaker.

J
In the interior of Angola and South West Africa easterly and south-

easterly winds predominate with the strongest coming from a more southerly

direction. Of particular interest with respect to potential offshore eolian

transport of sediment off southern Angola and South West Africa are the Berg

winds. These hot, dry, east winds blow from the plateau and generally are

strong, gusty, and laden with dust and sand. These winds occur commonly in

winter, lasting from several hours to several days, and have velocities of

over forty miles per hour (20 m/ sec).

Most of the coastal region receives very little rainfall diminishing from

north to south. Typical annual precipitation is shown in Figure 8. Important

rains in Angola come in summer (October-April) and are chiefly convectional.

In the south, rain comes as occasional showers in late sumer. The isohyets

in the study area closely parallel the coast (Figure 8) owing to the rapid

rise in elevation. East of Mocamedes, Angola, on the plateau, the rainfall

is more than 100 cm/yr resulting in the almost annual flooding of the rivers

of Angola, particularly the Cuanza, Cubal, Catumbela, Cuvo, Quicombo, and

Corpolo.



Figure 8. Pattern of average rainfall in Gabon, Congo Republic,

Angola, and South West Africa (after Flint, 1959).
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OæAOOGRAPHY

Surface Circulat ion

The pattern of surface circulation is dominated in the south by the

Benguela Current, in the north by the South Equatorial Countercurrent, and

between Lat. 10° and 200S, by their confluence in a complex of surface cur-

rents and gyres (Figure 9).

Bengue la Current

The Benguela Current, one of the world i s major eastern boundary currents,

owes its existence to wind stress on the sea surface by south and south-

easterly winds and to the density gradients between cold upwelled water along

the coast and warmer, lighter water farther west. The water upwelled along

the South West African coast is South Atl~ntic central water, a mixture of

sub-Antarctíc and sub-tropical waters (Schell, 1968). Drawn to the surface

from depths of between 150 and 400 m (becoming shallower at lower latitudes),

this deep water is characterized by its low temperature (10°-14°C), low

salinity (34.6-35.o1J, high nutrient content, and low dissolved oxygen con-

tent.

The high nutrient content in surface waters causes high levels of bio-

logical productivity, up to 3.8 g C/m2/day off South West Africa (Steeman

Nielsen and Jensen, 1957). Eutrophication reduces the oxygen levels, re-

sulting in the accumulat ion of organic, diatomaceous muds on the continental

shelf off South West Africa.

Upwelling and the consequent high productivity within the Benguela

Current decrease markedly north of about Lat. 23°S as the main branch of the

current leaves the coast to flow northwestward and westward (Figure 9). A



Figure 9.

39

Pattern of surface currents over the eastern Angola Basin

(after Moroshkin et al., 1970).--
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smaller branch cont inues inshore off the coast of Angola. According to

Moroshkin et al. (1970) this bifurcation of the Benguela Current between Lat.

20° and l5°S gives rise to a small zone of divergence over the north flank

of the Walvis Ridge. Current velocities also diminish from south to north,

being about 25-30 cm/ sec off South West Africa and 15-20 cm/ sec further north.

A southward-flowing countercurrent has been identified beneath the

Benguela Current (Hart and Currie, 1960). The core of this oxygen-depleted

current lies at approximately 300-400 m depth at lSoS; the flow is several

hundred meters thick and 400 km wide at this latitude. Its presence off South

Africa also has been noted by DeDecker (1970). No estimates of current

velocity have been made, though van Andel and Calvert (1971) suggest that such

a current in the past may account for the erosion they infer to have taken

place on the continental shelf between Lat. 20° and 25°S.

South Equatorial Countercurrent

This current flows generally eastward in a broad band between about Lat.

5° and 90S with velocities on the south of between 7 and 10 cm/sec, increasing

to 30-50 cm/sec on the northern edge of the flow. The width and velocity of

the flow diminish markedly with depth; at 100m depth the flow is about 150

km wide with velocities of about 3-5 cm/sec on the south and 15-25 cm/sec on

the north.

Between Lat. SO and 9 °E, the current turns south, dividing into two

branches. One forms an anticyclonic gyre centered at Lat. 7°30'S and Long.

9°30'E; the other flows southward providing a source for the Angola Current.

This lat ter name was proposed by Moroshkin et al. (1970) for the narrow,

stable, fast (). 50 cm/sec) southward flowing current along the Angolan coast.

The orientation of shoreline features indicates that longshore drift,
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from South West Africa to Cape Lopez, is towards the north.

Infl ux of Fresh Water

The Congo River represents the only major source of fresh water off

west Africa between the Niger and Orange Rivers. In terms of discharge it

ranks as the second largest river in the world (1,400 x 109 m3 annual dis-

3charge), its rate of discharge varying between 26,000 m / sec in August to

3
nearly 60,000 m / sec in December (Donguy et al., 1965).

Congo River water moves to the northwest as it enters the Atlantic

Ocean (Figure 10). At about Long. 11oE, the tongue broadens and moves to the

south-southwest as far as about Long. 9°E where salinities of 3510 are at-

tained. A broad region of slightly lowered salinity can be traced as far

south as Lat. 90S. In reality, however, this view of the Congo discharge is

too simplistic: detailed continuous salinity measurements made during the

WALDA expedition showed that the Congo River water is distributed in many

narrow "streams" of low-salinity water separated by regions of nearly normal

salinity.

Deep Circulation

The contrasting bottom water characteristics of the Angola Basin (2.4 °C)

34.89%~ and the Cape Basin and western basins of the South Atlantic (1.5°C,

34. 77%~ led WUst (1933) to conclude that Antarctic Bottom Water was prevented

from spreading into the eastern basins (Angola and Guinea) by the Walvis

Ridge to the south and the Mid-Atlantic Ridge on the west. The differences

in salinity and temperature between the Brazil Basin and the Angola Bas in are

shown in the east-west profile at Lat. l6°S taken from Fuglister (1961) (Fig-





Figure 10.

43

Salinity distribution in surface waters overlying the

Angola Basin based on data collected from the N/O "Jean

Charcot" during the WALDA expedition of 1971 and from the
i
\ .

R/V "Atlantis ii" during the Eastern Atlantic Continental

Margin Study of 1972.
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ure 11).

On the basis of data presented in Fuglister (1961), Shannon and von

Rijswijck (1969) believed that a small amount of water enters the Angola

Basin through a narrow gap in the Walvis Ridge at about Lat. 31 oS. Based on

nephelometer studies, Connary and Ewing (1972) reached the same conclusion.

A small amount of bottom water enters the Guinea and Angola Basins

through equatorial fracture zones, in part icular the Romanche Fracture Zone

(Figure 12). Metcalf et al. (1964) determined that the sill depth in these

fracture zones was at approximately 3750 meters. In turn, the Guinea and

Angola Basins are separated by a sill at approximately 4100 meters depth

(Connary and Ewing, 1972).

WUst (1957) calculated geostrophic currents for the deep waters of the

Angola Basin and concluded that the circulation was very sluggish (everywhere

less than 5 cm/sec). Temperature and salinity data suggest that essentially

homogeneous water exists below 4500 meters. Connary and Ewing (1972) found

that the main nepheloid layer occupies the same homogeneous water mass,

where settling velocities of particles are balanced by turbulence. They also

found that light scattering within the Angola Basin was six times less in-

tense than in the western North Atlantic and four times less than in the

western South Atlantic and Cape Basin, further attesting to the sluggish cir-

culation in this basin.

Photographic evidence also suggests slow bottom circulation. Heezen et

aL. (1964) state: "The photographs indicate a generally muddy bottom with

fairly abundant tracks and trails, and indicate a tranquil bottom unaffected

by ocean currents." (p. 1140).

In light of the proposed slow circulation, the presence of well defined

abyssal swells along the continental rise off southern Angola and along the



Figure 11. (a)
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East-west profile of temperatures across the South

Atlantic Ocean at Lat. l6°S (after Fuglister, 1961).
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Figure 11. (b)
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East-west profile of salinity across the South At Iant ico ,Ocean at Lat. 16 S (after FugI ister J 1961).
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Figure 12.
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Distribution of potential temperature of bottom water

( ~ 4000 m) in the South Atlantic (after WUst, 1933).

Diagonal hatching, indicates water of less than 1. 6°C;

horizontal hatching indicates water of greater thari

1.6°C.
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lower Walvis Ridge seems anomalous. Though they are not as well developed as

similar features along the eastern United States, these swells may have the

sam mode of origin, formed by currents flowing along the continental rise.

Since present currents do not seem capable of producing such features, it can

be assumed: (1) they were not formed by abyssal currents; or, (2) they were

formed at a time when abyssal circulat ion was more vigorous, perhaps during

glacial periods of the Quaternary. At present the lack of data does not

permit us to choose between these alternat ives, though the regularity in size

of these features, their position on the rise, and their form tend to argue

against another mode of origin, such as slumping or sliding.

Paleoclimatology and Oceanography

Variations in environmental conditions within the study area during the

Quaternary undoubtedly had a significant effect on both the terrigenous and

biogenic sources of sediment for the continental margin. Most of the Pleisto-

cene climate research has been conducted in southern and eastern Africa and

has been related primarily to the redistribution of early man and other ver-

tebrates in response to climatic changes (e.g., Cooke, 1947; Jones, 1944;

Moreau, 1933; Leakey, 1949). Angola, South West Africa, and the western Congo

have been very poorly studied, except for a few isolated sites (van Zinderen

Bakker, 1963; van Zinderen Bakker and Clark, 1962; Voss, 1970; de Ploey, 1963,

1964, 1965).

Figures 13 and 14 illustrate van Zinderen Bakker's (1967) interpretation

of the climatic conditions during glacial intervals. The following are the

major differences between glacial and interglacial climatic extremes:

(1) The center of the South Atlantic Anticyclone (high press~re) shifted

northwards (by 8 to 12 degrees) and eastward during glacials.



Figure 13.
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Schematic interpretation of the climatic features during

a glacial southern summer in western Africa (after van

Zinderen Bakker, 1967). Horizontal dashed lines indicate

pluvial conditions; diagonal lines indicate upwelling. i ,
\
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Figure 14.

ss

Schematic interpretation of important climatic features

during a glacial northern sumer in western Africa (after

van Zinderen Bakker, 1967).
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(2) During glacial sumers, pluvial conditions extended southward in the

interior from the equator to near the southeast coast of Africa

(28°S). During interglacial sumers, pluvial conditions were re-

stricted to the Congo Basin (north of Lat. 100S).

(3) There was a marked intensification and northward extension of the

Benguela Current during the glacial periods. This is indicated by

the northward extension of the Namib Desert during glacials. Van

Ande 1 and Calvert (1971) also suggest that the Benguela Current

flowed faster during times of lowered sea level, in order to ac-

count for the erosion surfaces they observed along the shelf off,

South West Africa.

(4) Intensive upwelling, particularly during winter, occurred during

glacials off the Congo Republic, Gabon, and northern Angola. This

did not occur during interglacials.

The direct correlation between glacial conditions in higher latitudes and

pluvial conditions in central Africa has been the focus of several investi-

gations and has generated considerable controversy (van Zinderen Bakker, 1966;

Flint, 1959). Based on a wide variety of evidence from sites throughout sub-

Saharan Africa, van Zinderen Bakker (1972) concludes:

(1) temperature changes coincident with those of the northern hemisphere

also occurred in tropical Africa;

(2) changes in humidity were correlated with temperature changes; and,

(3) the "glacial" climate of tropical Africa was drier and the "inter-

glacial" climate wetter than at present.

As van Zinderen Bakker points out, however, this relationship does not apply

to extratropical regions.
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Glacial aridity in this region was probably further intensified along the

Angola and Congo coastal areas by the more northward penetration of the Ben-

guela Current and the onset of upwelling conditions along suitably aligned

coastal regions between Luanda and Cape Lopez. According to van Zinderen

Bakker (1967), supported by the work of de Ploey (1963) and Clark (1962),

there was a "desert climate along the coast and a semiarid region reached far-

ther inland, reaching as far as Leopoldville (400 km inland)." These semi-

arid conditions also would have reached as far as central Angola, giving it

a semiarid, cool climate during glacial periods. Fairbridge's (1964) studies

on the distribut ion of fossil dunes in central Africa also support this con-

clusion. The dry conditions undoubtedly had a significant effect on the

hydrologic regime of the Congo River, the single most important source of

terrigenous sediment for the Angola Basin. This is perhaps of even greater

relevance since most of the sediment delivered to the ocean is derived from

runoff below Stanley Pool (Heezen et al., 1964), a region that was desert or

semi-desert during glacial periods.

Data from earlier than approximately 65,000 years B.P. are completely

lacking for this region of Africa. In addition, no attempts have been made

to determine the precise temperature and rainfall changes that took place

between glacial and interglacial periods, though van Zinderen Bakker and

Clark (1962) and van Zinderen Bakker and Coetzee (1972) suggest that the re-

gion in northeastern Angola experienced temperatures equivalent to at least

500 m greater altitude during the period between 30,000 and 14,000 years B.P.

This was followed by a warmer, humid phase (the Makalian Wet Phase) during

which a climatic optimum was reached (approximately 7,000 to 4,500 years B.P.).
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DISTRIBUTION OF SUSPENDED MATTER

Surface Suspended Matter

Suspended Matter Distribution

Throughout the WALDA expedition and the "Atlantis II" Cruise 67 surface

suspended matter samples were taken in an effort to determine the pattern of

dispersal of fine sediment in the surface waters off the west coast of Africa.

In addition, Forel color determinations were made during daylight hours and

clay mineral determinations were made on selected samples collected on silver

filters. Temperature and salinity were also recorded when samples were taken.

The results from the "Atlantis II" cruise have been reported by Emery

et aL. (1973). The combined results from the French and American cruises for

suspended matter concentration (Figure 15) show several significant features:

(1) the broad band of high sediment concentration off South West Africa

and southern Angola;

(2) the high concentrations off major rivers, such as the Kunene,

Cuanza, and Congo; concentrations 150-200 kilometers from the mouth

of the Congo River may exceed 1.0 mg/l;

(3) the large offshore area with very low (less than 0.12 mg/l) concen-

trations between Lat. 70S and lOoS.

The plume of high sediment concentration from the Congo closely parallels

the salinity distribution (Figure 10). Within the low salinity region off the

Congo, the "Atlantis II" results were consistently lower than the WALDA re-

sults (Figure 16), although they converged at salinities above 35%0. These

discrepancies were apparently not the result of a systematic analytical error

since the "Atlantis II" results off southern Angola were consistently higher

than the WALDA data, and elsewhere were quite compatible. Rather, this dif-



Figure 15.
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Distribution of total suspended matter (mg/l.) off southwestern

Africa based on samples collected from the N/O "Jean Charcot" \

during the WALDA expedition of 1971 and from the R/V "Atlantis

ii" during the Eastern Atlantic Continental Margin Study of

1972. Solid points are locations of deep-water stations.
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Figure 16.
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Relationship between salinity and total suspended sediment

concentration off the Congo River based on data from the

"Atlantis ii" (0) and the "Jean Charcot" (.).
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ference probably reflects that change in river discharge between June and

July, the times of the two cruises. On the average, approximate ly 5 x 103

3
m /sec more water is discharged in June than in July (Donguy et al., 1965).

One possible explanation for these differences is that during periods of

high river discharge, the distance from the river mouth to a particular iso-

haline is greater than at times of lowered discharge. This increased dis-

tance may permit more suspended matter to leave the surface waters and to

sink towards the bottom than would occur during periods of lower flow rate.

This would be particularly true if the sediment-discharge re lationship were

found to be a convex-upward curve; as pointed out by Bornhold at al. (1973),

considerably more detailed studies are needed to establish the exact mechanisms

controlling the dispersal of fine sediment into the ocean from major rivers.

The high suspended matter concentrations off South West Africa and

southern Angola are directly related to the Benguela Current and the high

biological productivity associated with it (Steeman Nielsen and Jensen, 1957).

Combustible organic matter concentrations exceed 0.25 mg/l in a band several

hundred kilometers wide along the coast so~th of 14 Os (Emery et al., 1973).

In addit ion, organic concentrations are high off major rivers such as the

Congo and Kunene; much of this organic material probably is derived from the

continent, as evidenced by the frequent observation of roots and branches of

trees offshore from these rivers. In add it ion, however, much of the measured

organic matter off major rivers probably results from increased phytoplankton

product ivity produced by the high nutrient concentrat ions in the river waters.

The suspended matter distribution off central Angola, Congo, and Gabon

is closely related to the circulation scheme proposed by Moroshkin et al.

(1970). The zone of low sediment concentration off central Angola corresponds

to the eastward influx of water originating in the South Equatorial Counter-
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Composition of Suspended Matter

X-ray diffraction studies of 21 s\lspended matter samples cóllected on

silver filters revealed significant latitudinal differences in the importance

of pa rt icular c lay minerals. Off southern Angola and South West Africa,

montmorillonite is dominant with lesser amounts of illite and kaolinite.

North of central Angola, however, montmorillonite is much less abundant and

the clay-mineral assemblage is dominated by kaolinite. This is particularly

evident within the plum of river water from the Congo where kaolinite is

extremely abundant. Talc was present in all of the samples analyzed; this

mineral has also been noted in other studies of suspended matter in open

ocean waterS (Emery. et aI., in press; Suierhayes, personal comunication).

Chlorite was detected in only a few of the samples.

Twenty sections of Millipore filters of suspended matter were mounted in

cedar oil and viewed under a petrographic microscope. Commonly observed

constituents included: diatoms, radiolaria, silicoflage llates, dinoflagellates,

marine algae, fecal pellets, organic aggregates, and inorganic grains.

Fecal pellets (Figure 20) were elongated, oval, dense aggregates of





Figure 17.
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Distribution of Forel color (% yellow) of the sea surface

based on the combined data from the "Jean Charcot" and

the "At lant is Ii".
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Figure 18.
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Relationship between Forel color and suspended matter

concentration in surface waters over the eastern Angola

Basin based on data from the "Jean Charcot" (0 ) and

the "Atlant is II" ( . ).





69

Forel
5

color
10

.

.

0- 0

"' 0

C) 0

E
.- o 0

c 1.0
0 0 ..0 0 0 8 .. 0.. I §~ 0

8L. ... 0 i . .
c . . .

8
. 0 0

Q. . 0
u . . .
c . . . .
0 8 ¡ . 0u 0 , .

0

I

.
0 . ..

L.
I

. . .
Q. . , I.. . .+-

I
.~ . .

E
0

i
-c . I
Q. 0.1
-c .
c
Q. 0

a. 0

en::
en

0.01

Figure 18





Figure 19.
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Distribution of Secchi disk transparency based on Capart

(1951) and Gallardc etal. (1969).
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Figure 20.
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Photomicrograph of a fecal pellet in a suspended matter

samp le off Angola. Scale bar represents 50~.
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Figure 21.
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Phot omicrograph of an organic aggregate in a suspended

matter sample off Angola. Scale bar represents 50~.
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diatom debris and organic matter. Organic aggregates were, by contrast, more

diffuse "mats" of organic matter with diatoms and inorganic debris adhered to

the surface (Figure 21).

Considerable latitudinal variation is apparent in the density and diver-

sity of diatoms and other components. Silicoflagellates and dinoflagellates

are part icularly abundant in the southern part of the area (south of Lat.

100S). Diatoms reach their highest diversity in the southernmost part of the

region (south of Lat. l5°S) and in samples off the Congo River mouth; between

about Lat. 8° and l5°S very impoverished diatom floras are found. Fecal

pellets and organic aggregates follow the same trend as diatoms, with the

latter being very abundant off the Congo River mouth.

Suspended Matter in the Deep Water

In addition to surface water data, ten stations (Figure 15) were oc-

cupied during the WALDA expedition where suspended matter concentrations were

measured on the near-bottom water off the Angola Basin. These samples were

taken with either a 30-liter Niskin bottle or two van Dorn samplers placed

approximately 10-15 meters above a bottom camera. Because of the very pre-

cise way in which the camera was maintained at or near the bottom, it was felt

that very litt le sediment was roiled into suspension by the camera frame.

The near-bottom suspended matter concentrations in the Angola Basin ex-

hibit a linear decrease with depth below 1000 meters (Figure 22a). Three

stat ions (filter numbers 129, 130, and 160), which show distinct ly lower

values, were taken within the rough topography of the Angola diapir field.

The topography of the Angola diapir fie ld protects the near-bottom water from

the lateral transport of suspended matter (possible originating from the

Congo River as suggested by Connary and Ewing, 1972). The uniformly linear



Figure 22.
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(a) relationship between suspended matter in near-bottom

water and water depth for eight stations off Angola occupied

during the WALDA expedition.

(b) relationship between light scattering (E) and water depth

for deep nephelometer stations in the Angola Basin (based

on data in Connary and Ewing, 1972).
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decrease in sediment concentration for the other five stat ion, and the ab-

sence of any major discontinuities, also suggests that no well-developed

nepheloid layers exist at depths down to 3600 m. Variations in light scat-

tering values with depth closely parallel the observed trend in sedlient

concentrat ion from the present study (Figure 226). Connary and Ewing (1972)

state that intermediate nephe loid layers (less than 4000 m) are only of

local extent. The main nepheloid layer occupies the homogenous water mass

be low about 4000-4500 meters.
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RECENT SEDIMNTS

Surface sediments from the contiæntal shelf, slope, rise, and abyssal

plain were analyzed for texture, percent calcium carbonate, clay minerals,

and organic carbon in an effort to determine the nature of sedimentation

during the Holocene in the eastern Angola Basin. - The samples were also

studied under a binocular microscope and the abundances of the major com-

ponents were noted. The results of the analyses of surface sediments are

found in Appendix II. The methods used in the analyses are outlined in de-

tail in Appendix III.

Surface Distribution of Calcium Carbonate

Calcium carbonate content of surface sediments varies considerably

throughout the study area (Figure 23). Continental shelf sediments off Gabon,

Congo, and Angola are characterized by carbonate values of less than 20%.

Sample density is too scattered in most areas to detect any trends among

these samples, although inner shelf samples appear to contain, in general,

less than 10% CaC03, whereas outer shelf samples contain between 10 and 20%.

Carbonate values on the continental rise off central Angola are approx-

imately 25-45%, diminishing seaward to less than 20%. This seaward diminution

is primarily controlled by the increasing carbonate dissolution with depth

below 5000 m as evidenced by the corroded appearance of foraminiferal tests.

The Congo Cone is characterized by carbonate values of less than 15% as a

result of the tremendous influx of terrigenous sediment through the Congo

canyon system. The sediments on the Walvis Ridge and Guinea Rise contain more

than 80% carbonate. The Walvis Ridge, isolated from maj or terrigenous sediment

sources, is dominated by biogenic sediments, as is the Guinea Rise, located





Figure 23. Distribution of calcium carbonate in surface sediments

from the eastern Angola Basin and adjacent areas.
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in a region of high surface carbonate productivity.

Clay Minerals

An investigation of the clay-mineral composition of Angola Basin

sediments was undertaken in order to: (1) attempt to define the present

c lay-mineral provinces; and, (2) attempt to describe the changes in clay-

mineral abundances throughout the late Pleistocene and Holocene.

Methods

The less-than-2-micron fraction was separated by centrifugation,

sedimented on a silver filter (Selas Flotronics; 0.45~ nominal pore size),

and scanned at 20 /minute on a Norelco x-ray diffractometer (nickel filter,

Cu KøC, 40 Kv, 40 ma). The sample was then glycolated by the vapor pressure

technique and scanned again. Some samples were then heated to 4000 and

500°C and reanalyzed.

The method for determining mineral percentages is based on weighted peak

area and is summarized by Biscaye (1965). This method was selected primarily

for comparison purposes: Biscaye is the only other worker to have analyzed

the deep-sea clay-mineral composition of sediments in this region of the

South At lant ic. As Biscaye (1965) pointed out, however, "the weighted peak-

area percentages.. .are constructs and, at best, are untestable approximations

of real percentages."

The following clay minerals were identified in this study: montmorillon-

ite, kaolinite, illite, and chlorite. Chlorite and kaolinite were estimated

using the 3.58Â/3.54Â doublet, following Biscaye's (1964) method. The

crystallinity (v/p) of montmorillonite was also calculated; this is the ratio

of the low angle "valley depth" to the peak height of the 17Â glycolated
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montmorillonite peak.

Chlorite

Chlorite concentration is uniformly low at mid-low latitudes and only

gains relative importance (greater than 10%) at higher latitudes (Goldberg

and Griffin, 1964; Biscaye, 1965). Within the study area, chlorite was

consistently less than 5% of the total clay fraction. This value agrees

with Biscaye, but is under the 10-15% range determined by Goldberg and Grif-

fin (1964).

Montmorillonite

Goldberg and Griffin (1964) stated that montmorillonite distribution is

generally related to sea-floor volcanism. Biscaye (1965), on the other hand,

diacounted any clear association between volcanism and montmorillonite abun-

dance and concluded that any relation between this clay mineral and latitude

or source is obscured by the fact that it can be formed under a wide variety

of conditions, both subaerial and submarine. Studies of atmospheric dust by

Chester et al. (1972) in the southeastern Atlantic show a very complicated

latitudinal distribution pattern for montmorillonite.

The observations of Biscaye (1965) are clearly supported by the present

study (Figure 24). Montmorillonite varies, in general, between 30 and 60%.

A notable exception occurs in the vicinity of the Congo and Kunene Rivers,

where dilution by kaolinite and illite reduces montmorillonite concentrations

to less than 20%.

All of the values of crystallinity except two are positive and average

about 0.30, with some as high as 0.74. The values display no systematic

variation within the study area, although a slight trend toward low values in

the northernmost part of the region tends to support Biscaye' s conclusion





Figure 24.
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Distribution of montmorillonite in surface sediments of

the eastern Angola 3asin.
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that tropical weathering is not conducive to well-developed crystallinity in

montmorillonite.

. Kaolinite

Kaolinite abundance corresponds direct ly to the intensity of tropical

weathering on adjacent land masses (Yeroshev-shak, 1961; Goldberg and Griffin,

1964; Biscaye, 1965). The latitudinal variations seen within the present

study area (Figure 25) clearly support this concept. Concentrations of less

than 10% are evident over the Walvis Ridge and the southern Angola Basin and

increase to a maximum of 60% on the Congo Cone.

Illite
The concentrations of illite in offshore areas of west Africa reflect the

soil composition on adjacent land areas. Illitic soils are dominant in the

arid regions of southern Angola and South West Africa and give way to kaolin-

itic soil groups nearer the equator (van der Merwe, 1966). Therefore, the

pattern of illite concentration is nearly the inverse of that of kaolinite

(Figure 26). Values between 40 and 60% characterize the Walvis Ridge region

and the nearshore areas off Angola. North of lOoS, however, concentrat ions

are generally less tba n 20%.

Methods of Transport to the Deep Sea

The major mechanisms for the de livery of clay minerals to the marine

environment, fluvial and eolian, change in relative importance throughout the

study area. The Congo, as the single most important source of fine sediment

for the Angola Basin, is the major supplier of kaolinite with lesser amounts

probably originating in the Niger River system (Porrenga, 1965) and other small



Figure 25. Distribution of kaolinite in surface sediments of the

eastern Angola Basin.
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Figure 26.
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Distribution of illite in surface sediments of the eastern

Ango la Bas in .
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rivers of Cameroons (Berthois et aL., 1968), Gabon and the Congo Republic

(Brazzaville). Eolian input of kaolinite to the Angola Basin is not sig-

nificant at the present tim.

Illite and montmorillonite, on the other hand, are dominant clay minerals

in the soils of South West Africa and South Africa. In view of the paucity

of large rivers in this area, eolian transport probably is more important

than farther north (Chester et al., 1972). The prevailing southeast trade

winds carry dust northward from the Namib Desert into the Angola Basin and

the strong, easterly Berg winds, although only occurring 10% of the time in

South West Africa, account for large volumes of sediment being blown offshore.

Illite and montmorillonite also are brought to the study area by the Orange

and Kunene Rivers; suspended terrigenous material from both eolian and

fluvial sources becomes entrained in the Benguela Current and is carried

northward into the Angola Basin area.



93

LATE QUATERNARY SEDIMNTS

Piston cores from the Angola Basin were routinely sampled by the writer

at 20 cm intervals and analyzed for percent sand, percent calcium carbonate

within the silt and clay fraction, abundance of the planktonic foraminifera

species, the abundance of fecal pellets, and the ratio of planktonic foramini-

fera to radiolaria. The results of the routine analyses are included in

Appendix II and the methods used for the textural and carbonate analyses are

presented in Appendix III. The sand fractions of the samples were studied

under the binocular microscope and the abundances of the major components

were noted.

In addition, clay mineral and organic carbon analyses were conducted on

samples selected from the major stratigraphic units (defined on the basis of

micropaleontology) within several of the cores. These data are also presented

in Appendix II.

Stratigraphy of Deep-Sea Cores

Several criteria were used in an effort to establish the absolute and

re lative stratigraphy of the p~ston cores in the Angola Basin. These included

the carbonate content of the less-than-62~ fraction, the abundance of certain

species of planktonic foraminifera (Globorotalia menardii, G. menardii var.

flexuosa, G. tumida), the ratio of foraminifera to radiolaria, and color dif-

ferences between major units.

All of the cores used in this study were late Pleistocene in age except

two (CH99-42 and KW 18), both of which were from the Angola diapir field re-

gion and were Pliocene in age. The late Pleistocene cores were in general
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3younger than 200-300 x 10 years B.P., and several did not penetrate through

the Riss/WUrm (125,000 yr B.P.) interglacial.

The ideal pelagic section for the late Quaternary in the Angola Basin

consists of the following units:

(1) a light-colored, 30-60 cm upper unit, highly calcareous, weakly

siliceous, with a typical tropical-transitional foraminiferal fauna;

(2) a very dark green-gray, 1-2 meter unit, low in carbonate, more

highly siliceous (particularly radiolaria), with abundant organic

mntter, pyritized burrows and fecal pellets; foraminifera are rare;

(3) a unit of alternating light and dark layers similar to units (1)

and (2); the overall carbonate content is higher than (2) with warm-

water foraminifera occurring in the light-colored, calcareous zones;

(4) a dark green-gray, low carbonate, highly siliceous unit with few

foraminifera similar to unit (2).

Despite local variat ions, this general pattern appears to hold throughout the

study area.

A very similar sequence of lithologieq was described for cores from the

Guinea Basin (Lavrov and Savel'yeva, 1971). Diatoms, however, were found to

be a more important constituent of their cores and radiolaria were apparent ly

of very minor importance.

Abundance of the Globorotalia menardii Complex

Ericson and Wollin (1956) proposed that the abundance of the Globorotalia

menardii complex was a reliable index of climatic oscillations in the tropical

and sub-tropical Atlantic. Since then many other "warm" and "cold" sensi-

tive species have been used to establish climatic curves (e.g., Ruddiman,

1971; Lidz, 1966; Imbrie and Kipp, 1971). As Kennett and Huddlestun (1972)
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point out, however, there is never complete agreement among workers as to

which species are "cool" and which are "warm"; they conclude, as did Ericson

and Wollin (1956), that the G. menardii complex is one of the most sensitive

w~rm-water indicators. The last appearance of the form G. menardii var.

flexuosa is taken to mark the upper part of the X-zone or the Riss/WUrm

interglacial, and provides a key datum in those cores containing G. menardii.

Although several cores from the Angola Basin did not contain represen-

tatives of the G. menardii complex, many other cores could be confidently

correlated on this basis (Figure 27). The upper 50-100 cm in most of these

cores is characterized by a warm-water foraminifera fauna, including abundant

G. menardii. This zone, the Z, is taken to be the Holocene, the lower boun-

dary of which is ~arked by a severe reduction with depth in the importance öf

G. menardii. The underlying unit is characterized by a general absence of

G. menardii except for a brief recurrence in the middle of the Y zone; this

brief recurrence is thought to mark the WUrm I/WUrm II interstadial, the peak

of which occurred at about 60 x 103 yr B. P. A major reappearance of abundant

G. menardii, G. tumida, and G. menardii var. flexuosa occurs at between 2 and

3 meters in most cores and marks the top of the X zone. This zone is marked

by several peaks of G. menardii abundance and extends approximately 2 meters

in most cores. A severe reduct ion again occurs at the W/X boundary. The W

zone is characterized by a general absence of G. menardii in its upper part

with a gradual increase in its lower sections; correlations become more dif-

ficult within the Wand earlier zones.

Core V19-280 possesses two peaks of G. menardii abundance within the up-

per 2 meters, underlain by a long (2 meters) section in which this faunal

complex is absent .G. menardii var. flexuosa exists in abundance near the
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top of the core. On the basis of the above evidence, it was concluded that

the upper part of this core lies at about the top of the X zone (75,000 years

B.P.).

Paleoclimatic Curves and Stratigraphic Zonation

The late Quaternary paleoclimatic curve of Emiliani (1971) ,was used for

comparison, but was placed within the Broecker and van Donk (1970) time scale.

This time scale was adopted for the present study as it appears to be most

compatible with results of other l'inds of Quaternary stratigraphic inves-

tigations (e.g., Mesolella °et al., 1969) and has been widely used elsewhere

in the Atlantic.

This climatic curve was subdivided into the X-Y-Z units and subunits of

Ericson and Wollin (1956) and modified from the recent detailed work of

Kennett and Huddlestun (1972) in the western Gulf of Mexico. The X-zone

represents the interglacial or generally warm interval extending from 75 x3 3
10 yr B.P. to 127 x 10 B.P. (Broecker, 1971; McIntyre and Ruddiman, 1972).

Kennett and Huddlestun (1972) indicate that the X- zone in the Gulf of Mexico3 3
extends from about 95 x 10 B.P. to 127 x 10 yr B.P. (Figure 28). Their

work has been modified in the present study (Figure 28) to make the X-zone

better correspond with other work in the Atlantic, thus eliminating the

subdivisions X7 and Y8 and adding X6 and X7. As they point out, the western

Gulf of Mexico is unique in that Globorotalia menardii disappeared approxi-

mately 20,000 years earlier than in the Caribbean or the rest of the tropical

At lant ic.





Figure 28.
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Paleoclimatic curves from Kennett and Huddlestund s (1972)

work in the western Gulf of Mexico and Emiliani's (1971)

work in the Caribbean and Atlantic. The zonation on the

right of the figure was adapted from that of Kennett and

Huddlestun (1972) for use in the Angola Basin.
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Planktonic Foraminifera/Radiolaria

The relative abundance of planktonic foraminifera has been used by many

investigators as a method of subdividing the Quaternary. Emiliani (1955,

1964) used percent sand (as an indication of foram abundance) to demonstrate

c limat ic variat ions within cores from the Caribbean and found a good agree-

ment with oxygen isotope data obtained on the same samples. Payne and Conolly

(1972) found a good direct correlation between foraminifera abundance and

inferred Quaternary paleotemperatures in cores taken between Australia and

Antarctica. Duncan et al. (1970) used the ratio of planktonic foraminifera

to radiolaria in piston cores off Oregon to demonstrate late Quaternary

climatic changes. They found that the Holocene was characterized by a rela-

tively high abundance of radiolaria, whereas the glacial intervals exhibited

higher concentrat ions of planktonic foraminifera.

Foraminifera/radiolaria curves in many Angola Basin cores also show good

correlations with inferred climatic curves based on other criteria (Figure 29).

As with carbonate curves, however, the correlation is the inverse of that

found in northeast Pacific cores: interglacials are characterized by higher

planktonic foraminifera abundances than glacials.

Variations in Calcium Carbonate Abundance

Variat ions in calcium carbonate content have been shown to be correlated

with climat ic change (e. g., Schott, 1935; Arrhenius, 1952; Ruddiman, 1971;

Hays and Perruzza, 1972). In general, glacial periods have been characterized

in Atlantic deep-sea sediments by low carbonate values and interglacials by

high values. This pattern contrasts with the Pacific Ocean, where precisely

the opposite correlation exists. The factors controlling these climatically



Figure 29.
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Vertical changes in the foraminifera/radiolaria ratio

in cores from the eastern Angola Basin.
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Figure 30. Vertical changes in the calcium carbonate content of

the less-than-62~ fraction in cores from the Angola

Bas in.
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stadial (WUrm I/WUrm II), as evidenced by the slightly higher carbonate values.

Often the lowest carbonate values encountered in these cores are from this

unit.

Below this zone is a generally more calcareous unit containing three major

carbonate maxima and exhibiting a wide range of carbonate values. Differences

between maxima and minima within this unit can be as great as 50% as in core

V19-262, but are usually in the order of 20 to 30%. This unit is correlative

with the X zone of Ericson and Wollin (1956), the Riss/WUrm interglacial.

Correlations become more difficult in units underlying the X-zone. There

appear, however, to be two minima in carbonate separated by a slight maximum.

This unit is thought to correspond to the W zone of Ericson and Wollin (1956).

This basic scheme is only evident in areas dominated by pelagic sedi-
mentation and is totally non-existent in cores from the Congo Cone. Else-

where slumping and turbidity current erosion and deposition obscure the

general pattern described here.

Core CH99-38, though of exclusively pelagic character, contains vir-

tually no carbonate along its entire lengtn. Taken at 5371 m the sediments

at this location probably have always been below the carbonate compensation

depth. Other cores (e. g., V19-28l, V19-26L, V19-262) contain pelagic sections

in which no carbonate is present; in other cores carbonate components show

evidence of dissolution in certain sections. These units can be as much as

one to two meters in length and correspond to increases in pellets, siliceous

components, organic content, and pyritized burrows. Although one might ex-

pect a general reduction in total CaC03 with climatic deterioration, carbonate

productivity in the surface water should not cease entirely. For this reason

these non-calcareous units may reflect changes in the position of the car-
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bonate compensation depth; the mechanism by which this might have been ac-

hieved will be discussed in a later section.

As mentioned previously, carbonate content can be affected in three

ways: (1) by changes in carbonate productivity; (2) by terrigenous dilution;

and (3) by carbonate dissolution. Ruddiman (1971), Broecker (1971), and

Hays and Perruzza (1972) concluded that the lower carbonate values during

glacial intervals reflect the increased deposition of terrigenous sediment

in the ocean, not a decrease in carbonate productivity. Several problems are

associated with this interpretation. If carbonate productivity is assumed

to remain constant, as stated by Hays and Perruzza (1972), then a threefold

change in percent carbonate (e.g., from 30% to 10%) between interglacials

and glacials must be accompanied by higher terrigenous inputs and consequently

higher sedimentation rates. In core V22-l96, Hays and Perruzza (1972; p.

358) show that average interglacial carbonate values are approximately 30%

and glacial values 10%. However, interglacial sedimentation rates are

5.4 cm/103 years and glacial sedimentation rates are 5.0 cm/103 years. Clearly

a sedimentation rate which remains relatively constant from interglacial to

glacial intervals cannot account for a threefold decrease in the observed

carbonate content if carbonate production is held constant. Other mechanisms,

presumably changes in carbonate productivity or dissolution, must be impor-

tant factors in reducing carbonate content.

This conclusion is further substantiated by results from the Angola

Basin: although carbonate values during glacials can be as much as four to

five times lower than during interglacials, glacial sedimentation rates are

comparable to interglacial rates. Increased terrigenous dilution during

glacials is not consistent with work carried out on land in areas adjacent
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to the Angola Basin. As mentioned previously, the region of the Congo as far

inland as Kinshasa was a desert or semi-desert during glacial intervals.

Recent work by Degens and others (personal communication, 1973) on equatorial

lakes and by van Zinderen Bakker and Coetzee (1972) supports the view that

cooler periods in higher latitudes were equivalent to drier periods in

equatorial Africa.

Sedimentation Rates

On the basis of the above criteria, sedimentation rates for glacial and

interglacial intervals were determined for the best controlled cores in the

study area (Table 1). An average glacial sedimntation rate was determined

for the entire Y zone, although it was realized that this comprises the

WUrm I and WUrm II glacial maxima. separated by an interstadial (WUrm I/ WUrm

II). An average interglacial sedimentation rate was calculated for the Riss/

3WUrm interglacial (127-75 x 10 years B.P.).

Pelagic sedimentation rates for both glacial and interglacial intervals

3average approximate ly 3- 5 cm/10 years, w~ th very litt le difference , in gen-

eral, between warm and cool periods. This is in marked contrast to the

Guiana Basin off the Amazon River, described by Damuth and Fairbridge (1970),

where they inferred greatly increased sedimentation rates during cool inter-

vals. The land areas adjacent to both the Guiana and Angola Basins ex-

perienced arid to semi-arid conditions during glacial periods. Damuth and

Fairbridge (1970) believed that an increase in sedimentat ion rates during

glacials occurred in response to a deforestation of areas which are presently

tropical rain-forest, and to the growth of mountain glaciers in the Andes,

the source of the Amazon. Two important features, however, dist inguish the
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TABLE 1.

SEDIMNTATION RATES IN THE EASTERN ANGOLA BAS IN

Glacial (cm/103 yr)
3

Core Interglacial (cm/10 yr)

V19-26l 6.0 5.7

Vl9-262 4.4 5.0

KW-15 4.0 4.4

KW-19 3.3 3.1

CH99-4l 3.2 2.9

V19-280 4.1

V19-28l 3.2 3.3

V19-282 3.0 2.7
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Congo River system from that of the Amazon: (1) the sources of Congo River

water are not in areas which were extensively glaciated during glacial

maxima; and, (2) most of the sediment carried by the Congo into the Atlantic

Ocean is derived from the area within 400 km of the coast. Thus, although

during cool periods of physical weathering in the deforested areas near the

coast may have been intensified, the discharge of the Congo and its lower

tributaries undoubtedly decreased significantly (dePloey, 1965; Fairbridge,

1964) resulting in relatively constant sedimentation rates throughout the

late Quaternary in the eastern Angola Basin.

Sand and Silt

Emiliani (1955, 1964), Ericson and Wollin (1956), Ewing et al. (1958),

and Ericson et al. (1961) showed that the weight percentage of sediment

larger than 62 fl (or 74 fl) often displayed a high correlation with inferred

paleotemperatures in Globi~erina-ooze cores from the Atlantic Ocean. Several

cores from the eastern Angola Basin exhibit agreement between the percentage

sand and carbonate values for the less-tha,.-62fl fraction, the abundance of

the Globorotalia menardii complex, and the foraminifera/radiolarian ratio.

The best correlations are apparent in cores from the Walvis Ridge and from

the Guinea Rise, where normal pelagic sedimentation is less influenced by

coarse terrigenous sediment input than the Angola continental rise and abyssal

plain (Figure 31). Correlations between carbonate and percent sand are not

as great as those found elsewhere in the Atlantic principally because of the

relatively large input of siliceous components.

In addition to planktonic foraminifera, radiolaria, and diatoms, the

sand fraction disseminated throughout the hemipelagic sections of the Angola

Basin cores commonly consists of fine quartz, feldspar, mica, glauconite,
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Relationship betwee~ percent sand (~ 62~), calcium carbonate

content of the silt and clay, and the foraminifera/radiolaria

rat io in core V19-28L from t he southern flank of the Guinea

Rise.
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manganese micronodules, fecal pellets, pyritized foraminifera and diatoms,

pyritized burrows,echinoid spines, benthonic foraminifera, ostracods, and

bryozoa. Fish teeth and black, perfectly spherical, shiny, non-magnetic

particles are occasionally found (Figure 32).

Mica, glauconite, and manganese show definite latitudinal differences

in their contribution to the sand fract ion. Manganese micronodules are more

common in the northern part of the basin than in the southern. Mica is

pdrticularly abundant in cores from the Angola continental rise and is ,ab-

sent from the pelagic sections of cores V19-280, 281, and 282 from the

southern flank of the Guinea Rise. Not unexpectedly, continental shelf

sediments from off South West Africa and Angola contain appreciably more

mica than sediments from the shelf off Congo and Gabon. Illite (mica) in

the clay fra~tion also is considerably more abundant in the southern part

of the study area (see previous section).

Glauconite is also noticeably more prevalent along the Angola, Congo,

and Gabon continental margins than on the north flank of the Walvis Ridge

or on the Guinea Rise. The source and mode of origin of this glauconite

is discussed below. No vertical variations in glauconite abundance were

apparent in cores from this area.

Pyrite is a very abundant component of Angola Basin cores and displays

vertical variations in importance within cores. It occurs in two general

forms: (1) as replacements or fillings of planktonic foraminifera and diatom

frustules; and (2) as replacements of burrows of benthic organisms. The

latter are long, narrow "rods" exhibit ing a fine, botryoidal surface texture

(Figure 33). Both modes of occurrence can range from well-developed pyrite

with a high metallic luster to a poorly developed black iron sulfide precursor



Figure 32. Photomicrograph of a smooth, spherical, non-magnet ic

particle found in Angola Basin core KW19. Scale

bar represent sO. 5 mm.
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Figure 33.
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Photomicrograph of pyritized burrows from Angola Basin

core V19-278. Scale bar represents 0.5 mm.
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of pyrite (hydrotroilite ?) with a dull nonmetallic luster; burrows are more

commonly of the latter type. In general, pyrite is most abundant in low-

carbonate sections of the cores from this region and often can constitute

the entire sand fract ion (e. g., CH99-40; V19-278, 120 cm). A similar re-

lationship between pyrite and dark gray-black sediment sections in the

Guinea Basin was noted by Lavrov and Savel 'yeva (1972).

Turbidites

The contribution to the Angola Basin sediments of silt and sand derived

from turbidity currents varies from negligible on the northern flank of the

Walvis Ridge and the southern flank of the Guinea Rise (except near volcanic

islands and major seamounts) to extremely important on the Angola abyssal

plain and the Congo Cone. (Figure 34). Cores V19-263, 264, and 265 from the

southern abyssal plain are dominated by sub-angular to sub-rounded, fine to

medium quartz sands wit h appreciable mica, benthonic foraminifera, radiolaria,

and fecal pellets. Minor constituents include glauconite, pyritized burrows,

planktonic foraminifera, byrozoa, ostracod s, sponge spicules, and small,

polished dark grains (phosphorite 7). Very large, frosted and very well

rounded, quartz grains were found in core V19-264. The great abundance of

quartz and mica and the almost complete absence of mafic minerals indicates

that these turbidites originated on the Angola continental shelf and slope

and not on the nearby Walvis Ridge.

Sand layers in cores from the Angola rise and from the sediment ponds

within the Angola diapir field consist of essentially the same components

as the sand disseminated throughout the pe lagic sect ions.

Heezen et al. (1964) discussed in detail the composition, texture, and

distribution of silt and sand on the Congo Cone. Two heavy mineral suites
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Average centimeters of sand and silt layers per meter of

core in the eastern Angola Basin.
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were identified, one containing abundant black opaque minerals) the other

containing hematite. The former is thought to have been derived from sediment

transported by longshore drift into the canyon head. The latter was found

commonly in association with terrestrial plant material and is believed to

have come directly from the Congo River. Based on the frequency of submarine

cable breaks, Heezen et al. (1964) estimated that the Congo Canyon is pre-

sen t ly experiencing approximately fifty major turbidity currents per century.

Fecal Pellets and Authigenic Silicates

Three types of pellets were found within the study area: (1) a grey, dull,

"speckled" ellipsoidal type of dominantly smectite composition; (2) a shiny,

brown-grey, ellipsoidal variety of chamosite composition (Emel'ianov and
i .
\

Senin, 1969); and (3) a shiny dark-green-black ellipsoidal to irregular var-

iety of glauconite composition (Giresse, 1965; 1969).

According to Emel'ianov and Senin (1969) chamositic pellets develop within

estuaries, such as the Ogooue or Congo, at depths of less than 70 meters and

locally can constitute more than 40% of the sediment. Goethite is an impor-

tant constituent of these pellets particularly at depths shallower than 40 m.
""
o

j,

. -r

These pellets are very abundant in samples from the Congo and Gabon can-

tinental shelf (Figure 35) and are commonly found in areas from the Congo

Cone and continental rise, and are abundant within turbidite unites in these

areas.

Grey pellets (Figure 36) are ubiquitous components of both pelagic aLd

turbidite units of Angola Basin cores, particularly from the southern part of

the study area. Since they are not restricted to turbidite units, and since

they are not found in adjacent continental shelf sediments, these pellets are

believed to have been produced in situ in the deep sea. The abundance of
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Photomicrograph of chamosite pellets from the continental

shelr off the Congo Republic. Scale bar represents 0.5 mm.
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Figure 36. Photomicrograph of grey pellets from core KW15 on the

continental rise off southern Angola. Scale bar re-

presents 0.5 mm.

124

t
~-
~~.t





125

\0t'
Q)
H
;:
b.

'M~



126

this variety of pellet shows significant variation with depth in cores and

displays a good correlation with the abundance of other components, as exem-

p lified by core KW15 (Figure 37) . Pellets, in general, are significantly

more comon in zones of low carbonate. This is particularly apparent for the

suite of cores from the southern part of the study area; cores V19-280, V19-

281, V19-282 from the Guinea Rise do not contain appreciable amounts of

pellets and do not exhibit any clear variations with depth.

Glaucon ite is a very abundant constituent of both cont.inental shelf and

offshore sediments in this area. It generally occurs as either shiny, dark

green-black to light green pellets or as replacements of foraminifera tests.

The dark green-black variety is particularly abundant on the shelf off Congo

and Gabon (Giresse, 1965; Giresse, 1969; Giresse and Kouyoumontzakis, 1971)

(Figure 38). Light green glauconite, usually in the form of replaced foram-

inifera tests, is much more common in cores from the Angola Basin (Figure 39).

The abundance of the latter type in the pre-Quaternary core KW-18 suggests

that much of the glauconite within the Quaternary cores may have been reworked

from older sediments exposed during slumping and sliding associated with the

diapiric tectonism of the Angola diapir field. Glauconite is generally ab-

sent in cores from the Walvis Ridge and the Guinea Rise.

According to Emel'ianov and Senin (1969) glauconite is presently form-

ing in the estuaries of the Ogooue and Congo Rivers at depths below 50 m

and on the Congo, Gabon and Angola continental shelves. The richest shelf

concentrations of glauconite (10-90% of the total sediment) occur off the

Kunene River along the outer shelf.
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Relationship between pellet abundance and the abundance of

Q. menardii, calcium carbonate in the silt and clay fraction,

percent sand, and the foraminifera/radiolaria ratio.
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Figure 38.
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Photomicrograph of glauconite and chamosite pellets from

the continental shelf off Gabon. Scale bar represents 0.5 mm.
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Figure 39.
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Photomicrograph of glauconite from core KW18 off central

Angola. Scale bar represents 0.5 mm.
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Vertical Changes in Clay Mineral Abundance

In an effort to assess lateral variations in the clay mineral assem-

blage through the late Pleistocene and Holocene, samples were analyzed from

the major stratigraphic units of five cores from the Walvis Ridge to the

Guinea Rise. Ten to fifteen samples in each core were analyzed and the re-

sults sumarized in Figure 40 for montmorillonite, illite, and kaolinite.

As can be seen, several apparently significant trends exist within in-

dividual cores, although no clear relationship to climatic change for the

basin as a whole is evident. The same overall trends observed in the sur-

'face sediments are apparent in these cores: illite decreases and kaolinite

and montmorillonite increase from south to north. The reason for the lack

of any clear vertical changes in clay mineral assemblage within the entire

basin is not obvious in the light of the available data. However, the more

intense circulation of bottom water in the Angola Basin during glacials, in-

ferred from other evidence, may have redistributed clay minerals throughout

the basin, thus obscuring vertical variations.

Organic Carbon

Organic carbon content, determined on selected samples from the major

stratigraphic units of several cores in the Angola Basin, changes markedly

between cool and warm periods, as shown by the inverse correlation between

organic carbon and the carbonate content and the abundance of the G. menardii

complex (Figure 41 and 42). Averages for organic carbon were computed for

the Holocene and the Xl' X3; X5' and X7 zones - warm intervals - and for the

WUrm I and II and the X2' X4, andX6 zones - cool intervals (Table 2). Cool

periods are generally characterized by considerably higher organic carbon
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Vertical distribution of clay minerals within five cores

from the eastern Angola Basin.
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Figure 41.
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Figure 42.
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Graphs of percent organic carbon versus calcium carbonate

content of the silt and clay fraction for V19-262 and V19-

281 from the northern and southern parts of the Basin.
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values than warm periods, averaging from 0.8 to 1.4% higher. This difference

between warm and cool intervals was shown by a Student 's t-test to be sig-

nificant at the 95% confidence level.

Organic carbon values measured in these Angola Basin cores in general

are much higher than thos e reported elsewhere on continental rises, particul-

arly sediments deposited during glacial and cool periods (Table 2). Steven-

son and Cheng (1972) demonstrated differences between warm and cool intervals

in the Argent ine Basin similar to those described here, but their highest

measured values were 1.6-1.7% as opposed to 3.2% in the Angola Basin.

Froelich et al. (1971) also showed higher organic carbon values correspon-'--
ding to low carbonate zones in cores from the continental rise off Cape

Hatteras, though their maximum values were only about 1.5%. The higher

organic carbon values corresponding to low carbonate values in the Angola

Basin can be attributed to the inferred higher surface productivity and

estimated bottom conditions conducive to its preservation. The latter will

be discussed in more detail in a later section.
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TABLE 2.

AVERAGE PERCENT ORGANIC CARBON IN

GLACIAL AND INTERGLACIAL SECTIONS OF ANGOLA BASIN CORES

Cool Intervals (%) Warm Intervals (%)Core

V19-262 2.27 0.88

V19-280 2.28 1.24

V19-28l 1.80 0.98

KW-19 1.90 0.90
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DISCUSSION

The northern and central parts of the Angola Basin derive fine sediment

mainly from the Congo River system. As Shepard and Emery (in press) indicate,

the Congo River is unique in that its submarine canyon originates over 21 km

inland from the river mouth. Thus, virtually all of the river's bed-load

is delivered to the deep-sea, in contrast to other large tropical river

systems, such as the Amazon, whose sediment is mainly dispersed along the

adjacent cant inental shelf by longshore currents. The large lobe of kaolin-

itic sediment over the Congo cone and Angola abyssal plain, in the northern

and central regions of the Angola Basin, reflects the source of sediment in

the Congo Basin and its delivery to the deep sea through the Congo Canyon

system. As well, suspended matter dispersal follows a similar areal pattern:

kaolinitic sediment is carried in suspension between 200 and 300 km from

the river mouth where it becomes entrained in a complex surface current sys-

tem. The Angola Current cárries this sediment southwards over the central

part of the eastern Angola Basin and longshore currents carry suspended

sediment northwards along the coast of Gabon into the southern Gulf of

Guinea.

At the present time the contribution of fine sediment to the southern

Angola Basin is primarily accomplished by the northward transport in sus-

pension of illitic and montmorillonitic material mainly from South West Af-

rica in the Benguela Current system. Both the Orange and the Kunene Rivers

are undoubtedly important contributors of fine sediment to the Benguela

Current and ultimately to the Angola Basin; Emel'ianov ar.d Senin (1969),

however, point out that much of the Orange River sediment load is retained

on the South West African shelf and is not carried very far northwards.
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Thus, although its suspended load is only one tenth that of the Orange

(15 x 106 tons/yr versus 153 x 106 tons/yr), the Kunene River represents

a very important source of terrigenous sediment in the southern Angola

Basin. In addition, eolian transport of sediment is important in the de-

livery of fine sediment both directly to the Angola Basin and to the

Benguela Current which then carries it northward into the basin (Emel' ianov

and Senin, 1969).

During interglacials, high organic productivity was restricted to the

cont inental margin along South West Africa and did not extend very far into

the Angola Basin. The highest concentrations and diversities of diatoms,

seen in suspended matter samples, were found south of Lat. l5°S where the

Benguela Current begins to leave the coast. Farther north, the eastward

incursion of the South Equatorial Countercurrent brings unproductive water

over much of the Angola Basin as shown by the impoverished diatom floras

observed in suspended mat ter samp les between lat itudes 8 ° and 15 ° S; this

water is distributed both southward by the Angola Current and northward by

longshore currents along the coast of Gabon into the southern Gulf of Guinea.

The general sterility of water masses over most of the Angola Basin is inter-

rupted only where major rivers, such as the Congo, deliver sufficient

nutrients to support small localized areas of higher primary productivity.

The relatively low organic carbon values in surface sediments and in

sediments from interglacial intervals (average 1.0%) throughout the basin

reflects this distribution of primary productivity.

At the present time there appears to be very little lateral transport

of fine sediment within the deep basin. Suspended matter concentrations

from deep stations taken during the WALDA expedition display a linear
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decrease with depth and do not suggest the presence of any nepheloid layers

nlioVt' 4 ')00 m. Nephc lometcr Htud Ü~H (Connnry nnd Ewing, i 972), bottom photo-

graphs (Heezeu et aL., 1964), and geostrophic current calculations (WUst,

1957) also support the view that very little lateral sediment dispersal is

presently occurring in the deep Angola Basin. On the other hand, the pre-

sence of continental rise swells off southern Angola and the lack of any

decipherable trends within the clay-mineral distribution pattern within the

late Quaternary suggests that bottom circulation must have been intensified

previously, probably during glacial periods.

Climatic deterioration during the late Cenozoic apparently had a sig-

nificant effect on oceanographic conditions, both surface and deep, and

thereby on the nature of marine sedimentation throughout the world ocean.

Watkins and Kennett (1971, 1972), Kennett and Brunner (1973), and Hayes et

al. (1973) have shown that the growth of Antarctic continental glaciation,

beginning in the Miocene, led to markedly increased rates of bottom water

production and to erosion and non-deposition in parts of the Southern Ocean.

Farther to the north, Johnson (1972) showeJ that erosion in the equatorial

Pac ific by northward- flowing bottom water began during the late Cenozoic.

Emery and others (in prep.) account for the presence of continental rise

swells along the southern flank of the Walvis Ridge and the South West African

continental rise and for the dissection of the ~estern Cape abyssal plain

by the flow of Antarctic Bottom Water, possibly commencing in the late

Cenozoic. Fluctuations in the rate of production and the effects of this

bottom water would be expected to have occurred during the Quaternary in

response to the advance and retreat of continental ice sheets (Gordon, 1971).

The observed topographic features on the continental rise in the southern
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Angola Basin can be accounted for by the influx of bottom water during

glacial intervals, periods of greater bottom water production. This pro-

posed change in deep circulation is consistent with the model discussed

below (and schematically shown in Figure 43), based on geochemical and

compositional changes within cores, which attempts to account for the

variat ions in volume and nature of bottom water during the late Quaternary

in the Angola Basin.

At present time virtually no bottom water enters the Angola or Guinea

Basins. The sill depth (3750 m) (Metcalf ~ al., 1964) of the equatorial

Atlantic region is slightly above the upper level of bottom water in the

western South Atlantic (Figure 11), and only a very small volume of water

passes into the Guinea Basin where it is quickly mixed and loses its

identity (Metcalf et al., 1964). During glacial intervals, however, the

greater production of bottom water would have raised the level above sill

depth, permitting the continuous flow of bottom water into the eastern

basins; this influx would have continued until the level again fell below

sill depth (during interglacials) (Figure 43). A rise in the level of

bottom water in the western equatorial Atlantic of only one to two hun-

dred meters could conceivably have led to the emplacement of a layer of

bottom water up to several hundred meters thick in the Angola and Guinea

Basins. The intensity of deep circulation would have diminished following

a glacial maximum, as less bottom water of progressively lower density

would enter the Angola Basin.

In addition to creating a more intense circulation scheme, greater pro-

duction of bottom water during glacial intervals also probably had an im-

portant effect both on the level of the lysocline in the Angola Basin and on
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Schematic interpretation of bottom conditions in the

Angola Basin during (a) glacial maxima; (b) an inter-

mediate stage of warmer climate; and (c) interglacial

maximum. (See text for further explanation of the model).
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the extent of reducing conditions on the sea floor. As Worthington (1968)

suggested, bottom water derived during the coldest periods would be of

h~ her salinity and slightly lower temperature than that forming today.

This dense water (1.0286 - 1.0287) would fill the deeper parts of the sea

floor and, subsequent to a glacial maximum, become nearly stagnant since its

upward disp lacement could only be effected through geothermal heating. This

vert ical mixing could take several thousand years, during which time oxygen

levels would be depleted and carbon dioxide levels would be increased leading

to greater rates of solution of carbonate on the sea floor. The increased

rate of production of bottom water during glacials would result in a much

greater influx of corrosive water through the Romanche Fracture Zone into

the Guinea and Angola Basins. This dense water, which was probably initially

more undersaturated with respect to calcite than present bottom water

(Berger, 1968) remained in the deepest parts of these eastern basins until

mixed with the overlying water.

Berger deduced that the lysocline presently lies at approximately 4700

meters depth in the northern Angola Basin and at 5200 meters in the south.

This latter figure is about 800 m deeper than the level in the Brazil Basin

(Figure 44). The severe reduction in carbonate observed in the deep-sea

cores from the Angola Basin suggests that the lysocline was at least 500 to

600 meters shallower during glacials than interglacials. Based on Worthing-

ton's (1968) estimate of the geothermal mixing rate of "climax bottom water"

(15, 000 years for a layer 1000 m thick), it would require approximately

7,500 to 9,000 years to comp lete ly mix a layer of this water 500 to 600

meters thick in the Angola Basin. Since only a part of the bottom water

entering the basin during glacials would be of this type, however, this
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Depth of the lysocline (m) in the equatorial South

Atlantic (after Berger, 1968).
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estimate is probably too high. Based on sedimentation rates inferred for

Angola Basin cores and changes in carbonate content, a period of between

4,000 and 6,000 years would be sufficient to destroy the layer of bottom

water derived during glacials.

More reducing conditions in the Angola Basin would have developed in

response to changes in both bottom circulation and surface oceanographic

conditions. van Zinderen Bakker (1967) deduced that the Benguela Current,

and its associated upwelling, extended northward into the Angola Basin during

glac ials as a consequence of the northward displacement of the South At-

lantic Anticyclone. As well, upwelling was initiated along the suitably

aligned section of the coast between Luanda, Angola, and Cape Lopez. Both

of these changes in surface oceanographic conditions led to greater surface

productivity and to the delivery of great amounts of organic matter to the

sea floor in the eastern Angola Basin. As a result, organic carbon levels

from glacial sections of Angola Basin cores are approximately twice those

from interglacial sections. van Andel anA Calvert (1971) suggested that

the Bengue la Current was intensified during glacials in order to account for

the erosion they observed on the South West African shelf; this would have

led tb greater upwe lling and higher influx of organic matter into the

Angola and Cape Basins.

The increased delivery of organic matter resulted in higher benthic

product ivity as shown by the greater abundance of fecal pellets and burrows

during glacials. Higher benthic productivity, in turn, would ~ave reduced

oxygen levels and increased carbon dioxide levels, thereby lowering pH and

facilitating the production of pyrite which is commonly found in these sec-

tions of the cores. The rate at which reducing conditions developed pro-
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bably increased markedly following the height of glaciation as bottom water

became isolated in the deeper parts of the basin.

With regard to the Peru Current, Berger (1970) concluded that greater

than average solution of calcium carbonate would be expected in response to

the rapid delivery of organic matter to the sea floor. The observed drastic

reduction in carbonate during glacials in the deep Angola Basin is in

agreement with Berger's findings. The undersaturation of bottom water with

respect to calcite during glacials would be maintained not only by the in-

creased influx of organic matter, however, but also through the decreased

rate of carbonate input. This is shown by the very marked shift from a

dominant ly foraminiferal plankton assemblage in interglacials to a more

radiolarian assemblage duri ng glacials in cores from well above the lysocline.

This change is undoubtedly a result of colder water being brought to the

surface during glacials by the upwelling in the Benguela Current and along

northern Angola, Congo, and Gabon. Thus, the greater solution of carbonate

during glacial intervals was not only effected through the influx of cold,

corrosive bottom water, but also througu the increased rate of supply of

organic matter and the decreased rate of carbonate input (Figure 43).

Previous investigators have emphasized the importance of terrigenous

dilution in the reduction of carbonate contents of glacial sections of cores

from the equatorial Atlantic. The relatively uniform pelagic sedimentation

rates inferred for the Angola Basin throughout the late Quaternary do not

support the concept that terrigenous dilution is the dominant controlling

factor in this area. Based on work on land by dePloey (1963, 1964, 1965)

and Fairbridge (1964) there is considerable evidence that, in fact, the Congo

discharge was probably less during glacials than at present and that its

sediment load was at most the same. Although glacial aridity in the lower
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Congo Basin led to higher rates of physical weathering, the more readily

available sediment was apparently not removed to the deep sea in appreciably

greater qua~tities than at present. This is in marked contrast to the

model which Damuth and Fairbridge (1970) proposed for the Amazon-Guiana

Basin system. Glacial aridity in northeastern South America resulted in

deforestation and hence in greater physical weathering and erosion and a

much higher transport of sediment to the deep sea. The Amazon, fed by

Andean glaciers, had a much higher discharge during glacials than inter-

glacials. Changes in carbonate content in cores from the Angola Basin can

be accounted for by variations in surface carbonate productivity and by

changes in sea-floor solution of carbonate tests resulting from fluctuations

in bottom water conditions.
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CONCLUSIONS

Sedimentat ion in the eastern Angola Basin throughout the late Quaternary

has been strongly influenced by the prevailing climatic and the oceano-

graphic regimes, both surface and abyssal. High rainfall in modern equator-

ial west Africa leads to large fluvial sediment input from the Congo and

other tropical rivers and results in high sedimentation rates over much of

the continental margin. During glacial intervals the onset of arid and

semi-arid conditions on the adjacent land areas led to higher rates of phys-

ical weathering. The overall lower river discharge during these periods,

however, prevented appreciably greater volumes of sediment from being trans-

ported to the Angola Basin, as evidenced by the relatively uniform sedimen-

tation rates throughout the Quaternary.

At the present time high surface productivity is restricted to the waters

south of the Angola Basin and is associated with the northward flowing cold

Bengue la Current. During cooler periods of the Quaternary, however, the

northward extension of the Benguela Curr2nt along the coast of Angola and the

onset of upwelling off Congo and Gabon resulted in much greater surface

productivity and led to organic-rich sediment s on the underlying continental

margin and to higher benthic productivity. A shift from calcareous to more

siliceous biogenic components also occurred in response to this change in

surface oceanography.

At present very little bottom water enters the eastern basins of the

South Atlantic resulting in a deep lysocline, the widespread accumulation of

calcareous sediments over much of the area, and very sluggish deep circul-

ation. During glacial maxima, however, much more bottom water flowed into

and filled the deeper parts of the Guinea and Angola Basins. This corrosive



155

water significantly raised the lysocline, leading to the dissolution of car-

bonate at depths which are present ly dominated by calcareous sediment s. The

more vigorous deep circulation during glacials also created continental rise

hills along southern Angola and the Walvis Ridge. The isolation of this

"c limax bottom water" in the Angola and Guinea Basins during warmer periods

resulted in the gradual onset of reducing conditions, the preservation of

organic-rich sediments, and the development of authigenic sulfide minerals.

This condition persisted until the "old" bottom water could be mixed, pri-

marily by geothermal heat ing, with the overlying water mass.

The model proposed to explain the changes in sedimentation during the

late Quaternary in the Angola Basin may find profitable application in

other restricted basins in the world ocean.
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Samp le Locat ions
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SURACE SAMPLES

Bureau of Commercial Fisheries

Samp le Number Latitude Os Long i tude °E Depth (m)

94 16°27' 11 ° 35 '

96 16°41' 11°21' 162

99 15 ° 17 ' 11 ° 57 ' 90

101 17°01 ' 11 °31' 18

102 17°02 ' 11 ° 40 ' 54

103 17 ° 06 ' 11 ° 35 ' 90

105 17°13' 11 °27 ' 155

Congo Repub lic

506 4°52' 11 ° 46 ' 54

513 4°57 ' 11 ° 39 ' 94

576 4°23' 11 °08' 91

585 4°12 ' 11 ° 18 ' 16

605 4°32 ' 10° 56' 125

615 5°01' 11 ° 28' 118

783 3°44 ' 10 ° 04 ' 250

791 3°37 ' 10° 17' 80

800 3°27 ' 10 ° 33 ' 14

Woods Hole Oceanographic Institution

(Sanders) (AII-42)

193 10°24 ' 9°09 ' 4559
9°47' 10°29' 4566

200. 9°43.5 ' 10° 57 ' 2644L 9°29 ' 11 ° 34 ' 2754
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SURFACE SAMPLES

Woods Hole Oceanographic Inst itution

(Sanders) (AII-42)

203

Lat itude Os Longitude °E Depth (m)

9°25 ' 11 ° 35 ' 1964
9°05 ' 12 ° 17 ' 2031

8°56' 12 ° 15 ' 1427
8°46 ' 12 ° 47 ' l643

8°48 ' 12 ° 52 ' 527
542

Samp le Number

201

202

Woods Hole Oceanographic Institution
(AII-67)

5019 17 ° 40 ' 11 ° 38. 5 ' 110

5022 17 ° 15 . 3 ' 11°37.8' 88

5025 16 ° 48 ' 11 ° 37 ' 77

5030 16 ° 15.7 ' 11°41.3' 49

5031 11°21.0' 13 ° 38 ' 29

5034 11 ° 04 . 5 ' 13°35.8' 132

5037 10°43.8' 13°31.2' 110

5039 10° 35' 13°23.3' 88

5040 6° 58' 12 ° 37.1 ' 17

5043 7°20.8' 12°36.6' 26

5045 7°36 ' 12°33.7' 1(,3

5046 7 ° 46.6 i 12°46.2 ' 99

5047 7° 50' 13 ° 00 ' 42

5049 8°37 ' 13 ° 15 ' 40

5Ò50 8°26' 13°13' 46

5051 8°20 i 13 ° 12 ' 44
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SURFACE SAMPLES

Cent re Oceanologique de Bretagne

Sample Number Latitude Os Long it ude °E Depth (m)

KW13 18°25.5' 10°29 ' 3628

KW15 14 ° 2 1. 8 ' 9°45.4 ' 3960

KR15 12 ° 12 ' 12 ° 53 ' 1453

KWl7 12 ° 02 . 8 ' 12°20.3' 2081

KR19 12°19.7' 11°01.4' 3435

KW20 10°37.5' 13°26.2' 92

KR20 10°18.7' 11 ° 44. 7 ' 1866

KR2l 6 ° 38 . 4 ' 8°10.1' 3961

KR22 3°47 ' 9°17.5' 2299

KR23 2°36.9' 8°20.9' 2494



169

CORES

Woods Ho le Oceanographic Institution

Core Numer Latitude Os
Longitude °E Depth (m) Core Lengt h (cm)

CH99-38 8°35.9' 4 °24.9' 5373 1187

CH99-39 8 ° 42 . 7 ' 6°30 ' 4938 1124

CH99 -40 8°41 ' 8°31 ' 4515 1160

CH99-41 8°40.4 ' 10°26.7' 3855 1142

Lamont-Doherty Geological Observatory

V12- 70 6°28.6' 11°26.5' 450 610

V12-71 5°38 ' 10°41. l' 2255 1072

V12-72 5°37.6' 10 ° 39. 6 ' 2107 490

V12-73 5°54 ' 9°53.1' 3054 929

V12-74 6°00' 9°19.9' 3451 910

V12- 7 5 6 ° 18.7 i 8 ° 19.2 ' 4021 683

V12-76 5 ° 42 . 9 ' 8°29.8' 4006 330

V19-260 19°20' 9° 37' 3585 1064

V19-26l 18 ° 59 i 9°12 i 4662 996

V19-262 18°20 ' 8°23 ' 4918 1116

V19-263 16 ° 55 ' 6°36 ' 5278 31

V19-264 16 ° 10 i 5°38 ' 5407 98

V19-265 15 ° 14 i 4 °30' 5512 260

V19-278 7°04 ' 5°34 ' 4967 996

V19-280 4 °56' 5°00 i 4914 1594

V19-28l 3°19 i 4°39 ' 4566 1787

V19-282 2°45 ' 4°35 ' 4356 2140
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ADDITIONAL CORE AND SAMPLE DESCRIPTIONS USED

Lamont-Doherty Geological Observatory

Core Number Lat itude Os Long it ude °E Depth (m) Core Lengt h (cm)

V19-259 19 ° 52 ' 11 °02 ' 1170 970

V19-277 7°10 ' 5°08 ' 5092 1344

V19-137 6°31 ' 10°04 ' 3486 1015

V19 -139 4°34 ' 8°95 ' 3590 1610

V19-l4l 2°38 ' 6°29 ' 3993 1520

V19-l42 2°05 ' 6°23 ' 1017 1040

V19-266 14 ° 36 ' 3°40 ' 5543 480

V19-267 13°23 ' 2°13 ' 5585 545

V19-276 8°58 ' 2°52 '

CH99-42 8°40.5' 11 ° 49.5' 1945 606

CH99-46 8 ° 50.5 ' 11 °49.2' 2195 855

CH99-48 11 °05 i 1004li ' 3961 1160

CH99-5l 19° 57' 9°21.2' 2324 948

CH99-49 19°00 ' 10 ° 04 ' 4146 1009

"Meteor" Expedition

180 21 ° 45 ' 4°30' 4730

183 21 ° 53 ' 12 ° 27 ' 989

184 22 ° 00 ' 11 °07.2 ' 3055 29

l84a 17 Os 6 . 2 ' 11a21.9' 408

184b 17°13.1' 11 °43.4' 42

l84c 17°11 ' 11 ° 39 . 6 ' 77





i 73

APPENDIX II

Analytical Results
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SURFACE SAMLES

Organic Carbon (%)

Sample % Organic Carbon Sample % Organic Carbon

KW13 1. 37 V12-71 2.57

KW15 1.28 V12 - 72 1. 73

KW16 1.25 V12-75 1.16

KW17 1.00
V19-260 1.15

KW19 0.92
V19-26L 0.83

KW20 1.03
V19-262 2.28

KW2l 1.56
V19-263 0.34

KW22 2.74
V19-264 0.25

KW23 1. 52 '"

V19-265 2.15
KW24 1.99

i V19-278 1.01

CH99 - 39 2.22 V19-280 1.26

CH99-40 1.26 V19-28L 0.26

CH99-4l 1.89 V19-282 0.47

, .
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CORES

Organic Carbon (%)

Core Depth in Core % Organic Carbon

V19-28L 420 1. 72

460 1.56

560 0.51

580 0.80

600 1.89

620 1.36

660 1.23

700 1. 72

720 1.63

780 1.16
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SURFACE SAMPLES

Clay Minerals (%)
Crystallinity

(v/p)
Samp le Montmorillonite Illite Kaolinite Chlori te Montmorillonite

V19-260 37.5 48.4 7.1 7.0 0.37

V19-26l 42.2 44.6 10.0 5.0 0.32

V19-262 55.1 32.7 8.2 5.0 0.11

V19-263 32.8 58.7 6.0 2.0 0.18

V19-264 49.4 42.2 8.0 5.0 0.22

V19-276 48.0 24.3 27.7 5.0 -0.22

V19-278 48.7 17.1 34.2 0.0 0.32

V19-280 65.5 0.0 34.5 0.0 0.00

V19-28l 35.4 15.7 48.9 0.0 0.08

V19-282 37.0 20.2 42.8 0.0 0.00

V12-70 20.0 22.3 57.7 0.0 0.14

V12-71 33.4 13.5 53.1 0.0 0.19

V12-76 15.6 35.4 49.0 0.0 0.00

CH99-38 55.6 19.5 24.0 5.0 0.43

CH99-39 25.0 15.0 60.0 0.0 0.16

CH99-40 57.1 15.6 27.3 0.0 0.50

CH99-4l 62.8 15.3 21.9 0.0 0.74

KW13 26.4 56.7 15.0 5.0 0.29

KW15 44.6 34.2 20.0 5.0 0.59

KW16 43.4 30.2 26.4 0.0 0.55

KW17 47.0 29.8 23.2 0.0 0.64

KW18 50.3 23.7 26.0 0.0 0.74
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SURFACE SAMLES
Clay Minerals

Crystallinity
(v/p)

Sample Montmorillonite Illite Kaolinite Chlorite Montmorillonite

KW19 42.5 42.5 13.0 5.0 0.45

KW20 36.2 40.6 23.2 0.0 0.44

KW2l 46.6 26.6 26.8 0.0 0.44

KW22 31.2 25.5 43.3 0.0 0.22

KW23 51.0 9.4 39.6 0.0 0.67

KW24 45.0 15.1 39.9 0.0 0.51

BCF94 12.3 58.9 20.8 8.0 0.26

BCF96 18.6 61. 6 19.8 0.0 0.00

BCF99 34.4 43.0 21.0 5.0 0.36

BCFl03 14.3 63.4 20.0 5.0 0.34

BCF105 31.4 42.8 14.0 5.0 0.27

C506 6.0 24.9 69.1 0.0 -0.09

C605 4.7 24.4 70.9 0.0 0.00

C783 19.0 22.0 59.0 0.0 0.29

C800 7.6 33.7 58.7 0.0 0.15

C585 2.6 28.2 69.2 0.0 -0.20

C6L5 6.8 25.8 67.4 0.0 0.00

5019 32.2 46.8 21.0 0.0 0.42

5022 33.6 48.9 17 .5 0.0 0.42

5025 38~8 43.4 17 .8 0.0 0.44

5030 42.6 35.0 22.4 0.0 0.45

5034 35.5 27.4 37.1 0.0 0.62

5037 43.6 30.6 26.8 0.0 0.54
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SURFACE SAMPLES

Clay Minerals

Crystallinity
(v/p)

Sample Montmorillonite Illite Kaolinite Chlorite Montmorillonite

5039 39.6 28.2 32.2 0.0 0.73

5040 11. 6 33.1 55.3 0.0 0.14

5043 13.0 24.2 62.8 0.0 0.29

5045 18.6 28.9 52.5 0.0 0.26

5046 13.0 31.1 55.9 0.0 0.33

5047 7.3 41.4 51.3 0.0 0.28

5049 10.2 45.2 44.6 0.0 0.45

5050 13.8 .36.5 49.7 0.0 0.50

5051 7.7 42.1 50.2 0.0 0.65



PISTON CORES

Clay Minerals
I HO

Core V19-26l

Sample Depth Montmorillonite Illite Kaolinite Chlorite J.
80 25.1 59.1 10.0 5.8 0.60

140 22.6 59.0 18.4 0.0 0.49

180 34.7 46.7 14.0 4.6 0.28

280 31.0 58.6 8.0 2.4 0.22

340 30.5 52.8 12.7 5.0 0.22

540 42.9 38.1 15.0 4.0 0.49

600 31. 6 56.8 8.6 5.0 0,27

740 24.5 60.4 10.1 5.0 0.25

800 23.2 68.1 5.7 3.0 0.39

Core V19-262

360 31. 8 57.9 6.7 3.6 0.44

540 40.5 45.9 8.7 4.9 0.50

580 17.6 74.0 5.4 3.0 0.46

700 19.7 69.7 8.4 3.2 0.29

800 33.6 41. 7 16.0 8.7 0.46

Core KW15

40 53.6 24.4 22.0 O.Ù 0.69

80 57.1 24.5 18.4 0.0 0.59

160 57.6 25.2 17.3 0.0 0.54

220 57.8 24.0 18.2 0.0 0.42



PISTON CORES

Clay Minerals

Core KW15
l8l

Sample Depth Montmorillonite Illite Kaolinite Chlorite ~
260 54.6 25.6 19.8 0.0 0.44

380 54.6 23.4 22.0 0.0 0.55

460 65.4 21.3 13.3 0.0 0.44

520 61. 7 21.4 16.9 0.0 0.50

560 64.6 20.5 14.8 0.0 0.55

640 52.3 29.2 18.4 0.0 0.44

700 52.4 28.2 19.4 0.0 0.45

780 53.2 26.8 20.0 0.0 0.44

816 60.2 24.6 15.2 0.0 0.51

Core KW19

40 51. 5 24.5 24.0 0.0 0.62

80 60.0 20.2 19.8 0.0 0.58

120 56.9 20.4 22.8 0.0 0.62

200 60.0 18.5 21.5 0.0 0.62

260 63.2 16.0 20.8 0.0 0.51

300 62.6 15.6 21.8 0.0 0.56

330 65.9 17.1 17 .0 0.0 0.43

390 61. 6 16.6 21.8 0.0 0.57

Core CH99-4l

40 57.0 15.0 28.0 0.0 0.72

120 57.1 15.6 27.3 0.0 0.64

260 63.6 14.6 21.8 0.0 0.64





SURFACE SEDIMNTS

Calcium Carbonate and Texture 183

Congo Repub 1 ic

Sample Numer % C aCO 3 % Sand % Silt % Clay

506 8.02 1.0 59.0 40.0

513 6.00 6.0 50.0 44.0

576 10.00 37.0 46.0 16.0

585 6.15 32.0 52.0 16.0

605 12.04 90.0 5.0 5.0

615 17.18 72.0 17.0 11.0

i 783 16.93 70.0 22.0 7.0

791 11.00 39.0 52.0 9.0

800 6.58 47.0 43.0 9.0

Bureau of Commercial Fisheries

92 0.00 97.8 00.8 ' 1.4

93 61. 00 96.1 2.4 1.5
"",

94 4.00 97.7 6.5 1.8 ¡o
. !i

96 10.3 95.6 2.7 1. 7
r
J

97 1.0 98.9 0.1 1.0

99 21.4 84.1 13.2 2.7

101 0.0 98.4 0.2 1.4

102 5.3 87.4 10.5 2.1

103 3.7 56.4 37.5 6.1

104 39.9 90.8 8.5 0.7



SURFACE SEDIMNTS

Calcium Carbonate and Texture

Bureau of Commercial Fisheries

Sample Numer %CaCO 3

20.6

19.7

% Sand % Silt % Clay

105

No Sta 4;

92.6

93.4

6.1

5.2

1. 3

1.4

Centre Océanologique de Bretagne

KW13 49.1 4.2 71.3 24.5

KW15 24.5 1.3 51. 6 47.1

KW16 21.0 2.2 56.9 40.9

KW17 27.3 4.6 52.4 43.0

KW19 40.5 5.2 52.9 41.9

KW20 12.9 5.2 83.9 10.9

KW2l 34.3 6.5 49.3 44.2

KW22 19.8 0.3 26.6 73.1

KW23 20.0 5.02 49.4 45.6

KW24 41.1 6.64 51.5 41.9

Lamont-Doherty Geological Observatory

V12-70 16.1 13.0 26.5 60.5

V19-260 65.9 10.1 65.0 24.9

V19-26l 66.3 2.5 61. 5 36.0

V19-262 85.9 9.4 55.0 35.6

V19-263 20.7 40.5 46.8 12.7

V19-264 17 .6 53.1 27.9 19.0

V19-278 47.0 26.1 44.5 29.4

V19-280 31.4 1.8 48.1 50.1

184
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SURFACE SEDIMNTS

Calcium Carbonate and Texture

Lamont-Doherty Geological Observatory

Sample Number % CaC03 % Sand % Silt % Clay

V19-28l 77 .4 15.4 60.3 24.3

V19-282 87.8 16.5 40.0 43.5

Woods Hole Oceanographic Institution

5019 2.95

5031 3.43

5037 10.15

5039 6.09

5040 11.64

5046 8.12

5051 9.29

Woods Hole Oceanographic Ins tit ut ion
(Sanders)

198 26.6

200 23.2

201 17.2

202 13.1

203 22.3

Woods Hole Oceanographic Inst itut ion

CH99-38 2.6 7.74

CH99 - 39 2.0 5.84

CH99-40 6.8 12.1

CH99-4l 6.30 1.46



CORE KW15

186

Sample CaC03 Sand Sample CaC03 Sand

0 32.94 12.13 440 4.89 0.69

18 38.50 19.33 460 6.17 1. 76

40 22.04 7.16 480 5.44 2.12

58 10.10 10.63 500 25.56 3.33

78 9.16 2.57 518 27.55 2.90

100 16.21 3.42 540 26.24 5.79

120 20.20 8.08 560 6.60 1.50

133.5 9.59 52.49 580 27.21 3.30

140 11.90 7.19 600 18.28 3.25

160 8.96 1.54 620 8.84 . 2.21

180 7.04 2.12 640 8.65 1. 31

205 21.29 5.81 660 5.28 1. 51

220 17.08 5.39 685 30.42 2.93

240 20.48 4.91 700 9.20 2.16

260 20.06 5.03 720 19.51 2.33

280 3.49 3.42 740 20.24 2.13

300 13.37 7.88 760 17.83 2.47

320 38.35 22.61 780 41. 19 3.09

340 15.57 4.88 803 27.02 2.92

360 6.19 2.84 816 3.51 0.74

380 6.47 2.74 840 20.46 3.07

398 5.38 2.14

410 25.64 12.75

420 4.39 3.70



CORE KW19
l87

S amp le CaC03 Sand

0 23.31 19.84

20 30.62 7.07

40 19.77 4.68

60 19.06 5.37

80 14.23 0.77

100 18.50 0.67

120 18.16 0.94

140 12.11 5.07

160 15.63 2.57

180 14. 13 2.26

200 10.78 5.95

220 15.46 1.55

240 10.53 0.88

260 18.53 4.41

280 15.78 5.11

300 8.75 13.00

310 24.79 11.25

330 18.66 4.45

350 20.45 3.98

370 4.96 0.29

390 0.82

Bottom 12.09 79.12



CORE KW21
188

Samp Ie CaC03 Sand Sample CaC03 Sand

0 33.80 16.59 440 2.20 1. 51

10 23.05 13.19 460 6.12 1.13

25 10.02 7.59 480 6.71 0.07

40 7.95 3.49 498 6.50 2.10

60 8.77 3.82 520 6.07 2.33

80 10.96 3.86 540 5.76 1.15

100 10.00 5.09 560 4.77 0.84

120 5.34 5.53 580 4.46 0.95

140 7.31 3.58 605 4.53 0.50

160 9.29 1.94

180 8.46 2.39

200 8.54 2.15

220 8.84 1.31

240 9.00 1.18

260 3.47 1.45

280 8.96 1.83

300 5.66 0.64

320 6.75 0.47

340 7.31 1.03

360 7.03 1.08

380 4.50 3.22

400 6.83 0.62

410 5.18 2.72

420 6.90 1.01



CORE V12-70 189

Sample CaC03 Sand Samp le CaC03 Sand

20 20.1 2.52 500 19.3 1.14

60 26.3 3.16 520 24.7 1. 78

80 22.5 0.56 540 19.8 0.82

100 22.7 0.73 560 20.0 0.03

120 13.6 0.28 580 17.7 0.62

140 20.6 0.78 600 21.9 1.01

160 24.7 1.36

180 20.0 0.52

200 20.1 0.63

220 22.2 0.96

240 22.0 1.38

260 24.1 1. 62

280 18.7 0.36

300 26.2 1.42

320 25.0 1.23

340 23.5 1.07

360 22.0 0.40

380 19.7 0.52

400 18.5 0.78

420 21.3 0.87

440 20.3 1.21

460 17.4 0.09

480 17.9 1.11
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CORE V12-75

Satn le CaC03 8m d Sample CaC03 Sand

40 10.0 0.20 500 6.3

60 8.9 0.13 520 0.11

80 4.7 0.17 540 0.9 0.30

100 9.2 0.28 560 7.5 0.74

120 6.5 0.06 580 4.5 0.17

140 7.5 0.05 600 13.8 0.62

160 5.9 0.04 620 1. 6 0.38

180 5.3 0.12 640 0.04

200 8.0 1.01 660 0.7 0.08

220 6.2 0.18 680 5.9 0.35

240 6.7 0.16

260 4.2 0.32

280 5.9 0.25

300 9.6 1. 51

320 6.3 0.08

340 4.8 0.05

360 1. 3 0.09

380 7. 1 0.04

400 10.1 0.27

420 4.9 0.10

440 3.9 0.39

460 4.9 0.08

480 5.8 0.05
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CORE V19-260

Samp le .CaC03 Sand Sample CaG03 Sand

20 69.6 5.63 480 42.6 3.89

40 70.2 6.68 500 52.7 3.21

60 67.4 4.37 520 50.0 1.86

80 66.6 4.01 540 47.4 1. 32

100 63.3 2.73 560 57.8 2.45

120 69.0 2.56 580 49.2 2.52

140 59.1 3.01 600 27.5 0.67

160 55.0 2.76 620 43.6 0.89

180 51.1 3.02 640 54.9 1. 74

200 46.9 4.21 660 52.9 2.03

220 43.3 2.63 680 53.5 1.83

240 45.5 2.18 700 46.2 0.97

260 35.4 1. 76 720 56.1 2.33

280 36.7 2.63 740 49.2 1.96

300 38.3 2.81 760 45.7 2.02 1;

l
L

320 40.3 4.21 35.0 1.36 h
780

. r

340 37.5 0.88 800 51. 6 3.16

360 46.8 1.32 820 55.9 3.42

380 45.8 2.01 840 56.8 3.89

400 54.0 4.22 860 52.9 3.22

420 39.6 3.63 880 57.0 2.87

440 39.3 3.43 900 51.5 3.12

460 45.7 2.18 920 47.5 0.86

940 40.1 1.03

960 38.4 0.92
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CORE V19-26l

Samp le C aCO 3 Sand Sample CaC03 Sand

20 24.8 1.04 520 45.9 2.79

40 24.1 1.03 540 60.5 16.69

60 19.5 2.03 560 50.2 4.20

80 24.8 1. 91 580 17.2 0.81

100 31.8 1.12 600 25.6 3.88

120 46.0 1. 38 620 30.2 2.17

140 50.2 3.74 640 15.6 1. 54

160 60.5 5.28 660 18.0 1. 74

180 51.5 2.74 680 20.3 2.02

200 25.7 0.22 700 53.2 4.20

220 25.2 0.38 720 50.8 2.62
Ï"

240 17 .1 0.27 740 25.5 1.40

260 14.7 18.69 760 25.0 1.13

280 20.3 30.90 780 61.0 0.21

300 15.9 0.83 800 69.6 4.74

320 14.2 0.52 820 30.5 2.25 ~.

340 37.3 0.73 840 35.3 0.92
!

360 37.0 1.22 860 21.9 0.50

380 14.0 0.62 880 66.5 1.43

400 17.4 1.19 900 37.9 1. 77

420 l8.l¡ 0.00 920 59.6 2.56

440 66.5 1.06 940 26.1 1.11

460 65.2 1.04 960 24.4 0.81

480 15.2 0.50



CORE V19-261 194

Samp le Total CaC03 ( 62J. CaC03 Sand

20 73.1 71.57 5.75

40 75.7 64.79 20.23

60 37.8 18.57 5.50

80 33.2 4.55 5.52

100 25.0 14.91 1.54

120 55.l 20.28 3.75

140 47.1 33.28 1. 94

160 37.1 25.50 17.10

180 25.4 15.85 6.43

200 57.0 41. 70 4.62

220 38.2 15.70 3.69

240 36.3 14 . 40 0.16

260 29.8 13.40 0.65

280 8.5 10.10 3.10

300 17 .2 11.60 18.61

320 26.7 13.40 1.17

340 51.0 51.00 4.57

360 44.7 36.10 4.36

380 56.4 42.00 5.61

400 63.2 57.90 6.83

420 42.0 32.80 2.58

440 45.5 39.40 1. 62

460 49.9 21.80 1.54
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CORE V19-26l

Samp le Total CaC03 ( 62i. CaC03 Sand

480 45.2 41. 20 2.18

500 62.9 58.30 6.08

520 58.9 26.70 2.25

540 32.3 23.20 1. 74

560 50.4 39.70 4.79

580 58.4 56.10 6.35

600 68.5 71.40 6.60

620 68.7 51.10 5.69

640 45.0 39.10 6.24

660 28.0 16.90 1.51

680 37.0 26.52 5.61

700 34.8 23.21 2.95

720 20.0 7.37 1. 75

740 19.2 3.27 0.94

760 23.3 14.17 1. 35

780 34.3 27.08 3.43

800 49.1 40.21 2.82

820 34.5 23.65 2.09

840 30.0 17.21 5.02

860 37.6 24.22 7.26

880 28.9 16.39 3.78

900 33.8 16.04 0.00

920 23.5 14.66 6.04

940 37.5 16.59 2.94

960 48.6 4.33 0.65
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CORE V19-263 CORE, V19-27 8

Samp Ie % CaC03 % Sand' Sample % CaC03 % Sand

20 9.0 39.12 20 28.2 0.23

31 7.3 21. 76 40 22.6 0.07

60 22.2 0.09
CORE V19-264

80 10.9 0.09
20 19.4 57.21 100 14.6 0.13
40 20.5 7.21 120 19.7 3.21
60 23.6 7.80

IlfO 25.9 0.42
80 19.8 0.67

160 23.6 0.06
98 29.3 2.26

180 17.3 0.03

CORE V19-265 200 19.8 0.07

20 27.6 220 25.0 0.02

40 22.3 240 17 .1 0.65

60 18.7 260 24.6 0.08

80 18.0 280 15.2 0.58

100 24.8 300 19.2 0.14

120 20.4 320 18.8 1.01

140 8.8 340 16.8 0.32

160 21. 1
360 18.6 0.52

180 5.4 380 20.4 0.76

200 41.8 400 21.0 0.14

220 7.1 420 15.5 0.06

240 6.4 440 13.4

260 4.4 460 4.1 0.11

480 13.4 0.07

500 7.8 0.05
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CORE V19-278

Samp le % CaC03 % Sand

520 18.2 0.43

540 14.3 0.08

560 16.1 0.28

580 16.7 0.34

600 17 .3 0.12

620 18.4 0.04

640 18.6 0.61

660 15.2 0.62

680 18.2 0.21 c.

700 10.8 0.09

720 12.6 0.11

740 13.5 0.35

760 5.6 0.08

780 14.3 0.52

800 15.0 0.37

820 11.1 0.09

840 14.8 0.56

860 13.6 0.37

880 17.3 0.41

900 8.6 0.04

920 9.8 0.62

940 3.6 0.03

960 12.6 0.08

980 10.1 0.22
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CORE V19-280

Sample % CaC03 % Sand Sample % CaCO 3 % Sand

20 28.0 1.22 500 35.9 0.97

40 28.2 1.41 520 34.7 1.23

60 24.5 0.83 540 31. 7 1.09

80 27.2 0.56 560 28.7 1.01

100 23.3 0.76 580 39.1 1. 62

120 26.7 0.68 600 44.5 2.17

140 24.6 0.87 620 55.8 3.02

160 27.7 0.97 640 62.9 3.16

180 45.8 1.99 660 56.2 3.01

200 35.5 1.83 680 47.2 1.98

220 34.2 1.17 700 30.7 1.82

240 23.5 0.43 720 29.2 1.11

260 28.5 0.64 740 42.3 1. 62

280 35.4 1.09 760 31.6 1.06

300 29.3 0.69 780 31. 7 1.12

320 27.4 0.88 800 41.4 1. 67

340 30.6 1.02 820 26.0 0.37 .

360 40.9 2.01 840 30.9 0.89

380 26.8 1.07 860 23.4 0.26

400 26.1 0.73 880 19.2 0.18

420 28.4 0.84 900 25.7 0.17

440 26.5 0.43 920 38.1 0.53

460 31.4 1.13 940 67.5 2.01

480 22.8 0.36 960 28.4 1.43



199
CORE V19-280

Sample % CaC03 % Sand

980 57.6 1.87

1000 58.2 1. 73

1020 51.3 1.41

1040 27.1 1.09

1060 25.2 0.85

1080 22.3 0.63

LLOO 23.7 0.64

1120 21.0 0.52

1140 21.4 0.46

1160 26.6 0.55

1180 25.0 0.21
,-

1200 24.0 0.32

¡c

t
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CORE V19-28L

Samp le Total CaC03 (; 62¡J CaC03 % Sand

20 ' 53.2 54.14 7.96

40 31.4 33.00 1. 37

60 36.5 7.50 0.41

80 36.4 13.78 4.86

100 31.1 10.63 0.78

120 37.7 10.30 0.66

140 34.8 12.24 2.32

160 30.2 10.81 3.59

180 26.5 5.00 0.36

200 23.8 5.97 0.50

220 27.8 4.00 0.53

240 36.8 5.25 0.53

260 43.7 34.59 1.11

280 48.0 30.05 6.01

300 51.2 8.04 3.50

320 42.2 16.20 1. 77

340 63.1 19.69 7.56

360 40.0 3.13 2.55

380 48.2 24.27 8.40

400 57.1 18.86 3.09

420 37.8 6.16 2.33

440 43.8 13.41 2.46

460 44.1 6.22 2.96

480 40.3 16.79 0.81
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CORE V19-28l

Sample Total CaC03 .( 62¡. CaC03 % Sand

500 32.1 22.24 2.45

520 43.4 5.57 0.88

540 41.4 13.56 1.90

560 45.73 7.01

580 46.5 38.16 3.61

600 28.3 9.41 0.42

620 46.8 35.66 2.54

640 47.2 33.60 4.15

660 49.8 34. 82 2.65

680 42.7 17.01 1.66

700 27.8 4.08 0.20

720 28.0 10. 13

740 31.4 8.79 0.67

760 38.4 12.69 0.85

780 47.6 23.23 0.85

800 33.9 11.29 0.59

820 46.3 19.20 2.42

840 35.4 21.60 0.61

860 23.6 19.90 2.20

880 42.7 25.43 0.39

900 22.3 15.24 0.44

920 28.2 17.37 0.07

940 22.9 5.08

960 33.8 25.05 0.96



CORE V19-28L 202

Samp Ie Total CaC03 .c 62J. CaC03 % Sand

980 32.2 19.73 1.56

1000 33.6 3.40 0.11

1020 61. 8

1040 53.6

1060 34.0

1080 34.4

1100 33.7

1120 40.4

1140 36.7

1160 46.7

1180 40.6

1200 79.0

1220 64.4

1240 68.3



CORE V19-282
203

S amp le % CaCO 3 % Sand Samp le % CaC03 % Sand

20 83.9 9.16 500 51.2 3.67

40 64.2 6.31 520 75.4 5.97

60 35.9 3.09 540 60.0 3.98

80 25.6 1.02 560 48.2 4.02

100 28.2 1.13 580 46.1 /+.13

120 37.5 1.23 600 87.8 7.11

140 ,28.3 0.97 620 79.2 6.88

160 36.0 0.83 640 58.0 4.42

180 40.1 1.32 660 36.2 2.14

200 39.9 1.33 680 43.8 2.89

220 36.3 1. 16 700 47.2 2.56

240 54.2 4.85 720 48.8 2.67

260 85.1 5.76 740 43.5 2.73

280 69.7 4.76 760 43.7 2.56

300 64.2 4.83 780 58.0 5.02

320 70.0 5.01 800 53.2 4.23

340 70.3 4.91 820 47.8 2.16

360 82.4 6.32 840 49.9 2.24

380 38.0 2.02 860 51.2 2.03

400 60.0 3.89 880 60.3 2.36

420 50.7 4.06 900 59.0 1.98

440 60.1 4.01 920 65.1 4.16

460 79.7 6.22

480 64.6 5.85
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CORE CH99-38

Samp le % CaC03 % Sand Samp le % CaC03 % Sand

20 3.41 5.00 500 2.86 1.12

40 2.52 3.20 520 3.41 0.12

60 1.83 4.00 540 3.18 0.83

80 ' 1. 38 3.21 560 2.98 6.23

100 3.06 0.12 580 3.35 5.25

120 3.71 1.03 600 1. 86 2.16

140 2.09 1. 73 620 3.30 2.38

160 1. 72 0.66 640 2.53 1. 73

180 2.23 '4.12 660 1.39 0.73

200 2.63 3.67 680 2.54 2.43

220 3.02 4.23 700 2.63 9.26

240 3.19 6.12 no 4.13 11. 10

260 2.92 7.76 740 3.29 6.21

280 2.31 7.23 760 2.86 2.22

300 1.92 2.19 780 2.71 1.38

320 1. 76 0.63 800 3.29 2.19

340 1.82 1. 38 820 3.92 3.38

360 2.51 2.22 840 3.36 1.80

380 2.42 0.58 860 2.18 1. 30

400 2.67 12.12 880 2.21 . 2. '70

420 4.04 9.03 900 1. 62 3.36

440 3.96 2.16 920 3.21 7.25

480 3.34 2.41 940 4.02 6.14

960 3.96 0.68



CORE CH99-38
205

Samp le % C aCO 3 % Sand

980 4.11 1. 77

1000 2.97 2.23

1020 2.86 2.56

1040 2.32 4.25

1060 3.01 5.03

1080 3.22 3.22

1100 2.87 0.78

1120 2.63 0.65

1140 2.31 1. 72

1160 1. 72 1.93

1175 3.37 2.16
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CORE CH99-39

Sample % CaC03 % Sand S amp le % caC03 % 15and

20 2.52 37.67 440 1. 62 0.75

40 2.51 1.00 460 3.23 0.92

60 1.82 1.00 480 3.03 5.18

80 3.28 11. 00 500 2.42 2.17

100 2.93 42.10 520 1.67 3.46

120 2.04 9.03 540 1. 72 1. 37 '.

140 1. 37 0.31 560 2.18 2.34

160 1.84 2.42 580 2.16 2.66

180 3.35 0.71 600 2.72 2.32

200 2.93 0.68 620 1. 64 3.23

220 3.03 1.03 640 2.35 3.38

240 2.24 1. 77 660 2.57 2.59

260 1. 73 3.69 680 3.02 0.42

280 2.23 3.72 700 3.11 0.93

300 2.89 1.42 720 1. 78 1. 63

320 2.22 0.73

340 1.83 0.62

360 1. 93 2.18

380 2.56 1.03

400 2.71 2.46

420 2.18 1. 77
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CORE CH99-4l

Sample % 6211 CaC03 % Sand Samp le % 62i- CaC03 % Sand

20 4.09 0.73 500 4.07 1.04

40 3.64 0.41 520 3.34 3.10

60 5.14 2.12 540 2.95 1.63

80 3.26 1.92 560 6.28 0.95

100 4.38 2.73 580 10.59 0.81

120 4.96 0.47 600 5.75 0.75

140 4.46 1. 73 620 2.57 1.45

160 2.98 1.03 640 5.55 0.62

180 3.72 1.19 660 5.25 1. 97

200 4.10 2.02 680 4.95 1.06

220 4.27 1.17 700 4.35 1. 73

240 3.85 1.28 720 3.46 1. 68

260 3.05 0.92 740 5.37 0.90

280 8.94 0.68 760 3.78 0.58

300 3.52 1.09 780 3.30 0.39

320 5.06 1.97 800 3.55 0.01

340 4.56 0.40 820 1. 50 0.82

360 5.48 1.59 840 2.15 0.62

380 4.86 0.78 860 2.37 0.40

400 4.96 0.45

420 3.10 0.54

440 3.17 0.95

460 2.56 0.47

480 6.12 0.88
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APPENDIX III

Analytical Methods
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Percent Sand

1. Approximately 1 to 2 grams of sediment were placed in a pre-weighed 50

ml. beaker and dried for at least 8 hours at 110°C.

2. The samples were removed to a dessicator to cool and then weighed. Sam-

ple weight was determined by subtracting the beaker weight from the total

we ight .

3. About 20 to 30 ml of sodium metaphosphate solution were added to each

beaker and the samples were disaggregated. The samples were left to

stand approximate ly 24 hours.

4. The samples were washed through a 62.5~ sieve and the silt and clay

fraction collected in a 250 ml. beaker.

5. When thoroughly washed, the sand fractions were rinsed into 50 ml

beakers and placed in an oven at 110°C until completely dry.

6. The silt and clay fractions were allowed to stand undisturbed for one

to two days.

7. The sand fractions and beakers weigheo and the percent sand calculated.

The sand fractions were placed in labeled vials.

Percent Calcium Carbonate in the Silt and Clay Fractions

1. After standing for 1 to 2 days, the clear supernatants were poured from

the 250 ml. beakers containing the silt-clay fraction and the remaining

sediment washed into the same 50 ml beakers as used in determining per-

cent sand.

2. The silt-clay fractions were dried for about 12 hours at 110°C.

3. The samples were placed in a dessicator to cool and then weighed. Sample

weights were determined by subtracting the beaker weights from the total
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weight.

4. 2N HCl was added to each beaker and the beakers were allowed to stand for

about one hour.

5. During this time, MilliporeR filters were weighed and placed in numered

petrie dishes corresponding to the sample numers.

6. Distilled water was added to the beakers and the supernatants were washed

(decanted) onto their corresponding Millipore filters. Distilled water

was added to the samples and decanted several times.

7. The filters were washed several times with distilled water.

8. The filters were placed in the beakers with their samples and dried at

110°C for about 8 hours or until dry.

9. The samples and filters were cooled in a dessicator and weighed.

10. The acidified sample weight was determined by subtracting the filter

weight and the beaker weight from the final weight.

11. Carbonate content was determined by:

i£riginal weight) - (acidified weight) X 100
originnl weight

Percent Organic Carbon

1. A 0.25 to 1.0 gram sample was dried at 110°C for 8 hours and weighed.

2. The sample was acidified in 2NHCl to remove calcium carbonate.

R
The sample was washed into a Leco filter crucible and rinsed several3.

times with distilled water.

4. The crucible'was covered with metal foil and labelled.

5. The sample was combusted in a Leco induction furnace and the percent

organic carbon determined.
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Clay Mineral Analyses

1. Samples were acidified in acetic acid and disaggregated completely.

2. The less-than-2~ fraction was separated by centrifugat ion.

3. The supernatant in each centrifuge tube was poured through a Selas

FlotronicsR silver filted and then air dried.

4. The silver filters were placed in a Norelco X-ray diffractometer

(Cu K~, 40 ma, 40 Kv) and scanned from 2° to 40° 2 0 at 2°/min.

5. The filters were then placed in a dessicator containing ethylene

glycol and glycolated at 70°C for at least 4 hours.

6. The filters were then scanned again from 2° to 40° above the previous

untreated trace.

7. Certain of the samples were then heated to 400°C and 550°C and rerun.

A baseline was sketched on the glycolated trace and the areas of the

major peaks determined by counting the enclosed squares within the peak and

the baseline. The fo 11 ow ing peak weightings were used (Biscaye, 1965) to

determine the percentages of the clay minerals:

1 x area of the l7Â glycolated montmori llon ite peak

4 x area of the lOA g lyco la ted illite peak

2 x area of the 7Â kao 1 inite - ch lor it e peak

Kaolinite and chlorite were divided based on the re lat ive areas of the

two peaks in the kaolinite-chlorite 3. 5Â doublet (kaolinite, 3. 58Â; chlorite,

3. 54Â) .

The four weighted peak areas were summed and the weighted area of each

mineral times 100 was divided by the sum of the areas to give the percentage

of each mineraL.
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