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ABSTRACT

The feasibility of using inductive coupling with existing submarne
telephone cables for telemetry of data from ocean sensors was
investigated. The submarine telephone cable was simulated with a
computer model and the model results were tested experimentally by
deploying 600 meters of coax cable in Woods Hole Harbor. In parallel a

study of the optimum access methods and modulation and techniques
was performed.

Results of the feasibility study showed that a non-invasive
technique for inductive coupling is not feasible for use with existing SF
and SD coaxal cable designs. Signals induced in both conductors by a
toroid encircling the cable remain identical as they propagate along the
cable as a result of mU,tual inductance. Thus, no signals are apparent at
the repeaters. Optimal use of cable bandwidth combines time division
multiple access with trellis-coded QAM modulation.
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EXECUTIVE SUMMARY

A feasibility study has been performed to investigate using

non-invasive inductive telemetry techniques to couple ocean

sensors to existing analog submarine telephone cables. The

attraction of the idea is that "clamp-on" inductive modems (and

associated ocean sensors) could be installed at points along the

cable without the need for expensive cable ship operations which

involve cable retrieval and re-deployment. The key questions to

be answered by the study were:

1) Can signals be induced in the cable with sufficient SNR

so that the existing repeater network can be used to

transmi t the signals to shore?

2) What level of power is required by the inductive device

to generate these signals?

3 ) What communication techniques are best for using the

bandwidth available in existing submarine cables?

To answer these questions a computer model simulating

submarine' cable performance was developed and a series of in-

water experiments to test the model predictions was performed.

In parallel, an analysis of bandwidth utilization was conducted.

Unfortunately, the feasibility study provided a negative answer

to question one. The in-water tests showed that it was not

possible to induce (non-invasively) a signal between the inner

and outer conductors of a submarine cable. A signal with respect

to seawater ground could be induced in both the inner and outer

conductors, but no difference between the conductors developed as

the signal propagated; thus there is no signal for the repeater

_to amplify. In short, the non-invasive technique is not

feasible. If, through other techniques, signals are inj ected

into the cable, the results determined for questions 2 and 3

suggest that very high data rates are possible using very low

power transmitters. Data rates for an SF cable system of 6 Mbps

could be maintained with an energy input into the line of the
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order of one watt per modem. Optimal use of the cable bandwidth

uses a system which combines time division multiple access (TDMA)

wi th trellis-coded QAM modulation.

The recommendation of the authors is that further

investigation into in situ techniques for connecting subsea

instrumentation to submarine cables should be undertaken.

Several potential techniques which may have merit have been

identified and would be far less costly than the normal cable

ship operations. These techniques, however, are considerably

more complicated than the non-invasive inductive technique and

would require significant development.
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1.0 INTRODUCTION
The feasibility of using non-invasive inductive telemetry

techniques to .couple oceanographic data onto existing submarine

telephone cables has been investigated. A computer model of the

transmission line was developed and tested against known

analytical solutions. A series of in-water experiments using a

coaxial cable to simulate the submarine cable with appropriately

scaled frequencies and length was performed to verify the model's

predictions. In parallel with this activity, an analysis of

optimal bandwidth utilization, including system protocols,

modulation techniques, and coding options was conducted to

quantify the data rates and power levels achievable on existing

submarine telephone cables.

Following the negative results obtained during the in-water

tests, a design review was held to evaluate the procedures used

during the experiments and to discuss the underlying physics

behind the problem. Discussions concerning other possible
techniques for non-invasive and invasive signal telemetry were

also held. Participants at this review were senior engineering

staff at WHOI. A summary of the design review is included as an

Appendix. Opinions from members of the Northeastern Uni versi ty
staff and Margus Telecommunications International staff were also

solicited.
Results of the feasibility study can be summarized as

follows:
i. The non-invasive inductive telemetry technique failed to

generate a signal between the inner and outer conductors

of an immersed (or non-immersed) cable due to mutual

inductance between the two conductors. The inner and

outer conductors, in essence, act as a single trans-

mission line. Since no difference between the signals on

the inner and outer conductors develops as the signals

propagate along the cable, the repeaters have nothing to

amplify.
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2. ~he power requirement to transmit signals on an SF type

cable are quite low and at the required frequencies could be

inductively coupled very eff iciently if the circumstances

were right.

3. The optimal access method for an SF type cable system for

ocean data telemetry uses TDMA (Time Division Multiple

Access). System throughput of the order of 6 Mbi ts per
second in each direction is possible using very low power

transmitters. This approach requires simple system

protocols and simple subsea instrumentation with relatively

sophisticated processing at the shore end. It is applicable

to non-invasive or invasive signalling techniques, and is

optimized for low power applications.

The work performed in this study was funded by a grant from

IRIS with matching funds provided by WHOI. Neil Brown was

Principal Investigator for the cable modeling and in-water

experiments and John Proakis performed the bandwidth utilization

studies. Dan Frye provided proj ect management.

2.0 COMPUTER MODEL OF SUBMARINE CABLE SYSTEM

Figure 1 shows the general arrangement of the proposed

inducti ve telemetry system whose purpose is to enable two-way

communication between oceanographic instruments on the bottom of

the ocean and shore-based researchers using existing submarine

telephone cables as a trans~ission line. The idea that was

investigated was to use inductive coupling to transfer signals to

and from the cable. The original premise was that the submarine

cable differed from a normal cable in that the -shield, outer
polyethylene jacket and the highly conducting seawater formed a

secondary coaxial cable as shown in Figure 2. Ri, Li, ci and Gi

(Figure 2) were the lu~ped constants representing each element of

the "inner" coaxial cable, and Ro, Lo, Co, Go were the lumped

constants for the "outer" coaxial cable. The premise was that

8



SUMARINE
CABLE

SENSOR

SYSTM

..EATE r::: :::: ::::: ::::

i-

Figure 1 Proposed inductive telemetry system

End Section~
Load

Repeater ~#1 ~

sw -=
Ground

Generator Sections~~r -,

~
~

N

End Section~

Clamp-On
Transformer

Note: All Sections Are Indentical

Intermediate Sections

Load

¿ Repeater
~ #2

Figure 2 Electrical model of SF cable system
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signals induced on the shield would be attenuated more rapidly

than signals induced on the inner conductor due to the inter-

action between the outer conductor and the seawater. It was

thought that the relatively low conductivity of seawater,

compared to copper, would result in much more rapid loss of

signal on the outer conductor, and that the two identical signals

induced on the inner and outer conductors would differ signifi-

cantly as they progressed along the cable, thus resulting in a

net signal at the repeater.

2.1 Effect of Skin Depth

It was suggested by several reviewers of our original

proposal that the outer conductor would effectively shield the

inner conductor from the magnetic field produced by an encircling

ferrite core (Ae driver). We investigated this premise and

proved that skin depth is not relevant in this situation.

At 1 MHz the skin depth in copper conductors is .0066 cm

(.0026"), decreasing as the square root of frequency. However,
skin depth is not relevant to this situation for the following

reason. Since most of the magnetic field is contained within the

ferrite core (permeability = 2700), the magnetic ¡ield encircles

both the inner and outer conductors and induces a signal in them

wi thout impinging on them. According to Faraday's Law, the
voltage induced in a circuit is given by

v = N * õ~
õ t

where V is the induced voltage and ø is the total flux linking

the ~ircuit. it should be noted that a conductor does not have to

be in a magnetic field to have a voltage induced in it. A voltage

can be induced by passing a magnetic field through a space

enclosed by the conductor.
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A simp~e experiment was performed to show that skin depth is

not a relevant factor. Figure 3 shows the details of the

experimental setup. A square loop of copper pipe (15 cm x 15 cm)

was assembled using standard water pipe and "elbows". The "legs"

were 60 cm long to keep the output well away from the input

winding of the transformer to eliminate the possibility of

parasitic coupling. A 5-volt signal was applied to the 7-turn

input winding of the' toroidal transformer, and the voltage on the

conductor inside the pipe was measured using an oscilloscope. The

measured voltage was exactly one seventh of the input, clearly

showing that skin depth was not a relevant factor even though the

wall thickness was nine times the skin depth. The experiment was

repeated with a 4-ohm resistor connecting the ends of the water

pipe together with the same result, i.e., the anticipated signal

was measured in both the inner and outer copper conductors.

SIGNAL

GENERTOR

1.0 MHz

. /15cm x 15cm loop
f¡ Copper Water Pipe

/ .
Ferrit.e Core Transformer

(7 Tun Winding)

OSCiSCOPE

Figui:'e 3 Experimental setup for testing skin depth hypothesis
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2.2 Computer Simulation

A computer program was written to simulate the model shown

in Figure 2. Two tests were performed on the model to verify its

performance in known circumstances. In all cases 10,000 elements

were used for the computations where each element represented a

very small part of a wavelength. Figure 4 shows the SF cable

characteristics used in the model. The two test cases are

described below.

1. The thickness of the outer polyethylene jacket was

reduced to almost zero thickness, thus simulating a normal

coaxial cable. The model predicted exactly the same behavior for

signals inj ected between the inner conductor and the outer
conductor as the traditional transmission line equations for a

short-circui ted quarter wave section, an open-circuited quarter
wave section, a short-circuited half wave section, an open-

circuited half wave section and sections of various lengths

terminated in the cable characteristic impedance (60 ohms).

Outer Conductor CHARACTERISTICS OF INNER CABLE

Dielectrc conslant : 2.285

Inductance

84 pF/meter

: 0.351 uH/meter

Capacitance

Polyethylene
Ouler Jackel

Dimensions are in milimeters

(except where shown)

Figure 4 SF cable construction
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2. The .thickness of the outer polyethylene jacket was

increased so that the overall diameter was three times the

diameter of the shield, and the polyethylene dielectric was

reduced tq almost zero thickness so that the inner and outer

conductors behaved essentially as one. When signals were injected

between the outer conductor and the seawater and the same tests

as described above were performed, the model predicted similar

results except that the attenuation was considèrably higher, as

one would expect.
The results of these tests on the model showed that the

computer program was accurately simulating the model, and it was

felt that it would correctly predict the cable behavior when

signals were simultaneously induced on both the inner and o~ter

conductors by a "clamp-on transformer" at any point between the

repeaters (Figure 2).

3.0 EXPERIMENTAL VERIFICATION

3.1 Experimental Results

To test the validity of the computer simulation an

experiment was performed at dockside at WHOI. Figure 5 shows the

circuit details of the experimental setup. The 300 m lengths of

coax cable were made up of 1 cm diameter 75 ohm "TV" cable. The

tests were done at frequencies of 10 to 60 MHz. This combination

of cable, cable length and frequency was designed to give the

same attenuation as the submarine cable where the repeaters are

10 nautical miles apart and operate at frequencies of 0.5 to

6MHz. Table 1 shows the attenuation predicted by the computer
simulation for the test cable as a function of frequency. The

simulated "repeater" boxes were made of aluminum and were in

direct contact with the water. The ?uter shields of the two 300 m

lengths of cable were connected to the boxes to simulate the real

situation. All exposed connections in the water were insulated

with "SCOTCHFILL", insulating putty and self-vulcanizing tape.

The transformers (T1 andT2) were used to allow the differential
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voltage across the end of each 300 m length to be observed and to

separate the "local" ground at the dock and seawater ground at

the repeater boxes. Care was taken to insure that the impedance

at all points was 75 ohms to avoid the possibility of standing

waves.

FREQUENCY (MHz) ATTENUATION (dB)

10 12.0

20 20.8
,.-

30 21. 1

40 26.9

50 28.4

60 30.4

Table 1 Results of simulation for the in-water experiment

305 m of coax cable

Aluminum Box / \~ ~ Aluminum Box

Zo=75 ohm
(on dock)

T1
(in water)

Toroidal .-
Transformer
Z=75 ohms
(in water)

T2
(in waler)

~ l525ro of _ 0'01.

Zo=75 ohms
(on dock)

Tl and T2 are radio frequency

Transformers with a 1:1 turn

ratio
SIC/l6L

GENERATOR

(on dock)

Figure 5 Experimental model of system
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The experimental results showed that there was no detectable

signal at any frequency at the repeaters even with 5 volts (rms)

at the clamp-on transformer 7-turn primary winding (.71 volts on

the cable). The experimental setup was checked and rebuilt with

the same result. As a further check~ a signal generator was

connected to one of the repeaters and the signal measured at the

other repeater with the following results.

FREQUENCY (MHz) ATTENUATION (dB)

10 17.3

20 26.0

30 30.5

40 33.9

50 34.2

60 38.8

Table 2 Attenuation as a function of frequenèy for a signal
injected directly into the test cable (600m)

The above values agreed reasonably well with the calculated

attenuation for the 600 m length of this cable. This showed that

the cable, repeater boxes and all the connections were working'

correctly.
This left the question of why the predicted values in Table 1

and the experimental result showing no detectable signal were in

complete disagreement. The conclusion was that the electrical

model shown in Figure 2 was seriously in error, notwithstanding

the tests done on the simulation program. After further

investigation, it was recognized that the error in the model was

that it did not take into account the mutual inductance between

the inner conductor, outer conductor and the seawater ground. Even

15



though the simple model for a transmission line (twin lead or

coaxial) shown in Figure 6a does not show the series and mutual

inductances, it gives the correct result for a simple transmission

line with a generator directly connected between the two

conductors. The more complete representation (Figure 6b) including

the mutual inductance effects is essential for the more complex

case where we are inducing the same signal into both inductors,

particularly when we include the third inductor formed by the

seawater conductor.

R L

c

R

GG

Figure 6a simple model of
transmission line element

Figure 6b Model representation
including mutual inductance
effects

Frederick W. Grover (1) in his book (page 280 of Inductance

Calculations published by ISA) states the following.

For a coaxial cable in which the current flows in
opposi te directions in the two conductors, the
inductance of the cable is equal to self inductance of
the inner conductor plus the inductance of the outer
conductor minus twice their mutual inductance. The
mutual inductance of the two conductors is equal to
self inductance £2 of the outer conductor. If,

16



theref~re, Li denotes the inductance of the inner
conductor, the inductance of the return circui t is

L = Li + Li - 2 Li
= Li - Li

Since the phase of the voltage induced in series with one

conductor by the mutual inductance is at 90° to the current in

the other conductor, the effect of the mutual inductance would be

completely different when the currents in the inner and outer

conductors were flowing in the same direction; this is the case

when identical signals are induced in both conductors by a clamp-

on transformer. These mutual inductance effects explain the

discrepancy between the computer simulation and the in-water

tests. Further, unless the voltages induced in the inner and

outer conductors are different at the inj ection point (i. e., the
clamp-on transformer), the response at the repeaters will

inherently be zero.

3.2 Additional Tests

By the time we recognized the reason for the discrepancy

between the computer model and the experimental results, we felt

fairly certain that the results of the next three tests described

below would be negative. However, they were very easy to perform

and confirmed our conclusions that there is no, non-invasive

method of inducing high frequency signals into a submarine cable.

Additional tests were performed at dockside to better

understand the initial results and to investigate other methods

which could be used to couple signals into a submarine cable. The

first test was to cut the 600 m cable at the center and to rewire

it as shown in Figure 7. In this case the clamp-on transformer

induced a signal into the outer conductor only when the inner

conductors were directly connected. The transformer was the same

one as used before. Figure 7 does net show the insulation used to

protect the transformer and the exposed ends of the cable. Table

3 shows the result of measurements of signals received at the

repeaters for the frequencies shown. The results were essentially

17



To

~

Transformer ~
7 Turn Primary

To Signal Generator
Via 15.25 m Coax Cable

Figure 7 Experimental configuration for inducing signal in the
outer conductor only

FREQUENCY (MHz) ATTENUATION

10 31. 3

20 36.0

30 40.0

40 42.1

50 42.2

60 42.8

Table 3 Attenuation of signals induced in the outer conductor
after propagating 300m

the same for the signals received at both repeaters. The same

test was repeated with Lhe inner conductors coupled to the

transformer and the outer conductors directly connected, thus

inducing a signal into the inner conductor only. The results at

both repeaters were the same as those shown in Table 3. The

figures agree reasonably well (11.5 db) with the calculated

18



values and ?re consistent with the values in Table 2 if one

allows for the 2-to-1 difference in length and for the fact that

a signal injected into a conductor at the center travels in both

directions, producing an amplitude in either direction that is

one half of the inj ected signal.
Two other tests were performed at dockside. The first is

shown in Figure 8. This method was intended to induce a signal

into a half wave section of the outer conductor by driving it

with two quarter wave sections connected as shown in Figure 8.

This is the same method used to drive a half wave dipole antenna.

Obviously the presence of the 300 m lengths of cable to each

repeater would modify the voltage induced in the outer conductor.

Insulation was stripped from the outer conductor in two places,

2.4 m apart, at the center of the 600 m length. The 2.4 m

distance is equal to one half wavelength at 30 MHz. The exposed

sections were connected to a 15 m length of coax via two quarter

wave lengths of 26 gauge hook-up wire, all of which were

insulated. The other end of the 15 m length was connected to a

signal generator on the dock. When a 5 volt signal was applied to

the cable, no signal was detected at the repeaters. The absence

of any detectable signal was due to the fact that in a very short

distance along the cable in either direction the same signal

induced in the outer conductor is induced in the inner conductor

by the mutual inductances shown in Figure 6b, resulting in a zero

net difference between the two signals.

The second test is sho~n in Figure 9. Once again this was

another attempt to generate a signal in the outer conductor by

directly applying a signal between the outer conductor and

seawater ground. The outer conductor was exposed at the center

point and connected at one end to the center conductor of a 15 m

length of coax, and the other end to the signal generator. The

metal cylinder forms a connection to the seawater ground. When a

5 volt signal was applied to the cable, no signal was detected at

the repeaters. Once. again the effect of the mutual inductances

mentioned above resulted in zero net signal at the repeaters.
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I~ 2,88
~Iil

.e To To~
Repeater Repeater

1~ 2,44 2.44 ~il il

To Signal Generator
via -15 il of coax cable

Figure 8 Experimental setup for the "dipole antenna"
configuration

~
To RepeaterTo Repeater

Metal Cylinder
OD=50 mm
Length= 150 mm

To signal generator

Figure 9 Experimental setup for directly driving the outer
conductor
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A fin~l test was done in the lab to determine if magnetic

induction from a nearby conductor could be used to generate a

detectable signal at the repeaters. Figure 10 shows the details

of this test. It involved two setups. The first (Figure lOa)

established the relationship between the signal induced in a

simple loop of insulated wire from a nearby .loop connected to a

generator. When the loops were essentially touching but not in

electrical contact, the induced signal in the right-hand loop

(see Figure lOa) was about 25% of the signal applied to the left-

hand loop. In the second setup (Figure lOb) the right-hand loop

was replaced by a loop made up of 75 ohm coaxial cable terminated

at one end with a 75 ohm resistor and connected to a scope having

an input impedance of 75 ohms. Even at closest approach there was

no detectable signal.

SIGNAL

GENERTOR SCOPE

Square Loops 7.5 em x 7.5 em

Figure lOa Signal induced in a
simple loop

"""" """'. ¡~:. Oith Zo)

I SIGNAL L. SCOPEGENERATOR IL/
Squar Lop 7.5 em x 7.5 em

Figure lOb Loop test with
coaxial conductor
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In this case the skin depth effect would prevent the

magnetic field from the driven loop from penetrating the coax,

i. e., it would remain entirely outside the outer conductor. The

presence of the outer conductor would distort the magnetic field

produced by the driven loop so that it passed around the loop

(one side or the other). Thus identical voltages were induced in
both the inner and outer conductors with no .net signal at the
detector.

3.3 Conclusions

The conclusions drawn from these results is that the only

way to obtain any signal at the repeaters is to generate (or

induce) a signal in either the inner or the outer conductor but

not both. This fact effectively rules out the non-invasive

inductive technique for gaining access to submarine cable

bandwidths~ Since the inductive method requires an encircling

magnetic field, which by definition produces an identical signal

in both inner and outer conductors, it cannot generate a

differential input. Ironically, if skin depth did truly shield

the inner conductor from the induced field, the technique would

work as was originally predicted.

4.0 BANDWIDTH UTILIZATION
This section presents an analysis of the optimal methods for

using submarine telephone cables for ocean data telemetry. In

this analysis it has been assumed that the telephone cable will

be used to transmit data from a variety of different sensors or

sources. Some sources may generate data on a continuous basis,

while others may generate and transmit data intermittently,

pe~haps, when polled via commands from shore. An important task

is to design a bandwidth allocation method in conjunction with a

bandwidth efficient modulation method that accommodates such

diverse types of data sources. Below, we consider multiple

access methods and modulation and coding methods based on a given

22



set of syst~m design objectives. These results are applicable to

the cable system analyzed regardless of the methods used to gain

access to the cable.

4.1 System Parameters for the SF Submarine Cable System
The characteristics of the SF submarine cable system are

described in the Bell System Technical Journal, May-June 1970.

(The analysis presented here is for the SF system; a similar
analysis for the SD system is feasible, but has been postponed

due to funding restraints). In brief, the cable bandwidth is

subdivided into two frequency bands, the low band, which covers

the range of 564 kHz to 2788 kHz, and the high band, which covers

the range of 3660 kHz to 5884 kHz. Hence, each band has a

bandwidth of about 2.22 MHz. The low band is used for

transmitting signals in one direction, and the high band is used

to transmit signals in the other direction. Each band is

comprised of about 7203kHz telephone channels.
Repeaters are used at 10 nm intervals to boost the signal

level. The output power from each repeater is 20 dBm. The cable

has a loss of approximately 4dB/nm at a nominal frequency of 6

MHz. The noise figure F for each repeater is a little less than

8 dB, i. e., F ~ 8 dB. The cable also includes equalizers at
spacing intervals of about 190 nm to correct for channel (linear)

distortion.
To illustrate the value of the signal-to-noise ratio at the

repeaters, let PT denote the transmitted power level and let No =

kTo be the power spectral density of the thermal noise corrupting

the signal, where k is Boltzmann's constant (1.37 x 10~ joules/

degree) and To is room temperature (290° K). Hence, No = 4 x 10-21

watts/Hz and the noise power in a bandwidth BN is PN = N~N' For
example, if BN = 2.22 MHz, then PN = 8.88 x 10-IS watts. If the
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signal .is transmitted at a power level of 20 dBm, then PT =0.1

watts and

101ogio (~:) = 10log 10-1
8. 88xl 0-15

= 130.5 dB

For a cable transmission loss of 4 dB/nm, the loss of a

single hop is 40 dB and the noise figure of the repeater after
the first hop is 8 dB. Therefore, the received SNR at the first

repeater is

( s) = ( PT) - LdB - F dBN 1 PN dB
= 130.5 - 40 - 8 = 82.5 dB

where LdB is the single hop loss of the cable and FdB is the noise

figure of the repeater. If we have a cable length of 4,000 nm

and, hence, 4-00 repeaters, the SNR at the receiver is

(approximately) the SNR at the first repeater minus the
additional noise power introduced by the 400 repeaters in the

channel. Hence, the SNR at the receiver is (approximately)

(~)R = (~t - 1010g 400
= 82.5 - 26 = 56.5 dB

This is the received SNR for a signal that is transmitted at

a power level of 20 dBm and occupies a bandw~,dth of 2.22 MHz. It

is sufficiently high to support high level modulation methods.
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4.2 Objectives of the System Design

As a design specification, we postulate having between 8 and

16 data sources (modems) coupled to the cable in each direction.

We also anticipate a maximum bit rate (uncoded) of 400 kbps

generated by sensors located in the vicinity of each modem. For

example, we may have 6 high data rate sources, each generating

data at a rate of 60 kbps. In addition, we may have about 20 low

data rate sources, each generating data at a rate of 1200 bps.

Hence, these sources will generate a total bit rate of 384 kbps.

Therefore, a nominal bit rate of 400 kpbs is a reasonable

benchmark. with 8 modems, the total bit rate is 3.2 Mbps, while

wi th 16 modems, the total bit rate becomes 6.4 Mbps. Conse-

quently, the bit rate-to-bandwidth ratio will range from 1.5

bits/Hz to 3 bits/Hz for an uncoded system. These bit rates can

be achieved with the use of phase coherent modulation techniques,

such as phase-shift keying (PSK), amplitude-shift keying (ASK),

or quadrature amplitude-shift keying (QASK or QAM).

An extremely important factor in the design of the modem is

the amount of power required to transmit the signal. Since the

modem is presumed to be battery powered, we have assumed that the

power of the signal transmitted by the modem is to be minimized.

A power level of one watt per modem appears to be a practical

limit assuming about 5% efficiency in the transfer of power to

the transmission line. This power constraint influences our

choice of a multiple access scheme as well as the choice of

modulation and coding techniques.

4.3 Multiple-Access Methods

We considered three methods for allocating the available

bandwidth to the various users. One is frequency division

multiple access (FDMA) in which a part (or all) of the available

cable bandwidth is subdivided into distinct frequency channels

and each data source is assigned a frequency band. FDMA is

particularly suitable as an access method if the data sources
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generate and transmit data continuously. However, FDMA is not a

suitable access method when there are many data sources that are

low duty cycle, i. e., they transmit intermittently. Another

major limitation in FDMA is the loss in transmitter power

inherent in transmitting multiple signals that have a large

peak-to-average power.

Time-division multiple access (TDMA) is one alternative to

FDMA. In TDMA each data source is assigned a time slot for

transmi tting the data; data are usually transmitted in packets.

A TDMA protocol must be designed for assigning time slots to the

various sources. A command channel that is monitored by all

sources may be employed for time-slot assignment.

Code division multiple access (CDMA) is another potential

mul tiple access method. In CDMA each data source is assigned its

own signature signal, usually called a pseudo-noise (PN) code

sequence. All data sources share a common wide bandwidth, and

their transmissions are distinguished from one another at the

recei ver by means of cross-correlation by the respective PN code

sequences. Hence, the various sources may transmit data via CDMA

over the common allocated bandwidth either when polled or when an

event triggers the collection and transmission of data. CDMA

more easily accommodates the introduction of additional data

sources into the system and requires a relatively simple protocol

for channel access.

A major problem with CDMA is the need to maintain power

control of all the users sharing the common bandwidth. Since the

signals of other users appear as additive noise in the

demodulation of a desired signal, the noise level increases

significantly when one or more users transmit at a higher power

level than the desired signal. Consequently it is important to

maintain relatively tight control of power levels for the users

of the common channel bandwidth. Usually power control involves

monitoring the transmitter power levels of each user at the

receiver and signaling back to the user if its power level is to
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be increaseg or 
decreased. Such information can flow along a

common command channel that is monitored by all users.

Of the three access methods that we considered, FOMA appears

to have a distinct disadvantage. This is due to the need to back

off or reduce the gain in the transmitter power amplifier in

order to accommodate the large peak-to-average values of the

composite signal from all users. Therefore, the choice of access

method reduces to either TOMA or COMA.

If we wish to accommodate many high data rate users

transmitting at 60 kbps via COMA, we should allocate the entire

2.22 MHz bandwidth as the common bandwidth for all users

transmitting in one direction. This bandwidth allocation is

necessary to provide sufficient processing gain (ratio of channel

bandwidth to information signal bandwidth) to the high data rate

users. It makes no sense to subdivide the 2.22 MHz bandwidth

among the 8 to 16 modems connected to the cable. This means that

all modems that transmit in the same direction will share the

common wide bandwidth. The problem of power control at the

modems now becomes serious because some modems are closer to the

receiver than other modems. This is usually called the near-far

problem in a COMA system. Therefore, the receiver must now

exercise power control not only among users sharing a single

modem, but also among all users that transmit data in the same

direction. The near-far problem will definitely require precise

power control of the transmissions from all users in a COMA

system. Although the problem of power control presents a serious
difficulty in the design of a COMA system, we feel that an

adequate power control algorithm can be designed and implemented.

As the al ternati ve, the implementation of a TOMA system

appears to pose fewer problems. Specifically, the modems

attached to the cable can be designed to transmit in non-

overlapping frequency bands. For example, if we wish to design a

system that employs 10 modems for transmitting data in each

direction, the 2.22 MHz can be subdivided into 10 non-overlapping

frequency bands, each of which is about 220 kHz wide. Then, a
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common modulation and coding method can be designed for all the

modems, each of which will provide a throughput of about 400 kbps

(uncoded), and a somewhat higher throughput for coded data. Thus,

all users being served by a single modem will be assigned time-

slots for their transmissions. A common command channel that is

moni tored by all data sources would be used for time-slot

assignment.
In considering the choice between TOMA and COMA, we have

decided in favor of a TOMA system. Its implementation poses

fewer problems than COMA, which has the distinct problem with

power control over all the users.

4.4 Modulation and Coding

In this section we consider the design of modulation and

coding that will be used in conjunction with TOMA to achieve the
,overall design objectives specified in section 4.2.

First, we determine the bandwidth requirements and then we

will specify the type of modulation. We assume that the lowpass

equivalent transmitted signal has the form (1)
co

v( t):: :E angT( t-nT)
n::-co

where gT(t) is a basic pulse that is bandlimited to W Hz, lIT is

the symbol rate, and tanÌ is a sequence of complex-valued signal

points selected from a two-dimensional (PSK or QAM) signal

constellation. Figure 11 illustrates M = 8 PSK and M = 8 QAM

signal constellations. The number of bits per transmitted symbol

is defined as k = logi M.

The average power spectral density of the lowpass equivalent

transmitted signal is (2)
02

Sv(f) ::~ IGT(f) 12
T
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(3)

M=8 PSK

M=8

(b)

M=8 QAM

Figure 11 M=8 PSK and QAM signal constellations

where GT(f) is the Fourier transform of gT(t) and a~ is the

variance of the information symbols tam' m = 1,2,..., Mì. We

select gT(t) to be a pulse having a raised cosine spectrum with a

roll-off parameter a, as shown in Figure 12. Then, the channel

bandwidth required to transmit such a signal is (1 +a) fT. But

T = k/Rb, where Rb is the desired bit rate of the modern. (Recall

that the nominal bit rate of 400 kbps was specified in section
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4.2.) . Then, the channel bandwidth required to transmit the
(uncoded) signal is

B = 1+a: = Rb(l+a:)e T k _(uncoded) (3)

If additional redundancy is introduced via error correcting

coding, the required channel bandwidth is increased by the factor

1/ Re, where Re is the code rate. Hence,

Rb(l+a:)
Be =

kRe
(coded) (4)

Gr(J)

a= 0

I a = 0.5

i

T
i

- 2T
o i

2T
i

T

f

(b)

Figure 12 Raised-cosine spectra
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The aV~ilable bandwidth for each modem in a TDMA system is

simply the total channel bandwidth for transmitting in one

direction divided by the number of modems, i. e. ,

2.22xl06
Ba =

Nm
(5 )

where Nm is the number of modems. Clearly, we must have Be -c Ba.
Therefore,

Rb (1 +a) S 2 . 22xl 06
kRc Nm (6 )

or , equivalently,

R~m(l+a)
k = log2 M ~

2. 22x106 Rc
(7 )

Example:
Determine the size M of the signal constellation when

Rb = 400 kbps, Nm = 10, a = 0.30, Re =1/2.

Solution:
From these parameters, we use (7) to obtain the value of k.

Thus, we obtain k ~ 4.'7. Since k = logz M must be an integer, we

select k = 5 and, hence, M = 32.

The choice of the type of modulation is an important issue.

If k = 2, the best choice for a two-dimensional constellation is

M = 4 PSK. If k ~ 3, we select a signal constellation from the

class of QAM signal constellations, which require less average

transmitter power compared with PSK signal constellations. For

example, the M = 8 QAMsignal constellation shown in Figure 11

provides a 1.43 dB power advantage compared with M = 8 PSK. The

M = 16, 32, and 64 rectangular signal constellations shown in

Figure 13 yield gains of 4.14 dB, 7.01 dB and 9.95 dB,
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respectively, relative to PSK signal constellations of the same

size (see Proakis (2 J, Chapter 4).
A gain of 3 dB to 4 dB in power savings can be easily

achieved by the use of trellis-coded modulation at the modem and

vi terbi detection at the receiving terminal. This is a
significant performance gain which allows us to reduce the power

consumption and thus to increase battery life at the modem.

Consequently, we propose to use trellis-coded QAM modulation in

all modems. An Ungerboeck-type trellis code of rate k/ (k + 1) is

recommended (see Proakis (2 J, Chapter 5 and Ungerboeck (3 J, ( 4 J ) .
The modulator and demodulator are illustrated in block

diagram form in Figures 14 and 15 , respectively. We note that

the modulated signal is digitally synthesized at the modem and

digitally demodulated at the receiver.
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The signal-to-noise ratio (SNR) required to achieve a given

level of performance can now be determined. As a reference point,

we may use binary (k = 1) PSK at an error probability of 10~,

which requires a received SNR

( J 10.8da/bit~ dB ;
(8 )

Then, eb
No

; PRTb ;

No

Pay
RbNo

;12 ( 9)

or , equivalently,
PR ; 12R¡Jo (10)

where No = 4 x 10-21 watts / Hz. Therefore, with Rb = 400 kbps, we

'find that PR = 1.92 x 10-14. Hence,

101ogioPR = - 107.2 dBm. ( 11)

If we employ a QAM signal constellation with M = 2k signal

points, every additional bit per symbol (increase of k by one)

requires an additional power of 3 dB. On the other hand, .the use
of trellis code reduces the power requirements by Gc dB. -Finally,

if we employ error-correcting coding, we may achieve a further

reduction in transmitter power by the coding gain Cg dB.

Therefore, the average transmitted power is

1010gPR ; 10log (12R¡Jo) + 3k - Gc - Cg (12)

Typical coding gains that can be achieved by rate Rc = 1/2

convolutional codes range from 4 dB to 8 dB. For example, a rate

1/2, constraint length K=7 convolutional code with hard-decision
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Figure 14 Block diagram of modulator for generating trellis-
coded modulation signals
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Figure 15 Block diagram of demodulator for trellis-coded
modulation signals
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viterbi decoding yields a gain of 4 dB relative to uncoded

modulation (see Proakis (2 J, Chapter 5).
As indicated in sèction 2, the transmitted power level is

greater than the received power level by an amount equal to the sum

of the single hop transmission loss LdB and the cumulative noise

figure from the chain of repeaters. Therefore,

1010gPT = 10logPR + LdB + NpF (13)
= 10logPR + LdB + F dB + 1010gNp

where Np is the number of repeaters. If we combine (12) with

(13), we obtain

1010gPT = 1010g(12R¡,o) + 3k - Gc - Cg + LdB + FdB + 1010gNp (14 )

Example:
Determine the transmitted

4 x 10-21, k = 5 G = 4 dB, c ,
Np = 400

Solution:
If we substitute the values of the parameters into (14), we

power when Rb = 400 kbps, No =

Cg = 4 dB, LdB = 40 dB, FdB = 8 dB,

find that the transmitted power is

1010gPT = - 107.2 + 15 - 4 - 4 + 40 + 8 + 26

= - 26. 2 dBm

Hence, the average transmitted power is extremely small.

In conclusion, (14) may be used to determine the average

transmitted power at the modem. The value of k and, hence, the

signal constellation size M is determined from (7).

5.0 CONCLUSIONS AND RECOMMENDATIONS

The conclusions of the feasibility study are:

1. Non-invasive inductive coupling is not feasible on a

submarine cable of coaxial construction where the repeaters amplify

the signal difference betweeen the inner and outer conductors.
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2. In order to successfully propagate signals in the cable, a

differential signal between the inner and outer conductors must be

generated. This could be done by connecting the signal source in
series with the outer conductor. To do this in situ would mean

designing a device to cut around and through the outer jacket and

the outer conductor. The two ends of the outer conductor would

then be connected in series to a signal source. The cutting

operation would have to be done carefully so that the insulation

around the inner conductor could withstand the high DC voltage

(typically as much as 4, 000 V) on the inner conductor. This
cutting/connection device would have to be designed so that it

first clamped onto the cable and formed a leak proof seal.

Ideally, it would support the cable to compensate for any weakening

due to the cutting operation. Inductive techniques could be used

eff iciently in this process once the inner and outer conductors

were separated so that a magnetic field could be devised that would

encircle only one of the conductors. Whether this provides any

advantage over a hard-wired connection depends on the design of the

cutting operation.

3. Low power transmitters could be used to generate signals"

of sufficient SNR to be transmitted successfully across the ocean.

Data throughput rates of 6xl06 bps in each direction are feasible,

using of the order of one watt per signal source.

4. A large number of data sources could be accommodated on a

typical SF type cable using TDMA techniques in conjunction with

trellis-coded QAM modulation. These techniques make optimal use of

the available bandwidth, power, and other system constraints.

Minimum system complexity and power is required at each data

source, with the sophisticated processing done on shore. This

model would accommodate both a number of continuous high data rate

instruments such as ocean bottom seismometers, as well as many low

data rate devices. Provision is made for two-way communication

where low bit rates are available from shore to each remote modem

on a single command channel shared by all modems.
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Based. on these conclusions, the following recommendations are

made.
i. Techniques for in situ connection between ocean instru-

mentation and submarine cables should be investigated. Those

techniques that minimize the possibility of cable damage and that

can be performed without lifting the cable to the surface should be

given first priority. Installation techniques using ROVs should be

investigated.
2. If the in situ connection problem can be solved

economically, continued investigation of methods to acoustically

and inductively interface sensors to transmitters should be

performed.
3. If the re-use of submarine cables proceeds, a system

architecture based on the conclusions of this report should be

developed to take full advantage of the cable bandwidth.
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7.0 APPENDIX

Date: November 3, 1992

To: Submarine Cable Project File

From: Dan Frye

Subj ect: Design Review Summary

A design review for the submarine cable project was held on 9
October 1992. Participants included Neil Brown, Dan Frye, Tom
Austin, Ned Forrester, Sandy Williams, Steve Merriam, Al Bradley,
Dick Koehler, and David Herold. The meeting was held from 10 a.m.
to approximately 12: 30.

To start the meeting I briefly outlined the purpose of the
project and the purpose of the design review. Neil then described
the analytical model he developed, the results it predicted and
where he thought it was deficient. Neil then described the various
experiments performed to first confirm the model (negative results)
and then try and determine what the right physics are.

Questions were raised on a number of issues concerning the
experimental set up, whether the tests were performed with and
without inductive coupling (yes), how the measurements were made,
etc.

A general discussion then ensued. The "skin effect" was
discussed without complete agreement. While it was generally
agreed that the skin effect did not shield the inner conductor,
various arguments seemed to assume that skin effect was important.
The results of these discussions were that Neil's experiments did
conclusi vely show that inductive coupling would not work with a
submerged coaxial cable. I tried to get a consensiis on whether it
made any difference if the cable were not submerged, but could not
get a clear "no". I also tried to get a consensus on the statement
that it is possible to induce a signal on the inner conductor -
just not a differential signal between the inner and outer
conductor, but no one felt that this question was posed with
sufficient detail to answer.

We next discussed what we knew about the results of similar
experiments at the University of Hawaii and concluded that these
experiments ultimately corroborated ours.

Several suggestions were made to discuss the basic issue with
MIT professors who had a profound understanding of the physics.
Ned Forrester agreed to make some inquiries.
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The discussion then turned to how it would be possible to use
submarine cables for ocean data telemetry . Capacitive coupling was
discussed and rej ected. Microphonic coupling was suggested and
rejected. Finally various techniques to cut through the outer
insulating layer were discussed. Neil presented his idea to cut
the outer jacket in two places and insert a signal generator in
series between the two cuts 0 This approach was considered as
reasonable as any since it did not require breaching the inner
conductor and its 4000 V level nor did it require complete water
sealing, since the outer shield is assumed to have some contact
with the seawater. Various problems such as shield corrosion and
loss of electrical contact between the two cuts were discussed with
the conclusion that any loss of continuity in the outer shield
could have disastrous consequences in the cable's ability to
transfer data.

The overall conclusions of the design review were:

1. Neil's conclusion about why the model failed to predict
the behavior of the in-water test is correct.

2. There is no way to use inductive coupling to gain access to
the existing submarine cable bandwidth without an electrical
connection to the inner or outer conductor.

3. In situ operations to develop and seal a direct electrical
connection to the outer conductor are possible, but will require
extensive development and testing of the tools and procedures
needed for reliable operation.

4. There may be individuals at MIT (or elsewhere) who could
provide more insight into the problem.

DEF /wwl
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