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ABSTRCT

The ultimate goal of this study is to relate the hydrodynamics of shallow tidal

embayments to patterns of natural evolution and morphologic equilbrium. The specific

problems addressed in this thesis are largely motivated by two mechanisms previously

identified as major controls on net sediment trnsport in shallow tidal systems: temporal

and spatial asymmetries in maximum bottom shear stress (1). In the process of
investigating these mechanisms, important aspects of basic mass and momentum balances

in these systems are also revealed.

A new perturbation scheme is applied to nonlinear propagation in shallow

embayments which identifies and quantifies the mechanisms ultimately responsible for

temporal asymmetres in 1. This new scheme, which employs a perturbation in time (but

not space) is simpler than previous methods, is consistent with available observations, and

maintains the fundamental features of "exact" numerical solutions. This approach allows

the major geometrc properties controllng tidal asymmetr to be combined into a single

non-dimensional parameter, Yo Solutions for overtides which determine asymmetry are

compact and easily interpreted. For i''' 0, time-varying depth plays a larger role in
determining asymmetr than time-varing width, and the rising tide is of shorter duration.

For j'C: 0, time varing width plays a larger role, and the fallng tide is of shorter duration.

Morphologic implications of the spatial distrbutions of 1 are also investigated.

Observations of cross-sectional area along many tidal channels are observed to be
consistent with equilibrium models based on a uniform distribution of 1. The critical

stress just capable of initiating sediment motion is found to provide a lower bound on 1,

and the characteristic value of 1 appropriate to individual systems is found to be a function

of spring tidal range. Small along-channel deviations away from uniform 1 are associated

with along-channel variation in the direction of maximum discharge. Uniform 1 is then

\
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used to derive equilbrium hypsometries (the distrbution of basin area as a function of

elevation) for intenidal flats. Domination of 1 by either tidal currents or wind waves is

found to favor convex or concave hypsometres, respectively, a trend which is consistent

with empirical observations. In addition to uniform 1, the effect of s.horeline curvature on

equilbrium hypsometr is also found to be imponat.
The investigation of mechanisms which control embayment evolution also reveals

importnt aspects of basic hydrodynamic balances in shallow tidà embayments. A scaling

relevant to prismatic channels having strong tidal asymmetries indicates friction often

dominates acceleration in the momentum equation. The resulting balance between
pressure gradient and friction gives a single time-varng diffusion equation for tidal
elevation which only permits tidal amplitude to decay along channeL. This result, which is

consistent with observations and numerical solutions, diverges from classical co-
oscilation. Classical co-oscilation with (weak) friction suggests amplitude should

oscilate through nodes and anti-nodes due to the interaction of incident and reflected
waves.

Uniform 1 is used to justify a new scaling of the continuity equation for
exponentially-shaped channels. In tidal channels having a nearly uniform distrbution of 1

(such as the Delaware, Thames and Tamar), along-channel grdients in velocity are small
and discharge gradients in the continuity equation are dominated by gradients in cross-

sectional area. With this scaling, the resulting governing equation is a first-order wave

equation. The solution is a constant amplitude, forward propagating waveform which is

independent of channel length -- in contrast to the length sensitive resonance of classical

co-oscilation. Amplitude can grow or decay if higher order effects are taken into account,

but these effects are due to varations in the rate of channel convergence rather than
interactions between incident and reflected waves.
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Chapter 1:

Introduction
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More than half of the world's non-arctic coastlines are either macrotidal (range ,.

4 m) or mesotidal (range 2-4 m) (Davies 1980). Tides can be expected to play a
significant role in determning morphology along these coastlines, especially where the

coast is embayed by estuares or frnged by barer islands (Hayes 1979). Tides can also
playa major role in determining morphology in microtidal regions (range c: 2 m) that are

sheltered from wave activity, such as the Chesapeake Bay and its trbutares (Wright et al.

1987). The range of scales of interest to this thesis is broad, from the short, channelized

embayments which are especially common along the east coast of the United States, to

large tidal channels, such as the Delaware or Thames, having lengths of a hundred
kilometers or more. Within these environments tidal channels and flats may occur
together, as along the Ord River in Western Austria (Wright et al. 1973) and in the back

barrer lagoon at Wachapreague Inlet, Virginia (Boon and Byre 1981). Large tidal
channels, such as the Delaware Estuar (Parker 1984), are also found without extensive

intertidal flats, and large flats can occur without extensive channel networks, such as those .

bordering the southwestern coast of Korea (Alexander et aL. 1991).

This thesis examines the hydrodynamics and morphodynamics of these tidal
environments with the ultimate goal of relating physically-based mechanisms to patterns of

natural evolution and morphologic equilbrium. Of particular interest are feedback
processes where embayment geometr determines flow patterns, and energetic flows

simultaneously constrain geometr. Descriptive reviews of shallow tidal systems (e.g.,

Hayes 1979; Klein 1985; Nichols and Biggs 1985) have identified morphologies which

are correlated to specific forcings, but these studies are limited by their qualitative
approach. At the same time, deterministic modeling from first principles (e.g., Yalin

1977; Mehta 1984) is hampered in natural tidal environments by broad spectra of length

and time scales and by fundamental uncertnties concerning long-term mechanisms of net

sediment trnsport. This thesis attempts to tread a useful middle ground via the application

of simplified, yet quantitative, analytic models.

The specific problems addressed in this study are largely motivated by two
mechanisms previously !dentified as major controls on net sediment transport in shallow

tidal systems: temporal and spatial asymmetres in maximum bottom shear stress (1).

Controls on temporal asymmetries in 1 are addressed through a simplified, yet
quantitative, hydrodynamic investigation. Implications of spatial asymmetres in 1 are

investigated through stability cnteria based on a uniform spatial distrbution of 1 at

-L___
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equilbrium. in the process of investigating asymmetres in 1, important aspects of basic

mass and momentum balances in these systems ar also revealed.

Analytic approaches to tidal problems can be of limited value if results are not

compared to available observauons. Without the constraint of observations, analytic
formulations may be porly scaled or may emphasize proesses which ar not important in

real tidal systems. In preparng this thesis, the literature was ,reviewed for relevant

observations (see Tables in Chapters 2 to 4, for example). The result is not only
reassurance that theoretical predictions bear resemblance to actual conditions, but also a

compilation of valuable morphologic and tidal information for a range of geometrcally

vared embayments.

1.1. Hydrodynamic controls on temporal asymmetres in 1

The hydrodynamic investigations in this thesis are largely inspired by continued

interest in geometrc controls on temporal tidal asymmetres. During the last two decades

numerous studies have related temporal asymmetres in tidally-induced bottom shear stress

to patterns of net sediment transport along channelized tidal embayments (e.g., Wright et

aL. 1975; Allen et aL. 1980; Boon and Byrne 1981; Aubrey 1986; Dronkers 1986).
Recently, temporal tidal asymmetres have been related successfully to specific embayment

geometres through the use of diagnostic one-dimensional numerical models. By
modeling specific embayment geometres, Speer and Aubrey (1985) and Friecichs and

Aubrey (1988) showed floo dominance to be associated with large fluctuations in channel

depth during the tidal cycle and ebb dominance to be associated with large fluctuations in

embayment width. As a conseque.nce, systems characterized by large depth fluctuations

may tend to fill more quickly with sedment, whereas systems characterized by large width

fluctuations may represent more stable morphologies.

However the study of temporal asymmetres in shallow channelized tidal

embayments stil lacked a straightforward analytcal derivation. Analytic methods, where

tractable, have the potential to relate a process to its range of consequences in the most

concise manner possible, condensing a wide range of forcings and outcomes into a single

expression. But analytic methods are only useful if they both clarify the process of
interest and simultaneously retain the most importt physics. A theoretical approach can

easily retain so many terms that all feeling for the underlying processes is lost. For
example, previous analytic studies of tidal asymmetres (e.g., Kreiss 1957; Shetye and

-
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Gouveia 1992) have employed formal pertrbation tehniques which result in many terms

contrbuting to each ovenide and render physical interpretation difficult.

In Chapter 2 of this thesis (and also in Chapter 4) a simpler perturbation scheme is

applied to tidal propagation in shallow embayments. This less formal pertrbation in time

(but not space) is asymptotically correct for embayments much shorter in length than the
tidal wave and maintans the fundamenta features of "exact" nunierical solutions in longer

systems as well. This approach allows all the major geometrc featues controllng tidal
asymmetr to be combined into a single parmeter, Yo The solutions for the overrdes

which determne tidal asymmetr are scaled by r. ar compact, and are easily interpreted.

For r" 0, time-varing depth plays a larger role in determning asymmetr than time-
varying width and the rising tide is of shorter duration. For r c( 0, time-varing width is

more importt and the fallng tide is of shoner duration.

1.2. Morphologic ramifications of spatial asymmetres in 1

The morphologic investigations in this thesis are largely motivated by long-

standing models of morphologic equilbrium and net sedment transport in shallow tidal

systems based on the spatial distrbution of bottom shear stress (1). Emphasis on spatial

asymmetres in1 actually predates the discussion of temporal asymmetres in the literature.

For tidal inlets, Bruun and Gerrtsen (1960) and Bruun (1967) developed an equilibrium

criterion based on an empircal stabilty shear stress, 1s. They argued that wherever 1 c( 1s,

cross-sectional area wil be reduced by deposition, and a constrction of flow wil then
increase 1 back toward 1s. Wherever 1 ,. 'fs, cross-sectional area wil be increased by

erosion, and an expansion of flow wil decrease 1 back toward 1s. The often cited "scour

lag" and "settling lag" effects espoused by Postma (1961; 1967) are also mechanisms by

which sediment moves from areas of high 'f towar areas of low 1. Equilbrium criteria

for tidal channels based on a uniform dissipation of energy (Myrck and Leopold 1963;

Wright et al. 1973) can also be re-expressed in terms of a uniform shear stress modeL.

The study of morphologic change and equilbrium based on the spatial distrbution

of shear stress is a simplification of more a physically grounded but complicated approach

based on divergence of sediment flux. Since common formulations for erosion,
deposition and net transport are generally expressed as functions of 1, often in the form of

power relations (e.g., Dyer 1986), the spatial distrbution of 1 isa useful staring point
before attempting to estimate sediment transport directly using more uncertain predictions.

. i-"___
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Bottom sheæ- stress can be derived from hydrodynamic relations with a grater degre of

confidence.

In Chapter 3 of this thesis, equilbrium models based on uniform 'f are tested by
examining spring tidal discharge and cross-sectional geometr from 146 sections in 18

separate tidal systems. Until now, no systematic survey of existing data on the spatial

distrbution of 'f had .been performed. In Chapter 3, the distrbution of 1 within individual

systems is found to be statistically consistent with uniform 'f. The crtical shear strss just

capable of initiating sediment motion is found to provide a lower bound on 'f, and the

characteristic value of 1 appropriate to individual systems is found to be a function of

spring tidal range. Small along-channel deviations away frm uniform 1 are associated
with along-channel variation in the direction of maximum discharge, suggesting a
feedback mechanism between temporal and spatial asymmetres in 1: It is hypothesized

that convergence in the direction of maximum shear stress (due to temporal asymmetres)

causes deposition, a reduction in cross-sectional ara, and an increase in velocity. Area is

reduced and velocity is increased until a locally increased magnitude of 1 is reached which

effectively disperses the sediment once more (via spatial asymmetres).

An analogous study of intertidal. flat morphology in Chapter 5 is inspired by
success in examining the spatial distrbution of 1 along tidal channels. The application of

uniform 1 concepts to intertdal flats is further motivated by recent empirical observations

of tidal flat morphology (e.g., Dieckmann et al. 1987; Kirby 1992) which have associated

characteristic hypsometrc forms (the distrbution of basin area as a function of elevation)

. with different types of hydrodynamic forcing. Hypsometrc analysis has the advantage of

representing broad aspects of tidal flat morphology in a concise and quantitative manner.

Chapter 5 applies uniform 1 to derive equilibrium hypsometres for flats exposed either to

tidal currents or to wind waves. Domination of 1 by tidal currents is found to favor

convex hypsometres, and domination of 1 by wind waves is found to favor concavity,

each in a manner consistent with empircal observations. In addition to the role played by

uniform 1, the effect of shoreline curvature on equilbrium hypsometry is found to be

important.

1.3. Basic momentum and mass balances

Although originally motivated by the mechanisms which control temporal
asymmetres in 1, the hydrodynamic investigation in Chapter 2 also iluminates important

aspects of b.asic force balances in shallow tidal channèls. A scaling of the governing

.1
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equations for prismatic channels which are characterized by strong tidal asymmetries
indicates the frction term in the momentum equation often domiates acceleration at lowest

order. Application of "zero-inertia" to short prismatic channels results in a single time-

varing diffusion equation which clarifies the most basic dynamics, namely a balance

between pressure gradient and friction. The balances applied in Chapter 2 build on the
work of LeBlond (1978), who utilzed zero-inera in prismatic ~hannels of infinite length.

Investigation of spatial asymmetres in 'r in Chapter 3 indicates a nearly uniform

distrbution of 1 is found along many tidal channels and suggests a new scaling of the
continuity equation for channels near morphologic equilbrium. This is the primary
motivation for the hydrodynamic investigation in Chapter 4 of this thesis. In tidal

channels having a nearly uniform distrbution of 1, along-channel grdients in velocity are

small and discharge gradients in continuity are often dominated by gradients in cross-

sectional area. In Chapter 4 it is also shown that the above scaling of continuity

guarantees a zero-inertia balance in momentum. The result is a first-order wave equation

with solutions which are simpler and more"easily interpreted than previous solutions for

tides in convergent channels with frction.

Previous analytic solutions for the dominant tidal frequency in shallow channels

have generally emphasized similarities between solutions with friction and classic
frictionless solutions. In textbooks, for example, the governing equation with (weak)

friction is typically assumed to be a damped second-order wave equation and the solution

is described by nodes and anti-nodes resulting from the interaction of incident and
reflected waves (e.g., Ippen 1966; Officer 1976). In Chapters 2 and 4 of this thesis the

governing equations and solutions derived for tides in shallow embayments diverge
markedly from these classical solutions.

In Chapter 2, the time-varing diffusion equation only permits tidal amplitude to

decay along-channeL. Thus nodes and anti-nodes cannot occur. In Chapter 4, the first-

order wave equation results in a constant amplitude waveform which can only propagate

forward and is independent of channel length -- in contrast to the length-sensitive

resonance of classical co-oscilation. Amplitude can grow or decay along channel if the

effects of acceleration and velocity grdients are taken into account at higher order, but the

resulting along-channel variations in tidal amplitude are due to variations in the rate of

channel convergence rather than interactions between incident and reflected waves. The

slight attention previously paid to tides in shallow convergent channels may be due in par

L
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to the complex nature of the few solutions (Hunt 1964; Jay 1991) which have previously

emphasized their unique charcter.

1.4. Future work

This thesis is motivated in large part by the roles of temporal and spatial
asymetres in 1 in determining equilbrium forms and patterns of net sediment trsport.
This thesis succeeds in quantifying the mechanisms responsible for tempora asymmetres

and in deriving forms which will result if spatial asymetres are miimized. Prliminar

feedback mechanisms b.etween these two processes are also identified for 'some

equilbrium tidal channels. However, much work remains to be done in evaluating the

applicabilty and relative impornce of these two mechanisms and in synthesizing them in

systems where both playa role.

One promising line of researh involves a retur to diagnostic numerical modeling

in the spirt of Speer and Aubrey (1985) and Friedrchs and Aubrey (1988). Future
modeling efforts can take advantage of the equilbrium forms derived in this thesis and

examine patterns of temporal and spatial asymmetres in more realistic two-dimensional

embayments which include flow over intertidal flats and morphologic forms not easily

studied by analytic r-ethods. Some initial progress has been made in this area, including

the numerical implementation of a zero-inerta balance to solve for intertidal flows in a

realistic yet numerically stable fashion (Friedchs et aL. 1990; Friedrchs et aL. 1992).

Important questions which can be addressed via diagnostic numerical modeling

include: What are the likely patterns of temporal asymmetres in 1 in basins with
minimized spatial asymmetres in 1? If strong temporal asymmetres in 1 do exist in these

more realistic embayments, wil the temporal asymmetres cause spatial asymmetres to

develop which wil create feedback and counteract the effects of the temporal asymmetres?

If so, is this tendency tre of most realistic basin forms? Or ar there specific forms which

are likely to evolve towards equilbrium and other forms which are inherently unstable?

Preliminar work is underway to address some of these questions (Friedrchs et aL. in

prep, b).

Another issue that requires further attention is the role of wind waves in generating

patterns of bottom shear stress in tidal embayments, especially over intertidal flats. Over

many tidal flats, wind waves (rather than tidal currents) can be expected to be the major

source' of bottom shear stress. The role of wind waves in determining equilibrium flat

..



- 15 -

morphology is addressed in a simplified manner in Chapter 5, and a field study is
underway to provide some relevant observations (Friedchs et al. in prep, a). However
much work remains to be done, including the addition of waves to some degree in future

numerical moeling efforts.

Finally, additional theoretical and observational justification for the morphologic

approach employed in this thesis is desired. Morphologic cha.nge based on the spatial

distrbution of 1 assumes dispersive modes of sedment trsport ar at least as importt

as other modes which are based on systematic propertes of the velocity field (such as
tempora asymmetres due to tidal nonlinearties). Unlike tempora asymmetres, the
propertes of the velocity field which lead to dispersive sediment transport are not well

resolved -- although dispersive mechanisms which have been previously applied to the

mixing of tracers (e.g., Fischer et al. 1979) likely playa role.
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Chapter 2:

Nonlinear Diffusion of the Tidal Signal in Frictionally
Dominated Embayments

",
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Abstract to Chapter 2

The dynamics of many shallow tidal embayments may be usefully represented by a

single "zero-inertia" equation for tidal elevation which has the form of a nonlinear
diffusion equation. The zero-inerta equation clarfies the lowest order dynamcs, namely,

a balance between pressure gradient and friction. It also provides insight into the
properties of higher-order harmonic components via the identification of compact
approximate solutions and govering nondimensional parmeters.

Approximate analytic solutions which assume a constant dÌffusion coeffcient are

governed by the nondimensional parameters xlL and IlkoIlL, where L is the length of the

embayment, and IIko"-1 scales both the length of frctional dissipation and the physical

length of the diffusive waveform. As IlkollL increases, the speed at which the tidal signal

diffuses decreases and the rate of decay of tidal amplitude with distance increases. The

parameter IIkollL increases as depth is reduced, friction is increased, forcing amplitude or

frequency is increased, or total embayment width is increased relative to the width of the

channeL.

Approximate analytic solutions which assume a time-varing diffusion coeffcient

result in additional components at the zeroth, second and third haronic frequencies. The

zeroth and second harmonics are governed by the parameter r. as well as xlL and IlkollL.

The parameter ymeasures the relative importance of time varations of channel depth (r"

0) versus time variations in embayment width (yc( 0). If y" 0, the diffusion coeffcient is

larger near the crest of the tidal waveform, causing the rising tide to be of shorter duration

and mean elevation to be set up. If r c( 0, the diffusion coefficient is larger near the

, trough, causing the fallng tide to be shorter and elevation to be set down. The third
harmonic is produced by fluctuations in the diffusion coeffcient associated with times of

greatest surface grdient. The third haronic is governed only by the parameters xlL and

IIkollL, which indicates the third haronic is insensitive to time varations in cross-sectional

geometr.
Comparsons to field observations and to numerical solutions of the full equations

including inertia terms indicate that the zero-inertia equatbn (1) reproduces the results of

the more general one-dimensional equations to within the accuracy predicted by scaling

arguments and (2) reproduces the main features of the nonlinear tidal signal observed in

many shallow tidal embayments.

L
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List of symbols in Chapter 2

a amplitude of ,

A A advective accelerntion scale

Am amplitude of t;a
b tota embayment width

bo time-average of b
ho x-independent, representative value of bo

be channel width

he x-independent, representative value of be

hH SH/L
Cd drag coeffcient
Do first-order diffusion coeffcient
F frction scale
g acceleration of grvity
h cross-sectionally averaged channel depth

ho time-average of h
ho x-independent, representative value of ho

hi elevation of lower break in intertidal slope

hi elevation of upper break in intertidal slope

I inerta scale

ko first-order complex wave number

L tota length of tidal channel

LA local accelerntion scale
m signifies mth haronic component
n Manning's frction coeffcient

So time-averaged submerged surface area of embayment

SH submerged surace area of embayment at mean high water
S e submerged surace area of embayment at mean low watert ti
T tidal period
u cross-sectionally averaged velocity

U amplitude of u
x along-channel co-ordinate

a 5/(3ho)

ß.(l/a) (&J/bo)
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List of symbols in Chapter 2 (continued)

tib amplitude of tidal varation in b

d pareter governng thid haronic

e amplitude of tida varation in lanoxl1l

r pareter governing tidal asymmetr

, tida elevation

'm mth haronic in 1-domain

17m mth haronic in t-domai

8 2qi + ic2

qim phase angle of Gn

ç x-dependent porton of ,

Çm x-dependent portion of Gn

1 trsformed time varable

ø phase angle of tanh ko

il tidal frequency

- 19-
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2.1 Introduction

In _the study of open channel flow and floo routing, it has long been recognized

that the zero-inertia approximation results in a nonlinear diffusive governing equation

which advantageously can be applied to gradually varing unsteady problems (Hayami

1951; Henderson 1966; Ponce et al. 1978). Application of the zero-inertia approximation

to flood routing leads to depth and storage dependent flòod crest propagation and
dissipation, and accounts for the highly asymmetrc rise and fall typical of flood waves.

However, it was not until recently that the zero-inertia approximation was applied to the

study of nonlinear flow in tidal channels (LBlond 1978). LeBlond showed that in
shallow tidal rivers, frctional forces exceed inertial forces over most of the tidal cycle. By

dropping the inertal terms in the depth-averaged one-dimensional (I-D) momentum
equation, he formed a single nonlinear diffusion equation for tidal velocity and showed

that long time lags associated with the propagation of low water could be accounted for by

the form of the nonlinear diffusion coeffcient.

.:'
;,
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Since the important work of LeBlond (1978), many papers have investigated

nonlinearties in frictionally dominated tidal embayments using a combination of scaling

arguments, field observations, and numerical modeling (Parker 1984, 1991; Aubrey and

Speer 1985; Speer and Aubrey 1985; Friedrchs and Aubrey 1988; Westerink et al. 1989;

Münchow and Garine 1991; Friedrichs et al. 1992). However, the study of tidal
propagation in frictionally dominated embayments is stil 

lacking an analytically based

discussion of overtides which includes all four principal sources of nonlinearty: quadratic

friction, time-varying channel depth in the frction term, and time-varing channel depth

coupled with time-varing embayment width in the continuity equation. No second-order

analytic study has considered the generation of harmonics by large variations in
embayment width during the tidal cycle, which is the primar source of nonlinearity in

many tidal.embayments of interest (e.g., Boon and Byrne 1981; Friedrichs and Aubrey

1988). Through analytic methods, the present paper aims to synthesize all these nonlinear

mechanisms in a manner most easily adapted to physical interpretation.

Previous second-order, linearzed solutions to the I-D equations with friction have

been found via formal perturbation analyses (Kreiss 1957; Gallagher and Munk 1971; Li

1974; Kabbaj and LeProvost 1980; Uncles 1981; DiLorenzo 1988; Shetye and Gouveia

1992). Although rigorous perturbation expansions are important for spectral modeling of

overtides and compound tides (Kabbaj and LeProvost 1980), such techniques can make

Ii
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simple physical interpretation of analytical results difficult. When applied to the full 1-D

equations for tidal embayments, formal pertrbation analysis is algebracally intensive and
results in solutions with may terms contrbutig to each overrde.

In this study we tae a less formal approach. We make a zeroinerta assumption

along the lines of LeBlond (1978), and form a single nonlinear diffusion equation for tidal

elevation. Second-order solutions are found by approximating the nonlinear diffusion

coefficient as constant in space and expanding only the time-varing portion. This
approach conveniently combines the four primar nonlinear mechanisms into a single
time-varg coefficient. Approximate analytic'solutions for the zeroth, second, and third

harmonic components are compact and allow straightforward physical interpretation via

identification of their governing nondimensional parameters. Finally, we compare our

approximate analytic solutions to field observations and to "exact" numerical solutions

with and without the inertial terms.

In this study we examine the nonlinear properties of tidal elevation in tidal
channels closed at one end. This particular application was chosen because of its

relevance to a large volume of readily available field observations. Nonlinear tidal

velocities in similar channels can also be examined with the I-D zero-inertia equation.

This equation may also be applied to the nonlinear propertes of tidal velocity and elevation

in channels with elevations forced at either end (e.g., Wong 1989). These topics are the

subject of ongoing research.

2.1.1 The frctional dominance assumption

Through scaling arguments, field measurement and/or numerical modeling of the

individual terms in the I-D momentum equation, many authors have demonstrated the

dominance of frction over the inertal terms in well-mixed, shallow tidal embayments and

estuares. A survey of the literature (Table 2.1) indicates that in systems of interest (well-

mixed, tidal amplitude/mean depth ,,-0.1, tidal velocities -0.5 m S-l), the friction term is

typically i to 2 orders of magnitude larger than either the local or the advective acceleration

term. Furthermore, the local and advective acceleration terms are typically of opposite

sign and parially canceL. In a recent paper, Jay (1991) showed that the acceleration terms

can be entirely cancelled to lowest order by topographically generated terms in tidal

channels with exponentially convergent geometres.

~
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The last two entres in Table 2.1 serve to demonstrate the limits of the frictional

dominance assumption. In the Lower Columbia River Estuar, where salinity intrsion is

present, the ~hear stress at the bed is reduced by stratification in the water column,

parially decoupling the overlying flow from the bottom (Giese and Jay 1989). Upriver

beyond the intrusion of salinity, the tidal pressure gradient is primarly balanced by
friction (Giese and Jay 1989). In the final example (Pingree ~nd Maddock 1978), the

English Channel is simply too deep and bottom strss too small for frction to dominate

the momentum equation. Approximate quantitative bounds on the conditions under which

frction dominates inerta in well-mixed tida embayments are provided by a scalar analysis

of the 1-0 governing equations.

The cross-sectionally integrated, I-D equations of motion for well-mixed,
channelized flow in a tidal embayment with intertdal flats (Figure 2.1) may be expressed

as (e.g., Speer and Aubrey 1985)

b a, + a(be hu) = 0,at ax (2.1)

au au a, Cd ulul
-a + u ax + g ax + -r = 0, (2.2)

where b is total embayment width (including tidal flats), 'is tidal elevation, h is cross-

sectionally averaged channel depth, be is the width of the channel, u is cross-sectionally

averaged velocity (confined to the channel), and Cd is the drg coeffcient. In addition to

the usual assumptions of channelized flow, (2.1)-(2.2) assume u = Ð on the tidal flats, and

bc/h "" 1.

Restated in terms of charcteristic scales, (2.1) and (2.2) become

ba + hbe U = 0T L ' (2.3a)

IL + u3 + R a + Cd U2 = 0T L L h ' (2.3b)

where a and U are the amplitudes of tidal elevation and velocity, T is the tidal period, and

L is the characteristic horizontal length scale. Here we are assuming that the length scales
of varation in u and, are of the same order. Thus this analysis is limited to nonlinearties

with a basin-wide character and does not consider advective nonlinearities typically

¡¡



rL~

I');-,,,
c:..,

ri
\ ~~
r
¡.,;"

L

- 23-

localized to. smaller geometrc features such as inlets, sand banks, or channel meanders

(Zimmerman 1978).

Solving for L in (2.3a) and then eliminating L in (2.3b) gives

U + baU + bga + CdU2 = O.
T' bchT bchUT h (2.4)

The sum of the inerta terms is O(U(l if we assume O(balbch):: 1. Combining the first
two terms of (2.4) and dividing (2.4) by its third term gives the magnitudes of inertia and

frction relative to the pressure gradient, which we assume to be order one:

bcU2h + 1 + bcCdU3T = O.

ba2g ba2g (2.5)

The ratio of the frction scale to the inertal scale is then

F = T U CdI h (2.6)

In shallow tidal embayments of interest, U is of the order 0.5 m s-l, Cd::
10-2 - 10-3, the semi diurnal period T = 4.5 x 1() s, and 1 m ~ h ~ 10 m. Therefore F
wil typically be 1 to 2 orders of magnitude larger than I in these tidally dominated

embayments. Since FII is frequency dependent, however, one should use the period of

the overtide of interest when considering highly nonlinear flow. This is not a serious

limitation: F wil stil dominate I by an order of magnitude, even if one scales (2.6) with

the quarer-diural tidal period.

2.1.2. Derivation of the zero-inerta equation

If we assume that frctional effects are much larger than acceleration (i.e., FII ""

1), then the momentum equation for cross-sectionally averaged flow in a tidal embayment

may be expressed, accurate to O(FIl)-l, as

¡g n2 g ulul
g ax + h4/3 = 0, (2.7a)

or, equivalently,

u - - h2/3 a,
n lanaxll/ ax '

(2.7b)
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where n = hl/6(cJg)iri is Manning's friction coefficient, which is assumed to be constant

in space and time. (If using complex notation for " the expression ia,/axi =
Abs( Re(anax))).

Insening (2. 7b) into (2.1) yields a single governing equation for tidal elevation in

the form of a nonlinear diffusion equation:

a, 1 a ( be h5/3 a,)_.
at - b ax n la 

OO.x 
1 12 ax - o. (2.8)

There are four sources of nonlinearity in (2.1)-(2.2) which contribute to the time
varability of the diffusion coefficient in (2.8): time-varing embayment width, b, from

continuity; time-varing ianaxpri from quadratic friction; and two contrbutions to time-

varying channel depth, namely, h2f3 from the depth effect on friction and another power

of h from continuity. Equation (2.8) is solved numerically in Section 2.4, where it is

compared to numerical solutions to (2.1 )-(2.2), to approximate analytic solutions derived

in Section 2.3, and to field observations.

To enable approximate analytic solution, we expand the time-varing geometrc
parameters:

h5/3 = ho5f3 (1 + ~ rl3 :: ho5f3 (1 + a') , (2.9a)

b :: bo (i + ß(),

lanaxl1ri = (ianaxiir) 0 (1 + e(t)) ,

(2.9b)

(2. 9c)

where

a = 5
3ho '

ß = .1 l1b .
a bo (2.9d)

and the dependence of eon t will be determined in a later section. In (2.9) the subscript

zero indicates time-averaged values, and tJ is the amplitude of change in b durng the tidal

cycle. Introducing (2.9a)-(2.9d) Iri (2.8) yields

a, _ 1 ~ ( be ho 5/3 (1 + a') a,\ = 0
at bo(i + ß() ax n (laQaxP/2)0 (1 + e(t)) ax I . (2.10)

L
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In the following sections we develop approximate analytic solutions to (2.10).

These analytic approximations allow a straightforward interpretation of the lowest order

dynamcs and provide insight into the propertes of higher-order haronic components via

the identification of their governing nondimensional parmeters.

2.2. Constat diffusion coeffcient

2.2.1. Solution

In solving the lowest order case, we neglect terms O(aç,ßç,e) and assume bo, be,

ho and (laç¡axP/2)o may be treated adequately by x-independent values. Then (2.10)

becomes
aç .a2ç:¡-Do-=O,ot ax2 (2.11 )

where
- - 5/3

Do _- be ho = constant,
50 n (lagaxll/2) 0

(2.12)

and the overbars indicate x-independent, representative values. The boundary conditions

for (2.11) are (with the landward end at x = 0)

Ç(x = L) = a cos rot, ;; (x = 0) = O. (2.13)

It is not necessar to assume bo, be and ho are x-independent to reach a first-order

analytic solution. A geometrc or exponential dependence on x may be treated via Bessel

functions (Prandle and Rahman 1980; Appendix 1 of this thesis) or by a modified Green's

law approach (Jay 1991). For the embayments of interest to this study, however, the

assumption of a prismatic geometr simplifies the form of the solution while retaining the

essential physics.

For a linear, constant-coeffcient governing equation with periodic forcing, it is

convenient to employ complex varables and assume a solution of the form

Ç(x,t) = ;(x) exp i rot, (2.14)
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. where it is tacitly understoo that only the real par of the complex solution is retained. If

we insert (2.14) into (2.11) and solve the resulting ordinar differential equation in ç(x)

subject to the boundar conditions given by (2.13), we have the solution

, = a cosh kox exp icot ,
cosh ko L (2.15)

where

ko = (EY/2 = (1 + i) b~oY/2 . (2.16)

The cross-sectionally averaged velocity, 'u, is obtained from the continuity
equation (2.1) as the real par of

U -_ _ _i ii_o a co sinh ko x exp i cot .
be ho ko cosh ko L (2.17)

2.2.2. Nature of the constant coeffcient solution

For values of IIkollL c(c( 1 (lIkoll is defined as ((Re(ko))2 + (Im(ko))2) 1/2), sinh kOX

= kOX, cosh koL = 1, and

, = a cos co t , u = a bo Lco .I sin co t- - L 'beho
(2.18)

i.e., corresponding to the simple pumping mode, with peak velocities preceding high and

low water by 90.. Similarly, for IIkollx "" 1, sinh ko = cosh kOX = 0/2) exp (kOX), and

, = a exp ¡lIkoll (x - L)' cos ¡lIkoll (x - L) + COt' ,\2112, ¡ \2112 I
u = _ a iio L co exp ¡lIkoll (x _ L)' sin (lIkoll (x _ L) + co t _ 1r' ,be ho IlkollL \2 112 I 2112 41

(2.19)

i.e., corresponding to an exponentially decaying progressive waveform traveling in the

negative x direction, with peak velocities preceding high and low water by 45". In

contrast, a frictionless linear tidal wave in an infinite channel has peak velocities exactly

coinciding with extreme water levels.

The nature of the frictionally dominated solution depends strongly on the channel
length, L, relative to the frictional decay scale, IIkoll-1 = (DoIm)I/2 (Figure 2.2), which in

turn depends on the value of the diffusion coefficient given by (2.12). To obtain an

L--
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estimate of Do, we must evaluate the term (Iaç¡xI1/2)0. From (2.15), the time-averaged

magnitude of aç¡ax is

I a'i = II koa sinh /cx 112.,ax 0 cosh /cL ir (2.20)

If we represent (20) with its value at x = L, then

laqax10 = llkoll a lltah ko LII 2 .
ir (2.21 )

Introducing the square root of (2.21) into (2.12), we obtan the necessar closure of the

problem, i.e.,

- - 5/3

Do = be !:O (Ilkoll a IItanh /cLli 2.) -1/2 .bo n ir (2.22)

Since llkoll = (w/Do)in, (22) may be wrtten as a dispersion relationship:

( IlkollL )3/2

(lltanh koLIi)1/2

= 21/2 bona1/2mL3/2
ir1/2 be hoSI3

(2.23 )

For IlkollL c(c( 1, IItanh kolI == IIkollL, and (2.23) reduces to

/2 21/2 b- 1/2 L312IlkollL = (.J)1 L = 0 n a mDo irl/2 be hoSI3 (2.24 )

For IlkollL "" 1, IItanh kolI == 1, and (2.23) reduces to

( "')112 (2112 bo n a 1/2 mL3/2) 2/3
IlkollL = -" L =Do ir1/2 be hoS/3 (2.25)

According to (2.23)-(2.25), the speed at which the tidal signal diffuses decreases and the

rate of decay of tidal amplitude with distance increases as channel depth is reduced,

channel length is increased, friction is increased, forcing amplitude is increased, or total

embayment width is increased relative to the width of the channeL. Equations (2.23)-

(2.25) also state that the amplitude decay rate increases as frequency is increased,
indicating frctionally dominated embayments act as low-pass fiters.
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2.3. Time-varing diffusion coefficient

2.3.1. Governing equation

We now use the results from our constant coeffcient solution to estimate the time

dependent values of (1 + YO, (1 + ßO-1, and ((anaxpl2)o (1 + e(t))) -1, each of which

was assumed to be constant in formulating (2.11 ). We still neglect x-dependence in these

three expressions, however, and chose values at x = L to be representative. Then from

(2.15),

1 + r' = 1 + ra cos rot, (2.26a)

(1 + ßÇJ-1 = (1 + ßa cos rot)-l = 1 - ßa cos rot, (2.26b)

((laQaxll12)0 (1 + e(t)) )-1

= (lIkoll a IItanh koLII Icos (rot + ø + n/4)lj-1I2 ,
(2.26c)

where ø = the phase angle of tanhko, and 114 = the phase angle of ko.

Equation (2.26c) may be treated more easily if we consider a Fourier series
approximation of Icos (rot + ø + n/4) I followed by the use the Binomial theorem to
approximate the inverse square root:

Icos (rot + ø+ n/4)1 = ;. (1 + tcos 2(rot + ø + n/4)) , (2.27a)

Icos (rot + ø + n/4)1-1I2

= (~Y/2 (1 + (- i) ~ cos 2(rot + ø + n/4)) .
(2.27b)

Figure 2.3a compares the left and right hand sides of (2.27b). From Figure 2.3a

we see that the right-hand side of (2.27b) underestimates the value of Icos (rot+¡pn/4)1-112

at the times when ianaxl is largest, i.e., precisely when we can expect discharge to be

greatest and the effects of friction to be most important. Thus we wil approximate Icos
(rot + ø + 114)1-112 instead as

Icos (rot + ø + n/4) 1-1/2

= (~)1/2 (1 + 8.cos 2(rot + ø + n/4)) = (IY/2 (I - e(t)) 
,

(2.28)

"
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such that the minima of the two functions coincide exactly (Figure 2.3b). This gives Ö

= (2/tc)1/2 - 1 == -0.20. The poles indicated by Figure 2.3, which are poorly represented

by the approximation in (2.28), are not significant because they coincide with slack water

when frction is small.

Substituting (2.26) and (2.28) into (2.10) gives

aç _ (tc)ll2-l (1 + rcos mt + ö cos (2mt + 6)) ~ (be ho513 aç\ = 0, (2.29a)

at 2 bo n (lIkoll a lltanh koLIi)1/2 ax ax I

where
8 = 2l/ + tc ,

2
(2.29b)

r = a (a - ß) =~ A. _ iib .3 ho bo
(2.29c)

Relative to (2.8), (2.29) is accurate to O(y,ö,aa,aß)2 plus an unquantified error due to our

choosing x = L to be representative in (2.26)~ If we once again assume bo, be, and ho to

be constant in x then (2.29) reduces toaç. a2ç
~ ~ (i + r cos m t + Ö cos (2m t + 8)) Do - = O.ot ax 2 (2.30)

Bessel functions can be used to find approximate solutions to the higher-order

haronics in embayments with geometrcally or exponentially varying along-channel

geometr (see Appendix 2). However, the basic physics which determine the properties

of the higher-order tidal components in frictionally dominated embayments are more

clearly ilustrted if we assume a prismatic geometr.

2.3.2. Solution

We treat the time-varing portion of the diffusion coeffcient in (2.30) by changing

varables from t to 1 such that

aç = aç a1 = aç (1 + rcos mt+ öcos (2mt + 8)).
at a1 at a1

Then (2.31) becomes

(2.31 )

a
a1 Ç(1,x)

a2Do - Ç( 1,x) = 0,ax2 . (2.32)
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with
ro1 = rot + rsin rot + ~sin (2rot+ 8).

2
(2.33)

The boundary conditions for (2.32) are still at;x = 0 at x = 0, and, = a cos rot at

x = L. However, the boundar condition at x = L must be trnsformed to the new time
variable, 1. Utilzing (2.33), trigonometrc identities, and approximations to

O(r,ö,aa,aß)2 (for details, see Appendix 2), it can be shown that

cos rot = t Am cos (mro1+ aJm),

m= -1
(2.34 )

where A_i = -A3 = ö/4, Ao = -A2 = ¡l2, Ai = 1, -ai.i = aJ = 8, and cp = aii = lt = O.

Since (2.32) is linear, we may express the solution as a sum of terms 'm, each

satisfying the governing equation

a'm _ D a2'm = 0
a1 0 ax2 ' (2.35)

and the boundar conditions

ad: :: 0 at x = 0, 'm = a Am cos (m ro 1 + ft) at x = L .
(2.36)

We look for solutions to (2.35) of the form

'm(X,1) = a Ami;m(x) exp i(m ro 1 + aim) . (2.37)

For m ;i 1, (2.37) is already O(r,ö,aa,aß), so if we discard O(r,ö,aa,aß)2 terms, .

(2.37) transforms directly back to

'm(X,t) = a Ami;m(x) exp i(m rot + ft) . (2.38)

In order to transform the m = 1 case, we must reexpress exp iro1 in terms of t. Utilizing

(2.33), trigonometric identities, and neglecting O(r,ö,aa,aß)2 terms (for details, see
Appendix 2), it can be shown that

exp i ro1 = exp irot - LAm exp i(mrot + aim).
m-: 1

(2.39)

II'
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r
i
r

I

!
"
i

L

- 31 -

Equation (2.39) is substituted into (2.37) for the m = 1 case, and then the resulting
equation is added to (2.38) to reconstruct the full solution in t.

We represent the full solution as a sum of single frequency components:

Ç(X,t) = a t 17m(X) exp i(m wt + 'Pm),

m=-i
(2.40)

with

71-1 = i (Ç-l - çi) ,

170 = I (ÇO-Çl),

. (2.41a)

(2.41b)

171 = çi , (2.41c)

172 = f (Çl - Ç2),

71 = i (çi - Ç3) .

(2.41d)

(2.4 Ie)

By substituting (2.37) into (2.35) we see that the governing equations for çm(x)

ar
imwçm - Do d2çm = 0,

dx2
(2.42)

with boundar conditions

dçm = 0 at x = 0 1: - 1 at x - Ldx ' ~m- -. (2.43)

Equations (2.42)-(2.43) have a solution of the same form as the constant coefficient case:

Çm = cosh x (i m w/Do) 1/2 = cosh m 1/2kO x
cosh L (i m w/Do) 1/2 cosh m 1/2ko L

(2.44 )

2.3.3. Nature of the time-varing coeffcient solution

The haronics produced by the time-varing coefficient solution are scaled by the

nondimensional parameters r, ô, IIkollL, and x/L. The parameter r scales the zeroth

haronic, which determines set up or set down, as well as the second harmonic, which
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. determines duration asymmetr in the rising and fallng tides. If ris positive, there is set ii

up of mean elevation and the embayment is "shorter-rising" (Figure 2.4a). If r is
negative, there is set down and the embayment is "shorter-fallng" (Figure 2.4b). These

effects may be understoo physically if we reexamine the definition of rand the relevant

governing equation:

r = a (a - fJ = 5.E - ~b ,
3ho bo

(2.45)

aç a2ç
-S - (I + rcos COt + Ö cos (2cot + 6)) Do - = O.ot ax2 (2.46)

If r" 0, (2.45) indicates changes in channel depth during the tidal cycle are more

important than changes in embayment width. (The total effect of time-varing channel

depth is, in turn, 2/5 due to nonlinear friction and 3/5 due to nonlinear continuity. These

proportions follow from the binomial expansion used to derive a in (2.9).) With r" 0,

the time-varing diffusion coefficient in (2.46) is larger than Do near the crest of the
waveform (COt:: 0), when channel depth is greatest. And the diffusion coeffcient is

smaller than Do near the trough of the waveform (co t "" ir), when the channel is shallowest.

Since the speed at which the waveform diffuses is proportional to the square root of the

diffusion coefficient, with r" 0 the crest diffuses landward faster than the trough,

"catching-up" with the trough and causing a shorter-rising asymmetr. Since the rate of

decay of the waveform with distance is also proportional to the square root of the
diffusion coeffcient, with r" 0 the amplitude of the crest decays more slowly than that of

the trough, resulting in set up (Figure 2.4a).

The effect of r c( 0 is simply the opposite of r" O. If r c( 0, (2.45) indicates
changes in embayment width are more important than changes in channel depth. With rc(

0, the diffusion coeffcient in (2.46) is larger than Do near the trough of the waveform (COt

"" ir), when the embayment is narowest, and the diffusion coefficient is smaller than Do

near the crest (cot"" 0), when the embayment is widest. Thus with r c( 0, the trough

diffuses landward faster then the crest, causing a shorter-falling asymmetry, and the

trough decays more slowly than the crest, resulting in set down (Figure 2.4b).

With r held constant, duration asymmetr and set up or down increase as IIkollL is

increased or x/L is decreased (with x = 0 landward) (Figure 2.5). This is a

straightforward consequence of the different diffusion speeds and decay rates of the crest

and trough of the waveform. As IlkollL increases or x/L decreases, the effective distance

'i ,ii ¡i

Ilj'.'
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over which. the signals travel increases. Therefore the difference between the crest and

trough trvel times and the difference between the degre of crest and trugh amplitude

decay both increase.

These approximate analytic results are consistent with the numerical experiments

of Speer and Aubrey (1985). Through finite difference solutions of (2.1)-(2.2), they

found that embayments with large tidal amplitude to dep~ ratios and small areas of

intertidal flats tend to be shorter-rising, whereas embayments with small amplitude to

depth ratios and large areas of intertdal flats tend to be shorter-falling. Speer and Aubrey

also found tida asymmetr to be more sensitive to channel depth than intertidal flat extent.

This latter findi'ng is also consistent with (2.45), which weights a/ho more heavily than

tiblbo in the definition of Yo

The parameter ö scales the third haronic as well as a transfer of some energy

back tothe first harmonic via (2.41a). The effect of ö in (2.46) can be understood if we

recall that 8 is ultimately related to the phase of the surface gradient. ö and 8 cause the

time-varying diffusion coefficient in (2.46) to be smaller when the surface grdient (i.e.,

velocity) is largest. In other words, large velocities impede the diffusion of the tidal

signaL.

The third haronic does not contrbute to duration asymmetres. Unlike r, ö is not

a function of cross-sectional geometr, but, to our order of approximation, ö is constant

for all cross-sections. According to the approximate analytic solutions, the third haronic

varies only as a function of xlL and IlkoHL. Thus the third haronic is less sensitive than

the second harmonic to time variations in channel cross-section. We should expect the

~agnitude of the third haronic to become progressively smaller relative to the zeroth and

second haronics as the overall tidal signal displays stronger duration asymmetr.

2.4 Comparson to numerical solutions and observations

2.4.1. Methods

Forcing M2 amplitude and geometric parameters required as inputs to the
numerical and approximate analytic models are listed in Table 2.2 for 12 tidal embayments

on the Atlantic Coast of the United States. The geometrc parameters in Table 2.2 were

determined by fitting the hypsometr of each embayment to an idealized, prismatic
geometr with a cross-section of the form given in Figure 2.1. Sc is the horizontal area of

the embayment that is submerged at mean low water; Sii is the area ,submerged at mean
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high water, and So is the time-averaged area. Model widths were determned by averaging

these areas over the length of the each real embayment. The parameter ho is the spatially

averaged depth at mean sea level of the portion of the embayment encompassed by Se'

The heights hi and hi were chosen to best represent the hypsometr of each embayment

using prismatic, linearly sloping intertidal storage aras (see Figure 2.1).

ç~
.~,~

t':

(-

Once prismatic approximations of the twelve real embayments were constrcted,

finite difference representations of (2.1)-(2.2), which include'the inertia terms, were

solved for each embayment. Manning's n was the only independently adjustable
parmeter, and it was vared until the solutions of (2.1)-(2.2) were reasonably consistent

with the observed tides (Figure 2.6). For several of the embayments there is significant

disagreement between observed and calculated Mi phase lag (Table 2.3; Figure 2.6b),

especially for small phase lags. This is largely due to the vared locations, relative to the

embayment inlets, of the outside, "forcing" tide gauges needed to calculate the observed

phase lags within the embayments. Set up, Mi, M. and M6 were determined by least

squares harmonic analyses of both the observed surface elevations and the numerical

solutions to (2.1)-(2.2). Results of the haronic analyses appear in Table 2.3. Also
included in Table 2.3 are analyses of numerical solutions to (2.8), the governing equation

without the inertia terms and approximate analytic solutions to (2.8) given by (2.40)-

(2.41) and (2.44). Th.ese solutions were calculated with the same n used in the solution of

(2.1)-(2.2).

The embayments at Chatham, which is shorter-rising, and North Inlet, which is

shorter-falling, were exaiined in paricular detaL. These systems each contain many tide

gauges and provide case studies for along-channel varation in tidal distortion.

2.4.2. Numerical solutions

Numerical solutions to (2.1)-(2.2) and to (2.8), the equations of motion with and

without inerta, are consistent within the scaling arguments presented in Section 2.1.1. As

predicted by (2.6), the two numerical solutions for Mi disagree by about 5% or less,

\l hile amplitudes of M4 and M6 disagree by about 10% and 15%, respectively (Table 2.3;

Figures 2.7a, 2.7c, and 2.7e). Phases predicted by the two solutions for each tidal

component disagree by only a few degrees (Table 2.3; Figures 2.7b, 2.7d, and 2.7f).
Disagreements between the two numerical solutions are largest for embayments with

relatively deep channels (e.g., Wachapreague, Prce), which is also consistent with (2.6).

Nonetheless, these relatively small disagreements donot affect the basic dynamic 
balance.

Ii
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Thus, to the degree that the zero-inerta equation clarfies the fundamental physica balance

while maintaining the most important nonlinear processes, the zero-inerta equation is a

valid approximation of the more classical I-D equations typically applied to tidally
dominated shalow embayments.

The consistency of the approximate analytic solutions and the "exact" numerical

results is quite goo. The residuals in Figure 2.7 ar all small in comparson to the range

of the signaL. Of course, there are also important differences between the analytic and

numerical solutions. This is not surprising given that aa = 5a/3ho and aß = &i/bo. which

were assumed to be small, actually approach unity in severa of the embayments of interest

(Table 2.2). There are also some systematic, x-dependent differences between the
numerical solutions and analytic approximations which are ilustrated by a closer

examination of the solutions for Chatham and Nort Inlet (Figure 2.8). Relative to the
numerical results, the approximate analytic solutions for M2 (Figures 2.8a-2.8b) tend to

underestimate both amplitude decay and phase lag for large x/L (i.e., near the forced end)

and overestimate them at small x/L (i.e., near the landward end). These discrepancies

parly result from our treatment of lònòxl-1/2 in evaluating (2.8) analytically.

By approximating lònòxl-1/2 as x-independent in our analytic solution, we neglect

two specific aspects of the fully nonlinear, x-dependent problem. First, we do not recover

a factor of 1/2 that would appear if we were to expand (2.8) by differentiating an x-

dependent ianòxl-1/2:

~(lòÇI-1/2ÒÇl = si n(òÇ\~(lòÇllI21 = .llaçl-l/2ò2Çòx aX òx g òx I òx aX 2 aX òx2 (2.47)

Neglecting this differentiation overestimates the diffusion coefficient ~n both (2.11) and

(2.46) and, therefore, underestimates the decay and delay of the tide. (We also tried

differentiating ianòxl-1/2 before treating it as x-independent, i.e., by including the factor of

1/2. However that equally arbitr approach caused the approximate analytic solution to

be too dissipative in comparson to the numerical solutions. Hence we chose to treat
lò9'òxl-1/2 as x-independent throughout the derivation.)

The second error resulting from our treatment of lònòxl-1/2 relates to the no-flow

boundary condition, ò(jòx = 0, at x = O. In (2.21) and (2.26c) we approximate ò(jòx for

all x with its nonzero value at x = L, therefore underestimating lòÇ!òxl-1/2 at small x/L

(where the no-flow condition requires the surface gradient to approach zero). Since

~
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(2.12) indicates that the diffusion coefficient is proportional to ldnaxl-1/2, at small x/L our

approach underestimates the magnitude of the diffusion coefficient and overestimates the

decay and delay of the tide. This effect, together with that described in the previous

pargrph, causes the decay and delay of the tida signal to be somewhat too small near the

seaward end of the embayment and somewhat too large near the landward end. The
nature of discrepancies in the higher-order haronics is analogous. For example, the

approximate analytic solutions for AM4IAM2 (Figure 2.8c) underestimate the trsfer of

energy to Mi aUarge x/ L (cf. an underestimate of M2 decay) and 'overestimate the trnsfer

at small x/L (cf. an overestimate of M2 decay).

r
i,
¡-
~

¡

2.4.3. Observations

For the M2 tide, the consistency of the analytic results with the observations

(Figures 2.8a-2.8b, and 2.9a-2.9b) supports the overrding importance of just two
nondimensional parameters, IlkollL and x/L, in determining the degree of amplitude decay

and phase lag throughout frictionally dominated tidal embayments. For example,
Chatham has a significantly larger value of IlkollL than North Inlet and a correspondingly

larger decay and delay of the M2 tide. In both embayments, amplitude decay and phase

lag increase landward with decreased x/L. Observations are also consistent with the

analytically derived roles of r, IIkollL and x/L in determining the amplitude and relative

phase of Mi (Figures 2.8c-2.8d, 2.9c-2.9d). Chatham has a large IIkollL, r" 0, and a

large ~; North Inlet has a smaller IlkollL, rc( 0, and a smaller M4. In both embayments,

AM4/AM2 increases in magnitude landward toward x/L = O. In general, all the

embayments with r" 0 are observed to be shorter-rising (0. c( 29'2-(t4 c( 180"), and all

those with rc( 0 are observed to be shorter-fallng (180" c( 29'2-(t4 c( 360"). Regardless

of the sign of r, observations indicate AM4/AM2 increases as the absolute value of r
increases (Table 2.3).

The observed and analytic AM6IAM2 ratios are of the same order, and both tend to

increase landward (Table 2.3). Observed and analytic M6 relative phases (39'2-(t6) also

increase as one moves landward toward x/L = O. There is no discernible relationship

between time variations in cross-sectional geometr and the observed M6 tide, which is

consistent with our derivation of a constant governing parameter, ô. The inabilty of the

analytic (or numerical) results to better reproduce the observed M6 tide may result from

our treatment of Manning's n as constant in space and time. Several field studies of
shallow tidal embayments suggest n can be a complex function of tidal height, flow

L-
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direction, and observation location within a single embayment (e.g., Swift and Brown
1983; Wallis and Knight 1984; Lewis and Lewis 1987).

The appr,?ximate analytic solutions and numerical results both predict significant

set ups of mean tidal elevation in several of the shorter-rising embayments (Table 2.3).

Unfortnately, none of the tidal observations for shorer-rising embayments listed in Table

2.2 includes references to an absolute vertical datum. H,owever, set up has been
documented in shorter-rising tidal rivers in Great Britan with'tidal amplitude to depth

ratios too large to be represented by the approximation (aa)2 = (5a/3ho)2 c(c( 1 employed

in this study, e.g., The Fleet (Robinson et al. 1983) and the Conwy (Wallis and Knight

1984), each with (aa)2:: 1.8. Observations from Nort Inlet do include elevation relative

to an absolute datum and suggest a significant set down of the tide within North Inlet

(Nummedal and Humphries 1978). Although the approximate analytic solutions to (2.11)
do predict a small set down for North Inlet (Table 2.3), the numerical solutions predict a

small set up. Perhaps the observed set down is due to non-tidal dynamics or an aspect of

the geometr not captured in our prismatic approximation.
~

2.5. Summar and conclusions

Scaling of the I-D equations indicates that the friction term is typically 1 to 2
orders of magnitude larger than the inertial terms over the range of geometric and
hydrodynamic parameters common to many shallow tidal embayments. Neglecting the

inertial terms leads to a single "zero-inertia" governing equation for tidal elevation which

has the form of a nonlinear diffusion equation. The zero-inertia equation clarfies the

fundamental physical balance typical to shallow tidal embayments, while retaining the

principal sources of basin-wide nonlinearity, namely, quadratic friction, time-varying

channel depth, and time-varing embayment width.

First-order solutions are found by assuming the diffusion coeffcient to be constant

in both time and space. The first-order solutions are governed by two nondimensional

parameters, .lIkollL and x/L, where L is the length of the embayment, and IIkoli-t, which is

proportonal to the square root of the diffusion coefficient, scales both the length of

frictional dissipation and the physical length of the diffusive waveform.

As IIkollL increases, the speed at which the tidal signal diffuses decreases and the

rate of decay of tidal amplitude with distance increases. For IIkoilL c(c( 1, the solution

reduces to a simple pumping mode, whereas for IIkoilL "" 1, the solution reduces to an

L
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exponentially decaying, progressive waveform. IIkollL increases as depth is reduced,

friction is increased, forcing amplitude or frequency is increased, or total embayment

width is increased relative to the width of the channeL.

Second-order solutions are found by approximating the nonlinear diffusion
coefficient as constant in space and expanding only the time-varing portion. This,
approach conveniently combines the primar nonlinear mechanisms into a single time-

varing coefficient. Approximate analytic solutions for the zeroth, second and third
harmonic components are compact relative to more formal perturbation analyses and are

more easily adapted to physical interpretation.

The zeroth haronic, which determines set up or down, and the second haronic,

which determines duration asymmetr, are both governed by the parameters x/L, IlkoIlL,

and r= 5a/3ho - ii/bo, where a is forcing amplitude, ho is average channel depth, ii is
the amplitude of time varation in embayment width, and bo is average embayment width.

If r " 0, then time varations in channel depth are more important than time
varations in embayment width. With r" 0, the diffusion coeffcient is larger near the

crest of the waveform than near the trough. The crest diffuses landward faster and decays

slower than the trough, resulting in a shorter-rising asymmetr and set up of mean
elevation. If rc( 0, variations in width are more importnt than varations in depth. With

r c( 0, the diffusion coeffcient is larger near the trough of the waveform, the trough
diffuses faster and decays slower, and the tide is shorter-fallng and set down.

The third harmonic is produced by fluctuations in the diffusion coefficient

associated with times of greatest surface gradient. The only independent parameters

governing the third harmonic response are IIkollL and x/L. Thus analytic results indicate

the response of the third haronic is less geometr dependent then the response of the
zeroth or second haronics.

"Exact" numerical solutions show that the zero-inertia equation reproduces the

results of the more general I-D equations, including haronic overtides, to within the
accuracy predicted by scaling arguments for shallow tidal embayments. The approximate

analytic solution to the zero-inertia equation also reproduces the main features of the

numerical solutions, including the fundamental behavior of M4 and M6. Disagreements

between analytic and numerical solutions are largely due to the neglect of space
dependence in the diffusion coefficient of the analytic solution. Nonetheless, the insight



lî

f:.

!'.......

..

r
~. .

L

- 39-

provided in10 the numerical solutions by the analytic approximations demonstrates the

usefulness of the simplified second-order approach.

Finally, observations are also consistent with the analytically derived roles of r,

IIkollL and x/L in determining the amplitude and relative phase of M2, Mi and M6.

Observed M2 amplitude decay and phase lag generally increase with increased IIkollL or

decreased x/L (i.e., landward). All observed embayments with with r" 0 have shorter
rising tides, and all those with rc( 0 have shorter falling tides. Observations also indicate

the amplitude of Mi generaly increases as IlkollL increases, x/L decreases, or the absolute

value of rincreases. The order of magnitude of the observed M6 tide is also reproduced,

but observations indicate a significant, unexplained spatial varance that is speculated to

result from unresolved temporal and/or spatial varations in real embayment friction

factors.



Ii

T
ab

le
 2

.1
 M

ag
nt

ud
es

 o
f 

lo
ca

l (
L

A
) 

an
d 

ad
ve

ct
iv

e 
ac

ce
lc

ra
tio

n 
(M

) 
re

la
tiv

e 
to

 th
e 

fr
ic

tio
n 

te
rm

 (
F)

, a
lo

ng
 w

ith
 r

el
ev

an
t c

ha
ra

ct
er

is
tic

 s
ca

le
s

L
oa

tio
n

L
A

/F
A

A
IF

ho
, m

a,
m

V
, m

s-
I

C
d

So
ur

ce

A
ow

 th
ro

ug
h 

sa
il

0.
01

0.
01

0.
1

0.
1

0.
1

0.
01

B
ur

kc
 a

nd
 S

to
lz

cn
ba

ch
 (

19
83

)
m

ar
sh

 g
ra

ss
1-

0 
tr

pe
zo

id
al

 
0.

04
0.

01
2

1
0.

5
0.

02
Sp

ee
r 

(1
98

4)
ch

an
ne

l
1-

0 
m

od
el

 o
f C

on
w

y
0.

04
0.

04
3

2.
4

0.
5

0.
01

M
ün

ch
ow

 a
nd

 G
ar

vi
ne

 (
19

91
)

E
st

ua
ry

, W
al

es
C

on
w

y 
E

st
ua

r,
0.

05
0.

02
3

2.
4

0.
5

0.
00

6
W

al
ls

 a
nd

 K
ni

gh
t (

19
84

)'
W

al
es

Fr
as

er
 E

st
ua

r,
 B

C
0.

05
0.

05
9

4.
5

1
0.

00
5

L
eB

lo
nd

 (
19

78
)

C
an

ad
a

1-
0 

m
od

el
, S

to
ny

 B
rk

.
0.

05
0.

1
2

0.
9

1
0.

01
P

ar
k 

(1
98

5)
,t 0

H
ar

bo
r,

 N
Y

, U
S

A
M

ac
qu

ar
ie

 H
ar

bo
r,

0.
1

0.
00

7
6

0.
5

1
0.

00
4

va
n 

de
 K

re
ek

e 
(1

96
7)

T
as

m
an

ia
G

re
at

 B
ay

, N
H

0.
1

0.
02

7
1.

3
1

0.
03

Sw
if

t a
nd

 B
ro

w
n 

(1
98

3)
U

SA
S

l. 
La

w
re

nc
e 

E
st

ua
ry

,
0.

1
O

. i
7

3.
5

1
0.

00
1

L
eB

lo
nd

 (
19

78
)

C
an

ad
a

I
n
g
r
a
m
 
T
h
o
r
o
f
a
r
e
,

0.
2

0,
07

3
0.

5
0.

7
0.

00
2

W
ei

sm
an

 e
t a

l. 
(1

99
0)

N
J,

 U
S

A
D

el
aw

ar
e 

E
st

ua
ry

,
0.

4
0,

03
6

0,
7

1
0.

00
25

P
ar

kc
r 

(1
98

4)

U
SA

*C
ol

um
bi

a 
R

. E
st

ua
ry

,
i

1
10

1
i

0.
00

08
G

ie
se

 a
nd

 J
ay

 (
19

89
)

W
 A

, U
SA

*E
ng

lis
h 

C
ha

nn
el

5
2.

5
40

2
0.

8
0.

00
25

Pi
ng

re
e 

an
d 

M
ad

do
ck

 (
19

78
)

*T
he

se
 tw

o 
ex

am
pl

es
 a

re
 in

cl
ud

ed
 to

 il
us

tr
te

 li
in

ilS
 o

f 
th

e 
fr

ic
tio

na
l d

om
in

an
ce

 a
ss

um
pt

io
n.

 S
ee

 te
xt

 f
or

 d
is

cu
ss

io
n.

r
-''

'''-
 -

-
'-~

-"
"~

:'~
""

--
"-

" 
""

,':
_'

:-
 ,,

,'-
"'

:-
" 

','
" 

,~
-;

" 
'~

'''.
 ..

...
.'

".
_-

--
,-

,-
 '-

' "
, .

,-
 ',

'-.
 .'

,-
 -

. -
',,

, .
 "

~



. .
 c

,c
,. 

,.,
e,

."
."

o,
O

''',
''''

''',
~~

'~
,,_

__
 '1

T
ab

le
 2

.2
 E

m
ba

ym
en

t-
w

id
e.

 "
re

pr
es

en
ta

tiv
e"

 p
ar

ae
te

rs
 u

se
d 

in
 c

al
cu

la
tin

g 
th

e 
nu

m
er

ic
al

 a
nd

 a
na

ly
tic

 s
ol

ut
io

ns
of

 th
e 

I-
D

 g
ov

er
ni

ng
 e

qu
at

io
ns

 f
or

 r
ea

l t
id

al
 e

m
ba

ym
en

ts
.

L
oa

tio
n

L
hO

A
M

2(
x=

L
)

Se
So

Si
i

hi
h2

aa
aß

r
M

an
ni

ng
's

 ll
ko

llL
So

ur
ce

kI
m

m
10

6 
m

2 
1 

()
 m

2 
1 

()
 m

2
m

m
n
,
 
m
-
l
1
3
 
s

So
ut

h 
C

ha
nn

el
,

8.
2

1.
9

0.
98

2,
2

3.
3

4.
4

-0
.5

5
0.

75
0.

86
0.

33
0.

53
0.

05
5

1.
8

A
ub

re
y 

an
d 

S
pe

er
 (

19
84

, 1
98

5)
;

N
au

se
t, 

M
A

R
om

an
 e

t a
l. 

(1
99

0)
C

ha
th

am
,

14
2.

4
1.

05
18

23
28

-0
.5

7
0.

83
0.

73
0.

22
0,

51
0.

05
1

2.
1

D
. G

. A
ub

re
y,

 u
np

ub
lis

he
d 

da
ta

,
M

A
19

88
; N

O
A

A
 c

ha
r 

13
24

8
S

to
ny

 B
ro

ok
,

5.
2

1.
7

0.
86

2.
8

3.
6

4.
4

-0
.7

7
0.

83
'

0.
84

0,
22

0.
62

0.
05

0
1.

0
U

SG
S 

to
po

 S
t. 

Ja
m

es
;

N
Y

N
O

A
A

 c
ha

rt
 1

23
64

Sh
ar

k 
R

iv
er

,
4.

4
1.

9
0.

60
2.

4
3.

2
4.

0
-0

.6
0

0.
60

0.
53

0,
25

0.
28

0.
03

5
0.

41
U

SG
S 

to
po

 A
sb

ur
 P

ar
k

,i
N

J
- i

M
an

as
qu

an
,

9.
2

1.
0,

58
3,

9
4.

5
5.

0
-0

.5
2

0.
58

0.
64

0.
11

0.
53

0.
03

5
1.

4
U

SG
S 

to
po

 P
I.

 P
le

as
an

t

N
J

W
ac

ha
pr

ea
gu

e,
10

3.
6

0.
54

15
34

53
-0

.5
5

0.
55

0.
25

0.
56

-
0
.
3
 
1

0,
03

7
0.

80
B

yr
e 

et
 a

l. 
(1

97
5)

;
V

A
B

oo
n 

an
d 

B
yr

ne
 (

19
81

)

R
ud

ee
,

1.
4.

5
0.

48
0.

23
0.

35
0.

48
-0

.4
8

0.
48

0.
18

0.
37

-0
.1

9
0.

04
0

0.
01

N
O

A
A

 c
ha

r 
12

20
5

V
A

M
ai

n 
C

re
ek

,
8,

0
1.

9
0.

73
1.

6
2,

6
3.

6
-0

.5
3

0,
67

0.
64

0.
38

0.
26

0.
04

5
1.

P
er

r 
,e

ta
l. 

(1
97

8)

M
ur

re
lls

, S
C

O
ak

s 
C

re
ek

,
4,

7
1.

4
0,

73
0.

53
1.

2.
5

-0
.5

3
0.

67
0.

87
0.

67
0.

20
0,

03
5

1.
5

P
er

 e
t a

1.
 (

19
78

)
M

ur
re

lls
, S

C
N

or
th

 In
le

t,
6.

5
2.

6
0.

74
6.

3
11

22
-0

.1
9

0.
70

0.
47

1.
0

-0
.5

3
0.

05
8

1.
0

N
um

ed
al

 a
nd

 H
um

ph
ri

es
 (

19
78

);
SC

N
O

A
A

 c
ha

r 
11

50
3

Pr
ic

e,
7.

1
3.

3
0.

69
2,

7
8.

8
18

-0
.4

9
0.

70
0.

35
1.

0
-0

,7
0

0.
03

0
0.

74
Fi

tz
G

er
al

d 
an

d 
N

um
ed

al
 (

19
83

);
SC

U
SG

S 
to

po
s 

C
ap

er
s,

 F
t. 

M
ou

ltr
ie

F
or

t G
eo

rg
e,

8.
0

2,
6

0.
74

4,
1

5.
3

6,
5

-0
.7

5
0,

75
0.

47
0.

23
0.

24
0.

04
5

0.
80

K
oj

im
a 

an
d 

H
un

t (
19

80
);

FL
U

SG
S 

to
po

 M
ay

po
rt

W
e 

de
fin

e 
'b

, =
 S

IiI
L,

 b
o 

=
 S

oI
L,

 b
e 

=
 S

el
L,

 L
lb

 =
 'b

, -
 b

o,
 a

 =
 5

a/
3h

o,
ß

 =
 L

lb
!b

o,
 a

nd
 r

=
 a

(a
 -

 ß
).



T
ab

le
 2

,3
 R

es
ul

ts
 o

f h
ar

m
on

ic
 a

na
ly

se
s 

of
 ti

da
l e

le
va

tio
n 

ob
se

rv
at

io
ns

 (
08

);
 n

um
er

ic
al

 s
ol

ut
io

n 
of

 (
2.

1 
)-

(2
,2

),
 th

e 
on

e-
di

m
en

si
on

al
 g

ov
er

ni
ng

 e
qu

at
io

ns
 in

cl
ud

in
g

th
e 

in
er

tia
l t

er
m

s 
(N

O
; n

um
er

ic
al

 s
ol

ut
io

n 
of

 (
2.

8)
, t

he
 z

er
o.

in
er

tia
 d

if
fu

si
on

 e
qu

at
io

n 
(N

Z
);

 a
nd

 (
2,

40
).

(2
.4

1)
 a

nd
 (

2.
44

),
 a

pp
ro

xi
m

at
e 

an
al

yt
ic

 s
ol

ut
io

n 
of

 th
e

ze
ro

-i
ne

rt
ia

 e
qu

at
io

n.
 -

--
--

- 
in

di
ca

te
s 

va
lu

es
 a

r 
ei

th
er

 u
na

va
ila

bl
e 

or
 u

nd
er

in
ed

.

L
oc

at
io

n
So

ur
ce

r
e
c
o
r
d
 
x
/
L

(d
ay

s)

A
M
2
 
(
m
)
 
~
M
2
 
f
)

O
B
 
N
I
 
N
Z
 
A
Z
 
D
B
 
N
I
 
N
Z
A
Z

A
M

4/
A

M
2

D
B
 
N
I
 
N
Z
 
A
Z

2~
M

2-
~M

4 
(0

)
o
n
 
N
I
 
N
Z
 
A
Z

A
M

6/
A

M
2

O
B
 
N
I
 
N
Z
 
A
Z

3~
M

2'
~M

6 
(0

)
O
B
 
N
I
 
N
Z
 
A
Z

se
t-

up
 (

m
)

D
B
 
N
t
 
N
Z
 
A
Z

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
-

S
ou

th
 C

h.
, N

au
se

t, 
M

A
A
u
b
r
e
y
&
S
p
e
r
'
8
5
 
5
8

1
.
9
8
 
.
9
8
 
.
9
8
 
,
9
8

00
 0

0 
00

 0
0

.
0
0
7
 
.
0
0
 
.
0
0
0
 
.
0
0
0

2
7
5
 
.
-
.
.
-
 
_
_
n
_
 
_
_
o
n

,
0
0
4
 
.
0
0
 
.
0
0
0
 
.
0
0

1
8
0
 
-
.
.
.
.
 
0
0
'
_
_
 
-
.
-
.
-

.
0
0
 
.
0
0
0
 
.
0
0
 
.
0
0
0

58
 ,8

6
.
6
6
 
.
7
2
 
.
7
3
 
.
8
0

01
1 

19
 1

8 
14

.
0
8
3
 
.
1
0
5
 
.
1
0
3
 
.
0
2
7

0
6
3
 
0
6
7
 
0
6
5
 
0
3
5

.
0
3
1
 
.
0
2
4
 
.
0
2
2
 
.
0
0
8

2
9
3
 
3
5
4
 
3
5
0
 
2
2
7

_
_
.
m
 
.
1
2
4
 
.
1
1
1
 
.
0
4
1
1

29
 ,7

3
.
5
9
 
.
6
4
 
.
6
5
 
.
6
8

1
7
 
3
3
 
3
1
 
2
8

.1
19

 ,1
22

 .1
22

.0
56

0
6
4
0
7
6
 
0
7
3
 
0
4
8

.
0
3
2
 
.
0
2
2
 
,
0
2
0
 
.
0
1
6

3
1
4
0
1
7
 
0
1
3
 
2
5
4

m
_
_
.
 
.
1
5
2
.
1
3
5
.
0
9
0

87
 .4

7
.
5
4
 
.
6
0
 
,
5
9
 
.
5
7

2
9
 
5
1
 
4
8
 
5
5

.1
42

.1
34

 ,1
31

 ,1
16

0
6
4
 
0
7
5
 
0
7
4
 
0
8
2

,
0
2
1
 
.
0
2
6
 
.
0
2
6
 
.
0
3
2

3
3
9
 
0
3
4
 
0
3
0
 
3
1
6

un
n 

.1
56

 .1
35

 .1
58

5
8
 
.
3
2

.
5
7
 
.
6
0
 
,
5
9
 
.
5
6

41
1 

56
 5

2 
67

.1
42

,1
42

 .1
35

 .1
42

05
9 

07
3 

07
N

l9
9

.
0
2
3
 
.
0
3
0
 
.
0
3
1
 
.
0
3
8

0
2
4
 
0
3
7
 
0
3
1
 
3
4
4

_
_
o
m
 
.
1
5
2
 
.
1
3
2
 
.
1
1
1
5

58
 ,1

2
.
5
5
 
.
6
0
 
.
5
8
 
.
5
6

4
2
 
5
9
 
5
5
 
7
6

.
2
0
7
 
,
1
4
9
 
.
1
3
8
 
.
1
6
0

0
6
3
 
0
7
3
 
0
7
2
 
1
1
1

.
0
2
8
 
.
0
3
4
 
.
0
3
4
 
.
0
4
3

10
80

40
03

5 
00

n
.
_
_
.
 
.
1
5
0
 
.
1
2
9
 
.
2
0
6

C
ha

th
am

. M
A

Fr
ie

d.
 e

t a
I.

19
93

29
1

1
.
 
1
.
 
1
.
 
1
.

00
 0

0 
00

 0
0

.
0
2
5
 
.
0
0
 
.
0
0
0
 
.
0
0
0

28
5 

--
--

. 0
0'

_ 
_.

00
.

.
0
0
3
 
.
0
0
 
.
0
0
0
 
,
0
0

2
1
5
 
'
0
0
'
_
 
-
.
-
-
 
.
-
-
-
-

.
0
0
 
.
0
0
0
 
.
0
0
 
.
0
0
0

A
ub

r.
, p

cr
s;

co
m

m
. 2

9 
.9

8
.
9
6
 
.
9
7
 
.
9
8
 
1
.
0

1
0
0
3
0
3
 
0
2

.
0
0
8
 
.
0
3
1
 
.
0
2
9
 
.
0
0
4

0
3
1
 
0
4
9
 
0
4
7
 
0
3
6

.
0
0
5
 
.
.
0
1
0
 
.
0
0
9
 
.
0
0
1

12
63

21
 3

18
21

7
_n

'n
 .0

38
 .0

34
 .0

0

Fr
ie

d.
 e

t a
I.

19
93

3
,9

5
,
8
0
 
,
8
7
 
,
8
8
 
.
9
6

3
1
 
0
9
 
0
8
 
0
5

,
0
3
3
 
.
0
6
7
 
,
0
6
2
 
.
0
0
9

0
2
9
 
0
5
5
 
0
5
2
 
0
3
8

,
0
1
5
 
,
0
1
6
 
.
0
1
6
 
.
0
0
3

2
0
8
 
3
3
2
 
3
2
9
 
2
2
1

u
n
_
.
 
.
0
8
3
 
.
0
7
3
 
.
0
2
2

~ N
29

 .8
0

.
6
6
 
,
6
7
 
.
6
9
 
.
7
4

3
5
 
2
7
 
2
6
 
2
1

.0
52

,1
18

 .1
15

 .0
38

0
7
5
 
0
7
2
 
0
6
7
 
0
4
7

.
0
3
3
 
.
0
1
5
 
.
0
1
6
 
.
0
1
2

27
40

07
00

24
7

no
on

 .1
56

 .1
37

 .0
84

9
,6

8
.
6
6
 
.
5
9
 
.
6
0
 
.
6
2

4
9
 
4
4
 
4
0
 
3
6

.
0
7
4
.
1
2
2
.
1
2
5
 
.
0
6
4

07
40

78
07

30
59

.
0
4
9
 
.
0
1
6
 
,
0
1
8
 
.
0
1
9

0
0
 
0
0
0
 
0
2
2
 
2
7
3

...
.-

. .
17

5 
.1

52
 .1

30

29
 .3

0
.
5
4
 
.
5
6
 
.
5
4
 
.
5
0

6
9
 
6
8
 
6
2
 
7
9

,1
59

.1
41

 .1
33

 .1
48

0
6
4
 
0
7
2
 
0
7
1
 
1
0
8

.
0
1
4
 
.
0
3
7
 
.
0
3
8
 
.
0
4
0

0
2
0
0
4
7
0
4
1
 
0
0
5

_
_
u
_
.
 
,
1
6
9
 
.
1
4
5
 
.
2
3
1

29
0

,
5
9
 
.
5
6
 
.
5
4
 
.
5
0

7
3
7
1
 
6
5
 
9
0

.2
19

 ,1
51

 .1
36

.1
69

0
5
5
 
0
7
1
 
0
7
0
 
1
2
4

.
0
3
8
 
.
0
4
4
 
.
0
4
2
 
.
0
4
6

09
2 

05
0 

04
3 

03
2

_
.
_
_
u
 
.
1
6
7
 
.
1
4
2
 
.
2
5
7

S
to

ny
 B

ro
ok

, N
Y

P
a
r
k
 
1
9
8
5

29
1

.
8
6
 
.
8
6
 
,
8
6
 
.
8
6

00
 0

0 
00

 0
0

.
0
3
5
 
.
0
0
 
.
0
0
0
 
.
0
0
0

05
7 

_0
0'

 _
om

 -
-.

-.
--

--
--

 .0
0 

,0
0 

.0
0

-
-
-
-
 
-
-
-
 
.
.
_
-
-
-
 
-
-
-
-

.
0
0
 
.
0
0
0
 
.
0
0
 
.
0
0
0

58
 ,8

1
.
8
5
 
,
7
9
 
.
7
8
 
.
8
2

2
8
 
1
1
 
1
1
 
1
0

.
0
5
0
 
.
0
7
5
 
.
0
7
2
 
,
0
4
0

0
4
1
 
0
5
8
 
0
5
8
 
0
5
6

_m
oo

 .0
09

 ,0
08

 ,0
11

--
--

- 
33

8 
33

7 
24

4
.
n
_
_
_
 
.
0
2
9
 
.
0
2
8
 
.
0
1
4

5
8
 
.
6
0

.
8
0
 
.
7
7
 
.
7
6
 
.
8
0

3
8
 
1
9
 
1
8
 
1
9

.
1
2
8
.
1
1
8
.
1
1
1
 
.
0
7
7

04
5 

06
1 

06
 1

07
0

m
._

' .
01

2 
.0

10
 .0

20
-.

..-
 3

48
 3

47
 2

67
__

.m
 .0

31
 .0

30
 .0

28

29
 .2

1
.
7
3
 
.
7
6
 
.
7
5
 
.
7
9

4
6
 
2
5
 
2
3
 
2
9

.2
00

,1
55

 .1
41

 .1
17

0
5
6
 
0
6
4
 
0
6
3
 
0
8
5

__
om

 .0
26

 .0
21

 .0
31

_
o
m
 
3
5
7
 
3
5
4
 
2
9
2

n
.
.
n
 
.
0
2
6
 
.
0
2
6
 
.
0
4
5

Sh
ar

k 
R

iv
er

. N
J

N
O

S 
19

85
29

 ,3
6

.
6
0
 
.
6
0
 
.
6
0
 
.
6
0

u
_
 
0
4
 
0
4
 
0
5

.
0
1
8
 
.
0
1
8
 
.
0
1
6
 
.
0
1
0

12
6 

09
5 

08
2 

08
8

.
0
3
5
 
,
0
1
2
.
0
1
0
 
.
0
0
7

0
0
8
 
0
0
8
 
3
5
5
 
2
7
1

n.
m

 .0
02

 .0
01

 .0
0

M
a
n
a
s
q
u
a
n
,
 
N
J

N
O

S 
19

85
",

9
1

.
5
8
 
.
5
8
 
.
5
8
 
.
5
8

0
0
 
0
0
 
0
0
 
0
0

.
0
1
2
 
.
0
0
 
,
0
0
0
 
.
0
0
0

1
8
6
 
_
_
u
 
n
_
_
 
_
_
0
0
_

.
0
2
8
 
.
0
0
 
.
0
0
0
 
.
0
0

3
2
9
 
.
-
-
-
-
 
_
_
n
o
 
-
-
-
-

.
0
0
 
.
0
0
0
 
.
0
0
 
.
0
0
0

34
8 

.3
5

.
4
8
 
.
4
7
 
.
4
5
 
.
4
5

m
 4

0 
36

 4
5

.0
94

.1
51

 .1
36

 ..
24

0
5
2
 
0
5
8
 
0
6
0
 
0
8
5

.
0
3
9
 
.
0
3
7
 
.
0
3
4
 
.
0
3
4

3
0
1
 
0
0
 
0
0
4
 
3
0
9

.
_
.
m
 
.
0
3
7
 
.
0
3
0
 
.
0
6
4

W
ac

ha
pr

ea
gu

e,
 V

A
B

yr
ne

 e
t a

i. 
19

75
--

-
i

.
5
4
 
,
5
4
 
.
5
4
 
.
5
4

0
0
 
0
0
 
0
0
 
0
0

--
--

-.
 ,0

0 
.0

0 
.0

00
--

--
- 

--
--

- 
--

--
- 

--
--

.n
m

 ,0
0 

.0
0 

,0
0

--
-.

.-
 -

--
--

 -
--

--
 -

--
-

.
0
0
 
.
0
0
0
 
.
0
0
 
.
0
0
0

B
oo

n,
 p

er
s,

co
m

m
.3

47
 0

.
5
5
 
.
5
5
 
.
5
1
 
.
5
2

19
18

15
19

.
0
4
2
 
.
0
6
3
 
.
0
4
7
 
.
0
2
6

2
0
3
 
2
4
7
 
2
3
6
 
2
6
6

.
0
4
1
 
.
0
5
7
 
,
0
4
4
 
,
0
2
6

3
3
7
 
1
7
3
 
1
6
0
 
1
0
5

_
_
_
_
u
 
.
0
2
2
 
.
0
0
5
 
-
.
0
0
7

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
-

r
-
.
.
.
-
-
.
~
-
.
-
-
c
-
-
-
-
_
_
.
.
~
~
,
.
.
 
"
"
'
-
"
~
'
'
?
'
'
"
,
'
'
~
'
,
,
,
¡
,
,
a
_
.
.
 
.
.
.
"
"
,
-
l



~n

T
ab

le
 2

.3
 (

C
on

t.)

L
oc

at
io

n
So

ur
c

r
e
c
o
r
d
 
x
/
L
 
A
M
2
 
(
m
)
 
4
i
M
2
 
(
0
)
 
A
M
4
/
A
M
2

(
d
a
y
s
)
 
O
B
 
N
I
 
N
Z
 
A
Z
 
O
B
 
N
I
 
N
Z
A
Z
 
O
B
 
N
I
 
N
Z
 
A
Z

R
ud

ce
, V

A
N

O
S 

19
85

24
iM

2-
Ø

M
4 

(0
)

0
8
 
N
I
 
N
Z
 
A
Z

A
M

6/
A

M
2 

34
iM

2-
4i

M
6 

(0
)

0
8
 
N
I
 
N
Z
 
A
Z
 
O
B
 
N
I
 
N
Z
 
A
Z

,;i
:, 

,,;
;i:

:;-
;¡

~
j,(

(¥
~

~
 ~

se
t-

up
 (

m
)

O
B
 
N
I
 
N
Z
 
I
\

2
9
 
.
6
4
 
.
4
8
.
4
8
.
4
8
.
4
8
 
m
O
O
 
0
0
 
0
0
 
.
0
1
1
 
.
0
0
0
 
.
0
0
 
.
0
0
0
 
1
9
3
 
2
7
6
2
6
7
 
1
8
7
 
.
0
1
7
 
.
0
0
0
 
.
0
0
 
.
0
0
 
0
8
7
 
1
8
4
 
1
7
6
0
0
5
 
0
0
0
0
0
0
.
0
0
 
.
0
0
0
 
.
0
0

M
ai

n 
C

re
ek

, M
ur

re
lls

, S
C

N
O
S
 
1
9
8
5
 
5
8
 
1

6
8
 
.
8
5

74
 .4

1
1
0
6
 
0

O
ak

s 
C

re
ek

, M
ur

rl
ls

, S
C

N
O
S
 
1
9
8
5
 
5
8
 
1

10
0 

,8
3

9
0
 
.
3
8

1
0
6
 
0

N
or

th
 I

nl
et

. S
C

N
O
S
 
1
9
8
5
 
:
9
 
1

N
um

m
.&

lIu
m

p.
'7

8 
29

 .9
1

"
 
2
9
 
.
8
5

E
i
s
e
r
&
K
j
e
r
f
v
e
'
8
6
 
2
9
 
.
6
5

N
O

S
 1

98
5 

29
 .4

6
E
i
s
e
r
&
K
j
e
r
f
v
e
'
8
6
 
2
9
 
.
1
8

P
rc

e.
 S

C
N

O
S 

19
11

5

.7
3 

.7
3 

.7
3 

.7
3 

00
 0

0 
00

 0
0 

.0
06

 ,0
0 

.0
00

 .0
00

 . 
04

7m
u 

--
--

- 
--

--
.
5
9
.
6
2
.
6
2
.
6
3
 
1
7
 
1
5
 
1
4
 
1
3
 
.
1
0
0
 
.
0
5
4
 
.
0
5
2
 
.
0
1
5
 
0
8
3
0
8
1
 
0
7
8
0
3
5

.
5
8
 
.
5
6
 
.
5
4
 
.
5
3
 
3
0
 
4
3
 
3
9
 
4
8
 
.
0
7
0
 
.
0
8
6
 
.
O
S
O
 
,
0
5
9
 
0
9
8
 
0
8
3
 
0
8
2
 
0
8
3

.
5
6
.
5
6
 
.
5
4
 
,
5
3
 
4
5
4
7
4
3
5
9
 
.
1
0
1
 
.
0
9
4
 
.
0
8
3
 
,
0
7
3
 
0
9
1
 
0
8
2
0
S
1
 
1
0
0

.7
3 

.7
3 

.7
3 

.7
3 

00
 0

0 
00

 0
0 

.0
06

.0
0 

.0
00

 .0
00

.
5
7
 
,
5
9
 
,
6
0
 
.
6
2
 
2
0
 
1
9
 
1
7
 
1
5
 
.
O
S
O
 
.
0
8
6
 
.
0
7
8
 
.
0
1
4

,5
7 

.5
4 

.5
3 

.5
2 

33
 4

3 
39

 5
0 

,0
91

.1
01

 ,0
85

 .0
48

.
5
5
 
.
5
5
 
.
5
3
 
,
5
3
 
4
7
4
6
4
2
6
0
 
.
0
8
2
 
,
1
0
4
 
.
O
S
4
 
.
0
5
7

.
7
4
 
,
7
4
 
.
7
4
 
.
7
4

.
6
4
 
.
7
2
 
.
7
2
 
,
7
2

.
6
4
 
.
7
1
 
.
7
1
 
.
7
1

.
5
9
 
.
7
0
 
.
6
9
 
.
6
9

.
6
7
 
.
7
0
 
.
6
S
 
.
6
8

.
6
0
 
.
7
0
 
.
6
8
 
.
6
8

00
 0

0 
00

 0
0

1
6
 
0
6
 
0
5
 
0
5

1
2
 
0
9
 
0
8
 
0
8

--
- 

18
 1

6 
17

2
1
 
2
2
 
1
9
 
2
4

m
 2

4 
22

 2
9

,
0
0
7
 
.
0
0
 
.
0
0
0
 
.
0
0
0

.
0
4
3
 
.
0
2
3
 
,
0
1
9
 
.
0
1
6

.
0
6
2
 
.
0
3
5
 
.
0
3
0
 
.
0
2
7

.
0
5
3
 
.
0
6
7
 
.
0
5
8
 
.
0
5
8

.
0
5
8
 
,
0
7
9
 
.
0
6
9
 
.
0
8
1

.
0
7
4
 
.
0
8
7
 
.
0
7
6
 
.
1
0
0

0
4
7
-
.
-
-
-
 
n
_
_
_
 
-
-
.
.

08
0 

08
8 

08
6 

03
7

0
9
8
 
0
9
9
 
0
9
8
 
0
8
5

11
1 

09
90

97
 1

00

0
8
8
-
-
-
-
-
 
-
-
-
-
-
 
u
_
_
_

2
0
7
 
1
7
6
 
1
8
2
 
2
2
9

19
8 

18
2 

18
82

33
1
9
0
 
2
0
1
 
2
0
5
 
2
4
7

2
0
2
 
2
0
9
 
2
1
2
 
2
5
7

2
2
5
 
2
1
4
 
2
1
7
 
2
6
6

,
0
0
5
 
.
0
0
 
.
0
0
0
 
.
0
0

.0
30

 .0
19

 .0
19

 .0
0

,
0
3
8
 
.
0
4
0
 
.
0
3
9
 
,
0
3
3

.
0
3
2
 
,
0
4
6
 
.
0
4
3
 
.
0
4
1

,
0
0
5
 
.
0
0
 
.
0
0
0
 
.
0
0

,
0
3
4
 
.
0
3
1
 
,
0
2
9
 
.
0
1
0

.0
27

.0
45

 .0
46

 ,0
34

.0
48

 .0
48

 ,0
49

 ,0
4 

1

.0
03

 ,0
0 

.0
00

 .0
0

.
0
0
 
.
0
0
 
,
0
0
8
 
,
0
0
5

.0
12

 .0
14

 .0
12

 .0
0

.
0
3
5
 
.
0
2
7
 
.
0
2
3
 
.
0
1
8

.
0
1
5
 
.
0
3
3
 
.
0
2
7
 
.
0
2
5

.
0
3
1
 
.
0
3
8
 
.
0
3
0
 
.
0
3
2

1 
81

 -
--

--
 _

_O
n 

_m
29

6 
00

5 
00

 2
27

3
4
3
 
0
3
4
 
0
3
0
 
3
0
9

0
0
2
 
0
3
7
 
0
3
2
 
3
3
7

1
8
1
 
m
_
_
 
-
-
-
.
 
-
-
-
-

29
00

15
01

22
31

32
70

51
 0

46
31

3
0
1
4
 
0
5
3
 
0
4
8
 
3
3
8

0
8
6
 
_
_
0
0
0
 
-
-
-
-
-
 
.
-
-
-
-

12
6 

08
9 

09
5 

05
2

2
3
8
 
0
9
9
 
1
0
4
 
0
5
9

2
4
8
 
1
2
7
 
1
2
9
 
0
8
2

0
0
2
 
1
3
9
 
1
4
0
 
0
9
9

0
2
5
 
1
4
7
 
1
4
6
 
1
1
3

.
0
0
 
.
0
0
0
 
.
0
0
 
.
0
0
0

__
U

n 
.0

50
 .0

41
 .0

13
_
.
.
m
 
.
0
6
9
 
.
0
5
3
 
.
0
4
3

--
00

--
 .0

68
 .0

52
 .0

54

.
0
0
 
.
0
0
0
 
.
0
0
 
.
0
0
0

__
'm

 .0
80

 .0
63

 .0
12

__
m

_ 
.1

04
 .0

75
 .0

36
--

--
--

 .1
05

 .0
73

 .0
43

.l W

.
0
0
 
.
0
0
0
 
,
0
0
 
.
0
0
0

-
.
0
6
7
 
.
0
1
2
 
.
0
0
8
 
.
.
0
0
5

-
.
0
7
2
 
.
0
1
8
 
.
0
1
2
 
-
.
0
0
8

--
--

--
 .0

31
 .0

20
 ..

01
8

_
_
_
_
u
 
.
0
3
5
 
,
0
2
2
 
-
.
0
2
6

m
__

_ 
,0

38
 .0

22
 .-

03
4

20
3 

.8
4 

.6
9 

.6
9 

,6
8 

.6
8 

m
 0

6 
05

 0
5 

.0
37

 .0
38

 .0
32

 .0
25

 2
45

 2
22

22
62

48
 .0

15
 .0

20
 .0

17
 .e

m
 3

30
 1

37
 1

39
07

1 
.u

u_
 .0

16
 .0

04
 -

.0
04

Fi
. G

eo
rg

e,
 F

L
K

oj
im

a&
lI

un
l8

0 
2 

I 
.7

4.
74

.7
4.

74
 0

0 
00

 0
0 

00
 .0

61
.0

0 
.0

00
 .0

00
2
 
.
8
8
 
.
7
0
 
.
7
3
 
.
7
2
 
.
7
3
 
2
5
0
5
0
5
0
4
 
.
0
3
5
 
.
0
1
8
 
.
0
1
5
 
.
0
0
8

N
O

S 
19

85
 2

9 
.3

5 
.7

2.
72

 .7
0 

.7
1 

--
- 

15
 1

5 
15

 .0
32

 .0
53

 .0
47

 .0
27

3
1
2
 
_
_
u
_
 
-
-
-
-
-
 
-
-
-
-
-
 
.
0
3
8
.
0
0
 
.
0
0
0
 
,
0
0

11
20

74
07

2 
06

3 
. .

04
0 

.0
10

 .0
09

 .0
0

14
70

79
07

40
79

 .0
12

 .0
30

 .0
28

 .0
19

1
4
1
 
.
_
_
n
 
n
_
_
_
 
_
_
_
.

3
2
5
 
3
4
7
 
3
4
5
 
2
4
5

31
70

02
35

82
72

.
0
0
 
.
0
0
0
 
.
0
0
 
.
0
0
0

_
_
m
.
 
.
0
0
5
 
.
0
0
4
 
.
0
0
1

m
m

 .O
O

S 
.0

06
 .0

05



- 44-

r""

,~ .
",

t
i

Figure captions for Chapter 2

Figure 2.1. Diagram of an idealized tidal embayment cross-section: '(x,t) is
surface elevation relative to mean sea level (MSL) at the forced end of the embayment; be

and h are the surface width and cross-sectionally averaged depth of the channel; b is the

total width of the embayment cross-section, including tidal flats which act in a storage

capacity only; bo is the time-averaged width of the embàyment cross-section (at an
elevation not necessarily coinciding with MSL). Elevations hi and h2 are used in
specifying the geometr of the intertdal storage ar. Vercal exaggeration is on the order

of 100:1.

Figure 2.2 Time series of (2.15), the analytic solution to the linearzed zero-inertia

equation, during two tidal cycles calculated at x/L = 1, 0.8, 0.6, 0.4, 0.2, and 0 (x/L = 0

landward): (a) IIkollL = 1/2, (b) IlkollL = 1, (c) IlkollL = 2, and (d) IIkollL = 4.

Figure 2.3. Approximations of Icos(mt + ø + ir/4)I-l/2: (a) exact is solid line;

(ir/2)112(1- (1/3) cos 2(wt+ ø+ ir/4)) is dashed line; (b) exact is solid line; (ir/2)112(1 +
ô cos 2(wt + ø + ir/4)) is dashed line.

Figure 2.4. Time series of (2.40)-(2.41), (2.44), the approximate analytic

solution of the zero-inerta equation with a time-varing diffusion coeffcient, with IIkollL =

1 during two tidal cycles calculated at x/L = 1, 0.8, 0.6, 0.4, 0.2, and 0 (x/L = 0
landward): (a) r= 0.5, and (b) r= - 0.5.

Figure 2.5. Time series of (2.40)-(2.41), (2.44), the approximate analytic

solution of the zero-inertia equation with a time-varing diffusion coefficient, with r= 0.5

during two tidal cycles calculated at x/L = i, 0.8, 0.6, 0.4, 0.2, and 0 (x/L = 0 landward):

(a) IIkollL = 1/2, (b) IIkollL = 1, (c) IIkollL = 2, and (d) IIkollL = 4.

Figure 2.6. Comparisons of numerical solutions to (2.1)-(2.2), the equations of

motion including the inertia terms, with observations at 32 tide gauges in 12 tidal
embayments (see Table 2.3): (a) Mi amplitude divided by M2 forcing amplitude, and (b)

Mi phase (deg.) relative to forcing Mi phase. The solid line is unit slope, std is the
standard deviation of the residuals from their mean, and bias is the mean residuaL.

Figure 2.7. Comparisons of numerical solutions to (2.1)-(2.2), the equations of

motion including the acceleration terms, to numerical and approximate analytic solutions

l
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of the zero-inertia equation for 32 tide gauges in 12 tidal embayments (see Table 2.3): (a)

Mi amplitude divided by Mi forcing amplitude, (b) Mi phase (deg.) relative to forcing Mi

phase, (c) local M4 to Mi amplitude ratio, (d) local M4 to Mi relative phase (deg.), (e)

local M6 to Mi amplitude ratio, and (f) local M6 to Mi relative phase (deg.). Numerical

solution of (2.8), the fully nonlinear zero-inertia equation are circles; (2.40)-(2.41),

(2.44), the approximate analytic solution with a time-varing diffusion coeffcient are
pluses. The solid line is unit slope, std is the standard deviation of the residuals from their

mean, and bias is the mea residuaL.

Figure 2.8. Tidal surface elevation parameters as a function of distance for the

tidal embayments at Chatham (pluses) and North Inlet (circles): (a) Mi amplitude divided

by Mi forcing amplitude, (b) Mi phase (deg.) relative to forcing Mi phase, (c) local M4 to

Mi amplitude ratio, and (d) local M4 to Mi relative phase (deg.). Field observations are

dotted lines; numerical solutions to (2.1 )-(2.2), which include the inertia terms, are solid

lines; numerical solutions of (2.8), the fully nonlinear zero-inertia equation, are dashed

lines; (2.40)-(2.41), (2.44), the approximate analytic solution with a time-varying

diffusion coeffcient, are dash-dot lines.

Figure 2.9. Comparisons of observations at 32 tide gauges in 12 tidal

embayments (see Table 2.3) to (2.40)-(2.41), (2.44), the approximate analytic solution of

the zero-inertia equation with a time-varing diffusion coefficient: (a) Mi amplitude
divided by Mi forcing amplitude, (b) Mi phase (deg.) relative to forcing Mi phase, (c)

local M4 to Mi amplitude ratio, and (d) local M4 to M2 relative phase (deg.). The solid

line is unit slope, std is the standard deviation of the residuals from their mean, and bias is

the mean residuaL.
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Chapter 3:

Stability Shear Stress and Equilibrium Geometry
of Tidal Channels and Tidal Embayments

!L
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Abstract to Chapter 3

This study relates channelized tidal embayment morphology to flow properties via a

physical mechanism, namely the stabilty shear strss (1s) at peak discharge just necessar

to maintain zero grdient in net along-channel sediment trnsport. A surey of the litertur

provides estimates of peak discharge at spring tide (Q), channel cross-sectional area (A)

and hydraulic radius (hR) at 146 sections in 18 separate tidal systems for use in applying

this concept.

A theoretical lower bound on 1s (and an upper bound on cross-sectional geometr)

is provided by the critical shear stress just capable of initiating sediment motion.

Application of crtical shear stress theory predicts along-channel geometr wil follow the

relation AhR1/6 - Q. Along-channel regressions of the form AhR1/6 - Qß give a mean

observed value for ß of 1.01::O.04, which is indistinguishable from one and, therefore,

consistent with critical shear stress theory. However, the equation AhR1/6 - Q is consistent

with any uniform value of along-channel 1s, and observations indicate 1s in individual

systems can var widely above the value predicted by initiation of sedment motion.

Observed 1s is found to vary among all systems according to the relation 1s =
1. 7 RspO.8 1e, where Rsp (in meters) is spring tidal range, and 1c is the total shear stress at

the initiation of sediment motion. 1s may vary with Rsp because of an associated increase

in sediment supply or because of a correlation between Rsp and characteristic patterns of

discharge asymmetr. Observed deviations from uniform 1s along individual channels are

associated with along-channel variation in the direction of maximum discharge. It is
hypothesized that a convergence in the direction of maximum discharge may cause

deposition, a reduction in A, and a local increase in U = Q/A until a locally increased 1s is

reached which prevents further deposition. Geometres and discharge asymmetres along

several channels are observed to be consistent with this pattern.

Finally, an assumption of uniform along-channel 1s is used to derive equilibrium

along-channel geometres for entie embayments as a function of storage in flats and marsh.

Theoretical predictions are consistent with published observations from Wrecked Recorder

Creek, Virginia, and the Ord River in Western Australia. The mo.-phologic tendency

towards u'1iform 1s has important ramifications concerning classical views of mass and

momentum balances, mechanisms for net sediment transport, and mathematical

formulations of along-channel mixing coeffcients.
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List of symbols in Chapter 3 .

A channel cross-sectional area

b time-averaged embayment width

bo,bL b at x = 0 or x = L

bsJlw b at spring high water

bSLW b at spring low water

d gr diameter

g accelertion of grvity

G specifc weight of sediment in fluid

h cross-sectionally averaged depth

hR hydraulic radius

K eddy diffusivity

L total length of tidal channel

Le tidal excursion length

n Manning's frction coefficient

q discharge

Q peak spring q

Qebb peak spring q during ebb

Qj100d peak spring q durng floo
Robs observed tidal range

Rsp spring tidal range

s.e. standard error

t ti
.r semi-diural tidal period

u velocity

u depth-averaged u

U cross-sectionally averaged u

Uc U at the initiation of sediment motion

w channel width

x along-channel co-ordinate

Z height above bottom

Zo length scale related to bottom roughness

Z amplitude of ,

ZO,ZL Z at x = 0 or x == L.
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List of symbols in Chapter 3 (continued)

a regression coeffcient for A - Qa

ß regression coeffcient for AhR1/6 - Qß

i1! errr in generic varable or function!

, tida elevation

/( von Karan's constant

¡b,¡z constat descrbing exponential varation of b or Z
p fluid density
CJb,CJz constant descrbing power-law varation of b or Z

1 total bottom shear stress

l' grain shear stress

1" form drg

1e 1 at the initiation of sedment motion

1'e l' at the initiation of sediment motion

1e erosion shear stress for cohesive mud
l' 6 1'e on channel bank of slope e

1s stability shear stress

VIe crtical Shields pareter
(i tidal frequency

n spring tidal prism
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3.1. Introduction

Feedback between tidal channel morphology and tidal flow properties has long been

recognized by coastal engineers and geologists (see text by Bruun 1976, for example).

Deepening of tidal channels by dredging may reduce peak tidal velocity to a level below that

necessar for sediment transport, causing accelerated deposition and an eventual return to

an equilbrium channel depth. In contrast, a reduction of tidal prism by infillng or diking

of marsh or lagoons may reduce velocities at a tidal inlet and cause deposition, leading to a

smaller equilbrium cross-sectional area. Changes in channel morphology can occur on

rapid time scales, with inlet cross-sectional area fluctuating by 10-15% over only a few

days in response to varations in discharge due to storms or the spring-neap cycle (Byre et

al. 1975). Geologists have also noted the long-term impact on channel morphology of

changes in tidal prism brought about by submergence or emergence of the tidal watershed

(Gardner and Bohn 1980).

Qualitative effects such as these have motivated many"investigators to relate
empirically the cross-sectional area of tidal channels and/or inlets to flow parmeters, most

commonly to spring tidal prism (e.g., O'Brien 1931) or to peak spring discharge (e.g.,

Chantler 1974). For short inlet channels connecting bays or lagoons to the ocean, these

empircal controls have been synthesized with hydrodynamic relations, resulting in stabilty

curves for inlet cross-sectional area (e.g., Escoffer 1977; van de Kreeke 1990). Relatively

less attention has been paid to the morphodynamics of longer tidal channels typically

associated with the interiors of tidal marshes and with the lower reaches of tidal rivers. Yet

morphodynamic relations for these channelize tidal embayments are arguably simpler and

more closely related to fundamental physics. Tidal channels well within embayments are

isolated from the complicating effects of direct wave attack and littoral drft and are
gener~lly subjected to less severe spatial gradients in tidal amplitude and phase than are

channels within tidal inlets.

The purpose of this study is to relate channelized embayment morphology to flow

properties via a physically-based mechanism, namely the "stabilty" shear stress (1s) just

iiecessary to maintain a zero gradient in net along-channel sediment transport. It is
assumed that if the peak shear stress during spring tides is locally greater than 1s. then net

erosion wil occur, whereas if it is less than 1s there wil be net deposition. At first the
problem is simplified by assuming stability is reached when grain shear stress is
everywhere equal to the critical level necessar for initiation of sediment motion. Resulting

L_
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theoretical relations between cross-sectional area and peak sprig discharge are compared to

observations from the literature taken at 146 cross-sections in 18 separate tidal systems.

Next, likely causes of observed deviations from this simplest application of 1s theory are

discussed. Among tidal channels, increases in 'rs above that predicted by initiation of

sediment motion are found to be correlated with increased tidal range. Along-channel

varations in 'rs are hypothesized to result from systematic along-channel patterns of
velocity asymmetr. Finally, the above morphologic controls are combined with continuity

of fluid flow to predict equilbrium along-channel geometries for entire embayments.
Geometrc predictions for entire embayments are compared to observations from two

systems which have previously been the subject of morphodynamic investigations, namely

Wrecked Recorder Creek, Virginia (Myrck and Leopold 1963), the Ord River in Western

Australia (Wright et ale 1973).

The present application of 1s theory to tidal channel morphology involves several

simplifying assumptions. Prmar among them is the assertion that bottom shear stress can

be related to the cross-sectionally averaged amplitude of the current. This requires density-

drven currents to be at most second-order, but does not require fresh water discharge to be

zero or even negligible. It is also assumed that contrbutions to bottom stress by wind-

driven currents and waves are negligible. Hence this analysis does not address the
equilbrium morphology of inlet channels exposed to significant wave activity and/or littora

drft. Another limitation of the present argument is its emphasis on non-cohesive sediment.

The simplest form of 1s theory relies in part on the Shields entrainment function for the

initiation of grain motion (e.g., Yalin 1977) and other relations based exclusively on non-

cohesive materiaL. However the Shields criterion can be replaced with another critical

erosion parameter based on studies of cohesive sediment (e.g., Dyer 1986), and the
fundamental results stil remain.

3.1.1. Previous observations of equilibrium tidal channels

A survey of the literature (Table 3.1) reveals about a dozen observational studies

which quantitatively relate cross-sectional morphology to flow along tidal channels or

through tidal inlets sheltered from offshore wave activity. Many of the authors in Table 3.1

noted cross-sectional area (A) to be nearly proportional to either spring tidal prism (.Q) or

peak discharge (Q) through relations of the form

A - .Q a or A _ Qa, (3.1.1a,b)

L
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where a"" 1, and A corresponds to the time of peak Q. If discharge is assumed to be

sinusoidal, then

Q=1rl2T . (3.1.2)

where T is the tidal period, and the two relations in (3.1.1) become interchangeable.

However, time-series of discharge in tidal channels are often strongly asymmetric,

especially in channels having large amplitude-to-depth ratios and in the upper reaches of

well-mixed channels having finite fresh-water input. For the purpses of this study, direct

observations of Q are preferable to estimates calculated via (3.1.2).

Figure 3.1 contains values for Q and A determined from information published in

the sources listed in Table 3.1. The discharges in Figure 3.1 are (in order of preference)

either (i) taken directly from published values of Q, (ii) calculated from published values of

cross-sectionally averaged peak velocity, U, such that

Q=AU, (3.1.3)

or (iii) calculated from published values of l2 via (3.1.2). Here Q is (ideally) defined as the

magnitude of maximum discharge under spring tide conditions. Where Q corresponds to a

known stage of the fortnightly cycle other than spring, then Q is scaled by the ratio of the

mean spring tidal range (Rsp) to the range at the time of the discharge measurement (Robs)'

Rsp is taken either from the sources in Table 3.1, from N.O.A.A. tide tables, or from
information on V.S.D.M.A. bathymetrc chars. Where tides are of the mixed type (i.e.,

San Francisco and Oregon in Table 3.1), Rsp is defined as the difference between mean

higher high water and mean lower low water. Errors in Q are estimated to be on th.e order

of 20%.

Wherever possible, A is the area of the wetted cross-section at the time of Q. More

often, however, the precise area at the time of Q is unavailable, and the cross-sectional area

below mean tide level is used instead. Nonetheless, errors in the measurement of A are

likely to be smaller than errors in the measurement of Q. Here A is estimated to be accurate

to within 5%. Table 3.1 includes only locations for which values for cross-sectionally

averaged depth (h) are also available. All but two of the sources in Table 3.1 include h

directly (or at least width, w, so that h = A/w can be calculated). Widths for the Western

ScheIdt sections were taken from Gerrtsen et al (1991), and widths for the sheltered
Australian inlets were obtained from V.S.D.M.A. charts H.O. 3451 and N.O. 74183.
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Finally, the seaward-most cross-section of several of the channels (Alsen, Siletz, Yaquina,

Western ScheIdt, and Ems) were purposely excluded from the analysis because of clear

morphodynamc alteration by ocean waves and assocated littoral drft

3.1.2. Previous explanations for proportionality of area and discharge

Published explanations for the near proportionality of A and Q in tidal channels

include maximum entropy (Myrck and Leopold 1963; Wright et al. 1973), uniform crtical

velocity (Chantler 1974; Riedel and Gourlay 1981; Byre et al. 1981), a form of 1s theory

based on plane bed flow (de long and Gerrtsen 1985), or merely agrement with previous

empirical relationships (Goowin et al. 1970; O'Connor et al. 1991). From an analogy to

thermodynamics, the maximum entropy hypothesis states that tidal channel geometr
adjusts toward a uniform distrbution of energy dissipation and a minimum rate of work in

the system as a whole. Uniform energy dissipation can be re-expressed as a uniform

distrbution of shear stress, a concept which is consistent with the present study. Minimum

work, however, is not connected directly to the equations governing tidal flow and
sediment motion. Thus the maximum entropy hypothesis wil not be pursued further in

this paper.

In its simplest form, the critical velocity (Ud hypothesis states that A adjusts until a

characteristic cross-sectionally averaged U = U e causes a bottom shear stress just capable

of dislodging material from the channel bed and banks (Chantler 1974). If U " Ue, net

erosion wil increase the section's area, and U wil decrease. Conversely, if U c( Ue, net

deposition wil decrease the section's area, and U wil increase. This concept is more
properly termed critical shear stress theory since bottom shear stress, rather than U, is

dynamically linked to initiation of sediment motion. In open channel flow, boundar shear

stress is strongly dependent on U and weakly dependent on depth (Henderson 1966).

Thus Ue should var weakly as a function of depth among tidal channels as well as along

the length of individual èhannels. In fact, the mean value of a in Table 3.1 is a bit less than

one, suggesting a slight decrease in U typically occurs as Q and depth decrease together

along the length of individual channels.

Krshnamurthy (1977) applied a criterion related to critical shear stress theory to his

study of tidal inlet morphology in the absence of littoral drft. Krshnamurthy suggested

that for morphologic equilibrium, the time-averaged magnitude of bottom shear stress in the

inlet should be no greater than the critical value required for sediment motion In the study

of bed load transport by tidal curents, however, it is generally agreed that the peak value of

L
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bottom shear stress is a more relevant parameter than its time-averaged magnitude (e.g.,

Bruun 1967; Pingre and Griffiths 1979).

The form of 1s theory applied by de long and Gerrttsen (1985) was originally

developed for tidal inlets subject to significant littoral drft (Bruun and Gerrtsen 1960;
Bruun 1967). Bruun (1967) observed U to be 1 m/s j:l5% at seventeen sandy inlets of
varous sizes distrbuted across nortern Eurpe and the east, west and Gulf coasts of the

United States. According to Bruun, A adjusts until the tota bòttom shear strss produced

by U flushes away the most possible sediment with the least possible frictional loss. In

many inlets, U = 1 m/s is just sufficient to flatten dunes and produce a plane bed, thereby

applying the maimum porton of available total shea strss directly to the bottom materiaL.

A similar mechanism may apply to tidal channels which are subjected to large inputs of

sediment. However a stabilty theory based solely on plane bed flow is inadequate for a

generalized study, for U is well below 1 m/s in many stable tidal channels.

3.2. Stabilty shear stress given by critical shear stress

In this study, shear stress (1s) is defined as the total bottom shear stress just
necessar to maintain a zero along-channel gradient in net sediment transport. The lower

bound on 1s can be derived from the condition l' = 1'c, where l' is maximum grain shear

stress and 1'c is the critical grain shear stress necessary for initiation of sediment motion.

This end member is the simplest form of 1s theory and is also known as critical shear stress

theory. In this section, previous applications of critical shear stress in unidirectional flow

are briefly reviewed. Critical shear stress theory is then applied to the equilibrium
geometr of tidal channels. Finally, theoretical predictions of cross-sectional geometry
versus discharge are compared to observations from 146 cross-sections in i 8 separate tidal

systems.

3.2. i. Insight from unidirectional flow

Critical shear stress theory has long been applied to the design of stable canals
under conditions of unidirectional flow (e.g., Lane 1955; Henderson 1966). Where zero

scour of the canal beds and banks is desired, the limiting design condition is that l' is no

greater than 1'c at any point of the channel boundar. However, more recent investigations
of self-formed sand channels (Parker 1978; Diplas 1990) indicate a dynamic equilbrium is

possible only if i' is slightly greater than r'c, therefore allowing the presence of a small but

finite bedload. This is inconsistent with a critical shear stress theory based solely on the
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initiation of sediment motion, in that l' " 1'c should cause erosion of the channel banks and

instabilty. To allow l' " 1'c while maintaining equilbnum, a lateral diffusion mechanism

supplements the crtical shear stress model (parker 1978; Diplas 1990). In the presence of

finite bed load trnsport, lateral diffusion of momentum due to turbulence continually

moves grains from the channel axis toward the channel banks, counteracting the bank

erosion caused by 'f' "1'c. Laboratory experiments with self-formed sand channels
confin that at equilbrium, l' along the channel axis is up to 15% greater than 1'c (Diplas

1990).

In this investigation it is assumed that a single representative value for crtical shear

stress may be reasonably applied to the entire perimeter of the tidal channeL. Actually,1'c

wil be somewhat lower on steep portions of the channel ban due to the disturbing force of

the grain's weight resolved down the bank slope. A balance of forces on a non-cohesive

grin shows that the shear stress forinitiationof motion on the bank (1'8) relative to that on

a flat bed (1'c) is given by

l' V 2-l = cos 8 1 _ tan 8, ,1 c tan2ø (3.2.1)

where 8 is the bank slope angle, and ø :: 30' is the angle of repose of the sediment

(Henderson 1966). The derivation of (3.2.1) requires the dynamic lift force on the grain to

be small with respect to the drag force, an assumption consistent with the results of

laboratory experiments (Ikeda 1982). The mean width-to-depth ratio of cross-sections

used in Figure 1 is 150, so the (larger than bedform scale) slope of the channel bed may be

assumed to be negligibly small over the vast majority of any typical section.

3.2.2. Application to tidal channels

Critical shear stress theory is used to constrin the form of equilibrium tidal channel

cross-sections as a function of discharge via the following steps: (i) relating U = Q/A to

total bottom shear stress, 1, (ii) relating 1 to grain shear stress, 1', and (iii) requiring l' =

1'c at equilbrium.

If flow is assumed to be steady, two-dimensional, uniform and fully rough

turbulent, then the familiar log-layer solution can be derived via dimensional analysis (e.g.,

Yalin 1977):

u = 1 A rr In (.L)K 'V P zo' (3.2.2)
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where 1\ = 0.4 is von Kanan's constant, p is fluid density, Z is height above the bottom,

and ZQ is a length scale related to the bottom roughness. Integrating (3.2.2) over the depth

of the water column, h, gives

u = l ~ IT In (-L)/( -y P ZQ e ' (3.2.3)

where u is depth-averaged velocity. If 1 is constrained to equal some critical value at

equilbrium, (3.2.3) indicates that depth-averaged velocity should decrease weakly with
deceased h.

An alternative equation for well-behaved flow in open channels is given by the

more empirically based Manning-Strckler formula (e.g., Henderson 1966):

U = Q = l- ~ -i hR 1/6A n Pg , (3.2.4)

where g is the acceleration of grvity, n is Manning's friction coeffcient (with metrc units

of m-1/3s), and hR is the hydraulic radius of the channeL. Whereas (3.2.3) assumes
. uniform two-dimensional flow, (3.2.4) is based on observations of three-dimensional flow

in natural rivers and large man-made channels. The form of (3.2.4) inherently incorprates

the effects of cross-channel depth varations and channel bends. Furthermore, 1 in (3.2.4)

can be treated as a charcteristic total bottom shear stress for the cross-section as a whole.

Thus (3.2.4) wil be used in this study to relate U to 1. According to Henderson (1966,

Table 4-2), typical values of n for natural rivers are 0.025 to 0.030 m-1Is for "clean and

straight" channels and 0.033 to 0.040 m-1Is for those that are "winding, with pools and

shoals". A reasonable value of n for equilbrium tidal channels, then, should be about

0.03:t0.005 m-1Is.

Following the suggestion of Einstein (1950), total shear stress (1) is typically
related to grain shear stress (1') by 1 = l' + 1", where 1" is bedform drag. A survey of the

literature reveals relatively few direct measurements of the ratio 1'/1 over naturally formed

bedforms (Table 3.2). The few values that have been reported over sand range widely

from less than 0.1 to nearly 0.7. Some of the disagreement in Table 3.2 results from the

precise location of measurement. Kapdasli and Dyer (1986) measured 1'/r directly above

the ripple crest, where 1" is largest. The other measurements in Table 3.2 are spatially

averaged. In their review paper, Engelund and Fredsoe (1982) suggest that when l' is

only slightly greater than 1'e, 1'/r = 0.5 in the presence of ripples and 1'/r = 0.3 in the



- 66-

presence .of dunes. Since spatially averaged values of 1'/r are needed here, a reasonable

estimate for tidal channels in non-cohesive sand should be 0.4:1.2.

For uniform, non-cohesive sediment under rough turbulent flow, dimensional

analysis indicates the following relation should hold at the initiation of sediment motion

(e.g., Yalin 1977):

V'e =
l' e

pgGd' (3.2.5)

where G is the specific weight of the sediment in fluid, d is the grain diameter, and the

dimensionless constant V'e is the crtical Shields parameter. Experimenta work by Shields

(in Yalin 1977) indicates V'e = 0.05:t0.0L. Combining (3.2.4) and (3.2.5) by setting l' =
1'e finally gives the following upper bound on equilbrium cross-sectional geometry as a

function of discharge and other "independent" varables describing sediment and roughness

characteristics:

A hR1/6 = Q n (P g)l/2,, 1e (3.2.6)

where the total crtical shear stress, 1e, is given by

1e = lte P g G d (¿-) . (3.2.7)

3.2.3. Comparson to observations

To compare (3.2.6) to the observations in Figure 3.1, several additional
assumptions are necessar. The density of the sediments is assumed to be well represented

by quarz, for which G = 1.65. Because of the large width-to-depth ratio of the channels,

it is reasonable to equate hR to the mean depth of the cross-section, h. Errors in Q are

estimated to be 20%, whereas A and h are assumed accurate to within 5%. Likely varance

in nand 1'/r are somewhat larger, as discussed in the previous section. However the least

constrined varable is d.

Table 3.3 lists the few sources from Table 3.1 which provide bottom sediment

information. Four sources indicate fine-to-medium sand bottoms, one indicates cohesive

mud, and one indicates bottom sediment which is "highly organic and black and has a

texture not immediately obvious in the field" (Myrck and Leopold 1963, pA). Of course

(3.2.7) is not relevant to mud bottoms, for which the issue of cohesion must be addressed,
and likewise for "highly organic" sediment. In applying (3.2.6) - (3.2.7) to the four
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systems wtth bottom sediments that are known to be non-cohesive, reasonable

approximations for d are used (Table 3.3). Otherwise, d = 2:tl phi is chosen, where phi =

-log2(d in mm). This choice is centered at d = 0.25 mm, and includes the range typically

defined as fine to medium sand (1/8 to 1/2 mm). Using d = 2 phi, along with p = 1()
kg m-3 and the previously discussed values for VIe, G and r'/r, gives 1e = 0.5 N m-2 with

upper and lower error bounds of 0.1 N m-2 and 1.1 N m-2, respectively.

If crtical shear stress theory is applied to cohesive sediment, a first-order result is

given by evaluating (3.2.4) using the magnitude of critical erosion shear stress (1e)
typically observed above mud bottoms (e.g., Pareniades 1965; Dyer 1986). According

to Dyer (1986), the thin layer of loosely held mud flocs typically found at the surface of

quiescent mud bottoms generally erodes at 1:: 0.1 N m-2. Once this layer has been
suspended, the underlying mud deposit generally has a 1e of about 1 N m-2. Setting 1 = 1e

in (3.2.4) gives the following expression for cross-sectional geometr:

(pg)l/2A hR1/6 = Q n 1e . (3.2.8)

In evaluating (3.2.8), n is again chosen to be 0.03:t0.005 m-1/3s, since the

application of Manning's n to natural channels appears to be insensitive to bottom sediment

type within the mud to sand range (Henderson 1966). Partheniades (1965) found rapid

erosion of San Francisco Bay mud occurred after a cntical shear stress of about 0.5 to 1.3

N m-2 had been exceeded. Thus 1e is chosen here to equal 0.9:tOA N m-2. Equation

(3.2.8) admittedy neglects the role of bedform drg. However the value of r'/r applied to

(3.2.6) - (3.2.7) is for non-cohesive sand only and cannot confidently be used in deriving

(3.2.8).

Figures 3.2 and 3.3 display (3.2.6) and (3.2.8), along with error bounds, super-
imposed on the field observations. The propagation of normally distrbuted, random error

in (3.2.6) and (3.2.8) is determined by the relation (e.g., Young 1962):

tif2 = (~t ti 2 + (~)2 tib 2 + ... (3.2.9)

where tif is the error in/. tia and ti are the errors in a and b, andf = f(a,b, ...). For the

error bounds in cures in Figure 3.2, uncertainty is considered in both the abscissa and the

ordinate. Thus

f = A ~R~/6 (p1~ f/2 . (3.2. 10)

1
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Applying (3.2.7) then gives

(71 = (~: r + i-(~:: t + (~gr + (~r + l(~t .
(3.2.11)

The error analysis for Figure 3.3 is identical, replacing 'te for 'te.

Within error bounds, (3.2.6) roughly predicts the geometrc parameter AhRl/6 as a

function of Q and the other "independent" varables (Figure 3.2). More than half of the

cross-sections fall within the error bars of (3.2.6). However most of the sections fall
below the line predicted by (3.2.6), and many fall entirely below the range of the likely

error. As was earlier emphasized, crtical shear stress theory only provides a lower bound

on 'ts and, therefore, an upper bound on equilbrium geometr. It is reassuring to note that

none of the observations in Figure 3.2 fall above the errr bounds.

~1

)1

c'l

ii
,

The error bounds on (3.2.8) encompass fewer of the observations (Figure 3.3).

Again, available information (Table 3.3) suggests the majority of the tidal channels in Table

3.1 are not formed in cohesive mud. However (3.2.8) also under-predicts AhRl/6 for

many cross-sections, including most of those known to be floored by cohesive material

(Figure 3.3). Thus 'te may be an overestimate of the 'ts appropriate to some mud channels.
Except for the error bounds, (3.2.6) and (3.2.8) produce similar curves. This explains
why (3.2.6) in Figure 3.2 also encompasses the cross-sections known to be formed in

cohesive material.

Thus critical shear stress theory provides a reasonable upper bound for the
observed relationship between peak discharge and cross-sectional geometry of tidal
channels, at least for channels in non-cohesive sediment. For both cohesive and non-

cohesive sediment, the theory predicts that at equilibrium, tidal channel geometr will
follow the relation

AhRl/6 - Q. (3.2.12)

If regressions of the form AhRl/6 - Qß are applied to the individual systems in Table 3.1,

then the mean value for ß is L01:!0.04 (Table 3.4). This value is indistinguishable from

one and, therefore, consistent with critical shear stress theory.
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3.3 Deviations of stabilty shea stress from critical shear stress

3.3.1. Deviations among channels

Cross-sections from systems having small Q fall about evenly on either side of

(3.2.6) and (3.2.7) in Figures 3.2 and 3.3. However cross-sections with larger Q fall
consistently below the theoretical cures. Ths qualtative trend-is confied statistically if

a least-squares regression of the form AhR1I6 - (Q'te.I12lfJ is performed on all the cross-

sections at once. ('te.l12 is included in the regression because 'te can var between systems

as a function of d.) The regression shows ß = 0.9(l.01, rather than ß = 1 as predicted by

critical shear stress theory . Yet the mean along-channel value for ß is statistically
indistinguishable from one (Table 3.4). This supports a second form of 'ts theory, namely

that 'ts tends to be uniform throughout anyone channelized tidal embayment, but may have

a value grter than that required for initiation of sedment motion.

Even though large Q is associated with over-prediction of AhR1I6 in Figures 3.2

and 3.3, Q is probably not the variable directly responsible for the observed deviation. If

the misfit were directly a result of increasing Q, then along-channel varations in Q, which

can be several orders of magnitude, should also cause ß c( 1. Here it is postulated that
among different systems, consistent deviations from a single theoretical curve are largely

due to differences in spring tidal range. Unlike Q, Rsp is nearly constant throughout
individual systems and is therefore compatible with uniform along-channel behavior of

AhR1/6. Thus the population-wide Q-dependent deviation may largely be the result of a

fortitous correlation between Q and Rsp.

Figure 3.4 displays mean (log-space) deviations from (3.2.6) as a function of Rsp

for each system in Figure 3.2 along with the best-fit log-log least-squares regression. The

best-fit curve with standard errors is (with Rsp in meters):

A h 1/6 ( ) 1/2
QRn :~ = (0.77 :to. 

B) Rsp -O.39:tO.14 . (3.3.1)

Or equivalently,

(p g) 1/2
A hR 1/6 = Q n 'ts ' (3.3.2)

where

'ts = (1.7:t0.4) RspO.8:O.3 'tc . (3.3.3)
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Since 'te has already been shown to provide a reasonable lower bound on 'ts, it is sensible

to apply (3.3.3) only to those systems with tidal ranges large enough to give is ~ 'te. Thus

(3.3.3) applies only to systems with Rsp " -0.5 m. Tidal channels with Rsp $ 0.5 m can
be expected to have a system-wide 'ts about equal to 'te. For systems with Rsp " 0.5,

however, system-wide 'ts tyically increases as a function of Rsp.

Figure 3.5 displays (3.3.2) - (3.3.3) superimposed on all of the field observations,
with error bounds again determned via (3.2.9). The observations in Figure 3.5 fall about

evenly on either side of (3.3.2), suggesting (3.3.2) provides a reasonable mean value for

cross-sectional geometry as a function of discharge, not just an upper bound. If a
regression of the form AhR1/6 - (Q'ts-ll2)ß is performed on all the cross-sections, the result

is ß = 0.95:t.OL, which is significantly closer to one. Propagation of error in (3.3.2) -

(3.3.3) is a function of tidal range, which cannot be shown directly on Figure 3.5. The
error bounds in Figure 3.5 are therefore determined by averaging the error bounds given by

(3.3.2) - (3.3.3) for each observed tidal range.

Stabilty shear stress may var with Rsp pary due to the nature of the analysis used

in this study. It is possible that the methods used overestimate the value of Q most relevant

to equilbrium morphology in channels with large Rsp and underestimate the most relevant

Q in those with small Rsp' First, the ratio of spring to mean tidal range generally increases
with tidal range. On the Potomac (Rsp = 1 m) spring range is only 10% greater than the

mean range, whereas on the Tamar (Rsp = 4.7 m) it is 36% greater, and on the U sk (Rsp =

12 m), it is 45% greater. If the most relevant discharge is actually a weighted average of all

discharges, then use of spring discharge alone wil tend to overestimate 'ts in channels with

large tide ranges. Second, systems having small tide ranges may be more sensitive to

morphologic change by non-tidal forces. The occasional flood or storm surge is more

likely to overfow the banks of a smaller tide range channel and cause more severe erosion.

Neglecting non-tidal forces may underestimate the most relevant Q (and thus underestimate

AhR1/6) in channels with small tide ranges.

Stability shear ~tress may also be a true function of spring tidal range. Salt
marshes, which often act as sediment trps, are sensitive to tide range and generally do not

extend below about one meter of the mean high water line (Frey and Basan 1985). The

larger the tidal range, the smaller the relative area of sediment-trapping marsh and the larger

the likely expanse of exposed sediment in intertidal flats. These properties may result in a

greater sediment supply to the channels. The relative "clogging" of the channel with
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sediment may decrease cross-sectional area and increase U = Q/A until a 'ts " 'tc is re~ched

which can disperse the sediment as fast as it is supplied. Tide range is also associated with

characteristic patterns of tidal distortion, which, in turn, should favor increased or
decreased channel cross-sectional area at equilbrium. All else being equal, channels with

small tide ranges tend to be ebb-dominant, whereas channels with large tide ranges tend to

be floo-dominant (Friedrchs and Aubrey 1988; Chapter 2 of this thesis). Ebb-dominant

channels wil tend to flush sediment out of a system more effectively, decreasing the level

of 'ts otherwise needed to prevent shoaling. Flood-dominant systems wil tend to trap

sedment within a tidal channel, increasing the needed level of'ts.

3.3.2. Along-channel deviation

An assumption of uniform 'ts along the length of individual tidal channels leads to

the relation AhR1I6 - Q. Along-channel deviations from AhRl/6 - Q are measured by a

least-squares fit of AhR1/6 - Qß to the cross-sectional data from a single system. If ß" 1,

AhRl/6 wil be larger than predicted near the seaward end of the channel where Q is high

and smaller than predicted near the landward end of the channel where Q is low. If the

channel is stable, then ß" 1 also implies that 'ts decreases in a seaward direction. If ß c( 1,

then the opposite is tre, and 'ts decreases in a landward direction. In the previous section

it was suggested that ebb- or flood-dominant discharge could cause an entire system to

have a higher or lower 'ts' In this section it is suggested that along-channel varations in

discharge asymmetr can lead to along-channel varations in 'ts'

If the seaward portion of a tidal channel is flood-dominant while the landward

portion is ebb-dominant, then a spatial convergence in the direction of maximum discharge

wil cause a localized increase in sediment concentration. This process has been

documented previously as a "tidal turbidity maximum" in such tidal rivers as the Gironde in

France (Allen et al. 1980) and the Tamar in the U.K. (Uncles and Stephens 1989; Stephens

et al. 1992). Seaward of the turbidity maximum, flood-dominance brought about by a

large tidal range-to-depth ratio favors landward movement of sediment; landward of the

turbidity maximum, ebb-dominance brought about by fresh water discharge favors seaward

movement of sediment. The resulting turbidity maximum is observed to migrate along-

channel as seasonal variations in fresh water discharge cause displacement of the
convergence point.

Both Allen et aL(1980) and Stephens et al. (1992) used I-D numerical models to

study the hydrodynamics associated with tidally-induced turbidity maxima. When using
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realistic alo.ng-channel geometres from the Gironde and the Tamar, both of their models

predicted a localized increase in maximum shear strss associated with a rapid constrction

in cross-sectional area. In each case, maximum shear stress was predicted to decrease
landward and seaward of this point. For both the Gironde and the Tamar this fixed region

of increased shear stress was found to be in the general vicinity of the previously observed,

migrating turbidity maximum. Both studies suggested that this local increase in shear

stress may enhance resuspnsion in the vicinity of the migrting turidity maximum.

Here it is argued that the tidal turbidity maxima and locally increased stress are

morphodynamically related and may help explain observed deviations from ß = 1 along

some stable tidal channels. Evolution towards equilbrium might proceed as follows:
First, an along-channel switch from ebb- to floo-dominance favors collection of sediment

at a tidal turbidity maximum. Then deposition at the turbidity maximum reduces cross-

sectional area, locally increasing U = QIA and, therefore, increasing maximum bottom

shear stress. Ultimately, A is decreased until a 'ts is reached which prevents further
deposition and effectively disperses sediment as fast as it is supplied. At equilbrium, 'ts
wil decrease both seaward and landward from the transition from flood- to ebb-
dominance.

If a stable channel is examined seaward of the switch from ebb- to flood-
dominance, then a seaward decrease in 'ts should cause ß " 1 and be associated with flood-

dominant discharge. Conversely, a decrease in 'ts landward of the trnsition should cause ß

c( i and be associated with ebb-dominance. The larger the tidal range, the farher inland

this transition from ß" 1 to ß c( 1 should occur, and the more likely a fit to all the cross-

sections wil give ß" 1. These trends seems to borne out by Table 3.4 which indicates that

the six channels with Rsp " 4 m all have ß ~ 1. Of these six channels, sufficient
information is available to calculate ratios of flood-to-ebb peak discharge (QjloodIQebb)

along the Ord, Western ScheIdt and Tamar. Average values for QjloodiQebb at sections

along these three tidal channels are 2.0, 1.5 and 1.2, respectively, confirming an

association of floo-dominance with ß" 1. The relatively low value of ß = 1 for the high

tide range Thames (Rsp = 5.2) may be due to a sampling of cross-sections on both sides of

the transition from floo- to ebb-dominance. Figure 5.6 displays AhR1/6 as a function of Q

for the Thames as predicted by (3.3.2) - (3.3.3). A least-squares fit of AhR1/6 - Qß to the

seven most seaward sections gives ß" i, while a fit to the three most landward sections

gives ß c( 1.

I
i
i
I
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All of the tidal channels subject to tides of mixed typ (San Francisco and the three

Oregon channels), have ß c( i (Table 3.4). This may be due to a systematic association of

mixed tides with ebb-dominance. In a mixed-tide regime, the lower low tide usually

follows the higher high tide, causing the largest changes in tidal elevation to occur
consistently during the ebb. However this consideration is merely speculative. The

unusually low values for ß in the Oregon channels could also result from choking of the

seaward end by littoral drft even beyond the most seaward cross-section (the seaward-

most section of each Oregon channel has aleady been dropped from the analysis).

3.4. Application to embayments

In this section uniform along-channel 'ts theory is used to derive equilbrium along-

channel geometres for entire embayments. If the embayment length is much less than the

tidal wavelength, then continuity of fluid flow may be applied kinematically to determine

along-channel discharge as a function of intertidal storage in areas such as tidal flats or

marshes. A known distrbution of along-channel discharge then can be combined with

results from the previous section relating AhR1/6 to Q. In the following sub-sections

relations for embayments with exponential and power-law storage areas are first denved

theoretically and then compared to observations from actual exponential and power-law

embaymems, namely Wrecked Recorder Creek, Virginia (Myrck and Leopold 1963) and

the Ord River in Western Australia (Wright et aL. 1973).

3.4.1. Theory

In tidal channels where the length of the tidal wave is much greater than the length

of the channel, spring tidal elevation (0 and discharge (q) at the dominant tidal frequency

are reasonably described by

, = Z(x) cos Wt, and q = Q(x) sin Wt , (3.4.1)

where w = 2ir, and x = 0 at the landward end of the embayment. Any contrbutions from

fresh water discharge are neglect~d. The linearized continuity equation for channelized

flow in tidal embayments with intertdal storage in flats or marsh is given by

b êK + aq = 0at ax ' (3.4.2)
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where b is the time-averaged total system width (including storage regions), and q is

confined to the centrl ~idal channeL. Substituting (3.4.1) into (3.4.2) then gives

b Z ro = dQ, or Q = ro J x b Z dx' .d. 0 (3.4.3a,b)

When evaluating (3.4.3), tidal embayments are consi,dered with observed b(x) and

Z(x) which may be crudely described either by a power law, Le.,

b = bL (f)Gb, and Z = ZL (f)CTZ, (3.4.4a,b)

or by an exponential relation, i.e.,

b = bo eÀbx/L. and Z = Zo eÀzxlL. (3.4.5a,b)

(Figure 3.7). The subscripts 0 and L indicate values at x = 0 and x = L, and (Jb, Îib, (Jz and

Îi are dimensionless constants describing the rate of expansion of the storage area and rate
of growth of tidal amplitude with distance.

Introducing (3.4.4) and (3.4.5) into (3.4.3b) and integrating gives

Q = roLZLbL (.I)(Gb+ 

CTz + 1)

((Jb + (Jz + 1) L
(3.4.6)

for power-law embayments, and

Q = roLZobo (e(Âb+Â.)xIL - 1)
(Îib + Îiz)

(3.4.7)

for those following an exponential relation. Finally, (3.3.2) is used to eliminate Q,

yielding
AhRl/6 = n (pg)l/2 roLZLbL (.I)(CTb+ 

CTz + 1)

'ts ((Jb + (Jz + i) L
(3.4.8)

and

AhRl/6 = n (pg)1/2roLZobo (e(Àb+Àz)XIL_i)
'ts (Îib + Îiz)

(3.4.9)

for power-law and exponential systems, respectively.
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3.4.2. Comparson to observations

Observations from Wrecked Recorder Creek (Figure 3.8) and the Ord River (Figure

3.9) are chosen for comparison to (3.4.6) - (3.4.9) because of the detailed morphologic

information available (Myrck and Leopold 1963; Wright et al. 1973) and also because of

their reasonable correspondence to idealized power-law and exponential relations for
intertidal storage area. Figure 3.10 displays best fits of (3.4.4) and (3.4.5) to observations

of band Z as a function of along-channel distance. Values for Z along the Ord are
observedM2 amplitude scaled by the ratio Rsp/Robs (see Table 3.1). Wrecked Recorder

Creek is so short that Z is constant along channel, and O'z = O.

Time-averaged widths are calculated as b = (bSHW + bSLW)/2, where SHW and

SLW indicate spring high and low water. Estimates of bSHW are made by dividing the

surface area between each "storage segment boundar" in Figures 3.8 and 3.9 by the length

of each channel segment. bSLW is assumed equal to the average value of w for each

segment. The areal extent of tidal marsh drainage into Wrecked Recorder Creek (Figure

3.8) is inferred from the positions of neighboring tidal Creeks also depicted by Myrick and

Leopold (1963). The areal extent of intertidal flats adjacent to the Ord is clearly shown by

Wright et al. (1973).

Best-fit values for the geometrc parameters in (3.4.4) - (3.4.5) are bo = 430:120

m, Âb = 3.7:t.4, Zo = 0.63:t.23 m and Âz = 1.6:t.5 for the Ord River, and bL = 210:30

m and O'b = O.17:!O.i 0 for Wrecked Recorder Creek. ZL for Wrecked Recorder Creek is

assumed to equal to Rsp/2. Figure 3.11 shows (3.4.6) and (3.4.7) superimposed on

observations of Q as a function of distance along the Ord and Wrecked Recorder Creek.

The M2 tidal period is used to calculate ro, and propagation of error is once more calculated

via (3.2.9). The excellent agreement confirms that the intertidal storage areas of these

systems may be represented adequately by a simple power-law or exponential relations.

The minimal scatter in Figure 3.11 should not be too surprising, however. Because Q(x) is

an integration of b(x), Q(x) wil naturally be "smoother" than b(x).

In order to compare (3.48) and (3.4.9) to observations, 'ts must first be estimated.

From (3.2.7) and (3.3.3),
'ts = 1.7 Rsp 0.8 V'c P g G (:i ) . (3.4.10)
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To evaluate (3.4.10), the same values for 'le, p, G and 'tir that were used in earlier
sections are applied once more. Then the relatively large tidal range (Rsp = 5.9 m) and

coarse sediments (d == 0.35 mm) in the Ord give a prediction of 'ts == 5 N m-2 with lower

and upper bounds of 1 and 10 N m-2. The smaller tide range at Wrecked Recorder Creek

(Rsp = 1 m) and unknown sediment propertes (Le., let the equivalent d == 0.25 mm) lead to

a best guess of t's == 0.9 N m-2 with lower and upper bounds of 0.2 and 1.9 N m-2.

Figure 3.12 shows plots of AhR1/6 predicted by (3.4.8) - (3.4.9) superimposed on

observations from the Ord and Wrecked Recorder Creek. The observed cross-sectional

geometres as a function of distance along-channel are well within error bar and, therefore,

are consistent with the predictions of uniform 'ts theory. The error bars in Figure 3.12 are

based solely on uncertainty in the prediction of 'ts by (3.4.10).. Uncertainty in the estimates

of Q(x) and n have been purposely excluded to emphasize the huge possible range in 'ts.

More accurate predictions of 'ts are not possible without further constraints on such
varables as sediment type, form drag, and the correlation of 'ts with tidal range. Though

the likely magnitude of any system-wide 'ts is poorly constrained, the successful
reproduction of the form of along-channel variation in AhR1/6 supports the concept of a

system-wide nearly uniform 'ts' Further work is waranted to understand better the large

varations in charcteristic 'ts among different tidal channels.

3.5. Further implications of uniform stabilty shear stress

This study demonstrates the tendency of tidal channels to minimize along-channel

varations in U by morphodynamically adjusting toward a uniform distrbution of 'ts.

Uniform U and 't have important ramifications concerning classical views of mass and

momentum balances, mechanisms for net sediment transport, and formulations of along-

channel mixing coefficients.

Morphologic equilbrium directly affects the appropriate scaling of the continuity

equation given by (3.4.2). When modeling channelized tidal embayments analytically, it is

common practice to assume a prismatic channel and express continuity as

b ëK + A au = o.at ax (3.5.1)
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However, a channel near morphologic equilbrium wil have nearly uniform along channel

velocity. Assuming the length of the tidal wave is much greater than the length of the tidal

channel, then (3.4.2) should be approximated more properly as

b ~; + u ~ = O. (3.5.2)

The hydrodynamc implications of (3.5.2) are discussed in Chapter 4 of this thesis.

In the momentum equation, uniform U obviously minimizes the contrbution of

advective acceleration to the momentum balance. In fact, the scaling which allows
formulation of continuity as (3.5.2) also indicates that local acceleration must be much

smaller than the pressure gradient (see Chapter 4). The only term left in the I-D

momentum equation which can balance pressure at lowest order is friction. The result is a

zero-inertia equation in momentum that, when combined with (3.5.2), yields a first-order

wave equation for elevation or velocity. This equation and the form of its solutions diverge

from the classical wave equation for tides and the conventional view of tidal co-oscilation

(see Chapter 4).

Uniform 'ts is also affects classical models for net sediment transport based on

"scour lag" and "settling lag". According to Postma (1961), as a waning current falls

below the speed necessar for sediment suspension, a sediment paricle wil continue to
travel landward because it takes some time for the parcle to reach the bottom (settling lag).

After the turn of the tide, the parcle wil not be re-suspended until later in the tidal cycle

because the bottom shear necessary for resuspension is significantly higher than that
necessary for suspension (scour lag). As long as there is a landward decrease in 't, these

mechanisms wil result in net landward sediment transport. If 't does not decrease
systematically in a landward direction, however (and uniform 'ts theory suggests it often

does not), then settling lag and scour lag wil be about the same on the ebb and the flood,

and these lags wil not cause net sediment trnsport.

Uniform 'ts Rlso impacts the analytic prediction of eddy diffusivities based on the

distrbution of tidal currents and tidal excursions. In tidal estuares, the eddy diffusivity,

K, has been predicted to be proportional to the tidal excursion, Le, times the velocity

amplitude, U (Arons and Stommel 1951). If a short tidal channel is assumed to be
prismatic, then U and Le wil both be proportional to x/L, and, therefore, K - (x/L)2

(Arons and Stommel 1951). If the tidal channel is near equilibrium, however, U and Le
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wil be nearly uniform. Thus K - ULe should be nearly constant along an equilbrium

channel, ratlier than proportional to (x/L)2.

3.6. Summar and conclusions

A surey of the literature allows estimates of peak spring discharge and cross-
sectional geometr at 146 sections in 18 separate tidal systems. Previous explanations for

the near proportionality of cross-sectional area (A) and disch~ge (Q) include maximum

entropy, uniform crtical velocity, and a propensity toward plane bed flow. The purose of

this study was to relate channelized tidal embayment morphology to flow properties via a

more robust, physical mechanism, namely the stabilty shear stress ('ts) just necessar to

maintain a zero gradient in net along-channel sediment trnsport. It is assumed that if 't "

'ts, net erosion wil occur, increasing A, and reducing 't - (Q/A)2 back toward 'ts. If't c( 'ts

there wil be net deposition, reducing A and increasing 'ttoward 'ts.

A theoretical lower bound on 'ts (and an upper bound on A) is provided by the

condition l' = 1'c, where l' is maximum grain shear stress and 1'c is the critical grin shear

stress necessar for initiation of sediment motion. Critical shear stress theory is applied to

equilibrium tidal channel geometry by (i) relating U = Q/A to 'tvia the Manning-Strckler

equation, (ii) relating total shear stress, 't, to l' via empirical ratios observed in the
. literature, and (iii) determining l' = 1'c from the Shields criterion for the initiation of

sediment motion. For cohesive sediments, 'tis assume to equal 'te at equilibrium, where 'te

is the magnitude of crtical erosion shear typically observed above mud bottoms.

Comparson to observations indicates l' = 1'c does a reasonable job of predicting

equilibrium cross-sectional geometr in general and an excellent job of predicting the upper

bound on likely geometr. Error bars on likely geometr are large due to uncertainties in

sediment grin diameter and in the appropriate value for 1'h Except for error bounds, l' =

1'c and 't = 'te produce similar curves. In either case, uniform critical values for 't predict

that at equilbrium, along-channel geometr wil follow the relation AhRl/6 - Q, where hR

is the hydraulic radius. Along-channel regressions of the form AhRl/6 - Qß give a mean

observed value for ß of 1.01:1.04, which is indistinguishable from one and, therefore,

consistent with critical shear stress theory.

Although along-channel geometry agrees, on average, with the prediction AhRl/6 -

Q, the uniform 'ts appropriate to individual systems can var widely above that predicted by

l' = 1'c' Observed 'ts is found to vary among systems according to the relation 'ts:: 1.7
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RspO.8 'te, where Rsp (in meters) is spring tidal range, and 'te is the total shear stress when

l' = 1'e' 'fs may var with Rsp because of the decrease in' sediment-trapping vegetation and

increase in exposed flats associated with large Rsp. An increased sediment supply may

"clog" the channel, increasing the 'ts necessar for effective sediment dispersal. Also,

small Rsp favors ebb-dominance, whereas large Rsp favors flood-dominance. Ebb-
dominance may aid the flushing of sediment, decreasing 'ts, whereas floo-dominance may

enhance shoaling and increase 'ts.

Observed deviations from AhR1I6 - Q along individual channels are associated with

a convergence in discharge asymmetr. It is hypothesized that a spatial convergence in the

direction of maximum discharge may cause net deposition, a reduction in A, and a local

increase in U = Q/A until a 'ts is reached which prevents further deposition. In a stable

channel, 'ts wil then decrease both seaward and landward of the convergence point. If a

regression of the form AhR1/6 - Qß is applied along such a channel, one should find ß" 1

associated with floo-dominance landward of the maximum in 'ts and ß c( 1 associated with

ebb-dominance seaward. Geometres and discharge asymmetres along several channels

are observed to be consistent with this pattern.

An assumption of uniform along-channel 'ts is used to derive equilbrium along-

channel geometres for entie embayments. Assuming the embayment to be short relative to

the tidal wavelength, continuity of fluid flow gives along-channel Q as a function intertidal

storage in flats and marsh. Previously derived relations between AhR1I6 and Q then predict

equilbrium AhR1/6 as a function of distance along channeL. Theoretical predictions are

consistent with published observations from Wrecked Recorder Creek, Virginia, and the

Ord River in Western Australia.

Finally, consideration of uniform 'ts calls into question classical models for first-

order mass and momentum balances, likely mechanisms for net sediment transport, and

analytic expressions for along-channel mixing coeffcients commonly applied to real tidal

channels.
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Table 3.1. Data for tidal channels and shelteredînlets.

Loation Source #of
Sects.

Robs
(m)

Rsl?
(m)

A-Qaa s.e.

Wrecked Recorder Myrck & Lepold 6 1.1 1.0 1.04 0.08

Crk., Virginia, USA (1963), Tab. 3

Creek off San Pestrong (1965), 10 2.4 2.6 0.91 0.07

Francisco Bay, USA Fig. 18

Delaware Bay, Harleman (1966), 5 1.4 1.6 0.92 0.16
USA Tab. 10.5, Fig. 10.9

Barstable* , Redfield (1967), 6 n.a. 3.4 0.91 n.a.

Massachusetts, USA Tab. I

Alsea, Oregon, Goowin et al. (1970), 7 2.6 2.5 0.65 0.11

USA Tab. 1, Fig. 17

Siletz, Oregon,
It 7 2.1 2.5 0.80 0.18

USA

Yaquina, Oregon,
It 8 2.4 2.5 0.83 0.04

USA

Ord, West. Aust., Wright et aL. (1973), 3 5.7 5.9 0.97 0.04
Australia Tab. 1, Fig. 4

Thames, England, Chantler (1974), 10 n.a. 5.2 0.94 0.06
UK Appendix

Creek off Potomac,
" 6 n.a. 1.0 0.92 0.01

USA

Forth, Scotland,
" 12 n.a. 4.9 0.98 0.06

UK

Savannah,
It 7 n.a. 2.5 1.34 0.20

Georgia, USA

Sheltered inlets off Byrne et aL. (1981), 12 .4 -.5 .4 -.5 0.93 0.13

Chesapeake, USA Tables 1, 2

Sheltered inlets, Riedel & Gourlay 3 2 2 1.12 0.12

Queensld., Australia (1981), Tab. 1, Fig. 6

Western ScheIdt, de Jong & Gerrtsen 9 3.6 4.4 0.97 0.03

The Netherlands (1985), Fig. 4
Tamar, England, Uncles et al. (1985), 3 4.6-.9 4.7 1.07 0.06
UK Figs. 2, 3

U sk, Wales, O'Connor et aL. 24 12 12 1.05 0.05

UK (1991), Figs. 4,6
Ems, de Jonge (1992) 8 n.a. 2.6 1.04 0.05
The Netherlands Tab. 1, Fig. 7--------------
Mean along-channel a:

*Data for individual sections not available

0.97 :t 0.03
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Table 3.2. Ratio of grin to total shear stress over naturally formed ripples and dunes.

Loation Source Mean d
(mm)

r'/r

Laboratory flume Bagnold (1963) 0.2-0.7 0.2-0.5

Columbia River Smith (1977) and 0.27 0.18-0.24
Smith & McLean (1977)

Laboratory flume Engelund & Fredsoe (1982) 0.2-0.9 0.3-0.5
and Fredsoe (1982)

" Paola (1983) 0.2 0.58-0.65

" Kapdasli & Dyer (1986) 0.14-0.5 0.08-0.17*

*Observation over ripple crest. Other four observations are spatially averaged.
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Table 3.3. Channel bottom sediment tye at cross-sections.

Loation Source Sediment type Medan phi

Wrecked Recorder Myrck & Leopold "highly organic" n.a.
Crk., Virginia, USA (1963 )

Creek off San Pestrong (1965) mud 7.8
Francisco Bay, USA

Ord, West. Aust., Wright et aL. (1973) medum fine sand 1.5:t0.5
Australia

Sheltered inlets off Byrne et aL. (1981) med. to fine sand 2:tl
Chesapeake, USA

Sheltered inlets, Riedel & Gourlay fine sand 2.5:t0.5
Queensld., Australia (1981 )

Western ScheIdt, de Jong & Gerrtsen fine sand 2.5:t0.5
The Netherlands (1985)---

i;j~
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. Table 3.4. Data for tidal channels and sheltered inlets.

Loation #of
Sects.

Rsp
(m)

A - Qa Ah1/6_Qßa ß s.e.
Wrecked Recorder Crk., Va., USA 6 1.0 1.04 1.08 0.08

Creek off San Francisco Bay, USA 10 2.6 0.91 0.97 0.07

Delaware Bay, USA 5 1.6 0.92 0.92 0.17

Barnstable*, Massachusetts, USA 6 3.4 0.91 0.94 n.a.

Alsea, Oregon, USA 7 2.5 0.65 0.68 0.11

Siletz, Oregon, USA . 7 2.5 0.80 0.81 0.20

Yaquina, Oregon, USA 8 2.5 0.83 0.86 0.04

Ord, West. Aust., Australia 3 5.9 0.97 1.02 0.04

Thames, England, UK 10 5.2 0.94 1.00 0.06

Creek off Potomac, USA 6 1.0 0.92 0.96 0.01

Forth, Scotland, UK 12 4.9 0.98 1.02 0.06

Savannah, Georgia, USA 7 2.5 1.34 1.41 0.20

Sheltered inlets off Chesapeake, USA 12 .4 -.5 0.93 1.00 0.13

Sheltered inlets, Queensld., Austrlia 3 2 1.12 1.22 0.03

Western ScheIdt, The Netherlands 9 4.4 0.97 1.02 0.02

Tamar, England, UK 3 4.7 1.07 1.08 0.05

Usk, Wales, UK 24 12 1.05 1.14 0.05

Ems, The Netherlands 8 2.6 1.04 1.08 0.03

Mean along-channel a or ß:

*Data for individual sections not available

0.97 1.01 :to.04
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Figure captions for Chapter 3

Figure 3.1. Observations of cross-sectional area as a function of peak spring
discharge at 140 sections from 17 separate tidal channels or shelter inlet systems. Data

sources ar given in Table 3.1.

Figure 3.2. Observations of the cross-sectional pareter AhR1/6 as a function of

peak spring discharge, the total crtical shear stress for non-cohesive sediments, and other

"independent" varables, superimposed on the 1: 1 line given by (3.2.6). Sections with

bottom sediments that are known to be non-cohesive ar indicated by cirles.

Figure 3.3. Observations of the cross-sectional parameter AhR1/6 as a function of

peak spring discharge, the critical eros-ion shear stress for cohesive sediments, and other

"independent" variables, superimposed on the 1: i line given by (3.2.8). Sections with

bottom sediments that are known to be cohesive are indicated by circles.

Figure 3.4. Observations of the cross-sectional parameter AhR1/6 divided by peak

spring discharge, total critical shear stress and other "independent" varables, averaged for

each tidal system, and plotted as a function of spring tidal range. Also shown is the least-

squares log-log regression given by (3.3.1). Sections with bottom sediments that are
known to be non-cohesive are indicated by circles.

Figure 3.5. Observations of the cross-sectional parameter AhR1/6 as a function of

peak spring discharge, the stability shear stress predicted by (3.3.1), and other
"independent" variables, superimposed on the 1: 1 line given by (3.3.2). Sections with

bottom sediments ,that are known to be cohesive ar indicated by circles.

Figure 3.6. Observations along the Thames River of the cross-sectional parmeter

A hR 1/6 as a function of peak spring discharge, the stability shear stress predicted by

(3.3.1), and other "independent" variables, superimposed on the 1: 1 line given by (3.3.2).

Also shown are least-squares log-log regressions for the three most landward and seven

most seaward cross-sections.

Figure 3.7. Representations of idealized equilbrium tidal embayments. Plan
views of embayments with intertidal storage areas following (a) a power-law and (b) an

exponential relation. A schematic cross-section applicable to either type system is shown

in (c).

¡t
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Figure 3.8. Map of Wrecked Recorder Creek based on information from Myrick

and Leopold (1963). Intertidal storage areas are divided into segments over which time-

averaged embayment width at spring tide is calculated.

Figure 3.9. Map of Ord River based on information from Wright et al. (1973).

Intertidal storage areas are divided into segments over which time-averaged embayment

width at spring tide is calculated.

Figure 3.10. Least-squares approximations of observed along-channel properties

to ideàlized exponential and/or power-law relations for the Ord River and Wrecked
Recorder Creek. (a) Tidal amplitude along the Ord River. (b) Time-averaged spring

embayment width along the Ord River and Wrecked Recorder Creek.

Figure 3.11. Comparison of tidal discharge observed along the Ord River and
Wrecked Recorder Creek to that predicted by (3.4.6) - (3.4.7).

Figure 3.12. Comparson of the cross-sectional parameter AhR1I6 observed along

the Ord River and Wrecked Recorder Creek to that predicted by (3.4.8) - (3.4.9).



A

(m2)

106

- 86-

,

105

104

103

102

10 1

10°

10-1
10-2

+

.

*.,+
+ 1+ .i

++..++
+
+ +
+ +

+

++ ..+~
+ + +

+++
:++t
+ +

++
+ + ++
:i +

++"t ++ + ++ ++

+t
+ ~t+++

++ + ~:!++ +-l
++ + t+ +

+ *+ A.
+~

++ +
.+ +

+
+

+

,

10610-1 10° 10 1 103102 104 10 5

Q (m3 S-l)

+ cross-sections from Table 3.1

Figure 3.1



A hR1/6

(m 13/6)

"
" 0

+ //6f
4' ".a ~+ / 0

/ +
+1I 0

+ "+
+" 00..

" +
+ ..

// ¿t" ++
// +ø":
, +.."d., + +..+.

" + n
,," )'~

, .. .-l+++

" ~T.+/ + +, ;-;
,.'+: +~++

,/ + + o~/+t+" /,/ " .+++, ,, + ,~ + tI/. + ,.- ""+ // +"" "/ + /.... /, ,~ + "
":+ ~/
" 01'" ". ,'+ "/ 0// 0"

, 0 "" + ,, ,,"

106

10S

104

103

102

10 1

10°

10-1
10-1 10°

- 87 -

101 102 104103 10 s 106

Q n (Pr; f/2 (m 13/6)

o sections with sediments known to be non-cohesive

+ other cross-sections from Table 3.1

Eq. (3.2.6)

error bounds

Figure 3.2



11111

A hR 1/6

(m 13/6)

I ii

¡pi

~
ili,

- 88 -

106

10 s

104

103

102

10 1

10°

10 -i
10-1 10° 10210 1 103 10S104 106

Q n (Pr; fa (m 13/6)

o sections with sediments known to be cohesive

+ other cross-sections from Table 3.1

Eq. (3.2.8)
_____u___ error bounds

Figure 3.3



A hR 1/6

Q n ( 1: d p g) 1/2

0.8

- 89-

1.6 +

0.4
'+,

, , , , , +, ,, 0
.. ,+ ,

.. ,o , ,
..

..
..

16

o systems with sediments known to be non-cohesive

+ mean for each other system in Table 3.1

best fit of Eq. (3.3.1)

---------- standard errors

, , "', +

.. , , , , .. , , .. ..

.. .. +

o
, '..

, ..+.. , , ..
..

+.. '.
.. , ,

+

, ,, , ,

0.2
1 4

Rsp (m)

Figure 3.4



A hR 1/6

(m13/6)

- 90-

106

10S

ß= 1

104

103

102

101

10°
.-

.-
.-

10-1
10-1 10° 101 102 103 104 105 106

Q n (Pr;yl2 (m 13/6)

o sections with sediments known to be non-cohesive

+ other cross-sections from Table 3.1

Eq. (3.3.2)

error bounds Figure 3.5



106

105

A hR 1/6
104

(m 13/6)

- 91 -

ß= 1 '-"'//

103 ,," ß = 0.57+0.18
,,+""

"
'"

'"""
/:

'""
'"

102 "
102 103 104

""
'"""

+'"
'""

'"

Q n (P't;yri (m 13/6)

+ Thames cross-sections

best fit cures

Eq. (3.3.2)

"
""+ '"/"

'"

105

Figure 3.6

'"
'""

'"

106



ii !'
- 92-

..~.-~
C~
C0~
)(

~~~~,, cr ~ .cr..'- I I I

I I
I I~
I I0

II
II ~~ I I ""

I I ~~
I I
I I
I

""
I

~ ~
: ! ..

I~~
I~
I I
I I c0"" ~ I I .-~ ~

~ II U
~ I I ~cr

I I
icr

cr
I I 0~

U,,u'-
~~-

I~
0)
~0~,,~

Figure 3.7'-



- 93-

Wrecked Recorder Creek,
Virginia

(Myrick and Leopold 1963)
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Chapter 4:

Tidal Propagation in Strongly Convergent Channels Near
Morphologic Equilibrium
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Abstrct to.Chapter 4

Strongly convergent channels near morphologic equilbrium include such widely

studied tidal estuaries as the Delaware in the U.S. and the Thames and the Tamar in the

U.K. In this paper a solution is derived for tidal propagation in these channels which
diverges from classical views of co-oscilating tides. At each step of the derivation,
theoretical predictions are compared with observations from the Delaware, Thames and

Tamar. A scaling of the governing equations appropriate to these channels indicates that at

first order, gradients in cross-sectional area dominate velocity grdients in the continuity

equation and the friction term dominates acceleration in the momentum equation. Finite

amplitude effects, phase-generated velocity gradients and local acceleration all enter the

equations at second-order.

The first-order governing equation for elevation is a first-order wave equation, in

contrast to the classical second-order equation which results from low friction and a
prismatic channeL. The first-order solutions are constant amplitude, forward-propagating

wave forms with velocity leading elevation by 90., unlike the conventional view of co-

oscilating tides. Velocity and elevation have the same phase relation as a standing wave,

yet they are individually progressive. Also, the solutions are independent of channel length

-- in contrst to the length-sensitive resonance of classical co-oscilation.

The second-order governing equation is also a first-order wave equation, and
solutions at the dominant frequency propagate at the first-order wave speed. At second-

order, however, the phase lead of velocity decreases as channel convergence decreases,

and amplitudes are modulated by eJJkx, where k is the first-order wave number. The

parameter J1 incorporates the parially cancelling effects of local acceleration and limited

along-channel convergence. Because J1 determines changes in velocity magnitude, J1 =: 0

along channels which are near morphologic equilibrium. The second-order solution
demonstrates that undulations in amplitude and phase along these channels are due
primarily to changes in the rate of channel convergence rather than interactions between

incident and reflected waves as predicted by classical co-oscilation.

Compact solutions are also provided for the amplitude and relative phase of the
second haronics of elevation and velocity. The haronics are scaled by r= a/Fi - ,1b/h,- -
where a is tidal amplitude, h is channel depth, h is system width and th is the amplitude of

tidal varation in width. If r" 0, the wave crest propagates faster than the trough, and

rising elevations are of shorter duration. If rc( 0, the opposite holds and falling elevations

are shorter. Unlike elevation, velocity asymmetr is predicted to reverse a short distance

into the channeL. For r" 0, ebb currents dominate at the mouth, whereas flood currents

dominate within the channeL. For yc( 0, the opposite pattern is predicted.
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List of symbols in Chapter 4

a amplitude of ,

cross-sectional area of channel

time-average of A

A at seaward end of channel

total system width

time-average of b

h at seaward end of channel

propagation speed of tidal wave-form

drag coeffcient

frictionless shallow water wave speed

frction term in momentum equation

acceleration of grvity

cross-sectionally averaged channel depth

time-average of h

hydraulic radius

signifies value of varable _ for jth channel segment

tidal wave number

total length of tidal channel

e-folding length of along-channel varations in a

e-folding length of along-channel varations in A

e-folding length of along-channel varations in E

frctionless shallow water wavelength

length of tidal wave form

e-folding length of along-channel varations in V

signifies mth hanonic component

linearzed frction coefficientti
cross-sectionally averaged velocity

amplitude of u

Vat seaward end of channel

mth hanonic of velocity in t-domain

channel width

along-channel co-ordinate

representative location along channel

A

A

Aa

b

h

ba
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List of symbols in Chapter 4 (continued)

Xb location of tidal barer

2m real amplitude of t;a at x = 0

am complex amplitude of ~ at x = 0

r Eh - Eb

¡jb amplitude of tidal varation in b

ê signifies second-order term

êa LA/La

êb ¡jbih

êh a/h

er 21CLA/LT

êU LA/Lv

ê(i m/r

, tidal elevation

'm mth haronic of elevation in 't-domain

17m mth haronic of elevation in ,-domain

e tidal phase

em phase angle of L¡

(l m phase angle of V m

qJr¡m phase angle of 17m

À. LILA - L/Lb

Jl ê(i - er

ç x-dependent portion of,

r transformed time varable

(i tidal frequency
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4.1. Introduction

In his treatise on tidal hydrulics, !,iIsbury (1939) defines an "ideal estuar" as one

where "simple haronic fluctuation of the tide at the entrance wil produce throughout the

channel primar tides of constant range and primar currents of uniform strength" (p. 228).

In this paper a new solution describes tidal propagation in just such a channeL. The channel

characteristics which lead to this solution are strong along-channel convergence of cross-

sectional area together with a distrbution of velocity amplitude indicative of morphologic

equilibrium. This channel type is common and includes such widely-studied tidal estuares

as the Delaware in the U.S. and the Thames and the Tamar in the U.K. The governing

equation and solution appropriate to these channels diverge from classical views of damped

tidal co-oscilation. It is thus useful to review briefly the classical approach to the

propagation of tides in channels.

4.1.1. Classical tidal co-oscilation

The classic approach to tides in channels (e.g., Ippen 1966) derives basic wave

patterns of interest to oceanographers with little or no consideration of friction or channel

convergence. In a frictionless, prismatic channel of rectangular cross-section, the I-D

linearized governing equation for elevation (0 reduces to the familar second-order wave

equation:

ÒZ,

òtZ

ÒZ,= cz-
g òx2'

(4.1.1)

where t is time, x is distance, and cg = (gh)ll2.

For a channel closed at one end, (4.1.1) produces a standing wave solution,

characterized by incident and reflected waves of equal amplitude. The incident and
reflected waves interact to form nodes and anti-nodes which are a function only of the

length and depth of the channeL. If the channel is exactly one-quarer wave in length, then

the incident and reflected waves cancel entirely at the mouth, and infinite resonance occurs

within the channeL. In his review of tidal dynamics in estuaries, Ippen (1966) provided

solutions to (4.1.1) for channels closed at one end, of infinite length, and forced at both

ends. Ippen then used Green's Law to examine tides in channels of gradually varing
cross-section, but again limited his discussion to the frictionless case.

i'!
Ii

'i

L'd.'
i' _
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The last solution presented by Ippen (1966) is once more for a prismatic,

rectangular channel, but for the more "realistic" case of a damped co-oscilating tide which

includes the effects of friction. Inclusion of linear friction transforms (4.1.1) into a

damped second-order wave equation:

a2, a, a2,-+r-=c2-
ai2 ai g ax2'

(4.1.2)

where r is a constant friction factor (Ippen 1966). In a channel closed at one end, the

solution to (4.1.2) consists of exponentially-modified incident and reflected waves which

are of equal amplitude at the landward reflection point. The phase speeds of the incident

and reflected waves are equal to each other and, for weak friction, are only slightly less

than C g' For large r, the second term in (4.1.2) dominates the first, and (4.1.2) reduces to

a time-varing diffusion equation. The frictionally-dominated asymptote is addressed in

detail in Chapter 2 of this thesis.

For short channels (having lengths less than a quarter tidal wavelength), solutions

for the amplitude of, derived from either (4.1.1) or (4.1.2) can be quite similar to
observations. Furthermore, tidal phase in real channels is often observed to propagate at

speeds close to (gh)l/2. Thus (4.1.1) - (4.1.2), along with cg = (gh)1/2, are commonly

viewed as adequate explanations for most aspects of first-order tidal propagation in natural

channels. However, more subtle but important constraints on tidal phase and especially on

the solution for cross-sectionally averaged velocity (u) reveal the shoncomings of (4,1.1) -

(4.1.2) when applied to some real tidal systems.

Tidal phase in many tidal channels is observed to increase linearly landward.

However neither (4.1.1) nor (4.1.2) can produce a linear increase in phase along a channel

of finite length. In a finite channel, (4.1.1) produces a phase that is everywhere equal,
whereas (4.1.2) produces a phase lag that vares non-linearly along-channeL. Although

observed phase may indeed have a speed near C g' neither (4.1.1) nor (4.1.2) actually
predicts that it should. cg is the predicted phase speed of the individual forward and

backward propagating waves in (4.1.1) - (4.1.2), not the predicted speed for the
combination which makes up the observed wave-form.

Along some tidal channels the relative phase of u to , is observed to be nearly

constant at -900 (Hunt 1964; Wright et al. 1973). Although this is the phase relation for

finite channels given by (4.1.1), (4.1.2) predicts thanhe phase of u to ,should be 900 only
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at the landward reflection point and should decrease monotonically toward the channel

mouth. Finally, the scaling inherent in (4.1.1) - (4.1.2) leads to unrealistic values for the

amplitude of tidal velocity. In a short prismatic channel, conservation of mass requires u to

be proportional to distance from the reflection point, whether applying (4.1. i) or (4.1.2).

As shown in Chapter 3 of this thesis, however, the amplitude of u is nearly constant along

the length of real tidal channels which are near morphologic equilibrium. The only way to

predict reaistic fIt-order solutions for channels near morphològic equilibrium is to include

both frction and along-channel varation in cross-sectional area

4.1.2. Previous solutions for convergent tidal channels with frction

Perroud (1959) re-expressed the linearized I-D equations of motion for tides in

terms of parcle displacement and considered channels with (i) linearly varng width and

constant depth, (Ii) exponentially varing width and constant depth, and (iii) uniform width

and linearly varing depth. Solutions for (i) and (iii) were reached via Bessel functions,
whereas the solution for (ii) was reached via trgonometrc functions. In all three cases,

solutions" for' were expressed in terms of incident and reflected waves modified by

exponentials. The phase speed for the incident and reflected waves was presented as a

perturbation around cg, and no solutions were provided for u. There was no discussion or

even graphical representation of the solutions and no comparison to observations. Thus it

is not surprising that the work of Perroud (1959) did little to change the common view of

tidal co-oscillation.

Hunt (1964) was the first to emphasize the fundamentally different nature of tidal

propagation along convergent channels having friction. Hunt solved the linearzed I-D

equations for (i) exponentially varying width and constant depth and (ii) linearly varing

depth and width varing like x3l2. Like Perroud (1959), Hunt solved (i) with sinusoids

and (ii) via Bessel functions. Hunt pointed out that, unlike solutions for prismatic

channels, solutions for convergent channels can produce a progression in tidal phase along-

channel while simultaneously maintaining a relative phase of u to , near 90.. He even

suggested that the previous agreements of observed phase speed with (g h) ll2 were "both

fortuitous and misleading" (p. 442). He de-emphasized the importance of incident and

reflected waves by expressing his solutions as single, exponentially modified, forward

propagating wave-forms. Finally, Hunt showed his analytic solution to be consistent with

observations from the Thames.

i,
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Prandle and Rahman (1980) used Bessel functions to derive solutions for channels

whose widths and depths obey arbitrar power laws and compared their results to
observations from a wide range of tidal systems. Their generaized solutions ar a function

of only three parameters: one which scales channel convergence, one which indicates
position along channel, and one which indicates the strength of friction relative to
acceleration. Prandle and Rahman stressed the role of nodal points in determining the
nature of the solutions, thus emphasizing similarities between their solutions and classic
damped co-oscilation. They did note, however, that tidal amplification was contrlled by

the geometr of the channel as a whole and not simply by its length and depth.

Jay (1991) used a modified Green's function approach for channels having

exponentially varying width and depth, but did not compare analytic results to
observations. Jay showed wave behavior at lowest order to be a function of channel
convergence and the importance of frction relative to acceleration. Like Hunt (1964), Jay

emphasized the role of channel convergence in producing a wave-form which is
fundamentally different from classical damped co-oscilation. Jay found that a single

incident wave in a channel with strongly convergent geometr may mimic a standing wave

by having a relative phase of u to 'near 90' without the presence of a reflected wave. Jay

also found that under conditions of "critical convergence" the effects of channel
convergence and local acceleration cancel entirely at first-order, leaving an effective balance

between frction and pressure gradient.

A likely explanation for the continued emphasis on damped co-oscilation, despite

the important contrbutions of Hunt (1964), Jay (1991) and others, is the complicated form

of their solutions. Application of either Hunt or Jay's solution requires repeated

transformations and/or substitutions which partly obscure the solution's intuitive impact.

Simple interpretation of solutions based on Bessel functions is even more difficult.
Unfortunately, the solution and (mis)interpretation of (4.1.2) is stil much simpler in
practice.

Par of the difficulty in interpreting the results of these previous investigators stems

from the large number d first-order terms they have all kept in the equations of motion.

All previous investigators of convergent systems have assumed that (i) friction scales no

larger than local acceleration in the momentum equation, and (ii) discharge gradients due to

channel convergence scale no larger than those due to velocity gradients in the continuity

equation. This choice of first-order scaling is inappropriate to the class of channels of
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interest to this study. The above scaling may have been applied in the past to shallow,

strongly convergent channels due to a lack of comparson to observations from real tidal

channels during the scaling process. Of course near-resonant, convergent tidal systems do

exist where acceleration is as or more importnt than frction. Examples include the Gulf of

Maine and the Bristol Channel, both of which were examined by Prandle and Rahman

(1980). However these systems are hundreds of kilometers in length and many tens of
meters deep.

In the following section a careful scaling of the equations of motion is performed

which is appropriate to an arguably more common type of strongly convergent tidal

channel, namely those having depths on the order of ten meters or less and which are near

morphologic equilibrium. Scaling appropriate to such real tidal channels as the Delaware in

the U.S. and the Thames and the Tamar in the U.K. indicate that at first order, gradients in

cross-sectional area dominate the continuity equation and friction dominates in the
momentum equation. This realization leads to a simpler first-order governing equation

which has the form of a first-order wave equation. The solution includes all the major

properties which distinguish tidal waves in strongly convergent channels, yet is more

amenable to conceptual interpretation. Finite amplitude effects, velocity grdients and local

acceleration, which all enter the equations at second order, then lead to systematic,

interpretable perturbations on the first-order solution.

4.2 Scaling of equations

The cross-sectionally integrated, 1-D equations for a tidal channel with linearly

sloping intertdal flats (Figure 4.1) may be expressed as (Speer and Aubrey 1985)

continuity:
aç ab-=--(Au),at ax (4.2.1)

momentum:
au + u au = _ g aç - F ,
at ax ax (4.2.2)

where b(x,t) is total system width (including flats), Ç(x,t) is tidal elevation, A(x,t) is cross-

sectional area of the channel (excluding flats), u(x,t) is cross-sectionally averaged velocity

(confined to the channel), and F represents bottom friction. In addition to the usual
assumptions of channelized flow, (4.2.1) - (4.2.2) assume u = 0 on the flats (Speer and

Aubrey 1985).
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The tidal channels considered here are near morphologic equilbrium such that the

amplitude of tidal velocity, U, vares only weakly in x. To simplify the scaling arguments,

it is assumed that the amplitude of tidal elevation, a, also vares only weakly in x and that

the solutions for ç and u can be approximated by the following progressive wave forms:

ç "" a cos (mt - kx), and u "" U cos (mt - kx - 8) , (4.2.3a,b)

where m is the tidal radian frequency, k = 2irLT is the tidal wave number where LT is the

observed tida wavelength, and 8 is the relative phase of tidal velocity.

These assumptions reasonably fit such well-studied tidal estuares as the Delawar

in the United States (Harleman 1966; Parker 1984), and the Thames (Hunt 1964; Prandle

1980), and the Tamar (George 1975; Uncles et aL. 1985; Uncles and Stephens 1990) in the

United Kingdom. As discussed in Chapter 3, the amplitude of cross-sectionally averaged

tidal velocity is nearly constant along the lengths of all three of these estuares (Figure 4.2).

Values for LT, determined from the slopes of the linear regressions in Figure 4.2b, are

listed in Table 4.1. Observations shown in Figure 4.2 for the Delaware and the Thames are

M2 data from Parker (1984) and Prandle (1980), respectively. Data for the Tamar are

spring tide values from George (1975). George (1975) provides spring and neap, but not

mean tide data. Only the spring observations are examined here because under spring

conditions, the tide is more likely to dominate river flow, and freshwater effects are not a

focus of this investigation.

In the following paragraphs, the continuity equation is examined first to determine

which terms must be retained at first and second order. Results from continuity are then

used similarly to scale the momentum equation. (For reference, the dimensionless
quantities which are assumed to be small in this study are summarzed in Table 4.2.)

4.2.1 Scaling of continuity

For estuares represented by Figure 4.1, continuity may be expanded as

baç + £bf baç = _ (ci u - £hf (ci u - (1 + O(£h))A au .at a at ciJ a ciJ ax (4.2.4)
area grdient velocity gradient

The first two terms on the right hand side of (4.2.4) arise from the along-channel gradient

of cross-sectional area, whereas the last term on the right is due to the along-channel
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gradient in tidal velocity. The small parameters Eh and Eb arse from finite amplitude and
intertidal slope effects and are defined as:

Eh = ~, and Eb = ii - w = L1bh ii 5 (4.2.5a,b)

Over-bars indicate time-averages such that h = ii + Eh ç, b = 5 + Eb ç, and A = A + Eh çw.

h(x,t) is cross-sectionally averaged channel depth, and w(x) = A/h is both the width of the

channel and the tota embayment widm at low tide (see Figure 4.1). Observed values for Eh

and Eb are given in Table 4.1.

In order to scale the terms in (4.2.4), estuar width, cross-sectional area, and tidal

velocity ar assumed to var as:

5 = bo e-x/Lb, A- = Ao e-x/LA, and V = Vo eh/Lv , (4.2.6a-c)

where Lb, LA and Lv are e-folding lengths of along-channel varation, and x = 0 at the

forced end of the channeL. Observed if and 5 for the Thames are taken directly from

previous compilations (Hunt 1964; Parker 1984). Observed 5 for the Thames is

determined from U.S.D.M.A. charts 37145 and 37146. A and ii for the Tamar are

calculated from channel cross-sections published by Uncles et al. (1985). The division

between the momentum transporting channel and the "storage only" flats in the Tamar

cross-sections is based on the break in bank slope and corresponds roughly to the neap low

water line.

Observed U values for the Delaware and Thames are taken directly from previous

compilations (Harleman 1966; Chantler 1974). For the Delaware, Harleman (1966) did not

measure U directly, but calculated the cross-sectionally averaged velocity via integration of

observed tidal elevations. For the Thames, Chantler (1974) presented values for U as a

function of A. In Figure 4.3b, x-values were estimated for the Thames by interpolating

from the A (x) data provided by Hunt (1964). Observed V for the Tamar is calculated from

harmonic analyses of time-series of sectionally-averaged spring velocity presented by

Uncles et al. (1985).

,

I:

Figure 4.3 ilustrates the fit of observed 5, A and U to exponential curves, and

Table 4.1 lists observed values for Lb, LA and LA/Lv. Clearly V does not generally follow

a simple exponential curve over the length of an entire estuar. The main purpose here is to

illustrate that Lb and LA are much less than Lv on a system-wide scale.
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For tides and estuares described by (4.2.3b) and (4:2.6), Eq. (4.2.4) may re-

expressed in terms of scales as follows:

~_LA (1 + eb) =
(Alb)U

1 + eh +(1 +eh)(eu2+er).

(4.2.7)
area

grdient
velocity
grient

The small parmeters eu and er ar defined by

eu2 = LA
Lu'

= 2ir LA
LT' (4.2.8a,b)er = kLAand

Observed values for eu, er and amLA(A/ii)-iU-i are presented in Table 4.1. The quantity

awLA(Aiii)-iU-i is nearly constant along channel because a, A/ii and U are each nearly

constant along channeL.

Observations indicate that the above scalings are sensible (Table 4.1). In all three

estuaries the quantity awLA(Alb)-lU-l is 0(1), and the O(e) parameters are less to much

less than one. Thus at first-order, only two of the terms in (4.2.4) are retained, namely the

first term on the left hand side and the first term on the right hand side:

baç = - (M\ u .arch! (4.2.9)

The scaling in this section has shown that in tidal estuaries of interest to this
chapter, along-channel gradients in discharge are dominated by along-channel grdients in

cross-sectional area. The dominance of gradients in cross-sectional area is due to strong

channel convergence. The next most important contrbution to the discharge gradient, at

O(er), is from along-channel varations in the phase of tidal velocity. On a system-wide

scale, the least important contrbution to the discharge grdient, at 0(eu2), is from along-

channel gradients in the amplitude of tidal velocity. This is because the tidal channels are

near morphologic equilbrium. The above ordering is contrar to classic models of co-

oscilating tides in short prismatic channels, which suggest gradients in the amplitude of

velocity should be most important and gradients in cross-sectional area should be least

important.
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4.2.2 Scaling of momentum

For tides and estuares described by (4.2.3) and (4.2.6), momentum may be

expressed in terms of scales as:

mU + ll (Ea2 + er) = ga (ea2 + er) + F.LA LA ( 4.2.10)

where Ea2 = LAlLa and La is the e-folding length of tidal amplitude. Table 4.1 lists

observed values for Ea. At first order, (4.2.7) indicates that:

ba mLA i: .U == A = t; CEher. (4.2.11)

where C = mlk. Dropping Ea2 relative to er in (4.2.10) and using (4.2.11) to eliminate U

then yields:

er + .Q E h er 2w
=wgh+w-L

ii c2 ii mCEh .
pressure frction
grdient

(4.2.12)
local advective
accel. accel.

The speed of a linear shallow water gravity wave in a prismatic channel with

intertidal storage and low friction is given by cg = (ghw/ii)tn (e.g., Robinson 1983). In

the presence of friction, one might expect C :; cg, so the pressure gradient term in (4.2.12)

should be 0(1) or greater. However the argument is not quite that straightforward. In a

classic low friction, short prismatic channel, C g is not the phase speed of the single

"observed" wave-form, which is termed C in this study. Instead, cg is the phase speed of

the individual progressive waves which propagate up- and down-estuar and which sum to

form the single "observed" wave-form. Nonetheless, for the Delaware, Thames and
Tamar, the third term in (4.2.12) is significantly greater than er (most significantly for the

Tamar, least so for the Delaware). Table 4.1 displays the ratio of er to the pressure

gradient term in (4.2.12).

The only term in (4.2.12) that can balance the pressure gradient at lowest order is

the friction term. Thus an important result has been derived: In tidal channels with

erhc2/(wgh) c(c( I, the lowest order balance must be between pressure gradient and friction.

This conclusion has been reached without any à priori knowledge of the magnitude of the

drag coefficient or of the tidal velocity. Furthermore, if er/eh = 0(1), the local acceleration
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term can be no more important than nonlinearties generated by finite amplitude effects in

the continuity equation. Finally, (4.2.12) indicates that advective acceleration term is three

orders in e smaller than friction. Thus when examining the system-wide tidal signature of

strongly convergent tidal channels near morphologic equilbrium, advection may be
neglected.

The dominant role for friction suggested above is in contrst with classic solutions

for co-oscilating tides in prismatic channels which often negleèt friction entirely. More

realistic analytic approximations which consider convergent channel geometr in the

presence of "strong" friction (Prandle and Rahman 1980; Jay 1991) have treated friction

and local acceleration at the same order. The resulting solutions are expressed in terms of

Bessel equations or repeated co-ordinate transformations which can interfere with
conceptual interpretation. However, the scaling presented in this section suggests that by

neglecting acceleration at first order, useful insights may be gained toward our
understanding of tidal flow in strongly convergent tidal channels. This approach simplifies

and clarfies the problem without sacrficing the fundamental physics.

4.3 First-order solution

4.3.1. Form of the general solution

If only first-order terms are retained in the continuity equation, then (4.2.1) may be

re-expressed as:

b aç = _IdA \ u, or u = _ b IdA \ -1 aç .at \ dx 1 \ dx I, at (4.3.1a,b)

Equation (4.3.1b) guarantees that at first order ç and u wil be 90° out of phase, as in a

standing wave. Dropping O(e) terms, (4.2.2) may be wrtten as:

o = - g aç - F .
ax

(4.3.2)

In one-dimensional numerical models of channelized tidal flow, the friction term is

commonly formulated as (e.g., Speer and Aubrey 1985):

F = Cd lul UhR ' (4.3.3)
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where Cd is a non-dimensional drag coeffcient, and hR is the hydraulic radius of the

channeL. In this study the friction term is linearzed by expressing bottom friction as
follows (e.g., Harleman 1966):

F = ru, with r = 38 Cd_U,
ir h (4.3.4a,b)

where r is a constant frction factor, and U is the "charcteristic amplitude" of tidal velocity.

It is reasonable to let hR = h for channels having w "" h. The assumption that r is constat

in space is only approximately tre due to along-channel varations in channel depth. The

8/(3ir) in (4.3.4b) is derived from a trncated Fourier expansion of lulu in (4.3.3) (e.g.,

Speer and Aubrey 1985).

Substituting (4.3.1) into (4.3.2) then gives:

ac; = if (M)-i ac; ,ax g dx at (4.3.5)

which is a varable-coeffcient, first-order wave equation for tidal elevation. The above

governing equation is enurely different from the second-order wave equation which results

from neglecting friction in a prismatic channeL. It is also in contrast to the results of
Friedrichs and Madsen (1992) who found tidal propagation in frictionally-dominated

prismatic channels to be governed by a time-dependent diffusion equation.

By assuming a solution of the form c; = Real (ç(x) eiliJt) , (4.3.4) becomes:

dç = ilOiir(dA\-i):dx g dx/'" (4.3.6)

or

In(Ç(~)) = i~m r~ 5(tr dx'. (4.3.7)

The only boundary condition on (4.3.6) is ç(O) = a, specified at the seaward end of

the channeL. Thus (4.3.6) may not be valid in the immediate vicinity of x = L, where it is

presumed that zero tidal flow exists. However, the implied form of the velocity solution in

(4.2.3), as well as the scaling inherent in (4.3.1), indicates that an upstream no-flow
boundar cannot be important to the overall solution. Thus the potential loss of validity

near x = L is not a significant restriction. Since the dominant length scale of tidal

discharge is LA, a no-flow boundary condition at x = L cannot be felt much seaward of x/L

I)
~"I,
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= 1 - LA/L, and in tidal estuares of interest to this chapter, LA/L is significantly less than 1

(see Table 4.1).

Although there is zero tidal flow at x = L, there is usually finite fresh-water
discharge in a real tidal estuar. The impact of fresh-water discharge at x = L can be scaled

as follows along a strongly convergent tidal channel: To maintain morphologic stabilty,

the freshwater velocity at x = L should be about the same a's the tidal velocity in the
seaward porton of the channel (see Chapter 3). Under ,"normal" conditions, then, the ratio

of freshwater velocity to total velocity wil have a decay length scale of LA, and be
negligible for x/L c( - 1 - LA/L. Wherever possible, observations used in this study are

from "low" runoff conditions, further reducing the impact of freshwater discharge on tidal

propagation. Dunng high runoff or along channels that are not strongly convergent, river

flow wil have a more significant effect on tidal propagation throughout the channel (e.g.,

Godin 1991; Parker 1991). However these conditions are not a focus of this study.

4.3.2. Exponential channel convergence

Substituting the expressions for exponentially varing estuar width and channel

cross-sectional area given by (4.2.6) into (4.3.7) gives:

In (~) = - irOJ bAoLA r'=x exp (X'/LA - x'/Lb) dx' ,
g 0 L, = 0

(4.3.8)

which integrates to

In (f) = _ i rOJ boLA L (e À.IL - i)a g Ao Å ' (4.3.9)

where Å = LILA - L/Lb.

Since it has already been shown that LA/Lb := 1 (see Table 4.1), it is likely that Å is

small in estuaries of interest to this study. Observed Å (Table 4.3) were calculated by
fitting exponential relations to plots of EIA versus xlL. Observed Å is indeed less than one,

and lilL is even smaller since xlL :: 1. If lilL c(c( 1, then ehlL := 1 + lilL, and (4.3.9)

becomes:

In (-aç) = - i rOJ boLA xg Ao ' (4.3.10)

or
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ç = a e-ikx , (4.3.11)
where

_ 2ir _ rm boLA _ rm LAk - LT - g ~ - g (Aib) , (4.3.12)

if LA/Lb = 1.

Using (4.3.11), solutions for elevation and velocity become simply:

, = a cos (me - kx), and u = - U sin (mt - kx), (4.3. 13a,b)

where

u = a roboLA _ a roLAAo - (Aib) , (4.3.14)

is found by substituting (4.3.13a) into (4.3.1b). Equation (4.3.13) is entirely consistent
with the form of solution which was assumed when scaling the problem in Section 4.2.

Finally, the phase speed of (4.3.13), which is equal to the "observed" wave speed, is given

by:

c = lQ = g Ao
k rboLA

g (if/b)

rLA (4.3.15)

Equation (4.3.15) indicates phase speed to be constant along the length of the channeL.

4.3.3. Discussion of first-order solution

The first-order solution for strongly convergent channels near morphologic
equilibrium diverges from the conventional view of co-oscilating estuary tides. From

examining (4.3.13a,b) together, it is clear that , and u are out of phase by 90., as in a
standing wave. Yet (4.3.13a,b) individually appear progressive. The first-order solution

given by (4.3.13) is a forward propagating wave-form which is independent of the length

of the tidal estuary -- in sharp contrast to the length-sensitive quarter-wave resonance of

classic tidal estuar theory. Furthermore, the solution given by (4.3.13) is of constant

amplitude, whereas the amplitude of a classical co-oscilating tide undulates along channel

due to the interaction of incident and reflected waves.

The constant amplitude solution derived here is also significantly different from the

frictionally-dominated solution found to hold for prismatic channels in Chapter 2. In

Chapter 2, tidal phase was found to var non-linearly along-channel and tidal amplitude

was found to decay exponentially (see Figure 2.8). In frictionally-dominated prismatic
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channels, frictional losses are such that a constant tidal amplitude cannot be maintained

along the length of the channeL. In strongly convergent channels, however, discharge

decreases so quickly along-channel that a much smaller pressure gradient is required to

maintain a given amplitude. Thus constant amplitude can be maintained at first order, even

under conditions of frctional dominance.

The lack of a reflected wave in (4.3.13) indicates that tne first-order solution does

not "feel" landward conditions. Conceptually, the strong landwàrd convergence of cross-

sectional area quickly dissipates any seaward propagating information. Even if a reflected

wave were somehow included in (4.3.13), perhaps to improve the solution in the
immediate vicinity of an upstream boundar, the reflected wave would only propagate over

a distance of order LA before becoming negligible in comparison to the landward

propagating wave. This result has important ramifications concerning the potential effect of

tidal barers. In strongly convergent channels, the installation of a tidal barrer at x = Xb

should have a minimal effect on the tidal signal seaward of x = Xb - LA. This finding is

consistent with Prandle and Raman (1980) who examined the effect of tidal barers using

Bessel function solutions. Upon introduction of barriers into strongly convergent
channels, they found the amplitude and phase of elevation and velocity to be altered by only

a few percent outside the immediate vicinity of the barer.

The velocities predicted by (4.3.14) for the Delaware, Thames and Tamar (Table

4.3) are somewhat higher than the observed values. This is partly because predicted U is

averaged over w, whereas observed U, as presented in other investigations (Harleman

1966; Chantler 1974; Uncles et al. 1985), is averaged over all of b (see Figure 4.1).
Predicted and observed velocity agree best for the Delaware, for which w/h := i, and worst

for the Tamar, for which w/E is smallest. According to Uncles et al. (1985), maximum

current speeds in the deep central channel of the Tamar are on the order of i mis, which is

more consistent with the predicted value. Comparison to observed U in all three estuanes

is further complicated by differences in the amplitude of the forcing tide during the periods

of velocity observation and during the periods of elevation observation -- which are
generally neither synchronous nor of equal duration. Also, velocity in general is much

more sensitive than tidal elevation to measurement location and to variations in channel

shape away from an idealized geometry. Considering these limitations, differences

between the magnitude of observed and predicted U do not undermine the applicability of

the first-order theory.
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Equations (4.3.12), '(4.3.14) and (4.3.4b) allow the wavelength of the dominant

tidal frequency to be predicted with Cd as the only independent parmeter:

Lr = ~ g (Alb)2
4 Cd Eh (i2 LA2

(4.3.16)

Alternatively, the observed value of Lr can be used to solve for the unknown drag
coeffcient. The resulting "observed" values for Cd are displayed in Table 4.3. These Cd

values are consistent with those previously employed in I-D numerical models of strongly

convergent tidal estuares. For example, in modeling the Delaware, Parker (1984) allowed

Cd to vary between 2.0x1O-3 and 3.7xl0-3, and in modeling the Tamar, Uncles and

Stephens (1989) used Cd = 1.6x1O-3. (Prandle (1980) did not discuss his choice of Cd for

his model of the Thames). However these drag coeffcients are several times smaller than

Cd values which have been used in I-D representations of other embayments such as Great

Bay, New Hampshire (Swift and Brown 1983) and Nauset Harbor, Massachusetts

(Aubrey and Speer 1985; Speer and Aubrey 1985).

Embayments represented by Cd values which are O( 10-2), such as Great Bay and

Nauset contain sharp channel bends and sudden along-channel expansions in cross-

sectional area (Aubrey and Speer 1984; Swift and Brown 1983). At these sudden
transitions, transfer of momentum occurs from organized along-channel flow to large

turbulent eddies. On a system-wide scale, these eddies may be justifiably modeled as
frictional losses and lead to large values of Cd. At both Nauset and Great Bay, sudden

morphologic irregularties are largely a product of antecedent geology -- unevenly filled

depressions in glacial outwash and ice contact deposits and at Nauset (Oldale 1979) and a

rock-walled valley formed along a major fold axis at Great Bay (Haug 1969). Thus neither

embayment can be described as being near morphologic equilbrium.

Equations (4.3.15) and (4.3.16) predict wave speeds and lengths which are the

same order as those predicted by the frictionless shallow-water gravity wave speed for

systems without tidal flats, namely, cg = (gii)1/2. Table 4.3 lists predictions for the
frctionless wave length, Lg (neglecting the role of intertidal storage), for the M2 tide in the

Delaware, Thames and Tamar. The similar magnitude of Lr and Lg has no doubt
exacerbated the historic mis-interpretation of tidal propagation in highly convergent
channels as being well-described by classical damped co-oscilation.

'"
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4.4 Second-order solution

4.4.1 Derivation of governing equation

At second-order (see Table 4.2), (4.2.7) indicates that the following terms are kept

in the continuity equation:

(1 + £b~) b a, = - (1 + £h -') J ci ) u - A au .a at a \ dx ax (4.4.1)

The first-order solutions for' and u, i.e. (4.3.13), may be substituted into the second-

order terms of (4.4.1), giving

bO(I+£bcos(mt-kx))a, 
= (I 

+£hcos(Cit-kx))Ao u + Aoiku, (4.4.2)at LA
where the exponential expressions for b and A (4.2.6a,b) with LA = Lb have also been

used. Solving for u in (4.4.2) then gives, to 0(£),

u = (i - r cos (Ci t - kx)) (1 - i e-) LA bo a, ,Ao at (4.4.3)

where r = £h - £b. Observed values of r are listed in Table 4.3.

Retaining only those terms of (4.2.11) which are significant at second order,
momentum may be expressed as

au ar-=-g~-ru.at ax (4.4.4)

Second-order effects arsing from the friction term wil not be considered in this study,

even though the formulation of (4.3.3) does generate tidal haronics. If the frction term is

formulated in the common manner of (4.3.3), even haronics wil be produced by tidal

modulation of hR, and odd harmonics wil be produced by ulul (e.g., Parker 1991;
Friedrchs and Madsen 1992). The production of second-order tidal haronics by (4.3.3)

has been demonstrated conclusively by numt'rical solutions which include it (e.g., Speer

and Aubrey 1985). However, field observations of tides in channels have not
demonstrated that the formulation in (4.3.3) accurately reproduces observed nonlinearities

in natural tidal channels.
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For example, one-dimensional numerical solutions for tides in channels which use

(4.3.3) generally do a poor job of reproducing along-channel variations in M6 (e.g.,
Prandle 1980; Parker 1984; Friedrchs and Madsen 1992). There is little doubt that the

friction term is the major source of M6 production within tidal channels. However, (4.3.3)

questionably assumes that the drag coeffcient is time-invarant. Field observations suggest

that in energetic tidal flows Cd can be a complex function of tic;al height, tidal velocity, and

flow direction (Wallis and Knight 1984; Lewis and Lewis 1987; Weisman et al. 1990). By

applying observations to the terms in the I-D momentum equation and solving for the drg

coeffcient, Lewis and Lewis (1984) and Weisman et al. (1990) found Cd to var by three-

to-four times over the tidal cycle, while Walls and Knight (1987) observed an order of
magnitude varation in Cd. Thus the tre M6 produced by friction may not closely resemble

that predicted by (4.3.3) unless Cd is more properly represented as varing in time.

Tidal modulation of Cd will affect even haronics directly. For example, if
modulation of Cd is out of phase with modulation of hR, net production of even harmonics

may be reduced in real tidal channels. This may be parly why a one-dimensional

numerical model of the Thames which used (4.3.3) (Prandle 1980) predicted M4

amplitudes several times larger than the observed values. Yet in a similar one-dimensional

model of the Delaware, Parker (1984) was able to reproduce along-channel variations in

M4 amplitude quite well (although he presented no model output of M4 phase). When
Parker (1984) examined the varous sources of M4 in the model, he found that the M4 from

non-linear continuity was 3.7 times larger than the ~ from friction and more than ten

times larger than the ~ from advection. He stated that the varous contrbutions to M4 had

different phases, and that the total Mi amplitude was less than the sum of the individual

contrbutions. Thus his model might have reproduced ~ just as well without including

tidal modulation of hR in the frction term.

The only remaining second-order term in (4.4.4) is the local acceleration term.

Substitution of the first-order solution into this term gives

. . ëVimu = -g~ - ruax ' ( 4.4.5)

or
at; = _ L (i + i fro) Uax g , ( 4.4.6)

where fro = mlr. Using(4,3.4b) and (4.3.14), fro can be re-expressed as

~I,
!! i'ili

Yll;1
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3ir (Alii)ElJ =
8 Cd EhLA . (4.4.7)

This pareter, which determines the importce of acceleration relative to bottom frction,

is independent of both tidal velocity and tidal frequency. Table 4.3 indicates ElJ is indeed

less to much-less than one in all three estuares of interest. The values given for ElJ in Table

4.3 are similar to the values for the ratio erbc2/(wgii) given in Table 4.1, which also

prected the relative unimportnce of acceleration.

Substituting (4.4.3) into (4.4.6) to eliminate u yields a single equation for ,:

a, = -(I-rcos(rot-kx))(I+ill) a"~ C ~ (4.4.8)

where ll = ElJ - £T, and c is the first-order wave speed given by (4.3.15). Observed values

for ll are given in Table 4.3. Eq. (4.4.8), like (4.3.5), is a first-order wave equation with

only one boundar condition, namely' = a cos rot at x = O.

4.4.2 General solution

The second-order solution is derived in a manner similar to Friedrchs and Madsen

(1992). The solution is formally perturbed in time only, and the second-order spatial
dependence is treated kinematically. The cosine term in (4.4.8) is evaluated at x = xo,

where 0 :s Xo :s L is some representative location along the channeL. This greatly simplifies

the form of the second-order solution without significantly affecting its accuracy for

relatively short systems. More formal perturbations in time and space (e.g., Shetye and

Gouveia 1992) produce a myriad of additional terms which obscure the most important

non-linear mechanisms and hinder physical interpretation.

Next the time varable is transformed from t to 't, with

ro'r = rot + rsin (rot - kxo). (4.4.9)

Then by using the relation aqdt = aqa't d't/dt, (4.4.8) becc.mes

:x '(x,'t) = - (i +/ll) aa't '(x,'t) ,
(4.4.10)

which has time-independent coeffcients.
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The formulation of 't in Friedrichs and Madsen (1992) differs slightly by
considering non-linearties produced by the friction term. In their paper, r= 5/3 Eh - Eb

instead of £l - E¡" Friedchs and Madsen included frictional non-linearties in their analytic

discussion in order to make diagnostic comparsons to numerical solutions which also

included non-linear friction. Here it is argued that field observations do not support
inclusion of non-linear friction in the form of (4.3.3). The difference in approach between

here and Friedrch.s and Madsen affects the magnitude of the non-linear mechanism.
However it does not fundamentally affect the interpretation of the processes most
responsible for generating haronics.

Since (4.4.10) is linear, its solution may be expressed as a sum of individual terms,

each satisfying (4.4.10) at the single frequency mro. Thus the general solution to (4.4.10)

at each frequency takes the form:

'm(X,'t) = am çm(X) exp (imro't) , (4.4.11)

where lçml = 1 at x = O.

In order to apply the boundary condition at x = 0 to (4.4.11), the boundary

condition must be transformed from t to 't. Utilizing the definition of 't, trigonometric

identities, and approximations valid at O(e) (for details see Appendix 2), it can be shown

that

2

'(x=O,t) = a cos rot ~ '(x=O,'t) = a L 2mcos (mro't- 8m), (4.4.12)
m=O

where 20 = -22 = ï12, 21 = 1, -80 = 82 = kxo, and 81 = O. Applying (4.4.12) to (4.4.11)

gives am = a2me-i8m, and the solution in the 'tdomain becomes

'm(X, 't) = a 2m Çm (x) exp (i m ro't - 8m) . (4.4.13)

Next, (4.4.13) is trnsformed back to the t domain. For m = 0 and m = 2, (4.4.13)

is already O(e), so by discarding O(e)2 terms, (4.4.13) becomes 'm(t.x) = a2m Çm exp

(imrot -8m) directly. In order to transform the m = 1 case, however, exp (i(i) must be re-
expressed in terms of t. Utilzing the definition of 't, trigonometric identities, and
approximations valid at O(e), it can be shown (see Appendix 2) that

exp i ro't = _.l exp i kxo + exp i rot + 1: exp i(2 rot - kxo).2 . 2 (4.4.14)
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The full solution in the t domain may may then be expressed as a sum of single

frequency components, i.e.:

2

Ç(x,t) = a r 17m (X,t) ,
m=O

(4.4.15)

where

170 = .I (;0 - ; i) e i kxO ,
2

(4.4. 16a)

171 = ;1 e-i rot, (4.4.16b)

172 = 1.(;1 - ;2)ei(2rot-kx).
2

(4.4. 16c)

By substituting (4.413) into (4.4.10), the governing equations for ;m(x) are seen

to be

1x. ;m(X) = - (i +/il) im w;m(X) .
(4.4.17)

Eq. (4.4.17) integrtes easily to

;m = eJlmkx e-imkx , (4.4.18)

where k = w!c. Substituting (4.4.18) into (4.4.15) - (4.4.16) then gives the following,

compact second-order solution for tidal elevation:

f. = 'i(1-eJlkxe-ikxleikxo + eJllaei(rot-la)a 2

+ I (eJlkx e-ikx- e2Jlkx e-2ikxl ei(2rot-kxo).

( 4.4.19)

The second-order solution for velocity is found by substituting (4.4.15) - (4.4.16)

into (4.4.3), giving,

u = iU (1- rcos (wt- kxo)) (1-ier) (;1 eirot + r(;1 - ;2) eic2rot-lao)), (4.4.20)

where U is the first-order velocity amplitude given by (4.3.15), and Xo has been used for

consistency with the solution for elevation. Multiplying out (4.4.20), dropping terms that

are 0(e)2, and using (4.4.18) to eliminate ;m then gives the following real solution for tidal

velocity:
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u = u (Vo + Vi + V2) , (4.4.21)

where

Vo = - i eJL sin k(x - xo) , (4.4.22)

Vi = - epJ (sin (mt - kx) - er cos (mt -" kx)) , (4.4.23)

V2 = -i 
(etL 

sin (2mt-kx-kxo) - 2e2JLsin(2mt-2kx-kxo)). (4.4.24)

4.5 Discussion of second-order solution for elevation

4.5.1. Dominant tidal frequency

The second-order solution at the doounant tidal frequency is given by the real par

of the second term in (4.4.19), namely

711 = etLkx cos (mt - kx). (4.5.1)

Equation (4.5.1) describes a purely progressive wave with the same phase speed as the
first-order solution. However the amplitude which is modulated by e¡., where ¡i = fro-

er. This result is consistent with the observations in Figure 4.2 (especially for the

Delaware) which indicate along-channel phase variation to be more strongly linear than

along-channel amplitude varation.

The exponential modulation of tidal amplitude at second-order is due to the
combined, parially-cancellng effects of (i) non-zero acceleration, which is represented by

fro, and (ii) limited convergence, which is represented by er. Conceptually, non-zero

acceleration increases tidal amplitude by allowing a dynaouc along-channel convergence of

energy. This effect is analogo.s to Green's law in the frctionless, weak convergence limit

and has previously been termed "topographic funneling" (Jay 1992). Limited convergence

(i.e., a tendency toward a prismatic channel) decreases tidal amplitude because a larger
pressure gradient is required maintain a given amplitude along a prismatic channeL.

Acceleration effects do not produce a reflected wave because the form of the governing

equation (4.4.8) allows information to travel only landward.

If ¡i" 0, then acceleration effects overcome damping due to limited convergence,

and tidal amplitude grows along channeL. If ¡i c( 0, damping due to limited convergence

Ii.
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overshadows acceleration, and amplitude decays. Because Jl is smaller than either £(¡ or er,

the second-order solution for elevation is more like the first-order solution than might be
predicted from the size of E(¡ or er alone. Thus the applicability of the first-order scaling, if

based on the size of Jl, is extended. If Jl = 0, these two second-order effects cancel
entirely, and the solution for 171 is identical to the first-order case. Jay (1991) found a

similar result via a more complex, modified Green's function solution. Under conditions

he termed "critical convergence", Jay also found local acceleration to cancel with a
convergence-related term from the continuity equation, leaving an effective balance between

frction and pressure gradient.

The observed exponential varation in the amplitude of tidal elevation, described by

the e-folding length La, should be related to Jl as follows:

Jl = -l LT .
2ir La (4.5.2)

Table 4.3 lists LT/(2ira) for the Delaware, Thames and Tamar. The correspondence to Jl =

£(¡ - er is consistent within error bars for the Delaware and Thames. Application of (4.5.2)

to the Tamar is inconsistent with Jl = £(¡ - ere Jl = £(¡ - er = 0.15:t.06 indicates tidal

amplitude should increase along the Tamar, while observed along-channel tidal amplitude

clearly decreases in Figure 4.2. However, the observed spring tidal amplitude along the

Tamar may not be entirely dynamic. Since £h = a/Fi == 1 along the Tamar, the channel is

nearly dr at low tide, and low water elevation is largely constrined by the elevation of the

bottom. This phenomenon has been discussed in detal by Speer et aL. (1990).

Observed spring tidal elevations along the Tamar were recorded relative to a single

horizontal datum (George 1975). Thus it is possible to examine along-channel varations in

the elevation of high water. If the "dynamic" tidal amplitude along the Tamar is defined as

local high water elevation minus mid-tide elevation at x = 0, then tidal amplitude is found to

increase along channel (Figure 4.4) with an e-folding length-scale of La = 190i20 km.

Using this new estimate of La, (4.5.2) gives Jl = 0.23:t.02, which is consistent with Jl =

£(¡ - er to within error bars. Figure 4.4 displays the observed "dynamic" amplitudes along

the Tamar with the second-order solution given by (45.1).

The prediction of second-order amplitude and phase varation along the Delaware

and Thames can be improved by dividing up each observed channel into several individual,

exponentially-varying segments. Because (4.5.1) describes a unidirectional wave:"form,

the change in amplitude and phase along segmentj is given directly by
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1 17l,jl = 1171.j_1(Lj_1)le1JjkPj, iPr¡l.j = kjxj + iPr¡1.j-1(Lj-1), (4.5.3a,b)

where Jlj = eCJ - erj and kj are calculated from the along-channel geometr of each segment,

and Xj = 0 at the beginning of each segment. The boundar conditioñ for each segment is

simply the amplitude and phase at the end of the previous segment. Equation (4.4.7) is
used to determine e(ij. The only freely determined parameter is Cd, which is used to

determine erj and kj via (4.3.16).

The along-channel varations in observed 11711 and iPr¡1 (see Figure 4.2) suggest that

an improved representation of the Thames requires at least two exponentially-fit segments

(to capture growth of tidal amplitude followed by decay), whereas the Delawar requires at
least three (to capture growth, followed by weak decay, followed by subsequent growth).

There are insuffcient geometrc observations along the Tamar to merit its division into
segments. Figure 4.4 displays observations and second-order solutions for a 11711 and iPr¡1

along the Thames and the Delaware. Table 4.4 displays values of Jlj, LTj and LAj calculated

for each segment. Where Jlj " 0, tidal amplitude locally increases with distance along

channel, and where Jlj c( 0, tidal amplitude locally decreases.

The observed undulations in along-channel tidal amplitude and observed changes in

the slope of tidal phase displayed in Figure 4.4 are primarly due to changes in the rate of

convergence of channel geometr with distance. They are not due to interactions between a

single landward-propagating incident wave and a single seaward-propagating reflected

wave as commonly presumed through application of classical damped co-oscilation.

Equation (4.5.3) reproduces these undulations yet includes no distinct reflected wave.

Acceleration effects which do occur are more correctly interpreted as a dynamic

convergence of energy propagating in a landward direction as par of the single, overall

wave-fonn.

In computing the segmented solution, the drag coefficient was held constant at Cd =

3.0xlO-3 along the Thames and Cd = 1.7xio-3 along the Delaware. These "best-fit" Cd
values for the segments of each estuary are smaller than the corresponding Cd values for

each entire estuar. This is not surprising, for acceleration should become increasingly

important at smaller scales. At very small scales (e.g., channel meanders, expansions, or

pools) advective acceleration wil also playa role. Thus the smaller Cd values for individual

segments do not undermine our earlier assertion that, on a system-wide scale, friction

dominates acceleration at first-order. Rather, the excellent agreement between observations

¡
.1
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and theory displayed in Figure. 4.4 indicates that the second-order theory presented above

provides a simple yet powerful explanation of tidal propagation in strongly convergent

channels near morphologic equilbrium.

4.5.2 Second harmonic

From (4.4.19), the amplitude ratio of the second-to-first haronic is given by

I 712 i = !!Il- eJl.b e-ikx I = !!(l - 2eJl.b cos kx'+ e2Jlkx)l/2 .711 2 2 (4.5.4)

Equation (4.5.4) is independent of the choice of Xo used in evaluating (4.4.19). For the

case of J. = 0, (4.5.4) reduces to

I 7121 = .!(l - cos kx)112 .711 fI (4.5.5)

Figure 4.5 compares (4.5.4) and (4.5.5) to observations of 171/7111 along the Delaware

(Parker 1984), Thames (Prandle 1980) and Tamar (George 1975). In calculating (4.5.4)-

(4.5.5) for the Tamar, the "dynamic" amplitude discussed in Section 4.5.1 was applied,
which gives r= 0.75:t.06. For the Thames and Tamar there is significant disagreement

between theory and observations near x/L = 0 where forcing was assumed to occur only at

the dominant tidal frequency. In reality there is a finite 712 forcing at the mouth of each

system. In the inner estuar, where internally generated 712 is presumed to dominate, the

agreement between theory and observations is better.

The undulations in 171/7111 along the Delaware may be parally explained by changes

in the rate of convergence of channel geometr with distance. Equation (4.5.4) indicates

that /71217111 grows along-channel more quickly when J." 0 and and more slowly when J. c(

O. Observations displayed in Figure 4.5a suggests that growth in 1712/7111 is more

pronounced in the first and third "segments" of the Delaware where J. is positive, and less

so in the second segment where J. is negative (see Table 4.4). Since 171217111 is scaled by r=

Eh - Eb, the undulations may be further enhanced by along-channel varations in r, which

was set equal Eh for the Delaware. Eh = a/h increases rapidly in the innermost Delaware

estuary, reaching - 0.2 at x/L = 0.9 and - 0.5 at x/L = 1 (Parker 1984). This increase in

local rcoincides with the shar increase in observed 171217111 (Figure 4.5a).

Equations (4.5.4) and (4.5.5) reproduce observed l71i/ml in the inner Thames more

closely than the I-D numerical modeling of Prandle (1980), who predicted 171217111 = 0.12 at
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x = 0.6 (ve'rsus an observed value of 0.03). To calculate 171/7111 for the Thames, the

geometr of the first "segment" in Table 4.4 was used since all the available observations

of 112 are for xlL c( 0.8. The poor performance of the numerical solution is likely the result

of two factors. First, Prandle included tidal modulation of channel depth in the friction

term. As argued in Section 4.4.1, the inclusion of time-varing depth in the friction term is

probably not justified unless the time-dependence of Cd can be well constrned.

Second, and perhaps more importntly, Prandle (1980) did not distinguish between

subtidal channels and intertidal flats in his numerical modeL. According to the analytic

theory developed here, 111/1111 is scaled by r = Eh - Eb, where e¡ measures the relative size

of tidal varations in estuar width due to intertidal flats. If Eb had been neglected, and it

were assumed that r:: Eh, then the present prediction of I 11i1111 1 for the Thames would have

increased by three-fold. This may also explain why (4.5.4) - (4.5.5) over-predict 1 11i1111 I in

the inner Delaware where a small, but certinly non-zero, region of intertidal storage exists.

The phase of the second haronic can also be determined from (4.4.19). If 112 is

expressed as 11121 exp i (2M - lI7J2), then after some algebra (see Appendix 3) lI7J2 is given

by

ISin(kx+kxo)-e¡ikxsin(2kx+kXO)l 'i(i -r)
lI7J2 = arcta. + 1Cu ,-,

cos (kx + kxo) - e¡ikx cos (2kx + kxo) Irl
(4.5.6)

where ó(m,l) = 1 if m = I, ó = 0 otherwise. For ¡. = 0, trgonometrc identities may be used

(see Appendix 3) to show that (4.5.6) reduces to

lI7J2 = 1 kx + kxo - ir i- .2 2 Irl (4.5.7)

The phase of 112 = 11121 exp i (2mt - lI7J2) relative to 111 = 1111\ exp i (mt - lI171) is defined as

2l17J1 - lI172 (Aubrey and Speer 1985). So from (4.5.7) and (4.5.1), for ¡. = 0,

2 - 7r r kx kxlI7J1 - lI7J2 - - - + - - 0 .21rl 2
(4.5.8)

The solution for 2l17J1 - If2, unlike that for I 11i1111I, is a function of xo. Figure 4.6

compares (4.5.8) to observations of 2l1171 - lI172 using both Xo = 0 and Xo = L12.

Observations for the Delaware and Tamar are again from Parker (1984) and from George

(1975). Phase information for lI7J1 and lI7J2 presented by Prandle, however, are relative to

separate constants and thus in a form inconsistent with the application of (4.5,8). Less

extensive observations from Hunt (1964) are used instead.

I

~,
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As was the case for 117211711' observed 2tp711 - 'P2 near the mouth of each estuar is

apparently influenced by existing 172 forcing at the mouth, and agreement between
observations and theory is better within the estuary. Equation (4.5.8) reproduces

observations about as well with XQ = 0 or XQ = m. Prdicuons are less sensitive to XQ and

observed 2tp711 - 'P2 is reproduced more closely in the inner Thames and Tamar than in the

Delaware. This is not surprising, since the Tamar (kL = 0.48) and the Thames (kL = 0.96 '

if based on segment 1) are much shorter than the Delaware (kL = 3.7), and the use of a

representative XQ is asymptotically valid only for small kL. Nonetheless, (4.5.8) captures

the general sense of tidal asymmetr even in a system as long as the Delawar.

The phase of 172 relative to 171 indicates whether an asymmetrc tidal cycle has a

rising tide of shorter duration (0. c( 2tp711 - tp712 c( 180.) or a fallng tide of shorter duration

(-180. c( 2tp711 - tp712 c( 0.) (Aubrey and Speer 1985). For kL:S 1r, (4.5.8) predicts the tide

wil be shorter-rising if ris positive and shorter-fallng if ris negative. The sign of rcan

be expected to determine the sense of distortion in the same way for longer tidal channels,

but the above theory is based on a short channel asymptote. Friedrchs and Madsen (1990)

found asymmetr in frictionally-dominated prismatic channels to depend on rin the same

fashion (although their rwas defined slightly differently).

The mechanism by which rcontrols asymmetr in strongly convergent channels is

explained conceptually if the tidal wave speed given by (4.3.15) is approximated as
follows:

() _ g A(t) _ g w ii (1 + £h Ç) == g w ~ (1 + rÇ) .C t - rLA b(t) rLA b (1 + £bÇ) rLAb (4.5.9)

If r" 0, the wave speed given by (4.5.9) is greater around high water, when ç" 0, than it

is around low water, when ç c( O. High water moves faster along the tidal channel,
"catching-up" with low water, and causing the rising tide to be of shorter duration. If rc(

0, c(t) is greater around low water, low water moves faster along the channel, and the
result is a shorter fallng tide.

In the past, observations of shorter-rising tides in strongly convergent channels

have been attrbuted to time-varation of the frictionless shallow water gravity wave speed,

cg = (gh)1/2 (Wright et al. 1975; McDowell and O'Connor 1977; Allen et al. 1980). Given

the historical emphasis on low-friction co-oscilation in tidal channels, it is not surprising

that previous authors have looked to the frictionless wave speed for an explanation. A
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time-varying"cg can give results which are qualitatively similar to (4.5.9). For estuares of

interest to this chapter, however, it is clear that the dependence of cg on low frction makes

its use physically inappropriate.

More recently, shorter-rising tides in frictionally-dominated channels have been

attrbuted in large par to tidal modulation of depth in the friction term of the momentum

equation (e.g., Parker 1984; Friedrchs and Aubrey 1988). The results presented in this

section, which are well-supported by observations, also refute this explanation. Instead, it

is suggested that non-linear friction plays a less important role in generating tidal
asymmetr in the natural tidal channels of interest to this chapter. The effects described by

(4.5.9) are entirely due to non-linear continuity.

4.6 Discussion of second-order solution for velocity

4.6.1. Dominant velocity frequency

Like the second-order solution for 711, the second-order solution for Vi (4.4.23)

describes a purely progressive wave, with the same phase speed as the first-order wave,

and with an exponentially-modulated amplitude. An important feature of (4.4.23) is the

role played by e¡ in determining the phase of V 1 relative to 711. Maintaining accuracy to

O(er), (4.4.23) may be rewritten as

Vi = - e,uli (cos e¡ sin (rot - kx) - sin e¡ cos (rot - kx) L ' (4.6.1)

or simply,

VI = - e,ule sin (rot - kx - e¡) . (4.6.2)

Thus to O(er), VI leads 711 by

ir
fPT)1 - lpl = - - fT.

2
(4.6.3)

If fT is vanishingly small, i.e., if along-channel convergence is infinitely strong, then Vi

leads 711 l"y 90., which is identical to the first-order case. For larger fT, VI leads 711 by a

smaller phase.

Using (4.2.8b) and (4.3.16), (4.6.3) maybe re-expressed as

8 C Eh ro2 L 3fPT)1 - fPVl = ir - _ d A2 3ir g(Aib)2
(4.6.4)
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Equation (4.6.4) indicates that in a strongly convergent tidal channel near morphologic

equilibrium, 9'1)1 - 9'1 responds primarly to local geometrc conditions. This result is in

sharp contrast to the classical view of frictionally damped co-oscilating tides in channels.

Classical theory indicates that the relative phase of velocity should be a strong function of

xlL. For a frctionally damped co-oscilating tide in a prismauc channel, 9'1 - aii -+ 90. as

x -+ L because of complete reflection at the head, and 9'ril - ~I decreases as x -+ 0 as the

reflected wave becomes more damped with respect to the incident wave.

Figure 4.7 displays observations of 9'ril - ai1 from the Delaware (Parker 1984),

Thames (Hunt 1964) and Tamar (Uncles and Stephens 1990) as a function of ET,

superimposed on (4.6.3). All the velocity time-series available for the Delaware and
Thames are point measurements and, beyond testing 9'ril - 9'VI, are of limited use for

examining the I-D theory developed in this chapter. The velocity record for the Delaware

is from xlL = 0.39 (Parker 1984), which is in the second "segment" of the estuar (see

Table 4.4). Thus the calculation of er used here is based on the geometr of that segment.

The three velocity records for the Thames are from xlL = 0,0.38 and 0.73 (Hunt 1964), all

of which are in the first segment of the Thames, and er for the Thames is likewise defined.

The agreement between observations and (4.6.3) is quite good for the Delaware, the Tamar

and for two of the three observations from the Thames. The poorly matched point is for

observauons at xlL = 0.73 in the Thames, which is relauvely near the trnsition to segment
2. The data point in parentheses is 9'rii - 9'i for the velocity record at xlL = 0.73 plotted

versus the er value appropriate to segment 2.

In (4.6.2), the parameter J1 determines the growth or decay of IVil as a function of

distance along channeL. It was shown in Chapter 3 that in stable tidal channels, the
amplitude of tidal velocity is nearly constant along-channeL. Figure 4.3 indicates this is the

case along the Delaware, Thames and Tamar. Thus tides in channels near morphologic

equilibrium should, by definition, have J1 :: O. The theory developed in this Chapter is

therefore closely linked to the morphodynamic evolution of tidal channels. If in an
exponentially-shaped tidal estuar, J1 is significanùy less than or greater than zero, then the

system may not be near morphologic equilbrium. Significant grdients in along-channel

tidal velocity should cause along-channel grdients in sedimentation or erosion, leading to

the eventual adjustment of J1 toward zero. Of course there are important limitations to this

conclusion. Primary among them is the contribution of tidal haronics toward spatial

gradients in peak velocity and toward asymmetres in the direction of peak velocity. Likely
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relationships' between temporal asymmetries and spatial gradients in velocity in stable

channels are discussed further in Chapter 3.

4.6.2. Second haronic

From (4.4.24) and (4.6.3), the amplitude ratio of V2 to Vi is

\V2\ = ~11 - 2e,ub: e-ikx I = ~(1 - 4e,ub: cos kx + 4e2,uup/2 .Vi 2 2 . (4.6.5)

IVifil, like 1172/711, is independent of xo. But unlike l71i/71il, IVifil is predicted to be non-

zero at x = O. For Jl = 0, IVifil is simply.

i~ = I~I (5 - 4 cos kx)I/2 .
(4.6.6)

Time series of cross-sectionally averaged velocity are available only for the Tamar

(Uncles et al. 1985). Figure 4.8 compares (4.6.5) and (4.6.6) to the results of haronic
analyses of spring velocity observations. r = 0.75 is again used, based on the mean
':dynamic" tidal amplitude, Equation (4.6.6) reproduces the same order of IVi/Vil as that

observed in the Tamar. However there is no discernable along-channel trend in the
observed data. Nonetheless, these results are encouraging given that velocity in general is

much more sensitive than tidal elevation to measurement location and to varations in

channel shape away from an idealized geometr.

From (4.6.24) and (4.6.2), the phase of V2 relative to Vi with J1 = 0 can be shown

to be (see Appendix 3)

2cpi - CP2 =

2kx 2 (2 sin (2kx + kxo) - sin (kx + kxo) \ ir r+ er - artan + - - .2cos (2kx + kxo) - cos (kx + kxo)1 2 Iyl

(4.6.7)

Note that 2cpi - CP2, like 2ai171 - ai172, is a function of xo.

If kx c(c( 1 (which is tre for the Tamar), then sin kx =: kx, cos kx =: 1 and arctan kx

=: kx, and (4.6.7) reduces directly to

2cpi - CP2 = .z!l + 2er - kx - kxo.2 r (4.6.8)

Or equivalently,

I
b,
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2(li - (l2 = ~ I~I + k(2LA - X - XQ) . (4.6.9)

Figure 4.9 displays 2(li - (l2 as determined from velocity observations from the Tamar

(Uncles et al. 1985) along with (4.6.9) for both XQ = 0 and XQ = L/2. Equation (4.6.9)

does a reasonable job of reproducing both the magnitude and the trend of along-channel

varation in 2(li - (l2 observed for the Tamar. More importantly, (4.6.9) captures the

varing nature of velocity asymmetr along the Tamar.

The relative phase of V2 is a primar indicator of whether tidal velocity is flood-

dominated (_90. c( 29Vl - 9V2 c( 90.) or ebb-dominated (90. c( 2(li - (l2 c( 270.) (Aubrey

and Speer 1985). For short channels with r" 0, (4.6.12) indicates that velocity wil be
ebb-dominated for x c( 2LA - Xo and wil be flood-dominated for x " 2LA - xo. If r c( 0,

(4.6.9) predicts the opposite wil be true. The predicted switch in dominance (with r" 0)
is consistent with observations taken along the Tamar (Figure 4.9). A similar along-
channel trnsition from ebb- to flood-dominance has also been observed in tidal channels at

Murrells Inlet, South Carolina, and at Chatham Inlet in Massachusetts, and in I-D
numerical modeling of frctionally-dominated tidal channels (Friedrchs et al. 1992).

4.7. Summar and conclusions

A scaling of the continuity equation appropriate to strongly convergent channels

(such as the Delaware in the U.S. and the Thames and Tamar in the U.K.) indicates

gradients in tidal discharge are dominated at first-order by grdients in cross-sectional area.
Finite amplitude effects and gradients in velocity due to tidal phase enter at second-order.

Gradients in the amplitude of tidal velocity enter only at third order -- a property attrbuted

to the channels being near morphologic equilbrium. A scaling of the momentum equation

indicates the first-order balance to be between pressure gradient and friction. Local
acceleration enters at second-order, and advective acceleration enters only at fourth order.

The first-order governing equation for elevation is a first-order wave equation, in

contrast to the classic second-order equation which results from low friction and a prismatic

channeL. Assuming cross-sectional area to var exponentially along-channel, the first-order

solutions for both elevation and velocity are constant amplitude, forward-propagating wave

forms with velocity leading elevation by 90.. The form of the first-order solution diverges

from the conventional view of co-oscilating tides. Velocity and elevation have the same

phase relation as a standing wave, yet they are individually progressive. Furthermore, the
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solutions are ~ntirely independent of the length of the estuar -- in shar contrast to the

length-sensitive quarer-wave resonance of classic tidal estuar theory.

First-order solutions for tidal wave speed and tidal velocity are given by c =

g(Aih)(,LA)-i and U = awLA(Alb)-i, where Aih is the time-averaged ratio of channel cross-
sectional area divided by total embayment width (including tidal flats), a and O! are tidal

amplitude and frequency, LA is the along-channel e-folding length of cross-sectional 'area,

and, is the linear friction factor. Solutions for channels of similar dimensions to the

Delaware, Thames and Tamar give tidal velocities and wave lengths (predicted via c) which

are consistent with observations.

The second-order governing equation is also a first-order wave equation, but
includes the effects of finite amplitude and phase-generated velocity gradients from

continuity and the effects of local acceleration from momentum. Second-order effects

arsing from frction are not included because previous observations have not demonstrted

that quadratic drag with tidal modulation of depth-dependence accurately reproduces
observed nonlinearities in natural tidal channels. Finite amplitude effects in the continuity

equation are treated by a formal perturbation in time only, with spatial effects treated

kinematically. This simplifies the form of the solution without greatly affecting its accurcy

for relatively short systems.

Second-order solutions for elevation and velocity at the dominant frequency are

purely progressive wave-forms with the same phase speed as the first-order solution. At

second order the phase lead of velocity is predicted to decrease away from 90. as kLA

increases, where k is the first-order wave-number. Amplitude of both elevation and

velocity are modulated by eJ, where J. = WI' - kLA. J. represents the parially cancelling

effects of local acceleration and limited convergence. Because J. determines the growth or

decay of tidal velocity with distance along channel, we expect to find J. :; 0 in channels near

morphologic equilibrium. The quantity wI' - kLA is close to zero along the Delaware,

Thames and Tamar.

Observations of small scale variations in tidal amplitude and phase along the
Delaware and Thames are reproduced by fitting exponential geometries to individual

channels segments and applying the second-order solution to each segment. This is easily

done for the unidirectional wave solution. The only boundary condition on each segment is

the amplitude and phase at the end of the previous segment. The segmented solution

demonstrates that along-channel undulations in amplitude and phase are due primarily to

cwi
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changes in the rate of convergence of channel geometr and are not due primarily to
interactions between individual incident and reflected waves as predicted by classical co-

oscilation.

Compact solutions for tidal elevation at the second haronic frequency are

consistent with observations from the Delaware, Thames and Tamar. The second haronic

is scaled by r = a/h - !Jb/E, where h is channel depth and !J~ is the amplitude of tidal

varation in system width. Control of elevation asymmetr by r,is described conceptually

by replacing Aih in c with A(t)/b(t). Then if r" 0, the wave crest propagates faster than

the trough, causing the rising tide to be of shorter duration. If r c( 0, the opposite holds

and the falling tide is shorter. ris greater than zero for the Delaware, Thames and Tamar.

Solutions for the zeroth haronic are also scaled by Yo

Compact solutions for sectionally-averaged tidal velocity at the second harmonic

frequency are also reasonably consistent with observations (which are available only for the

Tamar). Like elevation, the second harmonic of velocity is also scaled by Yo Unlike

elevation, however, the sense of velocity asymmetr is predicted to reverse a short distance

into the channeL. For r" 0, ebb currents dominate at the mouth, whereas at distances

beyond about 2LA, flood currents dominate. For r c( 0, the opposite pattern is predicted,

with flood curents dominating at the mouth and ebb currents dominating within.
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Table 4.1. Observed and computed tidal and geometrc properties of three tidal
estuanes. Parameters are further defined in the text. :t indicates standard errors; c( "
indicates along-channel average.

Parmeter Delawar Thames Tam

L (km) 215 95 21--
LT (km) 37O:1O 45O:80 27O:1O

c(U" (m/s) 0.63:t.02 0.63:t.05 0.53:t.OL

4(" (m) 0.83:t.03 2.2:t0.l 2.3:t0.l
-------

c(h" (m) 5.8:t0.3 7.2:t0.6 2.5:t0.2

c(eh" = ~
c( h" 0.14:t.0 1 0.31:t.03 0.92:t.08----------- -----------

c(eb" = c( b - w"
c(h" -0 0.20:t.02 0.30:t.09

Lb (km) 34:t1 23:t5 4.6:t0.4

LA (km) 3 2:t 1 1 9: 1 5.3:t0.3-, ---
LA/Lv 0.012:t0.0 13 0.069:t.075 0.033:t.0 13

ev = (LA/Lv)In 0.ll:t.08 0.27:t0.22 0.18:t.05

er = 2irA/LT 0.56:t0.02 0.27:t.05 0.12:t.OL---------
c(A/E" (m) 5.8:t0.3 7.0:t0.5 1. 7:t0. 2

4(" (J LA

c(Alh" c(U" 1.0:t0.l 1. 3:t0. 2 1.9:t0.2
-

ea = (LA/La)1/2 0.24:t.03 0.11:t.21 0.27:t0.04
----------------- ------------ ------------------ ---

c(wlh" - I 0.80:t.02 0.70:t.09------- .._------
ey c2

c( w/b "g c(h " 0.65:t.04 0.47:t.09 0.26:t0.04

I:...'....

. .
,
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Table 4.2. Small terms used in scaling governing equations and in approximating solution.

Formally second-order, O(e) quantities Other informally small quanitities

eh = alii

eb = tJblb

eu = (LAILu)l/2

tT = 2ir LAILT

ea = (LAILa)l/2

e(i = wI r

ll = e(i - er

r = eh - eb

h/w

Â. = LILA - LlLb

LAIL (1)

LILT (2)

(1Important in vicinity of landward boundar. (2)Important for second-haronic solution.
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Table 4.3. See Table 4.1 for explanation.

Parmeter Delawar Thames Tam

Å. = LILA - LILb 0.3O:0.17 0.48:t0.29 - 0.60:.20
-

U
= C:Q" WLA

(mlS)
c:Alb"

0.65:t0.05 0.83:t0.08 1.00:t.ll

Cd=
3ir2 g (Aiii)2

4LT C:Eh" ro2 LA2 2.3:t0.2x 1 0-3 3. 7:t0.8x 10-3 1.6:t.3x 10-3

Lg = 2ir (gc:h,,)l/2

(km) ro 34O: 10 38O:20 22O: 1 0

c:p = C:fh" - C:fb" 0.14:t0.01 0.1O:0.04 0.63:t.12

fw= 3irc:Aiii"
8 Cd C:fh" LA 0.65:t0.09 0.39:10.10 0.27:t.06--------- -. -

Jl = Ew - £7 0.094:t0.091 0.12:t0.11 0.15:t.06------1--
Jl = i- LT

- 0.58:t.052ir La 0.061:t.009 - 0.06:t0.12
0.23:t0.02*

--- ---- --
*If La is based on the "dynamic" tidal amplitude, defined as local high water minus mean
tide level at x = O.
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Table 4.4. See Table 4.1 for explanation.

Estuar Segment x/L Jl LT (km) LA (km)

Thames 1 0-0.8 0.34 630 22

2 0.8 - 1 - 0.41 130 13

Del¡iware 1 o - 0.22 0.54 530 40

2 0.22 - 0.68 - 0.10 310 44

3 0.68 - 1 0.37 450 33
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Figure captions for Chapter 4

Figure 4.1. Diagram of an idealized tidal embayment cross-section: b is
embayment width (including storage in tidal flats), ,is tidal elevation, h is cross-
sectionally averaged channel depth, w is channel width (which is equal to embayment
width at low tide), and A is channel cross-sectional area. Over-bars indicate time
averages.

Figure 4.2. Observed semi-diurnal surface tide as a function of distance along the

Delaware (Parker 1984), Thames (Prandle 1980) and Tamar (George 1975): (a)
amplitude, and (b) phase, along with least-squares linear regressions.

Figure 4.3. Observations of channel cross-sectional area at mid-tide, time-
averaged embayment width, and cross-sectionally averaged velocity amplitude as a
function of distance along the (a) Delaware (Parker 1984), (b) Thames (Hunt 1964), and

(c) Tamar (Uncles et al. 1985), along with least-squares log-linear regressions.

Figure 4.4. Observed semi-diurnal surface tide as a function of distance along the

Tamar (George 1975), Delaware (Parker 1984), and Thames (prandle 1980) along with

predictions given by second-order solutions: (a) amplitude, (b) phase. Observations of

amplitude along the Tamar are calculated as the difference between local high water

elevation minus mid-tide elevation at x = O. Predictions for the Delaware and Thames are

based on the "segmented" solution.

Figure 4.5. Observed relative amplitudes for the second harmonic of tidal
elevation as a function of distance along (a) the Delaware (parker 1984), and (b) the Tamar

(George 1975) and Thames (Prandle 1980), along with predictions given by the second-
order solution.

Figure 4.6. Observed relative phases for the second haronic of tidal elevation as

'a function of distance along (a) the Delaware (Parker 1984), and (b) the Tamar (George

1975) and Thames (Hunt 1963), along with predictions given by the second-order
solution.

Figure 4.7. Observed phase of velocity relative to elevation at the dominant tidal

frequency for the Delaware (Parkèr 1984), Thames (Hunt 1963) and Tamar (Uncles and

Stephens 1990), along with predictions given by the second-order "segmented" solution

as a function of q = 2ir LTILA. The poorly matched point for the Thames is in segment
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one, but relatively near the transition to segment two. Parentheses indicate the same paint

plotted using the geometr of segment two.

Figure 4.8. Observed relative amplitudes for the second haronic of tidal velocity

as a function of distance along the Tamar (Uncles et aL. 1985), along with predictions

given by the second-order solution.

Figure 4.9. Observed relative phases for the second haronic of tidal velocity as

a function of distance along the Tamar (Uncles et al. 1985), along with predictions given

by the second-order solution.
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Least-squares fit to (4.2.6)

Figure 4.3
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Chapter 5:

Equilibrium Hypsometry of Intertidal Flats
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Abstract to Chapter 5

. Recent observations of tidal flat morphology have correlated convex hypsometry

with large tide ranges, long-term accretion and/or low wave activity. Concave hypsometr,

in turn, has been correlated with small tide ranges, long-term erosion and/or high wave

activity. This study demonstrates that much of this empircally observed varation in tidal

flat hypsometr may be explained by a simple morphodynamicmodel which assumes tidal

flats to be at equilbrium if maximum bottom shear stress ('t) is spatially uniform. Two

general cases are considered: (i) absence of wind waves where 'tis equal to maximum tidal

shear stress, and (ii) dominance by wind waves, where 't is equal to maximum wave-
generated shear stress.

If one assumes a spatially uniform drag coeffcient at the time of maximum shear

stress, then uniform maximum velocity may be used as a proxy for uniform 't.
Conservation of mass is used to determine the distrbution of maximum tidal velocity (UT)

across the flat, whereas conservation of energy determines the distrbution of maximum

wave orbital velocity (Uw). Results indicate that a flat which slopes linearly away from a

stright shoreline does not produce a uniform distrbution of UT or Uw, and therefore is not

at equilbnum under domination by either.

If the profile is adjusted until UT is constant, then UT is found to be proportional to

the length of the tidal flat, L, and the equilibrium profile is predicted to be convex. The

equilibnum profie for Uw, in contrast, is concave and has depth increasing like x213, a

form which has been reported empirically for dissipative beaches. Under domination by

U w, L - h02/H 0, where ho is the tidal range and H 0 is the forcing wave height. This

expression indicates that L should increase dramatically with tidal range. Since UT - L, the

relative importnce of tidal currents should also increase strongly with tidal range, favoring

an eventual transition from concave to convex hypsometr as tidal range increases.

Equilibrium profiles along curved shorelines are also derived by solving

conservation of mass or energy. Under domination of either UT or Uw, results indicate

that an embayed shoreline significantly enhances the convexity of the equilibrium profie,

and a lobate shoreline slightly increases concavity. The nonlinear transformation from

profies to hypsometries, however, causes the hypsometry of embayed and lobate
shorelines to be much more or less convex than tlie corresponding profies -- so much so

that the potential effect of shoreline curvature on equilbrium hypsometr is of the same

order as the effect of domination by UT or Uw.
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List of symbols in Chapter 5

a

A

AL

Am

b

bo

bL

B

Cd

C 1. 2.3

Cg

D

E

g

h

ho

hm

H

Ho
..
Ho

L

L*

,
'0

'i
'L

t

Tw

U

ndal amplitude

cumulative horizonta basin area

A at x = L

maximum value of A

width of flat parllel to shoreline

b at x = 0

b at x = L

B(Xi,x2) = (b(xi)/b(X2) + 1)/2

drg coeffcient

constants

shallow water wave group velocity

energy dissipation by bottom frcnon

wave energy density

acceleration of grvity

still water depth

h at x = 0

maximum val ue of h

wave height

H at x = 0

non-dimensional Ho

shore-normal length of ndal flat

shore-normal length of lower profie

shore-normal co-ordinate for radially symmetrc flat

, at x = 0

, at x = xi

, at x = L

nme

wave period

velocity

equilbrium velocity
depth-averaged tidal velocity

wave orbital velocity

maximum depth-averaged velocity

maximum depth-averaged tidal velocity

Ueq

UT

Uw

U

UT
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List of symbols in Chapter 5 (continued)

UTO UTatx = 0
Uw maxmum wave orbita velocity
Uwo Uwatx=O

x shore-normal co-ordinate

x f postion of tidal front

z vertical co-ordinate

z* elevation of transition from lower to upper profie
Z profie elevation
Z+ upper profie elevation
Z _ lower profile elevation

17 tidal elevation
8 angle between velocity and shoreline

p fluid density
(j wave frequency

't maximum bottom shear stress

'CJ maximum tidal bottom shear stress

't maximum wave-generated bottom shear stress
(i tidal frequency
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5.1. Introduction

More than half of the world's non-arctic coastlines are either macrotidal (range"

4 m) or mesotida1 (range 2-4 m) (Davies 1980). The study of equilibrium tidal flat
morphology provides insight into the response of meso- and macrotidal coastlines to such

external forcings as engineering works, periodic storm activity, and changes in relative sea

leveL. Hypsometrc curves, which measure cumulative horizontal basin area as a function

of elevation, usefully represent broad aspects of tidal flat morphology in a concise and

quantitative manner (e.g., Kirby 1992). Recent observations relating charcteristic tidal flat

hypsometres to tide range, wind wave activity, and long-term accretion or erosion provide

a base of empirical data with which to compare equilbrium hypsometres predicted by

analytic theory.

In this investigation equilbrium hypsometrc curves are derived for intertidal flats

by assuming a uniform magnitude of maximum shear stress (1). A spatially uniform
distrbution of 1 provides a useful first approximation to the more correct statement that a

stable morphology results when there is a zero divergence in net sediment transport. The

resulting analytic forms based on uniform 1 are consistent with previous empirical

observations and provide insight into the physical mechanisms which determine tidal flat

hypsometr. Domination of 1 by tidal currents is found to favor a convexity, whereas
domination of 1 by wind waves if found to favor concavity. The effect of shoreline
curvature on equilibrium hypsometry is found to be of the same order as the effects of

domination by tides or waves.

5.1.1. Definitions and previous work

Hypsometric analysis, which was formally introduced to geomorphology by

Strhler (1952), is the study of the distrbution of surface area of a land mass or basin with

respect to elevation. Hypsometrc curves are often presented as non-dimensional plots of

relative elevation and relative surface area, allowing a comparison of hypsometrc curves

between systems having different scales. Strhler found distinctive hypsometrc curves to

be related to the erosional maturity of land regions formed in homogeneous strata. Boon

(1975) and Boon and Byrne (1981) first applied hypsometrc analysis to the study of
intertdal basins. They used the hypsometr of intertidal storage areas to model patterns of

asymmetrc discharge in tidal channels near Wachapreague, Virginia.

i.
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Figure 5.1, which is modified from Boon and Byre (1981), shows example basin

morphologies and their associated hypsometres. In Figure 5.1 and throughout this paper,

hypsometrc curves display the cumulative horizontal basin area below a given contQur. It

is important to distinguish the hypsometrc curve from the topogrphic profile. The profie

is a plot of elevation versus horizontal distance along the gradient of the topography. In

Figure 5.1, for example, all three topographies have linear profies. Along a straight
shoreline (case i in Figure 5.1) the profie and hypsometrc curve are interchangeable.
Along curved shorelines, however, the nonlinear transformation from profie to
hypsometr causes a linear profie to produce a nonlinear hypsometr. If the profie is
stright and the shoreline is embayed (case ii in Figure 5.1), then the hypsometr wil be

convex. If the profie is straight and the shoreline is lobate (case iii in Figure 5.1), then the

hypsometr wil be concave. Boon and Byre (1981) emphasized the sensitivity of tidal

flat hypsometr to shoreline curvature.

Recent observations of tidal flat hypsometry have related the form of the
hypsometrc curve to other factors including tidal range, exposure to wind wave activity

and patterns of long-term accretion or erosion. In a study of tidal basins along the German

Bight, Dieckmann et al. (1987) noted that hypsometrc curves tend to be more concave for

lower tidal range flats and more convex for higher tidal range flats. In a study of
macrotidal (range" 4 m) flats around Great Britain, Kirby (1992) related convexity to

long-term accretion and concavity to long-term erosion. At a few of the locations, Kirby in

turn related accretion or erosion to protection from or exposure to wind waves. Finally, in

a study of sediment exchange off the wide macrotidal flats of western Korea, Wells and

Park (1992) described a periodic increase in convexity associated with a seasonal increase

in wave activity.

The hypsometrc trends described above can be summarized by a qualitative ratio

which indicates the relative importance of tidal curents and wind waves:

tidaVwave activity:
high -7 CONVEX hypsometr

low -7 CONCA VE hypsometr

This correlation is consistent with observations from the German Bight if spatial varations

in tidal range are assumed to be locally more important than spatial varations in wave

activity. The same trend describes flats in Great Britain if local varations in wave activity
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dominate local varations in tidal activity. The' ratio descrbes Korean flats, too, if temporal

(rather than spatial) varations in wave activity are assumed to be most importnt.

Potential contrbutors to equilbrium tidal flat hypsometr which are not addrssed
in this study include sediment supply and distribution of grain size. In a study of

equilbrium beach profiles, Wright et al. (1985) noted an increase in concavity associated

with net export of sediment from the surf zone and a decrease in concavity associated with

net impon. These associations are consistent with Kiby's (1992) correlation of concavity

and convexity with long-term erosion and accrtion on tidal flats. A grdation of sediment

type from high to low water will also affect the equilibrium profi.e since lower equilbrium

shear stresses may be associated with areas of finer grin size. Using an analytic model of

shoaling waves over varous shaped tidal profies, Zimmerman (1973) suggested that a

decrease in grain size toward high water enhances concavity, whereas an increase in grin

size enhances convexity.

5.1.2. Morphodynamic model

In this study it is assumed that a stable morphology wil result when the distrbution

of maximum bottom shear stress (1) is uniform across a tidal flat. This is a simplification

of the more correct statement that a stable morphology results when there is a zero
divergence in net sediment transport. Since common formulations for erosion, deposition

and net trnsport are generally expressed as functions of bottom shear stress -- often in the

form of power relations (e.g., Dyer 1986), the spatial distrbution of bottom shear stress is

a useful staing point before attempting to predict sediment transport directly using more

uncenaIn equations. Bottom shear stress can be derived from hydrodynamic relations more

easily and with a greater degree of confidence.

A deviation of 1 away from its mean value over a flat is assumed to cause a local

increase or decrease in the rate of sediment dispersal and result in net erosion or deposition

of sediment. This approach focuses on the diffusive nature of sediment transport and does

not address the imponance of asymmetres in the direction of bottom shear stress, The tidal

and wind wave processes considered here are linearized such that no asymmetries in

direction of 1 are generated. Cltarly, asymmetres in 1 can playa morphodynamic role.

For example, the morphologic impact of tidal asymmetres in embayments is the focus of

Friedrichs et al. (1992) and is a primary motivation for Chapter 2 of this thesis.
Nonetheless, if 1 is considered to be symmetrcal at first-order, then the spatial distrbution

~
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of its magnttude alone should provide valuable insight into the morphology of stable tidal

flats.

An assumption of uniform 't has also proved useful in previous investigations of

equilbrium morphology. In Chapter 3 of this thesis, uniform 't was used successfully to

describe the equilbrium morphology of tidal channels. Although second-order varations

were associated with directional asymmetries, uniform 't provided a robust, first-order

constraint on channel geometr. An assumption of uniform energy dissipation, which can

be re-expressed as uniform 't, has also been applied to the generation of stable beach
profies along straight shorelines (Bruun 1954). The resulting equilbrium form is
consistent with empircal observations of dissipative beaches in general (Dean 1977) and

has been applied successfully in individual case studies (e.g., Chappell and Eliot 1979).

For tides in the absence of wind waves or for wind waves in the absence of tides, 't

has been expressed as

't = P Cd U IUI , (5.1.1)
'"

where P is the fluid density, Cd is a dimensionless drag coefficient, and U is maximum

depth-averaged velocity during a complete wave or tidal period. The shallow-water
approximation allows the decay of wave velocity with depth to be neglected. Bottom stress

given by (5.1. 1) is assumed to be dominated effectively by either waves or currents.

Otherwise, wave-current interaction may playa role in determining the net stress field

(e.g., Grant and Madsen 1979). In this study, it is also assumed that p and Cd are constant
in space. Under these conditions, uniform 't becomes equivalent to uniform U, and

equilibrium morphologies can be defined by either 't or U.

5.1.3. Scaling of problem: southwest coast of Korea

Before beginning a formal derivation of equilibrium hypsometry, it is useful to

scale the problem in order to assess its applicabilty to real tidal flats. The tidal flats along

the southwest coast of Korea (Wells et al. 1990; Alexander et al. 1991; Wells and Park

1992) are chosen as afield example because of their open form and homogeneou~
composition, attributes which make them particularly amenable to first-order analytic

modeling. Unlike many tidal flats bordering the North Sea, the Korean flats lack extensive

dendrtic drainage systems, seaward barers and landward salt marshes (Alexander et al.

1991). . The Korean intertidal sediments are predominantly poorly sorted mud and silt,
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whereas sediments on flats in the North Sea typically show a more well-defined shore-

parllel grdation from mud to sand (Klein 1985).

Along the southwest coast of Korea the mean tide range is about six meters and

tidal flats extend as much as 30 Ia out from the coast (Alexander et al. 1991; Wells and

Park 1992). However a more tyical shore-normal length scale is L = 5 km. During calm

summer weather, tidal currents are presumed to dominate bottom shear stress over the flats.

,Assuming a sinusoidal paricle excursion, maximum tidal cuÌent speed is given by UT =

rrfT, where T is the tidal period. A semi-diurnal period then gives UT = 35 cm s-l, which

is suffcient to mobilize unconsolidated sediment. Wells et al. (1990) measured maximum

current speeds of - 40 cm s-l over Korean tidal flats, which is consistent with the above

estimate.

During the winter monsoon, Korean flats are exposed to extensive periods of large

ocean swell (Wells and Park 1992), and wave-generated shear stress is presumed to
dominate. The amplitude of orbital velocity for a shallow water wave is given by linear

theory to be
Uw = .t (gh)1/2, (5.1.2)

'where H is wave height, h is stil water depth and g is the acceleration of gravity. Using

the tidal range to scale h, a storm swell of H = 2 m gives Uw = 120 cm sol. Since 't- if,

shear stress generated by storm swell wil be an order of magnitude larger than that
generated by UT; and Uw wil effectively dominate the net field. Since maximum shear

stress generated by waves (iw) has the potential to be much greater than maximum shear

stress generated by tides eIT), one might expect a seasonal trnsition from tide- to wave-

dominated hypsometry to be largely erosional, and a transition from wave- to tide- .
dominated hypsometr to be largely depositionaL.

In the following sections, U is used as a proxy for 't in deriving equilibrium flat

morphologies. In Section 5.2 conservation of mass is used to determine the distrbution of

UT, whereas in Section 5.3 conservation of energy is used to determine the distrbution of

Uw. Tidal flat profies are then adjusted until a uniform distribution of U signities
equilibrium.

11!1!..'

'!.I::
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5.2. Tidal currents

If the shore-normal length scale of the tidal flat is much shorter than the tidal wave

length, then allowing tidal elevation (11) to pump up and down uniformly across the tidal

flat is a reasonable assumption. Phase lags generated by momentum are importt in the

generation of velocity asymmetres over tidal flats (Friedrichs et aL. 1992). However a

kinematic approach is useful at first order when examining only the magnitude of tidal

velocity. In the past, kinematic approaches have been used successfully in the study of

velocity distrbutions along short channels in tidal marhes (Boon 1975; Petick 1980).

Thus the governing equation applied tidal curents in the absence of wind waves is

simply conservation of mass:

d ~;t) + a: (h(x,t) UT(X,t) I = 0 , (5.2.1 )

where h is local depth, and UT is tidal velocity. Equation (5.2.1) also assumes tidal flow to

be entirely one-dimensional, thus neglecting the role played by intertidal channels in

concentrating the flow of water across the flats. Nonetheless, flow over tidal flats is often

sheet-like, especially during the flood, even in the presence of intertidal channels (Wells

and Park 1992).

The direction of peak flow over intertidal flats may be at an angle to the bathymetrc

contours (e.g., Evans and Collns 1975; Wright et aL. 1982). Equation (5.2.1) does not

require tidal currents to be perpendicular to the contours, but only requires curnts to flow

at a constant angle to the bathymetr. In such a situation the x-coordinate in (5.2.1) is

simply oriented at the same angle as the velocity. In their study of tidal flats along the

Wash in the U.K., Evans and Collns (1975) found a marked clockwise rotation of the tidal

current throughout the tidal cycle. Although the analytic model presented here allows the

tide to flow at an angle to the bathymetr, rotation of the current is not incorprated.

Integrating (5.2.1) to solve for UT gives

UT(X,t) - xr(t)-x d11(t)
- h(x,t) dt'

(5.2.2)

..
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where xlt) is the boundar between the wetted and exposed portions of the flat, hereafter

termed the tidal front (Figure 5.2). Channel depth is defined in terms of its time and space-

dependent components:

h(x,t) = r¡(t) - Z(x) , (5.2.3)

where Z(x) is the local elevation of the tidal flat profie. Equations (5.2.2) - (5.2.3) hold

for any flat lacking along-shore variations. If r¡(t) and Z(x) are specified, then h(x,t), xlt)

may be calculated, and a solution for UT may be found from (5.2.2).

The parameter Unx) is defined as the maximum value reached by UT at each point

in x during the tidal cycle. According to the morphodynamic model applied in this chapter

(see Section 5.1.2), if UT is uniform in x, then 'l is uniform also. In the absence of wind
waves, the tidal flats are at morphologic and hypsometrc equilibrium. If UT (and therefore

'lf) varies in x, then erosion is more likely (or deposition is less likely) in areas with larger

UT -- and vice versa for areas with smaller UTe Under ideal conditions, erosion and/or

deposition wil continue until UT and 'l become uniform.

The following sub-sections first consider tidal currents on a linearly sloping tidal

flat along a straight shoreline. Next the tidal flat profie is adjusted to produce a uniform

spatial distribution of UTe Finally the role of shoreline curvature is considered. The
uniqueness of the resulting equilbrium profies wil not be proven. The goal of this section

is merely a description of simple profie forms over which UT and 'l are constant in space.

In each case it is assumed that

r¡(t) = a sin rot , (5.2.4)

where a is tidal amplitude, and ro is tidal frequency. However a similar approach may be

used for more complex time-varations in elevation, including the effects of tidal haronics

in r¡(t). The kinematic role of tidal haronics in determining flow patterns has been

considered along short marsh channels by Boon (1975) and Pethick (1980) and in the inner

portion of longer tidal channels by Fry and Aubrey (1990). The kinematic ro:e of tidal

haronics in shapin£: equilibrium flat hypsometr is the subject of continuing work.

5.2.1. Straight shoreline, linear profie

Figure 5.2 displays a linearly sloping tidal flat with a shore-normal length of L from

the low to high water line. The tidal flat profie is given by

!
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Z(x) = a (2x/L - 1) , (5.2.5)

where x = 0 at the low water line, and Z = 0 at x = L/2 (Figure 5.2). For a linear flat,

evaluation of (5.2.2) is parcularly strightforward. If the gradient of the flat is constant,

then
xf(t) - x = constant = 2aL ,

h(x,t)
(5.2.6)

and

d ( 2)1/2
UT(t) = -i -. cos rot = L ro 1 - L2a dt 2 a2 (5.2.7)

From (5.2.7) it is clear that maximum tidal velocity wil occur when 172 is at a
minimum. For x ~ L/2, 172 is at a minimum when 17 = O. Thus for x ~ L/2,

UT = Lro/2, (5.2.8)

and maximum tidal velocity occurs at mid-tide. For x "L/2, however, the smallest value

of 17 which maintains water at x is (asymptotically) 17 = Z. Thus for X" L/2,

( Z(X)2)1/2 ( 2)1/2
UT(X) = Lro 1-- = Lro x -L ,2 a2 L L 2 (5.2.9)

and maximum tidal velocity occurs at the tidal front. Thus (5.2.9) may be alternately

expressed for X" L/2 as
dXfUT(X) = when x=xf.
dt (5.2.10)

Note that (5.2.8) - (5.2.10) are all independent of tidal amplitude.

Figure 5.3 shows UT(X)/UTO and T¡x)h'ro as a function of x/L across a linearly

sloping flat. For x/L ~ 1/2, UT and 'r are constant, suggesting that (in the absence of wind

waves) a linear profie is at morphologic equilbrium over the seaward half of the flat. If

values are chosen appropriate to the southwest coast of Korea (M2 tide, L :: 5 km) then

UTo :: 35 cm/sec, which is large enough to mobilize fine sediment. If the water flows at an

angle to the shore, UTO is potentially higher. For x/L " 1/2, however, there is a dramatic

decrease in UT and 'r as x/L approaches 1. Thus according to the morphodynamic model

applied in this study, a linearly sloping flat with a stress field dominated by tidal currents

alone is not at equilibrium for x/L" 1/2. Greater deposition (or less erosion) should occur

on the landward half of the flat until UT and 'r become nearly uniform across the entire flat.

'.\.,
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5.2.2. Straight shoreline, equilbrium profie

A tidal flat profie is now derived which results in a uniform distrbution of UT

across the entire flat. Figure 5.4 displays a profie which is linear for x -5 L* and non-

linear for X" L *. L * is defined such that Z = 0 at x = L *. The elevation of the lower tidal

flat profile is given by

Z.(x) = a (x/L* - 1) for x -5 L* , (5.2.11)

where L * is also the length of the lower profie. From the previous section it follows that

for x -5 L*, UT = L*OJ at mid-tide and, therefore, UT is at least as large as L*OJ. From the

results of the previous section, it also seems reasonable to assume that for x " L *, U T

occurs at the tidal front. The next step is therefore to determne what Z is required to give

dxr = L*OJ

dt
(5.2.12)

for X" L*.

Following a paricle at the tidal front:

dXr = dxr Ji

d 17 dt d 17
(5.2.13)

From (5.2.4),
M = 1- .J (arcsin!l)
d17 OJ d17 a (5.2.14)

Utilizing (5.2.12) and (5.2.14) and integrating (5.2.13) then gives

xi - L* = L* arcsin 17/a. (5.2.15)

At the tidal front, x = xi, h = 0, and, from (5.2.3), Z = 17. Eliminating 17 and xi in (5.2.15)

and solving for Z then gives

Z+(x) = a sin (x/L* - 1) for X" L* . (5.2.16)

Since Z+ = a at x = L, from (5.2.16) it is clear that for an equilbrium flat along a straight

shoreline,

L*/L = (rc2 + 1)-1 . (5.2.17)

Figure 5.5 compares the equilibrium profie given by (5.2.11) and (5.2.16) with

the linear profile given by (5.2.5) and indicates that the upper equilibrium profie is convex

. i
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relative to the linear profie. For a straight shoreline, tidal flat hypsometr is equivalent to

the tidal flat profile. Thus the results of this section indicate that in the absence of wind

waves, tidal currents favor a convex hypsometr at equilibrium, which is consistent with

the general observational trends presented in Section 5.1.

Finally, (5.2.17) can be used to constrn the equilibrium length of a tidal flat in the

absence of wind waves if there exists some characteristic magnitude of UT at equilbrium.

If UT = ueq, where ueq is some (externally fixed) velocity at equilbrium, then (5.2.17),

along with the relation UT = L * w, yields

L = (ir/2 + 1) ueq/w. (5.2.18)

Since (5.2.18) is independent of tidal amplitude, why do macrotidal flats generally

cover larger areas than do mesotidal flats? Vegetation, which has so far been neglected in

this paper, undoubtedly plays some role. Salt marshes are sensitive to tide range and
generally do not extend below about one meter of the mean high water line (Frey and Basan

1985). Because of their sensitivity to tidal range, salt marshes clearly wil reduce the
equilibrium area of intertidal flats more substantially in micro- to mesotidal environments

(range c: 4 m) than in macrotidal areas (range" 4 m). For example, in Great Bay, New
Hampshire (mean range 2 m) extensive intertidal flats are limited to areas below mean water

(Friedrichs et aL. in prep., a). Of course wind-waves also playa role in determining the
equilibrium width of intertidal flats. Their role wil be discussed in more detail in Section

5.3.

The above "vegetation effect" may partially explain the increase in convexity

associated with increased tidal range by Dieckmann et aL. (1987). The convex portion of

the tidal profile in Figure 5.5 is limited to that area above mean water. If a large percentage

of the intertidal area above mean water is vegetated, as might be expected along a meso-

tidal shoreline, then the convexity of the hypsometr wil necessarily be reduced. Along a

macro-tidal shoreline, however, vegetation wil be viable over less of the convex portion of

the profie.

ECluation (5.2.18) seems to suggest that equilbrium tidal flats that are dominated by

'I are large. If ueq = 30 cm S-l during an Mi tide, then (5.2.18) gives L = 5.5 km. It
should be remembered, however, that L is the length of the flat in the direction of the
maximum tidal velocity. Thus it is only necessary for the 

component of the flat

perpendicular to the bathymetric contours to be of length L cos 8, where 8 is the angle
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between the velocity and the shoreline. Also, intertidal flats may not extend all the way to

high water, but rather abut salt marsh. If a flat along a stright shoreline extends from low

water to mean water, for example, it need only have a length parallel to the velocity

direction of L* = ueq/m. If Ueq = 30 cm s-l, the flat in question lies completely below mean

water, and UT is at a 45° angle with the shoreline, then the shore-normal component of the

flat need only extend 1.5 km.

5.2.3 Curved shoreline, equilbrium flat

The effect of shoreline curvature on the distrbution of UT over tidal flats is now

considered. Equilbrium tidal profies are derived and then fe-expressed in terms of
equilbrium hypsometries. Figure 5.6 provides plan views of "lobate" and "embayed"
shorelines with tidal flats extending from x = 0 to x = L. A lobate shoreline has a width at

x = L which is less than its width at x = 0, giving bubo c: 1. An embayed shoreline has

bubo" 1, and a straight shoreline has bubo = 1.

For a curved shoreline which is radially symmetric, continuity is most easily

evaluated in polar coordinates:

d17 + i -g(rh(r,t)uT(r,e)) = O.

de r dx (5.2.19)

In this section it is assumed that tidal flow is everywhere perpendicular to the bathymetr.

Equation (5.2.19) integrtes to
__ rr2 - r2 d 17

UT (r,e) -
2r h(r,e) de' (5.2.20)

where rtis the position of the tidal front. Keeping in mind that b is proportional to r (see

Figure 5.6), (5.2.20) may be re-expressed as

UT(r,e) = t (b(rt)/ b(r) + 1) ~~;,~ ~~ . (5.2.21 )

Transforming back to the x-coordinate, r = ro :t x, rt = ro :t Xt, and uT(r,e) =

:t uT(x,e), where ro = r(x=O), and the :t results from the shoreline being embayed (+J or

lobate (-). Then (5.2.21) bxomes

UT (x,e) = B( ) Xf - x d 17Xt,. h(x,e) di' (5.2.22)

where

¡, !

- I
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B(xi,x) = l (b(xi)/ b(x) + 1) , (5.2.23)

and
(5.2.24)b(x)/bo = 1 + (b¡jbo - 1) x/L .

Equations (5.2.22) - (5.2.24) hold for any radially symmetrc flat, regardless of the precise

form of the profie.

If shoreline curvature is negligible (i.e., b¡jbo = 1), then b(xi) = b(x), B = 1, and

(5.2.21) becomes identical to (5.2.2). If the shoreline is lobate (b¡jbo c: 1), then b(x) ~
b(xi) " 0, and B is bounded by 1/2 c: B ~ 1. If the shoreline is embayed (b¡jbo " 1), then

o c: b(x) ~ b(xi), and B is bounded by 1 ~ B c: 00. From the above bounds on B, it is clear

that B is less sensitive to lobate shorelines and more sensitive to embayed shorelines.

The derivation of equilbrium tidal flat profies along curved shorelines in the

absence of wind waves closely follows that used for straight shorelines. By analogy to

Section 5.2.2, different relations are assumed to govern the equilbrium profie for x ~ L *

and X" L*. By further analogy with Section 5.2.2, it is assumed that UT = L*(i occurs

simultaneously over all of x ~ L* when xi= L*. Unlike Section 5.2.2, however, 71 is not

assumed to be equal zero when xi = L *. Rather, 71 = z* when xl = L *, where z* may be

less than or greater than zero, depending on the nature of the shoreline curvature. For x "

L *, it is again assumed that UT occurs at the tidal front, i.e., dx/dt = L * (i.

In order to determine z*, (5.2.22) is evaluated at x = 0 when xi = L *. Under these

circumstances, (5.2.22) becomes

UT = L*(i = B(L* ,0) -L d 71 

(z*) 
.

z* + a dt (5.2.25)

Using the expression dTJ/dt = a(i (l-TJ2/a2)1f2, and solving for z*/a then gives:

B(L* 0)2 - I
z*/a = '

B(L*,0)2 + I
(5.2.26)

If the shoreline is lobate, then B c: 1, and z* is negative. If the shoreline is embayrd, then

B " 1, and z* is positive. Finally, if the shoreline is straight, B = 1, and z* = O.

The form of the tidal profie for x ~ L* is found by solving for Z_ (x) in (5.2.22)

with UT = UT, xi = L *, and TJ = z*. Then (5.2.22) becomes
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L* (' *2)1/2L*w = B(L*,x) - X aw 1 - i- .z* - Z.(x) . a2 (5.2.27)

Or solving for Z -la,

( *2)1/2
Z.(x)la = z*la - B(L*,x) (l-xIL*) i-za2 (5.2.28)

for x:: L*. If the shoreline is straight, then B = 1, z* = 0, and (5.2.28) becomes identical

to (5.2.11).

For x "L*, it is assumed that UT occurs at the tidal front, Le., dxild! = UTe
Preceding as in Section 5.2.2,

dXf = dXf .. = L*w i- -d (arcsin!l) .
d1J dt d1J w d1J a (5.2.29)

Integrating (5.2.29) gives

xi - L* = L* (arcsin 2.Ja - arcsin z*la) . (5.2.30)

Solving for ZJa in (5.2.30) then gives

Z+(x)la = sin ( (xIL* - 1) + arcsin z*la J (5.2.31)

for x " L *. If z* = 0, (5.2.31) becomes equivalent to (5.2.16). Since Z+ = a at x = L,

(5.2.31) can be used to get an expression for L * relative to L:

L*IL = (ic + 1 - arcsin z*la )-1 . (5.2.32)

If z* = 0, (5.2.32) reverts to (5.2.17).

Figure 5,7 displays equilibrium tidal profies given by (5.2.28) and (5.2.31),
plotted for both lobate (bubo c: 1) and embayed (bubo" 1) shorelines, along with a linear

profile for reference, The equilibrium nature of the profies given by (5.2.28) and (5.2.31)

was confirmed by using the profies to solve (5.2.22) directly for uTCt,t). The maximum

value of UT was found everywhere to be equal to L*w, Figure 5.7 indicates that an
embayed shoreline significantly enhances the convexity of the equilibrium tidal profie,

whereas a lobate shoreline only slightly decreases the convexity of the profie. This

behavior is consistent with the function B, given by (5.2.23), which is also more sensitive

to embayed shorelines.

',;i:.



- 1 67 -

Finally the profies in Figure 5.7 are re-expressed as hypsometrc curves, which are

not equivalent to Z(x) if the shoreline is curved. Hypsometrc curves are plots of elevation

versus cumulative basin area, A, where A(x) is given by

A(x) = r' b(x') dx' .
L=o

(5.2.33)

Using (5.2.24) to eliminate b, (5.2.33) integrtes to:

A(x) = 2x/L + (bUbo - l)(x/L)2
A(L) 1 + bUbo (5.2.34)

If the shoreline is straight, then biJbo = 1, and (5.2.34) reduces to A(x)/A(L) = x/L. '

Figure 5.8 contains plots of Z/a versus A (x)/A(L) for the same values of bubo
plotted in Figure 5.7, along with a linear hypsometry for reference. Equilibrium
hypsometries for embayed shorelines are much more convex than the corresponding

profiles. Likewise, hypsometres for lobate shorelines are much less convex than the

corresponding profies -- so much so that the equilbrium hypsometr for a flat with biJbo

= 1/4 is primarily concave. The enhanced variation of hypsometres relative to profies

stems from the nonlinear hypsometric function given by (5.2.34).

To summarize the results of Section 5.2, it was first shown thin the landward half

of a linear profie dominated by tidal currents cannot be at equilibrium according to the
morphodynamic model applied in this chapter. Next it was demonstrated that in the

absence of wind waves, tidal currents favor a convex hypsometry at equilbrium, which is

consistent with observations. If the shoreline is embayed, hypsometric convexity is

increased, whereas if the shoreline is lobate, hypsometric convexity is decreased. The

effect of shoreline curvature on equilibrium hypsometry is potentially as strong as the effect

of domination by tidal currents,

Assuming a uniform distrbution of UT, it was al'3o shown that tidal flat length and

convexity at equilbrium should be independent of tidal range. It was speculated, however,

that marsh vegetation may playa role in reducing flat length and convexity in micro- and

meso tidal environments. Since the most convex portion of a flat dominated by tidal

currents is the landward section, intertidal vegetation wil disproportionately reduce
convexity in small range environments. This may provide a partial explanation for the
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previously observed correlation between tidal range and convexity (Dieckmann et aL.

1987).

5.3. Wind waves

The derivation for wave-dominated conditions parallels that described by
Zimmerman (1973), who also examined the distrbution of maximum bottom shear stress

due to shoaling waves. The approach here differs in that Zimmèrman did not apply the

shallow water approximation nor did he consider waves shoaling across a linear profie.

The governing equation applied to wind waves in the absence of tidal currents is
conservation of energy for monochromatic, remotely forced, forward propagating, shallow

water surface waves:

fx (E(x) C g (x)) = - D(x) , (5.3.1)

where E is energy density, Cg = (gh)l/2 is the wave group velocity, g is the acceleration of

gravity, and D is dissipation by bottom friction. In this section wind waves are required to

propagate perpendicular to the shoreline, thus avoiding the issue of refraction over the flat.

It is assumed that sufficient refraction has occurred by the time waves reach the seaward

edge of the flat that the remaining angle between the wave crest and the bathymetrc contour

is negligibly smalL.

In evaluating (5.3.1) neither the breaking waves nor wave energy reflected from the

shoreline is considered. Thus this approach is inappropriate for highly energetic, steep

beaches. However for wide, gently sloping, highly dissipative tidal flats, the approach

should be adequate -- at least for gaining useful physical insight. It is also assumed that the

largest waves are most likely to occur around the time of high water. This is a reasonable

assumption in enclosed intenidal basins because fetch wil be smaller near low tide. It is

also a reasonable assumption for open coasts if subtidal topography continues to slope

gently offshore. Then offshore dissipation wil be much at lower tide levels, sharly
reducing the height of waves impinging on the flats.

Energy density in (5.3.1) is given by

E(x) = 1/8 pg H(x)2 , (5.3.2)

where p is the fluid density, and H is the wave height. Frictional dissipation in (5.3. i) is

given by
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ITW/2
D(x) = T~ (pcduwluwl) UW dt,

-TW/2

(5.3.3)

where Tw is the wave period, Uw is instantaneous wave velocity, and the quantity in

brackets is instantaneous wave-generated bottom shear stress. If the reasonable

assumption is made that

Uw(x,t) = Uw(x) sin (2n t/Tw) , (5.3.4)

then substitution of (5.3.4) into (5.3.3) gives

fTW'2

D(x) = P c~~W3 sin2 2ntfIw I sin 2ntfIwi dt ,
-Tw/2

(5.3.5)

which integrtes to
D(x) = 34n P Cd uv? . (5.3.6)

The above relations for E(x) and D(x), along with the relation Cg = (gh)I/2, are

substituted into (5.3.1), yielding

1x (H(x)2 h(X)I/2) = - j; g-3/2 Cd Uw3 .
(5.3.7)

Equation (5.1.2) is then used to eliminate H(x) from (5.3.7). The result is a first-order

ordinary differential equation for for Uw:

-i ~ Uw + 3 dh = _ 4Cd
Uw2 dx 4h Uw dx 3ng 1/2 h3/2

(5.3.8)

Equation (5.3.8) is solved more easily if it is rewritten as the following O.D.E for Uw.1:

~ Uw-1 _ i- dh Uw-1 = 4Cddx 4h dx 3ng1/2h3/2
(5.3.9)

The boundar condition on (5.3.9) is Uw-1 = Uwo.1 at x = 0, which may determined from

H(x=O) via (5.1.2). Assuming h(x) is known, then (5.3.9) can be solved completely for

Uw.

An alternative approach in solving for Uw during shoaling is to assume that

increases in H due to concentration of energy are balanced by decreases in H due to

dissipation. If this balance holds, then H can be treated as a constant in (5.3.7),
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simplifying the solution for Uw. This approach was used by Wright et al. (1982) in their

calculations of dissipation rates across a macrotidal beach. If H is held constant, however,

(5.2.1) indicates that Uw - h-ln. wil always increase with decreased depth (seaward of the
breaking point). Thus the morphologic model applied in this chapter suggests a wave-

dominated flat over which H is constant cannot be at morphologic equilbrium. Allowing

H to vary in x is therefore essential to realistically representing equilbrium profies. The

elimination of H(x) in (5.3.7) via (5.1.2) allows dynamic variations in H to be included

implicitly in the solution for Uw.

In the following sub-sections (5.3.9) is first solved for wind waves impinging on a

linearly sloping tidal flat. Next the tidal flat profie is derived which results in a uniform

distribution of Uw. Finally the role of shoreline curvature is considered.

5.3.1. Straight shoreline, linear profie

Figure 5.9 displays a linearly sloping tidal flat of length L. As in Section 5.2, L is

the shore-normal distance from the low to high water line. The depth of the tidal flat profile

is given by

hex) = (L - x) holL , (5.3.10)

where ho is the high-water depth at x = 0 and also is equal to the tidal range. Substituting

(5.3.10) into (5.3.9) yields

(L - x) -d Uw-l + 1 Uw-1 = Cl (L - x)-i/i .dx 4 (5.3.11 )

where

Cl =
4CdL3/2

3ng 1/ ho3/2

(5.3.12)

From the right hand side of (5.3.11), the paricular solution for Uw-l is expected to

have the form

(Uw.l J part = Ci (L - x)-in . (5.3.13)

Substituting (5.3.13) into (5.3.11) yields Ci = 4/5 Cl . The homogeneous portion of

(5.3.1 ¡) may be re-expressed as:

~ dUw-l =
Uw-1

_1 1 dx,
4 (L - x) (5.3.14)

which integrates to:

!;
"

II
",
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(Uw-1homo = C2(L-x)3/4. (5.3.15)

Finally, the boundar condition atx = 0 gives

C3 = Uwo-l L -3/4 - C2 L -5/4 . (5.3.16)

Combining the above equanons yields the following solution for maximum orbital

velocity due to wind waves impinging on a linearly sloping tidal flat:

Uw(x)/Uwo = fHo (1-X/L)-I/2 + (1- Ho) (l_x/L)3/4)-1 , (5.3.17)

..
where the non-dimensional forcing wave height, Ho, is given by

fio = ~ Cd.L UWo = JL Cd LHo .
15ir ho (ghO)I/2 15ir ho2

(5.3.18)

Figure 5.10 shows Uw(x)/Uwo and rw(x)/nvo as a function of x/L for various values of

Ho ranging from Ho = 0.1 to Ho = 2. No value of Ho for a linearly sloping tidal flat results

in a uniform distribution of Uw across the flat. Thus, according to the morphodynamic

model applied here, a linearly sloping flat dominated by wind waves cannot be at
equilibrium.

Applying reasonable values for the southwest coast of Korea (Cd = 0.01, L = 5 km,

ho = 6 m), then calm weather waves with a height at x = 0 of Ho = 50 cm give Uwo"" 30

cmls and Ho "" 0.1. Figure 5.10 indicates that for Ho = 0.1, Uwand rw wil increase with

distance from x/L = 0 to x/L = 0.9. According to our morphodynamic model, more
deposition (or less erosion) should occur over the lower profile than over the upper profie...
Assuming a reasonable storm value of Ho = 2 m, then Uwo"" 1.3 mis, and Ho "" 0.5. For
..
Ho = 0.5, Figure 5.10 indicates Uw and nv wil reach a maximum around x/L = 0.3 and

decrease from x/L = 0.3 to x/L = 1. Under storm conditions, greater erosion (or less
deposition) should occur over the lower profie than over the upper profie. Thus (5.3.17)

- (5.3.18) and Figure 5.10 may parally explain the seasonal oscilation in Korean tidal flat
profie observed by Wells and Park (1991) to be a direct function of wind wave climate.

5.3.2. Straight shoreline, equilbrium profie

A tidal flat profie is now derived which results in a uniform distrbution of Uw

across the entire flat (Figure 5.11). A similar solution for was found previously by Bruun
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(1954) who assumed energy dissipation to be uniform across an equilbrium shoreface.
However Bruun did not consider the effect of shoreline curvature which is addressed in

this study Ìn Section 5.3.3.

Deriving an equilibrium profie with Uw = Uwo everywhere is actually much

simpler than solving for Uw(x). If.Uw is constant, the first term in (5.3.9) is zero, and

(5.3.9) may be rewrtten as

h 1/2 dh = - ~ Cd UWog-1I2 (L - x) .

Equation (5.3.19) integrtes to

(5.3.19)

h(x)/ho = (1 - x/L)2f3 , (5.3.20)

where 110 is given by

ho = (38¡r Cd UWog-1/2 L )2/3 . (5.3.21 )

The 2/3 exponent in (5.3.20) has also been observed empirically for shoreface

profiles of dissipative beaches along the U.S. Atlantic and Gulf Coasts (Dean 1977).
Equation (5.3.21) can be crudely checked by comparison to the Korean values. If (5.3.21)

is solved for Uwo, then Cd = 0.01, L = 5 km, and ho = 6 m give Uwo = 1.1 mis, which is a

value that is certainly capable of mobilizing sediment. Using (5.1.2), this velocity is

equivalent to a forcing wave height of Ho = 1.7 m, which seems like a reasonable value for

typical wave dominated conditions.

Figure 5.12 compares the equilibrium profie given by (5.3.20) with the linear
profie given by (5.3.10) and indicates that the wave-dominated equilibrium profile is

concave relative to the linear profie. For a straight shoreline, tidal flat hypsometry is

equivalent to the tidal flat profie. Thus (5.3.20) indicates wind-waves favor a concave

hypsometry at equilibrium, which is consistent with the observations summarized in

Section 5.1.

Finally, (5.3.21) can be used to derive the equilibrium length for a flat under wave-

dominated conditions. If H 0, ho and Cd are considered to be characteristic values,
independent of the extent of the tidal flat, then (5.3.21) and (5.1.2) can be combined and

solved for L:

L = .. h02 .
4 Cd H 0

(5.3.22)
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Equation (5.3.22) seems qualitatively sensible in that it indicates that equilbrium tidal flat

width decreases with greater wave height, Ho, and increases dramatically with greater tidal

range, hOe Equation (5.3.22) suggests that the position of the low tide line should oscilate

with seasonal varations in forcing wave height. This predicted oscilation is qualitatively

consistent with the observations of Wells and Park (1992).

Equation (5.3.22) may also help explain the associations of small tidal ranges with

concave hypsometr and of large tidal ranges with convex hypsometr (Dieckmann et al.

1987). If wave height is moderate and tidal range is small, (5.3.22) indicates that L wil

also be smalL. In Section 5.2, Ur was found to be directly proportional to L. Thus if L is

small, Vr wil be small also. Under these conditions, Vwand rw wil dominate Vr and 'l,

and the equilbrium profie will be concave. If tidal range is large and waves are moderate,

then (5.3.22) indicates L wil be much larger (since L is geometrcally dependent on ho).

Since Vr is proportional to L, Vr wil also be much larger. Vw and rw may no longer
dominate Vr and 'l, at least under fair weather conditions, and the equilibrium profie may

be expected to be more convex.

5.3.3. Curved shoreline, equilbrium profile

The effect of shoreline curvature on the distrbution of Vw over tidal flats is now

examined. As in Section 5.2, equilibrium profies are derived first and then re-expressed in

terms of equilibrium hypsometres. Lobate and embayed shorelines are again considered as

described by Figure 5.6.

For a curved shoreline which is radially symmetrc, conservation of energy is most

easily evaluated in polar coordinates:

t ~ (r E(r) Cg (r)) = - D(r) ,
(5.3.23)

It is assumed that refraction has already caused the wind waves to propagate nearly

perpendicular to the bathymetrc contours by the time the waves reach the edge of the flat at

ro = r(x=O). Thus refraction is not considered over the flat.

Evaluation of (5.3.23) is straightforward if Vw = Vwo equals a constant over the

entire profie. Using (5.1.2), (5.3.2), (5.3.6) and the relation Cg = (gh)l/2, (5.3.23)
becomes

Ji (rh3/2) = _-8 CdVW g-l/2r,dr 3ir'0 (5.3.24)
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Equation (5.3.24) integrates to

r h3/2 = -l Cd Uwog-l12 (rL2 - r2) ,
3 ¡r

(5.3.25)

where rL = r(x=L). Keeping in mind that b is proportional to r (see Figure 5.6), (5.3.25)

may be re-expressed as

h(r)312 = 1 (b(r¿)/ b(r) + 1) 8 Cd Uwo (rL - r) ,2 3¡rgl/2 (5.3.26)

Transforming back to the x-coordinate, (5.3.26) becomes

h(x)/ho = (B(L.x)/B(L,O) p/3 (1 - x/L)2l3 , (5.3.27)

where

ho = (B(L,O) 38¡r Cd UWog-1/2 L )2/3 , (5.3.28)

and
B(L.x) = t (bL/ b(x) + 1) . (5.3.29)

B(L.x) is analogous to B(xf.x) in (5.2.23) of Section 5.2, and b(x) above is identical to

(5.2.24). If shoreline curvature is negligible (i.e., bljbo = 1), then bL = b(x), B = I, and

(5.3.27) - (5.3.28) become identical to (5.3.20) - (5.3.21).

Figure 5.13 displays equilibrium wave-dominated profiles given by (5.3.27),
plotted for both lobate (bubo c: 1) and embayed (bubo" 1) shorelines, along with a linear

profie for reference. Figure 5.13 indicates that a lobate shoreline only slightly increases

the concavity of the profile, whereas an embayed shoreline greatly decreases the concavity

of the profile -- so much so that the equilibrium profile for a flat with bubo = 1/4 is
primarly convex. The greater sensitivity of the profie to embayed shorelines is similar to

that seen in Section 5.2 (see Figure 5.7). As discussed in Section 5.2, this follows from a

dependence of the equilibrium profie on the function B, which is also more sensitive to

embayed shorelines.

Finally, the profies in Figure 5.13 are re-expressed as hypsometric curves. Figure

5.14 contains plots of h/ho vs. A(x)/A(L) for the same values of bubo plotted in Figure

5.13, along with a linear hypsometry for reference. The formula for A (x)/A(L) is given by

(5.2.34). Equilibrium hypsometres for lobate shorelines are significantly more concave
than the corresponding profiles. Likewise, hypsometries for embayed shorelines are

L
I'
I. ..i i
~lli

,~ i
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significantly less concave than the corresponding profies. In fact, the hypsometries for

bubo ~ 1/2 are primarily convex. The enhanced varation of hypsometres relative to
profies stems from the nonlinear hypsometrc function given by (5.2.34).

To summarze the results of Section 5.3, it was first shown that a wave dominated

linear profie cannot be at equilibrium according to the morphodynamic model applied in

this chapter. Next it was demonstrted that a bottom stress field dominated by wind waves

favors a concave hypsometr at equilbrium, which is consistent with observations. If the

shoreline is embayed, hypsometrc concavity is decreased, whereas if the shoreline is
lobate, hypsometnc concavity is increased. The effect of shoreline curvature on
equilbrium hypsometr is potentially as strong as the effect of domination by wind waves.

Assuming a uniform distrbution of Uw, a compact expression was also found for

the length of an equilibrium flat, suggesting L - ho2/Ho, where ho is the tidal range and Ho

is the forcing wave height. The above expression indicates that the width of equilbrium

flats should increase dramatically with tidal range. Since UT is proportional to L (see

Section 5.2), the relative importance of tidal currents should also increase strongly with

tidal range, providing a further explanation for the previously observed transition from

concave to convex hypsometr with increasing tidal range (Dieckmann et aI. 1987).

5.4 Summar and conclusions

Recent observations of tidal flat hypsometry have correlated convexity with large

tide ranges, long-term accretion and/or low wave activity. Concavity, in turn, has been

correlated with small tide ranges, long-term erosion and/or high wave activity. This study

demonstrates that much of this empirically observed varation in tidal flat hypsometry may

be explained by a simple morphodynamic model which assumes tidal flats to be at
equilibrium if maximum shear stress is uniform in space. Assuming a constant drag

coefficient, this condition is equivalent to a uniform distrbution of maximum velocity.

In the absence of wind waves, maximum velocity is given by maximum tidal
velocity, UTe Assuming the tide to pump pniformly, continuity may be solved
kinematically to determine UT as a function of distance across the flat. The simplest case is

for flow perpendicular to the shoreline, but similar arguments hold for flow at a constant

angle to the shore. For a flat which slopes linearly away from a straight shoreline, results

show that UT is constant over the seaward half of the flat. Therefore the lower ponion of a
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linearly slopìng flat is potentially a,t morphologic equilibrium. Over the landward half,

however, a dramatic decrease in UT is predicted, indicating disequilbrium.

Along a straight, waveless shoreline, the equilibrium profie has a linear lower

portion which produces uniform UT over the seaward portion of the flat. Over the
landward portion of the flat, UT is assumed to occur at the tidal front, xf The equilibrium

upper profie is chosen so that dxldi is constant and equal to the UT determined for the

lower profie. The resulting profie is convex overall and demonstrates that tidal currents

favor convex hypsometr. The equilbrium value for UT is proportional to the length of the

tidal flat but independent of tidal range. Since the equilbrium profie is most strongly

convex above the mean water line, marsh vegetation extending a finite distance below the

high water line may tend to reduce observed hypsometrc convexity, especially for flats

subject to relatively small tidal rages.
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In the absence of waves, an equilibrium flat along a curved shoreline is derived in a

similar manner. Results indicate that an embayed shoreline significantly enhances the

convexity of the equilibrium profie, whereas a lobate shoreline only slightly decreases the

convexity. The nonlinear transformation from profies to hypsometres, however, causes

the hypsometr of embayed and lobate shorelines to be much more or much less convex

than the corresponding profies -- so much so that the effect of shoreline curvature on

equilbrium hypsometr is potentially as strong as the effect of domination by tidal
currents.

In the presence of wind waves, maximum velocity is often dominated by the

maximum wave orbital velocity, Uw. Assuming dissipative shallow water waves
impinging at high water, conservation of energy is utilized to determine Uwas a function of

distance across the entire flat. The resulting expression is a first-order ordinar differential

equation for Uw-i. For a flat sloping linearly away from a straight shoreline, the solution

may be expressed in terms of a single dimensionless forcing wave height, Ho. No value of
""
Ho results in a uniform distribution of Uw, thus no part of a linearly sloping, wave-

dominated flat is at equilibrium.

An equilibrium flat along a straight, wave-dominated shoreline is derived by setting

U w constant in the previously derived governing equation for U w-i. The resulting

equilibrium profile has depth increasing likex2/3, a form which has been reported
empirically for dissipative beaches and which demonstrates that wind waves favor concave

hypsometr. The equilibrium profie length, L, is proportional to ho2/Ho, where ho is the

¡"
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tidal range and Ho is the forcing wave height. This expression indicates that L should
increase dramatically with tidal range. Since UT - L, the relative importance of tidal

currents should also increase strongly with tidal range, favoring a transition form concave

to convex hypsometr with increasing tidal range.

An equilbrium flat along a curved, wave-dominated shoreline is derived in a similar

manner. Similar to the no wave case, results indicate th~t an embayed shoreline
significantly decreases the concavity of the profie -- potentially to the point of convexity --

whereas a lobate shoreline only slightly increases concavity. Again, the nonlinear

transformation from profies to hypsometres causes the hypsometres to be much more or

much less concave than the profiles.
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Figure captio.ns for Chapter 5

Figure 5.1. Block diagrams of idealized topographies along with associated

hypsometrc curves. Modfied from Boon and Byre (1981).

Figure 5.2. Schematic side view of a linearly sloping flat along a straight
shoreline which is dominated by tidal currents. 11 is tidal elevation, h is local depth, xl is

the position of the tida front, Z is the elevation of the profie.

Figure 5.3. Maximum (a) tidal velocity and (b) tidally-generated shear stress as a

function of distance across a flat which slopes linearly away from a stright shoreline.

Figure 5.4. Schematic side view of an equilibrium flat along a straight shoreline

which is dominated by tidal curents.

Figure 5.5. Profie of an equilibrium flat along a straight shoreline dominated by

tidal currents. The equilibrium profie is convex relative to the linear profie. Hypsometr

is equivalent to the profie along a straight shoreline.

Figure 5.6. Schematic plan view of a lobate and an embayed shoreline. The

contours 0 - 4 are arbitrar heights between low and high water.

Figure 5.7. Profies of equilibrium flats along curved shorelines dominated by

tidal currents. The equilibrium profies are all convex relative to the linear profie.

Figure 5.8. Hypsometres of equilibrium flats along curved shorelines dominated

by tidal currents. bUbo = 1/2 - 4 are convex, bUbo = 1/4 is concave.

Figure 5.9. Schematic side view of a linearly sloping flat along a straight

shoreline which is dominated by tidal currents. H 0 is offshore wave height, egis wave

velocity, h is local depth at high water, ho is high water depth at x = 0 and also the tidal

range.

Figure 5.10 Maximum (a) wave orbital velocity and (b) wave-generated shear

stress as a function of non-dimensional offshore wave height and of distance across a flat

which slopes linearly away from a straight shoreline.

Figure 5.11, Schematic side view of an equilibrium flat along a stright shoreline

which is dominated by wind waves.
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Figure 5.12. Profie of an equilibrium flat along a stright shoreline dominated by

wind waves. The equilbrium profie is concave relative to the linear profile. Hypsometr

is equivalent to the profie along a straight shoreline.

Figure 5.13. Profies of equilbrium flats along curved shorelines dominated by

wind waves. bubo = 1/4 - 2 are concave, bubo = 4 is convex.

Figure 5.14. Hypsometries of equilbrium flats along curved shorelines
dominated by wind waves. bubo = 1/4 - 1 are concave, bubo = 2 - 4 are convex.
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Tidal curent dominated linear flat profile: Defintions
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Figure 5.2
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UT and 'TT across a liearly sloping flat:
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Tidal curent dominated non-liear flat profile: Defintions

r¡(t) = a sin OJt
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dt
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I
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Figure 5.4
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Profile with UT constant:
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. Tidal flat along cured shorelie: Defintions
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Profiles along curved shorelies with UT constant:
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Hypsometres along cured shorelies with UT constant:
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Wind wave dominated linear flat profile: Defintions

z = -ho
x=o x=L

Figure 5.9



Uw
Uwo

'tw
'tw 0 2

- 189 -

Uwand 'tw across a linearly sloping flat
as a function of non-dimensional Ho:
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Wind wave domiated non-linear flat profùe: Defintions
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Profile with Uw constant:
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ProfIles along cured shorelines with Uw constant:
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Hypsometries along curved shorelines with Uw constant:
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Appendices
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Appendix 1: Solution of the zero-inerta diffusion equation for embayments with varations

in along-channel geometr

Here we extend the derivation presented in Chapter 2 by no longer assuming h, W

and h to be constant in x. Allowing along-channel varations in E, wand h does not affect

the time-varng porton of the second-order solution. Thus an identical trnsformation can

be made to the time varable 't, and we again look for solutions of the form

Çm(x, 't) = a Am çm(x) exp i (m(i + Ifm) . (ALl)

The boundar conditions on ~ are also the same as in Chapter 2, namely,

Çm = a Am exp i (mw't + Ifm) at x = L , (A 1.2)

and, using Equation (2.7b),

Um - iï2/3 açm = 0 at x = 0 .
ax

(A 1.3)

Thus the boundar conditions on Çm are

Çm = 1 at x = L , and iï213 im = 0 at x = 0 . (A 1.4a,b)

If we do not assume E, wand h to be constant in x, then Equation (2.42) becomes

imw~ _ Do ~O,L g- fw(x) (iï(X))5/3 dçm)' = o.
b(x) dx \ wO,L ho,L dx

(A 1.5)

where the subscripts 0 or L signify values at x = 0 or x = L (depending on the formulation

of E, wand h), and bo,L, WOoL and ho,L replace E, wand h in Do. In Appendix 1.1 we

solve for Çm assuming a power-law varation in the along-channel cross-section, whereas in

Appendix 1.2 we assume the channel to var exponentially.

A I .1. Power-law varation

If the along channel cross-section is assumed to var as follows,

b(x) = bL (~)(1b, w(x) = WL (~)(1w, iï(x) = hL (~)(1h, (A 1.6a-c)

then (A 1.5) becomes:

. ._, ., '~";'~C
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Çm - (ftO'b km-21x ((D5f3O'h+O'Wd;) = 0, (A 1.7)

where km2 = imcdDo. Equation (A1.6) can be solved through the use of Bessel functions.

We define

.. ikL(Y)O'. 1
x = --.. wIth (J = 1- - (- (Jb + 5/3 (Jh + (Jw) .(J L ' 2 .

Then

-d = i k (X) 0'- i -d
dx mL DX'

and (A 1.7) becomes

Çm + (ft~ 1x ((f)~ d;i ) = 0, with ê = 1. ((Jb + 5/3 (Jh + (Jw) .
2

Or, if we eliminate x altogether:

Çm + x -"a10' -d ,'x ~/O' dçm \ = 0,DX DX I
Next we let

~ = x v Çm . with v = t (~- 1) "

Then after some algebra and differentiation, (A 1.11) becomes

d2~ + 1. d~ + (1 _ v2) ~ = 0,
..2 '" dx.. ..2dx x x

(A1.8a,b)

(A 1.9)

(A 1. lOa,b)

(ALII)

(A1.12a,b)

(A1.13)

i.e., a Bessel equation of order v which, assuming v is not exactly an integer, has the

following solution (e,g., Boas 1983):

"
i; = Ci J~x) + C2 Lv(x).

!:v is a Bessel function of the first kind, whose value is given by the infinite series

00

.." (-1) n (x) 2 n:t vJ+ (x) = L. '. -_v n=or(n+1)r(n:tv+l) 2 .

(ALI4)

(A 1.15)

Utilizing (AL12a), (Al.I4) can finally be re-expressed as a general soluåon for çm:
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Çm = x-.u(Ci J~x) + CiLjx)). (A 1. 16)

The boundary condition at x = 0 requires u = O. From (A1.4b) and (A1.6c), this

condition is equivalent to xl/3 ah dçmldx = O. Substituting (A 1.16) into (A 1.9), this

boundar condition may be re-expressed as

x 21 Uh + a- i ~ (x -v ( C i J v + Cl Lv)) = 0 .at x = 0 . (A1.17)

After differentiating, using (A 1.8a) to eliminate x, and assuming G" 0 (so that x ~ 0 when

x ~ 0), (Al.17) becomes

x-ã-vfcl(-vJv+X¿)+C1(-VLv+xd~vn=0 at x=O, (A1.18)

where ã = (l - 2/3 Gh)/G. Using the following Bessel identities (e.g., Boas 1983),.. dJ:tv.. ..
x ~ = :!v!:v - x !:v + 1 = (-1) (:!v) !:v + x J:tv-i '

dx
(A 1.19)

(A 1.18) is equivalent to

..-a-v+1X : (C i J v + 1 (x) - C 1 Lv _ i (x)) = 0 at X = 0 . (A 1.20)

As x ~ 0, only the first term of (A 1.15) need be retained, and 1:v ~ (xI2):tv I r(:!v+ 1).

Equation (A 1.20) then asymptotes to

(i)v+i Ci x-ã+1 _ (1)-v-i-.x-ã-1v ~ 0 as x~O.2 qv+2) 2 q-v) (A1.21)

If ã c: 2 and 2v + ã ~ 0, (A 1.21) wil go to zero only if C1 = O. With C1 = 0,

(A 1.16) gives Çm = x.v Ci J v, and application of the second boundar condition, Le., Çm =

1 at x = L, finally gives the following solution for çm:

_ (x)-V J ~x)
Çm -;: -- ,

L Jv(L)
(A 1.22)

where L = x(x=L). For a prismatic channel, Ub = ah = Gw = Ô = 0, G = ã = 1, and v = -1/2.

Then if we utilize the Bessel identity (e.g., Boas 1983)

.. (2)1/1"_1( ..1.)L1/1(x) = n x cosh (x i , (A 1.23)
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(A 1.22) revert directly back to Equation (2.44).

A 1.2. Exponential varation

We now assume an exponential variation in the along channel cross-section, i.e.,

we let

b(x) = bo e À.bx/L, w(x) = Wo e À.wx/L, h(x) = ho e À.hX/L . (A 1. 24a-c)

Then (A 1.5) becomes:

i;m - e-À.bX/L km-i i f e(À.w +5/3 À.h)X/Ld;) = 0 (A 1.25)

with km2 = i mm/Do. Equation (A 1.25), like (A1.7), can be solved via Bessel functions,

and we proceed in a manner similar to that followed in Appendix 1.1. First we let

"" i k L 1 /L 1
x = - T e- II 

X , with À = i (- Àb + 5/3 Àh + Àw) ,

¡ = 1 (Àb + 5/3 Àh + Àw), ~ = ; v i;m . and v = 1 (¡ - 1)2 2 À . (A 1.26a-e)

Then after some algebra and differentiation, (A 1.25) becomes a Bessel equation of order v

which has a general solution of the form

~ = CiJ~X) + C2L~,(x), or i; = ;-V(C1Jv + CiLv)' (A1.27a,b)

The boundary condition di;m!dt' = 0 at x = 0 may be re-expressed as

~ (; -v ( Ci Jv + C2 Lv)) = 0 at X =;0 ,
dX

(A 1.28)

where xo= i kLm!À. After differentiating (A 1.28) and employing the identities in (A1.19),

(A 1.28) becomes equivalent to

C1Jv+I(XO) = CiLv_l(xo) = C3 Jv+¡(xo) Lv_¡(xo), (A 1.29)

where C3 is a new constant. Using (A 1.29) to eliminate Ci and C2 in (AI.27b) then gives

i;m = x-v C3(Jtl(x)Lv_I(Xo) -Lv(x)JV+I(Xo)) = o. (A 1.30)
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Application of the second boundar condition, i.e., ~ = 1 at x = L, finally gives the

following solution for çm:

Çm = (frV Jv(~)J-V-l (~o) +Lv(~)Jv+¡(~) ,
L Jv(L)Lv_1 (xo) +Lv(L) Jv+l (xo)

(A1.31)

where L = x(x=L). For a prismatic channel, Åb = Åh = Åw = Å = â = 0, and v = -112.

Using (A1.23) and the additional Bessel identity (e.g., Boas 1983),

J 112 ( x) = i (;fl2 'x -1/2 sinh .(xl i) , (A 1.32)

(A 1.31) becomes

Çm = cosh ~i cosh xoli - sinh Xji sinh Îoli
cosh Lli cosh xoli - sinh Lli sinh xoli

cosh G - xo)li=
cosh (L - xo)li

(A 1.33)

Equation (A 1.33) can be transformed back to Equation (2.44) by using (A 1.26a) to

eliminate x and then employing the asymptote e-ulL == - (l - À.IL) as Å ~ O.
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Appendix 2. Trasformation of the time domain in the second-order zero-inerta equation

We ar given that

ci = rot + n sin (rot - 81) + n sin (2mt - 8i) , (A2.1)

II
11.1

l
II
"

i¡i
¡I!
¡!I

1'1

II

I

I!

l
II
i

'i

iiil

I!

where O(ro't) = O(rot) = 1, and O(n) = O(n) = O(r) c(c( 1. In Appendix 2.1 it is shown

that to O(n,

3

cos rot = L 2m cos (mci - flm) ,
m= -1

(A2.2)

where 2_1 = -23 = n/2, 20 = -22 = n/2, 21 = 1, -iP-l = lI = 8i, -lp = (t = 81. and iPi =
O. In Appendix 2.2 it is shown that to O(n,

exp ici = exp i (i - L 2m exp i (mrot - iPm) .

m~ 1
(A2.3)

A2.1. Transformation from t to 't

Equation (A2.1) can be rewrtten as

cos rot = cos ( ro't - n sin (rot - 81) - n sin (2rot - 8i) J , (A2.4)

! i
i which to O(n is equivalent to

cos rot = cos ( ro't - i' sin (ro't - 81) - ri sin (2ro't - 9i) J . (A2.5)

Using the identity cos (a - ß) = cos a cos ß + sin a sin ß, (A2.5) becomes

cos rot = cos ci cos e + sin ro't sin e , (A2.6)

where

e = i' sin (ro't - (1) + n sin (2ci - 9i) = O(r) . (A2.7)

To O(r), (A2.6) can b~ rewrtten as

cos rot = cos ci + e sin ro't . (A2.8)

The second term on the r.h.s. of (A2.8) can then be expanded as
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"E sin w't = ri sin w't sin (w't - 01) + n sin w't sin (2w1' - Oi) , (A2.9)

and'use of the identity sin a sin ß = 1/2 i cos (~- ß) - cos (a + ß) 1 prouces

e sin w't =.l r cos 01 - cos (2m - 01) 1 + i' i cos (- w't + Oi) - cos (3m - Oi) 1. (A2.1O)2 L 2
Finally, substitution of (A2.1O) into (A2.6) gives (A2.2).

A2.2. Transformation from 'tto t

Equation (A2.1) may also be rewrtten to O(r) as

sin wt = sin ( w't - ri sin (m - 01) - n sin (2m - Oi) 1 . (A2.11)

Then using the identity sin (a - ß) = sin a cos ß - cos a sin ß, (A2.11) becomes, to O(ñ,

sin wt = sin m - e cos m . (A2.12)

The second term on the r.h.s. of (A2.12) can then be expanded as

e cos m = ri cos w't sin (w't - 01) + n cos m sin (2w't - Oi) , (A2.13)

and use of the identitycos a sin ß = 1/2 i sin (a + ß) - sin (a - ß) 1 produces

e cos w't =.l r sin (2m - 01) - sin Oil + i' i sin (3m - Oi) - sin (- m + Oi) 1. (A2.14)2 L 2
Finally, substitution of (A2.14) into (A2J2) gives

3

sin wt = L 2m sin (mw't - flm) .
m =-1

(A2.15)

Combination of (A2.2) and (A2.15) gives'

3

exp žwt = cos wt + ž sin wt = L 2m exp ž (mm - flm) ,
m =-1

(A2.16)

or, solving for exp žm,

exp žm = exp iCi - L 2m exp i (mm - flm) .
m* 1

(A2.17)

To OCr), (A2.17) is equivalent to (A2.3).
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Appendix 3. The relative phase of the second-haronic in strongly convergent channels

near morphologic equilibrium

Here relations for the relative phase of the second haronic are derived for both

tidal elevation and velocity. The phase of 172 relative to 171 is derived in Appendix 3.1, and

the phase of V2 relative to VI is derived in Appendix 3.2.

A3.l. 172 to 171 relative phase

From Equation (4.4.19), the non-dimensionalized second-harmonic for tidal

elevation is given by

172 = L ej2CJl (e,ukx e-i(kx+kxo) - e2,ukx e-i(2kx+kxo)) . (A3.1)
2

If we apply the identity ei: = cos x + i sin x, and separate r into its magnitude and
argument, then (A3.1) becomes

17 =!r e,uktexpi(2ø-1lo(l,-r/lrl)l
2

J cos (kx+kxo) - i sin (kx 
+ kxo) )

. \ - e,ukx cos (2kx+ kxo) + i e,ukx sin (2kx+ kxo) ,

(A3.2)

where o(m,l) = I if m = I, 0 = 0 otherwise. The identity arg(x + iy) = exp i (arctan(y/x) J,

is then used to derive the argument of (A3.2):

( ) 2 1:(1 -r) le,ukxsin(2kx+kxoi-sin(kx+kxol\arg 172 = ø - 1lu ,- + arctan .
Irl cos (kx + kxo) - e,u/a cos (2kx + kxo L I

(A3.3)

The phase of 172 = 11721 exp i (2lù-qJ712) is then

ISin(kx+kXo)-e,ulcsin(2kx+kXo)) 1:(1 -r)
qJ712 = arctan + 1lu ,-.

cos (kx + kxo) - e,ulc cos (2kx + kxo) Iyl
(A3.4)

If we define a = 3/2 kx + kxo and ß = 1/2 kx, then if J1 = 0, the identities sin (a - ß)

- sin (a + ß) = - cos a sin ß and cos (a - ß) - cos (a + ß) = sin a sin ß can be used to
transform (A3.4) to

J-cos(3/2 kx+kxo)\. ô( -r)
qJ712 = arctan \ sin (3/2 kx + kxo) J + 1l 1, iY

L-sin(1l/2-3/2kx-kxo)1 1:(1 -r)
= arctan + 1lu ,-.

cos (1l/2 - 3/2 kx - kxo) . Irl

(A3.5)
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Equation (A3.5) then reduces to

'1112 = .1 kx + kxo - 1I -l .2 2 Irl (A3.6)

The phase of T/2 = 11121 exp i (2wt - '1112) relative to 111 = 11111 exp i (wt - '1111) is defined as

2'1111 - '1112 (Aubrey and Speer 1985). So from (A3.6) for J1 = 0,

2 '111 1 - '1112 = 1I.. + kx - kxo.
2 Irl 2

A3.2. V2 to VI relative phase

(A3.7)

From Equation (4.4.20), the non-dimensionalIzed second harmonic for tidal

velocity is given by

V2 = i2r ei2wi (e)lkx e-i(kx+kxo) - 2e2)lkx e-i(2kx+kxo)) . (A3.8)

We wil consider only the case of J1 = O. Following the same steps as in Appendix 3.1,

(A3.8) can be rewrtten as

V2 = !2 exp i( ir/2 + 2w- iro(l,-y/IYI))
2

1 cos (kx + kxo) - i sin (kx + kxo) 2 \ .
\ - 2 cos (2kx + kxo) + L SIn (2kx + kxo) 1

And the argument of (A3.9) is

(V) 2 ir r ( 2 sin (2kx + kxo) - sin (kx + kxo) )arg 2 = w + - - + arctan .
2 Ii" cos (kx + kxo ) - 2 cos (2kx + kxo)

The phase of V2 = 1V21 exp i (2(d - tp2) is then

( 2 sin (2kx + kxo) - sin (kx + /00) ) ~ y
'P2 = arcta - !. - .

2 cos (2/0 + kxo) - cos (kx + kxo ) 2 Ii'I

(A3.9)

(A3.10)

(A3.11)

From Equation (4.6.2), 'Pl = kx + q - ir2. Therefore the phase of V2 relative to
Vi for J1 = 0 is given by

2 2k. 2 ( 2 sin (2kx + kxo) - sin (kx + kxo) ) ir i''lV 1 - 'P2 = x + q - arctan + - - .
2 cos (2kx + kxo) - cos (kx + kxo ) 2 Iyl

(A3.12)
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