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PREFACE 
 

 
In 2001, the  Geophysical Fluid Dynamics Summer Study Program grappled with Conceptual Models of the 
Climate.  Eli Tziperman (Weizman Institute), Paola Cessi (Scripps Institution of Oceanography) and Ray Pierre-
Humbert (University of Chicago) provided the principal lectures. This introduction gave us all a glimpse into the 
complex problem of the climate, both in the present, past and future, and even on other planets.  As always, the next 
weeks of the program were filled with many seminars from the visitors, and culminated in the fellow's reports. 
 
Special thanks go to Eric Chassignet for dealing with the computers, and to Jack Whitehead for the year-long 
administration of the Program. In 2001, as in all summers, W.H.O.I. Education continued to provide the perfect 
atmosphere for the program, and I specially thank Janet Fields, our industrious coordinator, for her invaluable 
assistance. 
 
Neil Balmforth, Director 
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Lecture 0

A very brief introduction

Eli Tziperman

Climate variability results from a very diverse set of physical phenomena and occurs on a very wide range
of time scales. It is difficult to envision a single model, complex as it might be, which could explain, simulate
or predict all sources of climate variability. It is therefore simple models, that concentrate on a single or a few
phenomena and on some limited range of time scales, that have had the most success in explaining the physics of
climate variability. We start these lectures with a very brief gallery of examples of climate variability from very
long time scales to shorter ones, and of a few climate toy models that are displayed without much of a discussion,
as an introduction to the fuller review in the following lectures.

After this introduction, the following lectures discuss conceptual (toy) models of the El Nino - Southern Os-
cillation phenomenon (lectures 1-3), of the thermohaline circulation (lectures 4-5), and of glacial cycles (lectures
8-9) preceded by some basic concepts of climate dynamics (lectures 6-7). We conclude with a brief discussion
of toy models of very early earth and planetary climates (lecture 10).

Climate variability exists on all time scales from seconds to billions of years, as shown in the schematic
spectrum of Fig. 1. The last 60 Million years (Myr) show a gradual slow cooling, and a strong increase in
variability over the past few millions of years (Fig. 2). Continuing to the more recent past, the Quaternary (last
2.6 Myr) glaciation record shows the glacial cycles and a significant change in the nature of these oscillations
some 1 Myr ago (Fig. 3).

Focusing on the past 150,000 years, one sees a full glacial cycle (Fig. 4). On shorter-yet time scales, and
focusing on the past 90 kyr or so, we can see Heinrich events (major iceberg discharges on a 7-10 kyr time scale),
and Dansgaard-Oeschger oscillations (warm events in Greenland ice core records, 1000-1500 yr time scale,
Fig. 5). The variability is clearly very dramatic in terms of both amplitude and abruptness of the observed climate
changes. A record of the past 10,000 yr shows the Younger Dryas cold event interrupting the last deglaciation
(Fig. 6), while the record during the past 500 years shows the “little ice age” (Fig. 7). Finally, on a time scale of
a few years to decades, we see the North Atlantic Oscillation record (Fig. 8) and an El Nino record for the past
50 years (Fig. 9).
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Figure 1: A schematic climate spectrum (Ghil and Childress Fig. 11.1).

Figure 2: The past 60 Myr (Heslop 2001, http://www.geo.uu.nl/~forth/David/chapter4.pdf).
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Figure 3: SPECMAP record of glacial cycles over the past 2Myr from ocean sediments.

Figure 4: The past 150 kyr and isotopic stages (Heslop 2001, http://www.geo.uu.nl/~forth/David/chapter4.pdf).
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Figure 5: An ice core (GISP) record of the past 90 kyr, showing Heinrich events (10
kyr time scale), and Dansgaard-Oeschger oscillations (1 kyr time scale), (Heslop 2001,
http://www.geo.uu.nl/~forth/David/chapter4.pdf).

Figure 6: A record of the period from 9 kyr before present (bp) to 17 kyr bp, and the Younger Dryas event (Heslop
2001, http://www.geo.uu.nl/~forth/David/chapter4.pdf).

Figure 7: The little ice age...
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Figure 8: The NAO index from 1864 to 1996, defined as the difference in normalized pressure between Lisbon
and Stykkisholmur, for the winter months, December-March. From “Atlantic Climate Variability” by Marshall
and Kushnir, http://geoid.mit.edu/accp/avehtml.html.
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Figure 9: NINO3 record (averaged SST over the East Pacific: 5N-5S, 150W-90W), from 1950 to 2001.
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The above gallery of climate variability examples, should make it clear that first, the climate system is tremen-
dously complicated and second, that we are not likely to succeed in understanding it using a single model of all
of the above phenomena and processes. Models used to study climate variability form a hierarchy, from general
circulation models (GCMs) to toy models, roughly as follows:

1. General Circulation Models: 3D PDEs (based on the Navier-Stokes equations or similar) of the oceans and
atmosphere, which require large computational resources and are not easy to decipher.

2. Intermediate models (Quasi Geostrophic, sometimes 2D; 2D continuous models in either longitude-latitude
or latitude-depth; simplified reduced gravity layer models, etc):

3. Idealized toy (conceptual) models that highlight a single or a few physical mechanisms, and are more often
than not derived heuristically, by guessing what the most dominant feedbacks are, rather than being derived
rigorously from fuller models.

The focus of the following lectures is the third category, of toy models. These models, in spite of their heuristic
derivation, have had a surprising success in explaining a variety of climate phenomena. Furthermore, the predic-
tions of such highly simplified models have been confirmed numerous times by far more complex and realistic
models. Let us briefly consider a few examples of such toy models in order to get an impression of the level of
idealization they correspond to. Begin with a 0D energy balance model of the globally averaged temperature in
which incoming radiation is partially reflected by the earth albedo and is balanced (at steady state) by long wave
outgoing radiation

dT
dt

= H↓
�× (1− albedo(T ))−σT 4.

Some remarkable results may be obtained when considering specific dependences of the albedo on the tempera-
ture, as will be seen in lectures 6-9.

Proceed next to the Stommel two box [55] model of the thermohaline circulation (THC, Fig. 10). This model
makes some simplifying assumptions that seem not only unjustified but possibly also unjustifiable. Yet, the
model predictions of multiple equilibria and stability behavior of the THC have been confirmed by 3D ocean and
coupled GCM results and have been shown to be remarkably robust (more in lectures 4-5).

Low latitude High latitude

Heating Evaporation precipitation
cooling

Figure 10: The Stommel two box model of the Thermohaline circulation

As a third and final example, consider a (nondimensional) delayed oscillator model of ENSO [56], to be
further discussed in Lectures 1-3, in which the sea surface temperature of the East Pacific is affected by positive
feedback term due to equatorial Kelvin wave propagation, by a delayed negative term due to equatorial Rossby
waves, and using some simple cubic dissipation term

dT (t)
dt

= T (t)−αT (t −δT )−T 3(t).
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This simple model provides heuristic understanding of ENSO’s dynamics that has led to many further interesting
dynamical insights.

In general, toy models such as these, in spite of their lack of rigor, proved to be the most useful tool for
understanding climate variability. Once a physical mechanism is understood within such an idealized toy model,
the fuller intermediate models or GCMs may be used for a quantitative study of the proposed mechanism and for
validation in a more realistic framework. Surprisingly, when the toy model results are checked using observations
and fuller and more realistic models, the predictions of these toy models are often found correct as well as
robust, making the study of such models worthwhile. That these trivial models are so successful in producing
robust explanations for complex climate phenomena is nearly a miracle, possibly indicating that in spite of the
complexity of the entire climate system, each separate time scale is governed by relatively simple low order
dynamics.
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Lecture 1

El Nino - Southern Oscillations: Phenomenology and dynamical background

Eli Tziperman

1.1 A brief description of the phenomenology

1.1.1 The mean state

Consider first a few of the main elements of the mean state of the equatorial Pacific ocean and atmosphere that
play a role in ENSO’s dynamics. For a more comprehensive introduction to the observed phenomenology see
[47]; many useful pictures and animations are available on the El Nino theme page at http://www.pmel.noaa.gov/tao/elnino/nino-
home.html.

The mean winds are easterly and clearly show the Inter-Tropical Convergence Zone (ITCZ) just north of the
equator (Fig. 11); a vertical schematic section shows the Walker circulation (Fig. 12) with air rising over the
“warm pool” area of the West Pacific and sinking over the East Pacific. The seasonal motion of the ITCZ and the
modulation of the Walker circulation by the ENSO events are key players in ENSO’s dynamics as will be seen
below.

Figure 11: The wind stress showing the ITCZ in Feb 1997, using two different data sets (http://-
www.pmel.noaa.gov/~kessler/nscat/vector-comparison-feb97.gif).

The mean easterly wind stress causes the above-thermocline warm water to accumulate in the West Pacific,
causing the thermocline to slope as shown in the upper panel of Fig. 13. The thermocline slope induces an east-
west gradient in the sea surface temperature (SST), creating the “cold tongue” in the east equatorial Pacific and
the “warm pool” on the west (Fig. 14). This gradient, in turn, affects the Walker circulation and the mean wind
stress as mentioned above.

1.1.2 ENSO variability

We now proceed to a brief description of the phenomenology of the ENSO variability about the mean climatology
described above. The spatial structure of SST anomalies during La Nina, normal conditions and during El Nino
are shown in Fig. 15. The slope in the equatorial thermocline varies quite dramatically between the El Nino, La
Nina and normal conditions (Fig. 16).
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Figure 12: The Walker circulation (http://www.ldeo.columbia.edu/dees/ees/climate/slides/complete_index.html).

Figure 13: Schematic plot showing the equatorial thermocline slope during normal and El Nino conditions from
the El Nino theme page http://www.pmel.noaa.gov/toga-tao/el-nino/.
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Figure 14: Normal SST conditions in the equatorial Pacific, showing the warm pool in the west and the cold
tongue in the east (Reynolds data, from El Nino Theme page).

Figure 15: The anomalous SST field during typical La Nina, normal conditions and El Nino.
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Figure 16: An east-west vertical section along the equatorial thermocline during normal, La Nina and El Nino
conditions, from El Nino theme page http://www.pmel.noaa.gov/tao/elnino/nino-home.html.

11



The SST changes shown above during the ENSO cycle are accompanied by wind anomalies that cause the
mean easterlies to weaken during El Nino events and strengthen during La Nina events. In order to obtain some
feeling for the structure of the evolution in time during ENSO events, consider the equatorial SST as function
of longitude and time, shown in Fig. 17. One can see the several-year time scale between El Nino events, and
the irregular amplitude and time separation between the events. Also, note that El Nino events tend to reach
their peak toward the end of the calendar year. For the implications of ENSO events on global weather etc
see, for example, http://www.pmel.noaa.gov/toga-tao/el-nino/impacts.html. The purpose of the toy models to be
considered below would be to explain the coupled ocean-atmosphere variability in the winds, thermocline slope
and SST, as well as the time scale, the aperiodicity, and locking to the seasonal cycle of these events.

Figure 17: SST along the Equatorial Pacific as a Hovemoller diagram (plotted as function of longitude
and time), for both the full SST and anomalies with respect to climatology. From El Nino theme page
http://www.pmel.noaa.gov/toga-tao/el-nino/
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1.1.3 Main issues

To summarize, the main questions to be addressed below regarding ENSO’s dynamics using various conceptual
models are

1. What is the mechanism of the El Nino cycle?

2. Why is the mean period quite robustly 4 years?

3. Is ENSO self-sustained or is it damped and requires external forcing by weather noise for example in order
to be excited?

4. Why are ENSO events irregular: is it due to chaos? noise?

5. Why do ENSO events tend to peak toward the end of the calendar year (phase locking to the seasonal
cycle)?

13



1.2 A brief equatorial dynamics background

1.2.1 Importance of thermocline dynamics and reduced gravity models

The phenomenology above indicates that motions of the equatorial thermocline are critical to ENSO’s dynamics.
We therefore start by deriving the simplest equations that describe the thermocline dynamics. Consider a two
layer model, with the lower layer much thicker and thus assumed to be at rest (Fig. 18).
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Figure 18: The 1 1
2 layer model

The momentum equations (Boussinesq approximation)

∂u
∂t

+u ·∇u+2Ω×u = − 1
ρ0

∇p+gρ/ρ0 +ν∇2u

then imply that because the horizontal velocity in the lower layer is zero, u2H = (u2,v2) = 0, the horizontal
pressure gradients are also zero in the lower layer, ∇H p2 = 0, with ∇H = ( ∂

∂x ,
∂
∂y) being the two dimensional hor-

izontal gradient, and where ∇ above stands for the three dimensional gradient operator. Assuming a hydrostatic
vertical momentum balance (because H � L)

pz = −gρ

and integrating this balance in z, we can write the pressure at a depth z in the upper layer as

p1(x,y,z, t) = g(−z+ηs(x,y, t))ρ1

so that

− 1
ρ0

∇p1 ≈−g∇ηs.

In the lower layer, the pressure is

p2(x,y,z, t) = g(H1 +ηs −ηd)ρ1 +g(H2 +ηd − z)ρ2

so that

1
ρ0

∇H p2 = ∇H(
ρ1

ρ0
gηs +

ρ2 −ρ1

ρ0
gηd)

≈ ∇H(gηs +g′ηd)

where g′ ≡ ρ2−ρ1
ρ0

g ≈ ρ2−ρ1
ρ2

g. That this deep horizontal pressure gradient vanishes gives

g∇Hηs = −g′∇Hηd
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which, together with the observation that g′ � g so that ηs � ηd , implies

g∇Hηs = −g′∇Hηd ≈ g′∇Hh.

Together with the above relations this finally allows us to write the horizontal pressure gradient in the upper layer
as a function of the upper layer thickness

− 1
ρ0

∇p1 = −g′∇h.

1.2.2 The equatorial β plane

The objective now is to find a convenient representation of the effect of the earth rotation near the equator [43, 20].
We start with horizontal momentum equations for a 1 1

2 layer fluid as above, on a sphere, where we use

2~Ω×u = 2Ω





wcosθ− vsinθ
usinθ
−ucosθ



 .

to find

du
dt

+
uw
r

− uv
r

tanθ+2Ω(wcosθ− vsinθ) = − g′

r cosθ
∂h
∂φ

+Fφ

dv
dt

+
wv
r

− u2

r
tanθ+2Ωusinθ = −g′

r
∂h
∂θ

+Fθ

where
d
dt

≡ ∂
∂t

+
u

r cosθ
∂

∂φ
+

v
r

∂
∂θ

+w
∂
∂r

,

and where (Fφ,Fθ) represent the forcing and dissipation terms, and θ,φ the latitude and longitude. Next, assume
linear momentum dynamics, and use the fact that w � (u,v). Also, write the vertical coordinate as r = r0 + z
where r0 is the earth radius, so that within a thin layer of fluid (ocean thickness � earth radius) we have 1/r =
1/(r0 + z) ≈ 1/r0, and therefore,

∂u
∂t

−2Ωsinθv = − g′

r0 cosθ
∂h
∂φ

+Fφ

∂v
∂t

+2Ωsinθu = −g′

r0

∂h
∂θ

+Fθ.

Next, we restrict our attention to near-equatorial regions, where we can define local Cartesian coordinates
around some central location (θ0,φ0)

x ≡ r0 cosθ0(φ−φ0)

y ≡ r0(θ−θ0),

as well as expand the Coriolis force as

2Ωsinθ ≈ 2Ωsinθ0 +2Ωcosθ0(θ−θ0)

= f0 +βy

with β ≡ 2Ωcosθ0/r0. An expansion around the equator θ0 = 0 leads to f0 = 0. Using a simple linear friction
law and incorporating the wind stress forcing

Fφ = Fx = −εu+ τx/(ρ0H)

Fθ = Fy = −εv+ τy/(ρ0H)
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we obtain the final set of β-plane momentum equations for a 1 1
2 layer model

∂u
∂t

−βyv = −g′
∂h
∂x

− εu+
τx

ρ0H
(1)

∂v
∂t

+βyu = −g′
∂h
∂y

− εv+
τy

ρ0H
. (2)

and with three unknowns (u,v,h) we need a third equation which is provided by the linearized mass conservation
equation (which also includes on the rhs a rough linear parameterization of entrainment (mixing) at the base of
the water layer above the thermocline)

∂h
∂t

+H

(

∂u
∂x

+
∂v
∂y

)

= −εh. (3)

1.2.3 Equatorial waves

The derivation here follows Gill [20]. Consider first the case of an equatorial Kelvin wave, which is a special
solution of (1,2,3) for the case of zero meridional velocity (v = 0), no forcing and no dissipation. In this case,
these equations reduce to

∂u
∂t

= −g′
∂h
∂x

βyu = −g′
∂h
∂y

∂h
∂t

+H
∂u
∂x

= 0

Note the geostrophic balance in the y-momentum equation. Substituting ei(kx−ωt) dependence for all three vari-
ables, we get from the first that u = (kg′/ω)h, so that the third one gives the dispersion relation

ω2 = (g′H)k2

which is the dispersion relation of a simple shallow water gravity wave. The second equation then gives βy kg′

ω h =

−g′ ∂h
∂y , or

∂h
∂y

= −βk
ω

yh.

We are searching for equatorial-trapped solutions, and we note that the solution for the y-structure decays away
from the equator only when k > 0. This implies that the wave solution we have found must be eastward propa-
gating! Using the dispersion relation, with

c ≡
√

g′H ≈ (9.8×102 ∗ cmsec−2 ×5∗10−3 ×100×102cm)1/2 ≈ 2.2m/sec

we finally have
hKelvin(x,y, t) ∝ e−

1
2 (β/c)y2

ei(kx−ωt).

Note that the decay scale away from the equator is the equatorial Rossby radius of deformation defined as

LR
eq ≡

√

c/2β ≈ (c/(2×2.3×10−11m−1sec−1))1/2 ≈ 220km
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Next is the derivation of the full set of equatorial waves, where we now do not assume that the meridional
velocity v vanishes. Substitute h(x,y, t) = h(y)ei(kx−ωt) dependence, and similarly for (u,v), and derive a single
equation for h to find the parabolic cylinder equation (Gill, [20], section 11.6.1)

d2v
dy2 +

(

ω2

c2 − k2 − βk
ω

− β2

c2 y2
)

v = 0.

The solutions that vanish at y →±∞ occur only for certain relations between the coefficients, and these relations
serve as the dispersion relation

ω2

c2 − k2 − βk
ω

= (2n+1)
β
c
. (4)

Note that the Kelvin wave dispersion relation is formally a solution of this dispersion relation for n =−1 (simply
check that ω = ck satisfies (4) for n = −1). The meridional structure of the waves in this case of equatorially
trapped solutions is expressed in terms of the Hermit polynomials

v = 2−n/2Hn((β/c)1/2y)exp(−βy2/2c)cos(kx−ωt)

and is shown in Fig. 19, where

H0 = 1; H1 = 2x; H2 = 4x2 −2; H3 = 8x3 −12x; H4 = 16x4 −48x2 +12
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H
n(y

) 
ex

p(
−

y2 /2
)/

n2

meridional structure of equatorial modes

Figure 19: The latitudinal structure of the first few equatorial modes: Hn(y)exp(−y2/2)/n2.

The dispersion relation is plotted in Fig. 20.
So, we have a complete set of waves, the Kelvin (n =−1), Yanai (n = 0), Rossby and Poincare (n > 0) waves.

As seen in the plot, the dispersion relation includes two main sets of waves for n > 0. For high frequency, we can
neglect the term βk

ω , to find the Poincare gravity-inertial waves

ω2 ≈ (2n+1)βc+ k2c2,

while for low frequency, we can neglect the term ω2/c2 in the dispersion relation to find the westward propagating
Rossby wave dispersion relation

ω =
−βk

k2 +(2n+1)β/c
.

Typical speeds of long Rossby waves would therefore be

ω/k =
−c

2n+1
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Figure 20: The Equatorial wave dispersion relation, (Gill [20], p 438, Fig. 11.1)/

so that the first Rossby mode (n = 1) travels at a 1/3 of the Kelvin wave speed, implying a roughly 2.5 months
crossing time for Kelvin and 8 months for Rossby waves (based on 15,000 km basin width).

Note (Fig. 19) that the first Rossby mode has a zero at the equator and two maxima away from the equator,
while the Kelvin wave has a maximum at the equator. This tells us something about how a random initial
perturbation will project on the different modes. That is, a forcing pattern or an initial perturbation that is
centered at the equator may be expected to excite Kelvin waves, while a forcing or initial perturbation that has
components off the equator will tend to excite Rossby waves. The above discussion centers on the first baroclinic
mode, but may be generalized to higher vertical baroclinic modes, although for our purposes this is not essential.

1.2.4 Ocean response to wind perturbation

Consider first the mean state of the thermocline. The steady state (∂u/∂t = 0) momentum equation (1) in a
reduced gravity model, at y = 0 (βyv = 0) in the presence of easterly wind forcing and neglecting frictional
effects (−εu = 0) is

0 ≈−g′
∂h
∂x

+
τx

ρ0H

so that an easterly wind stress is balanced by a pressure gradient due to a thermocline tilt, with the thermocline
closer to the surface in the East Pacific. This mean state of the thermocline results in the cold tongue there,
as observed, via the mixing of cold sub-thermocline water with the surface water, as will be discussed more
quantitatively below.

Regarding the interannual equatorial thermocline variability, at this stage we just note that a wind perturbation
that corresponds to a weakening of the mean easterlies in the central Pacific affects the thermocline depth in
the central Pacific. It creates downwelling Kelvin waves (that is, waves that propagate a downwelling signal,
which means a thermocline deepening signal; these are waves that propagate a warm water surplus above the
thermocline, and may therefore be called “warm” waves) and upwelling (i.e. cold) Rossby waves. The excitation
of these waves by a wind anomaly will be examined more rigorously below.

1.2.5 Atmospheric response to SST anomalies

We now need to describe the atmospheric response to SST perturbations. Use Gill’s [19] model for this, whose
equations are very much like the β plane ocean equations, except that the atmospheric time scales are much
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shorter so that we assume the atmosphere to be in a steady state with the forcing by a specified heating Q,

−βyV = −∂Θ
∂x

− εaU (5)

+βyU = −∂Θ
∂y

− εaV (6)

c2
a

(

∂U
∂x

+
∂V
∂y

)

= −εaΘ+Q. (7)

where (U,V,Θ) stand for the zonal and meridional surface winds, and a geopotential (d p =−gρdz =−ρdΘ, Gill
[20] section 6.17). The heating may be parameterized to be linear in the SST

Q = αT T.

We next need to use these equations to deduce the effect of an SST anomaly in the East Pacific on winds in the
central Pacific. The above equations may be solved for a general heating function, and we only briefly outline
the derivation of the solution (see Dijkstra, [9] p. 347). One first defines S = Θ+U and R = Θ−U and expands
the heating and these two new variables in a series of parabolic cylinder equations, e.g.

Q(x,y, t) =
∞

∑
n=0

Qn(x)Dn(y).

Next, these expansions are substituted into the Gill’s model and equations are derived for Sn(x) and Rn(x) for
each n. The solution of these equations for n = 0,1,2 is

R0(x) = µ0

∫ x

xw

e−εa(x−s)Q0(s)ds

R1(x) = 0

R2(x) = µ0

∫ xe

x
e3εa(x−s)(Q2(s)+Q0(s))ds

where µ0 = αT ∆T L/c3
a. Note that R0(x) is influenced by heating west of x, and thus represents the influence of

atmospheric Kelvin waves that travel eastward, accumulate the influence of the heating, and thus influence the
atmospheric state at x. The atmospheric Kelvin waves are damped (via the terms depending on εa) on their way,
and therefore “remember” only the heating within a (nondimensional) distance 1/εa to the west of x. Similarly,
R2(x) reflects the influence of atmospheric Rossby waves that travel westward toward x. In this case the waves
travel slower, and thus by the time they arrive at x, they only “remember” the influence of the heating over a
(nondimensional) distance of 1/(3εa).

Next, these solutions for R and S are transformed back to the physical variables U,V,Θ and truncated into the
first 2-3 terms only in n, giving

U(x,y = 0) =
3
2

R2(x)−
1
2

R0(x)

Finally, we assume that the atmospheric heating occurs only over the east Pacific

Q(x) = αT δ(x− xe)T (xe)

and perform the integrations over x in the above expressions for R0,1,2 to find that only the atmospheric Rossby
wave solution that propagates from xe to x affects the wind speed at x

U(x,y) ∝ −e(x−xe)/(ca/3εa)T (xe)e
− 1

2 y2/(La
R)2

(8)

where ca ≈ 40m/sec; β = 2.3×10−13cm−1sec−1; La
r =

√

2ca/β≈ 2×103km, and the decay scale of the influence
of the east Pacific heating on the zonal wind west of that point is (ca/3εa) ≈ 3500km for εa ≈ 3day−1.
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1.2.6 On the atmospheric heating

As a simple entry point to this subject, it is convenient to consider the atmospheric heating parameterization
used in intermediate El Nino models such as the Cane-Zebiak [66] model. This parameterization assumes that
the anomalous atmospheric heating is dominated by diabatic heating that occurs via latent heat release due to
moisture condensation. The heating is divided into a contribution due to condensation of water evaporated
locally at the ocean surface (Qs) and another contribution due to the condensation of the larger scale humidity
field induced by upward air motion that results from a local wind convergence (Q1),

Q = Qs +Q1

Qs = (αT )exp[(T̄ −30◦C)/16.7◦C]

Q1 = β∗[M( c̄+ c)−M( c̄)]

c = −[Ux +Vy].

The function M(x) is defined as

M(x) =

{

x x > 0
0 x ≤ 0

The local evaporation parameterization is simply an empirical curve fitting of the Clausius-Clapeyron relation
+ linearization which together give the saturation vapor pressure (pressure at which vapor and liquid water can
coexist) at a temperature T

qw(T̄ +δT ) = aexp[− b
T̄ +δT

] ∝ δT exp[− b
T̄

]

The dependence of the atmospheric heating on the mean SST, T̄ , is therefore exponential, hence quite strong.
The increase in climatological monthly equatorial eastern Pacific mean SST from about 23◦C in September to
about 26.5◦C in March-April corresponds to a 25% enhancement in the perturbation heating Qs for the same SST
perturbation.

The condensation of the larger scale humidity field due to the local wind convergence is again influenced
by the mean conditions; in this case the mean convergence: only if the total convergence c̄ + c is positive, is
the local air motion upward. And only if the local motion is upward, does it induce condensation and therefore
atmospheric heating. The mean convergence in the east equatorial Pacific is determined by the seasonal location
of the ITCZ. When the ITCZ is near the equator, the mean convergence is positive, and anomalous atmospheric
convergence is effective in causing atmospheric heating. When the ITCZ is away from the equator, the mean
convergence is negative, and anomalous convergence does not cause diabatic heating.

Overall, it is important to note that the response of the atmospheric heating to a given SST anomaly depends
on the mean atmospheric conditions which vary seasonally. As we shall see below, this dependence on the mean
seasonal conditions introduces some interesting dynamical effects.
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Lecture 2

ENSO toy models

Eli Tziperman

2.1 A heuristic derivation of a delayed oscillator equation

Let us consider first a heuristic derivation of an equation for the sea surface temperature in the East Pacific,
which will be followed by a more rigorous derivation in the following sections. Assume that the East Pacific SST
affects the atmospheric heating and thus the central Pacific wind speed. The resulting wind stress, in turn, excites
equatorial Kelvin and Rossby ocean waves. These waves affect the East Pacific thermocline depth and hence the
East Pacific equatorial SST, and the whole feedback loop may be quantified as follows. Let τK and τR be the basin
crossing times of equatorial Kelvin and Rossby waves, correspondingly. Now, a positive central Pacific equatorial
thermocline depth anomaly heq(xc) at time t − 1

2 τK excites an eastward propagating downwelling Kelvin wave
at the central Pacific that arrives after about 1

2 τK ≈ 1 month to the eastern Pacific and deepens the thermocline
there. Similarly, a negative off-equatorial depth anomaly (that is, a shallowing signal of the thermocline) in the
central Pacific ho f f−eq(xc) at a time t− [ 1

2τR +τK ] ( 1
2 τR +τK ≈ 6 months) excites a westward propagating Rossby

wave at the central Pacific that is reflected off the western boundary as an equatorial Kelvin waves and eventually
arrives to the eastern Pacific at time t, shallows the thermocline there and causes cooling of the SST. We add a
nonlinear damping term that can stabilize the system, and write an equation for the eastern Pacific temperature
that includes the Kelvin wave, Rossby wave and local damping terms as follows

dT (t)
dt

= âheq(xc, t −
1
2

τK)+ b̂ho f f−eq(xc, t − [
1
2

τR + τK ])− cT (t)3

where â, b̂,c are positive constants. Note that we assume that once the thermocline deepening or shallowing
signal reaches the East Pacific it immediately affects the SST there. This actually neglects the SST adjustment
time and we will include this time scale in the more rigorous derivation below. Note that because the mean
thermocline depth is shallower in the East Pacific than in the West Pacific, a deepening or rise of the thermocline
in the East Pacific is able to affect the mixing between cool sub-thermocline waters and surface waters, and thus
affect the SST; in the West Pacific, the thermocline is deeper, so that even if it rises somewhat, it is still too deep to
affect the SST. Now, the thermocline depth in the equatorial central Pacific is a response to the equatorial central
Pacific wind. The off-equatorial thermocline depth in the central Pacific will be shown below to be a response to
the wind curl off the equator, which will be shown to be negatively correlated with the wind stress at the equator.
We can therefore write the above equation as

dT (t)
dt

= āτeq(xc, t −
1
2

τK)− b̄τeq(xc, t − [
1
2

τR + τK ])− cT (t)3

where ā,̄b are some new proportionality constants. Next, the wind stress in the Central Pacific is a pretty much
simultaneous response to the East Pacific SST, so that we can actually write

dT (t)
dt

= aT (t − 1
2

τK)−bT (t − [
1
2

τR + τK ])− cT (t)3 (9)

where again the constants of proportionality a,b,c are all positive. The first term in this equation provides a
positive feedback due to the Kelvin wave, with a short delay of about one month; the second term represents the
Rossby wave with a longer-delayed negative feedback, and the last term is a nonlinear damping term. This last
equation (9) is the desired delayed oscillator equation for El Nino.
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Figure 21: A schematic picture of the delayed oscillator mechanism

Based on the delayed oscillator model, the El Nino cycle may be described as follows (Fig. 21). A wind weak-
ening (1 in Fig. 21)) creates an equatorial warm (downwelling) Kelvin wave (2) that travels to the East Pacific
within 1-2 months, where the thermocline deepening induces an SST heating and starts an El Niño event. The
SST heating further weakens the central Pacific winds and the event is therefore amplified by ocean-atmosphere
instability. The original wind weakening also creates off-equatorial cold (upwelling) Rossby waves (due to the
induced changes to the wind curl, as will be shown below) (3) that are reflected from the western boundary as
cold Kelvin waves (4), arrive at the eastern boundary about 6 months later and terminate the event.

Note that we ignored reflection at the eastern boundary. Much of the energy of an eastward traveling equa-
torial Kelvin wave incident on the eastern boundary will be reflected as poleward traveling coastal Kelvin waves
and will escape from the equatorial domain. In contrast, westward traveling Rossby waves incidenting on the
western boundary are reflected as equatorward traveling coastal Kelvin waves. These, in turn, are reflected east-
ward at the equator as equatorial Kelvin waves, hence creating an efficient reflection process in which the wave
energy ermains in the equatorial strip.

2.1.1 Analysis of the delayed oscillator equation

Battisti [2] and Suarez and Schopf [56] (see also Dijkstra [9] section 7.5.4.2) have used a slightly different delayed
oscillator equation, basically ignoring the shorter Kelvin wave delay, which in a nondimensional form is

dT (t)
dt

= T (t)−αT (t −δT )−T 3(t). (10)

Note first that a delayed equation formally has an infinite number of degrees of freedom (it requires an infinite
number of initial conditions corresponding to the times from t = −δT to t = 0, and is thus equivalent to an
infinite number of ODEs). So formally this is not a “simple” equation. Only a few of these degrees of freedom
are actually activated in reasonable parameter regimes (as measured by the dimension of the attractor in phase
space). The various delayed oscillator equations result in El-Nino like oscillations whose periods may be tuned,
by changing the coefficients, to about 4 years (Fig. 22).

Let us analyze the linearized stability behavior of 10. The equilibria of the above delayed oscillator equation
are the zero solution, and then one warm solution and one cold solution

T̄ = 0,±
√

1−α.

Considering a perturbation about these steady states by setting T = T̄ + T̃ and linearizing, we have

dT̃ (t)
dt

= T̃ (t)(1−3T̄ 2)−αT̃ (t −δT ).

Letting T̃ = eσt where σ = σr + iσi, results in the linearized eigenvalue problem

σ = 1−3T̄ 2 −αe−σδT
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Figure 22: Results of the delayed oscillator of equation 10, from [56].

(note that this is a complex transcendental equation, with the real and imaginary parts of σ satisfying equations
that involve sine and cosine functions) which can be solved for the frequency σ as function of the two nondi-
mensional parameters α and δT . It turns out that the zero solution is unstable, with a non oscillatory exponential
growth. The two other (warm and cold) equilibria may become oscillatory unstable, as shown in Fig. 23.

The behavior of the unstable modes is not completely simple nor intuitive: the unstable modes appear for
larger values of the negative feedback (Rossby term) α, and for larger values of the delay time δ... The period of
the oscillatory solutions in the delay model is shown by the light solid lines in Fig. 23, while the dashed contours
give the period in multiples of the delay time. The period of the unstable modes is in the range of up to 2-3
times the Rossby delay time. Taking that delay time to be some 8 months, we get a 16-24 months period, which
is significantly smaller than the observed period of 48 months. Clearly the period is not a well determined part
of the picture, as it is not a robust outcome of this model, and has reasonable values for a fairly small range
of model parameters. Other studies [36] also found that the period of ENSO may not be well determined by
linearized theories, and may be due to some not understood nonlinear effects.

While the delayed oscillator model above is useful in providing us with a feeling of what the mechanism of
ENSO is, it actually represents only a specific limit of the fuller dynamics. It assumes that once the waves arrive
to the East Pacific, they immediately influence the SST. In reality, there is another time scale (delay) that accounts
for the time it takes the sub-surface thermocline depth anomalies in the eastern Pacific to affect the eastern Pacific
SST. To introduce this and other processes, it is useful to go through a more rigorous derivation, starting from the
β plane equations.
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Figure 23: Stability and period of the delayed oscillator of equation 10; Suarez & Schopf [56].
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2.2 Fast SST, fast wave and mixed mode ENSO regimes

2.2.1 Ocean dynamics

Let us represent the equatorial dynamics using the two-strip approximation of Jin [27, 28] with an equatorial
strip and an off-equatorial strip. The equations for the ocean wave dynamics for each strip are then solved
by integrating them along wave characteristics following Galanti and Tziperman [12]. Further simplification
is achieved by neglecting the meridional damping (−εmv) and the meridional wind stress (τy/ρH) terms. Yet
another simplification is obtained by taking the long wave approximation, which results in dropping the time
derivative from the y momentum equation. This occurs because the meridional velocity v scales like Co

λ
L while

the zonal velocity scales like Co, where Co,λ, L are the gravity wave speed, meridional scale (equatorial Rossby
radius) and the long zonal scale of the wave, respectively, and because λ

L � 1. The resulting set of equations is

∂u
∂t

−βyv+g′
∂h
∂x

= −εmu+
τx

ρH
,

βyu+g′
∂h
∂y

= 0,

∂h
∂t

+H

[

∂u
∂x

+
∂v
∂y

]

= −εmh, (11)

where εm is the oceanic damping coefficient. Eliminating u and v from (11), a single equation for h may be
obtained,

βy2(∂t + εm)h+
g′H
β

[

2
y

∂y −∂yy

]

(∂t + εm)h−g′H∂xh+
1
ρ
(τx − y∂yτx) = 0. (12)

Next, evaluate this equation at the equator (y = 0), and at a zonal band off the equator (y = yn). This “two-strip”
approximation assumes that the ocean dynamics in the equatorial region is well represented by a combination of
equatorial Kelvin waves and off-equatorial long Rossby waves, both well represented by the two strips at latitudes
y = 0 and y = yn.

A Kelvin wave solution of the form

h(x,y, t) = he(x, t)exp(− β
2Co

y2), (13)

satisfies equation (12), and therefore, taking advantage of the known meridional structure, we can get an equation
for a forced and dissipated Kelvin wave at y = 0 of the form

(∂t +Co∂x + εm)he =
1

Coρ
τex, (14)

where τex is the wind stress at the equator and C0 =
√

g′H. The rhs forcing for the Kelvin waves is proportional to
the wind stress, and we shall see below that this implies that a weakening of the easterlies results in the excitation
of warm Kelvin waves. Next, integrate (14) over the trajectory of an eastward propagating Kelvin wave that starts
from the western boundary at a time t − τ2 and reaches the eastern boundary at a time t, where τ2 = L/Co is the
Kelvin crossing time of a basin of length L. The wave is assumed to be excited by the wind stress in the central
part of the basin, from x = xW + .25L to x = xW + .75L. The wind stress is evaluated at the middle of the basin,
x = xw + L/2, at a time t − τ2/2, which is the time when the Kelvin wave crosses the middle of the basin. We
denote the equatorial thermocline depth anomaly at the western (eastern) edge of the basin by heW (heE ), and the
solution to (14) obtained by integrating along characteristics is then

heE(t) = heW (t − τ2)e
−εmτ2 +

1
ρCo

dtτ2τex(
L
2
, t − τ2

2
)e−εm

τ2
2 , (15)
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where dt = 0.5 is the fraction of crossing time during which the wind stress affects the oceanic waves.
Next, we wish to solve (12) at the off-equatorial band (y = yn), in order to include the Rossby wave dynamics

in the model. It can be shown that at yn ≥ 2Lo (where Lo is the oceanic Rossby radius of deformation) the second
term in (12) is negligible [27, 28], resulting in the off-equatorial equation for a forced and dissipated Rossby
wave

(∂t −
C2

0

βy2
n

∂x + εm)hn =
1

βρ

[

∂
∂y

(
τx

y
)|y=yn

]

. (16)

Note that the rhs forcing for the Rossby waves is the curl of the wind this time, and we shall use this below to
show that a weakening of the easterlies results in the excitation of cold Rossby waves. Solving (16) again along
characteristics, for a Rossby wave that starts from the eastern boundary at time t − τ1, where τ1 = Ly2

nβ/c2 is the
Rossby crossing time of a basin length L, at a latitude yn, we find

hnW (t) = hnE(t − τ1)e
−εmτ1 − 1

βρ
dtτ1

[

∂
∂y

(
τx

y
)|(yn,

L
2 ,t− τ1

2 )

]

e−εm
τ1
2 . (17)

The eastern and western boundary conditions represent the reflection of Kelvin waves into Rossby waves at the
east, and the reflection of Rossby waves into Kelvin waves at the west. In terms of the thermocline depth at the
boundaries, these boundary conditions are

heW = rW hnW , hnE = rEheE , (18)

where rW and rE are reflection coefficients at the western and eastern boundaries, respectively. Using the above
boundary conditions, (15) and (17) may be joined to give an expression for the equatorial thermocline depth
anomaly at the eastern Pacific,

heE(t) = rW rEheE(t − τ1 − τ2)e
−εm(τ1+τ2 ) free RW reflected as KW (19)

− 1
βρ

dtτ1[
∂
∂y

(
τx

y
)|(yn,

L
2 ,t−τ2− τ1

2 )]e
−εm

τ1
2 ] forced RW reflected as KW

+
1

ρCo
dtτ2τex(

L
2
, t − τ2

2
)e−εm

τ2
2 forced KW

This form of equation manifests clearly the delayed dependence of heE(t) on the wave dynamics. The first
term represents the effects of a thermocline depth anomaly at the eastern boundary at a time t − τ1 − τ2. This
anomaly is reflected poleward and then propagates as a free Rossby wave. This wave in turn, is reflected at the
western boundary as a Kelvin wave at time t − τ2 and arrived at the eastern Pacific at time t. The second term
represents the Rossby waves excited at a time t − τ2 − τ1/2 in the central Pacific, and the third represents the
Kelvin waves excited at a time t − τ2/2. To calculate the forced RW terms explicitly, we need to discuss the SST
and atmospheric dynamics now.

2.2.2 SST response to thermocline movements

The equation describing SST changes at the equator is based on that of Zebiak and Cane [66]. Following Jin
[27, 28], we only keep the time rate of change, the advection by the mean upwelling w ∂T

∂z , and the damping
terms,

∂tT = −εT T − γ
w
H1

(T −Tsub(h)), (20)

where εT is a thermal damping coefficient, Tsub(h) is the temperature anomaly at some specified constant depth
H1 (not to be confused with other H1s appearing above...), and is a function of the thermocline depth anomaly
h, typically taken as some hyperbolic tangent [66]. The parameter 0 < γ < 1 relates the temperature anomalies
entrained into the surface layer to the non local deeper temperature variations due to Tsub(h).
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2.2.3 Wind response to SST forcing

Based on the solution to Gill’s model above (8), we take the wind stress to be a function of the SST at the equator
(Te) which decays in latitude according to the atmospheric Rossby radius of deformation La

τx(x,y, t) = µA(Te,x)exp(−y2α
2L2

o
). (21)

In this last formula, α = (Lo
La

)2, A(Te,x) is a non local function that relates the equatorial SST to the wind stress,
and µ serves as a relative coupling coefficient. The wind stress terms in (19) may thus be expressed as

τxe = µA(Te,x),

∂y(τx/y)|y=yn = −µA∗A(Te,x),

where

A∗ =

[

L2
o +αy2

n

(ynLo)2

]

e
− y2

nα
2L2

o ,

A(Te,x) is obtained by solving a Gill-type atmospheric model [19] using a long wave approximation (see section
1.2.5above, or Hao et al. [21]), resulting in a linear relation between the wind stress and the equatorial SST.
As derived in (8), the wind stress in the central Pacific may be assumed to be proportional to the temperature
anomaly in the East Pacific (this implies that the information about the East Pacific heating is propagated in the
atmosphere by atmospheric Rossby waves to affect the wind stress in the central Pacific)

A(Te,x = xw +L/2) = b0TeE(t), (22)

where b0 is the annual mean coupling strength. The assumption embedded in (22) is that most of the SST
variability and thus atmospheric heating is in the eastern part of the equatorial Pacific. The resulting wind stress
anomaly, according to the Gill model, will reach the central Pacific where it affects the ocean wave dynamics
[27, 28].

2.2.4 Mixed mode ENSO model

The expression (19) for the East Pacific thermocline depth may now be written more explicitly, using the above
equations as

heE(t) = rW rEheE(t − τ1 − τ2)e
−εm(τ1+τ2) (23)

− rW
1

βρ
A∗dtτ1µb0TeE(t − τ2 −

τ1

2
)e−εm(

τ1
2 +τ2)

+
1

ρCo
dtτ2µb0TeE(t − τ2

2
)e−εm

τ2
2 ,

expressing heE at time t as function of heE and TeE at previous times. As before, the first term represents the free
Rossby and Kevin waves, the second represents the excited Rossby wave, and the third represents the excited
Kelvin wave. The thermodynamic equation (20) evaluated at the eastern side of the basin gives the dynamical
equation in which the above heE(t) is used

∂tTeE = −εT TeE − γ
w
H1

(TeE −Tsub(heE)). (24)
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Equations (23) and (24), together with an explicit expression for Tsub, form the mixed mode model originally
derived in a slightly different format (no explicit delays) by Jin [27, 28], and then re-derived in the present form
by [12]. The mixed mode dynamics and its fast wave and fast SST limits were originally investigated by Neelin
and Jin [29, 30, 38]. Hereafter we denote TeE by T and heE by h. Note that the nonlinearity in the model is due
to the nonlinear function Tsub(h).

The mechanism of the oscillation in this mixed mode model is similar to that of the above heuristic delayed
oscillator, except that there is an additional explicit delay time due to the time it takes the SST in the East Pacific
to adjust to changes in the thermocline depth there. An alternative description of the mechanism has been used
by Jin [27, 28], emphasizing water transport rather than wave propagation, and is shown in Fig. 24.

Figure 24: The recharge oscillator mechanism (Jin, 1997).

2.2.5 The fast SST Limit

In the fast SST limit, the SST adjustment time is assumed to be much shorter than the ocean dynamics adjustment
time, or in other words SST is assumed to respond instantaneously to thermocline depth changes [37, 29, 30,
38]. We obtain our model equations for this limit by taking the term ∂tTeE in (24) to be zero, so that the SST
equation becomes a diagnostic equation balancing the Newtonian cooling and the upwelling terms, and giving an
instantaneous relation between the thermocline depth anomaly h(t) and the SST T (t)

T (t) = γ
w
H1

(

εT + γ
w
H1

)−1

Tsub(h). (25)

The oscillation mechanism in this case is pretty much the same as of the heuristic delayed oscillator described
above.

2.2.6 The fast wave limit

In the fast wave limit, the Rossby and Kelvin wave propagation times are assumed to be much shorter than
the SST adjustment time of the SST to thermocline perturbations. The wave speeds are actually assumed to be
infinite, resulting in an instantaneous adjustment of ocean thermocline depth and current velocities to wind stress
anomalies [21]. Hence, the SST adjustment time to thermocline depth changes is the only delay and plays the
central role in the physical mechanism of the oscillations obtained in this parameter regime. The fast wave limit
results in somewhat unrealistic oscillations, in comparison to both ENSO’s time scale and amplitude, as this is
not a realistic ENSO regime. Nevertheless, it is still useful to analyze this regime, since it reveals some new
aspects that are not considered in the previous two regimes.
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The fast wave limit can be derived by taking the time derivatives in the ocean momentum equation to be zero.
In the fast wave limit, the dynamics crucially depend on the east-west tilt of the thermocline. One variant of the
fast wave limit is obtained by dividing the basin into two boxes, one for the East Pacific and one for the central
Pacific. The full derivation of the model equations may be found in [12], and it is a simplification into a system
of ODEs based on the PDE model of Hao et al. [21]. The two SST tendency equations for the two regions are

∂tTc = −εT Tc − γ
w
H1

Tc + γ
w
H1

Tsub (hc(Tc,Te)) , (26)

∂tTe = −εT Te − γ
w
H1

Te + γ
w
H1

Tsub (he(Tc,Te)) , (27)

where Tc and Te are the SST in the central Pacific and the East Pacific respectively, and the dependence of Tsub

on Tc and Te is via the thermocline depth anomalies hc and he. The oscillatory mechanism of the eastward
propagating fast wave oscillations is explained in Hao et al. [21]. Given the lack of wave delay time, the coupled
system memory required for an oscillation resides in the different response rates of the SST to thermocline
displacements at different longitudes. This may result in either westward propagation or eastward propagation
(not in the above two box model, but in a continuous representation of the fast wave regime [21]). It is possible
to obtain different time scales from 2 yr to much longer, as well as relaxation oscillations, and an example from
Jin and Neelin [29, 30, 38] is shown in Fig. 25.

Figure 25: An oscillation of the equatorial Pacific in a model of the fast wave regime (Jin and Neelin, 1993)
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Lecture 3

ENSO’s irregularity and phase locking

Eli Tziperman

3.1 Is ENSO self-sustained? chaotic? damped and stochastically forced?

That El Nino is aperiodic is seen, for example, in a nino3 time series (Fig. 26). The ENSO delayed oscillator
mechanism may result in either self-sustained oscillations, or in a steady state solution that has a damped oscilla-
tory mode. In the later case, oscillations may be excited by external stochastic (weather) noise. In the scenario in
which ENSO is self-sustained, it may be irregular due to low-order chaos. In the stochastically driven scenario,
ENSO’s irregularity is simply an outcome of the stochastic forcing. Whether ENSO is damped or self-sustained
depends on the ocean-atmosphere coupled instability, also referred to as the coupling strength. For this purpose,
the coupling strength may be defined for example as the response of the atmospheric wind stress per unit change
in the thermocline depth. Note that this coupling is the product of (at least) three different coupling coefficients:
the response of SST to thermocline depth changes, the response of the atmospheric heating to SST changes, and
the response of the wind stress to the atmospheric heating. A stronger coupling implies self-sustained possibly
chaotic oscillation, while a weak coupling implies damped oscillations.

1950 1955 1960 1965 1970 1975 1980 1985 1990 1995 2000
−4
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0

2

4

Figure 26: The observed irregular El Nino events (nino3 index of averaged east equatorial SST).

3.1.1 Strength and seasonality of ocean-atmosphere coupling

Some of the physical processes affecting the coupling strength are the mean (i.e. monthly climatological) up-
welling strength, mean SST; ITCZ motion and its effect on the atmospheric heating parameterization, mean
thermocline depth, thermocline outcropping, etc [23, 46, 62]. All of these fields vary seasonally (Fig. 27), and
therefore so does the coupling coefficient.

To summarize only a few of the seasonal coupling factors:

1. Seasonal motion of ITCZ and its effect on atmospheric heating (via mean atmospheric convergence): re-
sults in stronger coupling when the ITCZ is near the equator.

2. Seasonal variations in upwelling amplitude: affects the efficiency of transfer of thermocline signal to sur-
face.

3. Seasonal variations in the mean SST, and its effect on atmospheric heating: warmer mean SST makes a
given SST perturbation more effective in inducing atmospheric heating.

4. Seasonal motion of thermocline in the East Pacific: when the thermocline outcrops, Kelvin Waves manage
to transfer the sub-surface temperature signal to the surface and affect the SST more efficiently.
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Figure 27: Monthly climatology of SST, wind divergence, upwelling, zonal ocean currents, and wind speed, at
the equator, taken from the background fields in the CZ model.

Each of these factors results in a somewhat different time of maximal coupling. The combined effect is a seasonal
coupling strength that is maximal during spring and early summer and minimal at the end of the calendar year.

Consider next the two possible mechanisms leading to ENSO’s irregularity and limited predictability.

3.1.2 ENSO’s irregularity: low order chaos

Consider first a pendulum driven by periodic forcing and affected by friction. For small amplitude, one may
linearize the equation of motion, and when the forcing frequency equals the natural frequency of the pendu-
lum, a linear resonance occurs. For larger amplitude motion, the governing equation is nonlinear. Because
of the nonlinearity, the period of the pendulum depends on its amplitude. In this case a “nonlinear reso-
nance” may occur when the pendulum frequency ω is related to the forcing frequency ωF as two integers:
ω/ωF = n/m rather than only when the two frequencies are equal, as in the linear case. When the nonlin-
earity is sufficiently strong, the pendulum tends to change its amplitude a bit so that its frequency would also
change, such that the frequency is related to that of the forcing as the ratio of two integers and a nonlinear
resonance occurs. This is also called “mode locking” to the external forcing, and is the same phenomenon as
of the “Huygens clocks” shown in Fig. 28. For larger yet nonlinearity, the governing equation of the pendu-
lum has several different solutions that correspond to different nonlinear resonances, all for the same physical
parameters (friction, gravity, length of pendulum, forcing amplitude, etc). Each of these possible nonlinear res-
onances is unstable, so that the pendulum does not remain near these solutions indefinitely, but oscillates near
one of these frequencies for a while, but then escapes and jumps to another such nonlinear resonance with a
different integer ratio with ωF . The resulting motion is an irregular jumping between the different nonlinear
resonances. This is the mechanism of chaos for the damped nonlinear pendulum forced by external periodic
forcing [1]. Check the pendulum Java applets at http://www.dartmouth.edu/~phys15/interact/pendulum.html or
http://monet.physik.unibas.ch/~elmer/pendulum/spend.htm for a nice demo.

The above dynamics may also be demonstrated using the simple circle map

θn+1 = θn +Ω+
K
2π

sin(2πθn)

which is an iterative map roughly representing a periodically forced pendulum [54]. Here θn is the angle of the
pendulum at iteration n, Ω represents the periodic forcing, and the nonlinear term with amplitude K

2π corresponds
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Figure 28: “While recovering from an illness in 1665, Dutch astronomer and physicist Christiaan Huygens
noticed that two of the large pendulum clocks in his room (which he patented 8 years earlier) were beating in
unison, and would return to this synchronized pattern regardless of how they were started, stopped or otherwise
disturbed” (http://www.agnld.uni-potsdam.de/~mros/synchro.html).

to a similar term in the pendulum equation. As the nonlinearity in the map increases, the map displays a nonlinear
resonance and then chaos for K > 1. The transition to chaos as the nonlinearity increases and as a function of Ω
is called the quasi-periodicity route to chaos (Fig. 29); try playing with the following Matlab program to see the
map behavior:

clear; clf; pi=atan(1.0)*4.0; omega=0.5; K=2.0; I=20000; theta(1:I)=1.0e-17;
for n=1:I
theta(n+1)=mod(theta(n)+omega+(K/(2*pi))*sin(2*pi*theta(n)),1);

end
plot(theta,’r+’)

We finally proceed to the application of these ideas to ENSO’s dynamics. The idea is very simple [61, 58, 31]:
the nonlinear pendulum in the above discussion corresponds to the delayed oscillator in a self-sustained parameter
regime. The periodic forcing is the seasonal cycle and especially the seasonal variations of the coupling strength
discussed above. This may be demonstrated by considering the transition to chaos in a simple delayed oscillator
model [61] where the seasonal forcing is added as an additive forcing term,

dh(t)
dt

= aA [h(t − 1
2

τK)]−bA [h(t − τK − 1
2

τR)]+ ccos(ωat) (28)

and where A(h) is a nonlinear tanh-like function. This function has a slope of κ at the origin (h = 0) which
serves as the coupling coefficient in the sense discussed above. As the coupling coefficient is increased, this
model shows exactly the same quasi-periodicity route to chaos discussed above (Fig. 30). The same transition to
chaos occurs if the seasonal forcing is added, more realistically, as seasonal variations in the coupling strength,
rather than as an additive forcing term.

The mechanism of irregularity of El Nino according to this scenario is thus low order chaos driven by the
seasonal cycle in the Equatorial Pacific. The nonlinear delayed oscillator goes into a nonlinear resonance with
the seasonal cycle forcing. For sufficiently strong nonlinearity and/ or seasonal forcing amplitude, several such
resonances coexist and are destabilized. Such a nonlinear resonance corresponds to an ENSO cycle of a period
TENSO that is related to the annual period as the ratio of two integers. TENSO could be for example 2, 3 or 4 years,
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Figure 29: http://www.dhushara.com/book/paps/chaos/bchaos1.htm: “The quasi-periodicity route to chaos: (a)
Repeated Hopf bifurcations result in tori. Creation of two oscillations results in a flow on the 2-torus. (b) Periodic
flow on 2-torus results in closed orbits which meets themselves exactly. (c) Poincare map of a cross section maps
each point in a cross section C to the corresponding point one cycle on along the flow. The flow illustrated is
irrational and hence has orbits consisting of lines which do not meet themselves, but cover the torus ergodically
passing arbitrarily close as time increases. (d) Breakup of the torus under the circle map as K crosses 1. The
increasing energy thus disrupts the periodic relationships as chaos sets in. (e) f(q) versus q for the circle map. At
K = .7 the function is 1 - 1 and hence invertible, but for K = 1.6 it is not. (f) The devils staircase of mode-locked
states. These order the possible rationals assigning to each the interval of values for which such mode-locking
occurs for K = 1. At this value the mode-locked states fill the interval, leaving only a Cantor set of irrational
flows. (g) K - diagram of the circle map showing mode-locked tongues (K<1) and chaos densely interwoven with
periodicity (K>1). The rational mode-locking exist only on the curves for K > 1.”

Figure 30: Transition to chaos in a simple delayed oscillator El Nino model [61].
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or other period for which TENSO/1yr = n/m. The equatorial Pacific delayed oscillator therefore jumps irregularly
between these nonlinear resonances, resulting in the observed irregularity. This scenario which was originally
investigated using highly simplified toy models such as (28), was also found [58] to be the mechanism of chaos
in the widely used El Nino prediction intermediate coupled model of Zebiak and Cane [66].

3.1.3 ENSO’s irregularity: stochastically forced non-normal optimal modes

An alternative explanation to ENSO’s irregularity is based on the idea of non normal transient growth [11, 10]
and was examined in the context of ENSO for example by [45] and [32]. Consider first the simple linear system
of two equations (thanks to Eyal Heifetz for his help with this example)

d~Ψ/dt = A~Ψ

where

A =

(

−0.1 −0.9cotθ
0 −1

)

so that its eigenvectors/ values are

~P1 =

(

1
0

)

~P2 =

(

cosθ
sinθ

)

(

λ1

λ2

)

=

(

−0.1
−1

)

.

Note that both eigenvalues are negative, so that the solution to any initial conditions eventually decays to zero.
The solution may be written as

~Ψ = a1~P1e−0.1t +a2~P2e−t ,

where the initial conditions are
~Ψ(t = 0) = a1~P1 +a2~P2.

At a later time t = 1, the solution is therefore

~Ψ(t = 1) = a1~P1e−0.1 +a2~P2e−1.

Now, note that the two eigenvectors are not necessarily perpendicular, depending on the value of θ:

θ = 0 ⇒ ~P1 ‖ ~P2;

θ = π/2 ⇒ ~P1 ⊥ ~P2

choosing initial conditions such that

~Ψ(t = 0) = (sinθ,−cosθ)† ⊥ ~P2 ⇒ (a1,a2) = (cscθ,−cotθ)

we find that at a later time the norm of the solution actually increased rather than decay

θ = π/18rad = 10◦ ⇒ |~Ψ(t = 1)|/|~Ψ(t = 0)| ≈ 3.2

This somewhat surprising result may be explained with the help of Fig. 31. Note that the initial conditions are a
super position of the two eigenvectors in such a way that the two components proportional to the eigen vectors
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are large-amplitude but cancel each other at t = 0. At a later time t = 1 one of the eigenvectors decays much
faster than the other, so that the solution at that time remains basically equal to the large initial value of the
remaining eigenvector, hence the initial amplification. This amplification is transient because at later times both
eigenvectors must decay (Fig. 32).

Given a dynamical system as above, we could search for the initial conditions that maximize growth at some
time t = Topt , by solving the problem

findΨ(t = 0) that results in max |Ψ(t = Topt)| subject to |Ψ(t = 0)| = 1.

The usual normal modes stability analysis is equivalent to taking Topt → ∞. Alternatively, we could ask what are
the initial conditions that lead to a maximum initial growth trend at t = 0

find Ψ(t = 0) that results in max

∣

∣

∣

∣

dΨ
dt

|t=0

∣

∣

∣

∣

subject to |Ψ(t = 0)| = 1.

In this last case, we search for the maximum of the norm of (dΨ/dt)|t=0 = AΨ(t = 0) = AΨ0 subject to |Ψ0|= 1.
Writing this maximization problem using a Lagrange multiplier λ as

max
(

(AΨ)T (AΨ)+λ(ΨT Ψ−1)
)

= max
(

ΨT (AT A)Ψ+λ(ΨT Ψ−1)
)

.

and equating the derivative of the quantity to be maximized and to zero, we have

0 =
d

dΨ0

(

ΨT
0 (AT A)Ψ0 +λ(ΨT

0 Ψ0 −1)
)

= (AT A)Ψ0 +λΨ0.

This implies that the optimal initial conditions Ψ0 that maximize the growth rate at t = 0 are the eigenvector of
the matrix AT A. In more general cases the answer is derived by solving different and somewhat more complex
eigen problems, typically using an adjoint model of the model whose optimal initial conditions are searched.

As a final comment before returning to ENSO, note that if the optimal transient growth exceeds the non–
linearity threshold within the time scale of interest, then the linear stability nature of the system is irrelevant.
Very often the growth rate due to non-normal effects is much larger than that of the normal modes even for a
system that is unstable in the usual normal modes sense. What’s considered “optimal” is subjective.

In the case of ENSO, it has been suggested that the optimal initial conditions (e.g. for the wind) which result
in the fastest growth of El Nino conditions (happen to?) have the same structure as of westerly wind bursts
occurring in the West Pacific warm pool area (these wind bursts may be related to the Madden-Julian 30-40 day
oscillations in the tropical atmosphere). This implies that El Nino may be triggered by external factors rather
than being a self-sustained oscillation that is at most randomized by external noise. Predictability may still be
possible if the system needs to be preconditioned before the westerly wind bursts can excite an event. In any
case, the structure of the optimals for El Nino seems very model dependent at the moment, and the issue is still
being investigated.

There are clearly many possible mechanisms for ENSO’s irregularity, according to which it might be: self-
sustained and chaotic, self-sustained and randomly forced; damped and stochastically forced efficiently due to
the non-normal structure of its linearized dynamics, etc. At the moment, it seems that the issue of whether ENSO
is self-sustained and possibly chaotic or damped and stochastically forced (or one of the other alternatives) is still
unresolved.
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Figure 33: (a) The optimal initial structure for sea surface temperature anomaly growth. The pattern is normalized
to unity. The contour interval is 0.025, and negative values are indicated by dashed contours. (b) The linear
inverse model’s 7-month prediction when (a) is used as the initial condition. Contour interval and shading are as
in (a). (http://www.cdc.noaa.gov/review97/overview/chpt2/fig.2.1.html)
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Figure 34: Super imposed nino3 time series from many observed events, showing the tendency of the events to
reach a maximum toward the end of the year and therefore be phased locked to the seasonal cycle.

37



3.2 ENSO’s phase locking to the seasonal cycle

El Nino events tend to reach their maximum toward the end of the year (Fig. 34). Given the importance of
seasonal forcing via the seasonal ocean-atmosphere coupling strength to El Nino’s dynamics it is not surprising
that such phase locking occurs, but the mechanism of this phase locking still requires an explanation.

Some Previous explanations suggested that (1) Spring time is the most unstable time of year in the Equatorial
Pacific, so that ENSO events start then & peak a few months later... (Philander [46], Hirst [23]). However,
this explanation is clearly still a bit vague, summer is also unstable, and the delayed oscillator mechanism is
not incorporated into the proposed mechanism. (2) End of year is most stable time of year, so that dissipation
will overcome instability then, and events will peak and start decaying (Zebiak and Cane, [66]). However, this
again does not use the equatorial waves and delayed oscillator ideas. (3) If El Nino’s irregularity is due to
seasonal forcing, one might expect nonlinear phase locking to the seasonal forcing. However, this is clearly not
a sufficiently specific physical mechanism, and the locking actually seems to occur in linear models as well.

A linear mechanism based on equatorial wave dynamics for El Nino’s phase locking has been proposed by
[59, 12]. The mechanism may be demonstrated using a simple delayed oscillator equation

dh(t)/dt = bF [K(t − τ1)h(t − τ1)] Warm Kelvin wave

− cF [K(t − τ2)h(t − τ2)] Cold Rossby Waves

− dh(t) Dissipation (29)

where h(t) = East Pacific thermocline depth, K(t) = seasonal strength of ocean-atmosphere instability, (τ1,τ2) =
(1,6) months, are the (Kelvin, Rossby+Kelvin) wave travel times, F [K(t)h(t)] is a nonlinear function representing
the thermocline → SST → wind connection, monotonously increasing with K(t)h(t) and roughly shaped like a
hyperbolic tangent function.

This model displays events that are aperiodic, but peak time of h(t) (same as nino3), is always at the end of
the year (Fig. 35).
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Figure 35: Results of the toy model described in the text for El Nino’s phase locking. left: typical time series
of model solution for h(t); right: the seasonal coupling strength (line) and histogram of timing of peaks of the
model time series showing that these peaks occur during November and December.

The end of year is also the time when the coupled ocean atmosphere instability strength (coupling strength)
K(t) is smallest in reality as well as in this toy model (solid line on right panel of Fig. 35). Given the simplicity
of this model, we can try to use it to explain why the peak time is also time of minimum coupling. Note that at
the peak time: dh(t)/dt = 0 so that warming due to the Kelvin wave term balances the cooling due to the Rossby
and dissipation terms:

bF [K(t − τ1)h(t − τ1)] = cF[K(t − τ2)h(t − τ2)]+dh(t) (30)

Next, we note that in the delayed oscillator picture, the ENSO cycle is viewed as a continuous succession
of Kelvin and Rossby waves excited in the central Pacific. Also, the wave’s initial amplitudes are related to that
of the ENSO event at the time when the waves are excited. Finally, the waves are also amplified (during their
excitation time) by the strength of the ocean-atmosphere instability at the season of their excitation.

38



Let us show now that the event peak cannot occur at a time of maximum ocean-atmosphere instability strength
K(t) (which is also summer time), using the schematic Fig. 36. If the peak time is indeed during summer, then
warm Kelvin waves arriving during the peak time to the East Pacific are excited τ1 = 1 month before ENSO’s
peak-time with a large amplitude (because they are forced by a strong wind anomaly existing just prior to the
peak time. These waves are also strongly amplified when they are excited by the strong coupling that exists
during the summer. These strong waves cannot be balanced by the small-amplitude cold Rossby waves created
τ2 = 6 months before the peak time, during the winter time, when the event was still weak, having also been only
weakly amplified during winter by the weak coupled instability then. In other words, in equation (30), K(t − τ1)
and h(t − τ1) are large, while K(t − τ2) and h(t − τ2) are small, so that the balance in that equation cannot be
obtained, and therefore peak time cannot occur at the time of maximum couping K(t).

K(t)
nino3, h(t)

Jan 1 Jan 2 Jan 3
Rossby(t-tau2)

Kelvin(t-tau1)
peak(t)

K(t)

nino3, h(t)

Jan 1 Jan 2 Jan 3
Rossby(t-tau2)

Kelvin(t-tau1)
peak(t)

Figure 36: upper: can El Nino peak during summer time? lower: can El Nino peak during winter time? In both
cases: the blue curve shows the seasonal coupling strength, and red curve the East Pacific SST.

Next, let us show that the peak can occur at a time of minimum ocean-atmosphere instability strength K(t)
(Fig. 36). In this case, the warm Kelvin waves arriving to the East Pacific at the peak time are Large amplitude
because they were excited by the strong wind anomalies near the peak-time. But these waves were only weakly
amplified during winter when they were excited. These waves may therefore be balanced by the cold Rossby
waves excited with a small-amplitude when the event was still weak, but strongly amplified by the strong winter
time coupled instability strength. In other words, in equation (30) we now have K(t − τ1) = small; h(t − τ1) =
large, K(t − τ2) = large; h(t − τ2) = small, so that the balance in that equation may be obtained and peak time
can occur at the time of minimum coupling K(t). (Extension to mixed mode and other ENSO regimes were
discussed by Galanti and Tziperman [12]).

The common bibliography for Eli Tziperman’s lectures is at the end of Lecture 9, on page 131.
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Lecture 4

Thermohaline Circulation Variability

Paola Cessi

1 A brief introduction

While the major surface oceanic currents are predominantly driven by the wind-stress, the
dynamics of the deep circulation depends mostly on horizontal density gradients, established
as a result of the combined effect of surface thermal and saline forcing.

The meridional inhomogeneity of radiative heating of the atmosphere produces hori-
zontal density difference between the colder polar and the warmer equatorial sea surface
temperature. The effect of this temperature gradient alone would be the generation of
denser water at higher latitudes and of lighter water in tropical regions. However the excess
of evaporation over precipitation towards the equator causes the mean salinity to decrease
with latitude. The equation of state for seawater is approximately given by

ρ = ρ0(1 − αT + βS), (1)

so that the thermal effect on density opposes that of salinity (α and β are the expansions
coefficient of seawater).

In summary:

• temperature favors downwelling of dense water at high latitudes and upwelling at the
equator;

• for salinity the opposite is true.

The net result of these competing effects is the establishment of a flow which extends
to the deep oceanic layers, known as thermohaline circulation.

In the present climate, the North Atlantic deep circulation is dominated by two thermally
direct cells, one with high-latitude sinking in the Northern Hemisphere and one with high-
latitude sinking in the Southern Hemisphere. However, paleoclimatic data indicate that as
recently as 11,000 years ago the deep circulation and the downwelling at high latitudes has
been much weaker.

The two processes involved can in fact give rise to the existence of multiple steady states,
with the possibility of transitions among the equilibria.
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2 The Stommel-Arons model

The classical approach to the study of the buoyancy-driven circulation is Stommel-Arons
model of the abyssal oceanic flow. One interpretation of the model regards the ocean as
a box with a rigid lid and a two-layer approximation. The upper layer has depth h and
density ρ1 while the lower one has depth H − h and density ρ2.

ρ

ρ

2

1

North

East

Up
h

H−h

x=0 x=xe

w*

HIgh-latitude convection transforms water of density ρ1 into water of density ρ2, and this
downwelling is assumed to be localised at the poleward edge of the box. In steady state
there is a velocity, w∗, at the layers’ interface that compensates for this high-latitude density
exchange. This upwelling is assumed to be diffuse, and is constrained by:

∫

Basin
dx dy w∗ = Deep water production rate.

The Stommel-Arons model examines the flow driven by this large scale interfacial ve-
locity. Specifically, the steady dynamics in the lower layer obeys

−fv = −p2x/ρ0 − ru (2)

fu = −p2y/ρ0 − rv (3)

p1,2z = −ρ1,2g (4)

[(H − h)u]x + [(H − h)v]y = −w∗. (5)

where r � f is the dissipation rate. We now wish to find an expression for the dynamic
part of the pressure of the lower layer in terms of the layer thickness, h. Firstly, using the
hydrostatic relation, we find

p1 = −ρ1gz + p̂1(x, y) ,

p2 = −ρ2gz + p̂2(x, y) .
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From continuity of pressure at the interface, z = −h, we have

p̂2 = −ρ0g
′h+ p̂1 (6)

where g′ ≡ g(ρ2 − ρ1)/ρ0 is the reduced gravity.
If we integrate the continuity equation vertically over the whole box, applying the con-

dition that there is no vertical velocity at the top and bottom we have

[hu1 + (H − h)u2]x + [hv1 + (H − h)v2]y = 0 . (7)

Away from the boundaries we can neglect dissipation and we use geostrophic balance in
both layers. Multiplying the upper layer momentum equations by h and the lower layer
momentum equations by H − h, and forming a vorticity equation we find

f{[hu1 + (H − h)u2]x + [hv1 + (H − h)v2]y} + β[hv1 + (H − h)v2] =

hx(p̂2 − p̂1)y + hy(p̂1 − p̂2)x . (8)

Because p̂2 − p̂1 depends linearly on h [from (6)] the RHS of equation (8) vanishes as does
the first bracketed term on the LHS [because of (7)]. Thus

hv1 + (H − h)v2 = 0 (9)

hu1 + (H − h)u2 = 0, (10)

and there is no vertically averaged flow. Because the interior velocities are geostrophic we
must have

h∇p̂1 + (H − h)∇p̂2 = 0. (11)

Finally, eliminating for p̂1 from (6) and integrating we have

p̂2 = −ρ0g
′h2

2H
. (12)

The vertically averaged lower layer equations thus satisfy:

f(H − h)v = Px + r(H − h)u , (13)

−f(H − h)u = Py − r(H − h)v , (14)

where we have defined the vertically averaged pressure in the lower layer

P ≡ g′(
h3

3H
− h2

2
). (15)

In the regime r � f , P obeys the potential vorticity equation [β ≡ df/dy]

β

f2
Px = w∗ −∇(r

∇P
f2

). (16)

Integrating the mass conservation equation (4) across the box from x = 0 to xe, and
assuming no normal flow at the boundaries we obtain the net meridional abyssal mass
transport, ψ(y),

ψ(y) ≡
∫ xe

0

dx (H − h)v = −
∫ xe

0

dx

∫ y

0

dy′w∗(x, y′). (17)
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A relation between P and ψ is obtained integrating 14 across the width of the basin and
neglecting dissipation, hence

fψ(y) = P (xe, y) − P (0, y). (18)

In the ocean interior we can obtain P from (16) by neglecting dissipation and imposing
u = 0 (Py = 0) at x = xe.

PI(x, y) = −f
2

β

∫ xe

x
dx′w∗(x′, y) + P0, (19)

where P0 is the (constant) value of P on the eastern boundary.
The interior mass transport, i.e. the mass transport that excludes the western boundary

layer contribution is

ψI(y) ≡ f−1[P0 − PI(0, y)] =
f

β

∫ xe

0

dxw∗(x, y) ≥ 0.

A cross section shows that the interior flow is towards the source in the abyss!

y

z

h
w

H−h

*

T(y)
I

Thus there must be a flow in the western boundary layer, which returns the flow towards
the source. Near the western boundary we rescale x such that it becomes small, of the same
order of magnitude as r/β. Then, near the boundary we have

β

f2
Px = − r

f2
Pxx.

The solution for the whole box then is

P = PI + A(y) exp(−βx/r)
︸ ︷︷ ︸

Boundary layer correction

.
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A(y) is determined by mass conservation. If we take the continuity equation (4) and
integrate it across the whole of the E–W direction and from y ′ = 0 to y then we obtain
again equation 17. Substituting P gives

∫ xe

0

dxPx =

∫ xe

0

dx

∫ y

0

dy′w∗(x, y′) . (20)

The integral of the interior part of the streamfuntion P is just the interior mass transport
(equation 19) and thus

ψI −A(y) = −
∫ xe

0

dx

∫ y

0

dy′w∗(x, y′) (21)

which gives solution for A(y)

A(y) = f

∫ xe

0

dx [fw∗(x, y)/β +

∫ y

0

dy′w∗(x, y′)] .

It is useful to divide the transport into an interior part, ψI and a boundary contribution,
ψWB, so that

ψ(y) = f−1[

ψI

︷ ︸︸ ︷

P (xe, y) − PI(0, y) +

ψWB

︷ ︸︸ ︷

PI(0, y) − P (0, y)]

ψWB = −A(y) ≤ 0.

This clearly shows that the transport in the western boundary is negative (equatorward) if
w∗ is positive, so that ψWB is away from the high-latitude convection source.

In the particular case when w∗ is independent of y we have, [f = βy],

ψWB = −2y

∫ xe

0

dxw∗(x) = 2ψ(y).

The western boundary layer transports twice the zonally averaged transport: the flow from
the convection source and the interior flow which is towards the source.
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A contour of P for uniform w∗ shows an interior poleward flow and an equatorward
western boundary current.
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3 What determines w
∗?

It is clear that the circulation in the Stommel-Arons model depends crucially on the inte-
rior upwelling, w∗, at the interface of the two layers, i.e. at the base of the thermocline.
To estimate what determines the interior upwelling we use scaling arguments, which are
confirmed by more detailed laminar calculations (e.g. Vallis, 2000).

The scenario is one where a bounded ocean is driven by surface buoyancy fluxes only,
which are transmitted downward through diffusion. No time-dependent instabilities are
considered. In this case, the interior vertical velocity satisfies the approximate balance:

w∗ρz ≈ κρzz.

The thickness of the thermocline, (i.e. of the upper layer in Stommel-Arons model) is
diffusive:

h = O(
κ

w∗
) w∗ = O(

hV

L
).

In the presence of walls that confine the flow to the East and West, a large scale East-
West pressure gradient can be maintaned, so that we can assume that v is geostrophic and
hydrostatic, i.e.

fvz ∼ gρx/ρ0.

We thus arrive at the following estimate for the depth of the thermocline:

h3 = O(
κfL2ρ0

∆ρg
).

For fixed surface density, ∆ρ is independent of κ, and therefore the depth of the thermocline
satisfies

h = O

(

κfL2ρ0

∆ρg

)1/3

∼ κ1/3, w∗ ∼ κ2/3.

For fixed surface flux, we estimate the horizontal density difference to be ∆ρ = O(Fh/κ):

h4 = O(
κ2fL2ρ0

Fg
).

In this case
h ∼ κ1/2, w∗ ∼ κ1/2.

These scalings have been confirmed by non-eddy-resolving numerical simulations of the
primitive equations (Vallis, 2000 and Huang et al. 1994): density gradients are confined to
a thin diffusive layer, while the abyssal layer is essentially homogeneous.

Essential to this scaling is the existence of an East-West pressure gradient that maintains
a geostrophically balanced meridional flow.

It is therefore interesting to enquire what happens when such a balance fails because
there are no boundaries at the East and West that can support a pressure difference.
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4 Thermohaline flow in a reentrant geometry

In the next section we will discuss the thermohaline circulation in the specific case of
a channel unbounded in the East-West directions, limited in latitude and with periodic
boundary conditions at the ends. Because of the absence of meridional walls, this model
could describe the circulation in the Antartic Circumpolar region.

We assume that the horizontal flow obeys the steady two dimensional equations of
motion, and we neglect nonlinear advective terms:

−fv = −px
ρ0

− ru

fu = −py
ρ0

− rv (22)

The shape of the basin imposes periodic E-W boundary conditions for all fields so that
the longitudinally averaged pressure gradient in the x-direction must vanish, i.e.:

px = 0. (23)

This restriction prevents the system from reaching a steady geostrophic balance and does
not allow an efficient meridional transport of water. We can in fact consider the zonally
averaged momentum balance:

−fv = −px
ρ0

− ru

fu = −py
ρ0

− rv

(24)

and solve for the meridional velocity:

v = − r

f2 + r2
py
ρ0

. (25)

The spreading of warm water from the equator towards the polar regions is achieved only
because of friction. For weak drag, r � f , the meridional flow is small.

For x-independent buoyancy forcing, and excluding the spontaneous generation of x-
dependent instabilities we have v = v. Thus the flow is two-dimensional and it is described
by a streamfunction ψ:

v = −ψz
w = ψy (26)

hence:

pz = −ρg
ψzz = − rg

f2 + r2
ρy
ρ0

(27)
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With density to be determined by temperature and salinity as stated in equation (1),
the flow is then governed by the two evolution equations:

Tt + J(ψ, T ) = κTzz + νTyy

St + J(ψ, S) = κSzz + νSyy (28)

where J(A,B) = ∂xA∂yB − ∂yA∂xB.

The boundary conditions at the top of the layer for the two variables are very different.
Sea surface temperature can be thought as adapting instantaneously to variations in heat
flux, giving rise to a prescribed distribution of temperature with respect to latitude. Instead,
surface salinity plays a minor role in the balance between evaporation and precipitation, so
that the surface salinity flux is imposed by the atmosphere. Thus, we impose the following
boundary conditions at the surface z = 0 and at the bottom of the sea z = −H:

T̄ = ∆TΘ(y), κS̄z = FF(y) at z = 0

κT̄z = κS̄z = 0 at z = −H.

We now adimensionalize the set of equations (28), choosing the following scalings for
lenghts, temperature and salinity:

z = H ζ, y = Lη, T = ∆T θ, S =
α∆T

β
σ (29)

while for density, stream function and time, we nondimensionalize (27) using:

ρ = ρ0α∆T π, ψ =
H2rgα∆T

f2L
φ, t =

κ

H2
ε2 τ. (30)

Substituting the non-dimensional variables into the governing equations, we obtain:

φζζ = (θ − σ)η

ε2θτ + εJ(ψ, θ) = θζζ + δθηη

ε2στ + εJ(ψ, σ) = σζζ + δσηη (31)

with boundary conditions:

φ = 0; θζ = σζ = 0 at ζ = 0

φ = 0; θ = Θ(η) at ζ = 1

σζ = RF(η) at ζ = 1 (32)

There are three parameters governing the behavior, defined as:

Rayleigh-Ekman #
︷ ︸︸ ︷

ε ≡ rgH3α∆T

κf2L2
,

density ratio
︷ ︸︸ ︷

R ≡ βFH

κα∆T
, δ ≡ νH2

κL2
.
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• ε is the product of the Rayleigh number and the Ekman number square;

• R expresses the ratio between temperature and salinity contributions to density vari-
ation;

• δ weights the importance of meridional to vertical diffusivities for T and S.

For weak drag ε << 1 and we can simplify the analysis by expanding the three variables
above in power series of ε:

φ = φ0 + εφ1 + ε2φ2 + 0(ε3)

θ = θ0 + εθ1 + ε2θ2 + 0(ε3)

σ = σ0 + εσ1 + ε2σ2 + 0(ε3)

We further assume that the density ratio is small, specifically

R = O(ε2); δ = O(ε2) (33)

As a preliminary observation, we note that with this ordering of the parameter R the forcing
(32) on the surface salinity flux enters only at order ε2:

σ0ζ + εσ1ζ + ε2σ2ζ = ε2RF(η), (34)

nevertheless, σ is O(1).
Solving for the various orders in ε we get a hierarchy of equations. Starting from the

leading order, O(1), the temperature and salinity equations are:

σ0ζζ = θ0ζζ = 0,

with boundary conditions:

σ0ζ = θ0ζ = 0 at ζ = 0

σ0ζ = 0, θ0 = Θ(y) at ζ = 1

Thus the two fields are vertically homogeneous at leading order:

σ0 = σ0(η, τ), θ0 = θ0(η, τ). (35)

Furthermore, because of the fixed temperature boundary condition, the temperature at
leading order is determined and θ0 = Θ(y). However, the leading order salinity is determined
by the balance at higher orders.

We can also now determine the leading order streamfunction, which satisfies

φ0ζζ = (θ0 − σ0)η

and the condition φ0 = 0 at the two boundaries. Integrating vertically we find:

φ0 =
1

2
ζ(ζ + 1)(θ0 − σ0)η (36)
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At next order, O(ε), the salinity equation is:

−φ0ζσ0η = σ1ζζ

which, when integrated vertically, gives:

−φ0σ0η = σ1ζ , (37)

because the meridional flow turns lateral gradients into stratification. Because both the top
and bottom boundary conditions for σ1 are automatically satisfied, we must proceed to the
next order to determine σ0.

The evolution equation for σ0 is obtained by vertically averaging the evolution equation
of the salinity at O(ε2) which is given by:

∂τσ0 + ∂η(φ0σ1ζ) − ∂ζ(φ0σ1η + φ1σ0η) = σ2ηη +
δ

ε2
σ0ηη.

We thus obtain:

∂τσ0 + ∂η

∫

1

0

dζ(φ0σ1ζ) =
R

ε2
F(η) +

δ

ε2
σ0ηη.

Here we have used the result that the third term on the left hand side vanishes and we
have applied the surface condition σ2ζ |ζ=0 = R

ε2
F(η)). If we substitue the expression for σ1ζ

obtained from (37) we find:

∂τσ0 − ∂η

∫

1

0

dζ(φ2

0σ0η) =
R

ε2
F(η) +

δ

ε2
σ0ηη.

Finally, using the expression (36) for φ0 we get:

∂τσ0 =
1

120
∂η[(θ0 − σ0)η]

2σ0η +
R

ε2
F(η) +

δ

ε2
σ0ηη (38)

with θ0 = Θ(η).
It is also useful to write the dimensional forms of the equations, which are given by

ψ =
rg

2(f2 + r2)
z(z +H)(αT0y − βS0y),

T0 = ∆TΘ(y),

S0t =
ε2L4κ

120H2

[

(βS0y − αT0y)
2

(α∆T )2
S0y

]

y

+
F

H
F + νSyy. (39)

The meridional circulation transports salt downgradient with a nonlinear “diffusivity” pro-
portional to ρ2

y.
For r << f , ψ is independent of κ and the density field is almost vertically homogeneous.

Thus the qualitative picture of the circulation in a channel, in the limit where the friction
is very small, is very different than that obtained in the presence of meridional walls. The
circulation is also accompanied by a large east-west velocity, which is in thermal wind
balance, which does not influence the meridional circulation.
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5 The two-box model approximation

In this section a two-box approximation of (39) is considered, since this reduction illustrates
the qualitative properties of the full partial differential equation. This approximation also
leads to a model which is very similar to that original proposed by Stommel (1961) in the
limit of rapid temperature relaxation.

y

z

y=0 y=2Ly=L

S Sns

F Fs n

S = 0S = 0y y

T Ts n

Figure 1: The box-model approximation to (39).

The left hand box in figure (1) is the equatorial box, denoted by subscript s, while
the right hand is the polar box, denoted by subscript n. The salnity is assumed to be
independent of latitude and depth within each box.

F represents the surface flux of salinity, S the salinity and T the temperature. There is
no meridional flux of salinity at the sides. Integrating ( 39) in latitude over the equatorial
and the polar box the salt equation we obtain the following two equations:

Ṡs = [µS0y(β/αS0y − T0y)
2 + νS0y]y=L +

F

H
Fs,

Ṡn = −[µS0y(β/αS0y − T0y)
2 + νS0y]y=L +

F

H
Fn. (40)

Notice that we need Fs + Fn = 0, in order to conserve the mean salinity of the system.
In order to determine the salinity gradient at the latitude y = L, S0y, we use the

following differentiation rule:

S0y|y=L =
Sn − Ss

L
, T0y =

Tn − Ts
L

.

Defining

σ ≡ β(Sn − Ss)

α(Tn − Ts)
,
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and rescaling time, the salinity difference satisfies

σ̇ = −σ(σ − 1)2 + γ − λσ. (41)

In this equation γ is a parameter expressing the ratio between N-S salt flux effect and
heat temperature gradient:

γ ∝ Fn − Fs
Tn − Ts

> 0

while λ is proportional to the lateral diffusion, ν. We expect stationary condition to be
reached for compensating temperature and salinity effects. If Tn − Ts < 0, Fn < 0 and
Fs > 0, the equilibria will correspond to positive values of γ.

Stommel (1961) used a slightly different box-model, which in the limit of rapid temper-
ature relaxation is:

σ̇ = −σ|σ − 1| + γ − λσ.

Both systems will reach a steady state, minimum of a potential, V because

σ̇ = −∂V (σ)

∂σ
⇒ Vσσ̇ = V̇ = −(Vσ)

2 ≤ 0.

The potential, V , associated with (41) is a function of σ given by

V (σ) =
1

4
σ4 − 2

3
σ3 +

(

λ+
1

2

)

σ2 − γσ.

Depending on γ and λ, V can have one or two minima as illustrated in the following figure.
Equilibria are associated with extrema of the potential, V : minima are stable and maxima
are unstable.
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Figure 2: The potential V for two different values of λ.
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Multiple equilibria (3) are obtained for:

(1 − 3λ)3/2 ≥ |1 − 27

2
γ + 9λ|, (42)

0 0.05 0.1 0.15 0.2 0.25 0.3
0

0.05

0.1

0.15

0.2

0.25

0.3

3 equilibria

1 equilibrium

1 equilibrium

λ

γ

Figure 3: The region where multiple equilibria exist is bounded by the curve (refcusp:eqn)
in the γ − λ space.

In the limit λ� 1 (weak lateral diffusion) it is possible to find approximate expressions
for the steady states, which are given by:

σ(σ − 1)2 = γ � 1.

There is a thermally-driven solution with small salinity gradient:

σa ≈ γ � 1.

There is a salt-compensated solution with small density gradient:

σc ≈ 1 +
√
γ.

The third solution, σb ≈ 1 −√
γ is unstable.
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Recalling that the meridional overturning circulation is given by ψ ∝ (1 − σ), the
meridional circulations associated with the two stable equilibria are:

ψa ∝ 1 − γ

ψc ∝ −√
γ.

Thus ψa and ψc have opposite sign and the haline-driven circulation, ψc, is much weaker
than the thermally driven flow.

The deterministic model does cannot lead to time-dependent variability of the thermo-
haline circulation, since it only admit (multiple) fixed points. Thus, the system cannot
spontaneously jump from one equilibrium to the other: all initial states to the left (right)
of the potential barrier end up in the same left-(right)hand well.

Notes by Fiona Eccles and Chiara Toniolo
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Lecture 5

Thermohaline Variability

Paola Cessi

1 Stochastic Forcing

The 2-box model analyzed in the prvious section (as well as Stommel’s box-model) is gov-
erned by a deterministic equation, i.e. the time evolution of the salinity difference, σ, is
completely determined by the model equation given an initial condition. Moreover, the
system always reach one of two possible stable steady states. However, variability can be
forced by a time-dependent forcing.

Now, let us consider a case where the salt flux, γ, has a component, γ ′, that is random
in time, γ = γ̄ + γ′(t). With the noise, σ is no longer a deterministic variable, but becomes
a random variable. In this case, σ can be written as σ = σ̄ + σ′(t).

Here, we consider two cases. For a weak agitation, or in a short time scale, the system
oscillates near the stable steady states (See Figure 1). For a large agitation, it will shift
from one stable point to another. In this section, we describe the behavior of the 2-box
system using stochastic methods.

2 Rattle near stable points

For weak agitation, the system rattles almost linearly around each equilibrium. Assuming
that the perturbation is small, we linearize the model equation around a stable solution,
say σ̄ = σc. The time-dependendent perturbation satisfies

∂σ′

∂t
= −∂2V

∂σ2
(σc)σ

′ + γ′ (1)

We use Fourier transforms to solve for the spectrum of σ′. The Fourier transform, σ̃(ω),
of σ′(t) is defined as:

σ̃(ω) ≡ 1

2π

∫

∞

−∞

σ′(t) exp(−iωt) dt (2)

σ′(t) =

∫

∞

−∞

σ̃ exp(iωt) dω (3)
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Figure 1: Rattle near stable points: Potential V is a function of σ. For weak noise, the
system rattles around the steady states, σa, and σc.
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And similarly, the Fourier transform pair of γ ′(t) is:

γ̃(ω) ≡ 1

2π

∫

∞

−∞

γ′(t) exp(−iωt) dt (4)

γ′(t) =

∫

∞

−∞

γ̃ exp(iωt) dω (5)

Applying these relationship to (1), we obtain,

σ̃ =
γ̃

Vσσ + iω
(6)

γ′(t) is the stochastic noise, and is randomly picked at every timestep, dt, from a gaussian
distribution with zero mean and variance ξ2. The auto correlation of γ ′ is,

< γ′(t)γ′(t + τ) >≈ δ(τ)dt ξ2. (7)

where δ(τ) denotes a delta function in τ . The Fourier transform of a delta function is a
constant, therefore, the spectrum (given by the ensemble average of the Fourier transform
of the auto correlation function) < |γ̃|2 > is constant for all ω. Thus the spectrum of σ can
be calculated by taking the product of (6) with its own complex conjugate and ensamble
averaging to obtain:

< σ̃σ̃∗ >=
< γ̃γ̃∗ >

Vσσ(σc)2 + ω2
=

dt ξ2

Vσσ(σc)2 + ω2
. (8)

This spectrum is red since it decreases with increasing frequency, starting at a frequency of
the order of the linear damping term.

3 Jumps between equilibria

On longer time scales or with larger variance of the noise, jumps between σa and σc can
occur occasionally. To study the stochastic behavior of the model with the noise-induced
jumps between equilibria, we go back to the nonlinear model equation with the noise term.

σ̇ = −∂V (σ)

∂σ
+ γ′(t). (9)

The probability distribution function (hereafter, PDF), φ(σ, t), describes the probability of
finding a particular value for σ at time t. The Fokker-Plank Equation (hereafter, FPE)
describes the time evolution of the PDE of the stocastically forced system [Gardiner 1990].
The FPE of the 2-box model is,

∂φ

∂t
= (Vσφ)σ + Dφσσ (10)

where D ≡ ξ2

2
dt. Taking the right hand side of the FPE to zero we obtain the steady state

solution, φs, which is the probability of finding a state with a particular value of σ when
time goes to infinity. The steady distribution is given by
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Figure 2: Power spectrum of small perturbation around stable points

φs(σ) = N exp(
−V (σ)

D
). (11)

where N is a normalization constant which is determined by the constraint
∫

∞

−∞
φs dσ = 1.

Figure 3 shows an example of stationary distribution, φs, as a function of σ.

4 Average transit times

In this section, we calculate the average time for the system to shift from one stable equi-
librium to another. First, let us calculate the probability, Nac, of finding σa ≤ σ ≤ σc at
time t.

Nac =

∫ σc

σa

φ(x, t) dx (12)

The probability Nac can also be viewed as the probability that the time, τ , to exit the
interval [a, c], exceeds t. Indeed, finding σ in the range [σa, σc] at time t implies that σ must
leave the region after the time t. We define q(τ) as the PDF for the exit time, τ , from the
region [σa, σc].

Nac =

∫

∞

t
q(τ) dτ (13)

Then, the average exit time is given as the first moment of the PDF, q(t). Denoting with
Ta→c the average time for σ to escape from the region [σa, σc], we find:
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Figure 3: Steady state of the PDF : φs(σ)

Ta→c =

∫

∞

0

tq(t) dt

= −
∫

∞

0

t
dNac

dt
dt

=

∫

∞

0

Nac dt. (14)

To find Ta→c we integrate the FPE with boundary conditions in time and space. The mean
escape time from σc to σa, denoted with Tc→a can be also find using a similar procedure.
The boundary conditions will specify the direction of the shift between equilibria.

Here, consider a case where σ moves from σa to σc. We assume that at t = 0, the model
state, σ, is at σa, so that the PDF is a delta function. We also assume that as time goes
infinity, the PDF goes to zero. Defining the time-integrated PDF, φ̄ ≡

∫

∞

0
φ(σ, t) dt and

integrating (10) in time from 0 to ∞ we find

−δ(σ − σa) = (Vσφ̄)σ + Dφ̄σσ. (15)

We also assume that φ̄ → 0 as σ → −∞ because σ moves from σa to σc, implying that once
the particle has moved to σc, it should not return to the original location. This condition
gives φ̄(σc) = 0. With these boundary conditions, one can solve equation (15), and obtain
Ta→c.
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Ta→c =
1

D

∫ σc

σa

dx

φs(x)

∫ x

−∞

φs(y) dy

≈ 1

D

∫ σc

σa

dx

φs

∫ σb

−∞

φs dy (16)

We calculate Tc→a using the same equation with different boundary conditions. In this case,
the model state, σ is initially concentrated at σc and the PDF is delta function there. We
assume that φ̄ → 0 as σ → ∞ because σ moves from σc to σa (with σa < σc as in figure
1). Also we set φ̄(σa) = 0, assuming that once particles arrive at σa they never come back.
With these boundary conditions, we solve the equation (15), and obtain Tc→a.

Tc→a ≈ 1

D

∫ σc

σa

dx

φs

∫

∞

σb

φs dy (17)

5 Random Telegraph Process

On long timescales we can assume that the system simply jumps between the two equilibria.
We ignore the rattle around each equilibrium and only allow σ to be in one equilibrium or
another. In this case, we can approximate the system with a Random Telegraph Process
: σ is in σa with probability Na

N or in σb with probability Nb

N . The sum of Na

N and Nb

N is
unity. We can now use the average escape times Tc→a and Ta→c to estimate the rates of
transitions between equilibria. Specifically we have

Ṅa = −ωaNa + ωcNc (18)

Ṅc = −ωcNc + ωaNa (19)

where ωa = T−1
a→c and ωc = T−1

c→a. Steady solutions are found equating the right hand sides
to zero, so that

Na = N
ωc

ωa + ωc
(20)

Nc = N
ωa

ωa + ωc
(21)

We can compute the low frequency spectrum by taking the Fourier Transform of the
auto-correlation function. First, we define the auto-correlation function of the Random
Telegraph process.

C(τ) =< σ′(t)σ′(t + τ) > (22)

where σ′ = σ− < σ >. The average value for σ is < σ >= 1

N

∑N
1

σ = σa
Na

N + σc
Nc

N . We
need the time-dependent equation for C(t). First, let us consider the equilibrium value at
τ = 0,
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C(0) =
1

N

N
∑

1

σ′2 (23)

=
Na

N
σ′

a
2
+

Nc

N
σ′

c
2

(24)

=
NaNc

N2
(σa − σc)

2 (25)

=
(σa − σc)

2ωaωc

(ωa + ωc)2
(26)

Next we consider the state of the system at time, 0 + dt. We can calculate the auto-
correlation, C(dt), by counting the expected number of jumps between the two states.
During the time period, dt, the switch σa → σc occurs with a probability of Na

N ωa dt.

Similarly, the switch σc → σa occurs with a probability of Na

N ωc dt.
We can count all the possible states of the system at time, 0+dt. First, we can estimate

the number of states where σ is at σa during the interval [0, dt]. The number of this
particular state is Na(1 − ωa dt). Secondly, we can estimate the number of states where σ
is at σc during [0, dt]. The number of this particular state is Nc(1 − ωc dt). Finally, we can
estimate the number of states in the transition between the equilibrium. The number of
this particular state is (Naωa + Ncωc) dt. Taking these together, we find

C(dt) =
N

∑

1

σ′(dt)σ′(0) (27)

=
Na

N
(1 − ωadt)σ′

a
2

︸ ︷︷ ︸

σa at 0 and dt

+
Nc

N
(1 − ωcdt)σ′

c
2

︸ ︷︷ ︸

σc at 0 and dt

+ (
Na

N
ωa +

Nc

N
ωc)dtσ′

aσ
′

c
︸ ︷︷ ︸

in transit

(28)

We can now form the differential equation for C at time, t = 0.

∂C
∂t

|τ=0 = − 1

N
(ωa + ωc)(Naσ

′

a
2
+ Ncσ

′

c
2
) (29)

= −(ωa + ωc)C(0) (30)

The solution of this equation is C(τ) = C(0)e−(ωa+ωc)τ , with C(0) given by (28).
Thus, the low-frequency end of spectrum for the box-model subject to noise is given by:

S(ω) = C(0)2
2(ωa + ωc)

(ωa + ωc)2 + ω2
(31)

Given the dependence of the espace times on the noise variance, the amplitude of the
spectrum increases as the noise variance decreases.

S(0) =
2(σa − σc)

2ωaωc

(ωa + ωc)3
(32)

∝ exp(Aξ−2) (33)
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Figure 4: The comparison of the short-time timescale and the long-timescale power spectrum

Figure 4 compares the low-frequency and the high-frequency approximations. Note
that the short-timescale spectrum represents the rattling around the stationary points,
and saturates at higher frequency. The long-timescale spectrum approximates the jumps
between the stationary points. Neither of the spectra show a peak because the associated
deterministic system has only fixed points.

6 The Howard-Malkus-Welander loop

The next conceptual model that we will consider is the Howard-Malkus-Welander loop. A
circular ring of fluid with temperature T and salinity S flows with angular velocity ω = φ̇,
with φ the angle to the vertical. The ring is immersed in a bath at constant temperature
TE and salinity SE (see Fig. 5). The outer radius of the ring is r, the inner radius is a and

g is gravity. For a thin loop with (r− a) � a, the fluid can be assumed to be well mixed in
the radial direction, so that all variables become independent of r. In this case, the angular
velocity satisfies the following equation

ω̇ = − pφ

ρ0a2
− ρgk̂ · φ̂

ρ0a
− Γω. (34)

Γ is the friction coefficient, k̂ the unit vector in the vertical direction and φ̂ the unit vector
in the tangential direction. Again we assume a linear equation of state, so that ρk̂ · φ̂ =
ρ0(βS − αT ) sin φ.
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Figure 5: Sketch of the Howard-Malkus-Welander loop.

Equation (34) can be integrated around the loop to eliminate p and this yields

2πaω̇ = g

∫

2π

0

dφ (αT − βS) sin φ − 2πaΓω (35)

where we have used that, for a two-dimensional incompressible fluid, the angular velocity
cannot depend on φ, if ωr = 0.

The temperature and salinity are determined through:

Ṫ + ωTφ = r(TE − T ),

Ṡ + ωSφ = rs(SE − S).

where r and rS are the diffusion rates of temperature and salinity, respectively. With
antisymmetric forcing (TE , SE) = (T0, S0) sin φ (heating and salting on the right side of the
loop, cooling and freshening on the left side), we decompose temperature and salinity into
a symmetric part and a antisymmetric part

T = T1 cos φ + T2 sin φ, S = S1 cos φ + S2 sin φ.

Substitution of these relations in equation (36) yields

Ṫ1 + ωT2 = −rT1, Ṫ2 − ωT1 = r(T0 − T2),

Ṡ1 + ωS2 = −rsS1, Ṡ2 − ωS1 = rs(S0 − S2).

For long time scales inertia will be much smaller than friction, ω̇ � Γω and it follows
directly from equation (35) that ω then satisfies

ω =
g

2Γa
(αT2 − βS2). (36)
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In the limit where the relaxation rate of temperature is much greater than the relaxation
rate of salinity, i.e. r � rs, the temperature is clamped to the forcing, so that T1 ≈ 0,
T2 ≈ T0. The salinity evolves on a slower time-scale according to:

Ṡ1 +
g

2Γa
(αT0 − βS2)S2 = −rsS1,

Ṡ2 −
g

2Γa
(αT0 − βS2)S1 = rs(S0 − S2).

We introduce new variables y1,2 =
βS1,2

αTE
and t̂ = gαTE

2Γa t, so that

ẏ1 + (1 − y2)y2 = −δy1 (37)

ẏ2 − (1 − y2)y1 = δ(y0 − y2) (38)

where a dot indicates now differentiation with respect to t̂ with δ = 2rsΓa
gαTE

.
The limit of a fixed salinity flux is given by δ → 0 with δy0 ≡ F finite. In this limit

there is only one fixed point (the others are at ∞), given by

y1 = −F, y2 = 0.

We can look at its linear stability by setting

y1 = −F + ε1(t), y2 = ε2(t).

Neglecting O(ε2) terms we find:

ε̇1 + ε2 = 0, ε̇2 − ε1 − Fε2 = 0

These are the equations for an oscillator with damping −F :

ε̈2 + ε2 − F ε̇2 = 0.

There is linear growth when F > 0, i.e. when the forcing is warm-salty and cold-fresh. When
F < 0, the oscillations are damped out. Oscillations can only occur if the temperature and
salinity forcing are opposing each other. Similarly, the Stommel 2-box model only admits
multiple equilibria when there is competition between thermal and haline forcings.

The physical mechanism of the oscillation can be described as follows. As the fluid on
the left flows downwards, it slows down due to the freshening. At the bottom it is now
lighter and thus rises more rapidly on the right. Thus, it acquires less salt going up than it
lost going down and at the next cycle it slows down even further. This leads to a growing
alternation of slowing on the left and speeding on the right while going around the loop.

This oscillation occurs through a Hopf bifurcation at a certain value of the flux F , as
illustrated in Figure 7: as the parameter F passes a certain value (in this case 0), the steady
solution becomes oscillatory.

The period of this oscillation, 2π/ω, is the advection time around the loop and set by
the thermally driven flow (see equation (36). For the North Atlantic, a similar advection
time can be defined, which is about 100 years.

It is left to the reader to show that without salinity, but for general forcing, the steady
state transport vanishes as r → 0 when there is heating from above.
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Figure 6: Sketch of the oscillation mechanism.
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Figure 7: Schematic plot of a Hopf bifurcation

The effect of noise

Suppose now that the salinity flux consists of an average part F̄ and a random part F ′(t),
where the noise has variance < F ′2 > dt = σ2. This noise can excite oscillations even
when F̄ < 0, that is when the associated deterministic system has a stable fixed point. We
compute again steady states and perform linear stability analysis to get

ε̈2 + ε2 − F̄ ε̇2 = F ′.

We can solve the system using Fourier Transforms, so

−(ω2 − iωF̄ − 1)ε̃2 = F̃ ′.

Then the spectrum is

< |ε̃2|2 >=
< |F̃ ′|2 >

(ω2 − 1)2 + ω2F̄ 2
=

σ2

dt[(ω2 − 1)2 + ω2F̄ 2]
. (39)

A typical spectrum is plotted in Fig. 8. Characteristic of the spectrum of such a system
is that it peaks at the intrinsic frequency, which is ω = 1 in this case, and that the height
depends on the noise variance.

65



0 0.5 1 1.5 2
0

5

10

15

20

25

30

ω

S
(ω

)

σ2/dt=1

F=−0.2

σ2/(dt  F2)
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7 Welander’s flip-flop oscillation

Another conceptual model of the thermohaline circulation is the so-called flip-flop model of
Welander. It consists of a box of temperature T and salinity S that can exchange heat and
salt vertically with a reservoir that is kept at temperature T0 and salinity S0 (see Fig 9).
The surface box is relaxed towards a temperature TA and is forced by a freshwater flux

T
o oS

AT

reservoir

ρ =β   −α

TT

TSoo o

T(t)

F

ρ=β  −αS T
S(t)

Figure 9: Welander’s flip-flop model

F . Again, a linear equation of state is used for both boxes, so that ρ = βS − αT for the
upper box and ρ0 = βS0 −αT0 for the reservoir. The equations that describe the evolution
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of temperature and salinity in the upper box are given by

Ṫ = −γ(T − TA) − κ(T − To),

Ṡ = F − κ(S − So). (40)

where γ is a relaxation coefficient, κ a mixing coefficient that is taken equal for heat and salt
and H is the thickness of the upper box. The mixing coefficient is taken to be dependent on
the density difference between the two boxes, to represent the effect of convection. Mixing
with the reservoir is much faster if the stratification is unstable than if it is stable:

κ =

{

κ1 if ρ − ρo ≤ ∆ρ
κ2 if ρ − ρo > ∆ρ.

with κ2 � κ1. Introducing new variables

x ≡ T − To

TA − To
, y ≡ β(S − So)

α(TA − To)
, t′ ≡ γt,

we can rewrite 40 to

ẋ = 1 − x − νx

ẏ = µ − νy.

Here we have definex µ = βF/(γαH(TA − T0)) and

ν =
κ

γ
=

{

ν1 if y − x ≤ ε
ν2 if y − x > ε,

with ε = ∆ρ/(α(TA − T0).
The steady states of the model are

x =
1

1 + ν
, y =

µ

ν
.

Thus there are steady states if the density satisfies

either y − x =
µ

ν1

− 1

1 + ν1

≤ ε

or y − x =
µ

ν2

− 1

1 + ν2

> ε.

In the first case, the stratification is stable and ’convection’ never occurs, in the latter case
the stratification is unstable and there will always be ’convection’. No steady states can
exist if

µ1 < µ < µ2

with
µ2 ≡ εν2 +

ν2

1 + ν2

, µ1 ≡ εν1 +
ν1

1 + ν1

For µ1 < µ < µ2 the fixed point disappears and the system has relaxation-oscillations
(Fig. 10). The system follows a slow relaxation towards the unstable, always convecting
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Figure 10: Relaxation oscillations for Welander’s flip-flop model.

state, but before the steady state is actually reached the stratification becomes stable due to
the strong mixing in the convecting state. As soon as a stable stratification is reached, the
mixing coefficient becomes small (ν1) and convection stops. Now the surface freshwater flux
starts to increase the salinity of the upper box [ this corresponds to y ≡ β(S −S0)/(α(TA −
T0)) becoming larger], so that the density of the upper box increases strongly and the system
evolves towards the stable, never-convecting state. However, before this equilibrium is
reached, the stratification becomes unstable and convection will start again. The amplitude
of this type of oscillations is finite and the period τ is given by

τ = − ln δ

ν2

.

where δ = µ2 − µ and 0 < δ � 1. The period of the oscillation thus depends on the
distance from the critical parameter (in this case µ2). Note that type of oscillations differ
fundamentally from the oscillations in the Howard-Malkus-Welander loop that arose as the
system went through a Hopf bifurcation. Now the steady state does not become unstable,
it simply ceases to exist. Another difference with the Hopf bifurcations is that there are
no damped oscillations for µ > µ2 + δ, whereas damped oscillations exist in the case of the
Hopf bifurcation.

The effect of noise

To study the effect of noise we suppose again that the salinity flux consists of an average part
that is now called µ̄ and a random part µ′(t), where the noise has variance < µ′2 > dt = σ2.
This noise excites oscillations in the fixed point regimes, µ̄ < µ1 and µ̄ > µ2 (see Fig. 11).
If there is no noise, the system goed to a stable, always convecting state (see the dashed
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line in Fig. 11). If noise is added to the system, there will be fluctuations that make the
fluid in the upper box light enough to give a stable stratification so that convection stops.
At this moment the system goes towards the other equilibrium.

Figure 11: The solid line gives the relaxation oscillations for Welander’s flip-flop model in

the stable regime µ̄ > µ2 in the case with noise. The dashed line gives the solution for the

same parameter values, but without noise.

To make the computations easier, we now replace the fast relaxation to the convecting
state with an instantaneous adjustment, so that the equations for the system with noise
become

ẏ = µ̄ + µ′ − ν2y if y ≥ µ2/ν2

y → ymax if y < µ2/ν2.

where ymax is the value of y after the adjustment to the convecting state. Define now
φ(y, t)dy as the probability that a certain realization of this experiment gives a salinity
gradient between y and y + dy at time t, so that φ(y) is again the probability distribution
function (PDF). The average frequency of pulses is the probability flux J(ymax) through
the point ymax. The PDF is governed by the Fokker-Planck equation (Gardiner, 1985):

φt = Jy, J = (ν2y − µ̄)φ + σ2φy/2,

with boundary conditions

φ(y <
µ2

ν2

) = 0

and
J(y =

µ2

ν2

, t) = J(ymax, t)

69



The first boundary condition says that y cannot take values under µ2/ν2, because as soon
as y < µ2/ν2 we have y → ymax. The second condition states the adjustment rule, which
in turn corresponds to requiring that any member of the ensamble that goes through the
threshold µ2/ν2 reappears with a value ymax. This is equivalent to say that the flux of
states for these two values must coincide.

We can solve the steady Fokker-Planck equation using the normalization condition

∫ ymax

µ2

ν2

dy φ(y) = 1.

For weak noise and µ ≈ µ2 we obtain (Cessi, 1996)

J(ymax) ≈ −ν2 ln
σ√
ν2

,

The average frequency of pulses is given by ωav = 2πJ(ymax), and so this depends on σ/
√

ν2,
which is the noise amplitude. The spectrum peaks at a frequency that depends on σ, but
the height is independent of σ.

8 Summary

Both in the Howard-Malkus-Welander loop and in Welander’s flip-flop model oscillations
can be found that are either self-sustained, or that can be excited by noise. However, the
characteristics of these two types of oscillations are quite different. Self-sustained oscillations
in the Howard-Malkus-Welander loop occur through a Hopf bifurcation, the amplitude is
proportional to the distance between the parameter and the critical value of that parameter
and the period is finite.

The oscillations in Welander’s flip-flop model instead occur because the steady state
ceases to exist (global bifurcation). The oscillation arising through this global bifurcation
are characterized by a finite amplitude even at onset and a period which depends logarith-
mically on the distance to the critical parameter value. Noise-induced oscillations in the
Howard-Malkus-Welander loop have an amplitude that is proportional to the variance and
a finite period, while noise-induced oscillations in the flip-flop model have finite amplitude
and a period that depends logarithmically on the variance of the noise. This behavior is
summarized in Table 1.

Notes by Taka Ito and Lianke te Raa
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Lecture 6

Energy Balance Models

Raymond T. Pierrehumbert

How I learned to stop worrying, and taught myself radiative transfer...

1 Simple energy balance models

The Earth and other planets in the solar system are heated by radiation from the sun. In
turn, the planets reprocess the radiation and emit energy into space, leading to a global
radiative balance which plays a key role in determining the planetary climate. As a result,
a detailed treatment of radiative transfer is a necessary ingredient in models of climate
dynamics.

For terrestrial planets (those with a solid crust), the influx of solar radiation must
balance the outflow from the surface and atmosphere. It was known to Aristotle that
the source of energy on earth is the sun, but it took 20th century quantum mechanics
(specifically Planck and his understanding of black body radiation) to understand how the
earth loses energy back to space. Based on the notion that radiation comes in discrete
bundles of energy, quanta, ∆E = hν, where h is Planck’s constant (6.6262 × 10−34Js)
and ν is the frequency of the radiation in Hertz, Planck explained the Stefan-Boltzmann
law, which states that E = σT 4, where E is the energy output of a black body, σ =
5.67×10−8Wm−2K−4 is the Stefan-Boltzmann constant and T is the absolute temperature
of the body. He expressed his result in form of the spectral energy density, Bν(T ), at
frequency ν as

Bν(T ) =
2πh

c2

ν3

exp(hν/kT ) − 1
[Jm−2], (1)

where c = 2.998 × 108ms−1 is the speed of light and k = 1.37 × 10−23JK−1 is Boltzman’s
thermodynamic constant. (Bν gives the energy emitted outward per unit area and time
over the frequency interval [ν, ν + dν]; an integration over frequency gives the black-body
radiation law.) Planck’s theory also explained Wien’s Law which states that the frequency
at which the radiation from the black body is maximal is proportional to the absolute
temperature of the body:

νmax =

(

5.879 × 1010
Hz

K

)

T (2)

The simplest radiative-convective model is zero-dimensional in space: the entire planet
is given one temperature, T . Such simple models are the first line of defense against the
onslaught of complexity present in climate problems. We consider terrestrial planets, like
the Earth and Mars, that have solid surfaces, as opposed to gaseous planets like Jupiter.
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Figure 1: Emission spectra of black bodies at selected temperatures.

Standing on the shoulders of our scientific forefathers, we write a simple energy balance
equation,

Hsun(1 − α) = σT 4 (3)

where Hsun is the radiation flux incident from the sun, averaged over time and over the
planet’s surface, α is the albedo, the fraction of the incident radiation that is reflected back
into space, and hence never absorbed, and σ is the Stefan-Boltzmann constant. Thus we
equate the net energy absorbed by the earth with the energy it loses to space as a black
body. Given that Hsun is approximately 340 W/m2, and taking α ≈ 0.3 (a crude estimate of
the combined effect of sea, land, ice, clouds and so on), we find that T = 255K, much colder
than the global average temperature we experience. Of course, we have here the grossest of
models; the earth is basically treated as a metallic sphere. The more complicated models
described next build on this model by incorporating the atmosphere. However, a key idea
is clearly expressed in this model: the incoming radiation from the sun must be balanced
by the outgoing radiation from earth.

2 Atmospheric structure

According to Wien’s Law, a black body at 6000K, the temperature of the solar surface,
emits the most radiation in the visible spectrum. We will assume that the atmosphere
absorbs none of this incident radiation. This approximation is not too bad, the atmosphere
actually absorbs less than 20% of incoming radiation. A fraction of the radiation incident
on the earth, (1-α), is absorbed on the surface, causing the surface to warm. The warmed
surface radiates energy back to space, primarily in the infra-red (IR) region of the spectrum,
in accord with Wien’s law for a black body near 300 K.

The atmosphere is, however, not transparent to IR radiation, and part of the outgoing
radiation is absorbed; this upsets the energy balance, thereby increasing the surface tem-
perature. How do we build such features into a radiative balance model? We start with the
empirical data. The atmospheric radiation spectrum can be observed by looking directly
upwards on a clear day with an infra-red interferometer. Spectra can also be taken from
satellites, looking down, but one must then cancel out the radiation from the earth. Such
spectra reveal a rough continuum interrupted by a immense number of molecular absorp-
tion lines. Fig. 2 shows the absorption spectrum for CO2 in the IR region. Note that the
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Figure 2: Absorption Spectrum of CO2 (www.webbook.nist.gov).

wavenumber is the inverse of the wavelength measured in cm, and hence proportional to
energy. It is through these spectral lines that certain molecules, such as CO2, affect the
atmospheric heat balance, and is how the greenhouse effect comes into play.

Now, according to quantum mechanics, molecules absorb light at discrete wavelengths.
The so-called greenhouse gases are those that absorb in the IR, where photons are of the
same energy as the translational, rotational, and bending modes of the molecules. A crude
requisite to be a greenhouse molecules is to be polar and/or to support rotational or bending
modes that create an oscillating dipole moment. Water and CFC’s fall into the former
category, while CO2 and CH4 satisfy the latter. An oscillating dipole moment is necessary
to interact with the incoming electromagnetic radiation. Nonpolar molecules like N2 and O2

are transparent in the IR, but do play an indirect role in the greenhouse effect, as indicated
below.

Under ideal conditions, the restriction of the absorption to narrow lines places severe
limitations on the greenhouse effect: the absorption lines saturate quickly, so that the
addition of more greenhouse gas does not result in a proportionate increase in absorption.
In the atmosphere, however, conditions are far from ideal, and absorption lines can be
broadened by molecular motion. As a result, the greenhouse effect is considerably extended
by mechanisms that broaden the absorption lines. These mechanisms are:

1. Collisions with other molecules, which allow the absorber to take in a photon of
smaller/larger energy, and transfer the energy difference to another molecule during
the collision. This is how the greenhouse-neutral gases like N2 and O2 come into
play. Because the collision frequency is proportional to the pressure of the gas, this
broadening depends on the atmospheric pressure.

2. Doppler shifting of the absorbing molecule. If the molecule is moving towards/away
from the source of radiation, it experiences a different frequency. Doppler broadening
is a function of temperature (as temperature dictates the speed of the gas particles);
the higher the temperature the broader the windows.

3. Ultimately, Heisenberg uncertainty puts a lower bound on the peak breadth.
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The collisional effect dominates on earth. In fact, even though Mars has a pure CO2

atmosphere, the warming effect is rather less than that of the CO2 on earth due to our
N2 and O2, even though the content of CO2 on earth is far less. Collisional broadening
decreases with air density, causing the absorption lines to narrow with height. At the top
of our atmosphere the Doppler effect starts to dominate. However, the bulk of absorption
takes place in the lower atmosphere, where the atmosphere is thickest, so that Doppler
broadening can be neglected. In any case, the importance of line spectra in determining
atmospheric absorption has the unappealing consequence that one needs a sophisticated
treatment of radiative transfer in order to construct properly a model of the climatic energy
balance.

To understand radiative transfer, we need more information about the atmosphere’s
vertical temperature structure. Roughly speaking the atmosphere is composed of the “tro-
posphere” and “stratosphere.” There is also a relatively shallow boundary layer just above
the ground, which we will ignore. Inside the troposphere, the temperature decreases with
height. The decline of temperature halts at a level referred to as the “tropopause,” where
the temperature is about 200K, and then in the stratosphere above it, the temperature
begins to increase. Some observed vertical temperature profiles for a location in the tropics
are shown in figure 3. Crudely speaking, the reason why the globally averaged temperature
is higher than the 255K expected from the simple energy balance argument above is that
the effective “photosphere” of the Earth’s emission into space is higher in the atmosphere
than ground level. The earth must emit energy as a black body at 255K to maintain ra-
diative balance with the sun. The surface, however, can be warmer as long as the radiation
it loses is trapped by the colder atmosphere, which radiates at 255K.

But why does temperature decline with height? The simplest argument, ignoring details
such as the effect of water vapour, leads to what is called the “dry adiabat:” As a parcel of air
rises off the ground, it expands as the pressure decreases. The gas does work as it expands,
loses energy, and hence cools. We invoke the ideal gas approximation, which is quite accurate
for the earth’s atmosphere. On Venus, or in the protoclimate of Mars, however, increased
pressures cause significant deviations from the ideal gas law. The potential temperature θ,
a measure of the entropy of a gas, is defined by

θ = T

(

p

p∗

)

−R/Cp

, (4)

where p is the pressure, p∗ some reference pressure (say 1 atmosphere), R the ideal gas
constant, and Cp, the heat capacity of the gas at constant pressure. Quantum theory tells
us that R/Cp is approximately 2/7 for a diatomic gas, and this approximation works well
for our atmosphere.

If we assume constant entropy (constant θ), a “dry” atmosphere’s temperature should
be a function of pressure according to

T = θ

(

p

p∗

)R/Cp

. (5)

Constant entropy is a good assumption, as the timescale on which fluid motions mix up the
atmosphere, homogenizing scalar invariants such as entropy, is shorter than the timescale
on which radiation warms the atmosphere.
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Figure 3: Air temperatures as function of altitude.

Equation (5) is the dry adiabat. The temperature of our atmosphere, however, does
not fall as quickly as this relation predicts. The error stems from the fact that we have
neglected the effect of water vapor, which can have a significant effect as a result of the
release of latent heat. As the temperature cools with height, H2O evaporated on the surface
condenses, heating up the air and reducing the temperature gradient. Just 1 kg of water
vapor releases 2.5 megaJoules when it condenses in the upper atmosphere. The moist
adiabat is calculated by assuming that the air remains saturated with water vapour all the
way up, that is, that there is no entrainment of dry air and thus the relative humidity is held
constant at 100% once condensation starts. This gives a remarkably good fit for air in the
tropics. This is shown in Fig. 3. Note we are only fitting the temperature in the troposphere.
In the stratosphere absorption of solar radiation dominates, and the temperature deviates
strongly from the moist adiabat.

The fit is quite remarkable in light of the fact that, outside the inter-tropical convergence
zone (ITCZ) near the equator, the air in the tropics above the surface boundary layer is quite
dry. The relative humidity is just 5-10%, “as dry as a desert.” (See Fig. 4.) The Hadley
circulation in the tropics explains why this dry air fits the moist adiabat, but we leave this
until lecture 7. The mid latitudes do not follow the moist adiabat, but the temperature still
falls with height up until the stratosphere.
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Figure 4: Relative humidity as a function of altitude.

3 The OLR curve

We now have the machinery needed to explain the greenhouse effect, which is most suc-
cinctly described in terms of the “OLR curve” – the dependence of the Outgoing Long-wave
Radiation on surface temperature. This curve is also the key ingredient in a variety of toy
climate models that will be described later.

In most places in the world the surface temperature is approxmately the same as the
surface air temperature. Exceptions are deserts, where the surface can be 10 to 15 degrees
warmer,and ice where the surface can be tens of degrees colder than the overlying air a few
meters up. In simple models it is usually acceptable to equate surface temperature with
surface air temperature.

Given the surface temperature, the thermal structure of the atmosphere above roughly
follows the moist adiabat up to the tropopause. The stratosphere is ignored, as its overall
effect is unimportant. The crucial step in constructing the climatic energy balance is then to
determine the radiative transfer through the troposphere of the infra-red radiation leaving
the surface. That transfer ultimately determines the total outgoing long-wave radiation
(OLR), which must balance the incident solar energy flux. All told, this amounts to a
complicated radiative transfer computation that approximates the collective effect of all
the absorption and emission lines of every important molecule in the atmosphere. The
computation involves thousands of lines of coding and a multitude of clever approximations

77



to meet the computational efficiency requirements dictated by climate modeling.
The result of the calculations is the total OLR emitted by the earth as a function of the

surface temperature; sample computations of this function are shown in figure 5. The key to
understanding global warming is predicting how the addition of CO2 and other greenhouse
gases change the OLR, which in turn force a change in surface temperature in order to bring
the outgoing energy into balance with the solar heating. The trickiest part is predicting
how the relative humidity, RH, changes as the temperature increases. Unlike CO2, the
concentration of water vapor is highly dependent on temperature. Manabe proposed that
the relative humidity remains constant as the temperature increases. This assumption is
widely employed in conceptual climate models, but has never really been justified on the
basis of first-principals physical arguments.

Figure 5: OLR as a function of surface temperature.

Fig. 5 shows the OLR as a function of surface temperature, for calculations based on
different compositions of greenhouse gases and relative humidity. Recall that the OLR
must be 340W/m2 to maintain radiative balance with the sun. To find the steady state
surface temperature from the diagram, we draw a horizontal line at 340W/m2, and read
off the surface temperature from where it intersects the OLR curve. The curves that do
not reach 340W/m2 have no steady state and reveal a runaway greenhouse effect. Given
an initially cool surface temperature, the OLR is below the incoming flux value, so the
planet warms. The OLR thereby increases, and provided the OLR continues to increase
with surface temperature, an equilibrium arrangement will eventually be struck. However,
for the curves that flatten out, the OLR can never reach the input, so a runaway greenhouse
ensues, at least if the physical input to the computation remains the same.
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The specific mechanism for the runaway can be attributed largely to the effect of water
vapour. Water vapour is a powerful greenhouse gas, there is plenty of it on earth, and the
saturation pressure of water in air increases exponentially with temperature. The positive
feedback of the runaway follows the route:

higher temperature ⇒ more water vapor ⇒ more global warming ⇒ higher temperature

Once the feedback starts, the temperature keeps increasing without bound, and the OLR
can never rise high enough to balance the incoming radiation. In such a situation, the
energy continues to build up, leading to the melting of the ice caps, the evaporation of
the oceans, and the eventual dissociation of H2O. At this juncture, the hydrogen would
escape into space, leaving an atmosphere much like that of Venus. Fortunately, the earth’s
atmosphere is much drier than that necessary for this doomsday scenario, at least for now.

4 A simple model of the greenhouse effect

According to the preceding arguments, the following phenomena are crucial to greenhouse
effect on earth:

1. Decreasing atmospheric temperature with altitude.

2. Decreasing atmospheric pressure with altitude. This affects both the amount of green-
house gasses and the peak broadening, and has its basis in the hydrostatic balance of
the atmosphere, dp/dz ≈ −ρg < 0.

3. Presence of greenhouse gases in atmosphere, where the greenhouse gases are defined
as the components of the atmosphere having absorption bands in the infra-red.

In this section, we build a simple model that illustrates the construction of the OLR,
together with an implicit greenhouse effect.

The model consists of a plane-parallel atmosphere in which the pressure, p(z), and tem-
perature, T (z), fall with height, z, from their values at ground level, p0 and T0 respectively.
Since we are interested in only demonstrating how the ingredients add together to keep the
earth surface warm, we will make some pretty crude idealizations. For one, the temperature
and pressure fields will be specified by the piece-wise linear functions:

T (z) = T0

(

1 − z

H

)

ϑ(H − z) p(z) = p0

(

1 − z

H

)

ϑ(H − z), (6)

where ϑ(x) is the step function; see figure 6.
The atmosphere is assumed to consist mainly of an inert gas except for small fraction of

a greenhouse gas with a single absorption line at the frequency corresponding to maximum
emission for a black body at temperature T0 (see Wien’s law in ( 2)).

ν∗ =

(

5.879 × 1010
Hz

K

)

T0. (7)

The line is, however, broadened to a degree determined by the pressure. Let the width of
the line be given by

∆ν(z) = 2δν∗p(z). (8)
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Figure 6: Temperature and pressure of a piece-wise linear toy model.

Thus the absorption depends on both frequency and height. We choose the simple model
absorption coefficient shown in figure 7, in which constant absorption occurs within the
broadened spectral line:

εν(z) = ε0 if ν∗ − δν∗p(z) < ν < ν∗ + δν∗p(z) (9)

= 0 otherwise. (10)

Figure 7: Model absorption coefficient for greenhouse gas.

The transfer of radiation is described by the intensity, Iν(z), the upward energy flux
density in the frequency interval [ν, ν +dν], by a simple energy balance between layers, this
satisfies

dIν

dz
=

εν(z)

2
Bν (T (z)) − εν(z)Iν(z). (11)

That is, the change of intensity equals emission minus absorption, with the boundary con-
dition,

Iν(0) = Bν(T0), (12)
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which assures that the intensity at the base of the atmosphere is given by the emission from
the ground.

Outside the greenhouse window on the ground, [ν∗ − ∆ν(0), ν∗ + ∆ν(0)], the radiation
is never affected by the greenhouse gas:

dIν

dz
= 0 for |ν − ν∗| > ∆ν, (13)

and so Iν(H) = Bν(T0).
If the frequency lies inside the ground-level greenhouse window, radiation can be ab-

sorbed at certain heights. The decline in pressure with height narrows the window of
absorbtion. For radiation of frequency ν we denote the height Hν to be the point at which
absorbtion of this frequency ceases. For our simplified model,

Hν =

[

1 − |ν − ν∗|
δν∗p0

]

H. (14)

The governing equations for radiation flux then become

dIν

dz
= −ε0Iν +

hε0

c2

ν3

exp[hν/kT (z)] − 1
, for 0 < z < Hν

dIν

dz
= 0 for Hν < z < H, (15)

with Iν(z) continuous at z = Hν . Since T (z) is an decreasing function of temperature, and
exp[hν/kT (z)] > exp[hν/kT (0)] ≈ 16 � 1, we may simplify still further:

dIν

dz
= −ε0Iν +

hε0

c2
ν3 exp

(

− χν

1 − z/H

)

for 0 < z < Hν

dIν

dz
= 0 for Hν < z < H, (16)

where

χν =
hν

kT0

. (17)

The radiation leaving the atmosphere, Iν(H) = Iν(Hν), and is therefore given by the
integral,

Iν(H) = e−ε0Hν Bν(T0) +
ε0hν3

c2

∫ Hν

0

exp

(

z − ε0Hν − Hχν

H − z

)

dz). (18)

The first term in this expression is the residual attenuated radiation from the earth’s surface;
the second term is the net radiation from the atmosphere, also suitably attenuated. Fig. 8
shows a representative spectrum as given by ( 18).

The expression (18) can be integrated over all frequencies to yield an OLR curve as a
function of surface temperature; see figure 9. It can be seen that the OLR for the greenhouse
system is always below the OLR curve for the black body, and so the surface temperature
is always higher. The parameter values used are merely representative, and chosen chiefly
to bring out the difference between the black-body law and our toy model. Real models
of greenhouse effect incorporate absorption spectrum of all the greenhouse gases present in
the atmosphere and use realistic stratifications for the temperature and pressure.
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Figure 8: Intensity at the top of the atmosphere for the toy model.
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Figure 9: OLR curve for the toy model.

5 Radiative balance models

In general, the OLR curve as a function of surface temperature is the main ingredient in
a radiative balance model. To compute this curve we follow the recipe outlined above,
which requires as input the structure and composition of the atmosphere. With the balance
of incoming and outgoing radiation, we then may infer surface temperatures. Often the
procedure can be simplified by tabulating the OLR curve and fitting both its shape, the
dependence on surface temperature, together with the dependence upon other significant
variables, such as CO2 concentration. One can then make relatively fast global warming
calculations with the OLR curve and build conceptual climate models.

For example, consider CO2 on earth. Once all the calculations are done, it turns out
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Figure 10: Effect of carbon dioxide concentration on OLR.

that the OLR response to CO2 is roughly logarithmic, as shown in Fig. 10. Hence,

OLR(T, ln CO2) ≈ OLR(T, ln CO2∗) + D(T ) ln

(

CO2

CO2∗

)

, (19)

where CO2∗ is some reference value and the linear coefficient D(T ) may be a function of
T . Here we see how important it is that absorption is limited to narrow bands – without
saturation, the absorption would grow linearly with concentration, generating a much more
pronounced sensitivity of the OLR to CO2. The OLR exhibits the same kind of logarithmic
dependence on concentration for most greenhouse gases.

From figure 10, we see that doubling the CO2 concentration lowers the OLR by 4
W/m2, assuming that the total water vapour content stays constant. In order to balance
the incoming solar radiation, the surface temperature must then increase in order to raise
the OLR. Based on the black-body curve, this amounts to an increase of about half a degree
in surface temperature. If, however, the relative humidity (RH) remains the constant, more
water vapour will enter the atmosphere, and the rise in temperature becomes as large as 2
◦ C.

Although, the effect of CO2 on the OLR is significant, the effects of water vapour and
clouds are even greater (figure 11). For example, doubling the RH from 10 to 20% causes a
10 W/m2 shift in the OLR, equivalent to nearly tripling the CO2 in the atmosphere. Clouds,
on the other hand, constitute a very delicate climate variable. By adding the condensed
substance, in this case water, the opportunities for molecular collisions are vastly increased,
thereby leading to a significant broadening of the absorption lines. In this regard, clouds
act like greenhouse gases and one expects a cloudy climate to have a lower OLR. The height
and water mass of a cloud largely determine its radiative effect, because its temperature is
given by the moist adiabat. Idealized computations suggest that the greenhouse warming
effect of clouds is minimal at the surface, but at 10 km, they can lower the OLR by 150
W/m2.

Clouds, however, also reflect the incoming short-wave radiation back into space, thereby
increasing the albedo of the planet. Calculating cloud albedo is nontrivial exercise. For
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Figure 11: Relative effect of carbon dioxide, water vapor and clouds on OLR.

instance. the albedo dependends strongly on the size of the water droplets composing the
cloud, so there is no simple correlation with the total mass of water. The average size of a
cloud droplet is 10 micrometers. Changing from 8 to 12 micrometers, however, can result
in albedo changes that are equivalent to a 20% reduction of the OLR.

Overall, clouds near the surface have a net cooling effect, while high clouds can be
warming. Experimental evidence suggests that the net effect of clouds in the tropics is near
zero, with a 100 W/m2 jump in the OLR caused by increased absorption almost completely
compensated by cloud albedo. In the extratropics (30◦ latitude and up) the net result is
cooling, effectively lowering the OLR by approximately 15 W/m2.

That the net effect of clouds must be computed from the close subtraction of two rela-
tively large quantities makes the problem prone to severe error. The matter is complicated
still further by the fact that cloud formation is also not particularly well understood: Nucle-
ation sites are needed to begin condensation, creating a dependence on the concentration of
airborne particles, such as dust and sulfate aerosols. (The dependence on sulfate aerosols is
revealed in the higher rate of cloud cover over ship tracks, where aerosol pollutants are in-
troduced to the atmosphere!) In the absence of nucleation centers, water vapor can become
supersaturated in the atmosphere without forming any clouds. Suffice to say that clouds
are the main uncertainty in climate modelling, from the toy system to the GCM. We need
a theory of clouds if we are to make more progress in answering climate questions.

In summary, as the intensity of the OLR must balance incoming solar radiation, at least
in the steady state climate, any change in the environment that lowers or raises the OLR
will eventually manifest itself as a change in the surface temperature. The relationship
between OLR and surface temperature is roughly linear over small variations, as shown in
Fig. 12. All one needs therefore do is to calculate the linear coefficients and incorporate
this into a model, as we do next.
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Figure 12: Dependence of OLR on Temperature

6 Ice albedo feedback

We are now ready to construct toy models; we illustrate with a simple model of the ice-albedo
feedback effect. The albedo is quite complicated: Deserts have large albedos compared to
forests and oceans, and fresh ice and snow is more reflective than older ice, on which dust and
other debris may have collected. The average albedo of land and sea ice αice = 0.7, whilst the
average ice-free land/sea albedo α0 = 0.1. We consider just the average albedo of the entire
surface of the Earth, α(T ), as a function of the average surface temperature, T . The reflected
light lies in the visible and so escapes immediately into space; the absorbed radiation is
converted into the infra-red and percolates up through the atmosphere eventually providing
the OLR. Thus the energy balance is

S0 = α(T )S0 + OLR, or S(T ) ≡ So[1 − α(T )] = OLR, (20)

where S0 is the annual average incident radiation.
Let T0 be the annual mean temperature necessary to sustain permafrost over the whole

earth. Such a “snowball earth” may have existed in the neoprotozoic – about 600 million
years ago (see lecture 10). We set T1 to be the average temperature of a completely ice-
free earth, as it was during the Eocene, about 55 million years ago, when lemurs roamed
Spitzbergen and Crocodiles cavorted in the Hudson bay (as also discussed in lecture 10).
We then make up a “plausible” function f(T ) to connect α(T ) between its values for the
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permafrost and temperate earths:

α(T ) = αice, T < T0, (21)

= f(T ), T0 < T < T1 (22)

= α0, T > T0 (23)

The interpolating function f(T ) should have the features that it decrease sharply for T
just above T0, but more slowly for T near T1. This is because near T0, the albedo declines
when the equatorial region becomes ice free; this region has both the largest area, per degree
latitude, and experiences the strongest, annual average incident radiation. But approaching
T1, a slowly increasing albedo reflects the shrinking polar ice caps that have least area and
weakest annual radiation.

Figure 13: Top panel: absorbed solar radiation and the OLR. Lower panel: Bifurcation
diagram.

In figure 13 we plot the OLR curve, which we approximate to be a straight line, and the
net absorbed solar radiation So(T ). In this particular example, To = 240K, T1 = 300K,
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and the greenhouse gas content gives an OLR intersecting the net incoming radiation curve
at three points. This reveals three possible steady states. At the far left, we have a stable
snowball earth, while at the far right we have the ice-free eocene climate. If we shift the OLR
over to the left by, for example, decreasing the CO2, the warmer steady state becomes a
world like today, with a small polar ice cap. In the middle we have steady state characterized
by large ice sheets; this state is an unstable equilibrium, as indicated as follows.

Away from the steady states the earth is not in balance with the incoming radiation.
If we let M be the “thermal mass” of the earth, a fuzzy constant meant to characterize
earth’s heat capacity and the energy needed to melt ice sheets, and so on, then

M
dT

dt
= −(A + BT ) + S0[1 − α(T )], (24)

where the first term is the linearization of the OLR curve, and the latter is the net incident
radiation. If the planet were placed immediately to the right of the middle steady state,
which would correspond to adding a small warm anomaly, dT/dt becomes positive, pushing
the earth toward the warmer state. Conversely, if the planet were pushed leftward by a
small cold deviation, the climate becomes pushed all the way to a snow ball. This is the
mechanism of the large ice-sheet instability.

If we allow the incident solar flux to vary in some way, we can find transitions between
the other two, stable equilibria; this is the content of the bifurcation diagram in Fig. 13.
On the x−axis we plot the solar radiation constant, S0, and on the y−axis, the global mean
surface temperature, T . The curve plots all possible equilibria. The upper curve above 270
K represents the stable warm climate equilibrium. The curve below it, stopping at 240 K,
shows the unstable, partial ice cover equilibria. Below 240 K, we have the snowball earth.
We see that if the output of the sun falls below 340 W/m2, the earth can fall from a stable
warm climate into a snowball. Similarly, at 520 W/m2, a stable snowball climate evaporates
into a simmering tropical earth.

Figure 13 plots the equilibria against the incoming flux and so models the effect of
secular variations in the solar constant, which could be brought about by, for example, the
evolution of the sun. One could rather vary the greenhouse gas content of the atmosphere,
instead of the solar flux, and obtain a similar bifurcation diagram. As increasing the CO2 is
approximately equivalent to raising the sun’s radiation, the x−axis could equally well read
ln CO2.

Finally, we close this lecture with a few remarks on some of the missing pieces in the
climate puzzle. We have already mentioned that clouds are one of the main unknown
ingredients to models. But we have also neglected vegetation, which can have a significant
effect on, amongst other properties, the surface albedo. Unlike tundra, trees can offset the
reflective effect of snow cover. Also, the thermal stratification of the atmosphere, a crucial
part of the recipe for constructing the OLR, has been tacitly assumed to be given by the
moist adiabat. This is certainly true for the tropics, but is not an accurate approximation for
the mid-latitude atmosphere. Here, a significant role is played by fluid motion in determining
the mean stratification (in particular, transport by turbulent eddies may play a key role),
and there could be some, as yet unexplored, interesting interactions between the mid-
latitude greenhouse effect and the atmospheric fluid dynamics.

Notes by Ed Gerber and Shreyas Mandre
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Lecture 7

Basic Principles of Climate

Raymond T. Pierrehumbert

One-dimensional climate models

Introduction

In zero-dimensional models, variations of temperature with latitude cannot be taken into
account. This is potentially problematic because there is a significant pole-equator temper-
ature difference, and because the surface properties of the pole can differ remarkably from
those of the equator (due largely to ice). As a next step up in sophistication for simple
climate models, we therefore turn to one-dimensional models, in which the temperature
T (φ, t) depends both on latitude φ and time t.

An important first ingredient is the input solar heating: The amount of solar radiation
per unit area that is received at the top of the atmosphere varies with latitude and with the
time of the year. This is given by the solar constant S0 (which is about 1370Wm−2) times a
flux factor F (φ, t) that gives the dependence on latitude and time, which is given in Fig. 1.
There are two competing effects that determine this flux factor. First, the inclination of
the surface relative to the incoming radiation gives greater weight to the regions where
the sun is overhead (the tropics). This is offset by the second effect, that of the increase
of the length of the day, which promotes solar heating at the poles in summer. For the
present-day Earth’s inclination, the effect of the day’s length exceeds the inclination effect
and as shown in figure 1, the polar region in the summer hemisphere receives more radiation
than the equatorial region. Were it not for moderating influence of the ice, atmosphere and
ocean, the hottest regions would therefore migrate from pole to pole through the year, and
Antarctica would have the warmest summer on Earth.

Given that the climate moderates the annual variation of solar heating, the flux factor
F (φ, t) is not the most useful characterization of the energy input for a watery planet like
Earth. Instead, we turn to the annual average, shown in Fig. 2, which has a minimum at
the poles and a maximum at the equator, and varies by a factor of about two. Also shown
is the annual average for an Earth with zero obliquity, for which the variation between
pole and equator is much larger (because the day’s length is constant and there is only the
inclination effect).

Based on the annual average, one expects that, if there were no latitudinal heat trans-
port, the atmosphere would be in local radiative equilibrium at every position and the
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Figure 1: Flux factor F (φ, t) as a function of time on the horizontal axis and latitude on

the vertical axis. the time range is from January to December, the latitude axis from 90◦S
to 90◦N .

Figure 2: Annual mean flux factor as a function of latitude.

temperature difference between equator and pole would be very large. Because such a se-
vere temperature drop is not observed, there must be a latitudinal transport of heat that
reduces the variation. Satellite imagery of the actual energy budget at the top of the atmo-
sphere (solar heating minus OLR) is shown in Fig. 3. The radiative imbalance is about 75
to 100 Wm−2 in the equatorial region, and about −100 to −150 Wm−2 at the poles. Also
noticeable in the figure are the outlines of the continents (particularly South America) and
the relatively light Sahara desert. The latter is a significant contributor to OLR due to the
high cooling effect of sand, the dry atmosphere and because there are very few clouds. The
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ice cover of Antarctica is also visible to the lower right.

Figure 3: Net energy budget in Wm−2 at the top of the atmosphere.

The latitudinal heat transport occurs partly through the atmosphere and partly through
the oceans. At 45◦N , the atmosphere is responsible for most of the heat transport, except
locally in the North Atlantic (in the Gulf Stream region). A large amount of the atmospheric
heat transport occurs through latent heat transport, as water evaporates in the tropical
region and precipitates at higher latitudes. In the oceans, the heat transport is accomplished
through both the wind-driven and thermohaline circulation.

The latitudinal distribution of the energy budget at the top of the atmosphere is com-
pared with the sea surface temperature (SST) in Fig. 4. The temperature is relatively
constant between about 20◦S and 20◦N . A simple explanation for this flat temperature
profile will be given later with the help of a conceptual model of tropical temperatures.

In addition to temperature, there is also a significant variation with latitude in the
moisture content of the atmosphere; maps of monthly precipitation and specific humidity
are shown in Figs. 5 and 6. Areas of large precipitation are found near the equator over the
Intertropical Convergence Zone (the “ITCZ”), over the warm pool in the western Pacific
ocean (labelled W) and above the storm tracks of the Atlantic and Pacific (labelled ST).
There is also a significant amount over the rainforests of the Amazon basin and the Congo.

The specific humidity is high in a band between 20◦S and the equator (Fig. 6) and there
is a sharp gradient in relative humidity over the central Pacific. This latitudinal distribution
of precipitation and specific humidity does not result from temperature variations, but can
be understood from the mean circulation pattern of the atmosphere in the tropics, which
is part of the low-latitude “Hadley Cell”: Directly above the surface, air converges to the
equator, where it rises in a relatively narrow band (the ITCZ), then spreads out again
to the north and south at higher altitudes to create a compensating subsidence flow of a
much larger scale. Evaporation seeds the surface flow with water vapour which condenses
over the ITCZ as the rising air cools, to produce a large amount of rainfall over that area.
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Figure 4: Net energy budget at the top of the atmosphere (TOA) and surface temperature

averaged over March 1987 as a fuction of latitude.

Figure 5: Climatological precipitation in March in mm/month.

The subsiding flow is much drier, and as it warms with descent, the relative humidity
becomes even lower. Specific humidity is conserved as air subsides, and the air in the
subsiding branch is dry because it is brought down from a cold, dry place. This action
has the potential to create very strong humidity variations with latitude, variations that
are, in fact, much stronger than those which are observed. The subsiding flow is wetter
than this simple picture predicts because of latitudinal transport of moisture by turbulent
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Figure 6: Specific humidity of the 500-700 mb level, averaged over the period of March

24-28, 1993.

eddies (the precise origin of these fluid motions is not completely understood, but possible
candidates are tropical waves, baroclinic instability, westerly wind bursts and the “Madden-
Julian Oscillation”). Although the subsidence region is still dry compared to the ITCZ, the
increase in relative humidity due to the latitudinal eddy transport is important because of
the logarithmic dependence of OLR on specific humidity. Dry as the subtropics are, it still
matters precisely how dry they are.

The circulation of the Hadley cell is an essential element of the meridional heat transport.
Between 20◦S and 20◦N the coriolis force is relatively weak and the circulation is dominated
by the Hadley cell. In fact, the structure of the Hadley cell is more complicated than
suggested above: The rising motions typically occur in the summer hemisphere, and the
downward motions in the winter one. As a result, at a particular time, the circulation in
the meridional-vertical plane is quite asymmetric, with rising air in one hemisphere and
subsidence in the other. Moreover, during the year, the ITCZ moves only over a relatively
short distance, whereas the subsidence region moves over a much greater distance. This
makes the annually averaged Hadley circulation rather symmetric around the equator, in
contrast to the instantaneous pattern.

From the perspective of energetics, the Hadley circulation is powered by two different
mechanisms acting in the rising and subsiding parts of the flow. The rising flow is ener-
gized by sunlight, which through evapouration laces the upflow with water vapour (“liquid
sunshine”); the vapour subsequently condenses to release latent heat on adiabatic cooling.
The descending flow acts like a huge compressor, heating the air and generating upward
infra-red radiation. Any imbalances between the two regions are rapidly communicated and
equalized by pressure forces, which is why diffusive effects are secondary and strong water
vapour gradients can be maintained. Overall, this relatively rapid pressure equalization sus-
tains a fairly constant temperature throughout the tropics; the toy model described below
illustrates these physical ideas.
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Tropical heat transport

Since the total energy reaching the earth’s surface arrives primarily in the equatorial regions,
it’s important to understand the mechanisms of heat transport there. We formulate this
problem in terms of a one-dimensional model, in which all longitudinal variation is neglected.
The model is based on work by Held & Hou (1980) and Lindzen & Hou (1988, JAS, 24,
151).

The basic equations we start with are the zonal and meridional shallow-water equations
on the equatorial β−plane:

∂tU + U∂xU + V ∂yU − βyV = −∂xh
∂tV + U∂xV + V ∂yV + βyU = −∂yh

,

where U and V are the zonal and meridional velocities respectively, and h is the depth of
the atmosphere.

We consider relatively slow (linear), steady motions with no zonal structure, and so the
shallow-water equations reduce to

{

V ∂yU − βyV = 0
βyU = −∂yh

Note that, in the tropical regions of interest, f ≈ 0. Because there is then no Coriolis
term to balance the longitudinal pressure gradient, the usual geostrophic balance cannot
be attained. Also, the mass below a surface of constant potential temperature is roughly
proportional to the mean temperature of the layer. In the following we will therefore use
h as a proxy for temperature T in order to determine the thermodynamic state of the
atmosphere.

This model is a fairly good representation of the upper branch of the Hadley cell (the
high-altitude flow), where we can reasonably neglect dissipative effects. The lower branch
of the cell (the flow just above the surface), however, is controlled in part by stronger
dissipation, which one might try to model by adding friction terms to the equations.

The x−momentum equation can be re-arranged to give

V ∂y

(

U − 1

2
βy2

)

= 0, (1)

so that
(

U − 1

2
βy2

)

= constant. (2)

This is essentially a statement of angular momentum conservation. If we consider a equatorially-
symmetric Hadley circulation, then U = 0 at y = 0 and we have:

U =
1

2
βy2. (3)

Integrating the y−momentum equation over y now gives the following relation for the
meridional profile of the height of the tropopause:

h = heq −
1

8
β2y4, (4)
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which is plotted in Fig. , and roughly corresponds to the meridional temperature distribu-
tion. The flatness of the curve near the equator comes from the dependence of h on the
fourth power of y.

~20 S 10 S 0 10 N ~20 N

h

latitude (y)

heq

Figure 7: Layer depth (mean temperature) as a function of latitude

This profile is obtained with the assumption of zero zonal velocity, U , at the equator.
On the other hand, we could have imposed the following, less restrictive, condition: U(y =
0) = Ueq, which case,

∂h

∂y
= −βy

(

Ueq +
1

2
βy2

)

(5)

and

h = −β2y4

8
− βy2Ueq

2
+ heq. (6)

The quadratic term on the right-hand side of equation (6) may cause (for Ueq < 0) a
depression of the height of the tropopause at the equator (see figure 8).

At this stage we have not introduced the solar heat input, and so the symmetry proper-
ties of the temperature profile are independent of the details of the solar forcing. Also, we
have no way of determining the latitudinal extent of the Hadley cell, [−ymax, ymax]. Given
that the cell must continuously match onto a mid-latitude atmosphere in which we might
wish to prescribe the depth h(ymax) = hmid(ymax) by the condition of radiative equilib-
rium (which determines the function hmid(ymax)), this is equivalent to having an arbitrary
equatorial depth, heq. The cell size and equatorial depth are, however, related by

heq = hmid +
1

8
βy4

max +
1

2
βUeqy

2

max. (7)

To complete the solution, we evaluate the global atmospheric meridional mass flux:

∂

∂y
(V h) = −h

τ
+ Q, (8)
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Figure 8: Layer depth as a function of latitude for a situation with non-zero zonal velocity
at the equator

where the two terms on the right hand side represent the upper radiative cooling of the
troposphere by long wave radiation (which is assumed to be proportional to the thickness
of the layer, with a relaxation time τ) and the incoming source of heat Q(y) (a known
function). Integrating over the whole extension of the Hadley cell, we obtain

∫ ymax

−ymax

∂y(V h)dy = 0 =

∫ ymax

−ymax

(

−h

τ
+ Q

)

dy, (9)

on using the boundary conditions V (ymax) = V (−ymax) = 0. This constraint determines
the size of the cell (ymax) or, equivalently, the layer depth (i.e. temperature) at the equator,
heq: we substitute our solution for h(y) into the integral to find

τ

∫ ymax

−ymax

Q(y)dy = ymaxhmid +
3

40
βy5

max +
1

6
βUeqy

3

max (10)

(an implicit equation for ymax).
Although this simple model can produce a reasonable latitudinal temperature profile, it

has evident limitations, particularly as it does not give the location of the ITCZ. For that,
the problem must be closed by coupling the heating distribution Q to the flow and surface
characteristics.

A diffusive energy balance model

As a second example of a one-dimensional model, we extend our discussion of the ice-
albedo feedback, and consider the effect of the latitudinal structure of the ice cover and the
meridional transport of heat, assumed to be given by a simple down-gradient diffusion. We
adopt a local coordinate system on the earth surface, and define y = sin(ϕ), where ϕ is the
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latitude. In this coordinate system, the steady, zonally symmetrical heat equation is

d

dy

[

(1 − y2)D
dT

dy

]

= OLR(T ) − L�[1 − α(y)]F (y), (11)

where D is the diffusivity, and the two terms on the right-hand side represent, respectively,
the loss of energy through outgoing long wave radiation and the solar forcing. The forcing
depends on the solar constant L� = 1370Wm−2, the albedo, α(y), and the flux factor,
F (y). As a further simplification we use the linearized version of the OLR in the form,

OLR(T ) = B(T − T ∗) = BT ′, (12)

where T ′ = T −T ∗ is the deviation from the reference mean temperature, T ∗. The response
of the system to a perturbation from the equilibrium state is thus given by

d

dy

[

(1 − y2)
dT ′

dy

]

=
B

D
T ′ − L0

D
(1 − α)F. (13)

As boundary conditions, we take Ty = 0 at the equator, y = 0, which enforces symmetry
between the two hemispheres, and insist that T be regular at the pole, y = 1.

We may exploit Green’s function to write the solution to this equation in the form,

T (y) = −L0

D

∫

1

0

G(y, y′)[1 − α(y′)]F (y′)dy′, (14)

where the Green function involves the Legendre functions Pν(y) and Qν(y) with ν2 + ν +
B/D = 0. However, for practical purposes, it is also straightforward to solve the differential
equation numerically.

A complication in this equation is that the albedo is not simply a function of latitude,
but also should depend on temperature. Nevertheless, for some simple models, we may still
find the solution in the following way: consider the simple model for the albedo in which

α =

{

αo y < yi

αi y ≥ yi
, (15)

where αi is the (constant) albedo of ice, αo characterizes the albedo of unfrozen land and
sea, and yi is the latitudinal position of the edge of the ice cover (the ice margin). Then,

Ti = T (yi) = −L0

D

∫ yi

0

G(y, y′)(1 − αo)F (y′)dy′ − L0

D

∫

1

yi

G(y, y′)(1 − αi)F (y′)dy′. (16)

For consistency, Ti should be the temperature at which the ice cover first forms (273 degrees
Kelvin), and so (16) determines yi implicitly. From a practical perspective, we solve either
(16) or the differential equation for given yi, determine Ti, and then adjust yi in order to
bring Ti to the required value (such as by Newton iteration). Some sample computations
are shown in figure 9. At yi = 0, we find snowball Earth solutions (worlds with complete
ice cover) provided Ti < 273. There are also solutions for ice-free worlds with yi = 1 if
Ti > 273. In between, and depending on the diffusivity, there are solutions for partially
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Figure 9: Ice margin position against temperature.

ice-covered worlds (0 < yi < 1 and Ti = 273), of which one is prone to the large ice-sheet
instability, and the other is a stable solution with a polar ice-cap.

Note that a natural lengthscale for the temperature variation is
√

D/B. In the limit
that this scale is large, the temperature field has weak variations and we recover the zero-
dimensional model described in lecture 6. Also, we need not strictly use the linearization of
the OLR curve; in some problems (like greenhouse runaway), it is necessary to incorporate
a nonlinear OLR curve. The numerical solution of the differential equation is no harder and
proceeds in the same fashion.

Finally, we might also reinstate the time rate of change of T into the heat equation (a
term like M∂T/∂t, where M is the “thermal mass”), in which case we could further explore
the temporal rearrangements of temperature and ice cover with latitude during climate
changes. This is the basis of the celebrated Sellers model (and the related Budyko model),
often used by climate dynamicists.

Notes by Lianke te Raa and Chiara Toniolo
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Lecture 8

Glacial-interglacial variability: phenomenology and dynamical background

Eli Tziperman

8.1 A brief description of the phenomenology

Information about climate history over the past two million years or so is obtained from two main sources [4].
The £rst is sediment cored from the ocean’s bottom, where the isotopic compositions of buried plankton skeletons
and other buried material are used as proxy indicators to past climate, and are related empirically to past ice land
volume, paleo temperature, etc (Fig. 3). The second source is ice core records from Antarctica and Greenland,
that contain again various isotopic records as well as trapped gas bubbles and atmospheric dust from the past
400,000 years or so (Fig. 37).

Figure 37: Vostok ice core record for atmospheric gasses.

A brief summary of some of the observed glacial cycle characteristics for the past 2 Myr follows:

1. Roughly a 100 kyr time scale between glaciations during the past 800 kyr.

2. Saw-tooth structure: long glaciations (Order 90,000 yr), short deglaciations (5-10,000 yr).

3. A transition from 41 kyr to 100 kyr glacial cycles about 800 kyr ago.

4. Atmospheric CO2 variations during the glacial cycles.

5. Some phase locking to Milankovitch forcing (this forcing is explained in section 8.2.5).

6. Global extent of the glacial signal.

Besides the need for a theory that explains these observations, we also need to address the following questions
regarding the cycles’ dynamics:

1. Are the cycles externally forced? by what? or perhaps internally produced (self sustained) within the
climate system?
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2. Are the cycles produced by the physical climate components (i.e. excluding CO2 variations that are likely
due to a biogeochemical mechanism)? By the biogeochemical components? Both? Only ampli£ed by CO 2

variations that are, in turn, induced by the cycle in the physical system? Which components of the physical
climate system participate in the glacial dynamics and on what time scales?

3. Are the cycles driven from the northern hemisphere, where most of the land ice volume changes occur, or
from some other region? what phase lags should we expect between northern & southern hemispheres?

We proceed now with a description of some basic climate feedbacks that are likely to be important in glacial
dynamics, and then describe a few of the toy models/ mechanisms for the glacial cycles which have been proposed
over the years and that are based on these climate feedbacks.

8.2 Basics and relevant climate feedbacks

8.2.1 Energy balance, and the ice albedo feedback

As a crude simpli£cation, one may write a simple equation for a globally averaged temperature T in which
incoming solar radiation H↓

¯ is partially re¤ected by the earth albedo, and partially compensated by long wave
modi£ed black body radiation eσT 4 (see Lectures 6-7).

dT
dt

= H↓
¯× (1− albedo)− eσT 4 (31)

This equation implies, of course, that a higher albedo results in a cooling effect, which is a feedback that will
play a signi£cant role in the followings due to the albedo effect of changing land and sea ice covers, as follows.
Given the higher albedo of land and sea ice relative to that of the land or ocean, larger ice covered area results in
larger albedo, and based on the above simple energy balance argument, in a lower temperature:

albedo ∝ land ice and sea ice area

albedo ↑ =⇒ temperature ↓

8.2.2 Ice sheet dynamics and geometry

(Ghil and Childress, [15]; or Paterson, [42]). Glaciers ¤ow as non-Newtonian ¤uids. The ¤ow is governed by
the stress-strain or stress-rate of strain relation. (The stress tensor τ = τi j, denoting force per unit area, could be
shear stress for i 6= j or normal stress for i = j. The strain tensor ei j is the displacement or deformation per unit
length). Some examples of stress-strain relations are (Fig. 38):

• Elastic materials (Hook’s law, metals for low stress): τ = Be

• Plastic materials (metals beyond their critical stress): no deformation below a critical yield stress, and then
beyond that point arbitrarily large deformation with no increase in stress.

• Viscous Newtonian ¤uid: τ = ν(de/dt).

• For ice, there is Glenn’s law, de/dt = A(T )τn, where A(T ) is exponential in the temperature (warm ice is
softer...) and n = 3 is a typical value that £ts laboratory data etc. Note that n→∞ corresponds to plasticity.
Extending Glenn’s law from the 1d normal stress-strain relation to the relation between the full tensors τi j

and ei j is nontrivial, see [42]...
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Figure 38: Strain-stress relations for ice and some other materials (Ghil and Childress Fig. 11.4).
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Figure 39: Force balance on a slice of an ice sheet, used to deduce the parabolic pro£le.
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Parabolic pro£le of ice sheets: consider a balance of forces for a glacier that is symmetric in longitude x.
The glacier height as function of latitude is h(y). The balance of forces on a slice of the glacier between latitudes
(y,y + dy) is between hydrostatic pressure integrated along the face of the slice, and stress applied by bottom
friction (Fig. 39)

∫ h(y+dy)

0
ρicegzdz−

∫ h(y)

0
ρicegzdz = τ(y,z = 0)dy

or simply

h(y)
dh
dy

ρiceg = τ(y,z = 0) = τ0

where we assume that the bottom is at the yield stress τ0 (i.e. glacier in a “critical” state). In other words, we
assume perfect plasticity: glacier yields to the hydrostatic-induced stress at the above critical stress. The solution
to the last equation gives the desired parabolic pro£le that is not a bad £t to observations (Fig. 40).

1
2

h(y)2 =
τ0

gρice
(y− y0).

Figure 40: Fit of parabolic pro£le for ice sheet geometry to observations. From Paterson [42].

Accumulation/ ablation: The area of an ice sheet is divided into an accumulation zone and an ablation zone.
The net accumulation minus ablation depends on both the latitude and the height of the ice sheet surface. The
interaction between the mass balance and the elevation is complex... On the one hand, there is the Elevation-
desert effect: as the ice sheet surface reaches higher elevations, the amount of precipitation on it is reduced due to
the decreased humidity content of the atmosphere with height. However, increased elevation also means colder
temperatures and therefore decreased ablation. This effect is often assumed dominant. The line at which the
net accumulation minus ablation is zero (equilibrium line, E(y)) starts at sea level at some northern latitude, and
increases in elevation southward, to compensate for the increased surface temperature.

Given these considerations, the source term for an ice sheet mass balance is written as (Oerlemans, Pollard)

G =

{

a(h+h′−E(y))−b(h+h′−E(y))2 h+h′−E < 1500m
c h+h′−E > 1500m

(32)

Ice streams: The ice in ice sheets ¤ows from the accumulation to the ablation zones at an averaged velocity
of meters to tens of meters per year (Fig. 42). However, some 90% of the discharge ¤ow in glaciers actually
occurs in rapid and narrow ice streams (velocities can reach 4 km/yr, which is 100-1000 times that of a laminar
ice sheet ¤ow) that occupy only a small area of the ice sheet. These ice streams are also transient in time rather
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Figure 41: ice sheet geometry and the equilibrium line separating accumulation and ablation zones (Figure 7
from Ghil [14]).

Figure 42: Schematic ice ¤ow in an ice sheet [24].
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than in a slow uniform and steady ¤ow (Figs. 43, 44). The dynamics of ice streams are complex and not fully
understood. Among the relevant feedbacks are some that involve the melting and deformation of the till below
the ice stream. Another feedback is induced by the bottom topography and the internal heat of deformation: a
¤ow of a glacier over a bump induces larger ice velocities, and therefore in increased heating due to internal
glacier deformation; this softens the ice and affects the coef£cient in Glenn’s law (A(T )), therefore increasing the
ice velocity again.

Figure 43: Ice stream locations in Antarctica (http://nsidc.org/NASA/RAMP/icestreamb_mapw.html,
http://web.mit.edu/dabrams/www/).

Figure 44: Ice stream b in Antarctica (http://nsidc.org/NASA/RAMP/icestreamb_mapw.html, http://-
web.mit.edu/dabrams/www/).

Calving processes: (Pollard [50], Fig. 45) When the ice sheets are suf£ciently large and heavy, they deform
the earth crust (see section 8.2.4), sink below sea level, and may be ¤oated by incoming sea water. This detaches
them from the bedrock and may cause a rapid ice ¤ow/ sliding to the ocean. A simple parameterization of this
calving process in the framework of the above 1D ice sheet model is to add the following term to the ablation
parameterization [50, 48, 49]

G(xi+1) =−20m yr¡1 i f ρiceh(xi) < ρw(S−h′(xi)) and h′(xi+1) < S (33)
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where S is the sea level, the £rst above conditions requires that sea level is large enough to be able to ¤oat the
ice, and the second condition is that sea ice can reach point xi (Fig. 45). The calving process may be triggered as
follows: suppose that the ice sheet has reached a maximum size that causes a signi£cant bedrock depression, and
that at that stage an increased summer radiation due to Milankovitch cycles caused some retreat of the southern
ice tip into the depression formed by the isostatic adjustment (both Milankovitch cycles and isostatic adjustment
are discussed below). Because the bedrock takes some time to respond to the new position of the ice sheet,
the gap that is formed between the ice sheet and the depressed bedrock allows sea water to penetrate the empty
depression and ¤oat the ice sheet, causing the calving process. There is also a positive feedback involved with
the calving process (Watts and Hayder [65]): once some calving occurs, it raises the sea level, and therefore
reinforces the ¤oating of more ice and induces yet more calving. Presently, 80% of the ablation in Greenland is
due to calving, although Peltier and Marshal [44] £nd that this process is not suf£cient to eliminate the Laurentide
ice sheet during the deglaciation stage in their model.

Figure 45: Calving parameterization, from Pollard 1983.

There are other instability processes that were used in various models as part of the ablation parameterization,
such as specifying that when ice sheets get too large they collapse due to gravitational instability, etc...

Dust loading and enhanced ablation: (Peltier and Marshal [44]) The atmosphere during glacial periods,
being drier, more windy (due to the larger meridional temperature gradient), and having larger exposed conti-
nental shelves, contains larger amounts of aerosols and dust. Continental dust is up to 10-30 times that during
interglacials, and marine aerosols (salt) up to 3-4 times more. Dust loading could affect the albedo of ice sheets
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in ablation areas, which are relatively narrow strips along the boundary of the ice sheet where ablation is larger
than accumulation. The dust cover may reduce the surface albedo there, therefore causing the the ice sheet to
absorb more solar radiation and enhancing melting. A reduction of the dirty snow/ ice albedo from 0.7 to 0.1-0.4
results in the surface absorbing 2-3 times more radiation, much of which causes enhanced ice melting. Peltier
and Marshal [44] £nd that the dust loading effect is critical for getting rapid terminations in their ice sheet model.
However, this is only an indirect indication of the importance of dust loading, as they parameterize the effects of
dust on ablation directly, rather than deal with the effect of dust on the albedo, which then affects the radiation
absorption and eventually the melting.

8.2.3 Temperature-precipitation feedback

Ice core proxy observations show that the rate of accumulation of snow over land ice sheets is signi£cantly higher
during relatively warm periods (Fig. 46). GCM experiments indicate a similar trend. In particular, greenhouse
scenarios show that as the temperature increases, accumulation increases initially faster than ablation, so that the
net accumulation is larger for warmer temperatures. Once the warming passes some threshold, the increase in
ablation surpasses that in precipitation, so that the net accumulation £nally decreases with temperature (Figs. 47,
48). The increase in net accumulation over land ice with increased temperature seems to have been quite robust
during glacial-interglacial cycles, and has been termed the temperature-precipitation feedback [14].

There are several mechanisms that could be responsible for this feedback. First, higher temperature implies
larger moisture content of the atmosphere based on the Clausius Clapeyron relation, and therefore a stronger
hydrological cycle. Second, at least some of the precipitation falling on northern hemisphere land ice sheets is
due to local evaporation from the polar and high latitude ocean. During suf£ciently cold periods, the high latitude
ocean is covered by (perennial and seasonal) sea ice which signi£cantly reduces evaporation from the ocean, and
therefore limits the precipitation of snow over the land ice. Finally, the presence of even seasonal sea ice may
shift the storm track away from the land ice sheets, thus again reducing the precipitation brought by winter storms
from falling on the ice sheets.

The temperature-precipitation feedback plays quite an important role in a number of glacial cycle theories as
we shall see below.

Figure 46: accumulation rate for warm and cold periods, showing the temperature-precipitation feedback. Fig. 5
from Cuffey and Clow [8].

8.2.4 Isostatic adjustment

Ice density is roughly a 1
3 of the earth interior density. Ice sheets therefore sink into the crust roughly a 1

3 of their
height, and this process is referred to as the “isostatic adjustment” (Fig. 49).
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Figure 47: Mass balance of ice sheet as function of temperature, showing temperature-precipitation feedback for
small temperature increases, and increased ablation dominating for a larger temperature increase. Fig. 5a from
Huybrechts and Oerlemans [25].

Figure 48: Temperature-precipitation feedback in the news... [35]

This adjustment process is not immediate and there is a time scale of a few thousands of years involved. Let
us derive an equation for an ice sheet evolution including the isostatic adjustment effect (Oerlemans [39]; Pollard
[50, 48, 49]). Start with a simple relation of a Glenn’s law type between the vertical average velocity of the ice
sheet and the shear stress at the bottom

u = B~τm
b

In principle, B is a function of the temperature, and m might change depending on sliding conditions at the base
of the glacier (frozen/ melted), but let us assume they are both constant. We can show, based on similar arguments
to those used for deriving the parabolic glacier geometry, that

~τb = ρicegh
∂h¤

∂y

where h is the ice thickness and h¤ = h + h′ is the ice surface elevation, and where h′ is the elevation of the
bedrock above some reference level (Fig. 50).

Now, the (1 dimensional) mass continuity of the glacier is simply

∂h
∂t

=
∂
∂y

(hu)+G(h,y, t)

where G(h,y, t) is the net accumulation-ablation. Substituting the above expression for the velocity

∂h
∂t

=
∂
∂y

(hB(ρicegh
∂
∂y

(h+h′))m)+G

= A
∂
∂y

(hm+1(
∂
∂y

(h+h′))m)+G
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Figure 49: Schematic plot of isostatic adjustment for changing ice sheet volume, from http://rgalp6. har-
vard.edu/background.html.
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Figure 50: Ice sheet geometry and variables for the isostatic adjustment model.
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which may be written as a nonlinear diffusion process

∂h
∂t

=
∂
∂y

(D(h)
∂
∂y

(h+h′))+G(h,y, t)

D(h) = hm+1(
∂
∂y

(h+h′))m¡1 (34)

Now, the ¤ow within the upper part of the earth interior (lithosphere...) can be modeled as an adjustment to
perturbations introduced due to the ice sheet load that penetrates down into the lithosphere to a depth rh where
r = 1

3 , plus an inherent topography of the crust h′
0(y). The adjustment could be modeled using a simple time scale

Tisostatic,
∂h′

∂t
= (h′−h′0(y)+ rh)/Tisostatic

or using a scale selective adjustment using a simple diffusion law

∂h′

∂t
= ν

∂2

∂y2 (h′−h′0(y)+ rh) (35)

The typical time scale for the isostatic adjustment seems to be about 3000 yr. Equations (34, 35) provide us with
an ice sheet model based on the isostatic adjustment feedback, where in order to solve for the glacier distribution
history we still need to specify the ice source/ sink (accumulation/ ablation) G, as in (32) and (33), for example.

8.2.5 Milankovitch forcing

One of the main ingredients for many glacial cycle theories is the temporal changes in the solar radiation arriving
to the earth surface due to changes in orbital parameters of the earth around the sun. A useful recent review is
given by Paillard [41]. The commonly used orbital parameters and the corresponding time scales at which they
change are as follows, following Paillard [41]. (Figs. 51, 52). Eccentricity, e, with a time scale of about 100kyr:
corresponds to changes in the elongation of the ellipse along which earth circles the sun; affects the annual mean,
global mean radiation (though only by a very small factor of about, has a negligibly weak climatic effect. Note
that Earth’s trajectory was nearly spherical 400 kyr ago. Obliquity, ε, 41 kyr: the tilt of earth’s axis, varies due
to the torque acting on the earth by the sun and moon because of its equatorial bulge, that is, because the earth
is not perfectly spherical; the corresponding amplitude in solar radiation changes is a few (5-15) watt/m2, and
the effect is on the annual mean contrast between the poles and the equator, as well as on the contrast between
the seasons, and is of the same magnitude in both hemispheres. Precession, γ, has time scales of 19 kyr and
23 kyr. It corresponds to the circular motion of the earth’s rotation axis in space, and has a climatic effect only
when the earth orbit is not exactly spherical. The amplitude of changes in solar radiation is of the order of 20%
(O(100)watt/m2), and the effect is antisymmetric with respect to seasons and hemispheres. Because it does not
have any climatic effect when earth’s trajectory is exactly spherical, the climatic precession parameter is de£ned
to be proportional to e. NO effect on annual mean radiation or globally mean radiation.

The main effect of Milankovitch forcing is not due to the direct effect of changes in the solar radiation on the
atmospheric energy balance and therefore on the atmospheric temperature, but rather due to its effect on glacier
ablation (Held, [22]): ice is a very poor heat conductor, and the heating by solar radiation therefore remains near
the ice sheet surface. Thus a 25% variation in the amplitude of summer radiation can cause a signi£cant change
in surface ice temperature, which can therefore also strongly control summer melting. Note that most of the
melting occurs within a few weeks during the summer. A change in the summer solar radiation can bring the ice
surface temperature to above or below the melting temperature, while in the winter the temperature is too low for
the Milankovitch variations to be able to bring the temperature to the melting point. This is why the Milankovitch
summer radiation is what counts, and not the annual average nor the winter solar radiation.
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Figure 51: Orbital parameters (Paillard 2001, Fig. 2).

Figure 52: Milankovitch radiation in the time domain.
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8.2.6 More feedbacks

The above list of climate feedbacks that may participate in glacial-interglacial dynamics is far from complete.
In particular, we have concentrated only on feedbacks of the physical climate system, ignoring biogeochemical
feedbacks that will be brie¤y mentioned below. There are certainly some additional physical feedbacks that have
been neglected, such as the geothermal heating at the base of ice sheets, and numerous others... In any case, the
above ingredients already allow us to describe some of the existing theories for the glacial cycles, which are the
subject of the next lecture.
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Lecture 9

Mechanisms and toy models of the glacial cycles

Eli Tziperman

Given the above climate feedbacks as our ingredients for making glacial theories, we now describe some of
the physical mechanisms and models proposed for explaining the main features of the glacial cycles. As done
throughout these lectures, we concentrate on conceptual (toy) models that attempt to explore the role of a limited
number of feedbacks at a time.

9.1 Glacial mechanisms based on basic physical feedbacks

9.1.1 Temperature-precipitation feedback

(Ghil [14]) The ice albedo feedback, relating rate of change of the temperature (T ) to the albedo and to the land
ice volume (Vice), may be written as

dT
dt

∝ −albedo ∝−Vice.

Together with the temperature-precipitation (p) feedback

dVice

dT
∝ p ∝ T

the two feedbacks may be combined into a single equation that has an oscillatory solution

d2T
dt2 ∝−T.

However, it turns out the time scale of these linear oscillations is much too short (10,000 years). In addition, this
linear mechanism cannot account for the saw-tooth structure of the oscillations, and some nonlinearity must be
included.

9.1.2 Glacial oscillations based on isostatic adjustment: the Load-accumulation feedback

(Ghil [14]) Assume that higher elevation of the ice sheet surface results in colder ice-sheet surface temperature,
therefore in less ablation, and therefore in more net accumulation (i.e. opposite of the elevation-desert effect). As
the ice volume increases, the ice sheet sinks into the bedrock, moving more of the the glacier surface area into
an elevation of less accumulation/ more ablation (or equivalently, moving the equilibrium line poleward). This
results in a negative feedback between ice volume and net accumulation rate

d p
dt

∝−Vice

which, together with the simple mass balance equation

dVice

dT
∝ p

again results in an oscillatory equation. The oscillation time scale is too short again due to the too short time
scale of the isostatic adjustment. Again, this linear mechanism cannot account for the saw-tooth structure of the
oscillations, and some nonlinearity must be included. A more sophisticated version of this mechanism, including
calving, Milankovitch, and a nonlinear isostatic adjustment parameterization will be presented below.
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9.1.3 Milankovitch forcing

Orbital/ incoming solar variations seem natural candidates for a glacial theory given their time scale and potential
climatic effects. Indeed, as reviewed by Paillard ([41], Fig. 53) such theories have been proposed as early as the
nineteenth century. In fact, it turns out that Milankovitch forcing by itself is unlikely to be able to explain the
observed characteristics of the glacial cycles, although it does seem to play a signi£cant, even if secondary, role
in the cycles dynamics.

Milankovitch seems to have been the £rst to understand that the solar radiation during the summer season is
the critical climatic factor, as cold summers allow the survival of new snow cover from winter season (section
8.2.5 above). He also accurately calculated the time variations of the different orbital parameters. However, the
dominant effect of the precession and obliquity on the summer radiation leads to a prediction of glacial cycle
frequency of 19, 23 and 41 kyr periods, not in agreement with the dominant 100 kyr climatic signal (Fig. 56).

Figure 53: Three historical glacial theories based on orbital variations (Fig. 1 from Paillard [41])

The role of Milankovitch forcing is easily quanti£ed using some simple model equations, and various versions
of such toy models have been proposed over the years (Calder, [6]; Imbrie and Imbrie [26]; Held [22]; see nice
review by Paillard [41]). The simplest equation for the global ice volume in terms of Milankovitch forcing would
be something like [6];

dVice

dt
=−k(i− i0) (36)

where i is the insolation, io is the mean insolation, and where the proportionality constant k may have different
values for melting (i > i0) and for accumulation (i < i0). While integrating this equation, one may also impose a
condition that Vice > 0. However, the £t to observations is rather poor... (Fig. 54, from Paillard [41], Fig. 9)

Next, Imbrie and Imbrie [26] use (nondimensional)

dVice

dt
= (i−Vice)/τ (37)
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Figure 54: Results of the glacial cycle model of equation 36 (Paillard 2001, Fig. 9)

again with different τ for melting (Vice > i) and accumulation. This model assumes a simple relaxation of the ice
volume to the summer radiation, with the relaxation time scale given by τ. The results show a small peak at 100
kyr, and a larger one at 400 kyr, which is clearly still not a satisfactory result [41].

Analysis of the proxy records shows that the precession (19 & 23 kyr) and Obliquity (41 kyr) bands are likely
to be linearly forced by Milankovitch forcing, but that the 100 kyr band is not likely to be directly and linearly
forced by Milankovitch variations because Milankovitch forcing is much too weak at the 100 kyr period (Figs. 55,
56). Could the 100 kyr signal be a linear resonant response to the very weak Milankovitch forcing? Again not
likely because there does not seem to be any linear time scale of the order of 100 kyr in the climate system
that may be excited to produce the observed response. In order to obtain a time scale of 100 kyr, a different
mechanism is clearly needed, most likely a nonlinear one. Various nonlinear feedbacks were indeed tried as will
be discussed below.

Figure 55: Imbrie et al; decomposition of climate record into Milankovitch spectral bands

Given the failure of the above simple linear models to explain the 100 kyr peak using Milankovitch forcing,
Le-Treut and Ghil have tried to explain this peak as being due to nonlinear frequency transfer from Milankovitch
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Figure 56: Spectra of Milankovitch (right) and proxy records (left), showing why Milankovitch is not the likely
explanation for the 100 kyr time scale

frequencies to the 100 kyr period ([33], [14]). To do this, they combined the temperature-precipitation feedback
and ice-albedo feedback which were shown above to produce glacial oscillations, using a few re£nements that
produced nonlinear self-sustained oscillations with a time scale of some 7-10 kyr. The interaction of these non-
linear oscillations with the Milankovitch forcing results in a 100 kyr time scale. Let us begin the description of
this mechanism by brie¤y describing the nonlinear oscillator model. Let the ratio of the ice sheet’s accumula-
tion area (a) and ablation area (a′) be given by ε(T ) = a/a′. This ratio varies nonlinearly as a function of the
temperature (Fig. 57), and represents the effect of the temperature on the ablation/ accumulation according to the
temperature precipitation feedback. In addition, the ocean albedo (αoc) is also assumed to vary nonlinearly with
the temperature (Fig. 57), while the land albedo is just linear in the land ice area.

The temperature equation (roughly equivalent to the over simpli£ed dT/dt ∝−Vice above) includes the effects
of incoming solar radiation Q, land and ocean albedos and a linearized outgoing long wave radiation term

cT
dT
dt

= Q{1− [γαland(`)+(1− γ)αoc(T )]}−κ(T −Tk).

The equation for the meridional extent of the land ice sheet, `, is based on the temperature-precipitation feedback
and has the form (roughly equivalent to the over simpli£ed dVice/dt ∝ T above)

cL
d`

dt
= `¡1/2{[1+ ε(T )]`T (T, `)− `}

where cL is some relaxation constant, and `T (T, `) represents the location of the boundary between the accumu-
lation and ablation zones on the ice sheet.

As mentioned above, this model results in a self-sustained oscillation with a period that is quite robust around
6-7 kyr. Next, Milankovitch forcing is included by making the ratio of ablation to accumulation areas a function
of temperatures Tm(t),TM(t) which are, in turn, a function of the Milankovitch radiation: ε = ε(T,Tm(t),TM(t)),
(see again Fig. 57 for an explanation of the physical role of Tm(t),TM(t)). The Milankovitch forcing appears
not as a free forcing term on the rhs, but as a parametric forcing term multiplying other terms in the equations.
When the model is £rst forced with a single frequency f j, one sees the response, instead of at the original (non-
Milankovitch) frequency f0 ≈ 7kyr¡1, showing up at integer multiples of the forcing frequency f j, so that the
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Figure 57: Sea ice albedo and accumulation factor as function of temperature (Fig. 8 from Ghil [14])

system oscillates at frequencies k f j, with integer k, especially such that k f j is close to the original unforced
frequency f0. This is again, as discussed in the case of El Nino, a nonlinear resonant response. When the model
is forced with two Milankovitch frequencies the response is seen at “combination tones” of the form k1 f1 +k2 f2.
This could be with a “sum tone” k1k2 > 0 or a “difference tone” k1k2 < 0. For suf£ciently strong Milankovitch
forcing, one gets a chaotic response with many different combination tones. In particular, the dominant response
tone turns out to be at a frequency

1
109

kyr¡1 = f1− f2 =
1

19
kyr¡1−

1
23

kyr¡1

So that we obtain an explanation of the 100 kyr as a nonlinear response to the two major precession frequencies!
While the spectrum of this response is quite satisfactory, with the 109 kyr frequency dominating the 41, 23 &
19 kyr frequencies (Fig. 58), the detailed characteristic features of the time series, are perhaps not completely
satisfactory (Fig. 59) when compared to the proxy (in particular ice core) records.

However, additional efforts to use combination tones of Milankovitch frequency to explain the 100 kyr peak
continue, and Rial [51], for example, recently suggested a ‘simple’ explanation for the glacial cycle time scale
based on the following combination tones . . .

1
107

kyr¡1 =
1
95

kyr¡1−
1

826
kyr¡1.

Given the need to use some nonlinear mechanism together with the Milankovitch signal to explain the 100 kyr
period, Paillard [40] suggested that the mechanism might be jumps between steady states of the climate system,
driven by Milankovitch forcing. Such jumps between different steady states imply an important nonlinearity in
the climate system that allows the existence of such multiple steady states and the jumping between them (both
could not exist in a linear system). Paillard argues for separating the ice volume and global temperature and
allowing them to be independent (yet coupled) degrees of freedom. He also assumes the glacial cycles to be
due to jumps of the climate system between three different modes: i (interglacial), g (mild glacial), and G (full
Glacial). Rules are speci£ed for the transition between these modes
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Figure 58: Spectrum of chaotic model regime, showing a 100 kyr peak (Fig. 10 from Ghil [14])

Figure 59: Time series of the same model as in the previous £gure [Fig. 11, Ghil [14]]
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• i→ g (glaciation begins) occurs when the insolation decreases below a threshold i0.

• g→ G (glaciation approaching its maximum) occurs when the ice volume increases above some threshold
value vmax.

• G→ i (deglaciation) occurs when the insolation increases above some threshold i1, where i1 > i0.

The equation determining the ice volume evolution at each “mode” or “regime” (indicated by the index R which
can take the values i, g, G) is

dVice

dt
= −

VR−V
τR

−
F
τF

where the ice volume to which the system is restored at each mode is different

Vi = 0; Vg,VG = 1

and where F is the Milankovitch summer radiation. This model may be seen as an extension of the Imbrie and
Imbrie model to a multiple-regimes scenario. The results of this model £t the SPECMAP record very nicely
(Fig. 60), although perhaps this is not completely surprising given the quite a few available tuning parameters
(VR,τR, R = {i,g,G}).

Figure 60: Fig. 13 from Paillard 2001

This model does not provide us with an explanation of what the actual physical mechanism is, what com-
ponent of the climate system is responsible for the thresholds/ multiple modes, why are the relaxation times τR

different for each regime and what determines them, etc.
This simple model does indicate that thresholds and rapid transition processes are important. It also demon-

strates that one can get a good £t to observations due to a phase locking to Milankovitch forcing, as also shown
by Saltzman’s models and discussed next. This is the same phenomenon discussed in the context of El Nino
and seen in Fig. 28: any nonlinear oscillator with a time scale of roughly 100 kyr that is constructed based on
some internal variability mechanism yet is driven by Milankovitch radiation is likely to be phase locked to the
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Milankovitch forcing. A phased locked glacial oscillation is shown for example in Fig. 61 from the work of
Gildor and Tziperman [16] discussed below. Thus it seems that while the 100 kyr Milankovitch forcing plays no
signi£cant role in glacial dynamics, the phase locking to 19, 23 and 41 kyr accounts for the observed phase of
the oscillations; that is, for the observed timing of deglaciations. Note that because the Milankovitch forcing is
not periodic but rather quasi-periodic and therefore somewhat irregular in time, the locking of the glacial cycle to
the Milankovitch forcing also induce somewhat irregular glacial cycles. In particular, this explains the variability
of the glacial period around 100 kyr between different glaciations. It seems, therefore, that the irregularity of the
glacial cycles is likely due to the quasi-periodic nature of Milankovitch forcing, rather than an indication that the
glacial dynamics themselves are chaotic.

Figure 61: Phase locking to Milankovitch: land ice volume as function of time for six different model runs having
different initial conditions. All runs converge fairly rapidly to a single time series as they are all locked to the
phase imposed by speci£ed Milankovitch forcing (Gildor and Tziperman, [16]).

9.1.4 Glacial oscillations based on isostatic adjustment + Milankovitch + Calving

Another effort to obtain a 100 kyr glacial cycle from Milankovitch forcing is based on a nonlinear version of
the load accumulation linear mechanism discussed in section 9.1.2 and based on the isostatic adjustment. To do
that, the nonlinear dynamics of ice sheet ¤ow is added, as well as a calving parameterization (Pollard, [48, 49]).
The Milankovitch forcing is speci£ed, similarly to [33], by making the equilibrium line location vary with the
Milankovitch radiation at, say, 55N:

E(y, t) = E0 +E1y+E2Q(55±)

The results are shown in Fig. 62 and the £t to the observed global ice volume is not too bad (lowest panel of
that Figure). It turns out, however, that when trying to formulate a model that uses isostatic adjustment to obtain
the 100 kyr glacial cycles, one needs to use too long time scale for the isostatic adjustment (10 kyr instead of
the more realistic 3 kyr) in order to obtain a good £t to observations. Furthermore, one needs to add quite a few
additional feedbacks such as the topography of the crust (which enters the isostatic adjustment parameterization
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discussed above, and affects the initial ground height, which is important for the source-sink function for the
glacier mass balance), and a calving parameterization. Overall, it seems that too many different feedbacks are
needed (Fig. 62) and that this mechanism is not as simple and clean as one would have hoped given the seemingly
simple structure of the glacial signal.

Figure 62: Fit of a glacial model results to observations. The complexity of the feedbacks used increases from
the upper panel toward the lower one. See text for details. (Fig. 1 from Pollard [48]).

9.1.5 Stochastic resonance

An elegant mechanism that combines 100 kyr Milankovitch forcing with stochastic noise forcing has been sug-
gested by Benzi, Parisi, Sutera and Vulpiani [3]. This mechanism is not likely to be a correct explanation for
the glacial dynamics, yet the physical idea seems to have found many interesting applications outside the re-
search area of climate dynamics, so it is worth examining. Consider a simple model of the climate system that is
governed by a zero-dimensional global energy balance model equation such as

dT
dt

= Rin(T )−Rout(T )+ση(t) = F(T )+ση(t) =−
∂Φ
∂T

+ση(t)

where Rin(T ) and Rout(T ) are the incoming and outgoing radiation terms and ση(t) is a white noise term due
to internal noise of the climate system (e.g. weather). The potential function Φ(T ) chosen such that it has two
minima where F =−∂Φ/∂T = 0 at the two temperatures T1,T2, which represent stable equilibria corresponding
to glacial and interglacial conditions) separated by a maximum (an unstable equilibrium point). More explicitly,
the potential Φ is given by

F(T ) =−
∂Φ
∂T

=
ε(T )

C
×

µ(t)
1+β(1−T/T1)(1−T/T2)(1−T/T3)

,

with
µ(T ) = 1+0.0005cos(ωt); ω = 2π/105years

representing the 100 kyr orbital forcing frequency. The system is therefore driven by both slow small amplitude
oscillations in the potential due to Milankovitch forcing, µ(t), and by the white noise ση(t). To see the potential
function, try in Matlab:
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for i=1:40; f(i)=1.0/(1+ 0.1*(1.0-i/10.1)*(1.0-i/20.1)*(1.0-i/30.1));end; plot(f)

g(1)=0; for i=1:40; g(i+1)=g(i)+f(i)-1; end; plot(g)

The effect of µ(t) is to lower and raise the two minima of the potential with respect to the middle barrier, as
shown in Fig. 63. In the absence of the white noise, the system undergoes small oscillations about one of the
stable steady states due to the oscillations in µ(t). Similarly, in the absence of the periodic changes to the potential,
the white noise term induces variability depending on its amplitude: if the white noise is not suf£ciently strong,
there would be no transition in this case between the minima, but only small stochastic variability about one of
the minima; if the stochastic forcing is strong enough, there is some probability of jumping between the stable
equilibria, but with no preferred periodicity.

Now, suppose that both the stochastic white noise forcing and slow 100 kyr variations act together. Assume
further that the white noise by itself is not suf£ciently strong to induce transitions between the equilibria. Such
transitions may still be possible because of the slow variations in the potential induced by µ(t): when these slow
variations lower the potential barrier as in panel A of Fig. 63, the white noise may be suf£ciently strong to cause
a transition from the left to the right potential wells. The next transition will be possible when the potential
barrier is reduced for the potential well on the right (panel C). As a result of this combination of white noise
and slow modulations of the potential well, the system will produce a preferred periodicity at 105 years and a
corresponding spectral peak at that frequency. This is termed “stochastic resonance” because a too weak noise
wont induce transitions, and too strong noise will not show the preferred periodicity (it the stochastic forcing
would then be able to induce transitions regardless of the slow oscillations in the potential). That an optimal
noise level is needed, justi£es the use of the term “resonance”.

Because this mechanism relies on the 100 kyr Milankovitch signal which is very weak climatically, and be-
cause the resulting time series does not have the saw tooth structure, the stochastic resonance is not a likely
candidate for the 100 kyr glacial cycle mechanism. Furthermore, the mechanism is formulated in very general
terms, avoiding the issues of what is the source of the white noise, which speci£c climate component is responsi-
ble for the double well potential (this needs to be some nonlinearly behaving component that allows for multiple
minima), etc. This mechanism therefore does not make speci£c physical predictions that may be falsi£ed beyond
the shape of the time series which, as mentioned above, is already inconsistent with the observed one.

9.1.6 “Earth-system” models (Saltzman et al.)

In a series of works, Saltzman and co-workers have used various models that are all based on a similar approach:
write a set of three ordinary differential equations for three prognostic climate variables; include various linear
and nonlinear feedbacks between the three variables; while allowing the physical assumptions and prognostic
variables that vary somewhat from work to work, always assume that: (1) the system should have a free (self
sustained) oscillation of roughly 100,000 year period; (2) Milankovitch forcing provides the precise phase of
the oscillation via nonlinear phase locking. In many of these works CO2 is assumed to be a key variable that
maintains the 100 kyr oscillation which will not exist without it. The set of feedbacks used for example by
Saltzman and Sutera [52] is shown in Fig. 64.

Let us consider two examples of feedback loops used in this approach and see how they are converted into
a mathematical form. In the following, −⊕→ and −ª→ correspond to a positive and negative feedbacks, corre-
spondingly:

1. (#2 in Saltzman and Sutera [52], p 740): Increased marine-based ice volume −⊕→ increased marine ice
area and albedo −ª→ decreased temperature and therefore decreased source term for land glacier mass
balance (via temperature-precipitation feedback) −⊕→ decreased land ice volume. Bottom line, it’s a
negative feedback, add a term to the equation for the land ice volume that depends on the marine ice
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Figure 63: Figs. from Benzi et al showing potential function and time series of transitions

Figure 64: A set of feedbacks included in a simple climate model... (Fig. 3 from Saltzman and Sutera [52]).

121



volume
dVland ice

dt
= ...−C1× [marine based ice]

2. CO2 feedback (#11 in Saltzman and Sutera [52], p 741): increased land ice volume −ª→ reduced sea
level −⊕→ reduced atmospheric CO2 (why...?) −ª→ increased outgoing long-wave radiation increased
accumulation over land glaciers −ª→ increased land ice volume. Bottom line: a positive feedback

dVland ice

dt
= ...+C2×Vland ice

The resulting set of nondimensional equations (from Saltzman [53]) is of the form

dX
dt

= −α1Y −α2Z−α3Y 2

dY
dt

= −β0X +β1Y +β2Z− (X2 +0.004Y 2)Y +FY

dZ
dt

= X− γ2Z

where in this particular case X , Y and Z are the ice mass, deep ocean temperature and atmospheric carbon dioxide.
The £t to the global ice volume proxy curves in these models is normally quite impressive (Fig. 65). This is not
necessarily a surprise, as the quite a few coef£cients in the above three equations are chosen to optimize this £t.

Figure 65: Fit of model to global ice volume proxy data. Fig. 4 from Saltzman [53]

Of course, one needs to be very careful in trying too hard to £t model results to proxy data, as shown by the
excellent £t of the above model to a CO2 curve deduced from some indirect proxy data (Fig. 66). This £t was
obtained before the much more reliable paleo CO2 ice core data became available, which does not seem at a;;
close to the £tted proxy of Fig. 66.

Figure 66: Fit of model results to CO2 proxy. Fit is quite wonderful, but the proxy data turned out later not to be
very accurate... (Fig. 3 from Saltzman [53]).

The parameterization of physical processes is quite vague in these models (e.g. “we are assuming that positive
feedbacks due to ice albedo and ice baroclinicity effects, bedrock depression, and sea level changes can roughly
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balance the dissipative tendencies”... or “the second order nonlinear term −a2µ′2 is included to represent the
weakening of the climate forcing of ice accumulation as increasing sea ice and cold ocean surface temperatures
associated with decreasing µ reduce the sources for snowfall over the ice sheets”). This vagueness often does not
allow the model to make speci£c predictions that may be falsi£ed by observations.

These models do teach us one important lesson: it seems likely that practically any model that has a free
(self-sustained) nonlinear oscillation at about 100 kyr period and that is forced by Milankovitch forcing will
result in a good £t to the global ice volume proxy curves, so that these two elements seem a robust part of the
glacial puzzle. Saltzman’s philosophy was to consider numerous climate feedbacks such that “... a qualitative
judgment must be made concerning the dominance of one [feedback] over the other. The ultimate test of the
validity of the judgment is the agreement of the output with the observational evidence”. This approach and the
good £t to observations it yields might have been useful initially, but the next step in understanding the glacial
oscillations must be based on a more detailed and speci£c model that makes speci£c falsi£able predictions that
may be tested using the paleo record.

9.1.7 Some additional glacial mechanisms and models

There are quite a few more glacial theories that we shall not describe here, some of which are worth mentioning
at least brie¤y:

1. Thermohaline circulation (as an explanation for ice ages, and/ or for the global scale of the glacial signal).
This mechanism is based on the following feedback loop. A stronger THC results in more poleward heat
transport, therefore in more melting of land ice. This results in a fresh water input into the oceans which
weakens the THC, and so on, leading to an oscillation. Note that the THC is often also mentioned as
the source of multiple steady states in the climate system (e.g. [40]); these ideas are more often than not
formulated descriptively (Fig. 67) and sometime a bit vaguely rather than using a speci£c mathematical
model for the thermohaline circulation.

2. Some older and/ or just likely wrong ideas for the source of the glacial cycles: Volcanic eruptions, the earth
passing through interplanetary dust clouds every 105 years; The lost continent of Atlantis ...

3. DMS feedbacks (Charlson, Lovelock et al [7]). Here the feedback loop is as follows: increased temperature
→ more biological productivity → more Dimethylsulphide (CCN) → more clouds → higher albedo →
lower temperature. etc, again leading to an oscillation. On the other hand DMS feedbacks may act in
a different way (Watson and Liss [64]): ice cores seem to show that colder periods have more DMS →
biology caused additional cooling and therefore helped amplifying the glacial signal.

Figure 67: A thermohaline theory for the glacial cycles
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9.2 Sea-ice switch mechanism

Gildor and Tziperman [16, 18, 17] proposed that there are three major components that determine the glacial
cycle dynamics: land ice, global temperature, and sea ice extent. Their mechanism is based on the temperature-
precipitation feedback, modi£ed by the effects of sea ice which acts as a “switch” of the climate system, switching
it from glaciation to deglaciation modes. The model used to demonstrate the sea ice switch mechanism was
a detailed box model with prognostic sea ice, an 8-box ocean model for the THC temperature and salinity,
a prognostic land ice model, and an atmospheric 4-box energy balance model. However, the essence of the
mechanism may be described using a far simpler toy model used by [60]. We start by assuming, based on the
results of the more detailed model, that the sea ice area is very sensitive to the climate temperature, and jumps
from very small area to large area as the temperature decreases below some critical freezing temperature. In
the detailed box model mentioned above, the sea ice growth occurs within some 50 years and is accelerated by
the sea ice albedo feedback. Note that a similar assumption regarding the dependence of sea ice albedo on the
temperature was used for example by [33] as shown in Fig. 57. This assumption allows us to parameterize the
sea ice area as function of atmospheric temperature

asea¡ice =

{

δI0
sea¡ice T > Tf

I0
sea¡ice T < Tf

(38)

where I0
sea¡ice is the maximal sea ice area during a cold period, and δI0

sea¡ice represents the much smaller
sea ice area during warm periods. Snow accumulation over the land glaciers is assumed to depend on both the
temperature (temperature-precipitation feedback) and the extent of sea ice (due to its effects on the precipitation
over land ice via limiting evaporation from the polar ocean and via the diversion of the storm track, see previous
lecture),

P(T,asea¡ice) = (P0 +P1 q(T ))×

(

1−
asea¡ice

aocn

)

where aocn is the ocean area. The humidity q(T ) appearing in the last equation is determined by the approximate
Clausius-Clapeyron equation

q(T ) = qr εq A exp(−B/T )/Ps.

The ablation is function of the temperature and of the 41 kyr component of the Milankovitch summer radiation,

Sabl(T, t) = S0 +SM sin(2πt/41kyr)+ST T.

The two prognostic model equations may now be written for the land ice mass balance

dVland¡ice

dt
= P(T,asea¡ice)−Sabl(T, t)

and for the global temperature

dT
dt

=−εσT 4 +Hs(1−αs
asea¡ice

aocn
)(1−αL

aland¡ice

aland
)(1−αC)

where the albedos of sea ice, land and clouds are represented by αs,αL,αC respectively. These equations result
in a self-sustained 100 kyr oscillations even without the Milankovitch forcing, which are basically the same as
the oscillations of the more elaborated box model. Fig. 68 shows the results of the detailed box model with no
Milankovitch forcing, which we now use to explain the different stages in the sea ice switch mechanism for the
glacial cycles.

• start at t = 200 kyr; An interglacial period, warm ocean and atmosphere, no glaciers over land and no sea
ice (sea ice switch is “off”)
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Figure 68: The sea ice switch glacial cycle mechanism. Shown are the results of the box model of [18] as function
of time; time is plotted “backward”, in units of 103 years before “present”.
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• The warm and therefore moist atmosphere results in a large snow accumulation rate, and the glaciers grow
slowly (panel a). Land albedo therefore increases and this results in a slow cooling (panel b). This stage
lasts some 70-90 kyr.

• t = 130 kyr; The general slow cooling £nally causes the upper ocean to cool to the freezing temperature.
At this stage a large sea ice cover forms within a few decades, growth being accelerated by the sea ice
albedo feedback: once some sea ice is formed, its albedo effect cools the atmosphere, which in turns cools
the ocean, leading to the formation of more sea ice. The sea ice growth is also self-limiting: a large sea ice
cover insulates the ocean from the cold atmosphere, eventually preventing more cooling of the ocean and
more sea ice growth. Sea ice tends to grow at a uniform thickness of some 2-4 meters, rather than grow
in thickness. At this time the sea ice switch is “on”, panel c; this is the glacial maximum: large glaciers,
extensive sea ice, cold atmosphere and ocean.

• The large sea ice area cover results in a cold and therefore dry atmosphere. This implies a low rate of
precipitation, so that ablation (melting) of glaciers is larger than accumulation (panel d), and the start of
deglaciation.

• t = 110 kyr; land glaciers withdraw and land albedo gets smaller. The atmospheric and oceanic temperature
therefore increases, until the ocean warms suf£ciently and sea ice melts within decades again (switch is
“off”). The climate system is back to the initial state, and the cycle starts over.

Bottom line: land glaciers grow during warm periods when there is no sea ice cover, and withdraw during cold
period when there is an extensive sea ice cover. Note the hysteresis effect which may be seen by plotting the sea
ice extent vs land ice volume throughout the cycle.

9.2.1 Mid-Pleistocene transition from 41 kyr to 100 kyr glacial cycles

Earth’s climate has been gradually cooling over the past few millions of years due to gradual CO2 drop induced
by tectonic weathering processes (Fig. 2). This cooling was suggested as a possible source of the change in
the character of the glacial oscillations during the Mid-Pleistocene, some 1 Myr ago (Fig. 3), from a 41 kyr
oscillation to a 100 kyr oscillation (Maach and Saltzman [34]). An alternative/ complementary explanation has
been a hypothesized gradual increase of land ice sheets (Ghil and Childress [15]).

A theory for the glacial cycles should certainly also explain the mid-Pleistocene change in the characteristics
of these cycles. Let us consider here a speci£c mechanisms for the Mid-Pleistocene transition, based on the
sea ice switch mechanism. Begin by considering the accumulation of snow over land ice as function of some
averaged global atmospheric temperature (Fig. 69).

Note £rst that due to the temperature-precipitation feedback, a warmer temperature implies a larger precipi-
tation rate, and therefore a larger rate of snow accumulation over land glaciers. This regime is seen to the right
of the vertical dash line in the £gure. If the temperature is yet warmer (beyond point (a) in Fig. 69), precipitation
falls as rain instead of snow, and the rate of accumulation drops. Now, at colder temperatures, extensive sea ice
forms at at some critical temperature as the ocean reaches the freezing point, and this reduces the accumulation
rate because of the effects of sea ice on the atmospheric temperature, on the storm track, and on limiting evapora-
tion from the polar ocean as discussed above. We have seen that the growth of an extensive sea ice cover occurs
at some critical temperature, so it in fact induces a jump in the accumulation rate at that temperature, as seen in
the vertical dash line in the £gure. Below the temperature at which sea ice forms, the accumulation rate is small
and is less sensitive to the temperature changes.

The ablation of land ice is expected to increase with increasing temperature which enhances melting (red
dotted line in £gure), and we also note again that ablation is also strongly controlled by summer solar radiation
(Held [22]).
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Figure 69: Schematic plot of ablation and accumulation as function of temperature.

Proxy observations indicate a very warm deep ocean a few Myr ago, of the order of 15 degree C. Let us
consider, therefore, the effect of the deep ocean temperature on the accumulation - temperature relation (Fig. 70).

A warm deep ocean leads to weaker vertical strati£cation, and therefore stronger mixing between deep and
surface ocean. As a result, the entire ocean, not only the upper ocean, needs to be cooled to create sea ice.
Stronger vertical mixing also leads to stronger THC (Bryan, [5]), and therefore to higher polar temperatures.
These effects mean that, when deep ocean is warmer, atmospheric temperature needs to be colder before sea ice
can form. This amounts to a change in the value of T f of equation (38). This all means that when the deep
ocean is warmer, the vertical dash line representing the jump in accumulation due to the formation of sea ice is
further to the left as seen in the upper panel of Fig. 70. This £gure is the base for our speculations regarding the
Mid-Pleistocene transition.

Consider the climate steady states and their stability based on Fig. 70.

• At points (a,b,c) in the upper panel of Fig. 70, ablation equals accumulation, so that the land glaciers and
therefore the climate system is in steady states at these temperatures.

• By considering the effects of small temperature changes on the accumulation and ablation rates, it is easy
to see that points (a) and (c) are unstable steady states, leading in the direction of runaway greenhouse
and snowball earth scenarios. Suppose, for example, that the climate system is at point (a) and consider
a small warm temperature perturbation. The small warming leads according to the £gure to a regime in
which the ablation is larger than the accumulation, so the glaciers would withdraw. The albedo effect of the
withdrawing glaciers leads to further warming, hence a positive feedback that results in an instability that
causes the climate to get away from point (a). Similar considerations show that point (c) is also unstable.

• For warm deep ocean (upper panel of Fig. 70), point (b) is a stable steady state. Adding the effect of
Milankovitch variations on ablation, results in small, linear, symmetric oscillations around this steady state.
This is the proposed mechanism of the 41 kyr glacial variability prior to the Mid-Pleistocene. Admittedly
this does not explain why the oscillations prior to the bifurcation point are of a period of 41 kyr and not 19
or 23 kyr, and this would have to wait for further work.

• For cold deep ocean, point (b) is no longer on the accumulation curve in the lower panel of Fig. 70, because
it lies on the sea-ice induced jump in accumulation. This is the regime in which the sea ice switch 100 kyr
glacial oscillations occur, as described in the following section.

So, a deep ocean cooling induces a transition from symmetric 41 kyr oscillation to asymmetric nonlinear 100 kyr
oscillation. This is due to a bifurcation of the climate system due to the change in the accumulation temperature
relation as described above. That this is a bifurcation means that there is a threshold that the deep ocean cooling
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crosses in order to have the system cross the bifurcation point (that is, make point (b) lie on the vertical dash
line). This is the proposed mechanism for the observed climate shift of 1 Myr ago [60]. Note that since the deep
water cooling needs to cross a certain threshold to activate the sea ice switch oscillations, it does not matter when
most of the deep ocean cooling has occurred (presumably more than a few million years ago), but only when the
threshold was crossed by Tf in equation (38) (which we speculate has happened one Myr ago).
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Figure 70: Ablation and accumulation as function of temperature, for warm and for cold deep ocean states.

Making Tf in (38) a slowly varying function, decreasing with time, and integrating the above simple model
of the sea ice switch mechanism, we obtain the results in Fig. 71, showing a Mid-Pleistocene like transition
from small amplitude 41 kyr oscillations to larger amplitude 100 kyr glacial oscillations. It would certainly be
interesting to perform a more careful bifurcation analysis to £nd out precisely what kind of a bifurcation the
Mid-Pleistocene transition corresponds to in this model. . .
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Figure 71: A simulation of the mid-Pleistocene transition from [60].
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9.3 Biogeochemical toy models for glacial CO2 variability

Given the clear signal of glacial-interglacial CO2 changes (Fig. 37), it is natural to wonder if CO2 variations
cause the glacial cycles via their greenhouse effect. Alternatively, could the CO2 variations have been caused by
the glacial cycle in the physical climate system so that they only served to amplify the glacial variability? We
only discuss here the possibility that CO2 variations are driven by the glacial cycles rather than being an essential
element for the existence of these cycles. We therefore need to explain how the CO2 variations are caused. As
a background material, the reader is referred to the various geochemical textbooks for a review of some of the
relevant feedbacks and issues [63], including the following terms.

1. Soft tissue pump (reduces atmospheric CO2).

2. Hard tissue pump (increases atmospheric CO2 due to Alkalinity effects).

3. Solubility pump: increased atmospheric CO2 when the ocean warms.

4. Red£eld ratio: 106 C : 16 N : 1 P.

5. Productivity (and its dependence on light and nutrients), export production.

6. Iron fertilization (possible increase in biological productivity in high latitudes during the last glacial max-
imum; effects of increased dust levels etc.

7. CO2 gas exchange between ocean and atmosphere; dominance of oceanic carbon reservoir, and especially
of the deep ocean reservoir.

9.3.1 Atmospheric CO2 and vertical ocean mixing

Toggweiler [57] has used a variety of box models, starting with the simplest 3 box model (Fig. 72) to propose a
geochemical mechanism for the glacial changes in atmospheric CO2.

Atmosphere

d

lh
THC

THC

THC

VMP
h P

l

Figure 72: A box model for glacial-interglacial CO2 variations. The boxes represent the upper mid-latitude ocean
(l), the surface polar ocean (h) and the deep ocean (d), as well as the atmosphere.

In the box model of Fig. 72, one may write the (total) carbon ΣCO2 balance for the deep box under steady-
state conditions as a balance of advection (by the thermocline circulation T HC) and mixing (by V M, via some
internal wave mechanism), plus a term that represents the sinking of carbon from the surface boxes to the deep
box as part of the export production from the low and high latitude surface boxes Pl +Ph:

0 = (V Mhd +T HC)∗ (∑CO2h−∑CO2d)+RedC:P(Pl +Ph),
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where RedC:P is the Red£eld Ratio. Assume Pl = T HC ∗PO4d , which means that we assume all the surface
nutrients in the mid-latitude box to be utilized by the biological activity and be converted to export production.
Further assume PlÀ Ph meaning again that the mid-latitude biological activity is very ef£cient, acts over a larger
area relative to that of the high latitudes, and therefore utilizes all the available nutrients. Using these assumptions
we have

∑CO2d−∑CO2h = RedC:P
T HC ∗PO4d

V Mhd +T HC
.

For a suf£ciently fast gas exchange with the atmosphere, upper ocean ∑CO2 in lower and higher latitudes are
equal, so that

∑CO2d−∑CO2l ∼ RedC:P
T HC ∗PO4d

V Mhd +T HC
, (39)

which is the result we were after: the ∑CO2 difference between the upper and deep ocean is controlled by
vertical mixing and by the amplitude of the THC. A reduction in vertical mixing in the high latitude Southern
Ocean should result according to (39) in an increase of the concentration of (total) carbon difference between
the upper and deep ocean. Taking the deep ocean concentration to be constant due to its large reservoir, this
implies a reduction of the surface total carbon and CO2 concentration. Since the atmospheric CO2 concentration
is determined by that of the upper ocean, we can expect that a reduction of the vertical mixing in the Southern
Ocean would lead to a reduction in atmospheric CO2 [57]. However, this mechanism is not capable of explaining
why the vertical mixing in the ocean should change, and this is what we do in the following section based on the
sea ice switch mechanism again.

9.3.2 Sea ice switch and mechanism of vertical mixing change in the Southern Ocean

The biochemistry mechanism of Toggweiler [57] described in the above section speci£es a change in the vertical
mixing between the deep and the surface Southern Ocean. However, no physical mechanism is provided for this
change in the physical climate system. A physical mechanism for the vertical mixing changes that may result in
the glacial-interglacial CO2 variations was proposed by Gildor and Tziperman [17], based on the sea ice switch
mechanism, as follows. The strati£cation in the Southern Ocean (SO) is composed of cold, fresh and therefore
light water above warm, salty and therefore dense water. Glacial conditions in the northern hemisphere cool
the North Atlantic Deep Water (NADW), and consequently, via the southward ¤ow of NADW, cool the deep
temperature in the SO. Because of the permanent ice cover over Antarctica, the surface ocean temperature in the
SO near Antarctica is close to the freezing point during the entire glacial cycle, so that it cannot cool very much
even during glacial conditions in the northern hemisphere. Glacial conditions therefore increase the density of
deep SO water but not of the surface SO water. This strengthens the vertical strati£cation in the SO. As a result,
vertical mixing in the SO is expected to be reduced, based on a simple internal wave parameterization for the

vertical mixing coef£cient such as κv ∝
(

∂ρ
∂z

)¡α
(Gargett [13]). Thus we have explained the vertical mixing

change in the Southern ocean as being a result of the northern hemisphere glaciation, and hence provided the
missing link between the atmospheric CO2 variations induced by the biogeochemistry and between the physical
climate system.

Note that this mechanism implies that the northern hemisphere leads the southern hemisphere during the
glacial cycles, and that temperature changes in the northern hemisphere lead CO2 changes in the southern hemi-
sphere. The time lag between the two hemispheres, and in particular between temperature northern hemisphere
temperature and atmospheric CO2, is expected to be the time it takes the cooling signal to propagate from the
northern hemisphere to the southern hemisphere, via the advection of the NADW. This is roughly a time scale
of 500-1500 years. The phase relation between the two hemisphere seems to still be under debate in the paleo
literature.
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Lecture 10

Paleoclimates and Mars

Raymond T. Pierrehumbert

Much of the motivation for climate theory stems from the need to understand the
current-day climate and the possibility that we are irrevocably changing it by burning fossil
fuels, pumping pollutants into the atmosphere and cutting down rainforests. Unfortunately,
our pursuit of the problem is hampered by the fact that the record of our quantitative
observations of key quantities like sea surface temperature, CO2 concentration and humidity
is far shorter than most of the timescales on which the climate seems to vary intrinsically.
Instead we need to rely on, for example, geology and geochemistry to construct proxy
signals for the important climate variables that can be traced much further back in time.
The reconstruction can then be used to further test and improve our understanding and
models of the climate. Somewhat similarly, we need not only focus on our own terrestrial
climatological experiment: the atmospheres of Mars and Venus, whilst very different in
detail from our own, might also operate with analogous dynamical controls. Thus, one
is tempted to assess our understanding by exploring past and extra-terrestrial climates.
Unfortunately, this also highlights many other thorny issues which expose our basic lack
of understanding and the shortcomings of our models. This lecture mentions some of the
open and partiall answered questions that are raised by consideration of climate history and
other planets.

1 The Eocene

About two million years ago, glacial cycles were initiated. Before that relatively late epoch
of Earth’s history, the climate appears to have been in a state of gradual cooling, lasting
for some 65 million years. One possible explanation for this trend is based on the gradual
reduction of atmospheric CO2, and therefore the greenhouse effect (the precise cause of
this reduction is not clear – the weathering of the uplifting Himalayas, which converts
atmospheric CO2 to carbonate minerals, could be responsible). Whatever the precise cause,
this sets the stage for the “Eocene”, a period about 55 million years ago when the climate
was apparently relatively warm.

The evidence for a warm Eocene climate rests partly on paleoclimate data for oxygen
isotopes in marine sediments which suggests that the deep ocean temperature was approx-
imately 10◦ C (substantially warmer than present-day temperatures). This also suggests
that there was no permanent polar ice cover because the melting of any polar ice would
immediately flood the deep ocean with water of much lower temperatures. Further evidence
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is provided by fossil records from the Eocene period which reveal the presence of animal
species in geographical regions that would be inhospitable for them today (for example,
crocodiles inhabited the Hudson Bay and lemurs lived in Spitzbergen in Scandinavia). The
overall conclusion is that the midlatitudes and poles were warmer during the Eocene, a
conclusion that is generally accepted by climatologists.

By contrast, foraminifera (plankton) data suggests that the tropical temperature during
this time was about 305 K or less, which is more comparable with temperatures experi-
enced today. This highlights a curious puzzle: how can the climate maintain a relatively
cool tropical region whilst raising the polar temperatures sufficiently to melt the ice caps?
No compelling explanation currently exists. Certainly it is possible to explain elevated
temperatures if the CO2 concentration (and greenhouse effect) was higher. However, one
then must increase the latitudinal heat transport significantly over present-day values in
order to lower the surface temperature gradient to that required to keep the tropics cool.
Unfortunately, detailed, state-of-the-art, coupled atmosphere-ocean models are unable to
explain such enhanced heat transports (if anything, in the warmer Eocene temperatures,
these models predict lower latitudinal heat transport). One possibility is that the ocean
heat transport was enhanced in the Eocene, perhaps as a result of pronounced tidal dis-
sipation or some other physical effect not incorporated into the coupled models. Another
is that stratospheric clouds shrouded the tropics and reduced the incoming radiation suffi-
ciently to render the tropics more temperate. Either way, we need some important revision
of the climate models in order to solve the puzzle. Alternatively, it is conceivable that the
estimated equatorial temperature is simply in error, in which case the interesting puzzle
vanishes altogether.

2 The Neoprotozoic Snowball

Even further back in Earth history, about 600 million years, we arrive at another climate
conundrum, the possibility that, on two or three occasions, the planet was completely frozen
over – the Neoprotozoic “snowball Earth”.

There are, in fact, some compelling reasons to believe the Earth was a snowball in
the past. First, the C12 to C13 ratio in ocean sediments implies the ocean was relatively
abiotic (devoid of organisms) in the past (the two isotopes of carbon are used differently
by marine organisms), and one of the best explanations for an abiotic ocean is that it was
frozen over. Second, there is geological evidence that the atmosphere contained high levels
of CO2. Under normal conditions, CO2 is precipitated out of the atmosphere and removed
by the weathering of rock. High CO2 levels, however, can be built up and maintained by
volcanic activity in a snowball Earth in which weatherable rocks are covered by ice. Finally,
there is even geomorphological evidence for glaciation at low latitudes.

There are three main questions regarding the snowball Earth during this period. First,
what are the conditions necessary for the Earth to become a snowball? Second, how would
the Earth get out of a snowball climate as models suggest that, if it exists, the snowball
is a stable state? Third, if the snowball Earth is commensurate with large quantities of
atmospheric CO2, what happened to all this CO2, and could the high CO2 level allow one
to discriminate against models that then predict a runaway greenhouse climate? It is often
impractical to address such issues with GCMs, so we attempt to offer some answers to these
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questions using a one-dimensional energy balance model.
As in lecture 7, the main ingredient to the model is the balance between the solar heat

input and the outgoing long-wave radiation (OLR). The solar heating is determined by the
total incoming radiation (S), which was 6% less during the neoprotozoic than today, and the
albedo (α), which is in turn a function of land fraction and cloud parameterization. The
OLR is a function of the Earth’s surface temperature (T ), the atmospheric CO2 (about
20% for the neoprotozoic) and the (constant) relative humidity. Unlike in lecture 7, we
simplify the model somewhat by fixing the latitudinal structure of the temperature to be
uniform over the tropics and parabolic in y = sin φ (with φ latitude) elsewhere; see figure
1. The equator-to-pole temperature gradient (DT ) and the latitude of the ice margin are
then variables of the model. However, as in lecture 7, we treat the latitude of the ice
margin as a free parameter, compute the thermal structure of the model and search for
the special location of the ice margin that gives the corresponding temperature to be 273
degrees Kelvin. The pole-equation temperature difference DT is thereby determined by the
global energy balance.

−80 −60 −40 −20 0 20 40 60 80
Latitude

T(
φ)

Flux DT 

Figure 1: Temperature profile used in the one dimensional energy balance model for the
snowball Earth.

Figure ??? shows the temperature at the ice margin for computations with different
levels of atmospheric CO2 and different cloud parameterizations. This figure is not yet

available. As in lecture 7, for several cases there are multiple equilibria consisting of so-
lutions with polar ice caps (with a finite ice margin latitude whose temperature is 273K),
and a completely ice-covered snowball (for which the ice margin is at zero latitude and
the temperature is less than 273K). Other computations reveal no equilibria other than
the snowball; a frozen planet would inevitably result under the corresponding conditions.
Unfortunately, as with all climate models, the parameterization of clouds represents the
largest source of error and uncertainty. However, the model suggests that a snowball Earth
is possible. The main physical ingredient needed seems to be a significant contribution to
the albedo from the clouds.

If the Earth does becomes a snowball, how does it escape this snowball climate? In order
to deglaciate, the ambient conditions must change so that the system is kicked away from
the snowball solution and proceeds to another solution such as a stable ice-cap solution or
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Figure 2: The possibility of deglaciation: A completely snowball Earth subject to large
levels of CO2.

an ice-free one. For example, as shown in figure 2, by building up the atmospheric CO2,
we can induce the disappearance of the snowball solution and a runaway deglaciation. The
computation shown is on the brink of deglaciation – the slightest perturbation or further
increase in CO2 would open up an ice-free equatorial region that would permit more heating
and deglaciate the planet completely. The equatorial temperature would eventually settle
down to a warm 320K.

Thus with different settings for the cloud physics and CO2, it certainly seems plausible
to evolve the Earth into a snowball state, and then deglaciate it. One unappealing feature of
the model is that the settings required for each event are incompatible. The main conclusion
from the toy model is therefore that the neoprotozoic snowball scenario is conceivable, if
critically dependent on the cloud parameterization. Such a sensitivity does not bode well
for the robustness of results from GCMs, which use a variety of such parameterizations.

3 Early Mars

Now we turn to the climates of other planets, and focus on Mars for which recent space
missions have provided a wealth of new information. One of the most significant results
is that there is now fairly conclusive evidence that there was once a flowing liquid on the
surface of this planet. For example, Figs. 3 and 4 show photographs of features reminiscent
of river valleys and catastrophic flood plains, and Fig. 5 outlines the large, flat polar area
that resembles an ocean floor. Also notable are apparently glacial landforms.

The flood features can be dated to be about 4 billion years old. But Mars today is too
cold to have running water, so could it have been warm enough in the past, particularly given
that the sun’s output then was approximately 70% of its current value? The answer might
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Figure 3: Figure showing possible water features on Mars.

Figure 4: Figure showing the Martian surface (complete with principal lecturer and family).
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Figure 5: Laser altimetry data showing a possible polar ocean.

lie in CO2: It is thought that early Mars may have had an almost pure CO2 atmosphere,
which may have been instrumental in raising the temperature sufficiently to allow water
to flow on the surface. Somewhat later, Mars must have lost this atmosphere, leaving the
planet as it is today.

To decide how tenable such an explanation is, we need to think more carefully about
the structure of the early Martian atmosphere and the possible climate dynamics associated
with it. One important ingredient is that CO2 condenses (to solid dry ice) within the
temperature range of the Martian atmosphere. By analogy with the atmospheric structure
of the Earth’s tropics, we might then expect that the thermal stratification would follow
some analogue of the moist adiabat in the layers where CO2 can condense. More specifically,
the Clausius-Clapeyron relationship for CO2 between the condensation temperature, Tc, and
the pressure, p, can be written in the form,

Tc(p) =
3148

23.02− ln p
(1)

(p in mbar), which plays the role of the moist adiabat for early Mars.
By suitably modifying the radiative energy balance models described in earlier chapters

to incorporate this and other physics of the Martian atmosphere, we can proceed to explore
whether the surface was ever warm enough to support liquid water. The results suggest
that no matter how much CO2 is put into the Martian atmosphere, the temperature never
rises above the freezing point of CO2 on the surface; the highest attainable temperature
is 220K with 2 bars of surface pressure. However, these computations ignore the Martian
analogue of clouds.
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The condensation of CO2 could in principle also generate clouds of dry ice. Such clouds
scatter large amounts of infrared radiation, and might significantly warm the surface. In-
deed, the incorporation of parameterizations of dry-ice clouds in the radiative balance mod-
els suggests that for a surface pressure of 2 bar it is possible to warm the Martian surface
temperature to 300K. (It is not necessary to include water vapor and nitrogen in such a
model, however, the increase in temperature is more dramatic if they are included.) Thus,
with dry-ice clouds, we might be able to achieve our goal of warming the surface above
freezing so that water flow can shape the early Martian landscape.

The next step is to explain how early Mars evolved. The cloudy model requires a surface
pressure of at least 2 bars to achieve sufficiently high surface temperatures. But Mars today
has only 6 mb of surface pressure, so where did it all go? One explanation resides in the
dynamics of immense CO2 glaciers that may have existed at the Martian poles.

Given current Martian surface temperatures, one expects that CO2 only condenses well
above the surface near the equator. However, surface temperatures decrease with latitude,
and eventually fall beneath the condensation temperature. Poleward of this margin, CO2

snow falls from the atmosphere, and the planet surface could become covered by dry ice.
In principle, large quantities of CO2 could be stored in such ice caps (in fact, the whole
atmosphere, if condensed, could be contained in a 1km high glacier), leading to a delicate
mass balance between the atmosphere and the glaciers. This delicate balance could easily be
upset by greenhouse and albedo feedback effects, the result of which could be the runaway
to the current Martian climate (in which neither ice cap is pure CO2, and the north polar
ice cap is, in fact, predominantly H2O).

The glaciers are, however, restricted in thickness: At typical subglacial temperatures,
and for pressures greater than about 5 bars, instead of solidifying to dry ice, CO2 is forced
into its liquid form. Such pressures first occur at the base of a glacier with a depth of
about 100m due to the weight of the overlying dry ice. This liquid CO2 flows toward the
ice-margin until the pressure decreases sufficiently for it to re-freeze. However, the liquid
layer lubricates the base of the glacier, and should the ice become any thicker, the glacier
may well slide freely (surge) to lower latitudes. This action redistributes the mass of the
glacier, causing the shape to become more rectangular, and provides a dynamical control on
the glacier thickness. It is also notable that, unlike water and ice, the density of solid CO2

is greater than that of liquid CO2. Thus glacier fragments sink into the liquid and perhaps
melt rather than float like terrestrial icebergs. All this suggests the intriguing possibility
that an entirely different kind of glaciology existed in the early Martian Chronicles.

Given these rough ideas, we can also build a simple energy balance model for Mars
including the CO2 ice caps. The methodology is somewhat similar to the models of the
neoprotozoic snowball Earth, but with the additional novelties that a change in the location
of the ice margins also changes the amount of atmospheric CO2 (and therefore the OLR),
and that the temperature of the ice margin should be given by the condensation temperature
appropriate to the specific surface pressure, Tc(p), as in (1).

Results from such a model are shown in Figs. 6 and 7. A twist in the solution of the
current model is that the ice margin is specified by assuming the toe of the glacier to be at
the freezing temperature. Then the energy budget is calculated - the albedo and greenhouse
effect being affected by the ice margin’s location. Fig.6 shows the global surface pressure
plotted against ice-margin position. This plot confirms the expected mass balance - when
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Figure 6: Plot of surface pressure against sine of the latitude of the ice margin.

the ice margin is at the equator, practically all the CO2 is captured in the ice sheet and
thus the pressure of the atmosphere approaches zero. As the ice-sheet recedes back to the
pole, CO2 is reinjected into the atmosphere and the pressure increases accordingly.

Fig.7 shows the global net heat flux (incoming minus outgoing radiation) against the
position of the ice margin. The fixed points of the system are where the plot crosses the
line of zero net flux. There are two such equilibria; the right-hand fixed point is unstable,
whereas the left-hand one, a low-latitude glacier, is stable. These stability characteristics
follow because a positive flux perturbation at the high-latitude glacial state corresponds to
an increase in the latitude of the glacier margin. But such a flux perturbation also leads
to a warming of the climate which provokes further recession of the glacier to the pole.
Conversely, for the low-latitude equilibrium glacier, the introduction of a similar flux excess
increases the glacier margin, and the subsequent heating of the climate melts the margin
back to its original position.

To summarize, it is possible that early Mars was warmer and wetter in the past. With
less CO2 stored in the glaciers, the combined effect of greenhouse gases, reduced albedo and
cloud dynamics can produce a ground temperature high enough to allow liquid to flow over
the surface to shape the land. Subsequently, the dynamics of the CO2 glaciers could have
played an important role in the evolution of the Martian climate to its current state.

Notes by Matt Spydell, Fiona Eccles, and Helén Andersson
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Slipping instability

in a system of two superposed fluid layers

Chiara Toniolo

1 Introduction

The stability of the interface between two layers of immiscible, incompressible fluids is
studied. Since the fluids may have distinct physical properties, the interface is susceptible
to instabilities due to density stratification, shear-flow instabilities or interfacial ones, arising
from discontinuities in longitudinal stresses at the boundary between the two media ([14],
[15], [4], [13]).

The motivation of this analysis is the study of a particular kind of fast flowing glacier,
found in the Antartica and in Greenland and known with the name of ice stream. An
ice stream can be generically identified, as a part of an inland ice sheet that flows rapidly
through the surrounding ice ([10]). Ice streams appear as long, shallow tongues, extended
in the two horizontal directions and may end as outlet glaciers, bordered by rocks, or as ice
shelves, floating over water. Altough they represent only a low percentage of the Antarctic
coastline, they may drain out of the polar regions a substancial part of the accumulation in
the interior.

Since ice stream motion provides a process for rapid dispersal and disintegration of
ice sheets, an understanding of the underlying physical mechanism of ice streaming flow is,
other than intriguing by itself, relevant in attempting to evaluate the dynamics of continental
expanses.

In order to explain the basic mechanisms of the instability is necessary to explore the
physical properties of the till, the layer at the bottom of these fast moving streams. The till
is a complex material consisting of a liquid, deformable, inhomogeneous, anisotropic mixture
of water and unconsolidated sediments ([5]). As a consequence of the high pressures, the
base of the stream is often melted rather than frozen.

All the existing quantitative models of ice stream dynamic thus relate the characteristics
of the flow to the complex nature of the basal layer and to the interactions between the
latter and the thick overlying frozen one.

In general, four different kind of explanations of ice-stream behaviour are usually found
in literature:

• sliding of the thick ice layer over the thin till, acting as a lubricant ([8], [9]);

• shear deformation of the water-saturated till underlying the ice ([1]);
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• thermomechanical feedback, arising from the dependence of viscosity on temperature
of ice ([11], [12]);

• superplasticity of the till ([7]).

What follows will be concerned with the first two mechanical interpretations of ice
stream dynamic. The aim of this work is the investigation of the peculiar properties of such
a kind of flow, considered as a mechanism resulting from the combination of glacier-like
sliding and ice-shelf slipping.

Figure 1: Landsat image of Rutford Ice Stream B, West Antartica, flowing from left to
right between the solid rock wall on one side and low lying ice-covered promontory on the
other. Image courtesy of D. D. Blankenship et al., Geophysical and Polar research Center,
University of Wisconsin-Madison.

In the past, several models of fast sliding glaciers have been applied to ice-streams, most
of them having included semiempirical laws to express the stress at the bottom of the mass
of ice. This trick allows to simplify the mathematics, since an explicit formulation of the
basal dynamic is not required, but in some way it introduces arbitrary assumptions in the
formulations.

In the commonly accepted interpretation, the glacier is sliding on a deforming bed,
usually a frozen one, absorbing most or all of the differential motion between the ice and
the bedrock. On the other hand an ice-shelf spreading is due to longitudinal, rather than
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shear stresses, which its floating base cannot support. Given these, there is a deep dynamic
difference between a fast moving glacier and an ice-shelf.

To the discussion about the governing equations, the derivations of the glacier and ice-
shelf models and a preliminary stability analysis will follow. Finally, a one-dimensional
ice-stream model will be introduced.

2 Mathematical Formulation

Since the key ingredient in the fast stream dynamic is the interaction between the till and
the ice over it, in order to limit as much as possible the amount of assumptions on the
structure of the stresses regarding the till, all the models presented hereafter will be two
layer ones.

2.1 Basic equations

The evolution of a flow with longitudinal and transversal structure is described by a set of
three dimensional, non steady, isothermal equations.

 

� � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � � �

(1)

(2)

    φ

    z

   x

y

z=h

 =ζ z

z=0

Figure 2: The coordinate system and the configuration for the two fluids

In the continuum hypothesis, having decoupled the dynamic problem from the ther-
modynamic one, the governing equations for the two fluids reduce to the incompressible
continuity equation and to the conservation of momentum. Defined an orthogonal coordi-
nate system as in figure (2), z being the vertical coordinate and S = tan(φ) the slope of
the fixed bottom, the equations representing the two layers are:

u1x + v1y + w1z = 0

u1t + uu1x + vu1y + wu1z = − 1

ρ1

p1x +
1

ρ1

(∂xτxx + ∂yτxy + ∂τxz) + gsin(φ)
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v1t + uv1x + vv1y + wv1z = − 1

ρ1

p1y +
1

ρ1

(∂xτxy + ∂yτyy + ∂zτyz)

w1t + uw1x + vw1y + ww1z = − 1

ρ1

p1z +
1

ρ1

(∂xτxz + ∂yτyz + ∂zτzz) − gcos(φ) (1)

and:

u2x + v2y + w2z = 0

u2t + uu2x + vu2y + wu2z = − 1

ρ2

p2x +
1

ρ2

(∂xσxx + ∂yσxy + ∂σxz) + gsin(φ)

v2t + uv2x + vv2y + wv2z = − 1

ρ2

p2y +
1

ρ2

(∂xσxy + ∂yσyy + ∂zσyz)

w2t + uw2x + vw2y + ww2z = − 1

ρ2

p2z +
1

ρ2

(∂xσxz + ∂yσyz + ∂zσzz) − gcos(φ) (2)

where the subscripts (x,y,z) denote partial derivatives, (1) and (2) refer to the upper and
lower fluid, u = (u, v, w) is the velocity field, g = (gsin(φ), 0,−gcos(φ)) is the gravity force,
τij and σij the anisotropic parts of the stress tensors, the total deviatoric tensors being
respectively:

T = τ − p1I

S = σ − p2I (3)

2.2 Boundary conditions

The problem needs, to be defined, the specification of the associated boundary conditions.
At the base of the stream a no-slip condition is required. Since the base is kept fixed,

this imposes on z=0:
u2 = v2 = w2 = 0 (4)

At the interface z = ζ between the two media the physical request of matching of the
stresses has to be satisfied:

T · nζ = S · nζ (5)

having defined nζ = (−nx,−ny, 1)/(n
2
x + n2

y + 1) as the unit normal pointing out of the
surface z = ζ.

The last one at the free surface imposes a zero stress at the elevation z = h:

T · nh = 0 (6)

and expresses the continuity of stresses between the upper layer and a medium (air) much
less dense overlying it.

2.3 Rheology of the problem

The system is then closed specifying the functional relation between the stress tensors T

and S and the properties of the two fluids. This defines the analogous of the Newtonian
constant viscosity in the case of a nonlinear relationship between strain rate and stress.
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A fairly general model is a power law contitutive relation of the kind:

τij = Kγ̇n−1 · γ̇ij (7)

where K is the consistency, dependent on temperature, pressure, composition of the mate-
rial, n > 0 a fixed real exponent (n = 1 for a Newtonian fluid) and γ̇ the second invariant
of the strain rate, expressed by:

γ̇ =

√

1

2
γ̇jk · γ̇jk (8)

According to the previous notation, the strain rate tensor becomes:

γ̇ij =





2ux uy + vx uz + wx

uy + vx 2vy vz + wy

uz + wx vz + wy 2wz



 (9)

In the till-ice system, none of the two components has a simple behaviour. Nonetheless,
a proper discussion of the rheological properties of the till goes beyond the aim of this work
and could eventually follow to a first understanding of the primary instability mechanism.

In the model presented further on, the till will be considered like a Newtonian fluid,
with constant viscosity, while for ice the constitutive relation will be a power law one of the
kind discussed above (7). Ice is a shear thinning fluid, in the sense that an increased strain
rate produces a decrease in the effective viscosity. In fact, for ice:

n ∼ 1

3
(10)

The equation (7) is in this case (and for all values of n < 1), not well behaved for some
particular flow configuration, predicting in fact an infinite effective viscosity for values of
the strain rate approaching zero.

3 The Glacier Theory

In a glacier the slab deformation at a generic depth is moslty due to shear stress, the bottom
attached to the rock being commonly frozen.

Thus the minimum model for such a kind of system is represented by the superposition
of two Newtonian fluids with different densities and viscosities, described at leading order
by an hydrostatic balance in the vertical and by a balance between pressure gradient force
and shear stress in the horizontal direction x.

3.1 Non-dimensional equations

Focusing the attention on the one-dimensional case, the relevant balance in the x-momentum
equation is expressed for both fluids by:

p1x ∼ ∂zτxz (11)

p2x ∼ ∂zσxz (12)
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Continuity and momentum conservation equation reduce, in a one-dimensional frame-
work, to:

u1x + w1z = 0

u1t + u1u1x + wu1z = − 1

ρ1

∂xp1 −
1

ρ1

(∂xτxx + ∂zτxz) + gsinφ

w1t + u1w1x + ww1z = − 1

ρ1

∂zp1 −
1

ρ1

(∂xτxz + ∂zτzz) − gcosφ (13)

u2x + w2z = 0

u2t + u2u2x + wu2z = − 1

ρ2

∂xp2 −
1

ρ2

(∂xσxx + ∂zσxz) + gsinφ

w2t + u2w2x + ww2z = − 1

ρ2

∂zp2 −
1

ρ2

(∂xσxz + ∂zσzz) − gcosφ (14)

where the subscripts 1 and 2 refer to the upper and lower fluid respectively.
The set of equations above is then non dimensionalized by choosing the following scales:

x = Lx̃, z = Hz̃, u = Uũ, w =
UH

L
w̃, t =

L

U
t̃ (15)

For pressure:
p = ρ1gHp̃ (16)

and strain rate:

γ̇ij =
U

H
˜̇γij (17)

The leading order balance defines then the scale for horizontal velocity U = ρ1gH3

ν1L . With

this restriction, defining as ε = H
L the aspect ratio for the two thin layers and indicating

with Re = ρ1UL
ν1

the small Reynolds number of the flow, the inertial terms in the governing

equations become negligible at leading orders, being proportional to ε2Re.
The simplified non dimensional form of the governing equations, dropping the tilde

superscript, is then:

0 = u1x + w1z

0 = −p1x + ε∂xτxx + ∂zτxz + S

0 = −p1z + ε2∂xτxz + ε∂zτzz − 1 (18)

0 = u2x + w2z

0 = −p2x + ε∂xσxx + ∂zσxz + SD

0 = −p2z + ε2∂xσxz + ε∂zσzz − D (19)

where S = tanφL
H is the non dimensional slope and D = ρ2

ρ1
is the density ratio. The

components of the strain rate tensor, in the new rescaled variables are:

γ̇(i)
xx = 2εuix γ̇(i)

xz = uiz + ε2wix γ̇(i)
zz = 2εwiz (20)
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where i=1,2.
The system is finally defined by the boundary conditions at the rigid bottom boundary

z = 0:
u2 = w2 = 0 (21)

at the interface z = ζ between the two fluids:

−ε(τxx − p1)ζx + τxz = −ε(σxx − p2)ζx + σxz (22)

−ετxzζx + (τzz − p1) = −εσxzζx + (σzz − p2) (23)

(24)

and at the free surface z = h:

−ε(τxx − p1)ζx + τxz = 0 (25)

−ετxzζx + (τzz − p1) = 0 (26)

3.2 The 1-D thin glacier theory

The derivation of a thin layer model ([2], [3]) describing the evolution of the system at the
boundaries, follows directly from the assumption of a shallow layer for both ice and till.

The smallness of the aspect ratio ε allows to perform an asymptotic expansion of the
governing equations, reducing the complexity of the initial formulation to a simplified set
of equations that incorporate the basic physical aspects of the phenomenon.

This is done by expanding all the variables in power series of ε:

ui = u
(0)

i + εu
(1)

i + O(ε2), wi = w
(0)

i + εw
(1)

i + O(ε2), pi = p
(0)

i + εp
(1)

i + O(ε2) · · · (27)

and so on. Collecting terms of the same order in ε one obtain a set of governing equations
that solves the problem at the different orders.

At leading order, according to the previous definition (20) of the strain rate tensor:

τ (0)

zz = −τ (0)

xx = 0 (28)

and seemingly:
σ(0)

zz = −σ(0)

xx = 0 (29)

indicating a basic flow independent on z in the upper layer.
The interior flow is thus completely determined specifying the velocity field (u, w) at

the boudaries and solving the two evolution equations for ζ and h:

ζt + u(ζ)ζx = w(ζ) (30)

ht + u(h)hx = w(h) (31)

The pressure field, hydrostatic at leading order, is given by:

p
(0)

1
= h − z (32)

and
p
(0)

2
= h − ζ + D(ζ − z) (33)
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(the (0) superscript at the right end side of the equations have been dropped for conve-
nience).

Then, integrating the second of (18) along the vertical and given the upper boundary

condition τ
(0)

xz (h) = 0:
σxz(ζ) = (S − hx)(h − ζ) (34)

Here, the stress component σxz is evaluated from an integration in the lower layer:

σ(0)

xz (ζ) = (ζ − z)(hx − ζx + Dζx − SD) + σxz(z) (35)

The velocity at the boundary z = ζ, equating (34) and (35) is:

u =
1

ν2

[(S − hx)(h − ζ)ζ − (hx − ζx + Dζx − SD)
ζ2

2
] (36)

Since at leading order the flow is independent on z:

u(h) = u(ζ) (37)

while for the vertical component of velocity (integration of continuity equation):

w(h) = w(ζ) −
∫

h

ζ
uxdz = w(ζ) − ux(ζ)(h − ζ) (38)

The final set of equations, defining θ = h − ζ to be the thickness of the upper layer is
then:

ζt + ∂x[(S − hx)
θζ2

2
+ (θx + Dζx − DS)

ζ3

3
] = 0 (39)

Rθt + ∂x[(S − hx)
θ3

3
+ θu] = 0 (40)

u = R[
ζ2

2
(DS − Dζx − θx) + (S − hx)θζ] (41)

where the new relevant parameter R is a viscosity ratio of the form ν1

ν2
.

3.3 The 2-D extension

It’s straightforward the generalization in presence of a bidimensional horizontal structure:

u − R[(S − hx)θζ +
ζ2

2
(DS − Dζx − θx)] = 0

v + R[hyθζ +
ζ2

2
(Dζy + θy)] = 0

Rθt + ∂x[(S − hx)
θ3

3
+ θu] + ∂y[−hy

θ3

3
+ θv] = 0

ζt + ∂x(S − hx)
θζ2

2
− (θx + Dζx − DS)

ζ3

3
] − ∂y[hy

θζ2

2
+ (θy + Dζy)

ζ3

3
] = 0 (42)

here (u,v) indicate the velocity components in the directions (x,y).
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4 The Ice-Shelf Theory

In a ice-shelf, floating on the sea, the lower layer is liquid water, much less viscous than the
ice moving on it. In this case, considering pretty uniform the thickness of the shallow layer
of ice, the vertical shear is zero and the big mass of ice behaves like a uniform slab, subject
to zero fricton at its upper and lower surfaces.

4.1 Non-dimensional equations

In the 1-D model, the essential balances for the two fluids are expressed by:

p1x ∼ ∂xτxx (43)

p2x ∼ ∂xτxz (44)

From equation (43) it’s clear the relevance of the longitudinal stresses in the ice layer.
The set of equations (13), (14) is again non-dimensionalized using the same scales as for

the glacier case, getting:

0 = u1x + w1z

0 = −εp1x + ε∂xτxx + ∂zτxz + S

0 = −p1z + ε∂xτxz + ∂zτzz − 1 (45)

and:

0 = u2x + w2z

0 = −p2x + ε∂xσxx + ∂zσxz + SD

0 = −p2z + ε2∂xσxz + ε∂zσzz − D (46)

where the components of the strain rate tensors are respectively:

γ̇(1)

xx = 2u1x γ̇(1)

xz =
1

ε
u1z + εw1x γ̇(1)

zz = 2w1z (47)

and:
γ̇(2)

xx = 2εu2x γ̇(2)

xz = u2z + ε2w2x γ̇(2)

zz = 2εw2z (48)

It’s worth noting how the stress components are defined and scaled differently in the
two layers. In fact, for the upper fluid:

[p1] = [p] = [τij ] (49)

while for the lower one:

[p2] = [p] =
1

ε
[σij ] (50)

and from the continuity of pressures at the boundary z = ζ between the two media:

[σij ] = ε[τij ] (51)
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In the case of two Newtonian fluids, remembering the definitions given above for the
components of the strain rate:

[τij ]

[σij ]
=

ν1

ν2

= R = ε−2 (52)

The boundary conditions at the rigid bottom z=0:

u2 = w2 = 0 (53)

at level z = ζ:

−εζx(τxx − p1) + τxz = −εζx(εσxx − p2) + εσxz (54)

−εζxτxz + τzz − p1 = −εζxεσxz + εσzz − p2 (55)

and at the free surface z = h:

−εhx(τxx − p1) + τxz = 0 (56)

−εhxτxz + τzz − p1 = 0 (57)

finally close the problem.

4.2 The thin ice-shelf theory

With a procedure completely similar to the one followed in section (3.2) one can obtain the
evolution equations for the two boundaries z = ζ, θ = h − ζ and for the velocity u in a
1-dimensional framework:

R[θ(2τxx)]x − (θx + ζx − S)θ − u

ζ
− ζ

2
(θx + Dζx − DS) = 0

θt + (uθ)x = 0

ζt + (
uζ

2
)
x
− 1

12
[ζ3(θx + Dζx − DS)]x = 0 (58)

and in the 2-dimensional one:

R([θ(2τxx + τyy)]x + [θτxy]y) − (θx + ζx − S)θ − u

ζ
− ζ

2
(θx + Dζx − DS) = 0

R([θ(τxx + 2τyy)]y + [θτxy]x) − (θy + ζy)θ − v

ζ
− ζ

2
(θy + Dζy) = 0

θt + (uθ)x + (vθ)y = 0

ζt + (
uζ

2
)
x

+ (
vζ

2
)
y
− 1

12
[ζ3(θx + Dζx − DS)]x − 1

12
[ζ3(θy + Dζy)]y = 0 (59)

with the usual meaning of the parameters R, D and S involved.
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5 Stability analysis

5.1 Linear stability

The first step in the understanding of the instability mechanism is to perform a linear
stability analysis of the two systems presented, in a drastically simplified configuration
of two Newtonian superposed fluids, perturbing around a basic state independent on the
transversal coordinate y and uniform along the longitudinal x-direction.

One of the aims of this kind of study is to look for the occurrence of fingering instabilities
in the horizontal plane.

The parameters determining the stability properties are:

• the non-dimensional slope S;

• the density ratio D (=ρ2/ρ1);

• the viscosity ratio R (=ν1/ν2);

• the scale of the upper layer thickness Θ.

It’s not a restrictive choice to fix the slope (S=1) and to analyse the behaviour of the
two bidimensional models already described in presence of a stable density stratification
(D=1.1). This is in fact the configuration relevant in practise when dealing with ice flowing
on a lower denser layer, represented by frozen compressed till or by liquid water.

The definition of the two basic states follows directly from the sets of equations (42)
and (59) previously derived, being for both models:

θ(x, y, t) = Θ, ζ(x, y, t) = Z = 1 − Θ, h(x, y, t) = Θ + Z = 1 (60)

and:
v(x, y, t) = 0 (61)

The longitudinal velocity component is then expressed for the glacier case by:

u(x, y, t) = U = RΘ(Z + D
Z

2
) (62)

while for the ice-shelf one:

u(x, y, t) = U = Θ(Z + D
Z

2
) (63)

Now, since the geometry is unbounded in the y direction and supposed periodic along x,
is possible to expand the perturbations from the uniform state for all the variables concerned
in the following form:

a = A + ã(z)exp(ikx + ily + σt) (64)

indicating with k and l the longitudinal and trasversal wave numbers of the disturbances
and with σ the associated complex eigenvalue. In particular, Re(σ) being the growth rate
and Im(σ) the celerity of the correspondent waves.

Stability conditions are found solving analitically a quadratic algebraic expression in σ
and are simply determined by the sign of the real part of the eigenvalue.
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The range of unstable wave numbers depends obviously on the choice of the parameters.
By fixing Θ = 0.5 (S=1 and D=1.1), it’s interesting to note Fig (3) that the sensitivity of
the interval of unstable wave numbers on the variations of R appears evident for the glacier
model and not for the ice-shelf one.
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Figure 3: Growth rates as a function of k and l wave numbers, evaluated for increasing
values of the parameter R. Curves (a) and (b) show the growth rates for R=1, 2, 5, 10, 100
for the glacier model, while (c) and (d) correspond to R=0.1, 0.2, 0.5, 1 for the ice-shelf
approximation.

Two representative solutions of the linear problem are then plotted in Figures (4) and
(5).
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Figure 4: Growth rate Re(σ) and phase speed Im(σ) in the wave number plane [k,l] for the
glacier case, choosen R = 2, Θ = 0.5 and D = 1.1. The black line in the first plot is the
marginal stability curve.

In both cases one can observe the appearance of an instability region in a limited part
of the [k,l] plane. The celerities (c = Imσ) are almost constant along l and show a quite
clear linear dependence on k, indicating that all the waves in the plane are moving with the
same phase speed ω (ω = c/k).
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Figure 5: Growth rate Re(σ) and phase speed Im(σ) in the wave number plane [k,l] in the
ice-shelf model with R = 5, Θ = 0.5, D = 1.1.
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Figure 6: Growth rates and Celerities for a glacier configuration (the upper one, R=2,
D=1.1, Θ = 0.5) and for an ice-shelf one (the lower one, R=5, D=1.1, Θ = 0.5) evaluated
by the linear theory (solid lines) and by a numerical experiment (circles), running a spectral
code with respectively N=128 (Time=500, dt=0.01, Computational domain=20) and N=64
(Time=500, dt=0.002, Computational domain=100) modes.

Figure (6) shows a comparison between the linear theory predictions and numerical
experiments performed with the use of a spectral code, displaying a pretty good agreement
among theory and simulations.
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case.

Plotting the maximum growth rate in the plane of the parameters R and Θ, is then
evident the existence, for the glacier model, of two distinct instability regions (Fig. 7). The
first comes out for R > 1, no matter the value of Θ, and it’s enhanced for increased value
of R. The second corresponds to a pretty curious situation with R � 1 and Θ � 1.

In the other model the instability region (Fig.8) covers the whole parameter plane [Θ, R]
and this is in accordance with the interpretation of the ice-shelf approximation as a limit
situation for R = O(ε−2) � 1.
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Figure (9) reports then the purely two dimensional instability occurring for values of
R = 0.1, Θ = 0.2 in the shear dominated, glacier-like model. A clear explanation of this
unespected (at least to the author knowledge) unstable configuration is not available.
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Figure 9: Growth rate Re(σ) and phase speed Im(σ) in the wave number plane [k,l] for the
glacier case, choosen R = 0.2, Θ = 0.1 and D = 1.1. The black line in the first plot is the
marginal stability curve.

The results of such a kind of investigation are interesting, but discouraging to some
extent, showing no possibility for fingering to occur.

5.2 Nonlinear dynamic

The governing equations of the two models contain up to fourth order nonlinearities. As a
consequence, the evolution of the two interfaces z = ζ and z = h far away in the future is
completely dominated by the nonlinear terms.

The integration in time of the one-dimensional glacier-equations, in a fixed system of
reference, is shown in figures (10) and (11).

The initial bump entering the domain at time t=0 moves downstream, growing and
evolving as time passes. It’s interesting to note the tendence of the system, as time goes
on, to sharpen an initially smooth disturbance developing sharp shocks.

The two thicknesses ζ and θ are strongly coupled, oscillating out of phase in time with
almost the same amplitude. This means, remembering the physical interpretations of the
two, that in a realistic setting one should observe no evolution in time of the free surface.

The same result comes out computing the equilibrium shapes for wave-like solutions
of the kind θ = θ(x − ct), ζ = ζ(x − ct) starting from an initial condition periodic in the
spatial domain. Figure (12) displays two equilibrium configurations and a regime diagram
indicating the supercritical nature of the bifurcation.
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6 The Ice-Stream Model

The models described so far have to do with two furthermost and completely uncorrelated
situations, that solely take into account the effects or of the shear stresses (glacier approx-
imation) or of the longitudinal ones (ice-shelf model).

But, to some extent, the behaviour of ice-streams is something in between that ones
of glaciers or of ice-shelves. In fact, it becomes rather hazy also in practice to locate the
geometric limits of a fast moving ice-stream bounded by an outlet glacier or entering an
ice-shelf.

An intermediate model is thus built taking the 1-D non-dimensional set of equations (18)
and (19) of the glacier, but without discarding the adjustment produced by the longitudinal
stresses on the velocity profile.

The starting point are the followings, describing the system at leading order:

0 = u1x + w1z

0 = −p1x + ε∂xτxx + ∂zτxz + S

0 = −p1z − 1 (65)

0 = u2x + w2z

0 = −p2x + ∂zσxz + SD

0 = −p2z − D (66)

With the usual meaning for the parameters involved, these equations are closed by the
set of conditions at the boundaries previously stated.

The longitudinal stresses are expressed by the term ε∂xτxx in the second of equations
(65). It’s clear, modeling again the upper fluid as a Newtonian one (and in this case
τxx = 2εν1ux), that this term becomes relevant whenever:

ε2ν1 ∼ O(1) (67)

This condition is satisfied if R = ν1

ν2
� 1 and describes a situation in which a much more

viscous fluid, characterized by a nearly uniform velocity profile, slides over a less viscous
one, with a velocity profile that is parabolic at leading order.

This model is valid for ice-streams since it incorporates the corrections due to longitu-
dinal stresses to a velocity that is not yet completely independent on x.

The next step is the derivation of a consistent and more general thin layer theory,
following a procedure analogous to that one described for the glacier. The ice-stream thin
layer theory is then expressed by:

ζt + ∂x[
1

2
uζ − 1

12
(DS − θx − Dζx)ζ3] = 0

θt + ∂x[θu + (S − hx)
θ3

3R
] = 0

ζ2

2
(DS − Dζx − θx) + (S − hx)θζ + 2ε2Rζ∂x(θτxx) = u (68)

These equations incorporate two different approximations, reducing to:
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• the glacier ones for R ∼ O(1);

• the ice-shelf ones for R ∼ O(ε−2).

7 Conclusions

The purpose of this work was the investigation of two of the mechanisms considered relevant
in ice-stream dynamics.

In particular, the extremely simplified models described, were formulated in order to
understand the effects on the flow of the different stresses conditions found at the boundary
between the flowing ice and its bottom. The explicit treatment of the basal layer, altough
complicating the formulation, had the advantage of avoiding strong unphysically grounded
assumptions about the structure of the stresses. A second task was, possibly, to relate the
action of the stresses to the instability patterns effectively observed in nature.

In this context the glacier and the ice-shelf approximations (the first dominated by shear
and the second by longitudinal stresses) were derived and studied. The linear stability
analysis revealed the presence of instabilities at the boundaries between the two fluids in
both of the models, but showed also the lack of an effective mechanism generating fingers.

Combining the sliding and the slipping properties of the glacier and of the ice-shelf
motion, a one-dimensional ice-stream model was then formulated.

These results are far from being relevant for ice, but the analysis can in principle be
extended to the consideration of a non Newtonian fluid in motion over a bottom layer,
including in the governing equations a different constitutive law.

It could finally be intriguing, for the future, to analyse in more detail the non-linear
properties of the models presented, in order to better define their effective capability (or
inability) in explaining ice-stream dynamic.
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The Time Evolution of Water Vapor “Black Holes”

in the Upper Troposphere

Edwin P. Gerber
∗

1 Introduction

The water vapor channels on the United States’ GOES 10 and GOES 8, the European
METEOSAT, and the Japanese GMS geostationary satellites measure long-wave radiation
of wavelength 5.7–7.1 µm. Images at these wavelengths do not show any surface features
of the Earth, since the radiation emitted by the surface at 5.7–7.1 µm is entirely absorbed
by low-level atmospheric water vapor. Rather, they reveal planetary and synoptic scale
variations of water vapor in the middle and upper troposphere.

In regions of subsidence, where the large-scale vertical motion is downward, the tropo-
sphere becomes filled with dry air from the upper troposphere, and the 5.7–7.1 µm radiation
received by the satellite comes primarily from the relatively warm lower troposphere. When
the large-scale vertical motion is upward, the cold upper troposphere becomes saturated (or
nearly so) with humid air from the surface, and the 5.7–7.1 µm radiation seen by the satel-
lites is the cold water vapor in the upper troposphere. In this way the “equivalent black
body temperature” of the 5.7–7.1 µm radiation is a proxy for the vertical motion field. An
empirical connection between water vapor and vertical motion is confirmed in [9] and [11],
in which a correlation is found between convergence of the mean circulation of the upper
troposphere (implying subsidence, by continuity) and dry regions in the satellite images.

In the absence of tropical storms, water vapor images of the low latitude East Pacific are
often dominated by two features, the moisture rich Intertropical Convergence Zone (ITCZ)
and “black holes,” vast regions of low humidity. As shown in Figures 1-3, images taken
during the northern hemisphere summer, the ITCZ forms a band of convection across the
thermal equator in the East Pacific, centered at approximately 80 N. North and south of
the ITCZ are the arid regions, centered, in Figure 1, at 1450 W, 160 N and 1300 W, 80 S.
The black hole in the southern (winter) hemisphere is comparable in size to the continental
United States. In the far west we see a second region of deep convection over Indonesia,
associated with the warm La Nina West Pacific.

We seek to explain the shape, particularly the north-south and east-west asymmetries,
the intensity, and the time evolution of these East Pacific water vapor black holes as a
product of the circulation driven by deep convection in the ITCZ. In the spirit of this

∗with Takamitsu Ito and Wayne Schubert
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Figure 1: GOES 10 Water Vapor Image, July 27, 2001 1800z. The longitude and latitude
interval is 150. The center meridian is 1350 W, and crosses the equator at the center of the
image. Green, yellow, and red indicate areas where the upper troposphere is rich in moisture
(increasing from green to red). Blue, purple, and black colors indicate an increasingly dry
upper troposphere.

summer’s GFD program, we have built a conceptual model of the tropical atmosphere to
aid us.

1.1 The Basic Model

We begin with stratified β-plane atmosphere extending to infinity in both x and y. We
next linearize about a basic state at rest and perform a vertical mode transformation, as
in [1]. This separates the motion of the atmosphere into baroclinic modes, each obeying an
independent set of equations equivalent to the linearized shallow water system.

We next assume that the latent heat release excites only the first baroclinic mode. The
vertical profile of the first mode takes a form similar to a cosine wave from 0 to π. Fluid
on the bottom flows opposite that on top, connected by a smooth profile with no motion at
a node near the midpoint of the atmosphere. We can view the shallow water equations as
prescribing flow at the base of the atmosphere, and then use the sinusoidal vertical profile
to complete the picture. Deep convection in this simple system has the effect of transferring
mass from the lower layer to the upper layer. We thus prescribe a mass sink in our lower
layer to model the effect of the ITCZ, or any other regions of deep convection. Given our
forcing, we solve for the resulting subsidence field, and hence the water vapor field, to find
the black holes.
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Figure 2: GOES 10 Water Vapor Image, July 28, 2001 1800z

Figure 3: GOES 10 Water Vapor Image, July 29, 2001 1800z
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We are following in the footsteps of A. E. Gill, who with others studied this model
extensively in the 1980’s in [2], [5], and [8]. We do not, however, make the long wave
approximation, following rather the original eigenvalue formulation of Matsuno [7] in 1966,
later developed in [12], where the time dependent evolution of tropical circulation around the
amazon basin was studied. In contrast to [12], however, we attempt to include dissipation
and Newtonian cooling in our model. We are thus applying a tried and true theory, seeking
to focus a new application; the formation of water vapor black holes.

2 Theory

2.1 The Linearized Equatorial β-Plane

Consider the motions of an incompressible, forced, shallow water fluid on the equatorial
β-plane. In our model, this shallow water layer corresponds to the lower layer in the first
baroclinic mode. The governing equations, linearized about a resting basic state, are

∂u

∂t
− βyv + g

∂h

∂x
= −εu, (1)

∂v

∂t
+ βyu + g

∂h

∂y
= −εv, (2)

∂h

∂t
+ h̄

(

∂u

∂x
+

∂v

∂y

)

= −εh − S, (3)

where u and v are velocity components in the x- and y-directions, respectively, h is the
deviation of the fluid depth from the constant mean depth h̄, βy is the Coriolis parameter,
ε is the constant Rayleigh friction and Newtonian damping coefficient, and S(x, y, t) is
the lower layer mass sink. Before solving (1)–(3) it is convenient to put the problem in

nondimensional form. We define c = (gh̄)
1

2 as the constant gravity wave speed based on

the mean depth h̄. As a horizontal length scale let us choose L = (c/β)
1

2 . Similarly, let

us choose as a unit of time T = (βc)−
1

2 . Data from the ITCZ in the Pacific (specifically
the Marshall Islands) and in the Atlantic [1] suggests that, for the first baroclinic mode,
c ≈ 7.5 × 101 m/s and h̄ ≈ 5.7 × 102 m, so that L ≈ 1.8 × 103km and T ≈ 0.28 day. For
now, we choose c as the unit of speed and h̄ as the unit of depth, so that (1)–(3) reduce to
the nondimensional form

∂u

∂t
− yv +

∂h

∂x
= −εu, (4)

∂v

∂t
+ yu +

∂h

∂y
= −εv, (5)

∂h

∂t
+

∂u

∂x
+

∂v

∂y
= −εh − S, (6)

where all the independent variables x, y, t, all the dependent variables u, v, h, the parameter
ε and the function S(x, y, t) are now nondimensional. The system (4)–(5) can also be written
in the more compact form

∂w

∂t
+ Lw = −εw − S, (7)
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where

w(x, y, t) =





u(x, y, t)
v(x, y, t)
h(x, y, t)



 , S(x, y, t) =





0
0

S(x, y, t)



 , L =





0 −y ∂/∂x
y 0 ∂/∂y

∂/∂x ∂/∂y 0



 . (8)

The potential vorticity (PV) principle associated with (4)–(6) is

∂q

∂t
+ v = −εq + yS, (9)

where

q =
∂v

∂x
− ∂u

∂y
− yh (10)

is the potential vorticity anomaly. The total energy principle associated with (4)–(6) is

∂

∂t

[

1

2

(

u2 + v2 + h2
)]

+
∂(uh)

∂x
+

∂(vh)

∂y
= −2ε

[

1

2

(

u2 + v2 + h2
)]

− hS, (11)

or, in integral form

∂

∂t

∞
∫

−∞

∞
∫

−∞

1

2

(

u2 + v2 + h2
)

dxdy = −2ε

∞
∫

−∞

∞
∫

−∞

1

2

(

u2 + v2 + h2
)

dxdy −
∞
∫

−∞

∞
∫

−∞

hSdxdy.

(12)
The energy principle suggests an inner product,

(f ,g) =

∞
∫

−∞

(f1g
∗

1 + f2g
∗

2 + f3g
∗

3)dy, (13)

given

f =





f1

f2

f3



 , g =





g1

g2

g3



 , (14)

where we use the ∗ symbol to denote the complex conjugate, anticipating work with complex
numbers. We have defined our inner product with respect to y in preparation for a Fourier
transform of our equations in x. We may now write our energy principle in more compact
form,

∞
∫

−∞

1

2
(w,w)dx = −2ε

∞
∫

−∞

1

2
(w,w)dx −

∞
∫

−∞

∞
∫

−∞

hSdxdy. (15)

2.2 The Matsuno Eigenvalue Problem

Our goal is to solve (7) for w(x, y, t) subject to a specified initial condition w(x, y, 0) and
mass sink S(x, y, t). By first solving the inviscid, unforced system,

∂w

∂t
+ Lw = 0, (16)
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our goal becomes easier. Let us search for solutions of the form u(x, y, t) = U(k, y)ei(kx−ωt),
v(x, y, t) = V(k, y)ei(kx−ωt), and h(x, y, t) = H(k, y)ei(kx−ωt), where k is the zonal wave
number and ω the frequency. Hence in our vector notation, we make the substitution

w(x, y, t) = K(k, y)ei(kx−ωt), (17)

where

K(k, y) =





U(k, y)
V(k, y)
H(k, y)



 , (18)

into (16). The substitution results in the eigenvalue problem,

−iωK + L̂K = 0, (19)

where

L̂ =





0 −y ik
y 0 d/dy
ik d/dy 0



 . (20)

The adjoint of L̂ with respect to the inner product (13) is the operator L̂† which satisfies

(L̂f ,g) = (f , L̂†
g) (21)

for all f(y) and g(y) satisfying the boundary conditions, that is (f, g) < ∞. Our operator
L̂ is skew-Hermitian, as L̂† = −L̂, so that (21) becomes

(L̂f ,g) = −(f , L̂g). (22)

The skew-Hermitian property dictates that the eigenvalues of L̂ are purely imaginary, so
that we have a mathematical basis for looking for wave-like solutions (solutions where ω is
purely real). In addition, the eigenfunctions form a complete orthogonal set. Hence there
exist a set of eigenfunctions Ki that span all functions f satisfying (f, f) < ∞ with

(Ki,Kj) = 0 (23)

if i 6= j.
The eigenvalue problem was solved in [7], which revealed that (19) has bounded solutions

as y → ±∞, only if ω2 − k2 − k/ω is an odd integer, that is, only if

ω2 − k2 − k/ω = 2n + 1, (24)

with n = 0, 1, 2, . . . We shall denote the solutions of this cubic equation by ωn,r, since the
frequency will depend on the particular odd integer 2n + 1 chosen, and where the subscript
r = 0, 1, 2 indicates which of the three roots of the frequency equation we are discussing.

For n > 0 our dispersion relation (24) separates nicely into three modes: low frequency
Rossby waves which always propagate to the west (ω has the opposite sign of k) and high
frequency westward and eastward propagating inertial gravity waves. We have given the
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modes the subscripts 0, 1, and 2, respectively. Approximate values for the frequencies are
given below. They are more accurate for large n.

ωn,0 ≈ −k

k2 + 2n + 1
(25)

ωn,1 ≈ −(k2 + 2n + 1)
1

2 (26)

ωn,2 ≈ (k2 + 2n + 1)
1

2 (27)

For n = 0, (24) factors to (ω0,r +k)(ω2
0,r −kω0,r −1) = 0, yielding two mixed modes and one

forbidden mode ω0,1 = −k that cannot be normalized. The allowable waves have Rossby
and gravity wave character.

ω0,0 =
k − (k2 + 4)

2
(28)

ω0,2 =
k + (k2 + 4)

2
(29)

Let Kn,r denote the eigenfunction corresponding to rth root of (24) given n.

Kn,r = An,re
−

1

2
y2





−1

2
(ωn,r + k)Hn+1(y) − n(ωn,r − k)Hn−1(y)

i(ω2
n,r − k2)Hn(y)

−1

2
(ωn,r + k)Hn+1(y) + n(ωn,r − k)Hn−1(y)



 , (30)

where
An,r = π−

1

4 {2nn![(n + 1)(ωn,r + k)2 + n(ωn,r − k)2 + (ω2

n,r − k2)2]}− 1

2 (31)

is a normalization constant which assures that

(Kn,r,Kn,r) = 1 (32)

The Hermite polynomials Hn(y) are given by H0(y) = 1, H1(y) = 2y, H2(y) = 4y2 − 2,
H3(y) = 8y3 − 12y, · · · , with recurrence relation Hn+1(y) = 2yHn(y) − 2nHn−1(y).

We have not quite found all the solutions of (19), because it is possible to have the
trivial solution V = 0, but nontrivial U and H. If we expand (19) with V = 0 we find that

−ωU + kH = 0 (33)

yU +
dH
dy

= 0 (34)

−ωH + kU = 0. (35)

The first and third of these can be considered as two linear, homogeneous algebraic equations
for U and H. Requiring the determinant of the coefficients to vanish gives ω2 = k2, with
solutions ω = ±k. When ω = −k, H = −U and (34) becomes dU/dy = yU , with solution

U ∼ e
1

2
y2

. This solution must be discarded since it is not bounded as y → ±∞. When
ω = k, H = U and (34) becomes dU/dy = −yU , with solution U ∼ e−

1

2
y2

. This solution is
acceptable. Thus, we have found the additional (Kelvin wave) eigenfunction

K−1 = A−1e
−

1

2
y2





1
0
1



 , (36)

with corresponding eigenvalue (dispersion relation) ω−1 = k. The subscript −1 is chosen
because the dispersion relation ω = k is a solution of ω2 − k2 − k/ω = 2n+1 when n = −1.
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2.3 The Normal Mode Transformation

We may now use our eigenfunctions to decompose the forced, damped problem into normal
modes. First, we introduce the Fourier transform pair in x,

u(x, y, t) = (2π)−
1

2

∞
∫

−∞

û(k, y, t)eikxdk, (37)

û(k, y, t) = (2π)−
1

2

∞
∫

−∞

u(x, y, t)e−ikxdx, (38)

where k is the zonal wavenumber. Similar transform pairs exist for v(x, y, t) and v̂(k, y, t),
for h(x, y, t) and ĥ(k, y, t), and for S(x, y, t) and Ŝ(k, y, t). We can now write (7) as

∂ŵ

∂t
+ L̂ŵ = −εŵ − Ŝ, (39)

where

ŵ(k, y, t) =





û(k, y, t)
v̂(k, y, t)

ĥ(k, y, t)



 , Ŝ(k, y, t) =





0
0

Ŝ(k, y, t)



 , (40)

and L̂ is defined as in (20).
Our second task is to transform (39) in y. As our eigenfunctions Kn,r(k, y) satisfy the

orthonormality condition

(

Kn,r(k, y),Kn′,r′(k, y)
)

=

{

1 (n′, r′) = (n, r)

0 (n′, r′) 6= (n, r)
, (41)

we can set up a transform pair

ŵn,r(k, t) = (ŵ(k, y, t),Kn,r(k, y)) , (42)

ŵ(k, y, t) =
∑

n,r

ŵn,r(k, t)Kn,r(k, y). (43)

Taking the inner product of (39) with Kn,r(k, y), we obtain

(

∂ŵ(k, y, t)

∂t
,Kn,r(k, y)

)

+
(

L̂ŵ(k, y, t),Kn,r(k, y)
)

=

−ε (ŵ(k, y, t),Kn,r(k, y)) −
(

Ŝ(k, y, t),Kn,r(k, y)
)

∂

∂t
(ŵ(k, y, t),Kn,r(k, y)) −

(

ŵ(k, y, t), L̂Kn,r(k, y)
)

= −εŵn,r(k, t) − Ŝn,r(k, t)

dŵn,r(k, t)

dt
− (ŵ(k, y, t), iωn,rKn,r(k, y)) = −εŵn,r(k, t) − Ŝn,r(k, t)

dŵn,r(k, t)

dt
+ iωn,r (ŵ(k, y, t),Kn,r(k, y)) = −εŵn,r(k, t) − Ŝn,r(k, t)
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so that
dŵn,r(k, t)

dt
+ (ε + iωn,r)ŵn,r(k, t) = −Ŝn,r(k, t). (44)

Equation (44) is the transformation to spectral space of the original system (7) and has
solution

ŵn,r(k, t) = ŵn,r(k, 0)e−(ε+iωn,r)t −
∫ t

0

Ŝn,r(k, t′)e−(ε+iωn,r)(t−t′)dt′. (45)

When this spectral space solution is inserted into (43), we obtain the vector equation

ŵ(k, y, t) =
∑

n,r

ŵn,r(k)Kn,r(k, y), (46)

Taking the inverse Fourier transform of (46) and breaking back into component form, we
obtain our final physical space solutions

u(x, y, t) = (2π)−
1

2

∞
∫

−∞

∑

n,r

ŵn,r(k)Un,r(k, y)eikxdk, (47)

v(x, y, t) = (2π)−
1

2

∞
∫

−∞

∑

n,r

ŵn,r(k)Vn,r(k, y)eikxdk, (48)

h(x, y, t) = (2π)−
1

2

∞
∫

−∞

∑

n,r

ŵn,r(k)Hn,r(k, y)eikxdk. (49)

According to (47) – (49) the general solution of our initial value problem consists of a
superposition of normal modes. The superposition involves all zonal wavenumbers (integral
over k), all meridional wavenumbers (sum over n), and all wave types (sum over r).

It should be noted that typical superpositions of many normal modes result in spatial
patterns which differ greatly from individual normal modes. We found that the wn,r decay
exponentially with n for all choices of k. Thus, given a specified degree of accuracy, we can
select an N so that the partial sum of all modes n < N meets the requirement. In general,
we found that N = 200 gave very good results.

It was also necessary to perform the Inverse Fourier Transform via a numeric approxi-
mation to the integral. A simple mid-point rule numeric integration was sufficient.

2.4 Forcing

We consider cases where the time evolution of the forcing is separable from its spatial
dependence.

S(x, y, t) = (πab)−1e−x2/a2

e−(y−y0)
2/b2S̃(t), (50)

where y0 is the center of the Gaussian shaped mass sink and a and b control the spatial
extent in x and y. The factor (πab)−1 has been included so that

∞
∫

−∞

∞
∫

−∞

S(x, y, t)dxdy = S̃(t), (51)
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i.e., the rate of total mass removal is independent of the choices of a and b.
The Fourier transform of this forcing is

Ŝ(k, y, t) = (πab)−1(2π)−
1

2 e−(y−y0)
2/b2S̃(t)

∞
∫

−∞

e−x2/a2

e−ikxdx (52)

= 2−
1

2 (πb)−1e−(y−y0)
2/b2e−

1

4
k2a2

S̃(t). (53)

Then, using (42), we obtain

Ŝn,r(k, t) =
(

Ŝ(k, y),Kn,r(k, y)
)

=

∞
∫

−∞

Ŝ(k, y, t)Hn,r(k, y)dy

= 2−
1

2 (πb)−1e−
1

4
k2a2

S̃(t)

∞
∫

−∞

e−(y−y0)
2/b2Hn,r(k, y)dy

= 2−
1

2 (πb)−1e−
1

4
k2a2

An,rS̃(t)

·
∞
∫

−∞

e−(y−y0)
2/b2e−

1

2
y2 [−1

2
(ωn,r + k)Hn+1(y) + n(ωn,r − k)Hn−1(y)

]

dy.

From [3] we have

∞
∫

−∞

e−(y−y0)
2/b2e−

1

2
y2

Hn(y)dy =

(

2πb2

2 + b2

)
1

2

(

2 − b2

2 + b2

)
n

2

e−y2

0
/(2+b2)Hn

(

2y0

(4 − b4)
1

2

)

(54)

for 0 < b < 2
1

2 . (For b > 2
1

2 , there exists a recursion formula to solve the integral, but the
modulus of the forcing term will increase with n, making for poor convergence.) Utilizing
(54), we finally obtain

Ŝn,r(k, t) = π−
1

2 An,r(2 + b2)−
1

2 e−
1

4
k2a2

e−y2

0
/(2+b2)S̃(t) (55)

·
{

−1

2
(ωn,r + k)

(

2−b2

2+b2

)
n+1

2

Hn+1

(

2y0

(4−b4)
1

2

)

+ n(ωn,r − k)
(

2−b2

2+b2

)
n−1

2

Hn−1

(

2y0

(4−b4)
1

2

)}

,

for all modes with the exception of the Kelvin wave, which takes a similar (and simpler)
form.

To focus on the time dependence, (55) can be viewed as a function S̆n,r of n, r, k, a,
and b multiplying the time dependent part,

Ŝn,r(k, t) = S̆n,r(k)S̃(t). (56)

If we separate ŵn,r(k, t) = w̆n,r(k)w̃n,r(t) also, (44) yields,

w̆n,r(k)

(

dw̃n,r(t)

dt
+ (ε + iωn,r)w̃n,r(t)

)

= −S̆n,r(k)S̃(t) (57)
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Figure 4: S̃(t)

We can now take w̆n,r(k) = −S̆n,r(k), leaving

dw̃n,r(t)

dt
+ (ε + iωn,r)w̃n,r(t) = S̃(t), (58)

which has solution, following (45),

w̃n,r(t) = e−(ε+iω)t





t
∫

0

e(ε+iω)t′ S̃(t′)dt′ + w̃n,r(0)



 . (59)

If S̃(t) converges to a steady value, S̃, the solution will converge to the steady state solution,
where

w̃n,r(t) =
S̃

(ε + iω)
. (60)

We experimented with four different forcing functions, shown in Table 1 (and in Fig-
ure 4), hoping to model the onset and termination of convection. Forcing F1 is the Rossby
adjustment problem, in which an atmosphere at rest adjust to a sudden, steady release of
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Type S̃(t) w̃n,r(0) w̃n,r(t)

F1 S0 0 S0(1 − e−(ε+iω)t) 1

ε+iω

F2 0 S0

(ε+iω)
S0e

−(ε+iω)t 1

ε+iω

F3 S0(1 − e−γt) 0 see (61)

F4 S0

2
(1 − cos(γt)) 0 see (63)

Table 1: Forcing Functions

latent heat. Such forcing has been modeled before, but with the long wave approxima-
tion [5]. F2 is the adjustment problem in reverse, in which we shut off the heating in an
atmosphere in equilibrium with a steady forcing. F3 was chosen as a simple, more realistic
way to model the onset of convection. F4 attempts to capture the response to both the
onset and termination of heating.

Forcing F3 yielded the following solution,

w̃n,r(t) = S0

(

1

(ε + iωn,r)
− e−γt

(ε − γ + iωn,r)
+

γe−(ε+iωn,r)t

(ε2 − ε − ω2
n,r) + iωn,r(2ε − γ)

)

. (61)

In the the limit γ � ε, that is, when the rate at which the forcing turns on is fast relative
to the rate of dissipation, (61) approaches the solution to forcing F1. In the other extreme,
ε � γ, (61) reduces to

w̃n,r(t) =
S0

(ε + iωn,r)
− (1 − e−γt). (62)

in which the atmospheric response is always in equilibrium with the forcing. Forcing F4
results in

w̃n,r(t) =
S0

2

(

1 − e−(ε+iωn,r)t

(ε + iωn,r)
+

(ε + iωn,r)
(

e−(ε+iωn,r)t − cos(γt)
)

− γsin(γt)

(ε + iωn,r)2 + γ2

)

. (63)

In the limit ε � γ (slow forcing) it reduces to a form similar to (62) in which the response
is in equilibrium with the forcing at all times. In the opposite extreme, γ � ε, we find

w̃n,r(t) = S0

(

1 − e−(ε+iωn,r)t

2(ε + iωn,r)
− sin(γt)

2γ

)

. (64)

The first term on the left hand side corresponds to a system adjusting as in forcing function
F1 to the average value of the forcing, S0/2, while the second term corresponds to a small
out of phase response to the forcing.

2.5 Subsidence

wnd, the nondimensional upward velocity, can be calculated directly from our shallow water
solutions. Shallow water continuity implies that

wnd =
∂h

∂t
= −

(

∂u

∂x
+

∂v

∂y

)

. (65)
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For the first baroclinic mode, w is zero at the top and bottom of the atmosphere, reaching
a maximum near the center. The complete vertical velocity profile takes on a form similar
to a sine wave from 0 to π. wnd, once properly dimensionalized, tells us the amplitude of
the z-velocity in the first baroclinic mode, and hence corresponds to the maximum velocity
found at the center of the vertical profile.

In spectral space,

W =
∂H
∂t

= −iωH (66)

for each mode. This enables us to calculate w analytically, the only error coming from the
fact that we truncate our sum at the Nth mode.

2.6 Comparison with Gill

The long wave approximation is made in the linearized equatorial β-plane model first pro-
posed by Gill in 1980 [2], and later developed further in [5, 8]. The only difference from
our model is that the ∂v

∂t and −εv terms are dropped from (2), based on scaling analysis,
leaving the modified y-momentum equation

βyu + g
∂h

∂y
= 0. (67)

The y-momentum equation hence reduces to simple geostrophic balance, and adjustment
in v becomes instantaneous. (1) and (3) remain the same. While Gill concisely solves this
system with the use of parabolic cylinder functions, analysis with Matsuno’s eigenfunctions
provides insight into the coupling between the inertial gravity and Rossby waves resulting
from the long wave approximation. (Note that, as v = 0 in the Kelvin wave, it is unaffected
by the long wave approximation.)

We proceed with the same analysis as before, applying a Fourier transform in x to reach
the Gill equivalent of (39)

∂

∂t





û(k, y, t)
0

ĥ(k, y, t)



+ L̂ŵ = −ε





û(k, y, t)
0

ĥ(k, y, t)



− Ŝ, (68)

where w, L̂ and S are defined as before in (20) and (40). We introduce the matrix

F =





0 0 0
0 1 0
0 0 0



 (69)

so that we may write (68) in a form more similar to (39), having now just two corrections
to account for the long wave approximation

∂ŵ

∂t
− ∂Fŵ

∂t
+ L̂ŵ = −εŵ + εFŵ − Ŝ. (70)
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We now express w a sum of the Kn,r as in (43) and take the inner product of (70) with a
particular Kn′,r′ ,
(

∂

∂t

∑

n,r

ŵn,rKn,r,Kn′,r′

)

−
(

∂

∂t
F

∑

n,r

ŵn,rKn,r,Kn′,r′

)

+

(

L̂
∑

n,r

ŵn,rKn,r,Kn′,r′

)

=

−ε

(

∑

n,r

ŵn,rKn,r,Kn′,r′

)

+ ε

(

F

∑

n,r

ŵn,rKn,r,Kn′,r′

)

−
(

Ŝ,Kn′,r′

)

. (71)

Applying the orthonormality condition of the Kn,r cleans up most of the terms, yielding
a result comparable to (44), modulo our correction.

dŵn′,r′

dt
+ (ε + iωn′,r′)ŵn′,r′ = −Ŝn′,r′ +

∑

n,r

(

ˆdwn,r

dt
+ εwn,r

)

(

FKn,r,Kn′,r′
)

. (72)

Looking closer at our correction term, we have

(

FKn,r,Kn′,r′
)

=

∞
∫

−∞

Vn,r,Vn′,r′dy

= An,rAn′,r′(ω
2

n,r − k2)(ω2

n′,r′ − k2)

∞
∫

−∞

HnHn′e−y2

dy. (73)

All is not lost, as the Hermite Polynomials have the property that

∞
∫

−∞

HnHn′e−y2

dy =

{

π
1

2 n!2n n = n′

0 n 6= n′
, (74)

so that, and making use of the definition of An,r, (31),

(

FKn,r,Kn′,r′
)

=

{

an′,r,r′ n = n′

0 n 6= n′
(75)

with

an,r,r′ =
∏

q=r,r′

(ω2
n,q − k2)

(

(n + 1)(ωn,q + k)2 + n(ωn,q − k)2 + (ω2
n,q − k2)2

) 1

2

. (76)

In light of these results the summation of n and r in (72) reduces to a sum over just r,
yielding

dŵn′,r′

dt
+ (ε + iωn′,r′)ŵn′,r′ = −Ŝn′,r′ +

∑

r

an′,r,r′

(

ˆdwn,r

dt
+ εwn,r

)

. (77)

The long wave approximation ties the evolution of the gravity and Rossby waves together
by coupling ŵn,0, ŵn,1, and ŵn,0. For each n, (77) gives us three coupled ODE’s, which can
be combined into one matrix differential equation,

A
dŵn

dt
+ Bŵn = Ŝn (78)
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where

A =





1 − an,0,0 −an,0,1 −an,0,2

−an,0,1 1 − an,1,1 −an,1,2

−an,0,2 −an,1,2 1 − an,1,1



 ,

B =





ε + iωn,0 − εan,0,0 −εan,0,1 −εan,0,2

−εan,0,1 ε + iωn,1 − εan,1,1 −εan,1,2

−εan,0,2 −εan,1,2 ε + iωn,2 − εan,2,2



 ,

and

ŵn =





ŵn,0

ŵn,1

ŵn,2



 , Ŝn =





Ŝn,0

Ŝn,1

Ŝn,2



 . (79)

We must make an exception when n = 0, for there is no K0,1 eigenfunction. In this case
we have just two coupled ODE’s, which can be represented by an otherwise similar two-
dimensional matrix equation.

The steady state solution to (78) is simply

ŵn = B
−1

Ŝn, (80)

provided of course that B is invertible. This is a fair assumption, as the the an,r,r′ corrections
are relatively small, so that B (and A, for that matter) are diagonally dominant. This
assumption is not necessarily accurate for the mixed modes corresponding to n = 0, and I
am not sure we can solve this equation for all forcing functions.

We must make a few more assumptions on the properties of A and B to solve the time
dependent version of (78). We first multiply by A

−1 to obtain

dŵn

dt
+ A

−1
Bŵn = A

−1
Ŝn. (81)

Next assume that A
−1

B is diagonizable, so that there exist a constant, invertible matrix
P such that,

PA
−1

BP
−1 = D, (82)

with D diagonal. We then multiply (81) by P, in preparation for defining a new time
dependent vector qn(t) = Pŵn(t) so that

dPŵn

dt
+ PA

−1
BP

−1
Pŵn = PA

−1
Ŝn (83)

dqn

dt
+ Dqn = PA

−1
Ŝn. (84)

In (84) we have decoupled the ODE’s, so that each component of qn may be solved individ-
ually with the same techniques used to solve (44), or, more elegantly, solved with a matrix
exponential,

qn = e
−Dt

qn(0) + e
−Dt

t
∫

0

e
Dt′

PA
−1

Ŝndt′. (85)
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Note that as D is diagonal,

e
Dt =





ed1t 0 0
0 ed2t 0
0 0 ed3t



 . (86)

Lastly, we obtain our coefficients

ŵn(t) = P
−1

qn(t). (87)

3 Results

3.1 The East Pacific, July 27-29, 2001

Figures 1, 2, and 3 reveal two large water vapor black holes evolving over the East Pacific.
In the first image, taken on July 27 at 1800z, we see the East Pacific ITCZ spanning over
6000 km, from 1500 W to Central America. The convection begins at 50 N in the west and
rises to 150 N in the east, its meridional extent varying from 500 to 1000 km. This position
of the ITCZ is typical during the northern hemisphere summer, as the ITCZ tends to follow
the thermal equator. Another large region of deep convection is visible at the western edge
of the image, centered over Papua New Guinea and Indonesia. Convection in this area is
especially strong during La Nina years. To the east we see a bit of seasonal convection over
the Amazon basin, and in the south, the South Pacific Convergence Zone (SPCZ) stretches
northwest to southeast from 1650 W, 150 S to 1200 W, 400 S.

A large, arid black hole centered at 1300 W, 70 S has already formed to south of the
East Pacific ITCZ, spanning nearly 80 degrees of longitude. At is widest point it spans
nearly 300 of latitude, over 3000 km. A smaller dry region has formed northwest of the the
East Pacific ITCZ, centered near 1450 W, 160 N.

The large black hole in the south reaches its apex 24 hours later on the 28th, Figure
2. The East Pacific ITCZ has extended further to the west, now stretching past 1550 W.
The broader convection in the east is still present. The southern black hole has intensified,
especially in the center, where we now see a “black hole” in the image. The northern black
hole has also increased in size, its eastern boundary now 500 km further west at 1650 W.

The broad convection in the eastern half of the ITCZ, especially between 120 and 1050

W, weakens by the 29th, as shown in Figure 3. Unfortunately for our linear theory, advection
seems to be playing a large role now. Intense convection in the ITCZ is now only in the
west, where it begins to merge into the West Pacific convection. The southern black hole
has been contorted, and has shrunk slightly. The northern black hole is less affected, though
it has been pushed slightly north by a new burst of convection.

3.2 Setting up the Model

We must model this complicated system with Gaussian regions of convection, as given by
(50). To simulate the East Pacific ITCZ, we selected parameters a and b to create an
elongated convection region with Gaussian folding distances in x and y of 2700 and 450 km,
respectively. y0 was selected so that the convection would be centered at 10.50 N.
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The parameter ε determines both the momentum damping and Newtonian cooling rates
in our model. Following Gill, we based our value on the momentum damping rate, taking
ε = 1

3days [2]. (ε = 1

10days would be more appropriate for the Newtonian cooling rate. See the
Fellow’s report by Takamitsu Ito for a simulation in which this problem has been remedied.)
S0, the dimensional heating rate for the first baroclinic mode, is 57 m/day [1]. This value is
based on measurements taken over the Marshall Islands in the Pacific and from the GATE
survey of the Atlantic.

Note that we used a partial summation of normal modes truncated at N = 200 in all
the data we present. We approximated the Inverse Fourier Transform, an integral over
wavenumber k from −∞ to ∞, as a numeric integral from −10 to 10 with 128 point resolu-
tion. The truncation of the integral is based on the fact that the Fourier transform decays

as e
−a

2
k
2

4 . We projected our β-plane solutions, which span to infinity in all directions, onto
maps by ignoring the sphericity of the globe in the tropics. The maps are included to
provide a better sense of scale and positioning.

The steady state subsidence field for the East Pacific ITCZ (labeled region A) is shown
in the top half of Figure 5. We show only contours of downward velocity, in units m/day.
This is the velocity at the center of the atmospheric column, where it is largest for the first
baroclinic mode. While the greatest subsidence rate is not even 2 m/day, the maximum
upward motion exceeds 50 m/day. If we equate drier air with greater subsidence, we already
see the basic features of Figures 1 - 3; two large subsidence regions with significant zonal
and meridional asymmetries with respect to the ITCZ.

To better compare our simulation with observations, we also included a first approx-
imation to the convection over the West Pacific. Convection in the region appears much
more stable, in bulk, through our observational period. We thus included a steady state
convection cell over Papua New Guinea as a backdrop for our time dependent simulation.
(A linear theory allows one to paste solutions together!) We centered this convection region
on the equator at 1600 E, with Gaussian folding distance of 900 km in both x and y. The
complete steady state subsidence field is shown in the lower half of Figure 5. Again, we
show only contours of downward velocity. A comparison with the upper half of the figure
reveals that the West Pacific Convection (labeled region B) increases the size and intensity
of the southern black hole. This brings our model yet closer to the observations.

As is demonstrated in Takamitsu Ito’s paper, the convection in the SPCZ does not affect
the tropical black holes very much, serving mostly to trim off the southwest corner of the
southern black hole. Convection in the South Pacific is generally less stable and more prone
to advection. We found (and will describe later) that the response of the subsidence field
to forcing becomes slower, smaller, and concentrated to the west as one moves poleward
from the equator, so that the fluctuating SPCZ does not have much of an effect on the East
Pacific subsidence fields.

As we observe a rather gentle evolution of the ITCZ convection in Figures 1 - 3, forcing
function F4 is the most appropriate. γ was selected so that the period of forcing is 5 days.
We are particularly interested in days 2-4, in which the convection reaches a maximum and
then begins to decay. S0 was set so that the average intensity of the forcing is consistent
with the experiment measurements.
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Figure 5: Subsidence (m/day) in Steady State Solutions
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3.3 The Time Dependent Simulation

Figures 6 through 11 show the subsidence fields in increments of one day. The small cartoon
in the bottom left hand corner of each figure illustrates the path of the forcing function, the
marker showing the current intensity. Subsidence in each figure is given in m/day. It should
be noted that our analytic technique gives us an exact solution for any time we choose, so
that each field is equally accurate. For the discussion in this section, we will equate low
humidity in the upper troposphere with subsidence.

We begin in Figure 6 with the steady state response of the West Pacific convection.
When the East Pacific convection begins, there is initially very little east-west or north-
south asymmetry in the subsidence field. (This will be further illustrated in the next
section.) After one day, Figure 7, some asymmetry has developed, but the solution is more
balanced than in the steady state. Note that the initial response is predominantly north
and south of the ITCZ.

By day 2, Figure 8, the response has spread further east and west, and the characteristics
of the steady state solution have developed. As we saw in Figures 1 and 2, the subsidence
region to south of the ITCZ is much larger, and centered east of the small northern black
hole.

When the convection begins to decline, as in Figure 9, we see the fastest response in
the south east. The peak subsidence in the southern black hole has pushed from 1200 to
1450 W. A second peak region of subsidence has moved east over South America, and will
propagate further east over the next few days of the simulation. This is a Kelvin wave
packet! It may be difficult to observe this movement in the real atmosphere, as there is
significant convection over the Amazon Basin.

By day 4, Figure 10, subsidence has ceased over much of the East Pacific, but held
strong in the west. It is remarkably consistent with Figure 3, in which the eastern half of
the southern black hole decays when the convection ceases. The northwestern subsidence
regions slowly propagates further westward, as seen in Figure 11, again consistent with
the movement of the actual northwestern black hole. Here we have a Rossby wave packet.
We also note that the subsidence lingers in the north much longer than in the south; the
asymmetry of the steady state has reversed.

3.4 Subsidence and Humidity?

In the steady state, the link between subsidence and humidity in the upper troposphere
has been established empirically. In our time dependent simulation, we tread upon shakier
ground in making comparisons. Our model only tells us the subsidence rate. In the future
we must study the time dependence between subsidence and the drying of the upper tro-
posphere. How long does it take the upper troposphere to dry out after subsidence begins,
or moisten after it ceases? We may need to look at the full vertical motion field to obtain
sound results.

3.5 Component Analysis

The Matsuno formulation of the equatorial β-plane response allows one to separate the at-
mospheric response into components, specifically the effect of Kelvin, Rossby, and westward
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Figure 6: Full Solution, Time = 0
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Figure 7: Full Solution, Time = 1 day
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Figure 8: Full Solution, Time = 2 days
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Figure 9: Full Solution, Time = 3 days
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Figure 10: Full Solution, Time = 4 days
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Figure 11: Full Solution, Time = 5 days
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Westward I. G. Response
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Figure 12: Components, Time = 1 day

and eastward propagating inertial gravity waves. In Figures 12 to 15 we present the total
response to each type of wave. Note that the total subsidence fields is not necessarily the
sum of these fields, as we have not shown the regions in which air is rising.

The east-west asymmetries in the response are the result of differences between Kelvin
and Rossby waves. The Kelvin response grows much faster than the Rossby response, as one
would expect based on the group velocities at which they propagate. The group velocity of
nearly nondispersive long Rossby waves of order n is dwarfed by the Kelvin group velocity
by a factor of 1/(2n + 1) for n > 0. As the forcing decays, we see the Kelvin response
propagating off to the east in a coherent packet.

The Rossby response focused south of the forcing is due to contribution from the n =
0, r = 0 mixed mode wave, and hence behaves in part like an inertial gravity wave. It dies
faster than the other Rossby waves in the end when the forcing decays. The two pronged
Rossby response west of the forcing, seen best in Figure 15, is due to the low frequency
Rossby waves of order n = 1 and above. It becomes the dominant feature at the end of
the simulations, explaining the enhanced stability of the western half of a black holes. The
northern half of the Rossby packet is the slowest to grow and decay. Higher order Rossby
waves, with their low group velocities, generate the response away from the equator.

The relative intensity at which the different wave types are excited is highly dependent
on the spatial extent and latitude of the forcing. For instance, Kelvin waves are excited
to a larger extent when the forcing is near the equator. Lower order waves are favored in
general when the response is broad and near the equator.

As the forcing is moved further poleward, the black hole associated with it will decline
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Figure 13: Components, Time = 2 days
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Figure 14: Components, Time = 3 day
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Figure 15: Components, Time = 4 days

in size, gain in local intensity, and move west of the forcing. The shift to the west comes
from the fact that Kelvin waves can only be excited near the equator. The decline in spatial
extent, which is coupled with an increase in intensity necessary to maintain continuity, can
be attributed to the shrinking Rossby radius of deformation. Away from the equator the
deformation radius is inversely proportional to the local Coriolis parameter, βy, on our
β-plane. At high latitudes the Rossby waves tend to dominate over inertial gravity waves,
too. The gravity wave response decreases with the Rossby number, which is also inversely
proportional to the Coriolis parameter. Once the forcing is 1 or 2 Rossby radii poleward of
the equator, the quasi-geostrophic equations become a good approximation to our system
provided that our forcing is broad, and we can neglect inertial gravity waves all together.

3.6 The Time Dependence of the Hadley and Walker Circulations

Flow in the first baroclinic mode takes place in two layers. Air is sucked in from all directions
toward the convection region in the lower half of the troposphere, and propelled upward by
the convection. It then flows back in the upper half of the atmosphere, subsiding gently into
the lower flow over broad regions to complete the cell. The Walker Circulation describes
the east-west part of this flow (or perhaps I should say, the east-west flow “is” the Walker
Circulation), and the Hadley Circulation is the north-south flow. We define the magnitude
of the Walker circulation to be the maximum zonal mass transport toward the convection
region in the lower layer, or equivalently, away from the convection in the upper layer.
Similarly, we measure the Hadley circulation by the maximum meridional transport.
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We can further divide the Walker circulation into western and eastern branches. The
western branch is the maximum zonal transport to the convection coming from the west,
and hence is due primarily to the Rossby response. The eastern branch tracks the flow
from the east, and is generated by the Kelvin response. The Hadley circulation divides into
northern (summer) and southern (winter) cells. These cells are established, to the most
part, by the interaction of inertial gravity waves and the the mixed Rossby-inertial gravity
modes.

As subsidence completes the Walker and Hadley circulations, the asymmetries of the
meridional and zonal flows are the same as those we see in the formation of black holes.
Calculating the flows thus gives a quantitative measure of the black hole asymmetries. For
each forcing function we plotted the intensity of the four cells as a function of time relative
to their steady state values. The total transports east-west and north-south at steady state
are roughly equivalent so that the units in both diagrams are effectively the same.

For example, in the plots of the northern and southern branches of the meridional
circulation, 1 unit on the y-axis corresponds to the total mass transport at steady state.
The total is the sum of the absolute values of both cells, and hence corresponds to the
total mass drawn into the convection region. The sign for transport in the northern cell is
negative because mass is moving southward toward the convection region in the lower layer.
The zonal mass transports are also plotted relative to the total steady state transport. The
eastern branch is negative, as mass is moving to the west.

Forcing function F1 presents the unrealistic adjustment problem. As shown in Figure
16, the meridional transport is initially quite unstable. The inertial gravity waves slosh
the circulation back and forth as they adjust to the sudden shock. While the meridional
circulation reaches values comparable to the steady solution almost instantaneously, the
zonal transport lags behind, and has not reached the steady state values after 2.5 days of
simulation.

In the lower half of Figure 16, we compare the dissipation limited growth to the growth
of the zonal mass transport. If the frequency ω is small relative to ε, our forcing function
reduces to

S̃(t) = S0

1 − e−(ε+iω)t

ε + iω
→ 1 − e−εt

ε
, (88)

and growth is controlled by the friction. This will only hold for the full solution if it holds
for all modes. Clearly it is not the case, for the friction dominated curve should match that
of the total transport.

The response to forcing function F2, as pictured in Figure 17, is also quite unrealistic.
The meridional response is not quite as instantaneous, but still sloshes back and forth. We
compare both the meridional and zonal decay rates to the dissipation dominated spin down,

S̃(t) = S0e
−(ε+iω)t 1

ε + iω
→ e−εt

ε
. (89)

While the curve does not match for the Hadley circulations, it gives a pretty sound fit for
the decay of the Walker cells. This indicates that the the bulk of the Rossby and Kelvin
response at steady state is controlled by low frequency waves. As indicated by the poor fit
in Figure 16, higher frequency modes were important at the onset of forcing.
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Figure 16: Hadley and Walker Circulations, Forcing Function F1
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Figure 17: Hadley and Walker Circulations, Forcing Function F2
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Forcing function F3 presents a more realistic rise to steady state convection. In the
upper half of Figure 18 we find the meridional circulation nearly perfectly in step with the
forcing. There are still some oscillations due to the abrupt start. These oscillations are
absent with the smooth forcing F4, as shown in Figure 20. As shown in the bottom half of
18, the Walker circulation lags behind the forcing by 1-2 days.

A close look at Figure 19 reveals that northern and southern cells of the Hadley cir-
culation are nearly symmetric at the onset of convection. Figure 19 better illustrates this
phenomenon. We present the ratio between the two branches of the Hadley and Walker
circulations as a function of time. The horizontal lines indicate the steady state ratios.
For instance, at steady state, the southern branch of the Hadley circulation is nearly 3
times stronger than the northern half. In the beginning, however, the north and south cells
are nearly equal. The n = 0 mixed mode response accounts for much of the steady state
asymmetry, and takes longer to establish itself.

The west-east asymmetry also evolves with time. It begins close to its steady state
value, and then drops to a point where the eastern cell is five times larger than its western
counterpart. This can be attributed to the larger group velocity of Kelvin waves, which
gives the eastern branch a quicker start. The initial surge by the Rossby wave is due to the
mixed mode. It is slower than the other gravity waves, but faster than Rossby and Kelvin
waves!

Lastly we look at response to the smooth forcing F4, shown in Figures 20 and 21.
While the total meridional circulation is nearly in perfect step with the forcing, the zonal
circulations lag, the Eastern cell by 1/2 a day, the western cell by over a day. In this trial
in took 1.5 days to establish the north-south asymmetry - the acceleration of the forcing
function seems to promote a symmetric response. Note that the drop in the north-south
ratio at the left of Figure 21 is due to a problem in how we calculated the ratio, and is not
at all physical. The west-east ratio curve appears similar to that in Figure 19.

4 Limits of our Theory

4.1 The Nonlinear Terms

We have neglected the advective terms in the shallow water equations throughout our
analysis. We must ask what differences we should expect in a solution of the complete
equations,

∂u

∂t
− yv +

∂h

∂x
= −εu − (u

∂u

∂x
+ v

∂u

∂y
) (90)

∂v

∂t
+ yu +

∂h

∂y
= −εv − (u

∂v

∂x
+ v

∂v

∂y
) (91)

∂h

∂t
+

∂u

∂x
+

∂v

∂y
= −εh − S − (u

∂h

∂x
+ v

∂h

∂y
). (92)

As a first line of inquiry, we calculate the magnitude of the nonlinear terms given our
final solution. They must be much relatively small for our solutions to be at least self-
consistent. Table 4.1 lists the worst case ratio of the magnitude of the nonlinear terms to
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Figure 18: Hadley and Walker Circulations, Forcing Function F3

Ratio nonlinear
linear

x-momentum 30%
y-momentum 7%

mass conservation 4%

Table 2: Relative Size of the Nonlinear Terms
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Figure 19: Asymmetries in the Circulation, Forcing Function F3

the combined magnitude of the linear terms for each of (90) - (92), as calculated by finite
differencing the linear, steady state solutions.

With the exception of (90), the nonlinear terms are small enough to justify neglecting
them. In (90), the nonlinear terms are the most problematic on the equator where subsi-
dence is strongest in the southern black hole, as illustrated in Figure 22. The loss of the
Coriolis force on the equator makes this region particularly susceptible to nonlinearities. In
addition, the upward velocity, given by (65), is large in regions where partial derivatives ux

and vy are strong. As such partials are present in the nonlinear terms, we should expect
them to be strong in regions of subsidence.

4.2 Susceptibility to Barotropic Instability

As friction plays a small role in our system of equations, we can anaylze them in the
inviscid limit. We then expect the flow to become susceptible to barotropic instability when
there exists a reversal in the potential vorticity gradient. The linear (nondimensional) PV
principle in our model was given in (9), with the PV anomaly q defined by (10). q can be
calculated in spectral space, as PV is conserved by each unforced mode. (It is important
the note that the forcing and dissipation terms serve only to tell us the magnitude of each
mode, and do not effect the velocity fields, or the PV!) First, we have that

dq

dt
+ v = 0 (93)

193



0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
−0.5

0

0.5

1

1.5

days

re
la

tiv
e 

tr
an

sp
or

t
Relative Meridional Mass Transport, Forcing F4

southern branch
northern branch
total
forcing

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

days

re
la

tiv
e 

tr
an

sp
or

t

Relative Zonal Mass Transport, Forcing F4

western branch
eastern branch
total
forcing

Figure 20: Hadley and Walker Circulations, Forcing Function F4
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Figure 21: Asymmetries in the Circulation, Forcing Function F4

in the inviscid, unforced problem. Move to Fourier space and write q̂ as a sum of the
contributions from each normal mode,

q̂ =
∑

n,r

ŵn,r(k, t)Qn,r, (94)

to obtain the transform of (93),

−iωn,rQn,r + Vn,r = 0. (95)

Qn,r is the PV contained in the nth, rth normal mode. A quick rearrangement yields

Qn,r =
Vn,r

iωn,r
. (96)

Likewise,

dQn,r

dy
=

dVn,r

dy

iωn,r
. (97)

We can then calculate q and ∂q/∂y as u, v, h, and w before.

The nondimensional PV anomaly q has units c
L =

(

β
c

) 1

2

, while ∂q/∂y has units of β.

Hence, the criterion for a reversal of the total PV gradient in y is that nondimensional
∂q/∂y < −1.

The PV field and gradient in y are shown in Figure 23, which indicates that the first
baroclinic mode is linearly stable. The top half of the diagram illustrates the PV field. Note
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mode c (m/s) h̄ (m) Sd (m/day) Snd

1 77 610 57 0.026
2 47 220 55 0.086
3 31 98 5.6 0.025
4 23 56 3.2 0.053

Table 3: Marshall Island Data

that it is biased heavily to the west and, to a lesser extent, to the north. The east-west
asymmetry is more easily explained: Kelvin waves carry no PV, whereas Rossby waves do.
The north-south asymmetry can be explained in view of PV stretching. The yS term in our
PV principle, (9), corresponds to the stretching of the planetary potential vorticity. The
effect becomes more pronounced as the Coriolis force grows with latitude.

4.3 Higher Baroclinic Modes

A study of the atmosphere over the the Marshall Islands gives us a measure of the intensity
at which each baroclinic mode is excited by the release of latent heat [1]. The relevant data,
shown in Table 4.3, indicates that the bulk of the latent heat release excites the first two
baroclinic modes; Sd, the dimensional forcing, indicates the strength of the excitation for
each mode.

Recall that the physical scales of the system are determined by c. As c becomes smaller,
the length scales shrink and the time scales lengthen. The magnitude of the nonlinear
terms and intensity of the PV gradient involve spatial derivatives, and thus are enhanced
as the length scales shrink. They are proportional to the nondimensional forcing Snd =
Sd gβ−

1

2 c−
5

2 . Hence for the second baroclinic mode the relative intensity of the nonlinear
terms is 3.3 times larger than for the first mode, as is the PV gradient! We should then
expect the second baroclinic mode to be nonlinear and potentially unstable, were it to
exist by itself. Nonlinearities ruin our ability to paste modes atop each other, making it
difficult to say whether the full solution (taking into account the nonlinear terms and all
baroclinic modes) would be unstable. Note, however, that w is proportional to Sd, so that
the subsidence field is determined by just the first two baroclinic modes.

5 Conclusions

Linear theory has performed remarkably well in revealing the gross features of the time
evolution of water vapor black holes. The asymmetries in the growth and decay of the dry
regions are readily seen as a ballet of Kelvin, Rossby, and inertial gravity waves.

A better fit to observations could be made by including more baroclinic modes. I am
not sure, however, how much more such activity would teach us about the physics of the
system. It may, however, prove very instructive to follow further in the footsteps of Gill
and linearize about a mean zonal wind, as in [8]. It is difficult to tell if the movement of
the real black holes in Figures 1-3 was due to the propagation of wave packets or advection
by the easterly Trade Winds. Linearizing about a mean wind may help settle this question.
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The response of the Hadley circulation to forcing is much faster than that of the Walker
Circulation. In addition, the western branch of the Walker circulation responds slower to
forcing that the Eastern branch. While these properties were known before, it is fruitful to
extend these insights to the study of black hole formation. Black holes are often associated
with the formation and movement of tropical storms [10], which can be viewed as massive
centers of convection. The initial subsidence response is driven by inertial gravity waves,
and appears north and south of the system, especially in the winter hemisphere. As the
storm moves poleward, the effect of gravity waves and Kelvin waves decrease, and we see
primarily a Rossby response to the west of the storm.

As a first attempt to apply these insights to a real storm, we tracked the response
generated by Typhoon Pabuk over the west Pacific in August, 2001. When the storm
formed over the tropics we observe a massive Black hole extending down over northern
Australia. As the storm moved north, we then observed the formation of a intense black
hole west of the storm, which appeared to be advected around the storm by anticyclonic
winds in the upper troposphere. This interaction between tropical storms and black holes
presents an exciting area for future study.
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Nonlinear effects on ENSO’s period

Fiona Eccles

1 Introduction

El Niño is roughly defined as the warming of the east equatorial water of the Pacific Ocean
about every 3 to 6 years and is accompanied by a “Southern Oscillation” signal in the atmo-
sphere, the events together being known as ENSO. In normal, non-El Niño conditions the
trade winds blow towards the west across the tropical Pacific. The sea surface temperature
(SST) is about 8 ◦C higher in the west (so there are relatively cool temperatures off South
America) with a corresponding slope in the thermocline, it being deeper in the west. During
El Niño the trade winds relax in the central and western Pacific leading to a depression of
the thermocline in the eastern Pacific, and an elevation of the thermocline in the west.

Despite much study to understand this complex phenomenon the reason for the par-
ticular period of the ENSO event, every 3–6 years, is as yet poorly understood. In this
study we examined different El Niño periods in a delayed oscillator model, in particular the
behaviour of the wave dynamics and nonlinearity, to further advance our understanding of
this issue (at least in the model!) We believe the nonlinearity plays a key role in setting the
period in the model and it was specifically this role that we hoped to further comprehend.

However, the ENSO period in the model is dependent not only on this nonlinearity but
is also a function of the model parameters. In order to separate out purely the effect of
the nonlinearity we ran the model in a chaotic regime with one set of model parameters.
The different periods present in this regime could then be extracted as unstable periodic
orbits, using the method outlined below. Thus it was possible to examine various ENSO
frequencies with the same model parameters and therefore study solely the effect of the
nonlinearity on the wave dynamics. It is important to note that the use of the chaotic
regime is merely a tool used here. The results regarding the effect of the nonlinearity on
the period of ENSO should also be valid when ENSO is in a non-chaotic regime.

This report is structured as follows. In the next section we present the evidence for
the four year El Niño cycle and the failure of a current GCM and of linear theory to fully
reproduce or explain this. In section 3 there is a brief outline of the model used for this study,
and the model’s transition to chaos, the state used to examine the role of the nonlinearity,
is shown in section 4. The method of finding unstable periodic orbits (UPOs), the cycles
with different periods within the chaos, is described in section 5. Section 6 presents an
observation of an amplitude-period relationship in the model, found using the UPOs, with
a comparison with the Cane and Zebiak [1] model. The wave dynamics analysis of the results
is presented in section 7 before concluding remarks (section 8) and acknowledgments.
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Figure 1: Niño3 record (average SST 5N-5S, 150W-90W) for 1950-2001, data from
http://www.cpc.ncep.noaa.gov/data/indices/, figure courtesy of Eli Tziperman.

2 ENSO’s period

2.1 The observations

The Niño3 record, figure 1, shows the average SST in an equatorial region of the east
Pacific which corresponds to the region where El Niño warming is observed. This clearly
shows the ENSO cycle over the last 50 years, with a period of 2–6 years, and indeed a
power spectrum of such records yields a broad peak at around four years. However it would
appear the El Niño cycle is not just a feature of the Holocene climate (see e.g. Hughen et
al. [2]). Information about the temperature in the last interglacial period (120,000 years
ago) can be inferred from the exoskeletons of coral. The amount of the heavy isotope
18O absorbed depends on the SST and the quantity of the isotope in the surrounding
water (which depends on precipitation and evaporation rates). Cooler SSTs and drought
conditions caused during El Niño in Indonesia (from where the coral record was extracted)
create large positive anomalies in the 18O record. The evidence here too points to a broad
peak around a similar timescale in the power spectrum.

2.2 Models

Simulating and/or explaining this cycle at around four years is proving to be a challenge
to the climate community. GCMs often get the period wrong; usually it is too short. For
example Timmerman et al. [3] performed runs with a GCM with an increasing greenhouse
gas scenario to evaluate the impacts this might have on El Niño. They concluded that this
scenario had little effect on the El Niño period (although the same was not true for the
amplitude of the event.) However the El Niño period in their control runs is 2 years, i.e. too
short by a factor of 2! It would be interesting to be able to explain the period in this model
to verify that the result of no change in period didn’t depend on the control run period.

2.3 Linear analysis

Münnich et al. [4] compare versions of their iterative map model of ENSO with linear and
nonlinear ocean-atmosphere couplings. They find that a linear version of their model can
only produce periods up to about two years but demonstrate that when nonlinearity is
included periods more akin to the real world ENSO are produced. They postulate that the
mechanism choosing the preferred period (of approximately 4 years) is in essence nonlinear.

For our study we used a similar, though simplified, delayed oscillator type model, which
is described in the next section. As linearised analysis seems unable to fully explain the
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Figure 2: The delayed oscillator mechanism (see text for description), figure courtesy of Eli
Tziperman.

source of ENSO’s period it was the purpose of this project to explore nonlinear effects on the
period in a delayed oscillator model. More specifically we asked the following two questions:
what role could nonlinearity play in setting or affecting ENSO’s period? Is there a relation
between the period of ENSO and its amplitude?

3 The delayed oscillator

The delayed oscillator description of El Niño (Suarez and Schopf [5], Battisti [6]), can be
described as follows (see figure 2). An easterly wind weakening (1) creates an equatorial
warm (downwelling) Kelvin wave (2) that travels to the east Pacific arriving within 1–2
months, where a thermocline rise induces SST heating and starts an El Niño. The event is
amplified by ocean-atmosphere instability: the SST heating causes further wind weakening
therefore there is a positive feedback that strengthens the east Pacific warming. However
the original wind weakening also creates off-equatorial (upwelling) Rossby waves (3) which
propagate westward and are reflected from the western boundary as cold Kelvin waves
(4) to arrive six months later at the eastern boundary and terminate the event. The
equation which Suarez and Schopf [5] used to capture this behaviour in the SST (T (t)) is
(in nondimensional form)

dT (t)

dt
= T (t) − αT (t − δT ) − T 3(t) . (1)

The first term represents the positive feedback effects of the Kelvin wave (ignoring
the short delay in the time for it to travel to the eastern basin), the second term is the
Rossby wave and the third a nonlinear damping term to stabilise the system. δT is the
nondimensional Rossby wave delay time and α measures the influence of the returning
signal relative to that of the local feedback (i.e. relative to the Kelvin wave term.) This
model produces oscillations, although whether or not the timescale of these oscillations
is the required 3–6 years depends sensitively on the specific model parameters chosen so
ENSO’s period is not a robust feature of this model.

We now go on to consider the delayed oscillator used for the present study.
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3.1 A brief derivation of the delayed oscillator used here

Models of ENSO when run in certain parameter regimes can generate SST behaviour which
is self-sustained and periodic; the period obtained depends on the model parameters. How-
ever we wanted to extract the role of nonlinearity on the period separately from the role
of parameters and for this it is necessary to run the model in a chaotic regime in a way
which shall be outlined in section 4 onwards. First we shall describe briefly the model used
though the reader is referred to [7] and the references therein for a full description. The
model we used in this study was that of Galanti and Tziperman [7] (hereafter GT). It is
based on that of Jin [8, 9] which is turn is simplified from the model of Zebiak and Cane
[1], hereafter CZ.

3.2 Ocean dynamics

The ocean dynamics follow from a shallow water anomaly model on an equatorial β plane
with linear friction using the long wave approximation, (i.e. no ∂v/∂t term). The meridional
damping and meridional wind stress are also neglected. The resulting set of equations is

∂u

∂t
− βyv + g′

∂h

∂x
= εmu +

τx

ρH
,

βyu + g′
∂h

∂y
= εmv +

τy

ρH
, (2)

∂h

∂t
+ H(

∂u

∂x
+

∂v

∂y
) = −εmh ,

where u and v are the zonal and meridional anomaly velocities, h is the thermocline
depth departure from its mean state, g′ is the reduced gravity acceleration, εm is the oceanic
damping coefficient, and H is the mean thermocline depth. Jin makes the “two strip
approximation” which assumes that the ocean dynamics in the equatorial region is well
represented by a combination of equatorial Kelvin waves and off-equatorial long Rossby
waves. The ocean basin is also divided into two zonal boxes. GT instead of using the two
box approach integrate along characteristics for Kelvin waves (along the equatorial strip)
and Rossby waves (along the off-equatorial strip) to obtain a delay equation. The Kelvin
delay time is retained in GT’s analysis, and is neglected by Jin.

3.3 The ocean-atmosphere interaction

GT follow Jin in that they have a (truncated) Gill’s atmosphere; CZ use a full Gill’s atmo-
sphere. The wind stress is assumed to affect the waves only in the central part of the basin
and is assumed to be a linear function of SST on the eastern equator (Jin [8]),

τx(t) = µ(t)b0T (t) exp(−y2α

2L2
0

) , (3)

where
√

α/Lo is the atmospheric Rossby radius of deformation, b0 is the annual mean
coupling and µ(t) a seasonally varying coupling. Thus the analysis of GT yields an equation
for the thermocline depth anomaly in the eastern equatorial Pacific, h,
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Parameter Description

h thermocline depth anomaly on the Eastern equator
T temperature anomaly on the Eastern equator
εm oceanic damping coefficient
τ2 Kelvin wave basin crossing time
τ1 Rossby wave basin crossing time
rW , rE the reflection coefficients at the western/eastern boundaries
dt = 0.5 the fraction of crossing time that wind stress affects waves
ρ mean density of ocean
A∗ a constant relating wind stress anomalies to SST anomalies
b0 annual mean coupling strength
µ relative coupling coefficient which changes seasonally
w̄ mean upwelling
εT thermal damping coefficient
Tsub temperature anomaly at depth H1; a function of h
h thermocline depth anomaly
γ relates the temperature anomalies entrained into the surface layer

to the deeper temperature variations due to Tsub(h).

Table 1: Parameters in equations 4 and 7.

h(t) = e−εmτ2rW rEh(t − τ1 − τ2)e
−εmτ1

− e−εmτ2rW
1

βρ
A∗dtτ1µ(t − τ2 −

τ1

2
)b0T (t − τ2 −

τ1

2
)eεmτ1/2

+
1

ρCo
dtτ2µ(t − τ2

2
)b0T (t − τ2

2
)eεmτ2/2 .

(4)

where the model parameters are described in Table 1. Equation 4 can be physically
interpreted as the thermocline depth anomaly due to signals propagated by slow moving
Rossby waves and faster Kelvin waves. In the GT model the wind stress excites these waves
which are responsible for the El Niño event. The seasonal coupling µ is given by

µ = 1 + δ cos(wat − φ). (5)

wa = 2π/12 is the annual frequency and φ = 5π/6 is the phase; the coupling peaks in
May. This represents the fact that the strength of the response of the wind stress anomalies
to SST anomalies varies with season. It has several contributions (see Tziperman et al.
[10] and GT), chief amongst them the variation of the mean wind convergence due to the
movement of the ITCZ. Another important contribution is the seasonal variation of the
mean SST.

All Rossby waves move westward across the basin damped by e−εmτ1 , travelling along the
off equatorial strip, whereas the Kelvin waves move eastward as damped equatorial waves
(e−εmτ2). τ1 and τ2 are the basin crossing times for Rossby and Kelvin waves respectively
and rW (rE) the reflection coefficient at the western (eastern) boundary.
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Figure 3: A schematic of the variation of Tsub with the movement of h. At t1 the thermocline
is nearer the surface and thus the temperature Tsub (measured at depth H1) is less than
when the thermocline is deeper at time t2.

At each timestep equation 4 has three contributions. The first term on the RHS repre-
sents a “free” wave which left the eastern basin (after a reflection by the eastern boundary)
at a time t − τ1 − τ2 and travelled as a Rossby wave, to the western boundary arriving at
time t− τ2. It was then reflected by the western boundary and travelled back to the eastern
boundary as a Kelvin wave, arriving at time t. The second term represents the Rossby
waves excited at a time t− τ2 − τ1/2 in the central Pacific which travelled westward, again
being reflected at t− τ2 and which travelled back as a Kelvin wave arriving again at t. The
final term is a Kelvin wave, excited at a time t− τ2/2 in the centre of the basin which then
travelled to the eastern basin. Note the negative sign for the Rossby wave term due to the
fact it is proportional to the curl of the wind stress (the Kelvin wave term is proportional to
the wind stress itself, hence a positive feedback). Thus a weakening of the westward winds
results in an excitation of warm Kelvin waves and cold Rossby waves (and a strengthening
of the winds leads to vice versa); hence the system oscillates.

3.4 The SST equation

The model solves equation 4 coupled with an equation for the evolution of SST. GT follow
Jin and keep only the time rate of change, the advection by the mean upwelling w and the
damping term (cooling) from a usual advection diffusion temperature equation.

∂T

∂t
= −εT T − w

∂T

∂z
(6)

The second term on the RHS is parameterised, following CZ, as

γ
w

H1

(T − Tsub(h)) ,

where Tsub is the temperature anomaly at depth H1 (the mean thermocline depth) and is
approximated as a tanh function (Münnich et al. [4]). This is explained in figure 3.
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Hence the SST in the east varies as

∂tT = −εT T − γ
w̄

H1

(T − Tsub(h)) . (7)

Note that the main nonlinearity in the model is due to Tsub and that the mechanism
of oscillation in the GT model has an explicit delay for the time it takes SST to adjust to
changes in h.

4 Transition to chaos

As we stated in section 3, in order to separate the role of nonlinearity from that of the
parameters in setting the period of El Niño we have used the idea of running the model in
a chaotic regime. This will become clear as we proceed below. We changed the parameters
b0 and µ, i.e. the mean coupling and the seasonal coupling in the search for chaos. To
diagnose the chaos we examined the time series of temperature, the frequency spectrum
and the reconstructed delayed coordinate phase space. The latter of these is found as
follows. Take the data set of SST output every day and from this form a subset of the data
subsampled every year, T (t). Then plot T (t) versus T (t − τ) where τ is one year.

The GT model follows the quasi-periodic route to chaos (Tziperman et al. [11]), as
opposed to that of period doubling or intermittancy. As b0 and µ (or equivalently δ) are
changed the model exhibits different types of behaviour.

It should be noted that for oscillations to be sustained the coupling must be greater
than a critical value otherwise the damping of the waves overcomes the positive feedback
effect as described in section 3 and a constant temperature results.

4.1 The quasi-periodic regime

In this regime the ratio of the frequency of El Niño (ωel) to the seasonal cycle (ωa) cannot
be written as a rational fraction i.e. it is not possible to write ωel/ωa as n/m where n and
m are integers. An example with period of approximately 4.35 years can be seen in figure
4. The phase space Poincaré section is a closed loop and the time series is periodic. The
spectrum demonstrates there are other frequencies present, due to the nonlinearity of the
oscillation.

4.2 The mode locked regime

In this regime the signal is locked to some rational multiple of the seasonal cycle. For this
type of chaos we need a damped nonlinear oscillator forced by a period forcing. This regime
is seen in figure 5; the frequency for this particular choice of parameters is 1/4 the annual
period.

4.3 The chaotic regime

In figure 6 the spectrum shows a very broad peak at around 3-4 years which together with
the phase plot identifies this as a strongly chaotic regime and hence the one we shall use
for our study.
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Figure 4: SST for a b0=7.5×1010 kg month−2 m−1 ◦C−1 and δ=0.001
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Figure 5: SST for a b0=7.5×1010 kg month−2 m−1 ◦C−1 and δ=0.04
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Figure 6: SST for a b0=7.5×1010 kg month−2 m−1 ◦C−1 and δ=0.18.

4.4 Other periods

As an aside we mention as stated in section 2, that the model can support varying periods
depending on the model parameters. Figure 7 for example shows an example of a longer
period than figure 4 (the period is approximately 9.9 years in contrast to the 4.35 years of
figure 4), while still being in the quasi-periodic regime.

5 Finding unstable periodic orbits

We wanted to compare the wave dynamics of several different periods of El Niño which the
model supports. As the model is now in the chaotic regime, different periodical solutions
exist as unstable periodic orbits; we have many different El Niño periods for the same values
of the model parameters.

To enable us to study the unstable periodic orbits (UPOs) we ran the model in the
chaotic regime for 100,000 years, with output every day to obtain a time series of the SST,
T(t). Then following the method outlined in Tziperman et al. [12], we determined the
UPOs in a 3 dimensional delay-coordinate phase-space reconstruction from the T(t). The
delay coordinates are defined as X(t) = {X1, X2, X3} = {T (t− 2τ), T (t− τ), T (t)} where τ
is one year. For a given period p we searched for phase space points X(t) that returned to
the same neighbourhood after a period p, so that ||X(t) − X(t − p)|| < ε for some small ε.
When plotting the number of peaks which fall into this criterion against p, the UPOs show
up as peaks (figure 8). The points X(t) which satisfy the above criterion for p= 3,4,5 and
6 years can be seen in figure 9. Note there are two separate three year UPOs and the six
year one appears to be just a period doubling of that for three years. It is then necessary
to extract one orbit for each of the UPOS, i.e. one “loop of the circuit”. We can then also
examine the corresponding segment of the time series and subsequently the wave dynamics
for each of the segments. The single UPOs are shown in figure 10 with the corresponding
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Figure 7: SST for a b0=8.5×1010 kg month−2 m−1 ◦C−1 and δ=0

time series in figure 11.
For our study we wanted to examine the dynamics of “independent orbits”. From figure

11 it is evident that the five and eight year orbits are composed of two other UPOs; the five
year one being composed of a two year orbit and a three year orbit for instance. The two
shorter period UPOs have merged in phase space to form the five and eight year UPOs. In
order to build up the wave dynamics picture therefore we concentrated our attention on the
three and four year UPOs.

The system jumps irregularly between the different UPOs (not just those pictured).
With no seasonal cycle present the “natural” El Niño period is largely about 3–5 years. It
would be no surprise therefore if the system spent most time near the three, four and five
year UPOs, i.e. they were the least unstable.

6 Amplitude period relations in the delayed oscillator

From figure 12 it is feasible to postulate an amplitude period relationship; the shorter period
has a larger amplitude. This seems to be true of even the merged orbit; at least the two
year cycle visible in figure 11c (as part of the five year UPO) has a still larger amplitude
than either the three or four year SST series. This relationship is not in general true of
nonlinear oscillators. For example the unforced Duffing oscillator/spring equation

ẍ + ω2x + bx3 = 0 ,

yields solutions for both a spring which increases in frequency (b > 0) with increasing
amplitude and the converse1 (b < 0). So how robust is our amplitude frequency relationship?
Also, what might be the physical mechanism behind this relationship?

1The question may well be asked as to whether this is a good comparison to make, after all the spring

is an undamped, unforced oscillator, however we mention it briefly as a first thought. A better comparison

might be to look at something like the Lorenz equations.

210



0 2 4 6 8 10 12
0

2

4

6

8

10

12

14
x 10

5

p

# 
of

 r
et

ur
ns

Figure 8: Number of returns for each value of p, ε=0.02.

Figure 9: UPOs for a)p=3, b)p=4, c)p=5, d)p=6 years
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Figure 10: Single UPOs for a)3 years and b)4 years c)5 years and d)8 years
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Figure 11: SST for a)3 years and b)4 years c)5 years and d)8 years
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Figure 13: A section of a time series from the Cane-Zebiak [1] model showing events with
an amplitude of just over 3◦C.

1065 1070 1075 1080 1085
−2

−1

0

1

2

3

4

5

time [years]

S
S

T
 [°

 C
]

Figure 14: A section of a time series from the Cane-Zebiak [1] model showing events with
an amplitude of just over 2 ◦C.

6.1 The Cane-Zebiak (1987) model

As a quick check on the amplitude frequency relationship we performed a preliminary com-
parison with the CZ model, mentioned in section 3.1. Looking at examples of El Niño
events at just over 3◦C (figure 13) and comparing them with those just over 2◦C (figure 14)
the periods appear to be about the same (4.1 years in the former case and 3.9 years in the
latter case.) As a further example in figure 15 the smaller (just over 2◦C) and larger events
(just over 3◦C) both have periods of exactly 4 years.

An examination of events smaller than 2 ◦C is problematic as it is depends very much
then on the definition of an event. By how much does the SST have to warm before an El
Niño is said to have taken place? Some of these small events/noise can be seen in figures 13
to 15. This preliminary investigation seems to suggest no clear period amplitude relation
in the CZ data, however a fuller statistical analysis is clearly needed.
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Figure 15: A section of a time series from the Cane-Zebiak [1] model showing consecutive
events with amplitudes of just over 2 ◦C then just over .3 ◦C.

7 Wave dynamics analysis

Returning to look at figure 12 we can compare the features of the three and four year ENSO
cycles. The four year cycle spends time between one and two years at an approximately
constant temperature and the four year warming which begins around two years is longer
and more gradual. To attempt to explain this behaviour in terms of the waves dynamics
we examined the various terms in equation 4, and they are plotted for each UPO in figures
16 and 17. We use the following notation for the terms from equation 4. RK is the free
Rossby-Kelvin wave, ER is the excited Rossby wave and EK is the excited Kelvin wave as
described in section 3.3.

RK ≡ e−εmτ2rW rEheE(t − τ1 − τ2)e
−εmτ1

ER ≡ −e−εmτ2rW
1

βρ
A∗dtτ1µ(t − τ2 −

τ1

2
) × b0TeE(t − τ2 −

τ1

2
)eεmτ1/2

EK ≡ +
1

ρCo
dtτ2µ(t − τ2

2
)b0TeE(t − τ2

2
)eεmτ2/2 .

(8)

τ1 is 8.5 months and τ2 is 2.1 months. The effect on h at any point in time is therefore
determined by the SST one month previously (via term EK) and by the SST about 6 months
previously (via term ER). In figures 16 and 17 it can be seen that the Rossby wave term
always lags the Kelvin wave term by about 6 months (and its amplitude is smaller and with
an opposite sign.) The term RK is a slave to the other two as it only depends on h about
10.5 months before.

7.1 The three year event

Examine first figure 16. From approximately two years the Kelvin wave (EK) feedback
produces higher and higher SSTs as we enter an El Niño event as described in section
3. The warmer SSTs however (via the weakening wind) also cause the generation of cold
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Rossby waves which terminate the El Niño event at the end of year three. They then
continue to bring a cooling signal such that the temperature begins to decrease and then
the Kelvin wave feedback causes an increasing cooling of temperature until this is stopped
again by the Rossby wave bringing a warming signal once more towards the end of the
second year.

The balance between the Rossby and Kelvin waves required to terminate an event can
only happen at the end of the year (see GT). Equation 3 for µ parameterises the coupling
between atmosphere and ocean as being strongest in month five. i.e. the system is most
unstable then. At the end of the year the coupling of the SST (which is generating the
Kelvin term) is much weaker. However the Rossby wave signal felt by the east Pacific at
the end of the year is due to the coupling 6 months previously, (when the coupling was
strong). Thus a strong warming trend due to the Kelvin waves amplified by weak coupled
instability balances the weak cooling trend due to Rossby waves amplified by a stronger
coupled instability.

7.2 The four year event

For the first year the picture looks similar to the three year case, figure 18. However at
about one year the Kelvin wave has a period of approximately constant amplitude; it seems
to get “stuck”. Hence six months later the Rossby wave has a similar constant period. At
the end of year two the Rossby wave is, as in the three year case, strong enough to cause
the warming to begin. The Kelvin wave feedback ensures continuing warming. However
as the Rossby wave was constant for a year, by the end of year three it isn’t “powerful
enough” (i.e. it isn’t cooling strongly enough) to cause a halt to the warming. The SST
perturbation it was coupled to six months previously was around zero (see figure 12). Hence
the Kelvin wave feedback continues to cause warming. As we progress in the third year
the Rossby wave becomes stronger and hence limits the amount of warming caused by the
Kelvin wave, thus the El Niño amplitude is smaller and finally at the end of year four the
event is terminated.

The key then, to the four year cycle developing as opposed to a three year event is
the halt of the cooling of the Kelvin wave at the end of the first year. The reason for this
presumably involves the nonlinearity but a precise explanation is not immediately apparent.
What we can say is that the four year event being weaker is consistent with the fact that
the Kelvin and Rossby waves are weaker. This weakness makes the event develop more
slowly, and in particular shift from phase to phase more slowly as described above. The
stronger three year event sustains stronger Kelvin and Rossby terms which are able to
shift the system from El Niño to La Niña faster. This wave dynamics perspective into the
amplitude-period relation for the delayed oscillator model used here gives us some intuition
regarding the physical processes responsible for this relation.

8 Concluding remarks

The mechanism causing ENSO’s robust four year period is not yet fully understood and
when simulated in models the explanation seems to rely on a nonlinear effect. In order
to separate the nonlinear causes from those of the parameters we extracted UPOs from a
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Figure 16: Terms in equation 4: RK(–), ER(−·), EK (− −)
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Figure 17: Terms in equation 4: RK(–), ER(−·), EK (− −)
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simple delayed oscillator model. We found from these UPOs that a shorter period implied
a larger amplitude of an El Niño event and whilst the precise nature of the nonlinearity was
unclear it was possible to rationalise this amplitude period relation in terms of equatorial
wave dynamics. Efforts to verify this relation with the CZ model were inconclusive at this
stage. Further work is required to test its robustness in both fuller models and in the actual
Pacific.
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Abyssal flow in a two-layer model with sloping boundaries

and a mid-ocean ridge

Helén C. Andersson

1 Introduction

The vast abyssal ocean is comprised of layers of very cold and dense water. As this is
true even for the deep water of the tropics, the source of this water must be of polar
origin. The vertical circulation that enables ventilation of these layers is driven by surface
processes resulting from air-sea interaction. Heat loss of the surface water in combination
with increased salinity due to evaporation or ice formation produces a dense water that sinks
toward the ocean bottom. During the descent its density gets reduced due to entrainment of
lighter water, and the final depth of the water mass is a function of surface density and the
extent of mixing during the descent. The water then flows in a deep, large-scale circulation
that fills the ocean basins. Lighter water rises to the surface and flows in surface currents
to the polar regions to replace the water that has sunk.

The abyssal ocean can be divided into three layers: an intermediate layer from the base
of the thermocline to about 1500 m, a deep layer below this and finally a bottom layer that
is in contact with the sea floor. The sources of new abyssal waters are few as there is only a
small number of regions that can produce surface water dense enough to sink to the deeper
layers of the ocean. Intermediate waters form mainly in the Labrador Sea and the sub polar
areas from extensive cooling but also in the Mediterranean due to high evaporation rates.
Deep water formation occurs in the Nordic seas where cooling, in combination with salt
release on the shelves due to ice formation, creates a dense water mass that spills in to the
North Atlantic, mainly through the Faeroe Bank Channel. In the Southern Hemisphere
deep and bottom water are formed at the Antarctic continent with the main location in the
Weddell Sea.

Obtaining long-term measurements of the circulation in the deep ocean is difficult and
our understanding of these flows is hence somewhat limited. Tracer studies have lately
increased the knowledge of the flow and information is also gained from models. Stommel
[1] developed a model where the abyssal circulation is a result of the sinking of deep water in
high latitudes which is replaced by upwelling of deep water through the thermocline. With
geographically constricted sources of deep water at the poles, the return flow is specified to
be equally distributed over the entire interface between the two layers. The resulting interior
geostrophic Sverdrup flow is always poleward, the vertically uniform flow of the abyss being
the result of its single layer representation. The Sverdrup interior is independent of the
position of the sources (see section 2) and vanishes at the equator. Western boundary
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currents are added to the solution in order to satisfy mass balance and these currents are
also the only possibility for a flow across the equator.

Stommel’s [1] model shows the characteristics of the mean abyssal flow. However, strong
baroclinic motion evident from observations are not captured by the model. Topographic
features in the basin will also affect the flow. In the present study, the objective is to find
an analytical solution for a model of flow in a closed basin with bottom topography and
stratification. We first explore the solution to a homogeneous flow with sloping northern
and western boundaries and a mid ocean ridge, before turning to the two-layer model.

2 The homogeneous model

We will first consider the case in which the ocean is represented by a single active layer.
The bottom topography of the basin is shown in Fig. 1. The 500 km wide western and
northern boundaries slope linearly from the ocean surface to the flat ocean floor at a depth
of 4000 m. The mid-ocean ridge has a height of 3000 m and is 1000 km wide. The southern
boundary is located at the equator. The isobaths of the basin geometry are shown in Fig. 2,
where the slope region on the northern boundary is added for analytical convenience.
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Figure 1: The bottom topography of the model basin.

The flow in the basin is driven by uniform upwelling, wo, through the upper surface
over the flat bottom (not over the boundaries). The layer gains water by sinking of upper
layer water at the north-eastern corner. In the linear and steady state the interior flow is
in geostrophic balance, hydrostatic and on a β-plane described by
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Figure 2: The isobaths of northern hemisphere model basin.

fv − g′
∂η

∂x
= 0 (1)

fu+ g′
∂η

∂y
= 0 (2)

∂u

∂x
+
∂v

∂y
+
∂w

∂z
= 0 (3)

where u, v, w are velocities positive to the east (x), north (y) and upward (z), η the

elevation of the interface, f = βy, g′ ≡ (ρ2−ρ1)

ρ2
where ρ1 and ρ2 are the densities of the

upper and lower layer respectively and g the gravitational acceleration. The upper layer is
assumed to be passive.

For small amplitude disturbances h+ η ≈ h, where h is the average height of the layer.
By specifying the vertical velocity w0 as the upwelling velocity through the interface at
z = 0 and taking u and v independent of z, we obtain after vertical integration of (3)

∂u

∂x
+
∂v

∂y
= −1

h

(

u
∂h

∂x
+ v

∂h

∂y

)

− w0

h
. (4)

Cross-differentiating (1) and (2) yields

∂u

∂x
+
∂v

∂y
+
βv

f
= 0 (5)

and in the flat interior of the basin where u ∂h
∂x = v ∂h

∂y = 0 we can now obtain the
Sverdrup relation from (4) and (5)

v =
w0f

βh
. (6)
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The meridional velocity v is independent of the location of the sinks in the basin. With a
positive vertical velocity w0 it will always be positive and increase with increasing latitude.

From (5) and (6) we get

∂u

∂x
+

2w0

h
= 0 (7)

from which we obtain the zonal velocity u

u =
−2w0

h
(x− xE) (8)

where u vanishes at xE , the eastern boundary.
As there is upwelling in the interior of the basin, there is no constant streamfunction on

the lines of constant transport. We can however determine the path of the flow using the
definitions

u =
dx

dt
(9)

v =
dy

dt
(10)

from which we get

u

v
=
dx

dy
= −2y(x− xE) . (11)

Integrating from (xW , yW ), the point at the foot of the slope from which the trajectory
enters the interior, to (x, y) yields the following equation for the trajectory in the interior

x = (xW − xE)
yW

2

y2
+ xE . (12)

Over the slopes where there is no upwelling the streamlines of the flow can be determined
by considering conservation of linear potential vorticity (PV)

D

Dt

(

f

h

)

= 0 . (13)

In a steady state (13) gives

u
∂

(

f
h

)

∂x
+ v

∂
(

f
h

)

∂y
= 0 . (14)

With the stream function ψ over the sloping boundaries, we have by definition

u = −∂ψ
∂y

(15)

v =
∂ψ

∂x
(16)
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which in (14) yields

∂ψ

∂x

∂
(

f
h

)

∂y
− ∂ψ

∂y

∂
(

f
h

)

∂x
= J

(

ψ,
f

h

)

= 0 (17)

where J(A,B) is the Jacobian. From this we deduce that the streamfunction is constant
on lines of constant f/h, i.e

ψ = ψ0

(

f

h

)

(18)

where ψ0 is the value of ψ at the foot of the slope. For the zero order picture we treat
the flow as essentially inviscid.

Figure 3: Trajectories of the flow

The resulting flow pattern is shown in Fig. 3. The flow enters the basin in the north-
eastern corner. Shallower columns of fluid follow the northern slope on the isobath of
entry. Deeper columns encounter the mid-ocean ridge and are diverted southwards and
up-slope in order to conserve PV while crossing the eastern side of the ridge. In this nearly
inviscid system friction will have to act along the top of the ridge in order to enable flow
to cross lines of constant PV. On the western part of the ridge the PV-conserving flow will
be northward and down-slope to rejoin the original isobath on the northern slope. The
symmetric trajectories are a result of neglecting upwelling over the ridge. Because the

225



velocities over the narrow ridge are considerably stronger than the velocities induced by
upwelling, the trajectory pattern is not significantly different from one which would include
upwelling. When reaching the western boundary slope the flow over the north slope will
again follow lines of constant PV. In a narrow region at the southwest corner, friction will
again be needed to get flow across lines of constant PV so that the fluid can flow northwards
to join on to the trajectories of the interior basin where the flow is determined by Sverdrup
dynamics.
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Figure 4: Close-ups and vertical cross-sections of the western boundary and the ridge area.
a) The western boundary. b) Section along the line A-B in the western boundary. c) The
mid-ocean ridge. d) Section along the line C-D across the ridge.

Fig. 4 shows cross-sections along the lines A-B in the western boundary and C-D across
the ridge. The heavy solid line in Fig. 4 a), from (0, 0) to (500, 6660), is the region where all
the interior fluid flows southward, coming in to the western boundary layer from the foot of
the northern boundary slope. To the west of the heavy line, the transport is also southwards,
bringing fluid from the sinking regions. To the east a northward flow supplies the interior
with fluid. In the southward flowing region, the transport of fluid will increase eastwards,
as shown by the size of the circles in Fig. 4 b), because the transport of sinking water on
the northern boundary is proportional to the depth. Hence streamlines originating from a
deeper depth contour in the northern boundary will transport more fluid than streamlines
from a more shallow depth contour. As the meridional velocity in the interior increases
with latitude (Eq. 6), the transport to the eastern side of the solid line decreases eastwards.
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As a result of the high speeds on both sides of the intersection between flows in opposing
directions, this will be a region of high shear where friction can be expected to be important.

In a similar manner regions of opposing flow at the mid-ocean ridge, as shown by the
solid lines in Fig. 4 c) and Fig. 4 d) are regions of high shear. However, we are treating
the inviscid limit and friction and diffusion are confined to infinitesimal regions compared
to the ocean basin size, and it is assumed that these regions play a rather small part in the
overall pattern of the circulation.

The flow pattern at the mid-ocean ridge resembles the picture of Defant’s [2] strato-
spheric circulation in which he used the absolute topography of the 2000-decibar surface to
compute the abyssal flow. The result is a Mid Atlantic southward flow, with a northward
flow on its eastern side originating from about 5◦ north, producing a V-shaped mid-ocean
flow pattern (corresponding to the dashed lines over the ridge in Fig. 3). Also numerical
studies of abyssal flow over topography confirm the pattern seen in Fig. 3. Condie and
Kawase [3] used a one and a half layer model to represent the abyssal flow over exponen-
tially sloping side walls at all boundaries and a Gaussian shaped mid-ocean ridge. The eddy
activity associated with the sinking region in the north-west corner of the basin in their
study has an impact on the flow pattern in the boundary region. The general flow pattern
is however confined to closed geostrophic contours, i.e the fluid follows lines of constant f/h
and the same V-shaped structure of the flow is visible at the mid-ocean ridge.

3 The two-layer model

In section 2, a geometrical picture was obtained on how the influence of sloping topography
will alter the boundary layer flow of a homogeneous fluid. Extending the theory to a
baroclinic flow, we will study the simplest case, two layers of inviscid fluid with uniform
densities ρ1 and ρ2. The flat bottom interior solution to a two-layered model of the abyssal
flow on a spherical earth was studied by Veronis [4]. The outline of that paper is followed,
but here with a β-plane approximation. The steady state of each layer in the interior is
geostrophic, hydrostatic and described by the vertically integrated equations

fV1 = gh
∂h1

∂x
(19)

fU1 = −gh∂h1

∂y
(20)

∂U1

∂x
+
∂V1

∂y
= w0 (21)

fV2 = gh2

∂

∂x

(

ρ1

ρ2
h1 +

∆ρ

ρ2

)

(22)

fU2 = −gh2

∂

∂y

(

ρ1

ρ2
h1 +

∆ρ

ρ2

h2

)

(23)

∂U2

∂x
+
∂V2

∂y
= −ρ1

ρ2

w0 . (24)

Here U and V are the vertically integrated zonal and meridional velocities, h the thick-

227



ness of the upper layer and h1 and h2 the heights of the upper surface and interface respec-
tively so that

h1 = h+ h2 . (25)

Cross-differentiating the momentum equations and making use of the continuity equa-
tions for each layer gives the relations

βV1 = −fw0 − gJ(h, h1) (26)

βV2 =
ρ1

ρ2

(fw0 + gJ(h, h1)) . (27)

From (26) and (27) we find that the total mass transport is equal and opposite at each
point, i.e.,

ρ1

ρ2

V1 + V2 = 0 . (28)

Taking the sum of ρ1/ρ2×(19) and (22) we now have

ρ1

ρ2

V1 + V2 =
g

2f

∂

∂x

(

ρ1

ρ2

h2

1 +
∆ρ

ρ2

h2

2

)

= 0 . (29)

From (29) we can obtain an expression for the variation of the upper layer height h1 in
the x-direction:

ρ1

ρ2

h1

∂h1

∂x
= −∆ρ

ρ2

h2

∂h2

∂x
= −∆ρ

ρ2

(h1 − h)
∂

∂x
(h1 − h) . (30)

Replacing h1 with H, the mean basin depth, where h1 appears as a coefficient and
neglecting the term ∆ρ

ρ2

h
H

∂h1

∂x we have

∂h1

∂x
=

∆ρ

ρ2

(

1 − h

H

)

∂h

∂x
. (31)

Integrating (31) gives

h1 = h1E +
∆ρ

ρ2

(

h− h2

2H
−

(

hE − h2

E

2H

))

(32)

from which, with a constant h1E and hE at the eastern wall, we obtain

∂h1

∂y
=

∆ρ

ρ2

(

1 − h

H

)

∂h

∂y
. (33)

From (31) and (33) we see that J(h, h1) = 0, so from (26) and (27) we can now obtain
the vertically averaged meridional velocities in the upper and lower layer

228



V1 = −fw0

β
(34)

V2 =
ρ1

ρ2

fw0

β
. (35)

The zonal velocities can be derived using (34) and (35) in (21) and (24) respectively,
which gives

U1 = 2w0(x− xE) (36)

U2 = −ρ1

ρ2

2w0(x− xE) . (37)

Using (31) in (19) yields

fV1 = g′
∂

∂x

(

h2

2
− h3

3H

)

(38)

and using (34) for V1, this can now be integrated from x to xE and we can specify h by

h2

2
− h3

3H
=
h2

E

2
− h3

E

3H
+
f2w0

g′β
(xE − x) . (39)

As in the homogeneous case we can now get the trajectories of the flow from the zonal
and meridional velocities.

Considering zonally integrated transport balances for the system, we have that the
interior transport in the upper layer, T1, across a zonal line y is given by integrating V1 over
the basin width. With T1 taken positive northwards we get

T1 = −w0(xE − xW )y . (40)

The upper layer gains water from the total upwelling, W , taking place north of y. This
is given by integrating w0 over the width and length of the basin

W = w0(xE − xW )(yN − y) . (41)

As the sinking takes place in the northeastern corner, there is a net loss of upper layer
fluid of amount S to the lower layer and

S = −w0(xE − xW )yN . (42)

To obtain a mass balance for the basin, the transport TW carried in the western boundary
current is

TW = S −W − T1 = 2w0(xE − xW )y . (43)

From (43) it can be seen that across each zonal line, the western boundary current must
carry twice the interior transport.
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Having obtained a solution for the flat bottom interior, we will now seek a solution for a
two-layer system with bottom topography. Salmon [5] considered the planetary geostrophic
equations for a two-layer system over a sloping western boundary. In his notation the
governing equations for a frictionless steady state read

f × u1 = −∇φs (44)

f × u2 = −∇φs + g′∇h (45)

∇ · (uihi) = 0, i = 1, 2 (46)

where ui ≡ (ui, vi) are the horizontal velocities and φs is the pressure at the surface
divided by a reference density.

Adding (46) for i = 1 and i = 2 yields

∇ · (h1u1 + h2u2) = 0 (47)

and thus

h1u1 + h2u2 = k ×∇Ψ (48)

where k is the vertical unit vector and Ψ the total transport streamfunction.
Eq. (44) and (45) gives

f × (u1 − u2) = −g′∇h . (49)

From (48) and (49)

u1 =
1

H
k ×∇Ψ +

g′h2

fH
k ×∇h (50)

u2 =
1

H
k ×∇Ψ − g′h1

fH
k ×∇h (51)

and using (50) and (51) and taking the curl of the vertical average of (44) and (45) we
can write the total streamfunction equation as

J

(

f

H
,Ψ

)

+ J

(

1

2
g′h2,

1

H

)

= 0 . (52)

From (46) and (50) we get an equation for the upper layer thickness

J

(

Ψ,
h

H

)

+ J

(

g′h,
h

f

(

1 − h

H

))

= 0 . (53)

By defining

q1 ≡ h

f
, q2 ≡ H − h

f
(54)

it can be shown that (52) and (53) can be written in the forms
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J(Ψ, q1) + q2J(g′h, q1) = 0 (55)

J(Ψ, q2) − q1J(g′h, q2) = 0 (56)

which describes the PV in the upper and lower layers.
Salmon [5] obtained general solutions to (55) and (56) for the two cases J(q1, q2) 6= 0

and J(q1, q2) = 0. In the latter case he showed that a solution is possible only if either q1
or q2 is constant in a particular region. That would appear to be simply a mathematical
curiosity but he showed, in fact, that one can obtain realistic features in the vicinity of the
Gulf Stream by making use of q1 = constant and q2 = constant in different regions near
the Gulf Stream.

We have sought a solution with q1 = constant in the slope regions. In order for that to
be a valid solution it is necessary that it match to the interior solution at the foot of the
slope in the different regions. The latter comes from (39). In the special case with hE = 0,
we can obtain a solution with constant q1 if we take the lowest order solution to (39) by
neglecting the term with H in the denominator (neglecting that term involves a maximum
error of about 5 % but a correction for that term can be taken into account iteratively).
The resulting solution is

h2 =
2f2

g′
w0

β
(xE − x) . (57)

Evaluating (57) at the western edge of the interior, i.e. x = xW ≈ 0, we have

h

f
=

(

2w0

g′β
xE

) 1

2

. (58)

So h/f = constant is an exact solution over the western boundary slope and it also
matches the interior at the eastern edge of the boundary. Therefore, h is constant on lines
of constant y in the boundary layer and is given by the thickness of the interior upper layer
at x = xW .

From the planetary geostrophic equation for the lower layer, (45), we also have

f

h2

(u2h2) = k ×
(

∇φs − g′∇h
)

. (59)

As we neglect the upwelling in the boundary layer, we have ∇ · (u2h2) = 0 so the
divergence of (59) yields

u2h2 · ∇
f

h2

= 0 (60)

and with u2h2 = k ×∇ψ2 we have

J

(

ψ2,
f

h2

)

= 0 . (61)

With h constant on lines of constant y, h2 can be determined from h2 = H−h and with
ψ2 constant on lines of constant h2

f in the boundary layer, we can match the upper and lower
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layer solutions to the interior solutions at the foot of the slope. With the same reasoning for
the mid-ocean ridge area we get the lower layer flow pattern shown in Fig. 5. The dashed
lines are the trajectories of the flow and the solid lines in the interior are contours of the
lower layer height h2. The upper layer thickness is set to zero at the eastern boundary and
the mean basin depth is 4000 m. The upwelling velocity is specified to 2 · 10−7 m/s and
∆ρ/ρ2 = 0.0015.

Given that h
f = constant over the mid-ocean ridge, when crossing the ridge, the lower

layer flow follows lines of constant h2

f . The path is again symmetric about the center of the
ridge.
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Figure 5: Flow pattern of the lower layer. The calculations were made for w0 = 2 · 10−7

m/s, hE = 0 m and ∆ρ/ρ2 = 0.0015

The westward jet along the foot of the northern slope turns southward at the northwest
corner of the interior and continues as a jet toward the southwest corner. To the west of that
jet, water that has sunk in the north will move southwards on lines of constant h2

f set by the

lower layer depth on the northern boundary. On the eastern side of the h2

f line carrying the

interior water southward, fluid flows northward along lines of constant h2

f to the interior.
The vicinity of the region separating southward and northward flow must represent a region
of intense shear. Therefore, friction is likely to be important here.

The upper layer flow pattern is shown in Fig. 6. In the interior the trajectories are
the same as for the lower layer but in the opposite direction so the fluid moves in a south-
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westward direction. Contours of upper layer thickness are parallel to the paths of the
trajectories. Over the western boundary slope and over the mid-ocean ridge, the upper
layer flow is zonal on lines of constant h

f .
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Figure 6: Flow pattern of the upper layer

Just south of the southern edge of the northern boundary, the upper layer western
boundary transport is, due to conservation of mass

TW = S + TI . (62)

Just north of that edge, the interior transport is zero, which gives

TW = S . (63)

Hence, there must be a jet that heads eastward along the foot of the slope from the
northwestern corner of the interior. Just as the lower layer takes fluid from the westward
jet along the foot of the north slope and transports it southward along the line of constant
h2

f that goes from the northwestern corner of the interior to the southwestern corner on
the western slope, the upper layer must deliver an equal amount of fluid northeastward to
supply the eastward flow along the southern edge of the northern slope. So there will be a
jet in the western boundary upper layer flow, also along this line of constant h2

f . In that
jet, to induce the northward transport in the upper layer, the sea surface will rise sharply
toward the east. We must also have a compensating drop of the interface. The displacement
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of the interface across the western boundary jet can be obtained from the equations for the
upper and lower layer

ρ1fV1 = ρ1gh
∂η1

∂x
(64)

ρ2fV2 = gh2

∂

∂x
(ρ1η1 + ∆ρη2) (65)

where subscript 1 and 2 denotes the upper and lower layer respectively. As the transports
in the upper and lower layer are equal and opposite, Eq.(28) is valid also in the jet, i.e. the
total transport vanishes at each point in the jet. From (64) and (65) we then get

∂η2

∂x
= − ρ1H

∆ρh2

∂η1

∂x
. (66)

As h = η1 + ~ − η2, where ~ is the mean upper layer depth, we have that

∂η2

∂x
=
∂η1

∂x
− ∂h

∂x
. (67)

Applying (67) to (66) we find that

∂η1

∂x
≈ ∆ρh2

ρ1H

∂h

∂x
(68)

and (64) becomes

fV1 =
g∆ρh2

2ρ1H

∂h2

∂x
. (69)

Since the assumption is of an infinitesimally thin jet, we can consider h2/H to be
constant. Eq. (69) can then be integrated in the x-direction and becomes

fT1 =
g∆ρh2

2ρ1H

(

h2

R − h2

L

)

(70)

where subscript R and L denotes the right and left edge of the jet respectively.
As the upper layer thickness on the right edge of the jet is equal to the upper layer

depth at the western boundary of the interior, we obtain the equation for the upper layer
thickness at the western side of the jet

h2

L = h2

W − 2fT1

g

ρ1

∆ρ

H

h2

. (71)

On the western side of the jet, the upper layer thickness is again constant and the
transport is again purely zonal. Close to the western edge of the boundary layer, there
will be a triangular wedge of only upper layer water, also with northward transport as
the streamfunction must go to zero at the western edge of the boundary layer. So of the
northward transport of upper layer water, the portion contributed by the jet feeds the
northern boundary layer that supplies water to the interior and the portion contributed by
the boundary current near the western edge of the basin supplies an equal amount of water
to the sink.
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A schematic of cross-sections of the western boundary, the ridge area and the northern
boundary is shown in Fig. 7.

       
 

 

 
a)

     
 

 

 
b)

       
 

 

 

Figure 7: Schematic of zonal cross-sections of a) western boundary b) mid-ocean ridge area
and c) meridional cross-section (looking eastward) of the northern boundary

In Fig. 7 a), the westward transport in the constant upper layer carries water to the
northward jet. The upper layer thickness decreases across the jet and on the other side
of the jet the upper layer thickness is again constant and carries water westward to the
northward boundary current. In the lower layer, the region closest to the western edge of
the boundary layer carries the sinking water southwards from the northern boundary. The
southward moving jet in the lower layer carries water from the interior. On the eastern side
of the jet, a northward flow supplies the interior with fluid.

Over the mid-ocean ridge (Fig. 7 b)) the upper layer thickness is constant and the flow
purely westwards. In the lower layer, the inner region of the ridge is where the sinking
water flows southward and then northward to cross the ridge. In the two outer regions of
the ridge, fluid from the interior crosses the ridge. Along the lines joining the two regions
the shear is intense and friction must be important.

On the northern slope (Fig. 7 c) the upper layer jet at the southern edge of the boundary
supplies fluid to the interior while the current at the northern edge of the boundary layer
provides water to the sink. The transport of water to the sinking regions must spread out
across the upper layer, but the details of this flow have not been further considered. In the
lower layer jet, water from the interior is carried westward and north of the jet the water
that has sunk is carried to the western boundary layer.
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4 Discussion

It has been shown that the presence of sloping boundaries considerably affects the flow
pattern. In the presence of a mid-ocean ridge, dividing the ocean in two halves, the flow is
diverted considerably to the south in order to continue to the other basin.

In the homogeneous case the flow will follow lines of constant f/h in order to conserve
potential energy. The same holds when the fluid crosses the mid-ocean ridge and has to
turn southward in order to decrease the depth of the water column.

In the two-layer model we have shown a simple solution consistent with an exact solution
to the general equations (55) and (56) for the case when J(q1, q2) = 0. The solution keeps
the upper layer thickness constant on lines of constant y in the western boundary layer and
the ridge area. In the lower layer the transport streamfunction follows lines of constant h2

f .
The solution requires a northward jet in the upper layer of the western boundary layer and
the jet will continue eastward along the foot of the north slope. Although friction must be
clearly be important in parts of the slopes, we have confined the analysis to the inviscid
limit using transport balance arguments. This led to the conclusion that half of the total
northward transport in the western boundary layer will take place in the jet and half of
the transport will occur in a triangular wedge occupied by only upper layer water along the
western edge of the western slope. As the streamfunction must be zero at the western edge,
the transport will have to turn northwards and the dynamics will be that of a single layer
fluid. The exact dynamics of the northern boundary have not been analyzed, but the flow
will more or less follow lines of constant H (total depth) in this region as y ∼ constant and
H − h ∼ H except close to the northern edge where we again have dynamics of a single
layer as the total depth goes to zero. Upper layer water sinks in the northeastern corner
and flows westward in the lower layer of the northern boundary region and then southward
along lines of constant f/h2 to the southwest corner of the western boundary slope. The
exact path can not be determined here, due to the absence of a complete picture of the
northern boundary upper layer thickness.

The reasoning holds for slope regions that are very narrow compared to the basin size.
The analytical solution was pieced together, treating the slope regions in the inviscid limits.
As it turned out, friction must be important in isolated regions over the slopes. It allows the
fluid to cross lines of constant PV where needed and it will also be required to smooth out the
abrupt change in direction of flow over the slopes. A numerical model of this system should
help to determine how much of this study is consistent with the full equations including
friction. A next step analytically would be to try to include wind stress in addition to the
upwelling.
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Convective oscillations in a laboratory model

Lianke te Raa

Abstract

A laboratory experiment has been conducted in which a small basin was heated
from below. This basin was connected to a large reservoir that was filled with a layer
of salt water at the bottom and fresh water above it, by tubes at the top, the middle
and the bottom. It was shown that different flow regimes exist in this experiment. For
low forcing temperatures, self-sustained oscillations occur, whereas the system reaches a
steady state with deep convection for higher forcing temperatures. During an oscillation
a shallow convecting layer of salty water at the bottom of the basin grows and entrains
fresh water, until the water column becomes unstable and deep convection can occur.
Inflow of salty water through the bottom tube stops the deep convection and the cycle
starts again. In a configuration in which the top and middle tubes had smaller diameters,
no oscillations were found. Instead, a regime with steady shallow convection states and
a regime with steady deep convection states were found.

1 Introduction

An important part of the ocean’s thermohaline circulation is the formation of deep water
at high latitudes. Locations of deep convection are confined to certain specific areas in
the North Atlantic Ocean and near Antarctica, including the Greenland-Norwegian Sea,
the Labrador Sea, the Weddell Sea and the Ross Sea [1]. There are two types of deep
convection in the ocean. One is convection near an ocean boundary, where dense water
reaches the bottom of the ocean by descending a continental slope. The second process is
called open-ocean convection and involves sinking of water in narrow area’s far away from
land. In both cases deep convection is a very complicated process, but general features
of the polar oceans that are important are the intense surface cooling and the very fresh
surface water [2]. In order to get deep convection an increase in salinity of the surface water
is therefore needed, for instance due to brine rejection or mixing with a saltier water mass
[3]. Due to these and other conditions, the areas in which deep-water formation occurs are
not only small compared to the total area of the ocean, but the deep convection required
for producing dense bottom water does also not occur every winter.

A good way to gain more understanding of complex processes as deep convection is the
use of simple models. Recently, Whitehead [4] analyzed a simplified box model consisting
of a small basin that is cooled from above and that is connected via three tubes to a large
isothermal basin with a fresh surface layer. This is a very schematic model of the situation
in the Arctic Ocean. For small cooling rates this model was shown to exhibit a steady state
with shallow convection, whereas for strong cooling a state with deep convection occurred.
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In the shallow state fresh and warm water enters the small basin via the upper tube, is
cooled and convects downward and leaves through the middle tube. Or, if the cooling is
stronger, water comes in through the upper tube and leaves via both the middle and the
bottom tube. In the deep convection state the warm and fresh water enters the small basin
through the upper tube, but there is also inflow of warm and salty water through the middle
tube, whereas cold water leaves the small basin through the bottom tube.

If the cooling rate depends on temperature via a relaxation condition, this model was
shown to exhibit multiple equilibria: both the shallow and the deep convection state could
exist for the same forcing temperature [4]. In this case, sudden rapid transitions between
both states can occur for only very slight changes in forcing temperature. Although obvi-
ously these results cannot be simply extended to the real ocean, these model results might
still have important implications for the ocean. Periods of deep water formation might
be followed by periods of shallow convection in which only intermediate water is formed if
forcing conditions change slightly.

The original goal for this summer project was to investigate if the multiple equilibria
predicted by the theoretical box model can also be found in the laboratory. However, the
project evolved in a different direction, so that finally it turned out to be an exploration of
the behavior of the flow in the laboratory version of this convective model. The laboratory
model was turned upside-down with respect to the case of the Arctic Ocean (heating at the
bottom and a layer of salty water at the bottom of the large basin) for practical reasons.

The theoretical model of Whitehead [4] is presented in section 2 of this report. This
section closely follows his derivation, but describes the situation for the case with heating
at the bottom instead of cooling at the top. The experimental apparatus and method
are described in section 3.1 and the results follow in section 3.2 and 3.3. In section 4
the experimental results are compared to the box model theory and a discussion and the
conclusions are given in section 5.

2 Theory

A small basin with two layers of water in a field of gravity is heated from below. This small
basin is connected to a large basin, which is called the reservoir, with three tubes, one at
the surface, one at mid-depth (D/2) and one at a depth D (Fig. 1). The reservoir contains
a layer of salty water of salinity S0 of constant thickness d with fresh water above it. Both
layers have temperature T0 (room temperature). The reservoir is taken to be so large and
so well mixed that d, T0 and S0 remain fixed, irrespective of the flow into and out of the
tubes.

In the small basin a convecting layer of thickness δ of water with temperature T0 + T
and salinity S will develop, where δ, T and S still have to be determined. This layer is
assumed to be well mixed, as it is heated from below, and its thickness will grow with
increasing heating rate. Heat losses are neglected and it is assumed that there is no mixing
of heat and salt across the interface between the warm and salty, convecting layer and the
non-convecting layer of cold and fresh water above it.

The flow through the tubes is determined by the pressure difference between the two
ends of the tubes and depends therefore on temperature and salinity in both the small basin
and the reservoir. We assume that there is a steady-state relation between the flow through

239



Figure 1: Sketch of the model configuration. The reservoir contains a layer of fresh water
with temperature T0 and zero salinity overlying a layer of salty water with the same tem-
perature and salinity S0. The temperatures and salinities in this basin remain constant.
The temperature T and salinity S in the convecting layer in the small basin are determined
by the flow rates Q1, Q2 and Q3 and the heating rate H.

a tube and the pressure difference between the small basin and the reservoir at the height
of that tube. The volume flux through tube i is denoted by Qi, where i = 1, 2, 3 denotes
top, middle and bottom tube, respectively and can then be expressed as

Qi = Ci(pi,res − pi) (1)

where pi is the pressure in the small basin at the height of tube i, pi,res is the pressure in
the reservoir at that height and Ci is the hydraulic resistance of tube i. Note that flow into
the small basin is defined positive. The pressures in the small basin and the reservoir are
assumed to be hydrostatic, and furthermore a linear equation of state is used

ρ = ρ0(1 − α(T − T0) + βS) (2)

where ρ0 is the density of fresh water at room temperature. The pressures in the reservoir
are then given by

p1,res = 0 (3a)

p2,res = ρ0gD/2 (3b)

p3,res = ρ0g(D − d) + ρ0g(1 + βS0)d (3c)

Using the Boussinesq approximation by assuming that βS, βS0 and |αT | � 1 everywhere,
the pressures p1, p2 and p3 in the small basin are

p1 = ρ0gη (4a)

p2 = ρ0gη +ρ0gD/2 + ρ0g(δ − D/2)(βS − αT ) (4b)

p3 = ρ0gη +ρ0gD + ρ0gδ(βS + αT ) (4c)
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where η is the surface elevation in the small basin with respect to the water surface in the
reservoir and δ is the distance of the layer of convecting fluid in the small basin above the
second tube. The volume fluxes are then given by

Q1 = −Cρ0g η (5a)

Q2 = Cρ0g [−η + (δ − D/2)(αT − βS)] (5b)

Q3 = γCρ0g [−η + βS0d + δ(αT − βS)] (5c)

Following Whitehead [4], we assume that the hydraulic resistance of the upper two tubes
is equal to C and that the resistance of the bottom tube is C3 = γC, with γ a positive
number.

If the heating is so weak that the interface between the convecting and the non-convecting
layer in the small basin is below the middle tube, steady state solutions are not possible,
because mass cannot be conserved. For larger heating rates the interface will be between
the middle and the upper tube, so that δ < D. In this case steady state solutions can
occur, but only if there is no flow through the upper tube, again because otherwise mass
would not be conserved, so we have Q1 = 0 and η = 0. The equation for steady state mass
conservation reduces in this case to Q2 + Q3 = 0. Together with equation (5) this gives
that the depth of the convecting layer is

δ =
1

1 + γ

[

D

2
− γβS0d

αT − βS

]

(6)

yielding for the volume fluxes

Q1 = 0 (7a)

Q2 =
γCρ0g[(βS − αT )D − 2βS0d]

2γ + 2
(7b)

Q3 = − γCρ0g[(βS − αT )D − 2βS0d]

2γ + 2
(7c)

It can easily be shown that the case in which Q2 > 0 and Q3 < 0 is inconsistent, so we
have to have inflow through the bottom tube and outflow through the middle tube (Q2 < 0
and Q3 > 0) as long as the interface in the small basin is between the top and middle tube.
In this case the steady state heat budget is

0 = H + ρ0CpQ2(T + T0) + ρ0CpQ3T0 (8)

where H is the heat flux into the small basin due to the heating at the bottom and Cp is
the specific heat capacity. The steady state salt budget is

0 = Q2S + Q3S0 (9)

Using mass conservation, the steady state heat and salt budgets can be rewritten as

H = ρ0CpQ3T ; S = S0 (10)
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As we are considering the case for which Q2 < 0, this gives that the temperature in the
small basin has to be higher than a certain critical value Tnil in order to have steady state
solutions, with

Tnil =
βS0

α

(

1 − 2d

D

)

(11)

If the heating rate H is increased, the temperature and the height of the convecting
layer will also increase. For a certain heating rate, the interface between the convecting and
the non-convecting water will reach the upper tube. The critical temperature Tc at which
this happens follows from δ = D and is given by

Tc =
βS0

α

(

1 − 2γd

(1 + 2γ)D

)

(12)

For T > Tc there is also flow in the upper layer and the equation for mass conservation
becomes

Q1 + Q2 + Q3 = 0 (13)

The interface stays at height D for temperatures greater than Tc as we have used the
Boussinesq approximation. The height of the interface follows therefore from equations (5)
and (13) with δ = D as

η =
2γβS0d + (αT − βS)D(2γ + 1)

2(2 + γ)
(14)

so that the volume fluxes become

Q1 = Cρ0g
2+γ

[

−1 + 2γ

2
(αT − βS)D − γβS0d

]

(15a)

Q2 = Cρ0g
2+γ

[

−γ − 1

2
(αT − βS)D − γβS0d

]

(15b)

Q3 = γCρ0g
2+γ

[

3

2
(αT − βS)D + 2βS0d

]

(15c)

which is consistent with equation (5) for T = Tc and δ = D.
At the critical temperature Tc we have S = S0 and thus Q1 = 0, Q2 < 0 and Q3 > 0.

The positive surface elevation in the small basin causes the pressure at the height of the
upper tube in the small basin to be higher than that in the reservoir, giving flow out of the
small basin. From equations (12) and (14) we can see that if T > Tc we will always have
η > 0, which says that in order to have flow in the upper tube, the surface elevation has
to be positive. So the flow in the upper tube will either be zero if the interface is below
the upper tube or positive if the interface is at the top of the small basin. At mid-depth,
the effect of salinity on the density dominates over the effect of temperature, so that at
mid-depth there is a higher pressure in the small basin than in the reservoir. At the bottom
however, the pressure in the reservoir is higher than that in the small basin, because the
water in the reservoir is much colder than that in the small basin.

From equation (15) we see that for T > Tc Q1 becomes negative starting from zero and
Q3, which is already positive, becomes more positive, also if S 6= S0 (note that S can never
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become greater than S0). For γ ≥ 1 Q2, which is negative already, becomes more negative,
so that no fresh water can enter the small basin and the small basin stays always filled with
water of salinity S0. If γ < 1 however, Q2, which is negative, becomes less so and eventually
will become zero. So if the resistance of the bottom tube is higher than those of the middle
and upper tubes, there is a value of the heating rate for which the flow in the second tube
reverses sign, so that fresh water can enter the small basin. Note though that there will
always be inflow through the bottom tube and outflow through the top tube.

The point for which Q2 = 0 defines a second critical temperature

Tcc = −βS0

α

[

2γd

(γ − 1)D
− 1

]

(16)

At this temperature the water is heated so much, that the effect of the temperature domi-
nates over the effect of salinity and the pressure due to the surface elevation. The pressure
in the small basin at mid-depth is now lower than the pressure in the reservoir at that height
and there will be inflow of cold and fresh water into the small basin. For Tc < T < Tcc the
heat and salt balances are still given by equation (10). For T > Tcc the steady state heat
and salt balances are

0 = H + ρ0CpQ1T (17a)

0 = Q1S + Q3S0 (17b)

As the solutions of equations (15) and (17) are complicated polynomials, we calculate
them numerically, using time-dependent heat and salt balances. The equations are made
dimensionless using

Q̃ =
Q

Qs
, Qs =

γCρ0gβS0D

2 + γ
, T̃ =

αT

βS0

, d̃ =
d

D
, S̃ =

S

S0

(18a)

t̃ =
t

AD/Qs
, H̃ =

H

ρ0cpTsQs
, Ts =

βS0

α
(18b)

where Qs is the volume flux scale, t is time and A is the horizontal area of the small basin.
The dimensionless form of equation (7) is

Q̃2 = −Q̃3 =
2 + γ

2 + 2γ

(

1 − T̃ − 2d̃
)

(19)

and equation (15) transforms to

Q̃1 = −2+1/γ
2

(T̃ − S̃) − d̃ (20a)

Q̃2 = −1−1/γ
2

(T̃ − S̃) − d̃ (20b)

Q̃3 = 3

2
(T̃ − S̃) + 2d̃ (20c)

The dimensionless time-dependent heat and salt balances are

dT̃

dt
= H̃ + T̃ [Q̃1Γ(−Q̃1) + Q̃2Γ(−Q̃2) + Q̃3Γ(−Q̃3)] (21)
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dS̃

dt
= Q̃1S̃Γ(−Q̃1) + Q̃2S̃Γ(−Q̃2) + Q̃3[S̃Γ(−Q̃3) + Γ(Q̃3)] (22)

Numerical solutions were calculated for a wide range of heating rates by integrating
equations (21) and (22), using (19) and (20), until a steady state was reached. If the
heating rate depends on the temperature in the small basin via

H̃ = K(T̃ ∗ − T̃ ) (23)

with K a constant, then Whitehead [4] shows that in the equivalent system for the Arctic-
Ocean case multiple equilibria can be found: both shallow and deep convection states
can exist for the same forcing temperature. The range of forcing temperatures T̃ ∗ for
which multiple equilibria occur, depends on the parameters d̃, γ and K. A typical plot of
temperature and salinity in the small basin as a function of forcing temperature for our case
(heating from below) is shown in Fig. 2. The shallow convection states have a relatively
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Figure 2: Dimensionless temperature and salinity as a function of (dimensionless) forcing
temperature T̃ ∗ for the case with γ = 0.05, d = 0.05 and K = 1.

high temperature, and a dimensionless salinity S̃ = 1, as only the salty water can enter
the small basin. If T ∗ is increased above T̃cc, deep convection states occur, with inflow of
fresh and relatively cold water through the middle tube. In the deep convection states the
temperature and the salinity are therefore much lower. If the forcing temperature is then
decreased slowly, the system will remain in the deep convection state.

3 Experiments

3.1 Apparatus and method

The laboratory model consisted of a box of 20×20×20 cm (the reservoir) that was connected
via three tubes to a cylindrical small basin of 20 cm high with a diameter of about 5 cm (Fig.
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3). The vertical distance between the centers of the top and bottom tubes was D = 18 cm.
The top, middle and bottom tubes had lengths of 99 mm, 98 mm and 9 mm, respectively.

Figure 3: Sketch of the laboratory model (vertical section). The small basin is heated from
below by a heat exchanger. Both fresh and salty water are pumped in at the top and
bottom, respectively, and removed by a siphon at a fixed depth, thus maintaining a sharp
interface between the salty and the fresh layer. A second heat exchanger keeps both layers
in the reservoir at room temperature.

Fresh water at room temperature (about 21 ± 2◦C) was pumped into the top of the
reservoir at a rate of about 0.1 l/min, and salt water of the same temperature was pumped
into the bottom of the reservoir at the same rate. The sum of these two fluxes was removed
by a siphon that was placed at a certain distance above the center of the bottom tube. This
maintained a sharp interface between the fresh and the salty water, at a level determined
by the height of the siphon. The salty water was made by mixing fresh and salt water and
adjusting this mixture to obtain a density of 1003.4 kgm−3 at room temperature, so that
the density difference between the two layers in the reservoir was 5.2 kgm−3. The salty
water was dyed blue to see the difference between salty and fresh water. A heat exchanger
flushed by water of 20◦C was placed in the reservoir along the side opposite to the tubes.
The reservoir was monitored routinely and both layers remained at 20◦C within a range of
±1.3◦C. The bottom of the small basin was heated by a second heat exchanger, which was
flushed by water of a desired temperature.

Experiments have been done for two configurations. In the main experiments the radii
of the top, middle and bottom tubes had their standard values r1 = r2 = 9.5 mm and
r3 = 1.5 mm, respectively and the siphon was placed at d = 0.6 cm above the center of
the bottom tube. In the second set of experiments the upper and the middle tube had
radii r1 = 4.5 mm and r2 = 3.1 mm, respectively (the radius of the bottom tube was still
1.5 mm), and the siphon was at 1.4 cm above the center of the bottom tube. The parameter
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Set 1 Set 2

d = 0.6 cm d = 1.4 cm
r1 = 9.5 mm r1 = 4.5 mm
r2 = 9.5 mm r2 = 3.1 mm
r3 = 1.5 mm r3 = 1.5 mm

Table 1: Values of parameters used in the two sets of experiments. The parameters of set
1 are the standard values.

values for the two sets of experiments are summarized in Table 1.
The temperature in the small basin was measured with three digital thermometers,

with probes at 0.5 cm, 8.5 cm and 17.5 cm above the bottom. In some experiments, two
additional temperature probes, which were connected to dataloggers, were placed at about
2 cm and 8 cm above the bottom. The dataloggers recorded the temperature once every
15 s. The experiments were also recorded on video tape. After a steady state had been
reached, samples were taken near the bottom, in the middle and just below the top of the
water column. With a densiometer the density of these samples could be measured. The
salinity of the sample can then be determined from this density (which is measured at room
temperature) and the density of fresh water at room temperature.

An experiment was started by filling both basins with fresh water, after which the salt
water pump was switched on at a high flow rate. Within less than fifteen minutes the salty
layer in the reservoir had formed. Then the fresh and salt water pumps were set at their
normal rates and the temperature of the heat exchanger at the bottom of the small basin
was set at the desired value. Then the system was left to come to equilibrium. This took
typically two or three hours for the experiments of the first set, and six or more hours for
the experiments of the second set.

Test measurements were done for different forcing temperatures. As water can contain
less dissolved gases when it is heated, air bubbles will form on the bottom and the side
walls of the small basin, and in particular around the opening of the bottom tube during
an experiment. It turned out that, if the forcing temperature was about 35◦C or higher,
the flow through the bottom tube would get blocked by air bubbles in typically one or two
hours. A situation in which this happened could be recognized visually by the fact that
the water in the small basin became completely colorless. A sample taken from this water
showed that the density was equal to that of fresh water. This is consistent with a blocked
bottom tube, as salty water can then no longer enter the small basin.

The use of distilled fresh water in combination with de-aerated salt water did not solve
the problem. Therefore we partly de-aerated the water of the salty mixture, by heating the
water up to a temperature of about 45◦C to 50◦C and keeping it at this temperature for
several hours. Then the water was left for one or two days to cool down to room temperature
again. However, even with this procedure it remained necessary to remove the air bubbles
regularly, by sticking a small metal wire into the bottom tube. This could be done with
hardly any disturbance of the flow. Usually we removed air bubbles in this way about once
every 30 minutes.
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3.2 Convective oscillations

The forcing temperature T ∗ was varied between 35◦C and 50◦C for standard values of the
parameters (Table 1). Two different flow regimes were found: for forcing temperatures
T ∗ = 42◦ and higher, the system reached a steady state within one or two hours, whereas
self-sustained oscillations occurred for lower forcing temperatures. The temperature and the
salinity contribution to the density in the small basin near the bottom and at mid-depth are
plotted against the forcing temperature T ∗ in Fig. 4 for both steady states and oscillations.
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Figure 4: (a) Average temperature in the small basin as a function of the forcing temperature
T ∗. (b) Salinity contribution to the density (a measure for the salinity) in the small basin as
a function of T ∗. The squares are values at the bottom, the circles and diamonds are values
at mid-depth. Temperature and salinity at the top are not plotted, as they were almost
equal to the values at mid-depth. Average temperatures were calculated by averaging the
temperature at 5 minute-intervals over one hour, or, in the case of oscillations with periods
greater than one hour, by averaging temperatures at 15-minute intervals over one oscillation
period. Vertical bars indicate the minimum and maximum values.

The average temperature at mid-depth lies around 22◦C or 23◦C for both the steady
states and the oscillations, whereas the temperature at the bottom is several degrees higher.
This is because the bottom temperature is measured within the thermal boundary layer that
exists in a convecting fluid, heated from below [5], whereas the mid-depth temperature is
measured in the well-mixed region. Temperatures at the top of the small basin are almost
the same as at mid-depth and are therefore not shown. In all steady states there is flow into
the small basin through the bottom and middle tube and outflow through the upper tube,
which characterizes these states as deep convection states. In the steady states, the water
in the small basin also has a very low salinity (Fig. 5b), due to the relatively strong inflow
of fresh water through the middle tube (the diameter of the middle tube is much bigger
than that of the bottom tube). The temperatures at mid-depth and near the bottom of the
small basin as a function of time for a typical oscillation are shown in Fig. 5.
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We start the description at the arbitrarily chosen time t = 2.5 hr, when a layer of salty
water has started to form at the bottom of the small basin. This could clearly be seen as
a small layer of blue water at the bottom. The bottom temperature is at its maximum,
whereas the temperature at mid-depth is low. As time progresses, the salty, convecting
layer grows (during about one hour). The bottom temperature decreases only slightly, until
the interface between the warm, salty water and the colder, fresher water breaks up rather
rapidly and the whole water column mixes in typically several minutes (at t = 3.2 hr in
Fig. 5). At this moment, the bottom temperature decreases rapidly, as the water at the
bottom mixes with the colder water from the layer above. At the same time the temperature
in the middle of the basin increases suddenly, due to the mixing with the much warmer water
from the bottom layer. Then the whole water column is well mixed, which could be seen in
the experiment because the whole water column was colored light blue. Within about ten
minutes, during which the bottom temperature remains low, the water in the small basin
becomes almost fresh (around t = 3.4 hr). Then the cycle repeats itself. During the whole
oscillation there was inflow through the middle tube and outflow through the top tube.
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Figure 5: Temperature (a) at mid-depth and (b) at the bottom of the small basin as a
function of time for the experiment with T ∗ = 39◦.

During the experiment with T ∗ = 35◦C, the salinity was measured at several times
during an oscillation cycle (Fig. 6). While the convecting layer of salty water is growing
and the temperature near the bottom is relatively high (Fig. 6a, between about 1 hr and
4.5 hr), the salinity decreases rapidly (Fig. 6b), due to entrainment of fresh water from the
layer above. The salinity increases again when a new layer of salty water starts to form.

The oscillation mechanism can be understood by considering the vertical density profiles.
At a certain point during the oscillation the whole water column is well mixed, so that the
density is constant with depth. However, the inflow of salty water through the bottom tube
creates a salty layer at the bottom of the small basin. Because the water is also heated
from below, a well mixed salty layer will form at the bottom. This layer is heavier than the
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Figure 6: (a) Temperature at the bottom of the small basin as a function of time for the
experiment with T ∗ = 35◦. (b) Salinity contribution to the density at the bottom of the
small basin as a function of time for the experiment with T ∗ = 35◦.

fresher water above it due to its high salinity, so that the density profile will show a stable
density step. The inflow of salty water and the entrainment of fresher water from the layer
above make the salty layer grow in time, but the entrainment also decreases the salinity.
As the temperature of this layer does not change very much, the density of the lower layer
decreases. The temperature of the upper layer will increase slightly due to conduction of
heat across the interface, but this is only a small effect. Finally, the effects of temperature
and salinity on the density in the lower layer compensate so that both layers have equal
density. On a slight decrease in salinity of the lower layer the water column now becomes
unstable, causing the whole water column to overturn. The inflow of cold, fresh water
through the middle tube and the outflow of well-mixed water through the top tube will
lower the salinity and temperature and then the whole cycle starts again.

The period of the oscillation decreases with increasing forcing temperature (Fig. 7a),
as stronger convection in the salty layer causes more entrainment and therefore a faster
decrease of the density difference between the two layers, and correspondingly a shorter
period. The maximum height of the salty layer during the oscillation also decreases with
increasing forcing temperature (Fig. 7b). At higher forcing temperatures, the density dif-
ference decreases faster, so that the salty layer has not yet become very big when the water
column overturns already.

3.3 Other flow regimes

In the second set of experiments, in which the upper and middle tubes had smaller diameters
(Table 1), the forcing temperature was varied between 37◦C and 46◦C (Fig. 8). For all
forcing temperatures within this range, the system eventually reached a steady state.

For forcing temperatures of 44◦C and lower shallow convection states were found, with
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Figure 7: (a) Period of the oscillation as a function of forcing temperature T ∗. (b) Maximum
height of the salty layer during the oscillation as a function of T ∗. The vertical bars indicate
the range of maximum and minimum values of the period and the layer height, respectively.
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calculated by averaging the temperature at about 15 minute-intervals over one or two hours.

250



inflow through the bottom tube and outflow through the middle and top tubes. Deep
convection states, with inflow through the bottom and middle tubes and outflow through
the top tube, existed for forcing temperatures of 45◦C and 46◦C. The temperatures at mid-
depth and near the bottom of the small basin are almost the same (Fig. 8a), indicating that
the thermal boundary layer is smaller than in the first set of experiments, so that bottom
temperatures are now measured within the well-mixed layer. In the shallow convection
states, the temperature in the small basin increases from about 31.5◦C at T ∗ = 37◦C to
about 36◦C at T ∗ = 44◦C. In the deep convection states, temperatures are lower again,
due the inflow of relatively cold water through the middle tube. The salinity is relatively
high in the shallow convection states (Fig. 8b) and is lower in the deep convection states,
because the inflow through the middle tube is also fresh.

The two types of steady states could easily be distinguished, as in the shallow state the
water in the small basin was blue (salty), whereas it was almost colorless (almost fresh)
in the deep convection state. Also, the middle tube contained blue water in the shallow
convection states (as there is outflow through that tube in a shallow convection state) and
colorless water in a deep convection state (inflow through the middle tube). The flow in
the middle and top tubes could also be visualized by injecting a little bit of red dye at one
end of the tube.

Unfortunately, as the time needed to reach equilibrium was often more than six hours
and as the air bubbles had to be removed regularly to prevent the bottom tube from being
blocked, it was not possible to change the forcing temperature slightly after an equilibrium
had been reached and let the system come to equilibrium again. Therefore, we could not
investigate the possibility of multiple equilibria.

4 Comparison with theory

The experimental results can be compared to the box model theory, if the values of the
model parameters γ, K and d̃ are known. These parameters have been determined for
the first set of experiments (the standard configuration). The parameter d̃ is given by the
distance between the height of the siphon inlet and the center of the bottom tube divided
by the total height of the water column and was d̃ = 0.033. The values of γ and K can be
determined indirectly from measurements.

The ratio γ of the hydraulic resistances of the bottom and middle tube (the top and
middle tubes are equal) depends on the characteristic flow timescales τb and τm of the
bottom and middle tube, respectively. These two timescales can be determined as follows.
Consider first the situation in which the small basin is filled with a layer of salty water of
initial thickness h0 (with h0 > d) at the bottom and fresh water above it. Furthermore
the middle tube is blocked, so that salty water will flow out of the small basin through the
bottom tube (and fresh water will enter through the top tube). If the thickness of the salty
layer in the small basin is denoted by h(t), then the time evolution of h is given by

A
dh

dt
= Q3 (24)

where A is the horizontal area of the small basin. The flow rate Q3 can be determined from
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the pressure difference between both ends of the bottom tube and is given by

Q3 = γCρ0g[−η + βS0(d − h)] (25)

If changes in surface elevation with time can be neglected, we can use Q1 + Q3 = 0, which
gives

Q3 =
γCρ0gβS0(d − h)

(1 + γ)
(26)

Then equation (24) turns into
dh

dt
= − 1

τb
(h − d) (27)

with solution
h(t) = (h0 − d)e−t/τb + d (28)

where the constant τb is the characteristic timescale associated with flow in the bottom
tube, given by

τb =
A(1 + γ)

Cρ0gγβS0

(29)

An estimate of the time constant τm of the middle tube can be obtained when the same
experiment is done, but now with the bottom tube instead of the middle tube blocked. The
equation for the evolution of the layer thickness h′, defined as the height of the layer of salty
water above the center of the middle tube, is

dh′

dt
= − h′

τm
(30)

where

τm =
2A

Cρ0gβS0

(31)

This has solution
h′ = h′

0e
−t/τm (32)

with h′

0
the initial layer thickness. From equations (29) and (31) it can easily be seen that

γ =
τm

2τb − τm
(33)

The constants τb and τm were determined by measuring h and h′ as a function of time and
fitting exponential curves to the data points. We found τb = 1080± 10 s and τm = 9± 2 s,
which gives γ = 0.004 ± 0.001.

Another experiment was done to determine K. Consider the dimensional form of equa-
tion (23), which is

H = K∗(T ∗ − T ) (34)

where the dimensional heat exchange coefficient K∗ is related to K via K∗ = ρ0CpQsK. If
a layer of area A and thickness D is heated, then equation (34) can be written as

dT

dt
=

1

τT
(T ∗ − T ) (35)
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where the thermal relaxation timescale τT is given by

τT = AD/(QsK) (36)

This has solution
T (t) = (T0 − T ∗)e−t/τT + T ∗ (37)

The volume flux scale Qs in (36) follows from (18a) and (29) and is

Qs =
AD

τb

1 + γ

2 + γ
(38)

Equations (36) and (38) can now be combined to yield

K =
τb

τT

2 + γ

1 + γ
(39)

The thermal time constant τT was measured by heating a layer of 19 cm of fresh water with
T ∗ = 41◦C. This gave τT = 2800± 300 s. When a layer of salty water of 9.5 cm (with fresh
water above it) was heated with T ∗ = 41◦C, a value τT = 1680±360 s was obtained. These
estimates of τT yielded values of K between K = 0.6 and K = 1.7. For our calculations we
chose therefore K = 1.2 ± 0.5.

The temperature and salinity data are non-dimensionalized using T̃ = αT/βS0 and
S̃ = S/S0 as in (18), with α = 3 · 10−4 K−1 and βS0 = 5.2 · 10−3, and compared to the
theoretical curves for γ = 0.004, K = 1.2 and d̃ = 0.033 (Fig. 9). The temperature and
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Figure 9: (a) Dimensionless temperature as a function of the dimensionless forcing tem-
perature T̃ ∗. (b) Dimensionless salinity as a function of T̃ ∗. Solid lines are the theoretical
curves, squares are measurements at the bottom and circles are measurements at mid-depth.
Vertical bars indicate the maximum and minimum values of the measurements.

salinity at mid-depth for the deep convection states (T̃ ∗ ≥ 1.3) agree quite well with the
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theoretical curve for the deep convection states. As was mentioned before, the bottom
temperatures are much higher, as these are measured in the thermal boundary layer and
do not represent the temperature of the well mixed layer, as the theoretical curves do. The
average mid-depth temperatures for the oscillations (T̃ ∗ < 1.3) agree also rather well with
the theoretical curve for the deep convection steady states, but the reason for that is not
yet clear.

5 Discussion and conclusions

A laboratory experiment has been conducted in which a small basin, that was connected
to a large reservoir via three tubes, was heated from below. The reservoir had a shallow
layer of salty water underneath a much bigger layer of fresh water, and both layers were
kept at room temperature. It was shown that different flow regimes exist in this laboratory
experiment.

An oscillatory regime exists for forcing temperatures below 42◦C, whereas there is a
regime of steady deep convection states for higher forcing temperatures. The deep convec-
tion states are characterized by inflow of cold and salty water through the bottom tube into
the small basin, inflow of cold and fresh water through the middle tube and outflow through
the top tube. These deep convection states are in good agreement, both qualitatively and
quantitatively, with the box model theory developed by Whitehead [4].

During an oscillation a convecting layer of salty water grows and entrains fresh water,
thereby decreasing its density, until the water column becomes unstable and convection
extends through the whole water column. The oscillation period decreases with increasing
forcing temperature, as for a higher forcing temperature an unstable stratification is reached
quicker, because there is more entrainment of fresh water. The box model theory presented
in section 2 cannot explain this oscillation, even if time-dependent heat and salt balances
are considered as in equation (21) and (22), because this theory does not take into account
processes like entrainment and mixing of the two layers, which are crucial for the oscillation
mechanism. A more quantitative theory for these oscillations still has to be developed.

It is helpful to return to the oceanic case for a moment and consider what this oscillation
might look like in a situation where the small basin is cooled from above and connected to a
reservoir with a shallow layer of fresh water overlying salty water. The inflow of fresh water
through the upper tube will then create a surface layer of fresh water, that is convecting
and extending downward as it is cooled from above. This layer will entrain salty water from
below until it is dense enough to cause the whole water column to overturn. If the inflow of
fresh water at the top is strong enough, deep convection stops and the cycle starts again.
It is interesting to note that in this oscillation the fresh surface layer has to become saltier
before deep convection can occur, similar to the fact that surface waters in the polar ocean
are very fresh and have to become locally saltier before a deep convection event can happen.
Although it is not straightforward to apply the results from such a laboratory model to the
real ocean, these results suggest that deep convection in the ocean might be related to an
internal oscillation, with deep convection occurring only during relatively short intervals.

It is not yet clear what role double diffusive processes play in this experiment. During
the slow phase of the oscillation there is cold, fresh water overlying warm and salty water,
which corresponds to the ’diffusive’ regime in double diffusive problems. However, the
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oscillation we find is different from the oscillatory instability in this diffusive regime [5], as
we are certainly in the turbulent regime.

In a configuration in which the upper and middle tubes have smaller diameters (but
still larger than that of the bottom tube), no oscillations were found. Instead, a regime
of shallow convection states exists for forcing temperatures below 45◦C, in which there is
inflow through the bottom tube and outflow through the middle and top tubes. For high
forcing temperatures (above 45◦C), deep convection states were found.

It is still unclear why oscillations do not occur in this second set of experiments. This
must have to do with the different flow rates and therefore also the different temperatures
and salinities in the small basin, due to the different tube diameters. Unfortunately, τm

has not been measured for the second set of experiments, so that the results from Fig. 8
cannot be compared with the theory. Another unanswered question is why steady shallow
convection states were not found in the standard configuration, although the box model
theory (that seems to work very well for higher forcing temperatures) predicts their existence
between T̃ ∗ = 0.9 and T̃ ∗ = 1.1. Either shallow convection states cannot occur here, because
oscillations prevent the establishment of a steady state, or steady shallow convection states
do exist, but for much lower forcing temperatures. Further study is required to understand
under what conditions the different flow regimes occur.

In future work also a new apparatus might be devised, to make the experiments faster.
The flow through the bottom tube should also no longer get blocked by air bubbles. Then
the question whether or not this laboratory experiment can also exhibit multiple equilibria
can be investigated.
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Diagnosing El Niño - La Niña Transitions

Matthew S. Spydell

1 Introduction

Climate variability on interannual time scales is exemplified by the El Niño -Southern Os-
cillation (ENSO). An El Niño event is marked by anomalously warm SST’s in the eastern
portion of the equatorial Pacific and the weakening of the trade winds over much of the
equatorial Pacific, the opposite event is called La Niña. In addition to locally affecting the
climate near the equator, El Niño and La Niña significantly affect the weather throughout
the Americas. A standard ENSO index is the anomalous surface atmospheric pressure dif-
ference between Tahiti and Darwin, Australia. As a time series, this index shows significant
variability around the 1/4 yr−1 frequency. Although much research has been devoted to
the study of ENSO, there are still some open issues regarding: what starts El Niño, what
sustains its quasi-periodic behavior, etc. Two complementary conceptual models of ENSO
have been successful in exposing some of the main dynamics of ENSO.

Prior to the development of these conceptual models an intermediate model of ENSO
was developed by Zebiac and Cane [1]. This model (henceforth ZCM) is a coupled ocean-
atmosphere model that uses a steady state linearized atmosphere, and long-wave linear
momentum equations for the ocean. The atmospheric model is essentially a Gill type
equatorial model [2]. The ocean and atmosphere are coupled through the atmosphere being
forced by anomalous SST’s, and the ocean being forced by anomalous wind stresses. This
model was shown to have variability similar to ENSO. However, it was difficult to show
exactly what mechanisms resulted in ENSO variability because of the model’s complexity.

In an effort to understand the basic mechanisms that result in ENSO variability, Battisti
(1988) and Schopf & Suarez (1988) showed that the ZCM can be reduced to a delayed
oscillator model that contains ENSO-like variability ([3] and [4]). The delayed oscillator
model of ENSO emphasizes the role of equatorially trapped waves and the different crossing
times of Kelvin and Rossby waves as the source of ENSO-like variability. Specifically,
by integrating along characteristics of Kelvin and Rossby waves, and after making some
simplifying assumptions, the delayed oscillator equation, dT/dt = aT − bT (t− τ) +N , was
derived. The aT term represents the positive El Niño feedback and the −bT (t − τ) term
represents the delay effect of the Rossby waves which effectively carry temperature of the
opposite sign to the eastern equatorial region at a time τ later. It is this delay that is crucial
to ENSO variability.

In 1997 a different conceptual model of ENSO was developed by Jin ([5] and [6]). This
model is a recharge oscillator model and it deemphasizes the role of waves as the mechanism
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of variability and emphasizes the role of mass transport as the mechanism responsible for
ENSO variability. Specifically, this model shows that it is the different adjustment times
that is responsible for ENSO variability: the thermocline slope adjusts almost instantly
to wind stress changes, and the mass (volume) of the equatorial strip takes more time to
adjust to wind stress changes. In this model it is crucial for the equatorial strips volume to
oscillate in time; anomalous mass must be transported into the equatorial strip in order for
an El Niño event to occur.

The purpose of this work is to see if the conceptual models are in agreement with idealize
El Niño to La Niña transitions as produced by a shallow water model forced by periodic El
Niño - La Niña wind stresses. Specifically, the following questions were addressed. One, are
the delayed oscillator and the recharge oscillator complementary views of ENSO variability?
Two, from the recharge oscillator perspective what are the specific mechanisms in space and
time that charge and discharge the equatorial strip? To answer these questions, numerical
simulations of the ocean adjustment process to periodic El Niño to La Niña wind stresses
were performed. Additionally, a passive tracer was used to help diagnose the mass exchange
process that occurs in El Niño - La Niña transitions.

2 The Equatorial β-Plane

The governing equations used to study El Niño are the reduced-gravity shallow-water β-
plane equations. The scales of interest in this particular problem are such that the linearized
version of these equations is adequate. The familiar equations are

ut − vβy = −g′hx + Du + X

vt + uβy = −g′hy + Dv + Y

ht +H0(ux + vy) = 0 .

(1)

These equations have been studied extensively and a review can be found in [7]. These
particular equations represent a one and a half layer model; a dynamic upper-layer and
a denser static lower layer. The reduced gravity, g′, is defined as g′ = g(1 − ρ1/ρ2), and
dissipation and forcing are symbolically represented. The appropriate scalings for this set
of equations are

(x, y) = ae(x̂, ŷ) , (u, v) = c(û, v̂) , h = H0ĥ , and t = t0t̂ (2)

where the length scale ae is the equatorial Rossby deformation radius, c is the shallow
water wave speed, H0 is the mean thermocline depth around which the equations have been
linearized, and t0 is the time it takes a shallow gravity water wave to cross a deformation
radius. For this particular problem we used

c =
√

g′H0 → 2.89 m/s

ae =
√

c/β → 380 km

H0 → 150 m

t0 = ae/c → 1.52 days ,
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consistent with the previous models of ENSO. For ENSO, the x scale of interest is much
larger than 380 km, and time scales of interest are much larger than 1.52 days. If we instead
scale by

(u, v) → (1, ae/Lx) c (1, 0.022)c

(x, y) → (Lx, ae) (17 Mm, 380 km)

t → t0 = Lx/c (70 days)

h → H0 (150 m)

we arrive at the long-wave equations which are the same as (1) except the terms vt and Y

both go to zero. Without the long-wave approximation, (1) represent equatorially trapped
wave modes. To obtain the modes, first (1) is nondimensionalized by (2) to obtain

ut − vy = −hx + Du + X

vt + uy = −hy + Dv + Y

ht + ux + vy = 0

(3)

where all variables are now nondimensional and the terms representing dissipation and
forcing are scaled appropriately. The modes of this system are found by first making the
change of variables

q = h+ u and r = h− u . (4)

The equations given by (3) in terms of q, r and v are

qt + qx + vy − vy = X

rt − rx + vy + vy = −X

2vt + qy + qy + ry − ry = Y ,

(5)

where dissipation has been neglected. The normal modes of the unforced non-dissipative
equations are found by assuming





q(x, y, t)
r(x, y, t)
v(x, y, t)



 =

∞
∑

n=0





q(y)
r(y)
v(y)



 exp[i(kx− σt)] . (6)

The resulting equations are reduced to a single parabolic cylinder equation for v

vyy +

(

σ2 − k2 − k

σ
− y2

)

v = 0 . (7)

The physically relevant boundary condition is that lim|y|→∞ |v| = 0. With this boundary
condition σ must satisfy

σ2 − k2 − k

σ
= 2n+ 1 , (8)

where n ∈ {0, 1, . . .}. Additionally, there is a mode for n = −1 and it is called the Kelvin
mode. This mode is derived from the momentum equations assuming v = 0. The mode for
n = 0 is called the mixed-mode, and there are two modes for n ≥ 1, inertia-gravity modes
(high frequency) and Rossby modes (low frequency). The Kelvin and Rossby modes are
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Figure 1: The dispersion relation for equatorial waves. The first three Rossby and gravity wave

modes are included. The frequency of Rossby modes decrease with mode number and the frequency

of gravity wave modes increase with mode number.

crucial to ENSO as we shall see later. The familiar dispersion relationship is plotted in Fig
1.

The ENSO adjustment process was our primary concern. In order to understand the
role of equatorial waves in this adjustment process it is necessary to project the evolution
of the system on to the systems modes. Following [2] and subsequently [3], but not making
the long-wave approximation, we can arrive at amplitude equations for the modes of the
system. Instead of assuming oscillatory solutions in x and t, we solve (5) by expanding the
y component of these equations in “normalized” parabolic cylinder functions





q(x, y, t)
r(x, y, t)
v(x, y, t)



 =
∞

∑

n=0





qn(x, t)
rn(x, t)
vn(x, t)



Dn(y) , (9)

where

Dn(y) =
(−1)n

√

2nn!
√
π

exp(y2/2)
dn

dyn
exp(−y2) . (10)

Dn is considered normalized because
∫

∞

−∞

DmDn dy = δmn

where n is the set of whole numbers. This results in equations for the mode amplitudes

2vnt +
√

2(n+ 1)qn+1 −
√

2nrn−1 = 2Yn

qnt + qnx −
√

2nvn−1 = Xn (11)

rnt − rnx +
√

2(n+ 1)vn+1 = −Xn ,
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with Xn denoting the x forcing projected on the nth parabolic cylindric function

Xn =

∫

∞

−∞

X(y)Dn(y) dy ,

similarly for Yn. This may appear complicated but the evolution equation for the equatorial
waves can be found all in terms of qn, the first two are

q0t + q0x = X0 (12)
√

2q1t = 2Y0 − v0t (13)

and for n ≥ 1

(2n+ 1)q(n+1)t − q(n+1)x = nXn+1 −
√

2(n+ 1)Xn−1 +
√

2(n+ 1)[
∂

∂t
− ∂

∂x
](Yn − vnt)

where

vnt =
∂

∂t
(q(n+1)t + q(n+1)x − Xn+1)

for all n ≥ 0. The advantage of this notation is that the different wave modes have different
y dependence. The amplitude of the Kelvin wave is given by q0, the mixed wave by q1,
and the Rossby and inertia-gravity waves by qm, m ≥ 2. Note that the equation for vnt

is displayed separately to emphasize that if the long wave approximation had been made
this term would be zero because the terms vnt = 0, and Yn = 0. With this approximation
the mixed mode and the gravity modes are not present, hence, the only modes that would
survive are the Kelvin (q0) and the Rossby modes (qn’s). If the long-wave approximation
is not made, the Rossby modes and gravity modes have the same y dependence, therefore
the modal amplitude q2(x, t) corresponds to the amplitude of the gravest gravity mode
in addition to the the amplitude of the gravest Rossby mode. Thankfully, the scales of
interest in this problem are such that the long-wave approximation is certainly valid and
the amplitude of qn with n ≥ 1 corresponds to the amplitude of the n ≥ 1 Rossby mode.

3 The Model Setup

The transition between La Niña and El Niño was diagnosed numerically by spinning up the
shallow water model to a periodic El Niño to La Niña forcing. Specifically, (1) was solved
numerically (see Appendix for details) using a standard shallow water model forced by wind
stress fields obtained from a run of the ZCM. These fields can be seen in Figure 2.

The time dependence of the wind stress forcing was given by the function

~τ(t) =
1

2

[

~τEl + ~τLa + tanh
[

α(t− 1)
](

~τEl − ~τLa

)

]

×H
(

2 − 4 mod(t/4)
)

+
1

2

[

~τEL + ~τLa + tanh
[

α(t− 3)
](

~τLa − ~τEl

)

]

×H
(

4 mod(t/4) − 2
)

,

(14)
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Figure 2: The mean wind stress and the El Niño anomaly. The La Niña anomaly is omitted since
it is just the opposite of the El Niño anomaly because the time dependence of the winds is a linear
combination of two fields. The total El Niño and La Niña wind stresses are used to force the shallow
water model. Contour lines are magnitudes of wind stress in 0.25 dynes/cm2.

where H is the heavy-side step function and t is measured in years. Figure 3 shows one
period (4 years) of the oscillating wind stress. The parameter α is used to adjust how
quickly the winds transition from La Niña to El Niño and we set α = 3 for all results
reported. It is acknowledged that this simple linear interpolation between two wind stress
states is a simplification of the true transition process, which includes spatial propagation
signals, however, this interpolation is used because it is simple yet physically revealing.

After the model spins up under periodic wind stress forcing, four years of data repre-
senting the transition from maximum La Niña winds to maximum El Niño winds and back
to La Niña was saved and analyzed. In order to diagnose these idealized La Niña to El Niño
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Figure 3: The time dependence of the periodic forcing used in the linear shallow water model used
to diagnose the transitions between El Niño and La Niña .
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Figure 4: A time-longitude plot of the anomalous height at the equator. The shaded area is positive
and the contour level is 5 m.

transitions the fields are split into climatologies and anomalies

h(x, y, t) = h0(x, y) + h′(x, y, t)

u(x, y, t) = u0(x, y) + u′(x, y, t)

v(x, y, t) = v0(x, y) + v′(x, y, t) .

(15)

4 The Role of Waves

The first question to answer is whether these idealized El Niño - La Niña transitions exhibit
characteristics implied by the idea of the delayed oscillator. Namely, to what extent are
wave dynamics responsible for the time evolution of the anomalous fields? A Hovmöller
diagram of h′ at the equator is an appropriate place to start, see Figure 4.

From Figure 4 is it possible to see the role of waves in El Niño to La Niña transitions.
Between time zero and one we can see a positive depth anomaly encountering the western
boundary, this depth anomaly is then reflected and rapidly moves east across the equator
between time 0.75 and 1.5. From Figure 4 it is not clear what occurs when this anomaly
reaches the eastern boundary at time 1.5. Due to the symmetry of the forcing the negative
depth anomaly evolves in the same manner starting at about time 2.5.

However, projecting q = h′ + u′ on the normal modes of the system can clarify the role
of waves in the transition process by explicitly indicating which equatorial waves are excited
in the transition process. The evolution of q projected on the Kelvin and first Rossby mode
can be seen in Figure 5.
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Figure 5: A time-longitude plot of the projection of q(x, y, t) on to the Kelvin mode and the first
Rossby mode. The shaded area is positive and the maximum value of the nondimensional projection
is displayed.

From Figure 5 the role of the Kelvin and Rossby wave in the transition process is
evident. We shall now analyze the positive depth anomaly or warm anomaly in some detail.
At t = 0.5 the first mode Rossby wave has maximum amplitude near 200◦ East. This mode
propagates along the equator at 1/3 the Kelvin wave speed and then encounters the eastern
boundary at t = .9.1 The Rossby wave is then reflected as a Kelvin wave but initially,
for t < 1, the Kelvin wave loses intensity because the stress anomaly is negative. This is
clear from the Kelvin modal amplitude equation (12) where X is the stress anomaly which
is negative at the equator for −1 < t < 1. It is negative because during this time there
are La Niña winds, hence the Kelvin wave amplitude q0 decreases. At t = 1 the stress
anomaly changes sign and the Kelvin wave intensifies. It is this intensification which brings
El Niño to its maturity. The idea that an equatorial Rossby wave reflects from the western
boundary as a Kelvin wave that is later intensified is the principle of the delayed oscillator.
In the delayed oscillator model the equatorial Rossby wave is assumed to be excited by the
anomalous wind stress in the central part of the basin from the previous El Niño. Is this the
case here? See Figure 6 for the projection of q on the third and fifth Rossby modes. From
this figure we see that the projection on the slower equatorial Rossby waves is weaker and
occurs at the same time and place, t = 0 and x =200◦ East. We ask, what is responsible
for the excitation of these modes?

Figure 7 shows the evolution of h′(x, y, t) through the maximum La Niña wind stress

1These times denote the approximate time when the maximum amplitude encounters the eastern bound-

ary, etc.

263



150 200 250
0

0.5

1

1.5

2

2.5

3

3.5

tim
e 

(y
rs

)

Longitude

q
4
, max(q

4
) = 0.37464

150 200 250
0

0.5

1

1.5

2

2.5

3

3.5

Longitude

q
6
, max(q

6
) = 0.25063

Figure 6: A time-longitude plot of the projection of q(x, y, t) on to the third and fifth Rossby mode.
The shaded area is positive and the maximum value of the nondimensional projection is displayed.

anomaly, notice especially the off-equatorial wave near 15◦ North. It is possible to show
that this is a long-QG-Rossby wave at 15◦ North, i.e. −a−2ψt + βψx = 0, with a speed of
about βa2 ≈38◦/yr.

Beginning in panel 2 of Figure 7 this off equatorial long Rossby wave “leaks” into the
equatorial region west of 200◦ E. This is rather unexpected because the delayed oscillator
model of El Niño does not address off equatorial dynamics as part of the ENSO mechanism.
However, this off equatorial Rossby does eventually “leak” into the equatorial region and
excites equatorial Rossby waves that are crucial to ENSO mechanism according to the
delayed oscillator mechanism. We will now show that it is the background potential vorticity
that allows the off equatorial Rossby wave to leak into the equatorial region. Rossby waves
propagate along lines of constant background potential vorticity

ζ = f/H0 . (16)

Figure 8 shows lines of constant background potential vorticity superimposed on fourth
panel of Figure 7.

We see a ridge of high potential vorticity that forces the off equatorial Rossby wave to
travel north of 10◦. This Rossby wave then “leaks” through the gap in the ridge of potential
vorticity at about 170 E Longitude. Again, it is interesting to see off equatorial dynamics
playing a role in ENSO transitions, not something usually associated with ENSO, nor is off
equatorial dynamics apart of conceptual ENSO models. However, off equatorial dynamics is
discussed in the context of El Niño in Philander (1997), where it is discussed in the context
of decadal modulations of ENSO variability.
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Figure 7: Six frames in the transition through the La Niña wind stress. Maximum La Niña stress
anomalies occur at t = 0. An off equatorial positive anomaly Rossby wave is clearly seen moving
west at around 15◦ N. Additionally, this Rossby wave can be seen to “leak” into the equatorial region
beginning in the second panel. The contour interval is 20 m.
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Figure 8: One frame in the transition through the La Niña wind stress with the background
potential vorticity contours at a time when the off equatorial Rossby wave is “leaking” into the
equator. The contour level for the anomalous height field is 20 m and the potential vorticity field is
in bold contours.

5 Recharging and Sverdrup Flow

In the Section 4 it was demonstrated that the wave dynamics view of ENSO is indeed
captured in the idealized ENSO transitions we simulated. Can we also see the recharge
oscillator perspective in these simulations? If ENSO can be described as a recharge oscillator
the total mass (volume) of the equatorial region must oscillate, i.e. the equatorial strip must
charge and discharge. According to [5], the recharging takes place prior to an El Niño event,
and in the case of our model ENSO transitions this recharging occurs during La Niña wind
stresses. Figure 9 shows the zonal mean thermocline depth anomalies and from this Figure
we see that the equatorial region has maximum volume prior to the onset of the El Niño,
in other words prior to the El Niño wind stress anomaly.

It is obvious from Figure 9 that the equatorial region, between -10◦ S and 10◦, exchanges
mass periodically with the off equatorial region, thus these ENSO transitions can be viewed
in terms of a recharge oscillator. Can we be more specific about the recharging of the
equatorial region? Specifically, what is the mechanism that allows the equatorial region to
recharge, and where is the mass responsible for the recharging coming from? It is possible
to answer these questions from our idealized El Niño - La Niña transitions. To do so, we
will start with the anomalous continuity equation

h′t +H0(u
′

x + v′y) = −rh′ . (17)

We can now integrate the anomalous continuity equation to obtain the anomalous transport

266



0 0.5 1 1.5 2 2.5 3 3.5

−25

−20

−15

−10

−5

0

5

10

15

20

25

time (yrs)

La
titu

de

Zonal Mean h′
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of the equatorial region. The contour interval is 5 m.

into the region east of x,

dV

dt
(x, t) ≡

∫

10
◦

−10◦

∫ Xe

x

dh′

dt
(x̃, y, t) dy dx̃ =

− r

∫

10
◦

−10◦

∫ Xe

x
h′(x̃, y, t) dy dx̃

−H0

∫ Xe

x
[v′(x̃, 10◦, t) − v′(x̃,−10◦, t) dx̃

+H0

∫

10
◦

−10◦

u′(x, y, t) dy .

(18)

The total transport into this region, dV
dt , has contributions from the relaxation term, −rh,

meridional velocity at ±10◦, v, and from the zonal velocity u at longitude x. A schematic
of this idea is seen in Figure 10. If we let x = Xw in (18) we get the total transport into
the equatorial region. This is displayed in Figure 11. This figure clearly shows that the
equatorial region is charging during the La Niña phase, t < 1 and t > 3, and discharging
during the El Niño phase, 1 < t < 3.

From (18) we can deduce where the anomalous transport is taking place such that the
equatorial region charges and discharges. Figure 12 is a plot of dV/dt as a function of x
for certain times during the recharging phase. This Figure shows where the anomalous ve-
locities, more importantly the anomalous meridional velocities, are transporting anomalous
mass into the equatorial region during this phase. In the first panel it is a negative v ′(10◦)
east of 200 E is transporting anomalous mass into the equatorial region. West of 200 E v ′ is
positive but small and is not helping to recharge the equatorial region. We can also see that
u′ is transporting anomalous mass west in the region where v′ is transporting anomalous
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Figure 10: A schematic diagram of the contributions to the transport into the equatorial region
east of x.
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Figure 11: The transport into the entire equatorial region as a function of time. The net transport
is depicted by the ht curve and the contributions to this from the anomalous meridional velocity
and the anomalous relaxation are displayed.
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mass into the equator. Note that the anomalous transport due to the boundary current is
contributing a small amount to the recharging at this time. In the second panel a negative
v′ is evident everywhere east of 180 E. This anomalous velocity is responsible for all of the
anomalous mass transport into the equatorial region. A negative u′ in this same region
transports this anomalous mass west. Note that the boundary current is actually helping
to expel mass from the equator at this time. Also, the rate at which the equatorial region
is filling with mass is approximately constant for all x, i.e. the entire thermocline is filling
with water at the same rate. We see this from the constant slope on the ht curve of this
panel. The third panel is at a time close to when the equatorial region begins to discharge.
It is possible to see in this panel that the Kelvin wave is helping to transport mass into
the eastern equatorial region. Because of the periodic nature of our linear problem and the
wind stresses being a linear combination of two states, the discharging process is just the
opposite of the charging process.

It was shown that anomalous meridional velocities at ±10◦ mainly in the eastern portion
are responsible for the anomalous mass transport that charges and discharges the equatorial
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Figure 13: The curl of the mean wind stress field and the curl of the El Niño anomaly wind stress
field.

region. From the scales of the problem we would expect the velocities to be in quasi-Sverdrup
balance. We can then obtain the anomalous meridional velocities from the anomalous wind
stress via the Sverdrup balance

βv′ =
∇ × τ

′

ρ0H0

· k . (19)

Figure 13 shows that for El Niño there is a positive wind stress curl anomaly in the
eastern equatorial region at 10 N and a negative curl anomaly at 10 S. These anomalous
curls are responsible for the discharging of the equatorial region. The curl anomaly for La
Niña has the opposite sign as the curl anomaly for El Niño and is hence responsible for the
charging of the equatorial region.

Experiments were performed where tracers were injected into the flow at time t = 0
with constant gradients in y. These tracers were then advected by the anomalous velocities.
These experiments were performed to see where the anomalous velocities were present and
to show where anomalous mass was being transported. These experiments confirmed that
anomalous equatorward meridional velocities were indeed responsible for the anomalous
mass transport. This anomalous mass enters the eastern equatorial region and is then
transported west by anomalous zonal velocities at the equator. Again, because of the
symmetrical nature of the forcing the opposite is true for the expulsion of mass during the
El Niño phase.
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Figure 14: The transport into the equatorial region east of x and the contributions from the full
velocity fields and the full relaxation.

6 Total Mass Transport & No Relaxation

The previous sections on transports have emphasized the role of anomalous velocities trans-
porting anomalous mass. In these sections we have isolated what causes the recharging
of the equatorial region. However, by using anomalous velocities we do not have a true
Lagrangian perspective on the recharging of the equatorial region. In order to determine
the origins of the water that actually recharges the equatorial region we must add in the
climatological transport to the analysis performed in Section 5. Doing this equation (18) is
now an equation that involves the total velocities and Figure 14 displays the total transport
into the equatorial region during the recharging phase.

Figure 14 clearly shows that the meridional velocities east of 240 E are transporting
mass out of the the equatorial region, between 180 E and 240 E v is transporting mass
into the region, and west of 180 E mass is being transported out of the equatorial region.
This figure also shows that if it were not for the Western Boundary Current the equatorial
region would be losing mass from v transport. We can conclude that it is anomalously
weak meridional velocities in the eastern portion of the equatorial region that allows the
western boundary current to fill the region. From this figure we see that the relaxation
term (−rh) in the continuity equation is actually doing more work than v to recharge the
equatorial region. Knowing that this term is a slightly nonphysical parameterization of
upwelling and mixing, we should ask whether the recharging of the equatorial region should
rely this heavily upon this term? Additionally, is this term necessary for the recharging of
the equatorial region?

These questions were answered by running the same experiment but without the relax-
ation term in the continuity equation. From Figure 15 we see that the equatorial region
still charges and discharges, hence the −rh term is not mandatory for the recharging of
the equatorial region. Additionally, the the transport analysis was performed on this ex-
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Figure 15: Zonal mean anomalous thermocline depth with no relaxation in the continuity equation.

periment and it was found that in this case the meridional transport is solely responsible
for the recharging of the equatorial region. Specifically, it is the weakening of the merid-
ional transport in the out of the basin that allows the western boundary current to fill the
equatorial region with anomalous mass, as Figure 16 clearly shows. It is interesting that in
Figure the contributions to this charging by u and v are such that the equatorial region is
uniformly charging as seen in the constant slope of dh/dt.

7 Conclusions

The purpose of this project was to see if both the wave perspective of ENSO, as exemplified
by the delayed oscillator model (Suarex & Schopt 98, Battisti 98), and the mass transport
perspective of El Niño , as exemplified by the recharge oscillator model (Jin 97), may
be diagnosed in a model simulation of ENSO transitions using a numerical model that is
capable of capturing both mechanisms. Both perspectives of ENSO were clearly evident in
the idealized ENSO transitions that we modeled. However, as regards to the wave dynamics
perspective of ENSO our model shows that it is off equatorial Rossby waves that propagate
anomalous thermocline depths from the eastern equatorial region to the west in contrast to
equatorially trapped Rossby waves that are emphasized in the delayed oscillator picture of
ENSO. The off equatorial Rossby wave does excite equatorial Rossby waves but not until
it encounters a gap in the ridge of background potential vorticity in the western portion of
the basin where it is able to “leak” into the equatorial region. Thus, this model indicates an
interesting interaction between off equatorial dynamics and equatorial dynamics in ENSO
transitions (Galanti & Tziperman have also noted this phenomena, personal communication
2001). It is this particular interaction that is worthy of future research.

The mass transport perspective of ENSO was also evident in these idealized ENSO
transitions. Using this model we were able to specifically diagnose the mechanisms respon-
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Figure 16: The x dependence of the total transport and the contributions from the full velocity
fields with no relaxation in the continuity equation during the recharging phase.

sible for the recharging and discharging of the equatorial region. We found that anomalous
wind stress curls in quasi-Sverdrup balance with meridional velocities are responsible for the
charging and discharging of the equatorial region. These anomalous wind stress curls are
present in the eastern portion of the equatorial region at ±10◦. These anomalous meridional
velocities allow the western boundary current to fill the equatorial region with mass. We
also found that the −rh term included in most models of ENSO for numerical purposes, is
not necessary for the recharging of the equatorial region, nor does it distort the qualitative
picture.
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9 Appendix

9.1 Numerical Methods

The numerical model used was a modification of the Bleck and Boudra isopycnic coordi-
nate general circulation model. This code was modified to solve the linear shallow water
equations. The model uses a standard “c” grid and a leap frog time stepping scheme. The

273



model solved the equations

ut − vβy = −g′hx − ru+ ν∇2u+
τ (x)

ρ0H0

vt + uβy = −g′hy − rv + ν∇2v +
τ (y)

ρ0H0

ht +H0(ux + vy) = −rh .

(20)

The resolution of the model was 0.5◦, as measured at the equator, in both the x and y
directions. The values of most of the constants were given in Section 2. The additional
values used were:

r = 1/30 mo−1 and ν = 1100 m2s−1 . (21)

9.2 The Long-wave Approximation

In order to better understand the long wave approximation and why it is relevant to the
equatorial basin and ENSO, we examined the reflection of equatorial Kelvin waves by the
eastern boundary of a basin. Additionally, this problem was examined to better understand
why in the delayed-oscillator model of ENSO eastern boundary reflection is sometimes
ignored. The set up is simple, if a Kelvin wave is excited along the equator, perhaps by
an anomalous wind stress, it will propagate along the equator until it reaches the eastern
boundary of the basin at which point it must be reflected2. What is the outcome of this
reflection? It can not reflect as a Kelvin wave or a mixed wave; they only propagate energy
eastward. It must transmit its energy to coastally-trapped Kelvin waves (or some deviant of
a coastally-trapped Kelvin wave3, equatorially trapped Rossby waves or gravity waves. The
structure of the disturbance in k space determines the outcome of this reflection. Consider
an initial value problem of the linear shallow water equations. The initial disturbance is





u(x, y, 0)
v(x, y, 0)
h(x, y, 0)



 =





αc
0

αH0



 exp

(

− β

2c
y2

)

G(x/L) . (22)

This initial disturbance is designed to excite an equatorial Kelvin wave response that will
propagate to the east with speed c and amplitude α. This disturbance will not disperse
because Kelvin waves are not dispersive. We shall choose the specific x dependence to be

G(x/L) = exp[−(x/L)2] . (23)

Assuming that the scale of this disturbance is small compared to the size of the basin we
can assume that the disturbance is not affected by the presence of the boundaries, and
we can analyze this initial disturbance as if x were unbounded. This disturbance excites

2Reflected is perhaps not the best word here, the energy fluxed into the eastern boundary of the basin

must be fluxed out, and this is what is meant by reflection in this particular usage.
3A true coastally-trapped Kelvin wave only exist on an f -plane, therefore true coastally-trapped Kelvin

waves can not exist at the equator since f goes to zero there [8].
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Figure 17: The energy density at the equator, in ergs/cm2, of an equatorial Kelvin wave as it strikes

the eastern boundary of the basin for four different zonal length scales of the disturbance. As the

zonal length scale of the disturbance increases, is transmitted to equatorially-trapped gravity waves

and more energy is transmitted to equatorial Rossby waves. There are ten equally spaced contours

in each panel.

many plane wave Kelvin modes where the amplitude of these excited modes is given by the
Fourier transform of (23)

G(k) =
L

2
√
π

exp[−(kL/2)2] (24)

assuming that G(x) =
∫

∞

−∞
G(k) exp(ikx) dk. We see that small initial disturbances (small

L) project into high wave number plane waves - obviously the width of Gaussian in k
space is inversely proportional to the width of the Gaussian in x space. Since these are
Kelvin waves, the frequency is proportional to k (ω = ck) and therefore a small disturbance
projects into many high frequency Kelvin modes. When this disturbance encounters the
eastern boundary the energy fluxed in must be radiated away by other waves. Some of this
energy goes into coastally trapped Kelvin (like) waves that propagate away from the equator
and some may be reflected back as either equatorial trapped gravity waves or Rossby waves
depending on the frequency of the incident waves. If the disturbance is small, the frequencies
may be large enough to reflect as gravity waves. Notice on the dispersion relation, Figure
1, that Kelvin waves with large positive k will have frequencies in the frequency range of
the gravity waves.

Typically, simple models of ENSO ignore eastern boundary reflection because the long
wave approximation has been assumed and Kelvin waves excited by anomalous wind stresses
are assumed to have spatial scales large enough such that these disturbances do not project
into high wave number Kelvin modes. When these large disturbances encounter the eastern
boundary they will propagate away as coastally trapped Kelvin waves and equatorially
trapped Rossby waves. The above analysis showed that Kelvin waves can reflect as fast
gravity waves - how large do disturbances need to be such that they will not reflect some of
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their energy as gravity waves? For any disturbance the majority of the energy must be in
wave numbers less than some critical wave number kc, where kc ∼ (3/2)ae according to the
dispersion relation. To find the smallest length scale of the disturbance, L, such that the
majority of the energy will be in wave numbers less than kc it is possible to show that the
percentage of energy in wave numbers less than kc, for the Gaussian disturbance (23), is

E =
E(k ≤ kc)

E0

= erf

(

kcL√
2

)

. (25)

The percentage of energy in wave numbers less than kc must be greater than some threshold
denoted by T . This results in a bound for L,

L ≥
√

2

kc
erf−1(T ) . (26)

For simplicity let’s assume T = erf(1) ≈ 0.8427 so that L ≥
√

2/kc. As mentioned previously
kc ∼ 3/2ae giving an approximate bound for L,

L ≥ 2
√

2

3
ae ≈ ae . (27)

Thus the zonal length scale of disturbances must be larger than the equatorial deformation
radius such that little energy is reflected as gravity waves. This was verified using our
shallow water equatorial β-plane model. Four separate cases were considered in which the
zonal length scale of the initial disturbance was set to L = [1/4 1/2 1 2] ae, respectively.
We can clearly see in Figure 17 that as the zonal length scale of the disturbance increases
less energy is reflected as equatorially trapped gravity waves. Note that most of the energy
fluxed into the boundary leaves as coastally trapped Kelvin waves which can not be seen
in Figure 17 because Figure 17 only shows the energy density at the equator. In the fourth
panel of Figure 17 notice that some of the incident energy is reflected as an equatorially
trapped Rossby wave(s), which is inferred from the speed of this disturbance.

The reflection of the Kelvin wave was also studied by projecting the solution, u =
u(x, y, t), v = v(x, y, t), and h = h(x, y, t), on the normal equatorial modes as outlined in
Section 2. The projection of the solution on the first five modes of q is given in Figure 18 and
Figure 19 for length scales of the disturbance given by L = [1/4 2] ae, respectively. In these
figures the magnitude of the projection is squared and normalized by the magnitude of the
Kelvin wave projection. We can see that before the reflection the projection of q is entirely
in the equatorial Kelvin mode. For all times the projection of q on to odd numbered modes is
very small because the odd numbered modes represent odd structure in y which should not
exist because of the symmetric y structure of the initial disturbance. The small projection
on these modes is due to numerical inaccuracies. For the small disturbance there is some
projection on q2 after the disturbance has reflected. The speed of this mode is consistent
with the speed of the first equatorial gravity wave mode, however this mode is dispersive
and the magnitude of the projection can not remain localized in space. Also notice that
the maximum magnitude of the projection on this mode is only 6% of the projection on
the Kelvin mode. Again this is evidence that most the energy that is in the original Kelvin
wave is transferred to coastally trapped Kelvin (like) waves.
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The same procedure was performed with the initial disturbance with a length scale of
L = 2 ae, and the results are in Figure 19. Again we can see that the initial disturbance
is a pure equatorial Kelvin mode prior to reflection. However, after reflection the solution
projects into the first and third Rossby modes, and these projections have speeds con-
sistent with the appropriate Rossby mode wave speeds. Again the odd numbered modes
corresponding to odd y structure are only excited because of numerical inaccuracies.

A discussion of incident waves on the eastern boundary of an equatorial basin is found
in [8]. Philander shows that waves of frequency close to

√
cβ (the Kelvin and mixed modes)

transmit their energy to coastally trapped disturbances of the form

v = A
√
y exp

[

i

(

σt− σy

c
+
βx

2σ

)

− βy
Lx − x

c

]

.

We see that eastward-propagating equatorially-trapped waves do not transfer their energy
to a coastally-trapped Kelvin waves, but rather a coastally-trapped Kelvin-like wave. Phi-
lander also shows that as the frequency of the incident Kelvin wave decreases more energy
is reflected as Rossby waves, but there is always a finite amount of energy that is reflected
as coastally trapped waves. This is shown by fixing σ in the dispersion relation, (8), and
solving for all the possible k’s by letting n vary. We find that there is always an infinite
number of coastally trapped waves, imaginary k’s, for a given σ.
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Effect of bottom topography on roll wave instabilities.

Shreyas Mandre

1 Introduction

Turbulent flow over a sloping bottom becomes unstable if the Froude number becomes
greater than a critical value. The basic mechanism of the instability was discovered by
Jeffreys [1]. The instability arises when the velocity of the friction dominated flow becomes
greater than twice the propagation velocity of the shallow water waves. The unstable uni-
form flow breaks down in a series of breaking waves or bores. Under favorable conditions
these waves are more or less periodic and are called roll-waves. Dressler [2] constructed
nonlinear, periodic solutions using shallow water equations with a turbulent bottom drag
term. This solution consist of piecewise smooth profiles separated by discontinuities repre-
senting the bores. Novik [3] proposed a Burger’s equation with a linear amplification term
added to it to describe the roll-waves. Needham and Merkin [4] added a diffusive term to
the momentum equation and were able to show that continuous roll-wave solutions exist
for when the uniform flow is unstable. Kranenburg [5] showed that the modified Burger’s
equation proposed by Novik can be obtained using a short wave expansion of the shallow
water equations with turbulent drag. Yu et. al. [6] used multiple scales to do a weakly non-
linear analysis of the problem and arrived at a generalised Kuramoto-Sivashinsky (GKS)
equation to describe the amplitude evolution.

However, in reality the bottom topography is rarely flat. This project attempts to
understand the phenomenon in the presence of a periodic bottom topography superposed
on a constant slope. There is also an important limitation about Kranenburg’s model for
roll waves, i.e. the modified Burger’s equation is valid only for short waves. Yu et. al.
did a multiple scale expansion for long waves, however they had to mix orders to arrive at
the GKS equation. We try to derive a more general nonlinear evolution equation for the
amplitude of the roll wave instability to address these problems and to include the effect of
a periodically varying bottom topography.

2 Formulation

The governing equations for this problem are the Navier-Stokes equations for fluid flow.
However, the problem can be simplified by making a shallow water asuumption. The
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Figure 1: Growth rate against wave number (a) Linear scale (b) Logarithmic scale.

equations thus simplify to

u∗

t∗ + u∗u∗

x∗ + gh∗

x∗ cos θ + gζ∗x∗ cos θ = g sin θ + D∗ +
ν∗

h∗
(u∗

x∗h∗)x∗ , (1)

h∗

t∗ + (u∗h∗)x∗ = 0, (2)

where u∗ is the fluid velocity, h∗ is the fluid layer height, x∗ is the coordinate down the
slope, ζ∗ is the periodic superposed bottom undulation, ν∗ is the viscosity, g is acceleration
due to gravity and θ is the angle the slope makes with the horizontal. We use an empirical
form for the turbulent bottom drag D∗ given by

D∗ = Cf
u∗|u∗|

h∗
, (3)

where Cf is the friction factor. The equations are non-dimensionalized using

x∗ = xH cot θ, (4)

u∗ = uU, (5)

h∗ = hH, (6)

ζ∗ = ζH, (7)

t∗ =
H cot θ

U
t, (8)

where H is the height of the fully developed water stream and U is it’s speed given by

U =

(

gH sin θ

Cf

)1/2

. (9)
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The non-dimensional form of the governing equations are

F 2 (ut + uux) + hx + ζx = 1 − u|u|
h

+ νuxx, (10)

ht + (uh)x = 0. (11)

Here F is the Froude number, which is the ratio of the steady state speed of the stream to
the speed of gravity waves and ν is the inverse Reynolds number, which is the ratio of the
viscous terms to the inertial terms.

F =
tan θ

Cf
=

(

U2

gH cos θ

)1/2

, (12)

ν =
ν∗

UL
= ν∗

(

sin3 θ

CfH3g cos2 θ

)1/2

. (13)

3 Case ζ = 0 revisited

3.1 Linear stability

The first natural thing to do is a linear stability analysis for the system above for a plane
sloping bottom about the basic state u = h = 1 [1]. Representing the perturbed variables
by

u = 1 + u′eσt+ιkx, (14)

h = 1 + h′eσt+ιkx, (15)
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Figure 3: Neutral curve for two different wave number of bottom topography (kb) for the
case ν = 0.1 and K = 10−3

where σ is the complex growth rate of the disturbance and k is its wave number. The
(linearised) governing equations now become

F 2(σ + ιk + 2 + νk2)u′ + (ιk − 1)h′ = 0, (16)

ιku′ + (σ + ιk)h′ = 0. (17)

Thus for solutions to exist the following condition must be satisfied:

F 2(σ + ιk)2 + (2 + νk2)(σ + ιk) + ιk + k2 = 0 (18)

This is quadratic in (σ + ιk) and gives the solutions

σ = −ιk − 2 + νk2

2F 2
±

√

(2 + νk2)2

4F 4
− k2 + ιk

F 2
. (19)

For the critical case, we put σ = ιωcr and decomposing into real and imaginary parts gives

ωcr = −k − k

2 + νk2
, (20)

Fcr = 2 + νk2, (21)

where Fcr is the critical Froude number. Fig. 1 illustrates the growth rate (Re(σ)) as a
function of the wave number. It can be seen that for the inviscid case (ν = 0) all the wave
numbers become unstable at F = 2. The neutral curve is shown in Fig. 2. Everything
above the curve is unstable while everything below is stable. For the inviscid case, there is
no preferred wave number selection as can be seen from the neutral curve. If we expand
the growth rate σ for small k (i.e. for long waves), we get

σ ∼ ιk

[

−3

2
+ k2

(

F 2(F 2 − 4)

16
+

ν

4

)]

+

[

F 2 − 4

8
k2 −

(

F 2(F 2 − 4)(5F 2 − 4)

128
+

3F 2 − 4

16
ν

)

k4

]

+ O(k5) (22)
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which for near critical cases (F = 2 + εF1, ε � 1) become

σ ∼ ιk

[

−3

2
+ k2

(

F1ε +
ν

4

)

]

+

[

εF1k
2

2
− k4

(

2εF1 +
ν

2

)

]

(23)

For large k it gives

σ ∼ −1

ν
(24)

However, it can be seen from Fig. 1 (b) that for not so large values of k, viscosity damps
the system and the growth rate falls like k2. If ν is small, this k2 damping is dominantly
visible.

3.2 Nonlinear analysis

Now that it is known that the uniform flow is unstable if the Froude number is greater
than 2, there have been efforts to model the evolution of the roll waves. Dressler [2] proved
in the inviscid case, no steadily propagating continuous solutions exist for this problem.
He constructed periodic, piecewise smooth profiles connected by shocks as solutions to the
nonlinear equations. However, he did not consider the evolution of the steady flow to
these roll waves. Which of the Dressler’s uncountably many profiles does a initial condition
evolve to is still an unsolved problem. Kranenburg [5] derived a modified Burgers equation
to describe the time evolution of roll waves on a flat sloping bottom. His idea was to use
multiple scales in time

χ =
x − ct

ε
where c = 1 +

1

F
(25)

(26)
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and expand the variables as

u = 1 + εU(χ, t, ) (27)

h = 1 + εH(χ, t) (28)

ν = εν1 (29)

to get an nonlinear evolution equation for U and H as

H = FU (30)

2Ut + 3UUχ +
2 − F

F 2
U =

ν1

F 2
Uχχ (31)

If we do a linear stability analysis of it, we get the dependence of growth rate on wave
number as

Re(σ) =
(F − 2)

2F 2
− ν1k

2

2F 2
(32)

We know from the linear stability analysis of the exact problem that for small wave num-
bers, the dependence of growth rate on wave number is quadratic (Eqn. 22). However, this
evolution equation concentrates only on the short waves and thus is inadequate in repre-
senting the long waves. The discrepancy can be solved if we make a multiple scale analysis
in space as well as time as shown in the later sections.

Kranenburg [5] solved this equation with periodic boundary condition to observe the
nonlinear effects. The equation is unconditionally ill-posed for non-zero periodic initial
conditions on U , as proved by him. He showed that continuous periodic initial conditions
lead to formation of a shock that propagates with a constant speed proportional to the
average value of U across the shock. Thus shocks with greater averages propagate faster
and combine with smaller shocks ahead of them which further increases the amplitude of
the shock and consequently its speed. This phenomenon was termed as wave coarsening
because due to merging of shocks, after a long enough time, the solution develops into a
single discontinuity periodic with the largest harmonic wave present in the initial condition.

Recently Yu et.al. [6] used multiple scales in space and time and came up with a GKS
equation given by

F 2(2ut + 3uux) + 2F (F − 2)uxx + 2νuxxx + 4νuxxxx = 0 (33)

which is valid only for near critical cases. A linear stability analysis around u = 1 gives for
growth rate gives

σ =
F − 2

F
k2 − 2ν

F 2
k4 + ιk

(

−3

2
+

νk2

F 2

)

(34)

This compares well with the linear stability results of the full problem. However, it has a
very limited range of validity. We know that the descent of growth rate with wave number
due to viscosity is like k2 and not k4 as proposed by Yu et. al. Also in the limiting case of
no viscosity, the growth rate saturates for large values of k, whereas for the GKS it grows
indefinitely. All this adds up to concluding that though the GKS has features that agree
with the linear stability, it does so only for a very restricted range of wave numbers very
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close to zero. Also, Yu et. al. had to use the technique of mixing orders to arrive at this
equation.

In this article, we try to address this problem of deriving a nonlinear evolution equation
for near critical roll waves. A general case with a sinusoidal bottom topography superposed
over an incline is considered. A nonlinear long wave equation for the case of small but fast
varying bottom profile, small viscosity and small amplitude of the disturbance is considered.
The results of the linear stability of the equation and the original shallow water equations
are compared. A linear stability of the shallow water equations is done using numerical
techniques. We try to construct the neutral stability curves in the Froude number and
amplitude of bottom topography plane for various values of the other parameters and the
effect of each of these parameters is studied. The results given by the linear analysis of the
long wave equation are compared with the numerical analysis of the full equations and good
agreement is obtained.

4 Case ζ 6= 0: Numerical study

Although it is easiest to study the roll wave instability on flat sloping bottom, in real
world, the bottom is hardly flat. Rivers, gorges, flumes all have a slightly sloping bottom
superposed with a profile that varies on all length scales, from ripples to dunes and anti-
dunes. In efforts to analyse such systems it is essential to first study how the flow is modified
due to these bottom profiles. Intuitively, if the bottom is a periodic superposition over a flat
incline, the solution is also expected to be periodic with the bottom. However, this periodic
flow can become unstable in some cases and the solution may evolve into a different kind
of flow.

We start with a numerical linear stability analysis of this system in which our aim will
be to find the stability boundary of the system. It is known from the flat incline case
that the flow becomes unstable for Froude number exceeding 2. For small perturbations
of the bottom from being a flat incline, this condition will be slightly modified. However
the case of superposition of a finite amplitude bottom profile on the incline still remains to
be studied. Section 4.1 does this. After identifying the unstable region in the parameter
space, in section 4.5, we do a numerical time integration of the shallow water equations to
see where the system evolves to in case of an instability. Then we present the derivation
and the comparison with linear theory of the long wave equation in section 5. Finally, we
close with a discussion and conclusions in 6.

4.1 Linear stability

We attempt to do a linear stability analysis in the case with periodically superposed bottom
topography. The basic stages in this analysis are:

• Solve for the basic state. This is done by assuming that the basic state is also periodic
with the same period as the bottom topography. Thus we can use a truncated Fourier
series to approximate the steady state solution.

• Performing a linear stability analysis of this system about the basic state so found,
we try to evaluate the growth rates and the corresponding disturbances.
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4.1.1 Basic state

The basic state u and h satisfies the equations (assuming u > 0)

F 2uux + hx + ζx = 1 − u2

h
+ ν

(uxh)x

h
, (35)

uh = 1, (36)

from which h can be eliminated to give
(

F 2u − 1

u2

)

ux + ζx + u3 − 1 = νu

(

ux

u

)

x

. (37)

We use the following form of bottom topography.

ζ(x) = a cos kbx, (38)

where kb is the wavenumber of the bottom topography and expand the basic state as

u =
N

∑

j=−N+1

ũke
ιkbjx. (39)

We can easily solve for ũk substituting Eqn. 39 in Eqn. 37 using Newton’s iterations.

4.1.2 Perturbation analysis

Let us represent the perturbations by u′eσt and h′eσt. The perturbed equation now becomes

(

uu′
)

x
+ F−2

(

h′

x + 2u2u′ − u4h′ − ν

h

(

uxh′ + hu′

x

)

x
+

νh

h
2

(

hux

)

x

)

= −σu′, (40)

(

uh′ + hu′
)

x
= −σh′. (41)

Representing the perturbed variables in a truncated Fourier series with a block wave num-
ber K

u′ =
N

∑

j=−N+1

uje
ιjkbx+ιKx, (42)

h′ =

N
∑

j=−N+1

hje
ιjkbx+ιKx, (43)

and converting the operators to Fourier space as well, we get an algebraic eigenvalue equation
for σ. The real part of σ gives the growth rate and the system is unstable if it is positive.
We have the following parameters in our problem:

1. Froude number (F ),

2. Wave number of bottom topography (kb),

3. Amplitude of bottom topography (a),

4. Block wave number (K) and

5. Viscosity (ν).
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4.2 Effect of block wave number (K)

The block wave number is just a means of analysing the wavenumbers which are not integer
multiples of wave number of topography. We only need to consider

−kb

2
< K ≤ kb

2
(44)

Values of K outside this range do not give any additional information. It is seen that the
case for K = 0 always gives an eigenvector with a zero growth rate. The spectrum of this
eigenvector has a peak at k = 0. The existence of this eigenvector reflects invariance in the
system with respect to some parameter. In this case, the invariance is that of the flow rate.
The dependence is shown in Fig. 8 for a stable case and 9 for an unstable case. Both the
figures are for near critical cases and small bottom profile, though the qualitative behaviour
is similar for far from critical cases and O(1) bottom topography as well.

4.3 Effect of wave number of bottom topography

Fig. 3 shows the effect of the wave number of bottom topography on the neutral curve in the
F -a plane. It is seen that the system becomes unstable for F < 2 because of the presence
of the bottom topography. Also, the case with kb = 10 becomes unstable for F much less
than 2 for relatively large amplitudes. In general, the case with large kb has a more severe
effect on destabilizing the system.

4.4 Effect of viscosity

The neutral curve for different viscosities is plotted in Fig. 4. It can be seen that the
effect of viscosity on the stability for small amplitudes of the bottom topography is not
monotonous. The system is most unstable for a finite value of the viscosity. For large
amplitudes, however, the system is always more unstable for smaller values of viscosity. It
can also be seen that for certain relatively larger amplitudes of the bottom topography,
there is a window in the Froude numbers much before F = 2 where the system is unstable.
The range of amplitudes for which this happens grows as the viscosity is decreased.

4.5 Integration in time of the governing equations

A RK4 time integration scheme is used to integrate Eqns. 10 and 11 in time on a domain of
unit length and with a bottom topography of the form given by Eqn. 38. Periodic conditions
were imposed on the boundaries and the initial conditions used were of the form

u(x, t = 0) = 1 + A1 sin(2πx) + B1 sin(2πkbx) (45)

h(x, t = 0) = 1 + A2 sin(2πx) + B2 sin(2πkbx) (46)
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Figure 5: Bifurcation diagram for the case a=0.27, kb = 10, ν = 0.005

where A1, A2, B1 and B2 are appropropriately chosen numbers. A long wave norm was
defined as follows:

uj
avg =

∫
2π(j+1)

kb

2πj

kb

u(x)dx j = 0, 1, 2, . . . , N − 1 (47)

uavg =
1

N

N−1
∑

j=0

uj
avg (48)

||u||Longwave =

[

1

N

N−1
∑

m=0

(um
avg − uavg)

]1/2

(49)

Fig. 5 shows the saturated long wave norm for the case a = 0.27, kb = 10 as a function of
the Froude number. A window of Froude numbers much less than 2 can be clearly seen to
have a non-zero saturated amplitude. The value of ν is 0.005.

5 Long Wave Analysis

The case of O(1) bottom topography varying on a O(1) length scale renders itself difficult
to analysis. The case of a small but fast varying bottom topography will be considered. i.e.
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ζ is a function of kbx only. Assuming

kb � 1 (50)

ν =
ν1

kb
(51)

τ =
t

kb
(52)

η = kbx (53)

ζ =
ζ1

kb
= a1 cos(η) (54)

(55)

and expanding the variables as

F = F0 +
F1

kb
+ . . . (56)

u = 1 +
u0(η) + U0(x, t, τ)

kb
+

u1(η) + U1(x, t, τ)

k2

b

+ . . . (57)

h = 1 +
h0(η) + H0(x, t, τ)

kb
+

h1(η) + H1(x, t, τ)

k2

b

+ . . . (58)
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we get to various orders (ε = 1/kb)

O(ε) : F 2

0 u0η + h0η + ζ1η = νu0ηη (59)

u0η + h0η = 0 (60)

(61)

which gives

u0 = R0 cos(η + φ0) (62)

h0 = −R0 cos(η + φ0). (63)

where

R0 =

(

a2
1

(F 2
0
− 1)2 + ν2

1

)1/2

(64)

φ0 = tan−1

(

ν1

F 2
0
− 1

)

(65)

O(ε2) : F 2

0 u1η + h1η − ν1u1ηη = −
[

F 2

0 (U0t + U0x) + H0x + 2U0 − H0

]

+
F 2

0
R2

0

2
sin(2η + 2φ0) + F 2

0 R0U0 sin(η + φ0)

+ 2F0F1R0 sin(η + φ0) − ν1R
2

0 sin2(η + φ0) (66)

u1η + h1η = − [H0t + H0x + U0x]

−[R2

0 sin(2η + 2φ0) + (U0 − H0)R0 sin(η + φ0)] (67)
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Taking the average of these equations:

F 2

0 (U0t + U0x) + H0x + 2U0 − H0 = −ν1R
2
0

2
(68)

H0t + H0x + U0x = 0 (69)

This gives the neutral stability condition

F0 = 2 (70)

H0(ξ) = 2U0(ξ) +
ν1R

2
0

2
(71)

where ξ is the coordinate moving with the wave given by

ξ = x − 3

2
t (72)

Here we have ignored the slower wave as it decays on a time scale of O(t/ε). For the periodic
variation, the solution can be expressed as

u1 = A1 cos(η + φ11) + A2 cos(2η + θ11) (73)

h1 = B1 cos(η + φ12) + B2 cos(2η + θ12) (74)

where A1, A2, B1 and B2 need not be evaluated for further progress. Going one more order
higher

O(ε3): F 2

0 u2η + h2η − ν1u2ηη = −4 [u1t + U0τ + U0ξ + (u0u1 + U0u1)η + U0U0ξ + u0U0ξ]

−4F1

[

−1

2
U0ξ + u1η + (u0 + U0)u0x

]

− H1ξ − 2(u1 + U1) + h1 + H1

−(u0 + U0 − h0 − H0)
2 + ν1 [−(h0 + H0)(u1 + U1)ηη − (h0 + H0)h0ηu0η + U0ξξ]

+ν1 [H0ξu0η + (h0u1η + h1u0η)x + h0ηU0ξ] (75)

and: H0τ + H1t + u2η + h2η + U1x + H1x + (U0H0)ξ

+(u0h1 + U0h1 + u0H1 + h0u1 + H0u1 + h0U1)η = 0 (76)

We are only interested in the average of this equation over η which after simplification is

4U1t + 4U1x + H1x + 2U1 − H1 = − 4(U0τ + U0U0ξ) + 2F1U0ξ − (U0 +
ν1R

2
0

2
)2

− ν1

2
R0A1 cos(θ11 + φ0) +

ν1

2
R2

0H0 + ν1U0ξξ (77)

and H1t + U1x + H1x = − [H0τ + (U0H0)ξ] (78)

U1 and H1 can be eliminated from these equations to give the evolution equation for U0 as

4U0τ + 6U0U0ξ − 8U0τξ = 6(U2

0 )ξξ + (ν1R
2

0 − 2F1)U0ξξ − ν1R
2

0U0ξ − ν1U0ξξξ (79)
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5.1 Case with flat bottom: ζ = 0

We put R0 = 0 to get the following equation for the evolution of roll waves.

4U0τ + 6U0U0ξ = 8U0τξ + 6(U2

0 )ξξ − 2F1U0ξξ − ν1U0ξξξ (80)

Doing a linear stability analysis of Eqn. 80, i.e. replacing the ∂τ → σ1 and ∂ξ → k gives for
the complex growth rate

σ1 =
2F1k

2 + ιν(k
3

4 − 8ιk
(81)

Re(σ1) =
F1k

2 − ν1k
4

2 + 8k2
(82)

Thus

Re(σ1) ∼
F1k

2

2
+

(

2F1 +
ν1

2

)

k4 + . . . for k � 1 (83)

which agrees with Eqn. 22. Similarly, for short waves, this expression reduces to

Re(σ1) ∼ −ν1k
2

8
for k � 1 (84)

which agrees with Kranenburg’s results (Eqn. 32).
For the inviscid case, the growth rate saturates to

limk→∞Re(σ1) =
F1

8
(85)

which agrees with the linear stability results of the shallow water equations. Fig. 6 shows the
linear stability growth rates for the four equations, viz. shallow water equations, long wave
equation, Kranenburg’s modified Burgers equation and Yu et. al’s GKS equation. From
these results, it is suggestive that the long wave equation is a more general form of the
modified Burger’s equation and the GKS equation. It has properties that agree extremely
well on short and long length scales. One can rescale

T = F1τ (86)

V =
U0

F1

(87)

to get a one parameter partial differential equation

4VT + 3(V 2)ξ = 8VTξ + 6(V 2)ξξ − 2Vξξ −
ν1

F1

Vξξξ (88)

5.2 Comparison with numerical calculations

Fig. 7 compares the results of numerical solutions of the shallow water equations with the
long wave equations. The parameters are chosen to be very close to the instability and the
agreement with the shallow water equations is good. Fig. 8 and 9 show the comparison of
the real and imaginary part of the complex growth rate for two cases with a periodic bottom
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topography, one stable and other unstable. The agreement is close. For the imaginary part,
the leading order term obtained from the phase speed of the wave ( 3k

2
) has to be subtracted

from the numerically calculated results. This introduces some numerical round off error and
the effect is visible for the cases of small wave numbers. It is seen that the error decreases
as the allowable numerical tolerance is reduced.

6 Results and Conclusion

We studied the effect of bottom topography on the roll wave instability. It is seen that the
flow becomes unstable even for a Froude number less than 2. At small viscosities, there is
a range of amplitudes of bottom topography for which the periodic flow becomes unstable
for an interval of Froude numbers below 2. We tried to explain this phenomenon for small
amplitudes and derived a nonlinear evolution equation for near critical roll waves. The
results agree very well with the numerical calculations and the long wave discrepancy in
Kranenburg’s nonlinear equation is also resolved. The appropriate nonlinear equation for
the roll wave instability seems to be Eqn. 79.
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Figure 8: Complex growth rates obtained from numerical stability analysis and long wave
asymptotics. Case F =1.9, ν = 0.1, kb = 3, a = 0.05. Circles denote numerical calculations
and the solid line represents long wave theory.
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The Black Hole of Water Vapor and the Asymmetries in the

Tropical Circulation

Takamitsu Ito
∗

1 Introduction

The water vapor (hereafter, WV) satellite images comes from the long wave channel of
wavelength 5.7–7.1 [µm]. Images of the earth at these wavelengths do not show any surface
features of the earth, since the radiation emitted by the earth’s surface at that wave length
is entirely absorbed by low-level atmospheric WV. The features that these images reveal
are related to planetary scale and synoptic scale variations of WV in the middle and upper
troposphere.

Figure 1 is an upper tropospheric WV image taken during the northern hemisphere sum-
mer (obtained from http://kauai.nrlmry.navy.mil/sat-bin/global.cgi). Intertropical Conver-
gence Zone (ITCZ) is rich in moisture and is located at approximately 8 degrees latitude.
Outside of the narrow band of ITCZ, the air is relatively dry, especially in the winter hemi-
sphere. In Figure 1, there is a region of very low humidity in the tropical Eastern Pacific.
It is the “Black Hole” of water vapor in the south of the equator about the same latitude
as ITCZ.

Observational studies [Picon and Desbios [7]; Schmez et al. [9]] have shown the sta-
tistical correlation between the divergence of the large scale circulation and the satellite
WV observations. In subsidence conditions, the upper troposphere become dry and the
5.7–7.1 [µm] radiation received by the satellite comes primarily from the relatively warm
mid-troposphere. When the large-scale vertical motion is upward, the upper troposphere
could become nearly saturated, and the 5.7–7.1 [µm] radiation comes from the relatively
cold upper troposphere. In this way the “equivalent blackbody temperature” of the 5.7–7.1
[µm] radiation is a proxy for the vertical motion field. Since the vertical motion field is not
directly measurable by any meteorological instrument, WV images can be an useful tool to
diagnose the vertical velocity.

The size and the location of the Black Hole is not homogeneous in time and space. The
extent and the intensity of the dry region is much greater in the winter hemisphere. The
Black Hole tends to appear in the winter hemisphere of approximately the same latitude
as the location of the deep convection in ITCZ. These features appears and disappears on
the time scale of a few days to a few weeks. Figure 1 is the WV image over the Eastern
Pacific from GOES-10. The Black Hole is formed over the Tropical Pacific in the late July,

∗with Edwin P. Gerber and Wayne H. Schubert
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Figure 1 : The satellite image of upper
tropospheric water vapor over the Eastern
Pacific ocean in the late July 2001. The three
images are taken by GOES-10 geostation-
ary satellite, and the data is processed by
Naval Research Laboratory and downloaded
from (http://kauai.nrlmry.navy.mil/sat-

bin/global.cgi.)a

aNaval Research Laboratory, Marine Meteorology

Division, 7 Grace Hopper Ave., Monterey CA 93943
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2001. What controls the spatial structure and intensity of the Black Hole ? Could we use
a simple theory to explain these phenomena ?

This study is an attempt to understand the mechanisms which determines the structure
of the Black Hole in the tropical atmosphere. We are particularly interested in the asym-
metric structure of the vertical velocity field, assuming that the vertical velocity mainly
determines the upper tropospheric WV in tropics. We use the linear shallow water equa-
tion on the equatorial β−plane as a conceptual tool to elucidate the dynamics which give
rise to the Black Holes of upper tropospheric WV. We describe the asymmetries in the
Hadley circulation and the Walker circulation. Then, we apply the linear theory with some-
what realistic heating and dissipation rates to the tropical circulation forced by ITCZ-type
heating.

2 Method

2.1 The Linearized Equatorial β-Plane

Eigenvalue problem of the equatorial β-plane is first formulated and solved by Matsuno [5].
Heat-induced, frictionally controlled tropical circulation is studied by Gill [4] and others.
Similar problem is solved by Dias et al [1] in the framework of stratified linear equatorial
β-plane.

In this study, we use the equatorial β-plane, linear shallow water model similar to the
model of Gill [4] as a conceptual tool to understand the governing dynamics. We calculate
steady state solutions for the linear primitive equations forced by localized convection and
dissipated by linear friction and radiative cooling.

The shallow water system can be considered as the representation of a vertical normal-
mode in the stratified primitive equation [Fulton [2]]. For simplicity, we assume that the
convective heating projects onto the first baroclinic mode only. Furthermore, we linearize
the governing equation around the resting basic state. The model is now a single set of
linear shallow water equations on the equatorial β-plane.

∂u

∂t
− βyv + g

∂h

∂x
= −εuu (1)

∂v

∂t
+ βyu + g

∂h

∂y
= −εvv (2)

∂h

∂t
+ h̄

(

∂u

∂x
+

∂v

∂y

)

= −εhh − S, (3)

where u and v are velocity components in the x- and y-directions, respectively, h is
the deviation of the fluid depth from the constant mean depth h̄. Considering the vertical
transform [Fulton [2]], the mean depth is given as the equivalent depth for the first baroclinic
mode which is 570[m]. βy is the Coriolis parameter, εu is the constant for Rayleigh friction,
and εh is the coefficient for Newtonian cooling. We parameterize the deep convection as a
mass sink, S(x, y, t).

Before solving (1)–(3) it is convenient to put the problem in nondimensional form. We

define c = (gh̄)
1

2 as the constant gravity wave speed based on the mean depth h̄. As
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a horizontal length scale, let us choose the equatorial deformation radius, L = (c/β)
1

2 .
Similarly, a unit of time is determined as the time it takes for surface gravity wave to
travel a unit of deformation radius, T = (βc)−

1

2 . Data from the ITCZ in the Pacific
(over the Marshall Islands) and in the Atlantic suggest that, for the first baroclinic mode,
c ≈ 7.5 × 101 m/s and h̄ ≈ 5.7 × 102 m, so that L ≈ 1.8 × 103km and T ≈ 0.28 day [2]. We
choose h̄ as the unit of depth, so that (1)–(3) reduce to the nondimensional form

∂u

∂t
− yv +

∂h

∂x
= −εuu (4)

∂v

∂t
+ yu +

∂h

∂y
= −εvv (5)

∂h

∂t
+

∂u

∂x
+

∂v

∂y
= −εhh − S (6)

where all the independent variables x, y, t, all the dependent variables u, v, h, the
parameter ε and the function S(x, y, t) are now nondimensional. In the simple case where
εu = εh = ε, the system (4)–(6) can also be written in the more compact form

∂w

∂t
+ Lw = −εw − S, (7)

where

w(x, y, t) =





u(x, y, t)
v(x, y, t)
h(x, y, t)



 , S(x, y, t) =





0
0

S(x, y, t)



 , L =





0 −y ∂/∂x
y 0 ∂/∂y

∂/∂x ∂/∂y 0



 . (8)

2.2 Normal Mode Transformation

We solve the model equation (7) using the method of normal mode decomposition. We
transform the model in spectral space in x. Defining ŵ(k, y, t) as the Fourier Transform of
w(x, y, t), we can write the Fourier transform pair as

ŵ(k, y, t) =
1√
2π

∞
∫

−∞

w(x, y, t)e−ikx dx (9)

w(x, y, t) =
1√
2π

∞
∫

−∞

ŵ(k, y, t)eikx dk (10)

We define the linear operator L̂ identical to L but with ∂
∂x replaced by ik.

L̂ =





0 −y ik
y 0 d/dy
ik d/dy 0



 . (11)

We also define the inner product,
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(f ,g) =

∞
∫

−∞

(f1g
∗

1 + f2g
∗

2 + f3g
∗

3)dy, (12)

given

f =





f1

f2

f3



 , g =





g1

g2

g3



 , (13)

where we use the ∗ symbol to denote the complex conjugate.
The adjoint of L̂ with respect to the inner product (12) is an operator L̂† which satisfies

(L̂f ,g) = (f , L̂†
g) (14)

for all f(y) and g(y) satisfying the boundary conditions. Dias et al. [1] shows that the
operator L̂ is skew-Hermitian (i.e., L̂† = −L̂) so that (14) becomes

(L̂f ,g) = −(f , L̂g). (15)

The eigenvalues of L̂ are purely imaginary, and the eigenfunction form an orthogonal
set. Let us define the eigenvalue iω and the eigenfunction K. They satisfies following
relationship.

L̂K̂ = iωK̂, (16)

The solutions to (16) are discussed in detail by Matsuno [5]. We summarize the relevant
results here.

Equation (16) has bounded solutions, as y → ±∞, only if ω2 − k2 − k/ω is an odd
integer. It results in the cubic dispersion relationship.

ω2 − k2 − k

ω
= 2n + 1 (17)

with n = 0, 1, 2, . . . for ω has three roots for given k and n. We denote the solutions
of this cubic equation by ωn,r(k) to indicate which of the three roots of the frequency
equation we are discussing. The subscript r (r = 0, 1, 2) is related to Rossby modes (r = 0),
Westward-propagating Inertial Gravity modes (r = 1), and Eastward-propagating Inertial
Gravity modes (r = 2). Let Kn,r denote the eigenfunction corresponding to rth root of (17)
given n.

K(k, y) =





U(k, y)
V(k, y)
H(k, y)



 (18)

= An,re
−

1

2
y2





−1

2
(ωn,r + k)Hn+1(y) − n(ωn,r − k)Hn−1(y)

i(ω2
n,r − k2)Hn(y)

−1

2
(ωn,r + k)Hn+1(y) + n(ωn,r − k)Hn−1(y)



 (19)
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where

An,r = π−
1

4 {2nn![(n + 1)(ωn,r + k)2 + n(ωn,r − k)2 + (ω2

n,r − k2)2]}− 1

2 (20)

is a normalization constant which assures that

(Kn,r,Kn,r) = 1 (21)

The Hermite polynomials Hn(y) are given by H0(y) = 1, H1(y) = 2y, H2(y) = 4y2 − 2,
H3(y) = 8y3 − 12y, · · · , with recurrence relation Hn+1(y) = 2yHn(y) − 2nHn−1(y).

Special care must be taken when n = 0, in which case the dispersion relation factors
to (ω0,r + k)(ω2

0,r − kω0,r − 1) = 0. The root ω0,r = −k must be discarded because the
corresponding eigenfunction cannot be determined. Thus, for n = 0, only the two roots of
ω2

0,r − kω0,r − 1 = 0 are allowed.
In addition, we obtain Kelvin mode by setting v̂ = 0. The eigenvalue for Kelvin mode is

ω−1 = ±k. The subscript −1 is chosen because the dispersion relation ω = k is a solution
of ω2 − k2 − k/ω = 2n + 1 when n = −1. The eigenfunction is

K−1 = A−1e
−

1

2
y2





1
0
1



 , (22)

with corresponding eigenvalue ω−1 = k.
Since K̂n,r is orthogonal and complete, and we can introduce the meridional transform

pair using the normal modes.

ŵn,r(k, t) = (ŵ(k, y, t),Kn,r(k, y)) (23)

ŵ(k, y, t) =

2
∑

r=0

∞
∑

n

ŵn,r(k, t)Kn,r(k, y) (24)

We may now use our eigenfunction to decompose the time dependent problem into
normal modes.

Taking the inner product of the Fourier transform of (7) with Kn,r(k, y), we obtain

(

∂ŵ(k, y, t)

∂t
,Kn,r(k, y)

)

+
(

L̂ŵ(k, y, t),Kn,r(k, y)
)

=

−ε (ŵ(k, y, t),Kn,r(k, y)) −
(

Ŝ(k, y, t),Kn,r(k, y)
)

dŵn,r(k, t)

dt
+ (ε + iωn,r)ŵn,r(k, t) = −Ŝn,r(k, t)

Equation (25) is the transformation to spectral space of the original system (7) and has
steady solution

ŵn,r(k, t) = − Ŝn,r(k)

ε + iωn,r
. (25)
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When this is inserted into (24), we obtain the steady solution in spectral space

ŵ(k, y, t) =
∑

n,r

ŵn,r(k)Kn,r(k, y) (26)

Taking the inverse Fourier transform of (26) and breaking back into component form,
we obtain our final physical space solution.

w(x, y, t) = (2π)−
1

2

∞
∫

−∞

ŵ(k, y, t)eikx dk (27)

The solution of our initial value problem consists of a superposition of normal modes.
The superposition involves all zonal wavenumbers (integral over k), all meridional normal
modes (sum over n and r). It should be noted that typical superpositions of many normal
modes result in spatial patterns which differ greatly from individual normal modes.

2.3 Forcing

The dynamical role of the deep convection, in general, can be described as a mass sink in
the lower atmosphere and as a source in the upper atmosphere. We parameterize the deep
convection (ITCZ) as a mass sink whose shape is gaussian in x and y, assuming that our
model represents the lower troposphere.

S(x, y) = Soe
−x2/a2

e−(y−y0)
2/b2 (28)

where y0 is the center of the Gaussian shaped mass sink, a is its e-folding width in x, and
b its e-folding width in y. The factor, So[m/s], is the maximum rate of the mass removal
and represents the intensity of the deep convection. Realistic measure of So[m/s] could be
obtained as the projection of the diabatic heating onto the first baroclinic mode.

The Fourier transform of this forcing is

Ŝ(k, y) = 2−
1

2 Soae−(y−y0)
2/b2e−

1

4
k2a2

(29)

Then, using (23), we obtain

Ŝn,r(k, t) =
(

Ŝ(k, y),Kn,r(k, y)
)

=

∞
∫

−∞

Ŝ(k, y, t)Hn,r(k, y)dy

= So

√
πabAn,r(2 + b2)−

1

2 e−
1

4
k2a2

e−y2

0
/(2+b2)·

{

−1

2
(ωn,r + k)

(

2 − b2

2 + b2

)
n+1

2

Hn+1

(

2y0

(4 − b4)
1

2

)

+ n(ωn,r − k)

(

2 − b2

2 + b2

)
n−1

2

Hn−1

(

2y0

(4 − b4)
1

2

)}

for 0 < b < 2
1

2 and n ≥ 0. For the Kelvin mode, Ŝ−1,2(k, t) can be written as

Ŝ−1,2(k, t) =
A−1,2

√

π(b2 + 2)
exp{−(

k2a2

4
+

y2
o

b2 + 2
)} (30)
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2.4 Dissipation

The time scales for the kinetic energy dissipation and the radiative cooling are different.
We expand the theory such that the dissipation rate can be different between u, v, and h.
The time dependent equation becomes

∂ŵ

∂t
+ L̂ŵ = −εu(I − F)ŵ − Ŝ (31)

where I is the identity matrix and

F ≡





0 0 0
0 0 0
0 0 1 − εh

εu



 (32)

We substitute ŵ with
∑

n′,r′ ŵn′,r′(k)Kn′,r′(k, y) and take the inner product with Kn,r(k, y).
We obtain

dŵn,r(k, t)

dt
+ (ε + iωn,r)ŵn,r(k, t) = −Ŝn,r(k, t) + εu

∑

n′,r′

ŵn′,r′
(

FKn′,r′ ,Kn,r

)

(33)

Applying the relationship (32),

dŵn,r(k, t)

dt
+ (ε + iωn,r)ŵn,r(k, t) =

−Ŝn,r(k, t) + (εu − εh)

∞
∫

−∞

∑

n′,r′

ŵn′,r′Hn′,r′H∗

n,r dy (34)

when (εu − εh) � 1, the steady state solution is to a good approximation

ŵn,r = ŵ(0)

n,r + ŵ(1)

n,r(εu − εh) + ŵ(2)

n,r(εu − εh)2 + . . . (35)

where

ŵ(0)

n,r = − Ŝn,r(k)

εu + iωn,r
(36)

ŵ(m+1)

n,r =
1

εu + iωn,r

∞
∫

−∞

∑

n′,r′

ŵ
(m)

n′,r′Hn′,r′H∗

n,r dy (37)

for m = 0, 1, 2, . . .. Thus, the normal modes are coupled in the time dependent equation
when the time scale for kinetic energy dissipation and radiative cooling are different. For
the special case, (εu = εh), it is identical to (25).
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3 Simple Cases

3.1 Steady Solution to an Idealized Forcing

Equation (26) shows that the model solution is expressed as the infinite sum of the normal
modes to represent the full solution. We turncate the solution at n = 200 including the first
200 normal modes for the Rossby, Kelvin, and inertial gravity modes. This introduces an
error in the final solution. The power spectrum of Ŝn,r suggests that including 200 normal
modes with reduce the error less than 0.01 %.

We first describe the steady state solution for u, v, h, and w to illustrate the response
to the forcing. As a simple representation of ITCZ, we use non-dimensional length scales
a = 1.5, b = 0.25, and yo = 0.7 which are equivalent of a = 2700[km], b = 450[km], and
yo = 1260[km]. For dissipation rates, we chose nondimensional parameter εu = 0.1 and
εh = 0.03 which are equivalent of εu = 0.36[day−1] and εh = 0.11[day−1]. So is taken to be
57[m · day−1] using the Marshall Island data [2].

Figure 2 shows the steady state solution for u, v, h, and w for this forcing. The
geopotential height perturbation has its minimum near the location of the deep convection
associated with the cycloninc circulation. The circulation tends to converge near the forcing,
and produces intensified upward motion on the order of 50[m/day]. Outside of the rising
region, we have a region of the mild sinking which has two peaks in the north-west of the
forcing and the directly south of the forcing. Spatial structure of the sinking motion can be
understood as the superposition of the responses from different normal modes.

3.2 Decomposition into Normal Modes

Since the full solution is the sum of all the normal modes, one can take a partial sum to
find contributions from individual mode. Throughout this study, the eigenfunctions of the
inviscid, free solution are used as the orthonormal basis for the normal mode transformation.
These basis are not the eigenfunction of the frictionally-controlled, heat-induced problem.
However, the decomposition of the full solution into the “inviscid modes” gives insights into
the spatial structure of the solution.

Figure 3 shows the decomposition of the sinking motion into four normal modes; Rossby
modes, westward-propagating inertial gravity modes, eastward-propagating inertial gravity
modes, and the Kelvin mode. The Rossby modes, the inertial gravity modes, and the Kelvin
mode have distinct spatial structure in the vertical motion.

In general, sinking motions associated with the Rossby modes are located at the west of
the forcing because Rossby waves propagates to the west. The response of the mixed mode
is responsible for the strong sinking motion asymmetric across the equator. The mixed
mode is excited when the forcing is asymmetric about the equator.

The sinking motion associated with the inertial gravity modes have two peaks; one to the
north, and another to the south of the forcing. The eastward-propagating inertial gravity
modes have stronger sinking motion to the south of the forcing. This strong sinking at the
south of the forcing is associated with the mixed mode.

The Kelvin mode is always symmetric about the equator and its sinking motion is always
located to the east of the forcing because the Kelvin waves propagates to the east.
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Figure 2: Steady state solution for u, v, h, and w. (a): The height perturbation and
the wind field. The contour interval is 1[m] for height. For the wind field, the reference
vector (1[m/s]) is drawn at the upper left corner of the domain. (b): Vertical motion. The
solid contour is sinking motion with the contour interval of 0.2[m/day]. The dash-dotted
lines are rising motion with the contour interval of 20[m/day]
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Figure 3: Decomposition of w into normal modes. The vertical motion, w, is
decomposed into normal modes of four categories. Solid line represents the contour of
the sinking motion, and the dash-dotted line represents the contour of the rising motion.
(a): Rossby modes (r = 0, n = 0, 1, 2, . . .), (b): Westward-propagating inertial gravity
modes (r = 1, n = 1, 2, . . .), (c): Eastward-propagating inertial gravity modes (r = 2, n =
0, 1, 2, . . .), (d): Kelvin mode (r = 2, n = −1). For the Rossby modes and the Kelvin mode,
contour interval for sinking motion is 0.4[m/day], and the contour interval for the rising
motion is 1 [m/day]. For the inertial gravity modes, contour interval for sinking motion is
1[m/day], and the contour interval for the rising motion is 10 [m/day].
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The maximum amplitude of the vertical motion of the inertial gravity modes is much
stronger and more localized than that of the Rossby modes and the Kelvin mode. Although
the Rossby modes and the Kelvin mode are less intense, they have much greater spatial
extent. When these four vertical motions are added together, it becomes identical to the
total solution shown in Figure 2.

The asymmetric structure of the sinking motion can be understood as following. The
east-west asymmetry of the vertical motion is greatly affected by the competition between
the Rossby modes and the Kelvin mode. This corresponds to what we call “the Walker Cir-
culation”. On the other hand, the north-south asymmetry of the vertical motion is related to
the inertial gravity modes. This corresponds to what we call “the Hadley Circulation”. To
illustrate these idea, we examine the zonally averaged circulation and meridionally averaged
circulation.

3.3 Hadley Circulation

Spatially averaged circulation can be s simple indicator for the asymmetric structure of
the vertical motion. Figure 4 is the zonally averaged stream function (a) and meridional
velocity in the lower troposphere (b). There is a rising motion at the location of the deep
convection. The winter branch of the Hadley circulation is much stronger than the summer
branch. The sinking motion is wide and intense in the winter hemisphere. This asymmetry
in the Hadley circulation can be explained in several ways.

First, Coriolis parameter (equivalent of the inertial stability in the equatorial β-plane)
is very small in the vicinity of the equator. The small Coriolis parameter suggests that the
deformation radius,

√

gh̄/f , is greater near the equator. Therefore, the spatial scale of the
circulation must be greater in the winter hemisphere.

Secondly, the zonally averaged velocities on the equator at steady state is given by

ux = 0 (38)

vx = − g

εv

∂h
x

∂y
(39)

It suggests no zonal flow nearby the equator. Since the convective forcing produces strong
meridional gradient of h

x
, the winter branch of the Hadley circulation is enhanced.

Finally, the zonally-averaged meridional velocity, vx, is decomposed into normal modes
in Figure 4 (b). There is no contribution from Kelvin mode since v = 0 always in Kelvin
mode. The spatial structure of vx is governed by inertial gravity modes. The contribution
from Rossby modes are dominated by the mixed Rossby-gravity mode. The eastward-
propagating inertial gravity modes has the strongest intensity in the winter hemisphere
because it has contribution from the mixed Rossby-gravity mode as well. The convective
forcing which is asymmetric about the equator excites the mixed Rossby-gravity mode and it
produces large fraction of the cross-equatorial transport in the zonally averaged circulation.

The north-south asymmetry of the vertical motion is associated with the mixed Rossby-
gravity mode, and it has intensified sinking in the winter hemisphere. This is consistent
with the satellite image in Figure 1.
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Figure 4: Hadley Circulation (a) The meridional stream function. (b) The zonally
averaged meridional velocity in the lower layer. The zonal average is first calculated using
spectral method. The vertical structure is assumed to be the first baroclinic mode.

308



−10 −5 0 5 10
0

0.5

1

1.5

2
(a)

X [ND]

Z
 [

N
D

]

−10 −5 0 5 10
−0.04

−0.03

−0.02

−0.01

0

0.01

0.02

0.03
(b)

X [ND]

U
Y

av
e [

m
/s

]

Rossby  
IG(West)
IG(East)
Kelvin  
Total   

Figure 5: Walker Circulation (a) Zonal stream function. (b) Meridionally averaged zonal
velocity in the lower layer. The vertical structure for the stream function is given by the
first baroclinic mode.
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3.4 Walker Circulation

Figure 5 is the meridionally averaged stream function (a) and zonal velocity in the lower
troposphere (b). It shows the east-west asymmetry of the Walker circulation. There is a
rising motion near the location of the deep convection. The eastern branch of the Walker
circulation is stronger than the western branch in this particular example. This asymmetry
in the Walker circulation can be explained as the competition between Kelvin mode and
Rossby modes.

Figure 5 (b) suggests that the eastern branch is dominated by the Kelvin mode and the
western branch is dominated by the Rossby modes. This result is robust with wide range of
parameters. It implies that the east-west asymmetry of the Walker circulation reflects the
relative intensity of the Rossby modes and the Kelvin mode and its dependence on model
parameters.

First, let us consider the Kelvin mode. The projection of the Gaussian-type heating onto
the Kelvin mode is shown in Equation (30). It suggests that the forcing has structure such
that the intensity of the Kelvin mode decays with yo. Physically, it means that the forcing
projects less onto the Kelvin mode when there is a greater distance between the center of
the forcing and the equator because the Kelvin mode is trapped nearby the equator. The
eastern branch of the Walker circulation weakens with increasing yo while a and b are fixed.

Secondly, let us consider the Rossby modes. The response of the Rossby modes to
varying yo is illustrated by considering the potential vorticity equation of the system. The
potential vorticity equation can be constructed from Equation (4), (5) and (6).

∂q

∂t
+ v = −εq + yS (40)

where q ≡ ∂v
∂x − ∂u

∂y − yh is the perturbation potential vorticity in the shallow water system.
This PV perturbation is mostly associated with the Rossby modes. It is remarkable that
the forcing term in the PV equation (40) is proportional to y. This is due to the increase in
the Coriolis term with y. Therefore, the Rossby modes intensifies with increasing yo. Here,
the sensitivity of the Rossby modes has opposite sign from that of the Kelvin mode.

Figure 6 shows the sensitivity of the stream functions to the center of the heating,
yo. Figure 6 (a) clearly shows that the eastern branch weakens and the western branch
intensifies as yo increases. The western branch becomes stronger than the eastern branch
when yo ∼ 1.1 or greater. Figure 6 (b) confirms the view that the winter hemisphere has
stronger sinking motion, and the north-south asymmetry grows with increasing yo.

4 Somewhat Realistic Solution

The satellite image (e.g. Figure 1) shows quite complicated WV distribution and the time
series of the satellite image suggests that it is quite variable. Here, we try to reproduce the
large-scale pattern of the dry region in the upper troposphere using the simple model we
derived and studied in the previous section. As a first attempt, we study the steady state
response of the shallow water system to the multiple convective region. Since the model is
linear, the circulation due to the multiple heating can be obtained as the superposition of
the circulations due to individual forcing.
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Figure 6: The sensitivity of the maximum mass transport to the location of

the forcing, yo. (a) The intensity of the Walker circulation and contributions from its
eastern branch and the western branch. (b) The intensity of the Hadley circulation and
contributions from its northern branch and the southern branch. The intensity is measured
as the maximum value of the stream function.
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Table 1: The size and the location of the deep convection In the case of the Eastern
Pacific in the late July, 2001.

Deep Convection Site Location (xo, yo) Size (a, b)

A : ITCZ (0, 0.7) (1.5, 0.25)
B : PNG (−5, 0) (0.5, 0.5)
C : SPCZ (−1,−1.5) (0.5, 0.5)
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Figure 7: Steady Solution for the sinking motion due to ITCZ over Eastern

Pacific

Considering the case in the Eastern Pacific in the late July in 2001, (shown in Figure
1), we seem to have two or three sites of convection and they are listed in the Table 4. (A):
ITCZ over tropical Pacific is the narrow band of the moist region in the satellite image.
This feature is tied to the warm SST over the ocean and often appears around 10N over
the Pacific ocean. (B): The deep convection over Papua New Guinea (PNG) is located in
the tropical Western Pacific. In the La Nina condition, there is a warm pool in the Western
Pacific, and the deep convection is tied to the warm SST. (C): The satellite image suggests
that the moist region in the South Pacific which is often called “South Pacific Convergence
Zone” (Hereafter, SPCZ). The WV image is more stable in time and space at the deep
convection site over Eastern Pacific ITCZ or over PNG. SPCZ is highly variable due to the
weather-type baroclinic waves.
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Figure 8: Steady Solution for the sinking motion due to the deep convection over

PNG

4.1 (A) ITCZ over Eastern Pacific

Figure 7 shows the distribution of the sinking motion at steady state induced by the deep
convection over the Eastern Pacific. The pattern suggests that there are two sinking motion
maximum. An intense sinking region is located in the southern hemisphere approximately
at the same latitude as the forcing (120◦W, 8◦S). This sinking motion is due to the inertial-
gravity modes and the mixed mode. Another intense sinking region is located in the sub-
tropical Eastern pacific around (145◦W, 18◦N). The spectral decomposition suggests that
this is caused by the Rossby mode. The intensity of the latter one is weaker.

4.2 (B) The deep convection over PNG

Figure 8 shows the distribution of the sinking motion at steady state induced by the deep
convection over PNG. The pattern suggests that there is a strong response to the east of
the convective forcing caused by the Kelvin mode. The sinking motion is symmetric about
the equator. There are secondary maximum directly north and south of the forcing induced
by the inertial-gravity modes.

4.3 (C) The SPCZ forcing

Figure 9 shows the distribution of the sinking motion at steady state induced by SPCZ.
The pattern suggests that there is almost no sinking motion to the east of the forcing. The
response of the Kelvin mode is very weak because the forcing is located at greater distance
from the equator. The response of the Rossby mode is very strong, creating an intense
sinking motion to the west of the forcing. There is an intense response in the mixed mode,
which causes the sinking motion in the northern hemisphere. The intensity of the sinking
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Figure 9: Steady Solution for the sinking motion due to SPCZ

motion is much stronger than (A) or (B) partly because of the magnitude of the forcing, S,
is prescribed at the same value as (A) and (B). In reality, the magnitude of the convective
forcing is much weaker in SPCZ than in ITCZ. Thus, we do not expect to observe this
strong sinking motion in the satellite image.

4.4 Response to the multiple heating region

Here, we show the steady state response to the multiple convective region in Figure 10.
Since the model is linear, the circulation due to the multiple heating can be obtained as
the superposition of the responses to the individual forcing. The intensity of the convective
forcing could be different between the forcing (A), (B), and (C). The resulting solution,
however, has a robust spatial structure which does not depend of the choice of the rela-
tive importance of individual forcing. In Figure 10, the relative intensity of the forcing is
prescribed to A:B:C=3:6:1.

The solution for the multiple convective region resembles the satellite image of the black
hole of WV remarkably well. The simple model reproduces the intense sinking motion
around (120◦W, 8◦S) which is a combination of the responses to the forcing (A) and (B).
This intense sinking motion could explain the formation of the black hole in the winter
hemisphere. SPCZ does not contribute to the sinking motion near the black hole.

The solution also agrees with the satellite observation that the relatively dry region in
the subtropical Eastern Pacific around (150◦W, 20◦N).

5 Discussion

Let us summarize the main results.
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Figure 10: Steady Solution for the multiple convective region

• (1) The spectral decomposition into “inviscid normal modes” suggests that the Hadley
circulation is mainly sustained by the inertial-gravity modes.

• (2) The asymmetry in the Walker circulation is driven by the competition between
the Kelvin mode and the Rossby modes.

• (3) The solutions to the simple, linear shallow water model agrees with the the spatial
structure of the upper tropospheric WV satellite images remarkably well.

• (4) The Black Hole of the WV in the tropical Pacific can be understood as the circu-
lation induced by the deep convection over the central Pacific and over Papua New
Guinea.

The result (3) and (4) are further tested against several variants of similar experiments with
different relative intensity of the convective forcing. Those experiments confirmed that the
spatial structure predicted by this simple model is a robust one. It is of interest to examine
the sinking motion over the Atlantic ocean and the Indian ocean, which can test the validity
of the simple linear theory.

This simple model seems to behave particularly well near the equator where the back-
ground flow is relatively weak. The linear assumption breaks down when there is a signifi-
cant background flow because the model is linearized around the state of rest, which is not
applicable in the middle latitudes. Near the location of the convective heating, the flow
velocity is also large which causes the linearity to break down.

It can be shown that, in some parameter regime, the potential velocity distribution
associated with the steady state solution is unstable to barotropic instability or baroclinic
instability [Gerber et al [3]]. The dynamical instabilities causes the formation of eddies and
the break up of ITCZ. This is also the limitation of the theory based upon the steady state.
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Despite the simplicity of the model, this study shows that the linear shallow water model
can be used as a conceptual tool for understanding and explaining the upper tropospheric
water vapor. It motivates the further investigation of the simple model with emergent
questions on the upper tropospheric water vapor. Rosendal [8] pointed out the statistical
relationship between black holes of water vapor appearing in the winter hemisphere and the
development of tropical cyclones in the summer hemisphere.
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