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Abstract
The cone snail is the only invertebrate system in which the vitamin K

dependent carboxylase (or γ-carboxylase) and its product γ-carboxyglutamic

acid (Gla)1 have been identified. It remains the sole source of structural
information of invertebrate γ-carboxylase subtrates. Four novel γ-

carboxyglutamic acid (Gla)1 containing peptides were purified from the

venom of Conus textile and characterized by biochemical methods and mass

spectrometry. The peptides Gla(1)-TxVI, Gla(2)-TxVI/A, Gla(2)-TxVI/B

and Gla(3)-TxVI each have 6 Cys residues and belong to the O-superfamily

of conotoxins. All four conopeptides contain 4-trans-hydroxyproline and the

unusual amino acid 6-L-bromotryptophan. Gla(2)-TxVI/A and Gla(2)-

TxVI/B are isoforms with an amidated C-terminus that differ at positions +1

and +13. Three isoforms of Gla(3)-TxVI were observed that differ at

position +7: Gla(3)-TxVI, Glu7-Gla(3)-TxVI and Asp7-Gla(3)-TxVI. The

cDNAs encoding the precursors of the four peptides were cloned. The

predicted signal sequences (amino acids –46 to –27) were nearly identical

and highly hydrophobic. The predicted propeptide region (–20 to –1) that
contains the γ-carboxylation recognition site (γ-CRS) is very similar in

Gla(2)-TxVI/A, Gla(2)-TxVI/B and Gla(3)-TxVI, but is more divergent for
Gla(1)-TxVI. Kinetic studies utilizing the Conus γ-carboxylase and synthetic

peptide substrates localized the γ-CRS of Gla(1)-TxVI to the region –14 to

–1 of the polypeptide precursor: the Km was reduced from 1.8 mM for Gla
(1)-TxVI lacking a propeptide to 24 µM when a 14-residue propeptide was

attached to the substrate. Similarly, addition of an 18-residue propeptide to

Gla(2)-TxVI/B reduced the Km 10-fold.
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Introduction
Venom from marine snails of the genus Conus contains a plethora of

highly potent neurotoxins, many of which block voltage-gated and ligand-

gated ion channels. The peptides are typically 12 to 30 amino acids in length

and contain disulfide bonds and a wide variety of posttranslationally

modified amino acids [1, 2]. Particularly abundant are 4-trans-
hydroxyproline (Hyp), L-6-bromotryptophan and γ-carboxyglutamic acid

(Gla) [3-6].
Gla is formed by γ-carboxylation of glutamyl residues, a reaction

mediated by a vitamin K-dependent γ-glutamyl carboxylase located in the

endoplasmic reticulum. The Conus carboxylase is a homologue of its

vertebrate counterpart and is predicted to be an integral membrane protein
with several transmembrane-spanning regions [7-10]. γ-Carboxylases from

several vertebrates and the invertebrate Conus textile have been expressed

and kinetically characterized [8, 11, 12].

The biosynthesis of Gla is a complex reaction that involves replacement
of a proton on the γ-carbon of a Glu residue with a CO2 molecule [13]. The

γ-glutamyl carboxylase is the sole enzyme known to use vitamin K as a

cofactor. Carboxylation of Glu in the nascent polypeptide chain requires the
presence of a γ-carboxylation recognition site (γ-CRS) that typically resides

within a 12- to 28-residue propeptide located immediately adjacent to the N-

terminal signal peptide [7, 14-17]. The propeptide mediates binding of the

substrate to the carboxylase and also activates the enzyme.
The discovery of γ-carboxylated conotoxins and, more recently, the

cloning and characterization of the γ-carboxylase from cone snails and

Drosophila melanogaster [14,19] has evoked fresh interest in the function of
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vitamin K and the vitamin K-dependent carboxylase [8, 9, 18, 19]. New

functions for the vitamin and Gla are anticipated; functions that may be

phylogenetically older than blood coagulation and bone formation [19]. This

has stimulated research aimed at identifying novel Gla-containing proteins

and peptides from non-vertebrate sources. The only invertebrate peptides in

which Gla has been identified to date and thus the only source of structural

information of non-vertebrate carboxylase substrates are the conotoxins [6,

7, 16, 17, 19-24]. Comparison of the structure of vertebrate and invertebrate
γ-carboxylase substrates provides information about possible alternate

functions for this unique enzyme and the mechanistic properties of an

ancestral carboxylation system.

In this paper we describe the purification and characterization of four

novel Gla-containing conotoxins from C. textile. All of the peptides have six

Cys residues, belong to the O-superfamiliy of conotoxins and have uniquely

spaced Glu residues in the mature peptide. The cDNAs encoding the

predicted prepropeptide precursors were cloned and synthetic peptide

substrates based on the precursor sequences were used as substrates in
kinetic experiments that localize the γ-CRS in the propeptides.



6

Results
Sequence analysis and posttranslational modifications of Gla(2)-TxVI/A
Gla(2)-TxVI/B and Gla(3)-TxVI. Peptides were purified by gel filtration

and HPLC chromatography as described in Material and Methods.

Edman degradation identified Gla at position 10 and hydroxyproline at

position 12 in Gla(2)-TxVI/A and Gla(2)-TxVI/B 12 and showed that these

peptides are isoforms that differ at positions 1 and 13 (Table S1). Amino

acid sequence analysis of Gla(3)-TxVI yielded 26 residues and showed a

microheterogeneity (Gla/Glu/Asp) at position 7 (Table S1). The UV

spectrum of all peptides suggested the presence of a tryptophan residue but

this residue was not identified during sequence analysis. The full sequence

including posttranslational modifications of the peptides was obtained by

additional mass spectrometry analysis (Table 1).

Positive ion linear mode MALDI mass spectra of native Gla(2)-

TxVI/A and Gla(2)-TxVI/B showed main ion signals at m/z 2966.75 and

2979.70, respectively (Fig. S2). The discrepancy between the theoretical

molecular masses (2836.81 for Gla(2)TxVI/A and 2849.81 Da for Gla(2)-

TxVI/B) and the observed molecular masses can be explained by the

presence of a bromotryptophan residue and an amidated C-terminus. These

posttranslational modifications were confirmed by analysis of the respective

fingerprints after enzymatic digestion. The isotopic distribution of the peak

at m/z 901.18 indicates a bromine-containing peptide (Fig. 1A and B, inset).

The peak at m/z 626.29 is consistent with amidation of the C-terminal

fragment (DVVCS), as is the observed 14-Da mass increase (to m/z 640.31)

following methyl-esterification of the fragment (Fig. S3). The presence of

six cysteinyl residues was confirmed by observation of an average mass
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increment of ~640.5 Da after pyridylethylation of the reduced peptides (Data

not shown).

The MALDI mass spectrum of native Gla(3)-TxVI produced three

main ion signals consistent with the presence of Gla, Glu and Asp at position

+7 (Fig. 2A). The isotope distribution of the most intense peak obtained after

enzymatic digestion and analysis by nano-ESI/MS corresponds to a

bromine-containing peptide (Fig. 2B). In addition, the mass of this peptide is

in agreement with the presence of 6-L-bromotryptophan in the C-terminal

fragment (residues 17–27)(Fig. S4). MS as well as MS/MS of the C-terminal

peptide showed that all three Gla(3)-TxVI isoforms have a free carboxyl

group at the C-terminus.

Cloning of cDNAs encoding the Gla(1)-TxVI, Gla(2)-TxVI/B and
Gla(3)-TxVI precursors. The isolated 580-bp cDNA encoding the Gla(1)-

TxVI precursor includes the 5’ and 3’ untranslated regions and contains an

open-reading-frame (ORF) of 228 bp. The ORF encodes the 30-residue

mature peptide, which is preceded by a 46-amino acid prepropeptide that is

absent in the secreted conotoxin (Fig. 3A). The cloned cDNA, though

considerably longer, exactly matches a 342-bp conotoxin sequence deposited

in GenBank (accession number AF215016.1).

We cloned cDNAs encoding the precursors to Gla(2)-TxVI/B and

Gla-(3)-TxVI using 5’RACE- and 3’RACE-PCR with primers based on the

5’ and 3’ untranslated regions of Gla(1)-TxVI [25]. A 481-bp cDNA was

obtained for Gla(2)-TxVI/B (Fig. 3C). It includes an ORF of 216 bp

encoding a 72-residue precursor comprising the mature conotoxin and a 46-

amino acid N-terminal prepropeptide. The precursor contains a C-terminal

Gly residue, as would be expected for a peptide that undergoes
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posttranslational α-amidation. We were unable to obtain a clone for the

Gla(2)-TxVI/A isoform, but identified a 510-bp cDNA sequence in

GenBank (accession number AF215024.1) that contains the ORF encoding

prepro-Gla(2)-TxVI/A (Fig. 3B). Though we anticipated the possibility of

isolating two cDNAs encoding the Gla(3)-TxVI isoforms we were only able

to obtain a clone specifying Glu at position +7. The 520-bp cDNA contains

an ORF encoding a 73-residue precursor comprising the 27-residue mature

peptide and a 46-residue N- terminal prepropeptide (Fig. 3D). We also

identified cDNA sequences in GenBank which encode the precursors to

conotoxins that are nearly identical to the Glu7- and Asp7-containing

isoforms of Gla(3)-TxVI (accession numbers AF215021.1 and

AF215023.1). The amino acid sequences predicted from the cDNAs in

GenBank differ from our sequence only at position –15, where we find Leu

instead of Phe. This substitution probably would not lead to a major

perturbation of the overall structure or properties of the precursor. Our

results suggest that the mature conopeptides encoded by accession numbers
AAG60449.1 and AAG60451.1 would also be γ-carboxylated.

In all cases, the deduced precursor sequences have a conserved

hydrophobic N-terminal region that is predicted by the PSORTII algorithm

to serve as a signal sequence [26]. The predicted cleavage site is located

between residues 19 and 20 of the precursor forms. The remaining sequence

that is located between the signal peptide and the mature peptide contains a

region that bears a resemblance to the propeptide sequences of other Gla-

containing peptides (see below).
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The γ-carboxylation recognition site of Gla(1)-TxVI and Gla(2)-TxVI/B.

The predicted propeptide regions of the Gla(1)-TxVI, Gla(2)-TxVI/A,

Gla(2)-TxVI/B and Gla(3)-TxVI precursors have features resembling

propeptides from other conotoxins, which suggested they would positively

modulate carboxylation of the mature peptide. We tested this hypothesis by
performing γ-carboxylation experiments with peptide substrates that either

lacked a propeptide or that contained at least part of the predicted propeptide

(Table 2). A peptide comprising amino acids +1 to +18 of mature Gla(1)-

TxVI (lacking any potential propeptide) was a poor substrate for the Conus

γ-carboxylase, exhibiting a Km of around 1.8 mM. Addition of amino acids

–8 to –1 (a strongly charged part of the precursor) decreased the Km about 3-

fold, whereas addition of amino acids –14 to –1, which also included the

mostly hydrophobic amino acids located between positions –14 and –8,
decreased the Km 75-fold (to 24 µM). These results are similar to those

obtained in our previous study with conotoxin ε-TxIX, where we found that

the hydrophobic amino acids located in the propeptide region form an
important structural element of the γ-carboxylation recognition site [16].

Similarly, a synthetic substrate based on amino acids +1 to +11 of mature
Gla(2)-TxVI/B exhibited a Km of ~540 µM, whereas the Km was reduced

~10-fold by including amino acids –18 to –1 of the prepropeptide region

(Table 3). Though in this case the decrease in Km was not as marked as that

observed with the Gla(1)-TxVI substrates, it nevertheless clearly showed
that the presence of a propeptide substantially enhances γ-carboxylation of

the Gla(2)-TxVI/B substrate.
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 Discussion

The marine cone snail remains the sole invertebrate in which the

vitamin K-dependent amino acid Gla has been identified. Although a

homologue of the vitamin K-dependent carboxylase gene has been identified

in another invertebrate and recently in a bacteria, no Gla-containing

polypeptides have been isolated from these organisms [18, 27]. Thus, the

Gla-containing conopeptides remain the only source of structural
information for invertebrate γ-carboxylase substrates. Isolation of novel Gla-

containing peptides and determination of the predicted precursor forms

continues to provide information about structural features important for the
γ-carboxylation system. The mechanistic properties of the invertebrate and

vertebrate carboxylases are similar and the vertebrate and invertebrate

carboxylase enzymes are able to carboxylate their respective substrates.

However, while the bovine carboxylase does not efficiently carboxylate

cone snail substrates, certain bovine substrates are carboxylated as

efficiently by the cone snail enzyme as by the bovine enzyme [8, 16]

Our recent studies indicate that the cone snail enzyme may tolerate a

greater degree of structural variability in its substrates than the bovine
enzyme. Indeed, while the γ-carboxylation recognition site (γ-CRS) is

located within an N-terminal propeptide in virtually all known substrates of
the vertebrate γ-carboxylase, in cone snail substrates this recognition site can

also be located in a C-terminal ‘postpeptide’ in the precursor [20].

Moreover, a rigorous consensus sequence for the cone snail γ-CRS has not

yet been identified also suggesting less stringent amino acid sequence

requirements for recognition by the cone snail carboxylase. In an effort to

obtain more information on the structure of invertebrate carboxylase
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substrates we purified four γ-carboxylated peptides from Conus textile, a

species whose venom is particularly rich in Gla-containing peptides.

All four isolated conopeptides have 6 Cys residues arranged in the

typical VI/VII scaffold and belong to the O-superfamily of conotoxins [28].
Gla(1)-TxVI and Gla(3)-TxVI contain a motif –γCCS– that is found in four

other Gla-containing peptides, TxVIIA from C. textile, γ-PnVIIA from C.

pennaceus, d7a from C. delessertii and as7a from C. austini [1, 21, 22, 29].

Conotoxins that contain this motif are grouped into a subfamily of the O-
superfamily, designated as the γ-conotoxins. TxVIIA, γ-PnVIIA are both

excitatory conotoxins that increase firing in mollusk neurons and it has been
suggested that the presence of the γCCS motif is involved in their biological

activity [1].

The predicted modular structure of the precursor forms of Gla(1)-TxVI,
Gla(2)-TxVI/A, Gla(2)-TxVI/B and Gla(3)-TxVI is consistent with other γ-

carboxylated conopeptides, where the mature peptide is preceded by a

prepropeptide containing a highly conserved signal sequence (–46 to –27)

and a more divergent propeptide (residues –20 to –1). The propeptide

regions of the conotoxins reported here share structural and physico-

chemical properties with the pro- and postpeptides of other Gla- containing

peptides from Conus spp. (Table 3). All four propeptides have a high

Lys/Arg content and are strongly basic, as is typical for pro- and

postpeptides of Gla-containing conotoxins [20]. In addition, the newly

identified propeptides contain a putative consensus sequence found in the

precursors of Gla-containing conotoxins but not in the precursors of non-

carboxylated conotoxins (Table 3). This sequence involves one hydrophobic

and two basic residues arranged in the motif Lys/Arg-X-X-J-X-X-X-X-
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Lys/Arg, where J is typically a hydrophobic amino acid and X is any amino

acid [20]. This consensus sequence is also found in the propeptide of the

mammalian vitamin K-dependent proteins prothrombin and Factor IX (Table

3). Coincidently, synthetic substrates based on the sequences of the

precursor forms of prothrombin (proPT28) and Factor IX (proFIX28) are

both low Km substrates for the cone snail carboxylase [8]. It is anticipated
that additional structural parameters such as the α-helicity of the propeptide

and the position of certain residues relative to the α-helix are likely to be

important to confer substrate efficiency. In this context it is noteworthy that
a charged amino acid is present close to the predicted α-helical domain in

several of the propeptides (Table 3). Unfortunetaly, lack of information on

the three-dimensional structure of propeptide containing conotoxins has
hampered identification of essential γ-carboxylase substrate features.

The presence of a vitamin K- dependent carboxylase and of γ-

carboxyglutamic acid in phyla as disparate as Chordata and Mollusca

suggests the existence of an ancestral carboxylation system with a purpose
predating blood coagulation and bone formation. Because γ-carboxylation

requires tight cellular control, carboxylase substrates must contain the

structural information necessary for subcellular localization, substrate

recognition and tight enzyme-substrate binding. The observation that cone

snail propeptides do not contain sufficient structural information to drive

efficient carboxylation by the mammalian system, yet certain mammalian

propeptides contain sufficient structural information to drive carboxylation

by the cone snail system suggests that the vitamin K dependent

carboxylation has evolved towards a more tightly controlled process.

Identification of overlapping structural elements between the vertebrate and
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invertebrate substrates could identify the minimum requirements for an

ancestral propeptide and this information could be used as a filter in the

quest to identify novel Gla-containing proteins.



14

Materials and Methods
Materials. Live specimens of C. textile were obtained from Suva (Fiji) and

frozen specimens of C. textile from Nha Trang (Vietnam). NaH[14C]O3 (55

mCi/mmol) was purchased from Amersham Life Sciences (Arlington

Heights, IL), Sephadex G-50 Superfine and Superose 12 resins from

Pharmacia (Piscataway, NJ), and Endoproteinase Asp-N and elastase from

Boehringer Mannheim Biochemicals GmbH (Mannheim, Germany). 2,5-

Dihydroxybenzoic acid was from Aldrich Chemical Company (Steinheim,

Germany) and ammonia solution (25%) from Merck (Darmstadt, Germany).

Ultra-pure Milli-Q water (Millipore, Bedford, MA, USA) was used in the

preparation of all solutions for mass spectrometry. A marathon cDNA

Amplification Kit, DNA polymerase, and PCR buffer were purchased from

Clontech (Palo Alto, CA) and AmpliTaq Gold polymerase and buffer from

Perkin Elmer (Branchburg, NJ). Primers were synthesized by Gibco BRL

Life Technologies (Gaithersburg, MD). Qiaquick Gel Extraction Kits were

obtained from Qiagen (Santa Clarita, CA) and a TA Cloning Kit and Micro

Fasttrack kit from Invitrogen (Carlsbad, CA). Atomlight scintillation fluid

was from Packard (Meriden, CT), vitamin K from Abbott Laboratories

(North Chicago, IL), and DL-Dithiothreitol (DTT), FLEEL, L-

phosphatidylcholine (type V-E) and CHAPS
1
 from Sigma (St. Louis, MO).

Spectra/Por dialysis tubing (6 Membrane MWCO 1000) was obtained from

Spectrum Laboratories Inc. (Rancho Dominguez, CA). All other chemicals

were of the highest grade commercially available.

Purification of Gla(1)-TxVI, Gla(2)-TxVIA, Gla(2)-TxVIB and Gla(3)-
TxVI. Venom was extruded from the venom duct, taken up in water and
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lyophilized. Lyophilized venom (200 mg from five snails) was extracted in

0.2 M ammonium acetate buffer, pH 7.5, and chromatographed on a

Sephadex G-50 Superfine column (2.5 x 92 cm) as described previously [30,

31]. The A280 and Gla content of column fractions were monitored (Fig.

S1A). Purification and characterization of the Gla-containing material in

peak 10 (i.e. Gla(1)-TxVI) was performed as described previously [32]. The

material in the Gla-containing peaks in pools 12 (Gla(2)-TxVI/A), 13

(Gla(2)-TxVI/B), and 14 (Gla(3)-TxVI) was further purified by reversed-

phase HPLC in 0.1% TFA on a HyChrom C18 column (Fig. S1B and C)(5
µm; 10 x 250 mm), elution being achieved with a linear gradient of

acetonitrile (0–80%) at a flow rate of 2 mL/min. Peptide Gla(3)-TxVI was

essentially homogenous after gel filtration and gave a single major peak

during reversed-phase HPLC (data not shown).

Amino acid analysis and sequencing. Amino acid compositions were

determined after acid hydrolysis, except for Gla, which was determined after

alkaline hydrolysis as described [23,24]. Peptide sequencing was performed

using a Perkin Elmer ABI Procise 494 sequencer  (Foster City, CA). Gla was

identified after methyl-esterification as described [33, 34].

Mass spectrometry. MALDI-TOF MS and Nano ESI-MS was

performed on the same instruments and in the same conditions as described

for Gla(1)-TxVI [32].

Cloning of Gla(1)-TxVI, Gla(2)-TxVIB and Gla(3)-TxVI. PCR was

performed using the degenerate oligonucleotides DGR1  (5’-

GGMATGTGGGGIGARTGYAAR-3’)2 based on amino acid residues 1–7
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of Gla (1)-TxVI, and DGR2 (5’-CCACATCGTRSAISWGCCYTCRSA-3’)

based on amino acid residues 23–31 of Gla (1)-TxVI. A C. textile Lambda

ZAP II library was used as the template [16]. Sequence information obtained

from the degenerate PCR experiment was used to design the gene-specific

primers GSP1 (5’-CTCTGAGGGCGCCAAACATGTCG-3’) and GSP2 (5’-

CGACATGTTTGGCGCCCTCAGAG-3’) in 5’RACE and 3’RACE PCR

reactions that employed a C. textile RACE library as the template.

Amplification parameters were as indicated by the manufacturer. The

cDNAs encoding Gla(2)-TxVI/B and Gla(3)-TxVI were obtained by RACE-

PCR using oligonucleotides complementary to the conserved 5’ untranslated

(5’UNT) (5’-CTCTTGAAGCCTCTGAAGAGGAGAGTGG-3’) and 3’

untranslated (3’UNT) (5’-CTCCCTGACAGCTGCCTTCAGTCGACC-3’)

regions of Gla(1)-TxVI

Enzyme assays. The amount of [14C]O2 incorporated into exogenous peptide
substrates was measured in reaction mixtures of 125 µL containing 222 µM

reduced vitamin K, 0.72 mM NaH[14C]O3 (5 mCi), 28 mM MOPS (pH 7.0),

500 mM NaCl, 0.16% (w/v) phosphatidylcholine, 0.16% (w/v) CHAPS, 0.8
M ammonium sulfate, 10 µL microsomal preparation and peptide substrate.

Microsomal preparations of Sf21 insect cells expressing the cone snail γ-

glutamyl carboxylase were prepared as described previously [8]. All of the

assay components except carboxylase were prepared as a master mixture.

The reaction was initiated by adding the enzyme to the assay mixtures. The

amount of [14C]O2 incorporated into the peptides over a period of 30 min

was assayed in a scintillation counter [35]. Peptides were synthesized using
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standard FMOC/NMP chemistry on an Applied Biosystems Model 430A

peptide synthesizer [36]
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Table 1: Amino acid sequences of conopeptides Gla(1)-TxVI, Gla(2)-

TxVI/A, Gla(2)-TxVI/B and Gla(3)-TxVI* obtained by combined

Edman degradation and mass spectrometry analysis.

Posttranslational modifications are highlighted in bold. W: 6-L-
Bromotryptophan, γ : γ-carboxyglutamic acid, O :  4-trans-

hydroxyproline, #: amidated C-terminus .

Name                   Sequence
1            10             20            30

Gla(1)-TxVI GMWGγCKDGLTTCLAOSγCCSγDCγGSCTMW
1            10             20

Gla(2)-TxVI/A SCSDDWQYCγSOTDCCSWDCDVVCS#

1            10             20

Gla(2)-TxVI/B NCSDDWQYCγSOSDCCSWDCDVVCS#

1            10             20

Gla(3)-TxVI* LCODYTγOCSHAHγCCSWNCYNGHCTG

Glu7/Gla(3)-TxVI* LCODYTEOCSHAHγCCSWNCYNGHCTG

Asp7/Gla(3)-TxVI* LCODYTDOCSHAHγCCSWNCYNGHCTG

*Position 7 in Gla(3)TxVI displays a microheterogeneity with Gla, Glu and

Asp occurring in a ratio of 1:1:2, respectively (see also Table S1)



Table 2: Kinetic parameters of synthetic substrates based upon the sequences of Gla(1)-TxVI and Gla(2)-TxVI/B

and their predicted precursors.

Name Sequencea Km (µM)b

Gla(1)-TxVI/18 GMWGECKDGLTTCLAPSE 1800 ± 300

pro-Gla(1)-TxVI/26 KRKRAADRGMWGECKDGLTTCLAPSE 550 ±  30

pro-Gla(1)-TxVI/32  NINFLLKRKRAADRGMWGECKDGLTTCLAPSE 24 ± 2

Gla(2)-TxVI/B/11 NCSDDWQYCES 540 ± 20

pro-Gla(2)-TxVI/B/29 KIDFLSKGKADAEKQRKRNCSDDWQYCES 51 ± 5
a The propeptide sequence is shaded. b Km values were calculated by the Lineweaver-Burke method and are given as the mean ± 1 S.D.



Table 3: Comparison of propeptide and postpeptide amino acid sequence

Conotoxin Amino acid sequence
a

Position pI Ref
_______________________________________________________________________________________________

                                                              *      *         *
Gla(1)-TxVI HSKENINFLLKRKRAAD-R -1/-20 11.64 -
Gla(2)-TxVI/A KKIDFLSKGKTDAEKQQKR -1/-20 10.69 -
Gla(2)-TxVI/B KKIDFLSKGKADAEKQRKR -1/-20 11.07 -
Gla(3)-TxVI      EKIKLLSKRKTDAEKQQKR –1/–20 11.07 -
Gla-TxX                  GRRRLIHMQK +48/+57 12.81 [20]
Gla-TxXI                GKRAKLLEFFRQR +32/+44 12.24 [20]
k-BtX                   GKRSKLQEFFRQR +32/+44 12.24 [37]
PnVIIA QQAKINFLSKRKPSAERWRR –1/–20 12.52 [22]
TxVIIA RKAEINFSETRKLARNKQKR –1/–20 12.12 [21]
Tx9.1           DNRRNLQSKWKPVSLYMSRR –1–20 12.11 [17]
Con-G             GKDRLTQMKRILKQRGNKA-R –1/–20 12.53 [7]
Con-L         GNDRLTQMKRILKKRGNKA-R –1/–20 12.53 [38]
Con-R         GNDRLTQMKRILKKRGNKA-R –1/–20 12.53 [38]
Glacon-M                 GRDNPGRARRKRMKVL –1/–16 12.69 [23]
Mr5.2            PLASFHANVKRTLQIL-RDKR –1/–20 12.24 [39]
Mr5.3            PLASSHANVKRTLQIL-RNKR –1/–20 12.81 [39]
-TxIX PLSSLRDNLKRTIRTRLNIR –1/–19 12.68 [16, 31]

Human II HVFLAPQQARSLLQRVRR –1/–18 12.98 [35]
Human FIX TVFLDHENANK-ILNRPKR –1/–18 10.76 [40]

__________________________________________________________________________________________________
a amino acids forming the consensus sequence are boxed and their positions highlighted by an asterisk.

Basic amino acids are shown bold. Shaded residues are those predicted to form an -helix by he program

Nnpredict (http://www.cmpharm.ucsf.edu/~nomi/nnpredict.html). The -CRS identified in propeptides of

human prothrombin (factor II) and human factor IX is underlined.



Legends to the Figures

Figure 1. Posttranslational modification of Gla(2)-TxVI/A and Gla(2)-
TxVI/B. Positive ion reflector mode MALDI mass spectra of an

endoproteinase Asp-N digest of (A) pyridylethylated Gla(2)-TxVI/A

and (B) Gla(2)-TxVI/B. The characteristic monoisotopic distribution

of the peaks at m/z  901.18 and 901.21 (insets) suggests a

bromotryptophan-containing peptide. Peptide alkali (Na+ and K+)

adducts are labeled with asterisks.

Figure 2. Posttranslational modification of Gla(3)-TxVI. (A) Positive

ion linear mode MALDI mass spectrum of native conotoxin Gla(3)-

TxVI. The three high-intensity peaks at m/z 3167.5, 3180.6 and 3225.0

correspond to three isoforms containing Asp, Glu and Gla,

respectively. (B) Nano-ESI mass spectrum of an elastase digest of the

reduced Gla(3)-TxVI peptide. The distinctive monoisotopic

distribution (inset) of the C-terminal peptide (m/z 660.18) reveals it is a

bromotryptophan-containing peptide. The doubly charged ions at m/z

935.32, 942.33 and 964.33 correspond to the N-terminal peptides of

the three conotoxin isoforms containing Asp, Glu and Gla at position

7, respectively.

Figure 3. The cDNA and deduced amino acid sequences of the
precursors of (A) Gla(1)-TxVI, (B) Gla(2)-TxVI/A, (C) Gla(2)-
TxVI/B and (D) Gla(3)-TxVI. The open-reading-frames of the cDNA

sequences are shown in uppercase typeface and untranslated regions in

lowercase. The amino acid sequences of the mature conotoxins, as

determined by Edman degradation and mass spectrometry, are shown
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in bold typeface and Glu residues that are posttranslationally modified

to Gla are shown in parentheses. The signal peptide is underlined and
the propeptide that contains the γ-CRS is shaded. * Sequence retrieved

from GenBank (accession number AF215024.1) # amidated C-

terminus.
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Figure 1
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Figure 2
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Figure 3

A
Gla(1)-TxVI

agtcatctactctctcagtctccctgacagctgccttcagtcgaccctgccgtcatctcagcgcagacttggtaagaag

                 M   E   K   L   T   I   L   L   L   V   A   A   V   L   M   S
tgaaaaacctttatc ATG GAG AAA CTG ACA ATC CTG CTT CTT GTT GCT GCT GTA CTG ATG TCG

 T   Q   A   L   V   E   R   A   G   E   N   H   S   K   E   N   I   N   F   L
ACC CAG GCC CTG GTT GAA CGT GCT GGA GAA AAC CAC TCA AAG GAG AAC ATC AAT TTT TTA

 L   K   R   K   R   A   A   D   R   G   M   W   G  (E)  C   K   D   G   L   T
TTA AAA AGA AAG AGA GCT GCT GAC AGG GGG ATG TGG GGC GAA TGC AAA GAT GGG TTA ACG

 T   C   L   A   P   S  (E)  C   C   S  (E)  D   C  (E)  G   S   C   T   M   W
ACA TGT TTG GCG CCC TCA GAG TGT TGT TCT GAG GAT TGT GAA GGG AGC TGC ACG ATG TGG

TGA tgaactctgaccacaagccatctgacatcaccactctcctcttcagaggcttcaaggcttttgttttccttttga
ataatctttacgagtaaacaaataagtagactagcgcgtt

B
Gla(2)-TxVI/A*

gtcatcttctctctcagtctccctgacagctgccttcagtcaaccctgccgtcatctcagcgcagacttggtaagaag

                 M   E   K   L   I   I   L   L   L   V   A   A   V   L   M   S
tgaaaaacatttatc ATG CAG AAA CTC ATA ATC CTG CTT CTT GTT GCT GCT GTG CTG ATG TCG

 T   Q   A   L   F   Q   E   K   R   P   M   K   K   I   D   F   L   S   K   G
ACC CAG GCC CTG TTT CAA GAA AAA CGC CCA ATG AAG AAG ATC GAT TTT TTA TCA AAG GGA

 K   T   D   A   E   K   Q   Q   K   R   S   C   S   D   D   W   Q   Y   C  (E)
AAG ACA GAT GCT GAG AAG CAG CAG AAG CGC AGT TGC TCG GAT GAT TGG CAG TAT TGT GAA

 S   P   T   D   C   C   S   W   D   C   D   V   V   C   S   G#

AGT CCC ACT GAC TGC TGT AGT TGG GAT TGT GAT GTG GTC TGC TCG GGA TGA actctgaccac

aagtcatccgacatcaccactctcctcttcagaggcttcaagacttttgttctgattttggacaatctttacgagtaaa
aaaataattagactagcactttttcccctttgcaaaatcaatgatggaggtaaaaagcctcccattttgtcttcatcaa
taaagaacttatcatcataataaaaaaaa
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C
Gla(2)-TxVI/B

                                                 M   E   K   L   I   I   L   L
tgccgtcatctcagcgaagacttggtaagaagtgaaaaacatttatc ATG CAG AAA CTC ATA ATC CTG CTT

 L   V   A   A   V   L   M   S   T   Q   A   L   F   Q   E   K   R   T   M   K
CTT GTT GCT GCT GTG CTG ATG TCG ACC CAG GCC CTG TTT CAA GAA AAA CGC ACA ATG AAG

 K   I   D   F   L   S   K   G   K   A   D   A   E   K   Q   R   K   R   N   C   
AAG ATC GAT TTT TTA TCA AAG GGA AAG GCA GAT GCT GAG AAG CAG AGG AAG CGC AAT TGC

 S   D   D   W   Q   Y   C  (E)  S   P   S   D   C   C   S   W   D   C   D   V
TCG GAT GAT TGG CAG TAT TGT GAA AGT CCC AGT GAC TGC TGT AGT TGG GAT TGT GAT GTG

 V   C   S   G#

GTC TGC TCG GGA TGA actctgaccacaagtcatccgacatcaccactctcctcttcagaggcttcaagactttt
Gttctgattttggacaatctttacgagtaaacaaataattagactagcactttttcccctttgcaaaatcaatgatgga
Ggtaaaaagcctcccattttgtcttcatcaataaagaacttatcatcataatatttctttaaaaaaaaaaaaaaaa

D
Gla(3)-TxVI

                                         M   Q   K   L   I   I   L   L   L   V
cgtcatctcaacgcacacttgaagtgaaaaacatttatc ATG CAG AAA CTA ATA ATC CTG CTT CTT GTT

 A   A   V   L   M   S   T   Q   A   V   L   Q   E   K   R   P   K   E   K   I
GCT GCT GTG CTG ATG TCG ACC CAG GCC GTG CTT CAA GAA AAA CGC CCA AAG GAG AAG ATC

 K   L   L   S   K   R   K   T   D   A   E   K   Q   Q   K   R   L   C   P   D
AAG CTT TTA TCA AAG AGA AAG ACA GAT GCT GAG AAG CAG CAG AAG CGC CTT TGC CCG GAT

 Y   T  (E)  P   C   S   H   A   H  (E)  C   C   S   W   N   C   Y   G   N   H
TAC ACG GAG CCT TGT TCA CAT GCC CAT GAA TGC TGT TCA TGG AAT TGT TAT AAT GGG CAC

 C   T   G
TGC ACG GGA TGA actctgaccacaggccatccgacatcaccactctccttttcagaggcttcaagacttttgttct
Gattttggacaatctttacaagtaaacaaataattagactagcactttttgcaaaatcaatgatggaggtaaaaagcctc
ccattatgtcttcatcaataaagaaatgtatcatcataatatttaaaaaaaaaaaaa
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Supplemental Material

Table S1: Edman degradation of Gla(2)-TxVI/A, Gla(2)-TxVI/B and
Gla(3)-TxVI#

Gla(2)-TxVI/A Gla(2)-TxVI/B Gla(3)-TxVI

Cycle Assigned
residue

Yield
(pmol)

Assigned
residue

Yield
(pmol)

Assigned
residue

Yield
(pmol)

1 Ser 25 Asn 25 Leu 530
2 Cys - Cys - Cys -
3 Ser 20 Ser 23 hPro -
4 Asp 15 Asp 23 Asp 389
5 Asp 21 Asp 22 Tyr 510
6 Trp 5 Trp 5 Tyr 510
7 Gln 9 Gln 15 Asp## 113
8 Tyr 8 Tyr 8 hPro -
9 Cys - Cys - Cys -
10 Gla - Gla - Ser 145
11 Ser 4 Ser 8 His 165
12 hPro - hPro - Ala 213
13 Thr 3 Ser 8 His 128
14 Asp 5 Asp 7 Gla -
15 Cys - Cys - Cys -
16 Cys - Cys - Cys -
17 Ser 3 Ser 4 Ser 65
18 - - - - - -
19 Asp 4 Asp 4 Asn 105
20 - - Cys - Cys -
21 Asp 5 Asp 3 Tyr 99
22 Val 2 Val 2 Asn 81
23 Val 2 Gly 65
24 Cys - His 33
25 Cys -
26 Thr 6
#   Reduced and alkylated peptides were analyzed. Gla was identified in separate runs
after methylesterification (25).
## At this position Asp, Glu and Gla were found in ≈50%, 25% and 25% of relative
abundance, respectively
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Legends to Supplementary Figures

Figure S1. Purification of conotoxins. (A) Venom from C. textile was

chromatographed on a Sephadex G-50 Superfine column. Gla(1)-TxVI

was eluted in fraction pool 10 (P10), Gla(2)-TxVI/A in pool 12,

Gla(2)-TxVI/B in pool 13 and Gla(3)-TxVI in pool 14. The vertical

arrow denotes one column volume. (—) Absorbance at 280 nM; (–o–)

Gla content. (B) Isolation of Gla(2)-TxVI/A (peak indicated by arrow)

by reversed-phase HPLC on a C18 column (C) Isolation of Gla(2)-

TxVI (peak indicated by arrow) on the same column.

Figure S2. Positive ion reflector mode MALDI mass spectrum of
Gla(2)-TxVI/A and Gla(2)-TxVI/B. The observed monoisotopic

molecular masses of (A) Gla(2)-TxVI/A (2966.75 Da) and (B) Gla(2)-

TxVI/B (2979.70 Da) differ from the theoretical molecular masses -

2836.81 for Gla(2)-TxVI/A and 2849.81 for Gla(2)-TxVI/B. The

discrepancy can be explained by the presence of a L-6-

bromotryptophan and an amidated C terminus. Partial decarboxylation

of the Gla residue present in both conotoxins is observed.

Figure S3. Possttransalational modification of Gla(2)-TxVI/A:
confirmation of C-terminal amidation. After methyl-esterification of

Gla(2)-TxVI/A, the C-terminal peptide (peak at m/z 626.3) exhibits a

14-Da mass increase consistent with methylation of the side chain

carboxyl group of the N-terminal Asp residue confirming amidation of

the C-terminus. Partial methylation of the internal peptide (residues

4–13) is observed.
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Figure S4 Possttransalational modification Gla(3)-TxVI:
confirmation of the presence of 6-L-bromotryptophan. Product ion

mass spectrum of the doubly charged ion at m/z 660.18. The isotopic

distribution of the b2 ion (inset) indicates the presence of bromine. The

MS/MS spectrum allows assignment of the sequence

SW*NCYNGHCTG, where W* is the bromotryptophan residue.
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Figure S2
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Figure S3
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Figure S4


