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SUMMARY 

 Transient changes in calcium (Ca2+) levels regulate a wide variety of cellular 

processes, and cells employ both intracellular and extracellular sources of Ca2+ for signaling. 

Praziquantel, the drug of choice against schistosomiasis, disrupts Ca2+ homeostasis in adult 

worms. This review will focus on voltage-gated Ca2+ channels, which regulate levels of 

intracellular Ca2+ by coupling membrane depolarization to entry of extracellular Ca2+. Ca2+ 

channels are members of the ion channel superfamily and represent essential components of 

neurons, muscles, and other excitable cells. Ca2+ channels are membrane protein complexes 

in which the pore-forming α1 subunit is modulated by auxiliary subunits such as β and α2δ. 

Schistosomes express two Ca2+ channel β subunit subtypes: a conventional subtype similar to 

β subunits found in other vertebrates and invertebrates; and a novel variant subtype with 

unusual structural and functional properties. The variant schistosome β subunit confers 

praziquantel sensitivity to an otherwise praziquantel-insensitive mammalian Ca2+ channel, 

implicating it as a mediator of praziquantel action. 
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 The causative agents of schistosomiasis are trematode flatworms of the genus 

Schistosoma. Approximately 200 million people worldwide are thought to be infected, most 

of whom live in Africa (Engels et al., 2002), with as many as 280,000 deaths per year 

attributed to the disease (van der Werf et al., 2003). The current treatment of choice against 

schistosomiasis is praziquantel. Praziquantel is known to affect calcium (Ca2+) homeostasis in 

adult schistosomes, though the precise molecular target of the the drug is not known. This 

review will discuss Ca2+ signaling in schistosomes and other flatworms, focusing on the 

structure and function of voltage-gated Ca2+ channels and recent information regarding the 

role Ca2+ channel subunits appear to play in praziquantel action.  

 

CALCIUM SIGNALING 

Ca2+ is an essential and versatile intracellular messenger. Normally low 

(submicromolar) levels of Ca2+ within the cytoplasm are interrupted by Ca2+ pulses that 

trigger Ca2+-dependent responses. Indeed, it can be argued that virtually all reactions in 

excitable cells are regulated either directly or indirectly by Ca2+ (Augustine, Santamaria & 

Tanaka, 2003). The time scale over which Ca2+-dependent regulation operates ranges from 

microseconds to hours, and Ca2+ signals are often highly localized (reviewed by Bootman, 

Lipp & Berridge, 2001; Augustine, Santamaria & Tanaka, 2003). Cells have developed 

exquisitely tuned components for temporal and spatial regulation of free Ca2+ levels in the 

cytoplasm (reviewed by Berridge, Bootman & Roderick, 2003). These mechanisms comprise 

a "Ca2+-signaling toolkit" consisting of a large and diverse collection of signaling units that, 

alone or in combination with one another, distribute Ca2+ signals with varying temporal and 

spatial properties. These signaling units include receptors, channels, pumps and exchangers, 

Ca2+ buffers, Ca2+-binding proteins, and Ca2+-sensitive enzymes and processes (see Fig.1). 

 The primary pathways for transient increases in intracellular Ca2+ are via entry of 
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extracellular Ca2+ or by release of intracellular stores of Ca2+. Major intracellular stores of 

Ca2+ are found in the endoplasmic reticulum (ER) and, in muscle cells, the sarcoplasmic 

reticulum (SR). Release of Ca2+ from these stores is mediated by inositol-1,4,5-triphosphate 

(IP3) receptors and by ryanodine receptors, calcium release channels encoded by two 

distantly-related gene families. Several ligands and secondary messengers, including Ca2+ 

itself, also influence Ca2+ release. Entry of Ca2+ from the external medium can be mediated 

by several components, including voltage- and receptor-gated channels, transient receptor 

potential (TRP) channels, and second messenger-gated channels (eg, cyclic nucleotide-gated 

channels). One of the major gateways for entry of extracellular Ca2+ is through voltage-gated 

Ca2+ channels. This review will concentrate primarily on these channels, which, in addition to 

contributing to impulse propagation, couple membrane depolarization to rapid influxes of 

Ca2+ that can regulate fast Ca2+-dependent cellular responses.  

 

CALCIUM SIGNALING IN FLATWORMS 

Several components that are essential for maintenance of Ca2+ homeostasis have been 

described in schistosomes and other platyhelminths (reviewed by Noel et al., 2001), 

representing a subset of the cellular factors likely responsible for modulating intracellular 

Ca2+ levels in worms (see Fig. 1 in Redman et al., 1996). For example, sarco(endo)plasmic 

reticulum Ca2+-ATPases (SERCAs), intracellular ATP-powered pumps that sequester Ca2+ 

into the SR, have been identified in schistosomes. Two S. mansoni SERCAs can be 

distingushed physiologically (Cunha, Reis & Noël, 1996) and two different S. mansoni 

SERCA-like cDNAs have been reported (deMendonça et al., 1995). Expression of one of 

these SERCA cDNAs, SMA2, rescues SERCA-deficient yeast, and is associated with an 

internal-membrane-associated, Ca2+-dependent ATPase activity with kinetic properties and a 

pharmacological profile similar to mammalian SERCA isoforms (Talla et al., 1998).  
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 Ryanodine receptors are gated by a ligand (Ca2+) and/or by mechanical coupling with 

voltage-gated Ca2+ channels, and are found in the ER of noncontractile tissues as well as in 

the SR of muscle cells (reviewed by Shoshan-Barmatz & Ashley, 1997; Rossi & Sorrentino, 

2002). [3H]ryanodine binding (Silva et al., 1997) and pharmacological experiments on 

dissociated muscle fibers (Day et al., 2000) provide evidence for ryanodine receptors in 

schistosomes and other flatworms, and ESTs coding for homologs of this channel are found 

in the transcriptomes of both S. mansoni and S. japonicum. 

 Several receptors and channels on the plasma membranes of schistosomes likely also 

modulate levels of intracellular Ca2+. For example, both FMRFamide-related peptides (Day et 

al., 1994) and serotonin (Day, Bennett & Pax, 1994) elicit Ca2+-dependent contraction in 

dissociated muscle fibers from S. mansoni. Recently, Agboh et al. (2004) have cloned and 

expressed an ATP-gated P2X receptor from S. mansoni that has high permeability to Ca2+ and 

may play an important role in Ca2+-dependent processes such as neurotransmission and 

muscle contraction. In addition, several Ca2+-binding proteins from schistosomes that have 

been described may serve to buffer or sequester Ca2+ as well as acting as targets of Ca2+ 

regulation. Information gleaned from the schistosome genome and transcriptome projects 

should over the next several years provide material for post-genomic studies of the cellular 

components that participate in regulation of Ca2+ homeostasis. 

 

PRAZIQUANTEL 

 Praziquantel (Fig. 2), discovered in the 1970s, was subsequently introduced for the 

treatment of schistosomiasis (reviewed by Andrews et al., 1983). It is a pyrazinoisoquinoline 

with an asymmetric center, and standard preparations are composed of equal proportions of 

the active, levo (−) and the inactive, dextro (+) optical isomers. The  activity of the (−) 

enantiomer has been established in experiments performed both in vivo (Andrews et al., 
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1983; Liu et al., 1986; Tanaka et al., 1989; Wu et al., 1991; Xiao et al., 1999) and in vitro 

(Staudt et al., 1992; Xiao & Catto, 1989).   

 Praziquantel has activity against all species of schistosomes and shows minimal side 

effects. As a consequence, it has become the drug of choice against schistosomiasis. Indeed, 

with the added benefit of dramatic reductions in price, praziquantel has in essence become 

the sole antischistosomal agent that is available commercially (Fenwick et al., 2003; Hagan et 

al., 2004). Praziquantel is also active against other trematode and cestode infections, though 

generally not against nematodes (reviewed by Andrews, 1985), and schistosomes show stage- 

and sex-dependent differences in praziquantel sensitivity (Xiao, Catto & Webster, 1985; 

Sabah et al., 1986; Pica-Mattoccia & Cioli, 2004).  

 Praziquantel effectiveness has been proven repeatedly in large-scale schistosomiasis 

control efforts in different regions. However, the drug has been severely underutilized in sub-

Saharan Africa (reviewed by Fenwick et al., 2003; Hagan et al., 2004). The recently 

inaugurated Schistosomiasis Control Initiative (www.schisto.org) was launched as a response 

to this problem, and has as its goal the establishment of sustainable schistosomiasis control 

programs in this neglected region.  

 Since praziquantel serves in effect as the only antischistosomal treatment in 

widespread use, the possibility of emerging drug resistance is troubling. Others (see, eg, 

Cioli, 2000; Doenhoff et al., 2002) have discussed this problem in detail. It is clear, however, 

that the potential for emerging resistance to praziquantel by schistosomes is of special 

concern considering that the molecular target and mode of action of the drug remain 

uncertain. Thus, despite the widespread use of praziquantel and nearly three decades of 

research, the exact mechanism of praziquantel action is still unresolved (reviewed by Day, 

Bennett & Pax, 1992; Redman et al., 1996; Harder, 2002; Cioli & Pica-Mattoccia, 2003). 

This review will focus on recent advances in identifying the molecular target of praziquantel, 
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highlighting those experiments that point to a critical role for voltage-gated calcium (Ca2+) 

channel proteins. 

 Praziquantel acts selectively against members of the phylum Platyhelminthes. 

Accordingly, the molecular target (or targets) for praziquantel might be encoded by a novel 

gene found exclusively in the flatworms. Schistosome genomes and transcriptomes contain 

several sequences that show no clearcut homology with genes found in other phyla (reviewed 

by Hu et al., 2004; LoVerde et al., 2004; McManus et al., 2004; Verjovski-Almeida et al., 

2004). On the other hand, the target for praziquantel might be a member of a gene family 

found in other phyla as well as in the platyhelminths, but with platyhelminth-specific 

structural signatures required for interaction with the drug. Even minor differences in critical 

domains of a protein, including single amino acid alterations, can have major consequences 

for the functional and pharmacological properties of typical receptors and channels (see, eg, 

Heinemann, Terlau & Imoto, 1992; Satin et al., 1992). 

 Though elucidating the mode of action of praziquantel has proved a daunting task, the 

effects of the drug on adult schistosomes do provide clues to potential targets for the drug. 

Praziquantel produces a well-documented effect on intracellular Ca2+ levels in adult 

schistosomes (reviewed by Andrews, 1985; Day, Bennett & Pax, 1992; Redman et al., 1996). 

Within seconds of exposure to the drug, adult schistosomes exhibit a rapid, sustained 

contraction of the worm's musculature (Fetterer, Bennett & Pax, 1980) and vacuolization and 

disruption of the parasite tegument (Becker et al., 1980; Mehlhorn et al., 1981), an effect 

associated with the subsequent exposure of parasite antigens on the surface of the  worm 

(Harnett & Kusel, 1986). Both of these responses are thought to be linked to a praziquantel-

dependent disruption of Ca2+ homeostasis (reviewed by Day, Bennett & Pax, 1992; Redman 

et al., 1996).  

 Praziquantel elicits a rapid uptake of 45Ca2+ in adult male schistosomes (as well as a 
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much slower influx of Na+; Pax, Bennett & Fetterer, 1978). The effects of praziquantel on 

both contraction of the worm's musculature and disruption of the parasite tegument are Ca2+-

dependent processes. Removal of Ca2+ from the medium blocks both responses (Pax, Bennett 

& Fetterer, 1978; Wolde Mussie et al., 1982; Xiao et al., 1984). However, neither of these 

inhibitory effects appear immediately. For example, inhibition of the praziquantel-dependent 

contraction of the musculature requires at least 10 minutes to occur, a delay thought to 

correspond to the time required for depletion of sequestered intracellular Ca2+ stores. These 

results indicate that though extracellular Ca2+ is not required for the initiation of praziquantel-

dependent action, it is required for maintenance of the response. 

 Based on comparisons between praziquantel response in intact and detegumented 

parasites, it appears that both the tegument and the sarcolemma contain praziquantel-sensitive 

sites (Blair, Bennett & Pax, 1992). Thus, intact worms that are bathed in a medium with a 

high magnesium (Mg2+):Ca2+ ratio exhibit a praziquantel-dependent biphasic muscle 

contraction instead of the tonic contraction that occurs in standard media. Detegumented 

worms continue to respond to praziquantel, but they show only a single, pronounced phasic 

contraction in high Mg2+, indicating that a tegumental site is necessary for the full response. 

Furthermore, unlike intact worms, which show a transient response to praziquantel in Ca2+-

free medium, application of praziquantel to detegumented worms in Ca2+-free medium 

produces no muscular contraction. Interestingly, praziquantel (1-2 µM) has been reported to 

interact with both sarcolemmal and intracellular sites to produce a sustained Ca2+-dependent 

contraction in the penile retractor muscle from the mollusc Lymnaea stagnalis (Gardner & 

Brezden, 1984). 

The effects of praziquantel on Ca2+ homeostasis could point to a direct action of the 

drug on membrane permeability to Ca2+. However, early experiments indicated that 

praziquantel is not acting as a Ca2+ ionophore (Pax, Bennett & Fetterer, 1978). On the other 
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hand, it has been reported that praziquantel alters the structure of membrane bilayer 

phospholipids or membrane fluidity (Harder, Goossens. & Andrews, 1988; Lima et al., 

1994), which could result in changes in membrane permeability to Ca2+ or to indirect effects 

on membrane receptors and channels.   

 The target of praziquantel might also be one of the several cellular factors involved in 

regulating intracellular levels of Ca2+ discussed above and reviewed by Redman et al. (1996.) 

To date, there is little direct evidence implicating or eliminating these factors as possible 

targets in praziquantel action. However, Cunha & Noël (1997) have reported that high 

concentrations of praziquantel (100 µM) have no effect on schistosome (Na++K+)-ATPase or 

(Ca2+-Mg2+)ATPase activities. 

 Recently, voltage-gated Ca2+ channels have been identified as candidate targets of 

praziquantel action (Kohn et al., 2001a, 2003a, b). As important entry sites for extracellular 

Ca2+, voltage-gated Ca2+ channels play a critical role in regulating levels of intracellular Ca2+. 

However, until recently, the role of voltage-gated Ca2+ channels in praziquantel action had 

not been tested directly, as Ca2+ currents had never been recorded from schistosome cells (see 

below). Nevertheless, pharmacological studies by Blair, Bennett & Pax (1992) on 

praziquantel-induced contraction in both intact and detegumented worms led them to suggest 

that Ca2+ channels might be involved in the action of the drug. Interestingly, high 

concentrations (50 µM) of praziquantel prolong the Ca2+-dependent plateau phase of the 

cardiac action potential in rats, which is carried by voltage-gated Ca2+ channels (Chubb et al., 

1978). On the other hand, methoxyverapamil (D-600), an inhibitor of one class of 

mammalian Ca2+ channels (L-type), does not block the praziquantel-dependent Ca2+ influx in 

schistosomes, though it does block the tonic contraction of these cells resulting from 

increased K+ concentrations (Fetterer, Pax & Bennett, 1980). However, recent results from 

expression of cloned Ca2+ channel proteins indicates a significant role for voltage-gated Ca2+ 
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channels in praziquantel action. 

 

VOLTAGE-GATED CA2+ CHANNELS  

 Voltage-gated ion channels, which are part of the ion channel superfamily, underlie 

electrical excitability in cells. They form an ion-selective pore through the membrane which, 

when activated by a change in membrane potential, allows ions to flow down the 

electrochemical gradient across the cell membrane. Voltage-gated channels include those 

selective for potassium, sodium, and Ca2+. Voltage-gated Ca2+ channels are membrane 

protein complexes that form Ca2+-selective pores gated by depolarization. Like other voltage-

gated channels, Ca2+ channels contribute to impulse propagation, but they are also essential 

regulators of intracellular Ca2+ levels. By providing a pathway for rapid Ca2+ influxes, Ca2+ 

channels couple depolarization of the cell to a wide array of Ca2+-dependent responses 

including muscle contraction and neuroscretion in muscles, nerves, and other excitable cells 

(reviewed by Catterall, 2000; Hofmann, Lacinova & Klugbauer, 1999). Thus, voltage-gated 

Ca2+ channels are essential to the behavior and survival of the animal. This point is further 

underscored by the fact that organisms as diverse as fish-hunting cone snails and spiders 

produce toxins targeted against specific Ca2+ channel subtypes to immobilize prey.  

 The pore-forming subunit of voltage-gated Ca2+ channels is the α1 subunit. In addition 

to the α1 subunit, voltage-gated Ca2+ channels typically contain associated auxiliary subunits 

that modulate the properties of the channel (see Fig. 3). The α1 subunit is made up of four 

linked homologous domains, each of which contains six transmembrane regions (S1-S6). The 

predicted structure of the α1 subunit fits within the ion channel superfamily (Doyle et al., 

1998). The most basic ion channels are tetrameric structures comprised of the fifth and sixth 

transmembrane regions (S5 and S6, respectively) and the P loop, a region between S5 and S6 

that forms the selectivity filter of the pore. The residues that define a channel's ionic 

10 



selectivity and many of its pharmacological properties reside in this region. In the voltage-

gated channels, the fourth transmembrane segment within each domain (S4) contains a 

positively charged amino acid (lysine or arginine) at every third residue and is thought to 

serve as the voltage sensor of the channel. 

 Two major classes of Ca2+ currents that have been characterized in both vertebrate 

and invertebrate cells are Low Voltage Activated (LVA; t-type) and High Voltage-Activated 

(HVA). HVA currents can be further subdivided into L-type, which, in vertebrates, are 

sensitive to the dihydropyridine class of Ca2+ channel antagonists (nifedipine, nimodipine, 

etc.); and a variety of dihydropine-insensitive currents which are collectively known as non 

L-type. Heterologous expression of cloned Ca2+ channel subunits has been used to 

demonstrate a correspondence between these different Ca2+ currents and particular subtypes 

of Ca2+ channel α1 subunits. Thus, LVA currents are gated by the Cav3 class of α1 subunits 

(reviewed by Perez-Reyes, 2003), while HVA L-type currents and non L-type currents are 

gated by Cav1 α1 subunits and Cav2 α1 subunits respectively. Similar studies have indicated 

that the pharmacological differences found between vertebrate L-type and non L-type 

channnels (eg, in dihydropyridine sensitivity) are not as clearcut in invertebrates (reviewed 

by Jeziorski, Greenberg & Anderson, 2000a). Thus, expression of invertebrate α1 subunits 

that are clearly members of the L-type family based on structure produces currents that are 

relatively insensitive to dihydropyridines and other potent modulators of vertebrate L-type 

channels.   

In the HVA Ca2+ channels, the α1 subunit is associated with and modulated by 

auxiliary subunits (reviewed by Hofmann, Lacinova & Klugbauer, 1999; Catterall, 2000; 

Arikkath & Campbell, 2003) that include α2/δ and β subunits (Fig. 3), as well as γ subunits 

(not shown). Ca2+ channel β subunits (Cavβs) are cytoplasmic proteins that have been studied 

extensively and are critical components of Ca2+ channel complexes. When coexpressed with 
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β subunits, α1 subunits show increases in current density and ligand binding. Cavβs appear to 

play a role in membrane trafficking of the α1 subunit, likely in part by masking an ER 

retention site on the α1 subunit (Bichet et al., 2000). β subunits also affect a variety of the 

biophysical properties of Ca2+ channels, including the voltage-dependence of channel 

activation and steady state inactivation, rates of inactivation (reviewed by Walker & 

DeWaard, 1998; Birnbaumer et al., 1998; Hanlon & Wallace, 2002; Dolphin, 2003), and the 

rate of recovery from inactivation (Jeziorski, Greenberg & Anderson, 2000b). 

 The primary site on the α1 subunit for binding of Cavβs is the Alpha Interaction 

Domain (AID; Pragnell et al., 1994), an 18 amino acid region in the intracellular loop 

between Domains I and II of the α1 subunit. Recent X-ray crystallographic studies (Chen, et 

al., 2004; Opatowski et al., 2004; Petegem et al., 2004) indicate that the AID indeed does 

complex with Cavβs, forming an amphipathic helix with the most highly conserved residues 

on one side of the helix in contact with a complementary groove on the β subunit.  

 Using homology modeling, Hanlon et al. (1999) proposed that Cavβs are members of 

the membrane-associated guanylate kinase (MAGUK) family of proteins. MAGUKs are 

scaffolding proteins, often concentrated at synapses where they play important roles in 

clustering of ion channels and neurotransmitter receptors (reviewed by Dimitratos et al., 

1999). Typically, MAGUKs contain one or more PDZ domains located N-terminal to a Src-

homology 3 (SH3) domain, a bridging region (the HOOK domain), and a guanylate kinase 

(GK)-like domain. Resolution of the crystal structure of the conserved core of β subunits, 

both alone and in complex with the AID of the α1 subunit, are consistent with Cavβs indeed 

being members of the MAGUK family, though with distinct characteristics (Chen, et al., 

2004; Opatowski et al., 2004; Petegem et al., 2004; commentary by Yue, 2004). For 

example, the PDZ domains typically found in other MAGUKs appear to be absent in Cavβs, 

and the orientation of the SH3 and GK domains has been modified. In addition, the GK 
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domain of Cavβs does not contain a nucleotide binding site. Instead, the modified GK domain 

forms a deep hydrophobic groove (the AID-binding pocket, or ABP) with which the AID of 

the α1 subunit interacts.  

 Several lines of evidence indicated that a highly conserved ~35 amino acid region in 

Cavβs dubbed the Beta Interaction Domain (BID) serves as the primary site for β subunit 

interaction with the α1 subunit (DeWaard, Pragnell & Campbell, 1994). However, the recent 

crystal structures have cast doubt on this hypothesis. Instead, the BID region is found buried 

within the β subunit protein, and is therefore unlikely to be involved directly in protein-

protein interactions such as binding to the AID. However, as Chen et al. (2004) have noted, 

the BID nonetheless appears to play an essential structural role in β subunits, spanning the 

SH3 and GK domains and their connecting HOOK region, and containing two β-strands that 

are integral parts of the SH3 and GK domains. Indeed, the BID and surrounding areas are 

particularly highly conserved regions of β subunit proteins.  

 

SCHISTOSOME AND FLATWORM CA2+ CURRENTS 

 Do voltage-gated Ca2+ channels in schistosomes play a role in praziquantel action? 

Are they the molecular targets of praziquantel? These questions may be answered by 

characterizing the structure, function, and pharmacological sensitivities of Ca2+ channels 

from schistosomes and other flatworms. These studies may additionally provide insights into 

the physiology of excitable cells in platyhelminths, about which relatively little is currently 

known, and should also provide clues about the evolution of ion channels. Furthermore, 

structural and functional characterization of flatworm Ca2+ channels might provide highly 

specific targets for new antiparasitic agents. For example, a recent patent (Walter & Kuris, 

2003; see also Bonn, 2004) claimed that high concentrations of verapamil and nifedipine, two 

compounds that block L-type voltage-gated Ca2+ channels in vertebrates, suppress egg 
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production in S. mansoni and another trematode, Echinostoma caproni. Clearly, a more 

thorough understanding of the pharmacological properties of platyhelminth Ca2+ channels 

will be required to determine whether these compounds are acting on worm voltage-gated 

Ca2+ channels or other targets. 

 Isolated muscle cells from S. mansoni exhibit Ca2+-dependent contractility (Day, 

Bennett & Pax, 1994). To date, however, there have been no published reports of native Ca2+ 

currents from schistosome cells. Indeed, Day et al. (1993) found no inward currents of any 

type in their voltage-clamp analysis of muscle cells isolated from adult S. mansoni, most 

likely because of technical limitations with these cells.  

 In contrast, Ca2+ currents have been recorded from other flatworms. For example, 

neurons from the polyclad flatworm Notoplana acticola contain a normal complement of 

ionic currents that are implicated in the generation of action potentials. These include 

cadmium-sensitive Ca2+ currents (Keenan & Koopowitz, 1984). Similarly, using voltage-

clamp analysis, voltage-gated Ca2+ currents have been recorded in nerve and muscle cells of 

Bdelloura candida, a triclad ectoparasitic flatworm that resides on the legs and gills of 

hoseshoe crabs (Limulus polyphemus; Blair & Anderson, 1993, 1994). Both cell types 

possess Ca2+ currents that activate at -30 mV, reach peak amplitude in approximately 5 ms, 

and inactivate slowly. The neuronal Ca2+ current shows relatively little sensitivity to organic 

Ca2+ channel blockers such as nifedipine and verapamil, and is not blocked by the cone snail 

toxin ω-conotoxin GVIA. This neuronal Ca2+ current also exhibits no sensitivity to 10 µM 

praziquantel (Blair & Anderson, 1996). Unfortunately, the muscle Ca2+ current was too 

unstable for determination of pharmacological sensitivities. More recently, Cobbett & Day 

(2003) recorded Ca2+ currents from muscle cells of the triclad turbellarian Dugesia tigrina.  

However, these currents were also too unstable for systematic pharmacological analysis.   

 Clearly, determining the properties of native Ca2+ currents in schistosomes and other 
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flatworms presents major challenges. These difficulties may be bypassed by using a 

molecular approach. Expression of cloned Ca2+ channel subunits from schistosomes and other 

flatworms in heterologous systems may present an alternative means of elucidating the 

physiological properties and pharmacological sensitivities of these channels. However, 

analysis of native currents within schistosome cells will eventually be necessary for a 

thorough understanding of the properties of these channels and their physiological roles 

within the parasite.  

 

SCHISTOSOME CA2+ CHANNEL SUBUNITS 

 Adult schistosome adults express at least three subtypes of HVA Ca2+ channel α1 

subunits (Kohn et al., 2001b). Phylogenetic analysis shows that two of these subtypes cluster 

with the non L-type class of HVA α1 subunits, while the third is most closely related to the L-

type class of α1 subunits. Although mammals contain multiple subtypes of L-type and non L-

type α1 subunits, other invertebrates examined to date contain only a single representative of 

each of these classes (Littleton & Ganetzky, 2000; Jeziorski, Greenberg & Anderson, 2000a). 

Schistosomes (and presumably other platyhelminths) therefore appear to be unique among 

the invertebrates in that they have two subtypes of non L-type α1 subunits rather than one.  

Schistosomes also express at least two subtypes of Cavβs (Kohn et al., 2001a; 2003b). 

This finding is also unprecedented among the invertebrates; to date, only a single β subunit 

gene has been identified in the genomes of other invertebrate species. Even more noteworthy, 

one of these schistosome β subunit subtypes has particularly unusual structural features and 

functional properties. To date, no representatives of this variant subtype have been identified 

in any vertebrates or invertebrates other than the platyhelminths (see Fig. 4). 

The variant Cavβ subtype proteins are clearly part of the broader β subunit family, 

although they have very distinct structural features. For example, they are from 25% - 50% 
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larger than other β subunits, including the conventional S. mansoni Cavβ. However, the most 

striking feature of these variant Cavβs can be found in the BID, where two serine residues that 

are conserved in other Cavβs and that correspond to consensus protein kinase C (PKC) 

phosphorylation sites are replaced by cysteine and alanine (Fig. 5).  

The variant schistosome β subunits also exhibit distinctive functional properties 

(Kohn et al., 2001a). Conventional β subunits enhance currents when coexpressed with α1 

subunits. In contrast, coexpression of a variant β subunit in Xenopus oocytes with a jellyfish 

(CyCav1) or human (Cav2.3) α1 subunit results in a dramatic reduction in current compared to 

the levels found when the α1 subunit is expressed alone. Yet, other than this novel effect on 

current levels, the modulatory effects of the variant schistosome Cavβs are similar to those of 

conventional Cavβs. For instance, like other Cavβs, the variant β subunits shift the 

current/voltage relationship of α1 subunits in a hyperpolarizing direction. Thus, although the 

variant Cavβs have some highly unusual properties, they appear to behave in most respects as 

genuine, functional β subunits. 

A particularly exciting property of the variant schistosome Cavβs is that they can 

confer praziquantel sensitivity to an otherwise praziquantel-insensitive mammalian α1 

subunit (Kohn et al., 2001a). When the mammalian Cav2.3 α1 subunit is expressed alone in 

Xenopus oocytes, it does not respond to 100 nM praziquantel. On the other hand, when 

Cav2.3 is coexpressed in Xenopus oocytes with one of the variant schistosome Cavβs, peak 

currents are increased 1.5- to 2-fold in the presence of 100 nM praziquantel. Other Cavβs, 

including the conventional schistosome β subunit, do not confer praziquantel sensitivity 

(Kohn et al., 2003b). This praziquantel-dependent increase in Ca2+ influx found with Ca2+ 

channels containing the variant β subunit is consistent with the effects of the drug on Ca2+ 

homeostasis in schistosomes and implicates the variant schistosome Cavβs in the action of 
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praziquantel.  

 Using site-directed mutagenesis, the specific amino acid residues involved in 

determining the unusual functional properties and pharmacological sensitivities of the variant 

β subunits have been localized. Both the reduction in current levels and the responsiveness to  

praziquantel map to the two conserved consensus PKC sites in the BID that are not present in 

these variant β subunits (Kohn et al., 2003a, b). If serine residues are substituted at either or 

both of these sites in the variant Cavβ from S. mansoni the consensus PKC sites are restored 

(see Fig. 5). This mutated β subunit, like conventional Cavβs, now enhances currents through 

α1 subunits and does not confer sensitivity to praziquantel. A double mutation containing a 

serine at one of these sites, but also containing a second mutation that eliminates the 

consensus PKC sequence, behaves like the wildtype schistosome subunit. Thus, the absence 

of PKC sites in the BID region, rather than simply the presence of residues other than serines, 

appears to be responsible for the novel effects of the variant subunit. Similarly, elimination of 

both PKC sites in the BID of a conventional β subunit (mammalian β2a) results in a β subunit 

that can now confer praziquantel sensitivity to the mammalian α1 subunit (Kohn et al., 

2003b). 

 Thus, the absence of consensus PKC sites in the β subunit BID is associated with the 

capability of a β subunit to confer susceptibility to praziquantel, while the presence of a 

single consensus PKC site in the BID is sufficient to transform a variant Cavβ into a β subunit 

with characteristics typically found for conventional β subunits. Based on these results, we 

have hypothesized that the unusual modulatory properties and pharmacological sensitivities 

of the variant Cavβs from schistosomes are dependent on the absence of the consensus PKC 

phosphorylation sites found in the BIDs of other β subunits.  

 Phosphorylation of voltage-gated Ca2+ channel subunits by PKC and other protein 
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kinases plays a central role in regulating channel properties (reviewed by Rossie, 1999; Kamp 

& Hell, 2000; Keef, Hume & Zhong, 2001). A recombinant mammalian β2a subunit has been 

shown to be phosphorylated by PKC, with a stoichiometry estimated to be 1-2 moles of 

phosphate per mole of β2a protein (Puri et al., 1997). There are several consensus PKC sites 

in β subunits, but the exact sites that are phosphorylated by PKC have yet to be defined either 

in vitro or in vivo.  

 

CONCLUSIONS AND FUTURE QUESTIONS 

 The variant Cavβs found in schistosomes appear to be involved in praziquantel action, 

while the addition of a PKC site in the BID of these subunits can abolish susceptibility to the 

drug. It therefore follows that one mechanism for schistosomes to acquire praziquantel 

resistance might be by acquiring one or both of these PKC sites by mutating the cysteine or 

alanine residues to serine. Schistosome isolates with reported reduction in praziquantel 

sensitivity have been tested for the presence of these (and other) mutations (Valle et al., 

2003). These isolates did not exhibit changes in primary structure of schistosome β subunits, 

nor did they show changes in expression levels of those subunits. Thus, a reduction in 

praziquantel susceptiblity in these strains apparently does not depend on altered Cavβ 

structures or expression levels. However, since various Egyptian isolates with reduced 

praziquantel susceptibility show differential stability (William et al., 2001), there may be 

alternative pathways for acquiring praziquantel susceptibility, with different strains of 

parasites acquiring resistance to praziquantel via various mechanisms. 

  There are several unresolved issues regarding schistosome Ca2+ channels and their 

role in praziquantel action. Of primary importance is the need to characterize schistosome 

Ca2+ channel α1 subunits, either alone or in combination with the two schistosome Cavβ 

subtypes. These experiments will answer several questions, including whether all possible 
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schistosome α1/β combinations are capable of forming functional channels. More 

specifically, are only certain α1/β combinations capable of forming praziquantel-sensitive 

channels, or can any schistosome channel that contains a variant β subunit respond to the 

drug? Furthermore, which schistosome cells express these combinations? Once specific 

praziquantel-sensitive channels are identified, the question of precisely how praziquantel acts 

on these channels will still remain. For example, praziquantel might be interacting directly 

with the variant β subunit, or it might instead interfere with α1/β subunit interactions, or it 

could be acting indirectly, via effects on interacting proteins or on the membrane itself to 

affect Ca2+ channels that contain these variant Cavβs. Finally, what are the downstream 

players in the cascade of events that ultimately leads to paralysis and tegumental disruption? 

As described above, the components that regulate Ca2+ homeostasis in cells are connected 

with one another through a network of interaction and regulation. The components 

comprising these interdependent networks might also be affected by praziquantel. In 

schistosomes, these interactions are further complicated by the complexity of the adult 

tegument and sub-tegumental compartments (see Fig. 1 of Redman et al., 1996). The 

tegument of the adult is formed by a membrane that has a double-bilayer structure (McClaren 

& Hockley, 1977) and is electrically coupled to underlying muscle cells (Thompson, Pax & 

Bennett, 1982).  

 Independent of their role in praziquantel action, the biological function of these 

variant schistosome Cavβs is particularly intriguing. All other known β subunits enhance Ca2+ 

currents, while these variant β subunits inhibit currents. Are there special characteristics of 

schistosome α1 subunits or other components of the Ca2+ signaling system that might 

necessitate the deveolpment of this unusual type of Ca2+ channel modulation by β subunits? 

Are there any other organisms that have developed a similar strategy? Answers to some of 

these questions may result from expression of channel subunits in heterologous systems, 
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while other insights may come from the schistosome genome and transcriptome. Ultimately, 

however, a full understanding of the role played by Ca2+ channels in schistosome physiology, 

Ca2+ signaling, and prazquantel action will require a thorough understanding of the properties 

of native schistosome Ca2+ (and other) currents. 
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FIGURE LEGENDS 

FIGURE 1. A subset of the components that regulate intracellular Ca2+ levels. Various 

receptors (R) act through second messengers to effect or modulate release of Ca2+ from the 

endoplasmic/sarcoplasmic reticulum (ER/SR) via IP3 receptors (IP3R) and ryanodine 

receptors (RyR). Voltage-gated Ca2+ channels (VGCCs) and other channels which are 

permeable to Ca2+ (CCs; eg, ligand-gated channels, second-messenger-operated channels, 

TRP channels) also increase Ca2+ levels, both directly from entry of Ca2+ from the external 

medium and indirectly, since release of Ca2+ from internal stores is controlled by Ca2+ itself. 

Ca2+ is removed from the cytoplasm by various exchangers and pumps, including the plasma-

membrane Ca2+-ATPase (PMCA) and the Na+/Ca2+ exchanger (NCX), which extrude Ca2+ to 

the outside. The sarco(endo)plasmic reticulum Ca2+-ATPase (SERCA) pumps Ca2+ back into 

intracellular stores. Ca2+ buffers (Buffers) bind a large proportion of cytoplasmic Ca2+, 

effectively removing it from the activating pool. Mitochondria also play an important role in 

regulating levels of Ca2+ in the cytoplasm. They rapidly sequester Ca2+ through a uniporter, 

as well as releasing Ca2+ through the NCX.  

FIGURE 2. Chemical structure of praziquantel. 

FIGURE 3. Structure of voltage-gated Ca2+ channels. This simplified representation 

shows the pore-forming α1 subunit, which consists of four homologous domains surrounding 

a central pore. Domains II - IV are shown, and Domain I is cut away to show the structure. 

Each of the four domains is composed of six transmembrane regions (S1-S6). The P loop dips 

into the membrane between S5 and S6, forming the selectivity filter of the channel. The S4 

transmembrane region contains a series of regularly spaced, positively charged residues (+) 

and is thought to form the voltage sensor of the channel. Also shown are associated β and α2δ 

subunits, which modulate α1 function. The γ subunit has been omitted. Domains of the β 

subunit defined by recent homology modeling and high resolution structural analysis (see 
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text) are shown. The β subunit interacts via its guanylate kinase (GK) domain with the Alpha 

Interaction Domain (AID) on the I-II loop of the α1 subunit. The size of subunits and 

domains are not to scale in this cartoon. 

FIGURE 4. Phylogenetic tree of Ca2+ channel β subunits. Amino acid sequences were 

aligned using Clustal X (Thompson et al., 1997), and a tree constructed using the neighbor-

joining method, as implemented in MEGA 2.1 (Kumar et al., 2001). The schistosome 

conventional and variant β subunits are shaded, and the variant β subunits are boxed with a 

dashed line. Numbers represent bootstrap values (1000 replications). Sequences and NCBI 

accession numbers are: Human β1, NP_954856; Rabbit β1, AAA31180; Human β2, 

NP_000715; Rabbit β2, CAA45576; Human β3, NP_000716; Rabbit β3, CAA45578; 

Xenopus laevis (toad) β3, AAA75519; Human β4, NP_000717; Rat β4, A45982; 

Caenorhabditis elegans (nematode) β, AAB53056; Schistosoma mansoni conventional β, 

AY033599; Lymnaea stagnalis (snail) β, AAO83844; Loligo bleekeri (squid) β, BAB88219; 

Musca domestica (housefly) β, A54844; Drosophila melanogaster (fruitfly) β, AAF21096; 

Cyanea capillata (jellyfish) β, AAB87751; S. japonicum variant β, AAK51116; S. mansoni 

variant β, AAK51117; C. elegans β-like sequence (w10c8.1), AAK21500. 

FIGURE 5. Comparison of the amino acid sequence of the BID from the variant 

schistosome β subunits with a consensus β subunit BID sequence. The cysteine and 

alanine residues which substitute in the variant BIDs for the conserved serines are shaded. 

The two consensus PKC sites conserved in the consensus BID sequence are underlined, with 

the serines in bold. 
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Figure 1. 
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Figure 2. 
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Figure 3. 
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Figure 4. 
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Figure 5. 

 

Variant schistosome Cavβs: PPYEIVPCMRPVVFVGPALKGYEVTDMMQKAIFD 
Cavβ consensus: PPYDVVPSMRPVVLVGPSLKGYEVTDMMQKALFD  
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