WHOI-90-45

Gr;vg/

o _Woods Hole_.- |
- -Oceanographic
 Institution

Altlmeter Processmg Tools for Analyzmg
Mesoscale Ocean Features s

~abf
| MichaeIJ.vﬁCaruso, Ziv Sirkes, Pierre J. Flamen't; and M.K.Baker
| September1990 |

Techmcal Report

Fundmg was provided by the Office of Naval Research through
- Contract No. N00014-86-K-0751.

. App'roved for public release distribution uniimited.

DOCUMENT
LIBRARY
Woods Hele Oceanographic
~Institution

—

e

Wi —

*Present address: Institute for Naval Oceanography, Stennis Space Center, MS

0 0301 009k205 &

WHOI-90-45

Altimeter Processing Tools for Analyzing
Mesoscale Ocean Features

by

Michael J. Caruso
Ziv Sirkes*
.Woods Hole Oceanographic Institution
Woods Hole, Massachusetts 02543

Pierre J. Flament
M.K. Baker
Oceanography Department
University of Hawaii
Honolulu, HI

September 1990

Technical Report

Funding was provided by the Office of Naval Research through
Grant No. N00014-86-K-0751.

Reproduction in whole or in part is permitted for any purpose of the

United States Government. This report should be cited as:
Woods Hole Oceanog. Inst. Tech. Rept., WHOI-90-45,

Approved for publication; distribution unlimited.

Approved for Distribution:

Drtm, L

ames R. Luyten, Chaiffnan
epartment of Physical Oceanography

Abstract

Satellite altimeters provide many opportunities for oceanographers to supplement their
research with a valuable new data set. The recent GEOSAT exact repeat mission is the
first of several altimetry missions proposed during the next decade. To utilize this new
data, a software package was developed at the Woods Hole Oceanographic Institution
and the University of Hawaii to facilitate the extraction of useful information from
the NODC distributed GEOSAT data tapes. This software package was written with
portability and modularity in mind. It should be possible to use this package with little
or no modifications on data from future altimeters. The code was written in C and tested
on Sun workstations and is oriented toward UNIX operating systems. However, since
standard code was used, the programs should port easily to other computer systems.
The modularity of the code should enable users to create addition programs. Additional
programs designed to handle collocated water vapor corrections are also included for
comparison.

Altimeter Processing Tools for Analyzing
Mesoscale Ocean Features

Michael J. Caruso
Ziv Sirkes*
Woods Hole Oceanographic Institution
Woods Hole, MA

Pierre J. Flament
M. K. Baker
Oceanography Department
University of Hawaii

Honolulu, HI

September 20, 1990

*Present address: Institute for Naval Oceanography, Stennis Space Center, MS

Cont‘ents

1

6

»

Introduction”
Geophysical Data Record GDR
SSMI Data Record |
Data Handling

Programs and Subroutines

5.1 GEOSAT Programst utuuuunennenennene..
51.1 gecleanl
512 gclean2 e e e e e e e e
5.1.3 g-compress / g UNCOMPTESS « « v v o v v v v v v v v v oo
Bld gecorrect. L. e e
51D gecrossnuml a e e e e
516 gdate e
51.7 gdate2 e
518 gext.............. ... e e e e e e e e e e e
5.1.9 gdmage e e e e e e e e e e e e e
5110 ganterp oL o e e e e e e e e e e e
5111 goprint L. e e e e e e e e
5112 gregion e e e e e e e e e e e e
5113 grepeat e e e e e e
5114 grepeats e
5.1.15 gseporb e e e
5.1.16 gspike e e e e e e e
51.17 gspline e e e
51.18 gwhich

52 SSMIPrograms« v v v v v vt v et ettt e .
521 scext e e e
.22 sTegion e e e e e

53 Subroutines e e
53.1 geocycorb e
532 geoerror e e e e e e e e e e e
533 geommask e
534 geowhich

Repeat Orbit Analysis

7 References

A Manual Pages

B Program Listings

35

36

60

C Shell Listings 198

C.1 Repeat Amalysis i it 198
C.2 Data Extraction i i it e e e e e e e e e e e e 199
C3 Imaging o v v it ittt ittt e et eee e 199

List of Figures

00 3 O OV > W N =

- e O
N = O

Results of gcleanl e e e e e e e e 8
Sample GDR supplied corrections 11
Exampleofgext e 14
Example of significant wave height 15
Exampleofgeoid 16
Exampleof gimage 18
Exampleof gregion 20
Comparison of orbit corrections 24
A comparison of g spike parameters 25
Effect of data spikesonmean 27
Effect of data spikesonresiduals 28
Comparison of GEOSAT and SSMI corrections 30

it

List of Tables

O 00~ OO W=

GEOSAT Geophysical DataRecord 3
SSMIdatarecord e 3
SSMI encoded data description 4
Naming conventionsc........ 4
List of GEOSAT programs0 v i nnn.. 7
Compress 18-bytedatarecord 9
Description of variables for program g.correct 10
Description of variables for programgext 13
List of SSMIProgramsvo.uuu... ... 029
Description of variables for programsext 31

iv

1 Introduction

The altimeter is an active microwave radar that measures the diStance between itself
and the ocean surface. A pulse of known power and duration is directed toward the
sea surface. By measuring the power of the return pulse, it is possible to determine the
altimeter height. By fitting the shape of the return pulse, it is possible to calculate the.
significant wave height and the near-surface wind speed. The uses of satellite altimetry
include the determination of ocean currents, measurement of significant wave height
and ocean tides as well as estimiation of surface wind speeds.

The U.S. Navy altimeter satellite GEOSAT (GEOdetic SATellite) was designed to
provide the U.S. military with a highly improved marine geoid. In October 1986, when
the satellite had completed this classified work, it was moved into a 17-day exact repeat
orbit. The new orbital parameters corresponded to the 1978 Seasat mission. This new
unclassified orbit was corrected periodically to provide a groundtrack repeatability to
within 1 km.

The primary purpose of this project is to perform a “repeat” or “collinear” track
analysis. This analysis requires sorting the data into collinear tracks, correcting the sea
surface heights for various measurement errors and regridding the along-track data to a
common grid. We developed generalized programs to read and assimilate the data into
a usable data set. These programs were developed on a Sun Workstation!, but could
be easily ported to other computer systems.

Since GEOSAT does not have an onboard sensor to measure the effects of water
vapor, two separate estimated water vapor corrections are supplied with the data. One
alternative used here is the first Special Sensor Microwave/Imager (SSMI), launched in
June 1987 aboard a Defense Meteorological Satellite Program spacecraft. The SSMI
senses brightness temperatures. From those brightness temperatures environmental
parameters such as wind speed and water vapor can be derived (Hollinger et al. 1987).

We decided to write several simple programs to read in the binary data tapes,
format the data and write out the ASCII equivalents. We also worked out a naming
convention to facilitate the storage and-retrieval of individual subtracks. Programs
were also written for repeat track analysis and to interpolate the data to a uniform
latitude/longitude grid. These programs were designed with mesoscale motions in mind.
However, since the programs are modular, users can easily use their own orbit and geoid
corrections to study basin scale problems. We left programs that interpret the data for
implementation by the individual users.

Section 2 describes the GEOSAT geophysical data record (GDR) and section 3
describes the SSMI data record. Section 4 illustrates the approach to handling the
expansive data set and section 5 describes the programs and subroutines developed to
handle the GEOSAT data along with explanations of input and output data. Section
6 describes the use of these programs to perform a repeat track analysis of a section of
the North Atlantic from 22° N to 48° N and 284° E to 316° E. The appendices contain
UNIX2-style manual pages, program and subroutine listings and UNIX shell scripts
described throughout the text.

!Sun Workstation is a registered trademark of Sun Microsystems, Inc.
2UNIX is a trademark of AT&T Bell Laboratories

2 Geophysical Data Record GDR

The raw altimeter data are collected at the Johns Hopkins University Applied Physics
Laboratory (JHU/APL) and are processed by the National Oceanographic and Atmo-
spheric Administration (NOAA). The data are merged with ephemerides and corrections
are added for tides and refractions (Cheney et al. 1987.) The National Ocean Data Cen-
ter (NODC) in Washington, D.C. distributes the user handbook(Cheney et al. 1987)
and the completed GDR which is available on tape.

Table 1 shows the parameters contained in each GDR. The parameter column
contains the names. used in the user handbook and the abbreviation column contains
the names used for each parameter in the programs and in the text.

The first 5 items are stored as 4-byte integers. Parameters ufc and utcm contain
the time of the record since the 00:00 UTC, 1 Jan. 1985. The time of the record
may be calculated by ¢ = utc + utem x 10~8. The parameters Lat and Lon contain the
latitude and longitude in microdegrees. A positive latitude is north of the equator and
the longitude is measured east of the Greenwich meridian. The satellite orbit height,
Orb, is given in mm above the reference ellipsoid.

The next 29 parameters are stored as 2-byte integers. The first of these parameters,
m-h, is the average sea surface height of the record given in cm above the ellipsoid. The
standard deviation of the heights used to calculate m_k is s_h . The height of the geoid
above the ellipsoid in cm is Geoid. The measured 10-per-second sea surface heights
used to calculate m_h are hf1]-h[10]. The average significant wave height in cm is swh
and s.swh is the standard deviation of the measurements used to determine swh. The
backscatter coefficient, s_naught is computed aboard the spacecraft in 0.01 dB. The
automatic gain control, agc, is also determined aboard the spacecraft and s-agc is the
standard deviation of the measurements used to determine agc. The height offset used
for all measurements over land is k-off . The correction to m_h for the solid earth tide
is sol tide and the correction to m_h for the ocean tide is oc_tide. The correction to
m-h to account for the time delay caused by water vapor in the troposphere, wet_fnoc,
is derived from the Fleet Numerical Oceanographic Center (FNOC) NOGAPS model.
An alternative correction for the water vapor is given as wet.smmr. The correction for
the dry troposphere is given as dry_fnoc. A correction for the altimeter time delay due
to molecules in the troposphere is given by dry_fnoc, which is also calculated from the
FNOC NOGAPS model. The correction resulting from free electrons in the ionosphere
is given by iono_gps. Two corrections are also given for height bias. The correction
dh_swh is from a combination of significant wave height and attitude bias and dh_fm
is due to compression of the altimeter pulse. The final parameter, att is the off-nadir
satellite orientation angle. See the GEOSAT Altimeter GDR User Handbook (Cheney
et al. 1987) for more information and references for these parameters.

3 SSMI Data Record

The raw SSMI data were collocated with the GEOSAT subtrack by Wentz [1989]. The
collocated SSMI data records are at 10 second intervals and consist of 12 bytes as
described in table 2. A wind speed value of 45 denotes no wind data available due to
rain and a columnar water vapor value of 10 denotes no vapor data available due to
rain. '

~ Geophysical Data Record Contents

Item Parameter Abbreviation Units Range Bytes
1 UTC utc Seconds 0 to 2% 4
2 UTC(cont’d) utem Micro Second 0 to 1E6 4
3 Latitude lat | Micro Degrees | +/- 7.21E7 4
4 Longitude lon Micro Degrees 0 to 360ES8 4
5 Orbit orb Millimeter TES8 to 9E8 4
6 H m.h Centimeter +/- 32766 2
T Sigma-H{og) s.h Centimeter 0 to 32766 2
8 Geoid geoid Centimeter +/- 1.5E5 2
9 H(1) h[1] Centimeter +/- 32766 2
10 H(2) h[2] Centimeter +/- 32766 2
11 H(3) h(3] Centimeter +/- 32766 2
12 H(4) hf4] Centimeter +/- 32766 2
13 H(5) h(5] Centimeter +/- 32766 2
14 ~ H(6) h[6] Centimeter | +/- 32766 2
15 H(7) k(7] Centimeter +/- 32766 2
16 H(8) h(8] Centimeter +/- 32766 2
17 H(9) h[9] Centimeter +/- 32766 2
18 H(10) h[10] Centimeter +/- 32766 2
19 SWH swh Centimeter 0 to 2E3 2
20 | Sigma SWH(0o,us) s.swh Centimeter 0 to 2E3 2
21 Sigma.naught(o,) s-naught 0.01 dB 0 to 6.4E3 2
22 AGC age 0.01 dB 0 to 6.4E3 2
23 | Sigma-AGC(cacc) s_agc 0.01 dB 0 to 6.4E3 2
24 Flags 2
25 H Offset h_off Meters 0 to 5.4E4 2
26 Solid Tide sol.tide Millimeter +/- 1000 2
27 Ocean Tide oc_tide Millimeter +/- 10000 2
28 Wet (FNOC) wet_fnoc Millimeter 0 to -1000 2
29 Wet (SMMR) wet_smmr Millimeter 0 to -1000 2
30 Dry (FNOC) dry-fnoc Millimeter | -2000 to -3000 2
K31 Iono (GPS) iono_gps Millimeter 0 to -500 2
32 dh (SWH/ATT) dh_swh Millimeter +/- 9999 2
33 dh (FM) dh_fm Millimeter +/- 999 2
34 Attitude att 0.01 Degree 0 to 200 2

Table 1:
SSMI Data Record Contents
Item | Parameter Units Range Bytes
1 Time Seconds | 0 to 2% 4
2 Latitude Degrees - 2
3 Longitude Degrees - 2
4 Encoded Data - See table 3 4
Table 2:

SSMI encoded data description
Item Parameter Abbreviation | Range | Units

1 Data flag i 0to3 | 0- Over ocean
1 - No orbit altitude information
2 - Over land
3 - Over sea ice

2 Wind speed ws - ms~1

3 Columnar water vapor vp - gr-cm=?

4 Columnar cloud cl - gr-cm™2

water vapor -
5 Rain rate rn - mm - hr~1
‘Table 3:

4 Data Handling

In this text, the data received from NODC is referred to as “raw” and should not be
confused with the data received directly from the satellite JHU/APL. Each data tape
contains approximately 34 days of data for a total of more than 120 Megabytes so that
it is impractical to keep all available data on disk.

Since these programs were developed to analyze mesoscale features, the data is split
from the raw sequential input data into regional areas. The repeat analysis required
developing an orbit numbering scheme to identify collinear orbits. This scheme separates
the GDRs into ascending and descending orbit segments starting and ending at the most
northern and most southern point of an orbit. An orbit is defined to be the combination
of the ascending and descending segments beginning with the descending segment. A
segment is defined as any part of a complete orbit. These orbits were numbered from
0 to 243 with zero being the first orbit on the first NODC data tape. Since the orbits
repeat every 17.05 days, the orbits were also named by the repeat cycle from which they
were extracted. A repeat cycle is defined as the combination of all orbits beginning with
0 and ending with 243. The cycles are also numbered consecutively starting with zero.

The resulting files are named cmmm.dnnn for descending orbit nnn and cmmm.annn
for ascending orbit nnn from repeat cycle mmm. Table 4 shows the naming conventions
used in this report for the various files created during analysis.

Naming conventions
Convention Example Description
cmmm.annn c002.a088 Raw GEOSAT binary files
cmmm.annnc ¢002.a088¢ Cleaned and corrected GEOSAT binary files
cmmm.annncs c002.a088cs Cleaned, corrected and regridded
GEOSAT binary files
cmmm.annncsT | c002.a088cs.r | Residuals from repeat analysis, ASCII format

annncs-m a088cs.m Mean and variability for repeat analysis, ASCII
format ’
cmm.annnasc c002.a088asc | ASCII file containing extracted data
Table 4: |

One alternative orbit numbering method is based on the longitude where the orbit
crosses the equator. This method, however, does not convey the order of each or-

bit in time. Orbit c010.a045 passes the Gulf Stream approximately three days before
c010.a088. Knowing the equatorial crossing of an orbit segment can be useful in quickly
locating an orbit in space relative to another orbit or for comparing results with other
numbering methods. A program was written to convert the sequential numbering to
the equatorial numbering.

5 Programs and Subroutines

This section contains descriptions of programs and subroutines used to analyze GEOSAT
data. In the examples given, the UNIX prompt is represented by a percent sign “%”.

Most programs were designed to read and write the standard 78-byte GEOSAT
GDR so that the output from one program may be used as the input for another. Pro-
grams are also simple and single-purpose. Instead of a program that removes spurious
data points and applies orbit corrections, one program is used to apply the corrections
and one program is used to remove unwanted data. This allows quick code modifications
and substitutions. An alternative program to compute orbit corrections can be directly
substituted for the supplied correction program. A single multi-purpose program would
require major modifications to implement the new corrections.

Several programs were designed to read or write ASCII data for use with existing
plotting packages and display programs. ASCII data allows users to choose their own
display programs. One program which reads ASCII data was designed to interface di-
rectly with the high resolution color graphics capabilities of the Satellite Data Processing
System (SDPS)(Caruso and Dunn, 1989) developed at the Woods Hole Qceanographic
Institution. Complete UNIX style manual pages for all programs are included in ap-
pendix A.

Most programs have a single input file, a single output file and accept command line
arguments as needed. This allows the output of one program to be piped into the input
of another program. The simple and modular design of these programs allows users to
combine programs to customize more complex programs. Several scripts were written
for the UNIX shell (a command line interpreter)? to utilize this versatile feature. By
combining several commands into a shell script, a user can quickly modify the analysis
without changing program code and recompiling. For example, a simple shell script to
perform a repeat analysis would look similar to this:

#
foreach i (c??77.$1)
- echo $i
#
cat §i | g_cleanl | g_correct | g-clean2 >! tmp
(cat tmp | g-spike | g-spline 1 22 48 3.3 0.97992165 > “§i”c)
end
#
echo Performing repeat analysis.
grepeat “$i”c > mean.”$1”

This uses three routines to clean the data, one routine to apply the standard cor-
rections and one routine to spline the data onto an even grid for each cycle of a given

3Several shell programs are available. The examples given use the C shell.

orbit. Then the repeat analysis is done. The script takes as an argument the orbit
number.

%repeat.sh a002

The user could use a program to apply non-standard corrections by substituting
the program in the shell script.

#

foreach i (c?77.91)

echo $i

#

cat $i | g-cleanl | my_correct | gclean2 >! tmp

(cat tmp | g-spike | g.spline 1 22 48 3.3 0.97992165 > “$i”c)
end

#

echo Performing repeat analysis.

g-repeat “$i”c > mean.”$1”

5.1 GEOSAT Programs.

A list of available GEOSAT analysis programs is given in table 5 with a brief synop-
sis. More detailed descriptions of programs are listed below in alphabetical order. All
GEOSAT programs begin with g_ to help provide unique program names.

5.1.1 g-cleanl

This program is used to delete raw GEOSAT GDRs which contain obviously bad data.
This includes all records that have any of the following variables set to 32767: the
sea surface height, ha, and the corrections for earth tide, cet, ocean tide, cot, FNOC
wet, wet-fnoc, or dry troposphere, dry-fnoc, or the ionosphere, iono. Records are also
removed if the standard deviation, s_h, of the 10-per-second sea height values, A[1] -
h[10], is greater than 30 cm, or if the backscatter coefficient, s_naught, is greater than
35 dB. This program reads in a binary GEOSAT file and removes all bad records. The
number of bad records is printed along with the criteria for rejection. For example the
command

%cat c000.a002 | g-cleanl > c000.a002¢

produces:
g-cleanl: Valid points: 345
Rejected points: 16
Height: 0
Solid Tide: 0
Ocean Tide: 7
Wet FNOC: 0
Dry FNOC: 0
Iono: 0
Sigma Height: 14
Sigma Naught: 0
Flags: 15

List of GEOSAT programs

Program Description

g-cleanl Initial cleaning of raw GDRs

g-clean2 Secondary cleaning of GDRs

g-compress Compresses GDR to 18 bytes

g-correct Applies GDR suggested corrections to sea
surface height

g-crossnum Converts sequential orbit numbers to equatorial
crossing longitudes

g-date Prints start and end date for GDR segment

g-date2 Prints start and end date given cycle and orbit
number

g-ext Extracts one or more parameters from GDR and converts
to SI units

g-image Converts ASCIT GEOSAT data to a bitmap image.

g-interp Linearly interpolates to a specific grid

g-print Decodes GDRs and prints to a terminal

g-region Separates raw GEOSAT GDRs into sequential orbits
in a specified region

g-repeat Performs “collinear” or repeat track analysis
using a quadratic orbit correction

g-Tepeats Performs “collinear” or repeat track analysis
using a sinusoidal orbit correction

g-seporb Separates raw GEOSAT GDRs into sequential orbits

g-spike Removes data spikes from GDRs

g-spline Splines GDRs to a specific grid

g-uncompress Uncompressis 18 byte data record

g-which Prints orbit numbers in a given lat/lon box

Table 5:

This shows that a total of 16 records were rejected. Of those 16 records, 15 were
rejected because the flag records were bad, 14 were rejected because the standard de-
viation of the 10-per-second sea height values were greater than 30 cm. Seven were
rejected because the ocean tide value was set to 32767. By default, all records over land
are also rejected. This most likely accounts for the 15 records rejected because of a bad
flag value. This default may be changed to also remove all records over shallow water
by specifying the correct flag mask. Any of the available flags supplied in the GEOSAT
GDR may be tested. This is done by setting the UNIX environment variable GMASK:

%setenv GMASK 1--- - - - 0------ 00

where a means ignore this bit, a “0” means skip this record if this bit is not 0 and
a “1” means skip this record if ths bit is not 1. For more information, see the manual
page in appendix A. The results of this program are shown in figure 1.

« »

-30.0] | 1] 1 | 1] 1

-35.0 — —

XX X X X x % XXX

-40.0 —

-45.0 — —

Height Above Ellipsoid (m)

-50.0 — —

-55.0 1 | 1 - | 1 I I I i
45.0 40.0 35.0 30.0 25.0 20.0
Latitude

Figure 1: Raw sea surface heights plotted after running program gcleanl to remove
obviously bad data.

Compressed 18-byte Data Record Contents
Item Parameter Units Range Type

1 Time ms 0 to 1.47E9 long int (4-bytes)

2 Height cm | 0to 32767 short int (2-bytes)

3 Cycle 0... char (1-byte)

4 Latitude 10* Deg | 0 to 18E5 | unsigned int (3-bytes)
5 Longitude 10% Deg | 0 to 36E5 | unsigned int (3-bytes)
6 Sigma Height cm 0 to 255 unsigned char (1-byte)
7 SWH 5cm 0 to 255 | unsigned char (1-byte)
8 s-naught 0.1dB 0 to 255 | unsigned char (1-byte)
9 Flags char (1-byte)

10 Ocean Tide cm -128 to 128 char (1-byte)

Table 6:

5.1.2 g-clean2

This program is used to clean up records after g.clean! and g_correct have been used.
It simply removes data records with sea surface heights greater than 10000 cm and
less than ~14000 cm. This removes any obvious outliers that may interfere.with other
analysis programs such as g_spline. As in g_cleanl, a total of rejected points is printed.
The command

%cat c000.2002 | g-clean2 > ¢000.a002c

produces:
g-clean2: Rejected points: 0
Maximum Height: 0
Minimum Height: 0
In this case, file c000.a002 is the output from g_clean! and g.correct.

5.1.3 g-_compress / g-uncompress

This is a set of programs designed to compress the standard 78-byte GDR to 18 bytes
by reducing precision and removing less important fields such as the 10-per-second
sea surface heights. The output is an 18-byte-per-record binary file and should be
uncompressed before using any of the other analysis programs. These programs were
designed for storing as much meaningful data as possible on limited systems. The format
of the compressed 18-byte record is given in table 6. The time variable stored is the
time since the start of a000 for each cycle. The other variables are the same as for the
full GDR except with reduced precision.

5.1.4 g._correct

This program allows the user to apply one or more of the suggested corrections to the
sea surface height value of each record. All suggested corrections are optional and are
applied by default. An example of applying all corrections would be:

%g-correct < c000.a002 > ¢000.a002¢

In this example, the file c000.a002is the output from g_cleani. The output file c000.a002¢
has the same format as the original GDR, but the height field now contains the following

corrections:
h = h — sol_tide — oc_tide — wet_fnoc — dry_fnoc — iono_gps — inv_bar

where the corrections are supplied in the GDR (table 1) except for inv_bar which is

given as follows:
inv_bar = —-9.948(p — 1013.3)

and
dry_fnoc

P = [22277) {1 + [0.0026 cos (2LAT)]}

Individual corrections may be applied by specifying the abbreviation on the command
line,

%g-correct cet cot < ¢000.a002¢c > ¢000.2002¢c
This would apply the corrections for the earth tide and the ocean tide supplied with
the GEOSAT GDR. The list of available abbreviations is given in table 7 and in the
manual page in appendix A. These abbreviations also correspond to the abbreviations
for g.ezt. The corrections for a section of c000.a002 are given in figure 2.

Description of variables for program g_correct
Abbreviation Description
cet correction for earth tide in m
cot correction for ocean tide in m
cwf correction for wet troposphere fnoc
CWS correction for wet troposphere smmr
cdf correction for dry troposphere
ci correction for ionosphere
cib correction for inverse barometric effect

Table 7:

5.1.5 g_crossnum

This program finds the longitude where a given orbit crosses the equator. This program
was designed to convert sequential orbit numbers to equatorial crossing numbers. The
program may be used in two ways. First, the specific orbit can be specified:

%g-crossnum a002
306.43

Second, the program may be given a GEOSAT GDR:

%g-crossnum < c000.a002
306.43

10

0.50 L l 1 I] l 1 l 1 . I 1
- \’_\ cot p—
ci
0.00 — et —
— — — cwt

i — e cib B

— —0-50 - [

g _ _
-
=

= =1.00 =
Q
Q

St - »
<)

o .

© _1.50 - - =

-2.00 - | =

) ~ cdf i

—2050 t I | I 1 I 1 I 1 I 1

45.0 40.0 35.0 30.0 25.0 20.0 15.0
Latitude

Figure 2: Corrections from a section of orbit c000.a002. Cot is for the ocean tide; ci is
for the ionosphere; cet is for the earth tide; cwfis for the FNOC wet troposphere; cib is
for the inverse barometric effect and cdf is for the FNOC dry troposphere.

11

5.1.6 g date

This program prints the start and end date and time of a GEOSAT GDR segment. The
program prints the uic value from the GDR, the date, the day of year, the Julian day
and the day of the cycle.

%cat c053.2002 | g.date
UTC: 136497764.05
Date: 4/28/89 20:02:44
Day of year: 118
Julian: 1753685

Day of cycle: 0

UTC: 136498110.94
Date: 4/28/89 20:08:30
Day of year: 118
Julian: 1753685

Day of cycle: 0

5.1.7 g-date2

This program is similar to g_date except that it takes the orbit and cycle numbers as
arguments. The program prints the approximate beginning and ending times of the
specified orbit.

%g-date2 053 002
UTC: 136492860.00
Date: 4/28/89 18:41:00
Day of year: 118
Julian: 1753685

Day of cycle: 0

UTC: 136498897.00
Date: 4/28/89 20:21:37
Day of year: 118
Julian: 1753685

Day of cycle: 0

5.1.8 g_ext

This program was written to convert and extract one or more parameters in a GEQSAT
GDR to ASCII format. It converts all parameters to SI units. To create an ASCII file
of the latitude, longitude and uncorrected sea surface heights, the following command
would be given:

%g-ext 1L ha < c000.2002 > c000.2002asc

where ¢000.a002 is a file containing GDRs in binary format and c000.a002asc is the
ASCII output from g.ert. This program allows the user to use almost any plotting
package to display the data. For example, the command

%g-ext 1 w < ¢000.a002 | graph -g 1 -x 45 20 -5

12

uses the standard UNIX plotting utility graph to plot the significant wave height for
orbit number 002 in cycle 000 over the Gulf Stream for figure 3. Compare this with the
clean data plotted after using g_clean! in figure 1 to see how obviously bad points can
be removed. The complete list of abbreviations is given in table 8 and in the manual
page in appendix A. Figures 4 and 5 are examples of other fields that may be extracted
and plotted using more sophisticated plotting packages.

Description of variables for program g-ext
Abbreviation Description
t time in seconds since equator crossing
of orbit ¢000.a000
1 latitude in degrees
L east longitude in degrees
ho orbit height above ellipsoid in m
ha sea surface height above ellipsoid in m
sha sigma ha
hg geoid height above ellipsoid in m
w significant wave height
SW sigma w
S0 backscatter coefficient in 0.01 dB
ag agc in 0.01 dB
sag sigma ag
il masked flags
HA “land surface height offset above ellipsoid
cet correction for earth tide in m
cot correction for ocean tide in m
cwf correction for wet troposphere fnoc
cwWs correction for wet troposphere smmr
cdf correction for dry troposphere
ci correction for ionosphere
b attitude bias
be compression bias
att attitude
cib correction for inverse barometric effect .
h corrected sea surface height above ellipsoid
dh corrected sea surface height above geoid
Table 8:

5.1.9 g_image

This program converts ASCII GEOSAT data in the form latitude, longitude and z to a
bitmap image. An example of Gulf Stream variability calculated from the repeat track
analysis using ascending orbits is shown in figure 6. The coastline and grid overlays on
this figure were generated using SDPS.

This program takes six parameters, the minimum latitude and longitude, the max-
imum latitude and longitude and the number of rows and columns in the output image.
The following was used to generate the image in figure 6:

13

|
45 -x—- 20 -200 -y- 600

Figure 3: An example of using g-ezt to extract raw sea surface heights. The UNIX
utility graph was used to plot this figure.

14

3'00 1 I 1 I 1 l 1 I 1

.50 — —

N
=)
=)
|

I

1.50 - ' | -

1.00 — -

Significant Wave Height (m)

0.50 — | -

0.00] 1 I 1 I 1 I 1 I I
45.0 40.0 35.0 30.0 25.0 20.0
Latitude

Figure 4: An example of using g_ezt to extract the significant wave heights for orbit
c000.a002 over the Gulf Stream.

15

-30.0 1 | I |] | 1 | 1

-35.0 —

-40.0 —

-45.0 -

-50.0 — —

Geoid Height Above Ellipsoid (m)

_55.0) I 1 r I | I I 1
45.0 40.0 35.0 30.0 25.0 20.0
Latitude

Figure 5: An example of using g_ezt to extract included geoid heights for orbit c000.a002
over the Gulf Stream.

16

%cat a*cs.m | cut -f2,5 | g-image 22 48 284 316 416 512 > vara.sdpsf

The input is all the output files from g_repeat for each orbit in the region. The
command cut is a standard UNIX command and illustrates how these programs are
designed to be used with existing commands. The output image has 416 rows, 512
columns and is on an equirectangular grid 22N, 284E to 48N, 316E. This image is in
SDPS floating point format and may be converted to byte format for display using the
SDPS routine sdps._ftb:

%cat vara.sdpsf | sdps_ftb > vara.sdps

5.1.10 g_interp

This program is used to regrid the GEOSAT data to a common grid by linearly interpo-
lating between supplied data points. All variables in the GDR are interpolated except
the 10-per-second sea surface heights and the data flags since these fields are no longer
meaningful to the regridded data. The output is regridded so that at least one value
is positioned on the equator. This ensures that segments from areas that overlap, i.e.
10° N to 40° N and 25° N to 50° N, can be directly compared. The output file contains
complete segments in GDR. format.

Input segments should be cleaned and corrected and five arguments are required
by the program:

%cat c000.a002 | g-interp dir min maz gap delta_t > c000.2002¢

where dir is 1 for an interpolation bounded by a minimum and maximum latitude and
2 for an interpolation bounded by a minimum and maximum longitude (see g_region
section 5.1.12). A gap is the maximum time between good segments. The program does
not spline across gaps, but labels the points as bad (32767). Gaps and incomplete cycles
are filled to the boundaries defined by min and maz with the correct latitude. The time
between interpolated points is delta_t. One point is placed on the equator crossing and
subsequent points are splined delta_t seconds apart. There are no default parameters.
An example for the Gulf Stream region is:

%cat ¢000.a002 | g-interp 1 22 48 3.3 0.97992165 > c000.a002¢

Here, the data is interpolated between 22° N and 48° N. If the segment has more than 3.3
seconds of missing data, it is considered to be a gap. The output points are interpolated
to be 0.97992165 seconds apart, which is the same spacing as the raw GDRs.

5.1.11 g_print

This program decodes each GEOSAT GDR and prints the variables to a terminal. An
example of the output is shown below:

17

The grey shades represent

ted using g-image

image genera

An example of an

6

Figure

ing SDPS

d us

ai

lines were over!

lity and the coast

iabi

ight var

the sea surface he

18

Record Number: 1

utc : 58939389 utcm : 203366
lat : 22017008 lon : 300236639
orb : 789454644

m-h : -5353 s-h : 4
geoid : 4872

h(1] ¢ -b349 h[2] : -5348
h[3] 1 -5349 h{4] : -5348
h[5] : —b349 h{6] : -5349
h[7] . -5358 h[8] : -5365
h{9] : -5359 h[10] : -5359
swh : 253 s.swh : 11
s-naught : 1088

age : 2664 s-agc : 2

flags (0-15 right to left): 0000010000000011

h_off : 0

sol.tide : 188 oc_tide : -177
wet_fnoc : -252 wet_smmr : ~242 dry_fnoc : —2325
iono_gps : -16

dh_swh : 38

dhfm 30

att : 74

where the units and names correspond to those given in table 1.

5.1.12 g_region

This program reads raw GEOSAT GDRs and separates them into individual ascending
and descending orbits and extracts data from a user-specified region. The user may
specify two types of regions. The first type of region is bounded by latitude lines, and
the second is bounded by longitude lines. Figure 7 shows the ascending orbits extracted
from a data set over the Gulf Stream bounded by latitude lines.

The smaller box in fig. 7 shows the latitude/longitude boundaries given to the
program (22° N - 48° N, 284° E - 316° E). GDR segments were truncated at the
minimum and maximum latitudes, but not at the minimum and maximum longitudes.
This was done in order to keep reasonable ground track lengths in corners of the box
since short segments would be useless for repeat analysis. Note that all the orbits to
the right of the box actually extend until they intersect with the 22° N latitude line.
This particular region was extracted using the command:

%g-region 1 22.0 48.0 284.0 316.0 < raw_geo
To extract files directly from the NODC HP format tape:
%dd if=/dev/rmt8 ibs=16380 files=34 | g-region 1 22.0 48.0 284.0 316.0

This command would extract the region shown in figure 7 and separate the data
into ascending and descending orbits using the naming convention previously described
in section 4. Since orbits may be split between tapes or tape files, the data is appended

19

to any existing files. This provides complete segments even if an orbit is split between
data tapes or extracted data files. Since extracted regions do not have unique names,
files should be moved or deleted if additional regions are to be extracted from the same
tape. This prevents discontinuous regions from being appended together under the same

file name.

Optional orbit numbers may be specified on the command line. If orbits are given,
only the orbits which fall within the region are removed. To extract only orbits 002 and
088 the following command would be used:

%dd if=/dev/rmt8 ibs=16380 files=34 | g_region 1 22.0 48.0 284.0 316.0 2 88

5.1.13 g.repeat

This program performs a repeat track analysis of GEOSAT GDRs and assumes that
all the GDRs have been cleaned (g-cleani, g_clean2), corrected (g-correct) and splined
(g-spline) or interpolated (g-interp) to a uniform grid. It also assumes that each cycle
contains the same start and end points. The program reads in all available GDRs and
calculates the mean sea surface height for each grid point. If a sea surface height is set
to 32767, the point is assumed to be bad and is not used to find the mean. This mean
height profile, averaged over all cycles, is then subtracted from each individual track to
produce a residual sea surface height profile:

h(zi,t)— < h(z) >= y(=:,t) (1)

where z; is the location along the subtrack, ¢ is the cycle number, h(z;,t) is the cleaned
and corrected sea surface height profile, < h(z) > is the initial estimate for the mean
height profile, and %(z;,t) is the residual sea surface height. A quadratic function,
a(t)z? + b(t)z: + c(t), is calculated for each residual height for each cycle t using a least
squares fit which minimizes:

& = 3 {#(est) - [a0)ed + b(t)zs + (8]} (2)

This quadratic estimate of the orbit error is removed from the residual height for each
cycle to obtain a new residual height, Z, where

2zit) = §lzirt) ~ [aa(t)ed + by + er(t)] 3)

The variance, o2, of all the height residuals Z for each subtrack is calculated by:
o?(z;) = Z(z;, t 4
=) = 37 2 Z{ (26, 1)) 0

where N (z;) is the number of good data at the point z;. A second quadratic, weighted
by the inverse of the variance, is fit to the residual Z to minimize:

e = i {5(z:t) - [a2(t)2? + ba(t)e: + cz(t)]}2 aT(lz.—) . (5)

The resulting quadratic orbit error estimate is then removed from each profile to obtain
a corrected height profile:

h(zi,t) = h(=:,t) = [az(t)e] + by(t)i + ca(t)] (6)

21

and the geoid profile, g(z;), is calculated by averaging the corrected height profiles,
< h(zi,t) >.gegingrou The sea surface height residuals are calculated for each cycle:

R'(z;,t) = h(zi,t) — g(z:) (1)

and written to separate files based on the input file names. The geoid and sea surface
height variability are also printed. Typically, the program is called using “*” or “?”
wildcard file specifications:

%g-repeat c*/c*.a002¢c > a002cs.m

or

%g-repeat c???/c?7?7.a002¢c > a002cs-m
The file a002cs-m contains the following information in tab delimited columns:

z; lat(z;) lon(z;) g(z:i) o*(z) Tz2 N(z:)

where z; is a sequential counter of the points in the orbit section, lat(z;) and lon(z;) are
the latitude and longitude at z;, g(z;) is the estimated geoid, o%(z;) is the sea surface
height variability, 3 2? is the sum of the squares of the sea surface heights and N(z;)
is the number of cycles of good data found. '

The sea surface height residuals, h/(z;,t), are written to a file in the same directory
as the original raw data. The new file name is the same as the original with an _r ap-
pended to it, e.g., c000.2002 would become ¢000.a002.r. Each file contains the following
information:

z; lat(z.-) lon(:n,-) h’(z,-,t) f1(z.,;,t) fz(z,',t)

where z;, lat(z;), lon(z;) are the same as in the file described above; h'(z;,t) is the
corrected sea surface heights with the estimated geoid removed; fi(z;:,t) is the original
quadratic fit [ay(£)z? -+ by (t)2;+c1(t)] and fo(z:,t) is the weighted quadratic fit [a5(t)z? +
bz(t)z; + 62(t)].'

5.1.14 g_repeats

This program is identical to g_repeat, except that a sinusoidal orbit correction is used.
Here a sinusoidal estimate of the orbit error is removed from the residual height to
obtain a new residual, Z, where equation 3 becomes

3(z:,t) = §(as, t) - [alsin(g;—,f + 1) + ba] 8)

where t is the time of the GDR and T is the orbital period.
Similarly, equations 5 and 6 become

&= 3 {atest) - lnsinCGgt + 6+ bl 57 ©)
B(zi,t) = h(zi,t) — [azsin(ot +) +] (10)

The program is used the same as g_repeat using “*” or “?” wildcard specifications:

22

%g-repeat c¢*/c*.a002c > a002cs.m

or

%g-repeat c??7?/c???7.a002¢c > a002cs_m

Similarly, the file a002cs-m contains the following information in tab delimited
columns:

z; lat(z;) lon(z;) g(z:) o®(z) Y22 N(z)
The sea surface height residual files are similar to those created by g_repeat:
z; lat(z:) lon(z:) R'(zi,t) fi(zint) fo(z:,t)

except that fy(z,?) is the original sinusoidal fit a;sin(2F 2xt 1+ ¢y)+ by and Ja(z:,t) is the
weighted sinusoidal fit azsm(2nt o @2) + ba.

Figure 8 shows a comparision of the orbit corrections for both the quadratic and
sinusoidal fit. The solid line represents the initial correction and the dashed line repre-
sents the weighted correction. The initial corrections both peak at 33° N which is near
where the ground track crosses Bermuda. The weighted corrections are less influenced
by Bermuda, but clearly the quadratic is still influenced.

5.1.15 g-seporb

This program was designed to separate raw GEOSAT data into separate orbits and
number the files as described above. This is similar to g.region except that complete
orbits are extracted from the original data instead of partial orbits within specific re-
gions. The file naming conventions are consistent with g_region as described in section
4. To separate all orbits from the NODC HP format tape:

%dd if=/dev/rmt8 ibs=16380 files=34 | g_seporb

5.1.16 g_spike

This program was designed to remove data spikes from the data record. An example of
data spikes is given in figure 9. This is data that passes through g_clean1 and g.clean2
without being removed.

This type of point may cause overshoot problems when the GDRs are splined using
g-spline or may bias the repeat analysis. In any case, the data point is questionable and
should be removed.

This program filters spikes by fitting a quadratic functlon or polynomial to a set
of points in a least squares sense. Each orbit is split into contiguous segments where
a discontinuity is defined as a gap between data points of 3.3 seconds or more. A
polynomial is fit through each segment that contains at least 13 points. If a segment
contains less than 13 points, it is removed from the record. If the point in question is
more than 0.20 meters different from the quadratic fit, the two worst points are removed
and a second 11 point quadratic is fit. If the point is still more than 0.20 meters from
the polynomial, a straight line is fit through the data and the point is finally rejected if
it is more that 0.20 meters from the line. The plot in figure 9 shows the result of g_spike
for orbit c022.a160:

23

A R T g
(a4}
] i -
L)
S g
_ o 9
n::O
+ 0
o gy
i _-;-‘3::1
_ \ | =
\ S
IIIIIII
Te] o 0 (e Te]
© S 10 B ¥
(=) Q () (e (]
S T T g
o
' ')
O ..~
_ _gru-g
oo:j;_,
]
-
i _-E;cg
=
—
o o
~ - o
<t
i] 1 1

I
0
?

| |
0 =] =])
© @ Q ¥
o o o] (=
(ur) uomryoarao)

Figure 8: Orbit corrections of cycle c000, orbit 2088 for a quadratic fit (left) and a
sinusoidal fit (right). The solid line is the initial correction and the dashed line is the
weighted correction. .

24

_25.0'11.1.1'.1‘.
~30.0 —
~35.0 —
~40.0 -

—45.0 —

Sea Surface Height (m)

-50.0

—55-0 1 l 1 j 1 I 1 I ||
45.0 40.0 35.0 30.0 25.0 20.0
Latitude

Figure 9: An example of the effect g spike parameters have on data spikes for orbit
c022.a160 over the Gulf Stream offset for clarity. Line a results from the default pa-
rameters where 3.3 seconds data gap, 13 fit points and 0.20 meter tolerance; b results
from 3.3 second data gaps, 9 fit points and 0.50 meter tolerance.

25

%cat c022.a160c | g-spike > c022.a160cs

Since the default parameters are moderately restrictive, some data spikes may be
retained or some valid data points may be rejected. It is important to check the results
for spikes or missing data. The size of the data gap, the number of points and the height
difference between the spline and the point being tested may be specified to fine tune
the program:

%cat c022.a160 | g-spike 3.3 9 0.5 > c022.a160c

- This command would split the data into segments separated by 3.3 seconds or
more. The initial spline would contain 9 points and the second spline would contain 7
points. Each point would be rejected if it differed by more than 0.5 meters from each of
the splines described above. For some orbits such as @160, these parameters can retain
spikes (figure 9.) Although these spikes are negligible in the mean (figure 10), they can
be important in the height residual (figure 11).

5.1.17 g-_spline

This program will spline all the data in a given GDR except the 10-per-second heights
and the data flags to a uniform calculated latitude grid, which has at least one value on
the equator. This program is designed to be interchangeable with g.interp so the output
also contains complete segments and the input is assumed to be cleaned and corrected

GDRs. Also, the same 5 arguments are given on the command line and there are no
defaults:

cat c000.a002 | g_spline dir min maz gap delta_t > c000.a002¢

where dir is 1 for a spline bounded by a minimum and maximum latitude and 2 for a
spline bounded by a minimum and maximum longitude. Missing records are filled with
the correct latitude and data values are labeled as bad points (32767). Min and maz
are the minimum latitude or longitude to spline between. Gap is the maximum time in
seconds between continuous segments. The program does not spline across gaps, but
labels the points as bad. Delta-t is the interpolation time step. One point is placed on
the equator crossing and subsequent points are splined delta_t seconds apart. For the
ascending orbits shown in figure 7, commands similar to the following were used:

cat c000.a002 | g.spline 1 22.0 48.0 3.3 0.97992165 > ¢000.a002¢

The value of 0.97992165 was chosen to correspond to the actual separation of one-per-
second GDRs. .

26

o250 d— L0 0

~30.0 | —

-35.0 —

-40.0 —

—45.0 — —

Sea Surface Heights (m)

-50.0 —

_55-0 |] 1 | i I I I)
45.0 40.0 35.0 30.0 25.0 20.0
Latitude

Figure 10: An example of the effect data spikes have on the mean for orb%t ¢022.a160
over the Gulf Stream. Line a results from the default parameters and b results from
3.3 second data gaps, 9 fit points and 0.50 meter tolerance.

¥

27

1.00 1 I 1 I | | 1 I 1
Spike 1 _
0.80 —
~—~ 0.60 — L
g I | -
‘8 0.40
= .
=1}
o pd - »
)
s 0.20 Spike 2 Spike 3 N
. .
«
S - -
go)
'm 0.00 — a —
Q
o] i i
1
-0.20 — —
-0.40 — .
i I 1 I i I I | L
45.0 40.0 35.0 30.0 25.0 20.0
Latitude

Figure 11: An example of the effect data spikes have on the residual for orbit ¢022.a160
over the Gulf Stream. Line a results from the default parameters and b results from
3.3 second data gaps, 9 fit points and 0.50 meter tolerance.

28

5.1.18 g_which

This program is designed to return all orbit numbers that cross within a specified
latitude/longitude box. The arguments given to the program are the minimum and
maximum latitudes and the minimum and maximum longitudes. To find all the orbits
which cross a box 22° N to 48° N and 284° E to 316° E, the following command would

be used:

g-which 22 48 284 316
With the following printout:

{2001,2002,d010,d011,a015,2016,d025,2030,2031,d039,d040,2044,
a045,d053,d054,a059,d068,a073,2074,d082,d083,a087,2088,d096,
d097,a102,d111,d112,a116,a117,d125,d126,a130,a131,d139,d140,
al45,a146,d154,d155,a159,a160,d168,d169,a173,2174,d182,d183,
al88,a189,d197,d198,a202,2203,d211,d212,a216,2217,d225,d226,
a231,a232,d240,d241}

If only a single latitude /longitude point is given, the program finds the closest ascending
and descending track and prints that:

g-which 30 280
d083,a103

5.2 SSMI Programs

A list of available SSMI analysis programs is given in table 9 with a brief synopsis.
More detailed descriptions are given below.

List of SSMI programs

Program Description

s_ext Extracts one or more parameters and converts to SI units

s-region Separates collocated SSMI records in sequential orbits in
a specified region

Table 9:

5.2.1 s_ext

This program is similar to program g_ezt except that it is designed to work on the SSMI
data record. Usage is similar to g.ezt. To extract the latitude, longitude and SSMI
water vapor correction, the following command would be given:

%s-ext 1 L cws < 5000.a002 > s000.a002asc

The complete list of abbreviations is given in table 10 and in the manual page in
appendix A. A comparison between the water vapor corrections given in the GEOSAT
GDR for a section of ¢015.a045 is given in figure 12.

29

-0.05 1 | 1] 1]] I] | 1
y
-0.10 — - —
L
— T || §
g .
~ -0.15 — t —
= |
o
= 1 — FNOC
3
8 -0.20 — —
=)
o
(&) A N
h?
S -0.25 — _—_ SMMR |
‘0
s i !
SSMI
-0.30 — .
| [I I 1 I 1 I I I)

45.0 40.0 35.0 30.0 25.0 20.0 15.0
Latitude

Figure 12: A comparison of the water vapor corrections from GEOSAT GDR. and
SSMI1

30

Abbreviation Description

t time in seconds since equator crossing
of orbit ¢000.a000

1 latitude in degrees

L east longitude in degrees

il flag indicating data characteristic

1 - Over ocean
2 - No orbit altitude information

3 - Over land
4 — Over ice
ws wind speed in ms~!
vp columnar water vapor in kg m~2
c columnar cloud vapor in kg m~2
rn rain rate in mm hr—1!
CWS SSMI correction for water vapor in meters

Table 10: Description of variables for program s_ext

5.2.2 s_region

This program is similar to g-region except that it is designed to extract regions from
SSMI data records. The orbits are numbered exactly the same as in g.region. The
output cycles are also named the same except that the cycle numbers are preceded by

an “s” instead of a “c”. The program takes the first five arguments from g_region. To

extract the area shown in figure 7, the following command would be given:

%s_region 1 22.0 48.0 284.0 316.0 < raw_ssmi
The output file named s000.a002 would correspond to the GEOSAT file c000.2002.

5.3 Subroutines

A list of the subroutines developed for this project is given below with a brief synopsis
of each routine.

5.3.1 geo_cyc-orb
This subroutine returns a cycle and orbit number for a given time. The subroutine is
called:

-' geo_cycorb(time, &cye, &orb)
where time is double precision and cyc and orb are integers. This can be used by any
program that needs to know the cycle and orbit number for a given record, by passing
the time variable in that record.

5.3.2 geo_error

This is a subroutine that is called to print out common error messages. The subroutine
is called:

geo_error(num, str)

31

where num is the number of the error to print and sir is the name of the program calling
geo_error. The current messages are:
Number Message

0 Unrecoverable error
1 c???.[ad]???

2 Error reading file

3 Error writing file

5.3.3 geo_mask

This subroutine reads the UNIX environment variable GMASK if it is available and
converts it to an integer. GMASK is used to indicate to various programs which GDR
flags should be checked and which flags should be ignored. See section 5.1.1 and A for
more details on the use of GMASK. The subroutine is called:

geo.mask(&mask, &valid)

where mask and valid are short (16-bit) integers. Mask is returned with its bits set to
1 for each 1 in GMASK. Valid is returned with its bits set to 1 for each 0 or 1 in
GMASK. See section 5.1.1 and A for more details on the use of GMASK.

5.3.4 geo_which

This subroutine performs the same function as the program g-which. It can be used by
any program that needs to determine which orbit numbers fall within a given latitude-
longitude box. The subroutine is called:

geo-which(min_lat, maxlat, minlon, max lon, a, d)
where min_lat, maz.lat, min_lon and maz_lat are the boundaries of the region, a and d
are unsigned character arrays that are returned. The arrays a and d have 244 elements,
one for each orbit. Each will be returned with a 1 in the element that corresponds to
an orbit that passes through the specified box. Otherwise, the program returns a 0 in
that element. Thus, if orbit a002 passes through the given region, a[2] = 1.

6 Repeat Orbit Analysis

The programs described in section 5 were written to facilitate repeat orbit analysis. This
section describes how these programs were used in conjunction to analyze a section of
North Atlantic covering the Gulf Stream. The area of interest, 22° N to 48° N, 284° E
to 316° E, is shown in figure 7, and is restricted to the ascending orbits. The analysis
could also be performed for the descending orbits in a similar manner. The shell scnpt
in appendix C shows how these programs may be used together.

32

To perform a repeat analysis, the GDRs must first be removed from the data tape
-with the following command:

%dd if=/dev/rmt8 ibs=16380 files=34 | g-region 1 22.0 48.0 284.0 316.0 2 88

This extracts all the ascending and descending orbits within the specified region and
places them in the current directory following the naming convention described in sec-
tion 4. For the first GEOSAT tape, the directory listing is as follows:

c000.a001 c000.a145 <c000.d053 c000.d197 c001.a074 <c001.a216 <c001.d126
c000.a002 c000.a146 c000.d068 c000.d198 c001.a087 <¢001.a217 c001.4139
c000.2015 ¢c000.a159 c000.d082 c000.d211 <¢001.a088 c001.a232 ¢001.d140
c000.a016 c000.a160 c000.d083 c000.d212 <c001.a102 <c001.d010 c001.d154
c000.a030 c000.a173 c000.d096 c000.d225 ¢001.a116 ¢001.d011 <001.d155
c000.a031 c000.a174 c000.d097 <¢c000.d226 ¢001.a117 ¢001.d025 <001.d168
c000.a044 ¢000.a188 c000.d111 ¢c000.d240 ¢001.a130 ¢001.d039 <001.d169
c000.2045 c000.a189 c000.d112 c000.d241 c001.a131 ¢001.d040 ¢001.d182
c000.2059 c000.a202 c000.d125 c001.a001 c001.a145 ¢001.d053 ¢001.d183
c000.a073 c000.a203 c000.d126 c001.a002 c001.a146 c001.d054 c001.d197
c000.a074 c000.a216 <c000.d139 c001.2015 <¢001.a159 <¢001.d068 <001.d198
c000.a087 c000.a217 c000.d140 c001.a016 c001.a160 c001.d082 c001.d211
c000.a088 c000.a231 c000.d154 <¢c001.2030 <¢001.a173 ¢001.d083 ¢001.d212
c000.2102 c000.a232 c000.d155 <c001.a031 c001.a174 <¢001.d096 c001.d225
c000.2116 c000.d010 c000.d168 c001.a044 <¢001.a188 ¢001.d097 ¢001.d226
c000.a117 c000.d025 c000.d169 c001.a045 ¢001.a189 ¢001.d111 <001.d240
c000.2a130 c000.d039 c000.d182 c001.a059 c001.a202 c001.d112 <¢001.d241
c000.a131 c000.d040 c000.d183 c001.a073 ¢001.a203 <¢001.d125

These files should then be moved into subdirectories named with the cycle number:

c000 ¢c005 c010 c015 <020 <c025 c030 c035 c040 c045 <050
c001 <c006 <c011 ¢016 <021 026 c031 <036 <041 c046 051
c002 c007 c012 c017 022 <027 032 <037 c042 c047 c052
c003 c008 <013 <c018 <023 <028 <033 <c038. c043 c048 <053
c004 c009 c014 <c019 c024 <c029 c034 <039 c044 049

The GDRs must then be cleaned, corrected and regridded. Data anomalies such as
spikes or gaps should also be removed.
Following the shell script step-by-step, the GDRs are first cleaned and corrected
using default values and stored in a temporary file tmp:
cat ¢000/c000.2002 | g-cleanl | g_correct | g-clean2 >! tmp
This temporary file is then cleaned of any remaining spikes and splined to a uniform
grid and stored as a new file:
(cat tmp | gspike | g-spline 1 22 48 3.3 0.97992165 > c000/c000.2002c)
These two steps are repeated using the foreach command for each cycle until all
_ cycles are processed. Then the repeat analysis is performed:
g-repeat c*/c*.a002c > means/mean.a002c

G-repeat automatically writes the residual files to the same directory as the input
clean files and appends an _r to the end of the filename. The output file mean.a002¢
contains the geoid and variability of the orbit a002.

33

Acknowledgements
The authors would like to thank Dr. Kathryn Kelly for her advice on algorithm devel-
opment, Dr. Robert Beardsley for his support of this project and Debbie Barber for her
suggestions on the text. Funding for this project was provided by the Office of Naval
Research under contract number N00014-86-k-0751.

34

References

(1] J. Hollinger, R. Lo, G. Poe, R. Savage, and J. Pierce. Special Sensor Mi-
crowave/Imager User’s Guide. Technical Report, Naval Research Laboratory, Wash-
ington, D.C., 1987.

[2] Robert E. Cheney, Bruce C. Douglas, Russell W. Agreen, Laury Miller, David L.
Porter, and Nancy S. Doyle. Geosat Altimeter Geophysical Data Record User Hand-
book. Technical Report NOS NGS-46, National Oceanographic and Atmospheric
Administration, July 1987.

(3] F. J. Wentz. User’s Manual: Collocated GEOSAT - SSM/I tape. Technical Re-
port RSS 083189, Remote Sensing Systems, Santa Rosa, CA, 1989.

[4] Michael Caruso and Chris Dunn. Satellite Data Processing System (SDPS) Users
Manual V1.0. Technical Report WHOI89-13, Woods Hole Oceanographic Institu-
tion, Woods Hole, MA, 1989.

35

A Manual Pages

This section contains the UNIX style manual pages for each of the programs and sub-
" routines listed in sections 5.1, 5.2 and 5.3.

36

GEOSAT(L) WHOI Local Commands GEOSAT(L)

NAME
geosat — Programs and subroutines for processing GEOSAT GDR files.

DESCRIPTION

This manual page describes the various programs available for processing GEOSAT
GDR files. These programs were developed at the Woods Hole Oceanographic Institu-
tion to simplify the handling of raw NODC data tapes. These programs were designed
to run under the 4.2/4.3 BSD UNIX operating system.

These programs were designed to take full advantage of existing UNIX commands
as well as the UNIX file system.

ORBIT INFORMATION

LABELING

The original data from NODC comes in 17 files that contain 14 or 15 complete
orbits each. These 17 files make a complete repeat cycle. To facilitate data han-
dling, these files are broken up into individual orbits which are further broken up to
an ascending component and a descending component. The ascending and descending
components are broken at the most northern and southern excursion of the satellite.
The resulting files are named: :

cnnn.dmmm for descending orbit mmm of repeat cycle nan
cnan.ammm for ascending orbit mmm of repeat cycle nan

By convention, orbit numbers mmm and cycle numbers nnn begin with 000 for the first
orbit and cycle on the first data tape sent out from NOAA which begins on November
8, 1986. Also, by convention, the ascending orbit follows the descending orbit. The
last point of an ascending or descending orbit is the most northern or most southern
point of that orbit.
PARAMETERS

The following parameters were used in the various programs listed below. These
parameters were computed by a least squares fit over cycles 000 and 001.

orbital period PERIOD 6037.5515 sec
repeat cycle 244*PERIOD 17.0504 days
distance between adjacent crossings 360/244 1.4754 deg
distance between successive crossings 17*360/244 -25.0820 deg
time of the equator crossing of ¢000.a000 58407697.82 sec
longitude of the equator crossing of ¢000.a000 356.58783 deg

Sun Release 4.0 Feb 22, 1989 37

GEOSAT(L)

WHOI Local Commands

LIST OF PROGRAMS

GEOSAT(L)

Name Manual Page Description

g-ext g-ext(l) Extracts GDR variables in ASCII format

g-cleanl g-cleani(l) Removes obviously bad data from GDRs

g-clean2 g-clean2(1) Removes bad data from corrected GDRs
g-compress g-compress(l) Compress GDRs to 18 bytes

g-correct g-correct(l) Applies suggested correction to GDRs

g-crossnum g-crossnum(l) Finds equator crossing of given orbit

g-date g-date(l) Prints start and end date for GDR segment
g-date2 g-date2(1) Prints start and end date for given orbit and cycle
g-image g-image(l) Creates an bitmap image of GEOSAT data
g-interp g-interp(l) Interpolates to an even grid

g-print g-print(1) Decodes GDRs to ASCII format

g-region g-region(1) Extracts a region from continuous GDRs

g-repeat g-repeat(l) Preforms repeat analysis on GDRs

g-seporb g-seporb(l)’ Separates continuous GDRs into asc & desc orbits
g-spike g-spike(1) Removes spikes from GDRs .
g-spline g-spline(l) Splines GDRs to an even grid

g-uncompress g-uncompress(l) Uncompresses 18 byte data record

g-which g-which(l) Prints orbit numbers in a given box

LIST OF SUBROUTINES

Name Description

geo-error Prints error messages to standard output.
geocyc.orb Returns cycle and orbit number for given GDR
geo_mask Reads environment variable GMASK
geo_which Returns arrays of orbits which cross an area.

BUGS

Please report bugs to mcaruso@aqua.whoi.edu or pierre@io.soest.hawaii.edu

AUTHORS

Mike Caruso

Ziv Sirkes

Woods Hole Oceanographic Institution
Woods Hole, MA 02543

Pierre Flament
Mimi Baker
University of Hawaii
Honolulu, HI 96822

38 . Feb 22,1989 Sun Release 4.0

G-CLEAN1(L) WHOI Local Commands G.CLEAN1(L)

NAME
g-cleanl - cleans GEOSAT GDR data

SYNOPSIS

g-cleanl

DESCRIPTION

This prog:é.m reads a binary GEOSAT file from stdin and removes data records with
one or more bad data flags, or if any of the following variables are set:

Variable Description ' Bad value
ha sea surface height above ellipsoid 32767cm
sha sigma ha >30cm
80 sigma naught (backscatter coef) >35dB
cet correction for earth tide 32767mm
cot correction for ocean tide 32767mm
cwf correction for wet troposphere fnoc 32767mm
+ cdf correction for dry troposphere 32767mm
ci correction for ionosphere 32767mm

The user may also specify which data flags are to be used. A record will be skipped
if the flag bits do not match the mask given by the environment variable GMASK.
This variable should contain a string of characters describing the flag bits from 0 to 15
from left to right. A “” means ignore this bit; a “0” means skip this record if this bit
is not 0; a “1” means skip this record if this bit is not 1. If the variable GMASK is
not set, the default mask “1 ----.- 0------ 0 0” is assumed, i.e., the data over
land is not printed. Examples of possible masks:
setenv GMASK 11--0000----- 00

will skip records over land and shallow water and for which the VATT is dubious;
setenv GMASK 00 ----- 0----- 00

will print the data over land only.

AUTHOR

Mike Caruso
Woods Hole Oceanographic Institution
Woods Hole, MA 02543

SEE ALSO
geosat(l)

Sun Release 4.0 Mar 3, 1989 39

G-CLEAN2(L) - WHOI Local Commands G.CLEAN2(L)

NAME
g-clean2 - cleans GEOSAT GDR data

SYNOPSIS

g-clean2

DESCRIPTION

This program reads a binary GEOSAT file from stdin and removes data records with
sea surface heights greater than 10,000 cm or less than -14,000 cm. Output is in
GEOSAT GDR format. The program assumes that corrections have been applied to
the data previously.

AUTHOR

Mike Caruso
Woods Hole Oceanographic Institution
Woods Hole, MA 02543

SEE ALSO
geosat(l) g_correct(l)

40 Mar 3, 1989 Sun Release 4.0

G_-COMPRESS(L) WHOI Local Commands G_-COMPRESS(L)

NAME

g_cbmpress, g-uncompress — compresses/uncompresses special 18-byte data record

SYNOPSIS

g-compress
g-uncompress

DESCRIPTION

These programs were designed to compress and uncompress a standard GDR to 18
bytes by reducing precision and removing less important variables. The format of the
18-byte record is given below.

Time ms 0 to 1.47E9 long int (4-bytes)
Height cm 0 to 32767 short int (2-bytes)
Cycle 0... char (1-byte)

Latitude 10% Deg 0 to 18E5 unsigned int (3-bytes)
Longitude 10* Deg 0 to 36E5 unsigned int (3-bytes)
Sigma Height cm 0 to 255 unsigned char (1-byte)
SWH S5cm 0 to 255 unsigned char (1-byte)
s_naught 0.1dB 0 to 255 unsigned char (1-byte)
Flags char (1-byte)

Ocean Tide cem -128 to 128 char (1-byte)

AUTHOR

Pierre Flament
Oceanography Department
University of Hawaii
Honolulu, HI 96822

SEE ALSO
geosat(l)

Sun Release 4.0 Dec 15, 1989 41

G-CORRECT(L) WHOI Local Commands G-CORRECT(L)

NAME
g-correct — corrects GEOSAT GDR data

SYNOPSIS .
g-correct [cot cet cuf cdf ci cib]

DESCRIPTION

This program reads a binary GEOSAT file from stdin and applies the following cor-
rection to the sea surface height.

ha(corrected) = ha - cet - cot - cwf - cdf - ¢i - cib
w'here

cib = -9.948 * (p - 1013.3)

and

p = cdf / ((-2.277)*(1. + (0.0026 * cos(2*latitude))))
using the following variables from the GDR.

Variable Description

ha sea surface height above ellipsoid
cet correction for earth tide

cot correction for ocean tide

cwf correction for wet troposphere fnoc
cdf correction for dry troposphere

ci correction for ionosphere

cib correction for inverse barometer

The proéra.m assumes that the input GDR has been previously cleaned up. The
default is to apply all corrections. By selecting one or more of the option arguments,
only those arguments given will be applied.
REFERENCE

Geosat Altimeter Geophysical Data Record User Handbook,

Cheney et al., NOAA Technical Memorandum NOS NGS-46, July 1987
AUTHOR

Mike Caruso
Woods Hole Oceanographic Institution
Woods Hole, MA 02543

SEE ALSO
geosat(l) gcleanl(l)

42 | May 12, 1989 Sun Release 4.0

G-CROSSNUM(L) WHOI Local Commands G.CROSSNUM(L)

NAME
g-crossnum - finds the orbit crossing for a sequential GEOSAT orbit

SYNOPSIS

g-crossnum [orbit]

DESCRIPTION

This program may be used in two ways. First, it can be called with an orbit number:
g-crossnum a002

Second, if no arguments are given, the program will read a GEOSAT GDR from stdin:
g-crossnum < ¢000.a002

The output is the approximate longitude of the orbit crossing at the equator. This is

useful for comparing sequentially numbered orbits with orbits numbered by equatorial
crossing.

AUTHOR

Mike Caruso
Woods Hole Oceanographic Institution
Woods Hole, MA 02543

SEE ALSO
geosat(l)

Sun Release 4.0 Mar 3, 1989 43

G_DATE(L) WHOI Local Commands G.DATE(L)

NAME
g-date — prints the start and end date of GEOSAT GDR data

SYNOPSIS
g-date

DESCRIPTION

This program reads a binary GEOSAT file from stdin and prints the date and time
of the first and last record in the file. The program also lists the Julian day, the year
day and the day of the cycle.

AUTHORS

Ken Borowski

Mike Caruso

Woods Hole Oceanographic Institution
Woods Hole, MA 02543

SEE ALSO
geosat(l) g-date2(1)

44 Mar 3, 1989 Sun Release 4.0

GDATE2(L) WHOI Local Commands G_DATE2(L)

NAME
g-date2 — prints the start and end date of GEOSAT GDR data

SYNOPSIS
g-date2 cycle orbit

DESCRIPTION

This program reads the cycle and orbit number from the command line and prints the
date and time of the first and last record of that orbit. The program also lists the
Julian day, the year day and the day of the orbit.

AUTHORS

Ken Borowski
Mike Caruso
Woods Hole Oceanographic Institution
‘Woods Hole, MA 02543
SEE ALSO

geosat(l) g-date(l)

Sun Release 4.0 Mar 3, 1989 45

G_EXT(L)

NAME

WHOI Local Commands G-EXT(L)

g-ext ~ extracts GEOSAT GDR data and prints variables in ASCII

SYNOPSIS
g-ext list

DESCRIPTION

This program reads a binary GEOSAT file from sidin and extracts the specified vari-
ables on sidout. The variable list may be a combination of one or more of the following
variables, in any order separated by spaces:

Variable

t

1

L
ho
ha
sha
hg
w
sw
so
ag
sag
f
HA
cet
cot
cwf
cws
cdf
ci
ba
be
att
cib
h
dh

Description

time in seconds since START_TIME
latitude in degrees

east longitude in degrees

orbit height above ellipsoid in m

sea surface height above ellipsoid in m
sigma ha

geoid height above ellipsoid in m
significant wave height

sigma w

backscatter coefficient in 0.01 dB

agc in 0.01 dB

sigma ag

masked flags

land surface height offset above ellipsoid
correction for earth tide in m
correction for ocean tide in m
correction for wet troposphere fnoc
correction for wet troposphere smmr
correction for dry troposphere
correction for ionosphere

attitude bias

compression bias

attitude

correction for inverse barometric effect
corrected sea surface height above ellipsoid
corrected sea surface height above geoid

A record will not be printed if any of the requested variables contains invalid data

(32767).

AUTHORS

Pierre Flament

Oceanography Department
University of Hawalii
Honolulu, HI 96822

Mike Caruso

46

Mar 3, 1989 Sun Release 4.0

G_EXT(L) WHOI Local Commands G_EXT(L)

Woods Hole Oceanographic Institution
Woods Hole, MA 02543

SEE ALSO
geosat(l)

Sun Release 4.0 Mar 3, 1989 47

GIMAGE(L) WHOI Local Commands GIMAGE(L)

NAME

g-image - Generates a bitmap image of GEOSAT GDR data

SYNOPSIS

g-image min_lat min_lon maz.lat mez_lon rows cols

DESCRIPTION

This program reads an ASCII file with the latitude, longitude and z value on one line
from stdin. The program writes an SDPS floating point file to stdout. For information
on converting this to a byte image see sdps-ftb(l). The output file is an equirectangular
image rows high by columns wide with coordinates from min_lat to maz_lat and min.lon
to maz_lon.

AUTHORS

Mike Caruso

Woods Hole Oceanographic Institution
Woods Hole, MA 02543

Pierre Flament

Oceanography Department

University of Hawaii

Honolulu, HI 96822

REFERENCE

Caruso, M. and C. Dunn, Satellite Data Processing System (SDPS) Users Manual V1.0,
Woods Hole Oceanog. Inst. Tech. Rept., WHOI-89-13, 1989

SEE ALSO

48

" geosat(l) sdps(l) sdpsutil(l) sdps_ftb(1)

Mar 3, 1989 Sun Release 4.0

GINTERP(L) WHOI Local Commands GINTERP(L)

NAME

g-interp - linearly interpolates the GEOSAT GDR data

SYNOPSIS

g-interp [dir min maz delimaz timestep]

DESCRIPTION

This program reads a binary GEOSAT file from stdin and breaks the data into con-
tinuous segments where a gap is defined by a gap of delimaz seconds between records.
This program is used to regrid the GDRs to a consistent latitude-longitude grid. The
algorithm was designed so that at least one point lies on the equator crossing and each
successive point is timestep seconds from the previous point. The program will fill gaps
with a calculated latitude and bad values (32767) for the longitude and height vari-
ables. Since not all orbits will be complete, the user also needs to specify a minimum
and maximum latitude or longitude with min and maz as well as the direction of the
boundary with dir. If dir is 1, the record is filled between a minimum and maximum
latitude and if dir is 2, the record is filled between the minimum and maximum longi-
tude. The program assumes that corrections have been applied to the data previously
and the data is free of abnormal values that appear as spikes.

AUTHOR

Mike Caruso
Woods Hole Oceanographic Institution
Woods Hole, MA 02543

SEE ALSO

geosat(l) g-correct(l) g-spike(l) g.spline(l)

Sun Release 4.0 May 26, 1989 49

G-PRINT(L) WHOI Local Commands G-PRINT(L)

NAME
g-print — Decodes GEOSAT GDR records in a lengthy format

SYNOPSIS
g-print

DESCRIPTION

This program takes GEOSAT GDR files and prints in a lengthy ASCII format. Each
parameter is printed in its raw format with an identifier to stdout. Of special note is
the data flags parameter. The flags are ordered as follows:

FEDCBA9876543210

where 0 is the zeroth flag bit and F is the fifteenth flag bit as listed in the GEOSAT
" Altimeter GDR User Handbook.

AUTHORS

Pierre Flament
University of Hawaii
Honolulu, HI 96822

Mike Caruso

Woods Hole Oceanographic Institution
Woods Hole, MA 02543

SEE ALSO
geosat(l)

50 Jan 16, 1989 Sun Release 4.0

G-REGION(L) WHOI Local Commands G-REGION(L)

NAME

g-region — Extracts a specified region from a GEOSAT GDR data set

SYNOPSIS

g-region dir min_lat maz_lat min_lon maz_lon [orb#]

DESCRIPTION

BUGS

This program reads a binary GEOSAT file from stdin, extracts a specified region
and separates the data into ascending and descending orbits that comply with the
naming conventions described in geosat(l) manual page. This program finds the data
that fall within the latitude-longitude box given by the parameters min_lat, maz_lat,
min_lon, maz_lon. I order to maintain reasonable orbit lengths, the program will clip
the orbits with either a constant latitude boundary, or a constant longitude boundary.
Therefore, orbits that would normally be clipped in the corners, are extended to either
the constant latitude or longitude boundary. The constant direction is chosen with the
parameter dir. If diris 1, the program extracts all data from that orbit that is between
min_lat and maz_lat. If dir is 2, the program extracts all data that is between min_lon
and maz_lon. If the optional orbit numbers are given, only those orbits that fall within
the given box are extracted.

This program can be used to extract data directly from the NODC data tapes:

dd if=/dev/rmt8 ibs=16380 files=34 | g_region-1 10.0 30.0 280.0 300.0

This program should only be used on complete orbits. It does not work on files that
have already been extracted using g_region or g_seporb.

AUTHOR

Mike Caruso
Woods Hole Oceanographic Institution
Woods Hole, MA 02543

SEE ALSO

geosat(l) g_seporb(l)

Sun Release 4.0 Jan 16, 1989 51

GREPEAT(L) WHOI Local Commands G-REPEAT(L)

NAME

g-repeat — performs a repeat analysis on GEOSAT GDR data

SYNOPSIS

g-repeat c??f.qczzz

DESCRIPTION

This program reads a binary GEOSAT file from each of the file names on the com-
mand line. The mean sea surface height is calculated for each point along the track
and subtracted from each cycle. A quadratic polynomial is fit to the difference and
subtracted from each cycle. The variance of the remainder is then used to calculate a
new quadratic fit. This polynomial is then removed from the original sea surface height
as an orbit error. The residual height for each cycle is written to a file with the record
number, the latitude, the longitude, the residual heights along with the two quadratic
polynomial. Also the statistics for each point are printed to standard output. This file
contains the record number, the latitude, the longitude, the mean and variance of the
corrected heights, the sum of the squared heights and the number of points used for the
statistics of each record. All heights are given in meters. The program assumes that
corrections have been applied to the data previously and the data has been splined to
a uniform latitude-longitude grid.

AUTHOR

Mike Caruso
Woods Hole Oceanographic Institution
Woods Hole, MA 02543

SEE ALSO

52

geosat(l) g-correct(l) g-spline(l) g-repeats(l)

May 26, 1989 Sun Release 4.0

G-REPEAT(L) WHOI Local Commands G-REPEAT(L)

NAME
g-repeats — performs a repeat analysis on GEOSAT GDR data

SYNOPSIS

g-repeats c??%.azzz

DESCRIPTION

This program reads a binary GEOSAT file from each of the file names on the command
line, The mean sea surface height is calculated for each point along the track and
subtracted from each cycle. A sinusoidal is fit to the difference and subtracted from
each cycle. The variance of the remainder is then used to calculate a new sinusoidal
fit. This polynomial is then removed from the original sea surface height as an orbit
error. The residual height for each cycle is written to a file with the record number, the
latitude, the longitude, the residual heights along with the two sine results. Also the
statistics for each point are printed to standard output. This file contains the record
number, the latitude, the longitude, the mean and variance of the corrected heights,
the sum of the squared heights and the number of points used for the statistics of
each record. All heights are given in meters. The program assumes that corrections
have been applied to the data previously and the data has been splined to a uniform
latitude-longitude grid.

AUTHOR

Mike Caruso
Woods Hole Oceanographic Institution
Woods Hole, MA 02543

SEE ALSO
geosat(l) g-correct(l) g-spline(l) g-repeat(l)

Sun Release 4.0 May 15, 1990 53

G-SEPORB(L) WHOI Local Commands G-SEPORB(L)

~NAME
g-seporb — separates raw GEOSAT GDR data into ascending and descending orbits

SYNOPSIS
g-seporb

DESCRIPTION

This program reads a binary GEOSAT file from sidin and separates the data into
ascending and descending orbits that comply with the naming conventions described
in geosat(l) manual page. This program can be used to separate data directly from the
NODC data tapes:

dd if=/dev/rmt8 ibs=16380 files=34 | g_seporb

BUGS
Input is expected to have at least two valid GDRs.

AUTHOR

Mike Caruso
Woods Hole Oceanographic Institution
Woods Hole, MA 02543

SEE ALSO
geosat(l) g-region(1)

54 Feb 22, 1989 Sun Release 4.0

G.SPIKE(L) WHOI Local Commands G.SPIKE(L)

NAME
g-spike — removes spikes rom GEOSAT GDR data

SYNOPSIS
g-spike [deltmaz neighbors outlier]

DESCRIPTION

This program reads a binary GEOSAT file from stdin and removes data records that
appear as spikes in the sea surface height. The program assumes that corrections have
been applied to the data previously. Deltmaz is the amount of time that constitutes a
gap between continuous segments (default is 3.3 seconds), neighbors is the number of
points to use for least squares fit to a quadratic polynomial (default is 13 points) and
outlier is the maximum acceptable deviation from the least squares fit (default is 0.20
meters)

AUTHOR

Mike Caruso
Woods Hole Oceanographic Institution
Woods Hole, MA 02543

SEE ALSO
geosat(l) g-correct(l)

Sun Release 4.0 Mar 3, 1989 55

G.SPLINE(L) WHOI Local Commands G.SPLINE(L)

NAME

g-spline - splines the GEOSAT GDR data

SYNOPSIS

g-spline /[dir min maz deltmaz timestep]

DESCRIPTION

This program reads a binary GEOSAT file from sidin and breaks the data into con-
tinuous segments where a gap is defined by deltmaz seconds between records. This
program is used to regrid the GDRs to a consistent latitude-longitude grid. The al-
gorithm was designed so that at least one point lies on the equator crossing and each
successive point is timestep seconds from the previous point. The program will fill gaps
with a calculated latitude and bad values (32767) for the longitude and height variables.
Since not all orbits will be complete, the user also needs to specify a minimum and
maximum latitude or longitude with min and maz and the direction of the boundary
with dir. If dir is 1, the record is filled between a minimum and maximum latitude
and if dir is 2, the record is filled between the minimum and maximum longitude. The
program assumes that corrections have been applied to the data previously and the
data is free of abnormal values that appear as spikes.

AUTHOR

Mike Caruso
Woods Hole Oceanographic Institution
Woods Hole, MA 02543

SEE ALSO

56

geosat(l) g-correct(l) g-spike(l) g-interp(l)

May 26, 1989 Sun Release 4.0

G-WHICH(L) WHOI Local Commands G-WHICH(L)

NAME
g-which — Prints GEOSAT orbit numbers from a specified lat/lon box

SYNOPSIS

g-which min_lat maz_lat min_lon maz_lon

DESCRIPTION

This program reads the minimum and maximum latitudes and minimum and maximum
longitudes from the command line and prints the orbit numbers contained in the box.
The orbits are printed within curly braces, separated by commas and may be used in
a set of pipes.

cat ¢000.‘g-which 30 45 280 300° | g-ext 1 L

If only two arguments are given to the program, they are assumed to be a point
and the nearest ascending and descending orbits are given.

AUTHORS

Mike Caruso
Woods Hole Oceanographic Institution
Woods Hole, MA 02543

Pierre Flament
Oceanography Department
University of Hawaii
Honolulu, HI 96822

SEE ALSO
geosat(l)

Sun Release 4.0 Jan 16, 1989 57

S-EXT(L) WHOI Local Commands S-EXT(L)

NAME
s-ext - extracts SSMI data and prints variables in ASCII

SYNOPSIS

s_ext list

DESCRIPTION

This program reads a binary SSMI file from stdin and extracts the specified variables
on sitdout. Lisi may be a combination of one or more of the following variables, in any
order separated by spaces:

. Variable Description

t time in seconds since START.TIME

1 latitude in degrees

L east longitude in degrees

fi flag indicating data characteristics
0 - Over ocean
1 - No orbit altitude information
2 - Over land
3 - Over sea ice

ws Wind Speed

vp columnar water vapor

cl columnar cloud water

rn rain rate

cws SSMI correction for water vapor

A record will not be printed if any of the requested variables contains invalid data
(32767).

AUTHORS

Pierre Flament

Mimi Baker

Oceanography Department
University of Hawaii
Honolulu, HI 96822

SEE ALSO
geosat(l)

58 Jan 3, 1990 Sun Release 4.0

S-REGION(L) WHOI Local Commands S-REGION(L)

NAME

s.region — Extracts a specified region from a SSMI data set

SYNOPSIS

s.region dir min_lat maz_lat min_lon maz_lon

DESCRIPTION

This program reads a binary SSMI file from sidin, extracts a specified region and
separates the data into ascending and descending orbits that comply with the naming
conventions described in geosat(l) manual page. This program finds the data that
fall within the latitude-longitude box given by the parameters min_lat maz_lat min_lon
maz_lon In order to maintain reasonable orbit lengths, the program will clip the orbits
with either a constant latitude boundary, or a constant longitude boundary. Therefore,
orbits that would normally be clipped in the corners, are extended to either the constant
latitude or longitude boundary. The constant direction is chosen with the parameter
dirdir. If diris 1, the program extracts all data from that orbit that is between min_lat
and maz.lat. If dir is 2, the program extracts all data that is between min_lon and
maz.lon.

This program can be used to extract data directly from the data tapes:

dd if=/dev/rmi:8 ibs=14400 | s_region 1 10.0 30.0 280.0 300.0

AUTHORS

Mimi Baker

Oceanography Department
University of Hawaii
Honolulu, HI 96822

Mike Caruso

Woods Hole Oceanographic Institution
Woods Hole, MA 02543

SEE ALSO »
geosat(l) g_region(l) g-seporb(l)

Sun Release 4.0 Jan 3, 1990 59

B Program Listings

This section contains listing of all programs and subroutines discussed in sec-
tions 5.1, 5.2 and 5.3. Programs are listed alphabetically and subroutines follow

the programs.

60

Program g_cleanl.c

Q(i#)g_cleanl.c 1.5 6/13/90
Program g_cleani.c

Written by:

Michael Caruso
Woods Hole Oceanograhic Institution
Woods Hole, MA

This is the first step in cleaning up GEOSAT data.
This program will remove bad data points as specified
by the shell variable GMASK (See users manual) as well
as points with sigma height > 30 cm and sigma naught

> 35 Db.

Method:

Reads raw GEOSAT GDRs from standard input and deletes any
records that are not within specified parameters. Output
is in GDR format.

The GEOSAT GDR is read from standard input.
cat ¢000.a002 | g_cleanl > c000.a002c

will remove all bad records from the GDR in ¢000.a002.

Input

;;;;;— Raw GEOSAT GDRs
Output

;;;;;;: Clean GEOSAT GDRs

Subroutines Required:

geo_error Prints errors to standard error
geo_mask Gets mask variable GMASK
References:

61

*/

include <math.h>
include <stdio.h>
include <string.h>
include "geos.h"

#define SHBAD 30.0 /* Value for bad sigma height */
#define SNBAD 3500.0 /* Value for bad sigma naught #*/

#define CHECKFL 12415 /* Used to get rid of check sum flags */
int i,j;

int bad;

int £1_bad;
short int msk, valid;

union
{
struct flags f£1;
short int Ilagint;
} cl_flags; /% To allow bit operations on flags */

main (argc,argv)
int argc;
char *argv(];

{

/*
Set counters to zero...

*/
int good_count = 0;
int m_h_count = 0;
int s_tide_count = 0;
int o_tide_count = 0;
int w_fnoc_count = 0;
int d_fnoc_count = 0;
int iono_count = 0;
int s_h_count = 03
int s_nght_count = 0;
int flag_count = 0;
int tot_count 0;

/*

- Check for arguments...

*/
if (arge != 1)

{
fprintf(stderr,"Usage: %s < filein > filout\n",argv[0]);
exit(1);
}

62

/* get from the environment which bits of the flags

and which values constitute a valid frame */

geo_mask(&msk,&valid);

/*

*/

while (fread((char*)&fr,1,REC_LEN,stdin)==REC_LEN)

{

/* get rid of checksum flags

Loop over all points in input file...

cl_flags.fl = fr.f1;

cl_flags.flagint &= CHECKFL;

0011000001111111

should be masked

*/

/* set bad to false if mask of the data flags */
/* is not equal to valid mask

bad = (cl_flags.flagint & msk) != valid;
if(bad) f1_bad = BAD;

/*

Check all records for any bad data.

lat or lon.

cot, cwf, cdf or ci is bad.

*/

Don’t check Time,

*/
bad = bad
Il (Zr.m_h == BAD
|| £fr.s_tide == BAD
|| fr.o_tide == BAD
|| fr.w_fnoc == BAD
|| £r.d_fnoc == BAD
|| fr.iono == BAD
il fr.s_h > SHBAD
|| fr.s_nght > SNBAD);
if (vad)
{
if (fr.m_h == BAD) m_h_count += 1;
if (fr.s_tide == BAD) s_tide_count += 1;
if (fr.o_tide == BAD) o_tide_count += 1;
if (fr.w_fnoc == BAD) w_fnoc_count += 1;
if (fr.d_fnoc == BAD) d_fnoc¢_count += 1;
if (fr.iono == BAD) iono_count += 1;
if (fr.s_h > SEBAD) s_h_count += 1;
if (fr.s_nght > SNBAD) s_nght_count += 1;
if (£1_bad == BAD) flag count += 1;

tot_count += 1;

63

Reject if ha at that point is bad, or if cet,

}

fl_bad = 0; .
if (bad) continue; /* If bad skip print and get next point. */
/a
Write out good data records.
*/
if (fwrite((char *)&fr, i, REC_LEN, stdout) != REC_LEN)
{
geo_error(3,argv(0]);
exit(3);
}

good_count += 1;

}
/*
Write out statistics on rejected points to standard output...

*/

fprintf(stderr,"’s: Valid points:\t%8d\n",argv[0],good_count);
fprintf(stderr,"\tRejected points:%8d\n",tot_count);
fprintf (stderr,"\tHeight:\t\t%8d\n" ,m_h_count);

fprintf (stderr,"\tSolid Tide:\t%8d\n",s_tide_count);
fprintf(stderr,”\tOcean Tide:\t%8d\n",o_tide_count);
fprintf(stderr,”\tWet FNOC:\t%8d\n", w_fnoc_count);
fprintf (stderr,"\tDry FNOC:\t%8d\n", d_fnoc_count);
fprintf (stderr,"\tIono:\t\t%8d\n", iono_count);
fprintf(stderr,"\tSigma Height:\t%8d\n", s_h_count);
fprintf(stderr,"\tSigma Naught:\t%8d\n", s_nght_count);
fprintf(stderr,"\tFlags:\t\t%8d\n", flag_count);

64

Program g_clean2.c

o(#)g_clean2.c 1.3 12/15/89
Program g_clean2.c

Written by:

Michael -Caruso
Woods Hole Oceanograhic Institution
Woods Hole, MA

Modifications:

12-15-89 MC now also prints total number of points rejected.

This program will clean a GEOSAT GDR by removing
records with heights greater than 10,000 cm and less
than -14,000 cm.

Method:

Reads raw GEOSAT GDRs from standard input and checks
height. Does not check for validity of input and assumes
input data has had corrections applied . Output is in
GDR format.

The GEOSAT GDR is read from standard input.
cat ¢000.a002 | g_clean2 > c000.a002¢c

will clean all bad data records from the GDR in ¢000.a002.

Input

;;;;;- Raw GEOSAT GDRs
Output

;;;;;;: Corrects GEOSAT GDRs

Subroutines Required:

geo_error Prints error messages.

65

References:

*/

include <math.h>
include <stdio.h>
include <string.h>
include "geos.h"

#define MIN_HEIGHT -14000
#define MAX_HEIGHT 10000

main (argc,argv)
int argc;
char *argvi];

int min_count 0;
int max_count = 0;

int tot_count = 0;
if (arge != 1)
{
fprintf(stderr,"Usage: %s < filein > fileout\n",argv[0]);
. exit(1);
}

while (fread((char*)&fr,1,REC_LEN,stdin)==REC_LEN)
{
/*
Check GDR heights here.
*/

if ((fr.m_h < MAX_HEIGHT) || (fr.m_h > MIN_HEIGHT))
{
/*
Write out good data records.

*/

if (fwrite({(char *)&fr, i, REC_LEN, stdout) != REC_LEN)
{
geo_error(3,argv0]);
exit(3);
b
}

else
{
if (fr.m_h > MAX_HEIGHT) max_count += 1;
else if (fr.m_h < MIN_HEIGHT) min_count += 1;

if ((fr.m_h > MAX_HEIGHT) || (fr.m_h < MIN_HEIGHT)) tot_count += 1;

66

}
/*

Print rejection numbers...

*/
fprintf(stderr,"/s: Rejected points:%6d\n", argv[0], tot_count);
fprintf(stderr,"\tMaximum Height:\t’8d\n", max_count);
fprintf(stderr,"\tMinimum Height:\t%8d\n\n", min_count);

67

Program g_compress.c

/*
(#)g_compress.c 1.2 6/13/90

Written by:

Pierre Flament
Oceanography Department
University of Hawaii
Honolulu, HI

Modifications:

Mike Caruso
Woods Hole Oceanographic Institution
Woods Hole, MA

compress geosat data into 18 bytes/frame

item parameter units range

1 TIME since start a000 ms 0 to 1.47e9
2 HEIGHT cm 0 to 32766

3 CYCLE number 0...

4 LATITUDE 10-4deg O to 18e5

5 LONGITUDE 10-4deg O to 36e5

6 SIGMA HEIGHT cm 0 to 255

7 SWH Scm 0 to 285

8 So .1ddb 0 to 255

9 FLAGS

10 OCEAN TIDE cm -128 to 128
Method

Reads in GDR, converts to 18 byte GDR and writes to
standard output

68

type

long int (4)
short int (2)
char (1)

unsigned int (3)
unsigned int (3)
unsigned char (1)
unsigned char (1)
unsigned char (1)
char (1)

char (1)

18-byte data record

Subroutines required:

References:

*/
include <stdio.h>

define PERIOD 6037.551518571
define START_TIME 58406188.43 /* equator xing orbit c¢000.a000 */
define BAD 32767 .

/* this is the standard geosat frame */

struct in_frame {
long int utc,utcm,lat,lon,orb;
short int m_h,s_h,geoid,h[10],swh,s_swh,s_nght,agc,s_agc;
char £1[2];
short int h_off,s_tide,o_tide,w_fnoc,w_smmr,d_fnoc,iono,
dh_swh,dh_£fm,att;
};

struct in_frame in;

/* this is the compressed frame. Order is important since compiler
forces short int on even word boundaries */

struct out_frame {
long int utc;
short int m_h;
char cycle_n;
char lat[3],lon[3];
unsigned char s_h,swh,s_nght;
char f1;
char o_tide;

};
struct out_frame out;

double time,cycle=244*PERIOD;

int i,j;

struct flags *I;
main()

{

while(fread((char*)&in,1,78,stdin)==78)
{

69

out.cycle_n=0;
time = in.utc - START_TIME;

while(time >cycle)

{
out.cycle_n++;
time -= cycle;
}

out.utc = nint(time*1000. + in.utcm/1000.);

in.lat = nint(in.lat/100.);
in.lat += 900000;
out.lat[0]=#*((char*)&in.lat+1);
out.lat[1]=*((char*)&in.lat+2);
out.lat[2]=*((char*)&in.lat+3);

in.lon = nint(in.lon/100.);
out.lon[0}=*((char*)&in.lon+1);
out.lon[1]=*((char#*)&in.lon+2);
out.lon[2]=*((char*)%in.lon+3);
out.m_h=in.m_h;

out.s_h=(in.s_h>255?7255: (unsigned char)in.s_h);

in.swh = nint(in.swh/5.);
out.swh=(in.swh>2657255: (unsigned char)in.swh);

in.s_nght = nint(in.s_nght/10.);
out.s_nght=(in.s_nght>255?255: (unsigned char)in.s_nght);

out.fl=in.f1[1];
in.o_tide = nint(in.o_tide/10.);
out.o_tide=(abs(in.o_tide)>127?127:(char)in.o_tide);

fwrite((char*)&out,1,18,stdout);
}

70

Program g_correct.c

/*
Q(#)g_correct.c 1.2 6/13/90

Program g_correct.c

VWritten by:

Michael Caruso
Woods Hole Oceanograhic Imstitutiom
Woods Hole, MA

Added comments and cleaned up some code.

This program will apply corrections to a GEOSAT
GDR as specified in the GEOSAT users manual. The following
correction will be applied:

h = h - solid tide
~ ocean tide
- wet tropospheric correction (fnoc)
- dry tropospheric correction (fnoc)
- ionosphere correction
- inverse barometer effect

Where

inverse barometer effect = -9.948 * (p - 1013.3)
And .

p = dry (fnoc) / (-2.277)(1 + (0.0026 * cos(2 * latitude)))
Method:

Reads raw GEOSAT GDRs from standard input and applies
corrections. Does not check for validity of input. Output
is in GDR format.

The GEOSAT GDR is read from standard input.

cat c000.2002 | g_correct > c000.a002¢c

will apply corrections to all records from the GDR in c000.a002.

Stdin Raw GEOSAT GDRs

71

Stdout: Corrects GEOSAT GDRs

Subroutines Required:

bar.c Included, Calculates the inverse barometer effect.

References:

include <math.h>

include <stdio.h>

include <string.h>

include "../../include/geos.h"
include “../../include/g_ext.h"

H H B HH

#define NUMARGS 6

int i,j,iarg;

main (argc,argv)
int argc;
char *argv(];

float bar();
float corr;

if ((argc < 1) && (argc > NUMARGS+1))
{
fprintf(stderr,"Usage: Ys [cet cot cwf cdf ci cib] < filein > fileout\n",
argv[0]);
exit(1);
}

while (fread((char*)&fr,1,REC_LEN,stdin)==REC_LEN)

{
/*
Apply corrections here.
*/
if(arge == 1) /* default apply all corrections %/
{

fr.m_h = fr.m_h - nint((fr.s_tide + fr.o_tide + fr.w_fnoc
+ fr.d_fnoc + fr.iomno
+ bar(fr.d_fmoc, fr.lat))/10.0);

corr = 0.0;

72

for (iarg=1; iarg<arge; iarg++)

{
if(!'stremp(argvliarg],val[25]))
{
corr += fr.s_tide;
}
else if (!stremp(argvliargl,vall26]))
{
corr += Ir.o_tide;
}
else if (!stremp(argvliargl,vall27]))
{
corr += fr.w_£fnoc;
}
else if (!strcmp(argv[iargl,vall29]))
{
corr += fr.d_£fnoc;
}
else if (!stremp(argvliarg],vall30]))
{
corr += fr.iomo;
}
else if (!stremp(argvliarg],val(34]))
{
corr += bar(fr.d_fnoc, fr.lat);
}
else
{
fprintf(stderr,”/s: illegal option %s ignored.\a",argv[o0],
argv[iargl);
}
}

}
fr.m_h = fr.m_h - nint(corr/10.0);

/*
Write out good data records.

*/

if (fwrite((char #*)&fr, 1, REC_LEN, stdout) !'= REC_LEN)
{
geo_error(3,argv(0]);
exit(3);
¥

float bar(d_fnoc, lat)
short d_fnoc;
long lat;

73

float p;

p = (d_fnoc / ((-2.277)*(1 + (0.0026 * cos(2+*M_PI*lat*1.e-6/180.)))));

p = -9.948 * (p - 1013.3);

return(p);

74

/*

Program g_crossnum.c

0(#)g_crossnum.c 1.3 6/14/90
Program g_crossnum.c

Written by:

Michael Caruso
Woods Hole Oceanographic Institution
Woods Hole, MA !

To print out the longitude of the equator crossing of
a given orbit.

Method:

Reads the orbit number from the command line or reads a
GDR from standard input. Calculates the equator crossing
and prints the result.

g-crossnum a002
or

g_crossnum < file.gdr

Input:

;;;;;- GDR file

Output:

;;;;;; Longitude of orbit crossing

Assumptions:

Longitude is given as E positive from O to 360 degrees.

Subroutines Required:

geo_cyc_orb.c Determines cyc and orb from GDR
orb_cross.c Determines where a particular orbit crosses
the equator.

References:

75

#include <stdio.h>
#include <math.h>
#include <string.h>
#include "geos.h"

#define C_DEG 360.0/244.0 /* Degrees between successive geosat crossings */
*main(argc,argv)
int argc;
char #argv[];
{
float orb_cross(); /* Determines long. of equator crossing */
char str[10]; /* Strings to parse input */
char *s;
int i, j; /* Counters */
int orb_num; /* Orbit number */
int asc; /* True if asc orbit */
int cyc; /* Cycle number */
struct frame fr2; /* GEOSAT GDR */
float crossing; /* Equator crossing in degrees */
/*
Read command line arguments...
*/

it (argec > 2)
{
Iprintf(stderr,"Usage: %s orbit\n",argv[0]);
fprintf(stderr,"0r\n");
fprintf(stderr,"Ys < file.geo\n", argv([0]);
exit(1);
}

if (argc == 2) /* Read orbit number from command line. */
{
strncpy(str,argv[1]+1,3);
sscanf(str,"%d" ,&orb_num);
s = argv[1];
switch(*s)
{
case ’a’:
asc = TRUE;
break;

76

case ’d?:

asc = FALSE;
break;
default:
fprintf("%s: Illegal argument: %s\n",argv(0]l, argv[1l);
exit(1);
}
}
else /* Read GDR from standard input */
{
if(fread((char *)&fr, 1, REC_LEN, stdin) != REC_LEN)
{
geo_error(3, argv[0]);
exit(1);
}
if(fread((char *)&fr2, 1, REC_LEN, stdin) != REC_LEN)
{
geo_error(3, argv[0]);
exit(1);
}
if ((fr2.lat - fr.lat) > 0) /* Ascending orbit */
{
asc = TRUE;
}
else
{
- asc = FALSE;
-}

geo_cyc_orb(fr, &cyc, Zorb_num); /* Get orbit number */

}
crossing = orb_cross(orb_num, asc); /% Get crossing */

fprintf (stdout,"%f\n", crossiﬁg);

float orb_cross(orb_num, asc)
int orb_num, asc;

{
float lomn;
if (asc)
{
lon = 356.59 - orb_num*360.0%17./244.;
}
else
{
lon = 189.14 - orb_num+*360.0%17./244.;
}
while (lon < 0.)
{

T7

}

lon += 3690.;
}

return (lon);

78

Program g_date.c

/*
o(#)g_date.c 1.3 6/14/90

Written by:

Kenneth Borowski
Woods Hole Oceanographic Institution
Woods Hole, MA 02543

Modifications

Mike Caruso
Woods Hole Oceanographic Institution
Woods Hole, MA

Added Comments and restructed code to use more consistent
naming convention.

Decode geosat data and convert Universal Time Coordinates to
month, day, year, Julian day, and day of cycle for the first
and last record in a file .

Method:

cat c000.a002 | g_date Gives start and end date of c000.a002

cat c000.* | g_date Gives start and end date of all orbits
in cycle c000 :

Start and end time of GDR

Subroutines Required:

output OQutputs start and end times

julday Calculates julian day

kdate Converts to month day and year
*/

79

include <stdio.h>
include <math.h>
include "geos.h"

long int utcs, utcm;

main()

{
fread({char*)&fr,1,REC_LEN,stdin);
output (fr.utc,fr.utcm);
while(fread((char*)&fr,1,REC_LEN,stdin) == REC_LEN) {
utcs = fr.utc;
utcm = fr.utcm;
}

output (utcs,utcm);

output (utes,utcm) !
long int utcs, utcm;
{

int days,y,m,d;

int seconds,minutes,hours;

int orbit_num_tot;

int cycle_num;

int orbit_num;

int day._of_year;

double time;

days = utes / 86400;

seconds = utcs % 86400;

hours = seconds / 3600;

minutes = (seconds % 3600) / 80;

seconds = (seconds % 3600) ¥ 60;
kdate(days,&y,&m,&d);

time = utcs + utcm / 1.0e6;

orbit_num_tot = (int)floor({(time-TIME_ZERQ)/PERIOD);
orbit_num = orbit_num_tot % 244;

cycle_num = orbit_num * 17 / 244;

day_of_year = julday(y,m,d) - julday(y-1,12,31);
printf("\n UTC: %11.2f\n", time);

printf (" Date: %d/%d/%d Yd:%.2d:%.2d\n", m,d,y,hours,minutes,seconds);
prints(" Day of year: Jd\n", day_of_year);
printz(" Julian: %d\n", julday(y,m,d));

printf(" Day of cycle: Jd\n\n",cycle_num);

}

/* URI Julian day algorithm */

julday(y,m,d)

int y,m,d;{

return(367*y -7*(y + (m+8)/12)/4 - 3*((y + (m-9)/7)/100 +1)/4
+ 276+m/9 + d + 1721029);

80

}

kdate(k,y,m,d)

/* converts the day, k, to month, day and year */
/* assumes that k = 1 corresponds to Jan 1, 1985 */
int k,*y,*m,*d;

{
k = k + 30987;
*y = (4 * k - 1) / 1461;
*d = 4 * k - 1 - 1461 * (*y);
*d = (#d + 4) / 4;
*m = (5 * (*d) - 3) / 153;
*d = 5 * (*d) - 3 - 153 * (*m);
*d = (*d + B) / 5;
if (*m < 10)
*m = *m + 3;
else {
*m:*m—b;
*y = *y + 1;
}
}

81

Program g_date2.c

/*
Q(#)g_date2.c 1.3 8/14/90

Written by:

Kenneth Borowski

Woods Hole Oceanographic Institution
Woods Hole, MA 02543

Modified by:

Mike Caruso

Woods Hole Oceanographic Institution
Woods Hole, MA 02543

Originally began as g_date.c and converted so that the input is
a cycle number and an orbit number.

Read a cycle and orbit number and determine the Universal Time
Coordinates of the beginning and end of that orbit and comvert to
month, day, year, Julian day, and day of cycle for the first

and last record in a file.

cycle number
orbit number

Start and end time of GDR in various formats

Subroutines Required:

output Outputs start and end times
julday Calculates Julian Day
kdate Converts to month, day and year

geo_rcyc_orb Returns time for a given cycle and orbit
*/

#include <stdio.h>
#include <math.h>

82

#include "geos.h"

#define NUMARGS 2 /* Number of command line args #*/

#define CYARG 1 /* Number of cycle arg. */

#define ORARG 2 /* Number of orbit arg. */

long int utcs, utcm; /* Universal time variables secs, microsecs */

main(argc, argv)
int argc;
char *argv[];

double time;
int cycle, orbit;

if (argc != NUMARGS+1)
{
fprintf(stderr,"Usage: %s cycle orbit\n", argv[0]);
exit(1);
}

sscanf (argv[CYARG],"%d", &cycle);
sscanf (argv[ORARG],"%d", &orbit);

geo_rcyc_orb(&time, cycle, orbit);
output((int)time,0);
geo_rcyc_orb(&time, cycle, orbit+1);
output((int)time,0);

output(utcs,utcm)
long int utcs, utcm;
{
int days,y,m,d;
int seconds,minutes,hours;
int orbit_num_tot;
int cycle_nun;
int orbit_num;
int day_of_year;

double time;

days = utcs / 86400;

seconds = utcs ¥ 86400;

hours = seconds / 3600;

minutes = (seconds) 3600) / 60;

seconds = (seconds % 3800) % 60;
kdate(days,&y,&m,&d) ;

time = utcs + utcm / 1.0e6;

orbit_num_tot = (int)floor((time-TIME_ZERQ)/PERIOD);
orbit_num = orbit_num_tot % 244;

cycle_num = orbit_num * 17 / 244;

83

day_of_year = julday(y,m,d) - julday(y-1,12,31);

printf("\n UTC: %11.2f\n", time);
printf (" Date: %d/%d/%d %d:%.2d:%.2d\n", m,d,y,hours,minutes,seconds);
prints(" Day of year: %d\n", day_of_year);
prints (" Julian: %d\n", julday(y,m,d));
printf (" Day of cycle: J/d\n\n",cycle_num);
} .
/% URI Julian day algorithm */
julday(y,m,d)

int y,m,d;{
return(367*y ~-7*(y + (m+9)/12)/4 - 3*((y + (m~9)/7)/100 +1)/4
+ 275+m/9 + d + 1721029);
}
kdate(k,y,m,d)
/* converts the day, k, to month, day and year */
/* assumes that kX = 1 corresponds to Jan 1, 1985 */
int k,*y,*m,*d;
{
k = k + 30987;
*y = (4 * k - 1) / 1461;
*d = 4 * k - 1 - 1461 * (*y);
*d = (%d + 4) / 4;
*m = (5 * (*d) - 3) / 153;
*d = 5§ * (*d) - 3 - 153 * (*m);
*d = (#d + B) / 5;
if (*m < 10)
*m = *m + 3;
else {
*m

*y

*m - 9;
*y + 1;

/*
Subroutine geo_rcyc_orb.c

*/

int geo_rcyc_orb(time, cyc, orb)
double *time;
int cyc;
int orb;

{

int orbit;

orbit = cyc * ORB_PER_CYC + orb;

*time orbit*PERIOD + TIME_ZERD;

84

/*

Program g_ext.c

o(#)g_ext.c 1.4 4/25/90
Program g_ext.c

Written by:

Pierre Flament
University of Hawaii
Honolulu, HI 96822

Modifications:

Michael Caruso
Woods Hole Oceanograhic Institution
Woods Hole, MA

Added comments and cleaned up some code.

To extract user specified data from a GEOSAT GDR.

Method:

Reads raw GEOSAT GDRs from standard input and applies
corrections. Reads user desired output variables from
command line arguments. Write output on standard output.
Output is in ASCII format.

The GEOSAT GDR is read from standard input and output variables
are read from command line.

cat c000.a002 | g_ext t 1 L > file.asc

will extract the time, the latitude and the longitude for each
good point in the file c¢000.a002.

cat c000.a002 | gext 1 L ha > file.asc

will extract the latitude, the longitude and the sea surface height

above the ellipsoid.

Stdin Raw GEOSAT GDRs

85

Stdout: Extracted data in ASCII format

Subroutines Required:

References:

include <math.h>
include <stdio.h>
include <string.h>
include "geos.h"
include "g_ext.h"

H HHE R

**

define MXP 26 /* max number of parameters */

define PRINT(X) printf(form[col[il],X)

int i,j;

int col[MXP];

int bad;

short int msk,valid;

char * getenv();
double h(),bar();

/* geosat data frame. Use this instead of fr to get two arrays, one
long int and one short int. Need to be careful with the indices. */

struct {
long int x[5];
short int y[NCHAN-E];
}ov; ‘

main (argc,argv)
int argc;
char *argv(];

{
for(j=0;j<MXP;j++)
coll[i] = -1;
arge—-;
argv++;
if (arge==0)
{
fprintf(stderr,"gext: argument error\n");
exit(1);
}

86

/* tind which channels should be processed
i: argument/column index
j: channel number
col[il: channel number corresponding to column i

*/

for (i=0;i<arge;i++)
for (j=0;j<NCHAN+3;j++)
if('strcmp(argvlil,valljl))
{
collil=j;
break;
}

/* get from the environment which bits of the flags should be masked
and which values constitute a valid frame */

geo_mask(&msk,&valid);

while (fread({char#*)&v,1,78,stdin)==78)
{

it (bad) continme; /* If bad skip print and get next point.

for (i=0;i<argec;i++) /* Print requested data */
if (coll[il==0)
PRINT(v.x[0]*conv[0]+v.x[1]*conv[1]-START_TIME);
else if (col[il<5)
PRINT(v.x[col[i]l]*convicol[i]ll);
else if (col[il==5)
PRINT(v.y[0]*conv[5]+v.y[19]*conv[24]);
else if (col[i]<NCHAN)
PRINT(v.y[col[il-5]*convicol[il]);
else if (col[i]==NCHAN)
PRINT (bar());
else if (col[i]==NCHAN+1)
PRINT(h());
else if (col[i]==NCHAN+2)
PRINT(h()-v.y[2]*conv[7]);
printf("\n");
}

double h()

/* compute corrected height based on suggested
corrections in the GEOSAT altimeter GDR user handbook
*/ '

double x;

x=v.y[0]*conv[5]+v.y[19] *conv [24]
-v.y[20]*conv[25]

87

*/

-v.y[21]*conv[26]
~v.y[22] *conv[27]
-v.y[24]*conv[29]
-v.y[26]*conv[30];
return(x-bar());

1

double bar()

/* inverse barometric effect in m using the formula
provided in the GEOSAT altimeter GDR user handbook
*/

{

double p;

p= v.y[24]1/(-2.277%(1+40.0026%cos (2+M_PI*v.x[2] *conv[2]/180.)));

return(-9.948+*(p-1013.3)*1.e-3);
}

88

/*

Program g_image.c

o(#)g_image.c 1.4 6/14/90

Written by:

Pierre Flament
University of Hawaii
Honolulu, HI 96822

Modified by:

Michael Caruso
Woods Hole Oceanographic Institution
Woods Hole, MA

Changed to allow different output sizes and to
output sdps floating point format.

Reads ascii files of lat, lon, z and converts to
a bitmap image in sdps floating point format.

Stdout Image in SDPS floating point format
Assumptions:

Longitude is E positive from 0 to 360 degrees.

Subroutines Required:

write_sdps Writes out an SDPS format file.

References:

89

Satellite Data Processing System (SDPS) Users Manual V1.0,
Michael Caruso and Chris Dunn, Woods Hole Oceanog. Inst. Tech. Rept.,
WHOI-89-13

*/

#include <stdio.h>
#include <math.h>
#include "sdpsutil.h"

/*
Define argument places here.

*/

#define NUMARGS 6
#define MNLAT 1
#define MXLAT 2
#define MNLON 3
#define MXLON 4
#define ROW 5
#define COL 6

#define S_DEG 20 /* number of GEDSAT samples per degree*/

main(argc,argv)
int argc;
char *argv[];

{

double min_lat, min_lon, max_lat, max_lon;
double lat, lon, Z;

int i, j, dlat, dlon, ilat, ilonm;

int row, col, rowoff, ij;

struct sdpsheader header;
struct sdpscmap cmap;
float *im;
/*
Read command line arguments...
*/ :
if (arge != NUMARGS+1)
{
fprintf(stderr,
"Usage: g_image min_lat, max_lat, min_lon, max_lon row col\n");
exit(1);
}

sscanf (argv[MNLAT] ,"%1f",&min_lat);
sscanf (argv[MXLAT],"%1f",&max_lat);
sscanf(argv[MNLON],"%1£",&min_lon);
sscanf (argv[MXLON],"%1f",&max_lon);
sscanf (argv[ROW],"%d",&row);

90

sscanf (argv[COL],"%d",&col);
/*
Allocate storage for im...

*/
im = (float *)malloc(sizeof(float) * row * col);
while (!feof(stdin))
{
fscanf (stdin,")1f %1f %1f",&lat,&klon,&z);
/* simple registration algorithm, image starts at top left cormer */

ilon=(lon-min_lon)/(max_lon-min_lon)*(col-1);

if (ilon<0 || ilon > col-1) continue;
ilat=row-1-(lat-min_lat)/(max_lat-min_lat)*(row-1);
if (ilat<0 || ilat > row-1) continue;

/* get lon and lat rectangle size */

dlon=col*(360./244.)/(max_lon-min_lon)/2.+1;
dlat=row/(max_lat-min_lat)/S_DEG+2;

for(j=(ilat<0?0:ilat);j<ilat+dlat && j<row;j++)
{
rowoff = j * col;
for(i= (ilon-dlon<070:ilon-dlon);i<=ilon+dlon && i<col;i++)
{
ij = rowoff + i;
im[ij] = (float)z;

}
)
}
/*
Create sdps format file..
header.annot = "Geosat Image";
*/
strcpy(header.annot, "Geosat Image");
header.type = FLOAT;
header.dim = 2;

header.ind[0] = col;
header.ind[1] = row;
header.ind[2] = 1;
header.ind[3] = 1;
header.inc{0] = dlon;
header.inc[1] = dlat;
header.inc[2] = 1;
header.inc[3] = 1;

91

header.slope 1
header.intrcp = 0.
header.cmap =0

write_sdps(stdout, header, cmap, im);

92

Program g_inferp.c

/*

o(#)g_interp.c 1.3 12/15/89
Program g_interp.c

Written by:

Michael Caruso
Woods Hole Oceanograhic Institution
Woods Hole, MA

Modifications:

12-15-89 MC Changed call to geo_cyc_orb so that time is
passed and not a GDR.

This program will linearly interpolate all geosat GDR data except the
10 per second heights and the flags against the latitude value.

Method:

1. Break data into continuous segments
2. Interpolate each data value to a common grid.
3. Write out all data between min and max.

The GEOSAT GDR is read from standard input.
cat ¢000.a002 | g_interp dir min max deltmax timestep> c000.a002s
will spline the records from the GDR in c000.2002 between min

and max latitude if dir is 1 and between min and max longitudes
if dir is 2.

Input

Stdin Clean GEOSAT GDRs

dir Determines boundaries of spline:
1 - Use latitude
2 - Use longitude

min Minimum lat or lom.

max Maximum lat or lom.

deltmax Maximum gap in seconds for a contiguous
segment.

93

timest

ep Interval between interpolated points.

Interpolated GEOSAT GDRs. Values in gaps
between valid segments are set to all

Zeros.

Subroutines and Subprograms Required:

geo_cyc_ordb
fit_time

fit_data

Returns the cycle number and orbit number

for a given time.

Initializes interpolation variables and fits an

. interpolation to the time variable.

References:

*/

include <math.h>
include <stdio.h>
include '"geos.h"

#define
#define
#define
#define
#define
#define
#define
#define

/*

NUMARGS
DIARG
MIARG
MAARG
DEARG
TIARG
MICRO
MAXPOINTS

B W= o;

5
le-6
29186

Interpolates between points of a given data
set.

/* Conv for utem */
/* +/- degrees latitude */

Define some globals to share with fit subprograms...

*/

int ii,

int latstart, latstop;
struct frame frsin[MAXPOINTS];
struct frame frout[MAXPOINTS];

j» k;

float timestep;

short int points=0;

float *x
float =*y
float *1

float *y;

H
2;
at;

float x0, minval, maxval;

/*

Variables for orbit analysis.

*/

/* frame MAXPOINTS/2 is defined at the equator */

94

int cyc, orb;
double rs, rs3, cosinc, prec, rot, dthdt;
double time, theta, sinth, lat0, lon0O, tmp;

short int seg_len[1000];
short int seg_beg[1000];

unsigned char ascorb;

main (argc,argv)
int argc;
char *argv(];

{
/*

Declare subroutines and subprograms...

*/

int fit_time();
int fit_data();
int geo_cyc_orb();

double timel, time2; /* time variable used to determine gap */
float deltmax;
short int i;

short int dir;
short int segments = 0;

. static char ScecsId[] = "@(#)g_spline.c 1.4\t6/23/89";

x = (float *)calloc(MAXPOINTS, sizeof(float));
y2 = (float *)calloc(MAXPOINTS, sizeof(float));
y = (float *)calloc(MAXPOINTS, sizeof(float));
lat = (float *)calloc(MAXPOINTS, sizeof(float));

if ((argc != NUMARGS+1) && (argc != 1))
{
fprintf(stderr,
"Usage: %s [dir min max deltmax timestep] < filein > filout\n",
argv[0]);
exit(1);
}
if (argec == NUMARGS+1)
{
sscanf (argv[DIARG],"%hd", &dir);
sscanf (argv[MIARG],"%f", &minval);
sscanf (argv[MAARG] ,"%£", &maxval);
sscanf (argv[DEARG] ,"%f", &deltmax);

95

sscanf (argv[TIARG],"’f", ×tep);

}
else
{
fprintf(stderr,
"Usage: %s [dir min max deltmax timestep]l < filein > filout\n",
argv[0]);
exit(1);
}
/*
Read in all GDRs...
*/

while (fread((char*)&frsin[points],1,REC_LEN,stdin)==REC_LEN) points++;
points--;

if (points <= 0)

{
fprintf(stderr,"%s: No points to spline\n\n",argv[0]);
exit(0); .
}
/*
Determine if orbit is ascending or descending...
*/

if((frsin[0].lat < frsin[1].lat) && (frsin[1].lat < frsin[points].lat))
{
ascorb = TRUE;
}
else if((frsin[0].lat > frsin[1].lat) && (frsin[1].lat > frsin[points].lat))
{
ascorb = FALSE;

else
{
fprintf(stderr,")s: Unable to determine if orbit is ascending or ");
fprintf(stderr,"descending\n", argv{0]);
exit(1);
}
/*
Set up for direction. If dir != 1, then we
find the latitude that corresponds to minlon
and maxlon.
*/
if (dir !'= 1)
{
lon_to_lat();
}

/*
Fill latitude array and find starting index...
*/

for (i=0; i< MAXPOINTS; it++)

96

if (ascorb)

{

lat[i] = DEG#asin(sin((i~MAXPOINTS/2)*timestep*M2PI/PERIOD)*sin(INC));

if (minval > lat[i]) latstart = i+i;

else

{

lat[i] = DEG+asin(sin(((MAXPOINTS/2)-i)*timestep*M2PI/PERIOD)*sin(INC));

if (maxval < lat[i]) 1latstart = i+1i;

}
}
/*
1. Break into data segments...
*/
seg_len[0] = 1;
seg_beg[0] = 0;

time2 = frsin[0].utc + frsin[0].utcm*MICRO;
for (i=0; i<points; i++)

{
timel = time2;
time2 = frsin[i+i].utc + frsin[i+1].utcm*MICRO;
if ((time2 - timel) <= deltmax)
{
seg_len[segments]++;
}
else
{
segments++;
seg_beglsegments] = i + 1;
seg_len[segments] = 1;
}
}

if (seg_len[0] == 0) exit(1);

/*

2. Initialize data and fit a spline to each segment...

*/

for(i=latstart; i<MAXPOINTS; i++)
{
frout[i].lat = (int)(lat[i]/MICRO);
frout[i] .lon = BAD;
frout[i] .m_h = BAD;

}

for (i=0; i<=segments; i++)

{

fit_time(i); /* initialize spline */

97

f£it_data(i,0); /* lon */

fit_data(i,1); /¥ h */
f£it_data(i,2); /* orb */
fit_data(i,3); /* s_h */
fit_data(i,4); /* geoid */
fit_data(i,5); /* swh */
fit_data(i,8); /* s_swh %/
fit_data(i,7); /* s_nght */
fit_data(i,8); /* age */
fit_data(i,9); /* s_agc */
fit_data(i,10); /* 8_tide */
fit_data(i,11); /* o_tide */
fit_data(i,12); /* w_fnoc */
fit_data(i,13); /* w_smmr */
fit_data(i,14); /* d_fnoc */
fit_data(i,15); /* iono */
fit_data(i,18); /* dh_swh */
fit_data(i,17); /* dh_fIm */
fit_data(i,18); /* att */
}
/*
Write out points...
*/
for (k=latstart; k<j; k++)
c :
if (fwrite((char *)&frout[k], 1, REC_LEN, stdout) != REC_LEN)
{
geo_error(3,argvi0]l);
exit(3);
}
}
}
/%
Subroutine fit_time
Written by:
Michael Caruso
Woods Hole Oceanographic Imnstitution
Woods Hole, MA .
Purpose:
This subprogram fits a spline to the time variable in a
GEOSAT GDR. ‘
*/

int fit_time(i)
int i;

{

98

double yout;

ii = 0;

for (j=seg beglil; j<seg begl[il+seg_len[il; j++)
{

x[ii] = frsin[j].lat*MICRO;

y[iil = (float)(frsinl(j].utc - frsin[seg_beg[i]].utc)
+ (float)frsin[j] .utcm*MICRO;
ii++;
}
x0 = x[0];

j = latstart;
while ((ascorb && (lat[j]l < x0)) || (lascorb && (lat[j] > x0)))
{
j++;
}
while ((lat[j] > minval) && (lat[j] < maxval))
{ .
it ((ascorb && (lat[j] > frsin[seg_beg[il].lat*MICRO) &&
(1at[j] < frsin[seg_beglil+seg_len{i]-1].lat*MICRO)) ||
(tascorb && (lat[j] < frsin[seg_begl[il].lat*MICRO) &&
(latlj]l > frsin[seg_beglil+seg_len[i]-1].lat*MICRO)))

{
ii = 03
if (ascorb)
{
while(x[ii] < lat(jl)
ii++;
}
else
{
while(x[ii] > lat(jl)
ii++;
}
linear((double)x[ii], (double)y[ii], (double)x[ii-1],
(double)y[ii~1], (double)lat[j], &yout);
frout(jl.utc = (int)yout + frsin[seg_begl[il].utc;
frout[j].utcm = (int)((yout - (int)yout)/MICRO);
} -
else
{
frout[jl.lat = (int)(lat[j]/MICRO);
frout[jl.utc = 0;
frout[jl.utem = 0;
}
jt++;
}
return;

99

1
/* .

Subroutine fit_data
Written by:

Michael Caruso

Woods Hole Oceanographic Institution
. Woods Hole, MA

Purpose:

This subprogram fits a spline to the data segment
specified.

*/

int fit_data(i, var)
int i, var;

{

double yout;

int iyout;

ii = 0;

for (j=seg_beglil; j<seg beglil+seg len[i]; j++)
PR

x[ii] = frsin[j].lat*MICRO;
switch (var)

{

case 0:
y[ii] = (float)frsin[j].lon;
break;

case 1:
ylii] = (float)frsin[j]l.m_h;
break;

case 2:
y[ii] = (float)frsin[j].orb;
break;

case 3:
y(ii] = (float)frsin[j].s_h;
break; '

case 4:
yliil = (float)frsin[j].geoid;
break;

case 5:
y(ii] = (float)frsin[j].swh;
break;

case §:
y[ii]l = (float)frsin(j].s_swh;
break;

case 7:
y[ii]l = (float)frsin[j].s_nght;
break;

case 8:
y[ii] = (float)frsin(jl.agc;

100

break;

case 9:
y[ii]l = (float)frsin[j].s_agc;
break;

case 10:
y[iil = (float)frsin[j].s_tide;
break;

case 11:
y[iil = (float)frsinljl.o_tide;
break;

case 12:
y[iil = (float)frsinl[j].w_fnoc;
break;

case 13:
y[ii]l = (float)frsin[j].w_smmr;
break;

case 14:
y[ii] = (float)frsinl[j].d_fnoc;
break;

case 15:
y[ii]l = (float)frsin[j].iono;
break;

case 16:
y[iil = (float)frsin[j].dh_swh;
break;

case 17:
y[ii]l = (float)frsin[j].dh_fm;
break;

case 18:
y[iil = (float)frsin[jl.att;
break;

default:
return(1);

}

ii++;
}
x0 = x[0];

j = latstart;
while ((ascorb && (lat[j] < x0)}) || (lascorb && (lat[j] > x0)))
{
j+t;
}
while ((lat[j] > minval) && (lat[j] < maxval))
{
if ((ascorb && (lat[j]l > frsin[seg_beglil].lat*MICRO) &&
(1at[j] < frsin[seg_beg[il+seg_len[i]-1].lat*MICRO)) ||
(tascorb && (lat[jl < frsin[seg_beglil].lat*MICRO) &&
(lat[j] > frsin[seg_begl[il+seg_len[i]l-1].lat*MICRO)))
{
ii = 0;
if (ascorb)

{

101

while(x[ii] < 1lat[j])

ii++;
}
else
{
while(x[ii] > 1at[j])
ii++; .
}

linear((double)x[ii], (double)y[iil, (double)x[ii-1],
(double)y[ii-1], (double)lat[jl, &yout);

iyout = nint(yout);
set_data(j, iyout, var);

else
{
set_data(j, BAD, var);
}
j++s
}
natcubspline(x, y, ii, lat[jl, &yout, 2);

return(0);

}

/*

Subroutine set_data

Written by:
Michael Caruso
Woods Hole Oceanographic Institution
Woods Hole, MA

Purpose:
This subroutine simply puts the data into the

correct element.

*/
int set_data(point, data, var)
int point;
int data;
int var;
{
switch (var)
{
case 0:
frout [point].lon
break;
case 1:
frout [point].m_h
break;
case 2:

data;

data;

102

frout [point].orb = data;
break;

case 3:]
frout [point].s_h
break;

case 4:
frout [point].geoid = data;
break;

case §5:
frout [point].swh = data;
break;

case 6:
frout[point].s_swh = data;
break;

case 7:
frout [point].s_nght = data;
break;

case 8:
frout[point].agec = data;
break;

case 9:
frout [point].s_age = data;
break; ‘

case 10:
frout [point].s_tide = data;
break;

case 11:
frout [point].o_tide = data;
break;

case 12:
frout [point].w_fnoc
break;

case 13:
frout [point] .w_smmr
break;

case 14:
frout [point].d_fnoc
break;

case 15:
frout [point].iono = data;
break;

case 18:
frout [point] .dh_swh = data;
break;

case 17:
frout[point].dh_fm = data;
break;

case 18:
frout [point].att = data;
break;

default:
return(1); -

}

data;

data;

data;

data;

103

/*

Subroutine lon_to_lat

Written by:
Michael Caruso
Woods Hole Oceanographic Imsititution
Woods Hole, MA

Purpose:

This subroutine converts the minval and
maxval when given in longitude to latitude.

*/
int
lon_to_lat()

int i;
float tmpval;
double tmptime;

/* Determine orbit number */

tmptime = frsin[0].utc + frsin[0].utcm*MICRO;
geo_cyc_orb(tmptime, &cyc, &orb);

rs = RE + frsin[0].orb;

rs3 = rs*rs*rs;

cosinc = cos(INCL);

prec = -1.5%J2*sqrt(GM/rs)*RE*RE*cosinc/rs3;
rot = prec - (M_PI_2/SD);

dthdt = H2PI/PERIOD;'

/*
Loop until we find min_lat and
max_lat.
*/
lon0 = frsin{0] .lon*1.0e~6%RAD;
time = 0.0;

if (ascorb)

{
i=0;
while (lon0 > maxval#*RAD)
{
i++;
lon0 = frsin[i].lon*1.0e-6+RAD;
}

104

while (lon0 < maxval#RAD)
{

time -= timestep;
theta = dthdt*time;
sinth = sin(theta);
lat0 = (frsinl[i].lat*1.0e-8)*RAD + asin(sin(INCL)#*sin(theta));
tmp = cosinc*sinth/cos(lat0);
tmp = (tmp>1.0) 7 1.0 : tmp;
tmp = (tmp<-1.0) ? -1.0 : tmp;
lon0 = (asin(tmp) + rot*time) + frsin[i].lon*1.0e-6+RAD;

}

lon0 = frsin[points].lon*1.0e-6+RAD;
tmpval = latO*DEG;

time = 0.0;

i = points;

while (lon0 < minval*RAD)

{
i--;
lon0 = frsin[i].lon*1.0e-6*RAD;
}
while (lon0 > minval*RAD)
{

time += timestep;

theta = dthdt*time;

sinth = sin(theta);

lat0 = (frsinf[i].lat*1.0e-6)*RAD + asin(sin(INCL)*sin(theta));

tmp = cosinc*sinth/cos(lat0);
tmp = (tmp>1.0) 7 1.0 : tmp;
tmp = (tmp<-1.0) ? -1.0 : tmp;

lon0 = (asin(tmp) + rot+*time) + frsin[il.lon#*1.0e-6+RAD;

}
minval
maxval

tmpval;
latO*DEG;

lon0 = frsin[0].lon*1.0e-6+RAD;

time = 0.0;
i= 03
while (lon0 > maxval*RAD)
{
i++;
lon0 = frsin(i].lon*1.0e-6+RAD;
}
while (lon0 < maxval*RAD)
{
time -= timestep;
theta = dthdt*time;
sinth = sin(theta); -

lat0 = (frsin[i].lat*1.0e-6)*RAD + asin{sin(INCL)*sin(theta));
tmp = cosinc*sinth/cos(lat0);

105

}

tmp = (tmp>1.0) ? 1.0 : tmp;
tmp = (tmp<-1.0) ? -=1.0 : tmp;
lon0 = (asin(tmp) + rot*time) + frsin[i].lon*1.0e-6+RAD;

¥

maxval = 1latO*DEG;

lon0 = frsin[points].lon*1.0e-8+RAD;
time = 0.0;

i = points;

while (lon0 < minval*RAD)

{
i=-;
lon0 = frsin[i].lon#*1.0e-6+RAD;
}
while (lon0 > minval*RAD)
{

time += timestep;

theta = dthdt*time;

sinth = sin(theta);

lat0 = (frsinf{i].lat#*1.0e-6)*RAD + asin(sin(INCL)*sin(theta));

tmp = cosinc*sinth/cos(lat0);
tmp = (tmp>1.0) ? 1.0 : tmp;
tmp = (tmp<-1.0) 7 -1.0 : tmp;

lon0 = (asin(tmp) + rot+time) + frsin[i].lon¥1.0e-6+RAD;
}
minval = 1latO*DEG;

106

Program g_print.c

/*
o(#)g_print.c 1.3 6/14/90

Written by:

Pierre Flament
University of Hawaii
Honolulu, HI 96822

Modifications:

Michael Caruso
Woods Hole Oceanographic Institution
Woods Hole, MA

Added Coments and cleaned up some of code.

Decodes Geosat GDR record and prints in a
lengthy format.

Method:

Reads Geosat GDR from standard input and converts
each element to ascii and prints each element with
an identifier to standard output.

Input:

;;;;T;??? * Raw Geosat GDRs from standard input.
Output:

;;;;;;;d Output Formatted output.
Note:

The flags are ordered as follows:
FEDCBA9876543210
where 0 is the zeroth flag bit

and F is the fifteenth flag bit as
listed in the Geosat Altimeter GDR User

107

Handbook.

Subroutines Required:

None.

*/
include <stdio.h>
include “geos.h"

/* Labels for output... =*/

char *xlab[J={ '"utc ",

*utcm",
“lat ",
“lon " .
"orb u};
char *ylab[l={ "m_h ",
“s h ",
"geoid ",
"h[i] " R
"h [2] " .
llh [3] " .
“nfa] ¥,
" [5] n .
"h [6] " .
"y [7] ",
"h [8] 1} .
" [9] " .
“h[10] 1} .
“guh ",
“s_swh " .
"s_naught ",
uagc ",
" s_agc u} :

char *zlab[J={ "h_off ",
"sol_tide",
"oc_tide ",
"wet_fnoc",
"get_smmr",

"dry_fnoc",
"iono_gps",
"d-h_SWh n ,
lldh tm n R
"a-tt ll};
short int i,3;
long int record = 0;

108

struct flags *I;

main()

while(fread((char#*)&fr,1,REC_LEN,stdin)==REC_LEN)
{
printf("\£");

printf("Record Number:\t%10ld\n",++record);
printf("%s :\t%101d\t",xlabl0],fr.utc);
printf("%s :\t%101d\n",xlabl1],fr.utcm);
printf("%s :\t%101d\t",xlab[2],fr.lat);
printf("%s :\t%101d\n",x1ab(3],fr.lon);
printf("%s :\t’101d\a",xlab[4],fr.orb);

printf("\n");

printf("%s :\t%6d\t",ylab[0],fr.m_h);
printf("%s :\t%68d\n",ylab[1],fr.s_h);
printf("%s :\t%6d\n",ylab[2],fr.geoid);
for(i=0; i<10; i++)
{
if(i%2)
printf("¥%s :\t%6d\n",ylab[i+3],fr.h[i]);
else
printf("¥%s :\t¥6d\t",ylabli+3],fr.n[i]);
}
printf("%s :\t%6d\t",ylab[13],fr.swh);
printf("%s :\t%6d\n",ylabl14],fr.s_swh);
printf("%s :\t%6d\n",ylab[15],fr.s_nght);
printf("%s :\t%6d\t",ylab[16],fr.agc);
printf ("%s :\t%6d\n",ylab[17],fr.s_agc);

f = &(fr.11);

printf(“\nflags (0-15 right to left):\t%d%d¥%d%d%d%ad%d%d%d%d%a%d%d%dY%d%d\n\n",
I->junk15,f->junk14,f->s,f->t,f->junk11,f->junk10,£->junk09,
1£->junk08,f->junk07 ,£->a6,f->a5,f~>a4,f->h,f~>r,f->d,f->w);

printf("%s :\t%6d\n",zlab[0],fr.h_off);
printf("%s :\t/6d\t",zlab[1],fr.s_tide);
printf("%s :\t/6d\n",zlab[2],fr.o_tide);
printf("%s :\t%6d\t",zlab[3],fr.w_fnoc);
printf("/s :\t/6d\t",zlab[4],fr.w_smmr);
printf("%s :\t/6d\n",zlab[5],fr.d_fnoc);
printf("%s :\t%6d\n",zlab[6],fr.iono);
printf("%s :\t¥6d\n",zlabl7],fr.dh_swh);
printf("%s :\t%6d\n",zlab[8],fr.dh_fm);
printf("%s :\t%6d\n",zlab[9],fr.att);

109

Program g_region.c

/*
o(#)g_region.c 1.5 12/19/89
Program g_region.c
Written by:

Michael Caruso
Woods Hole Oceanographic Institution
Woods Hole, MA

Modifications:

12-15-89 MC Changed call to geo_cyc_orb so that time is
passed and not a GDR.

Decodes GEOSAT data and separates raw data into separate orbits. Each
orbit is defined as beginning at the northernmost point of a track.

Each orbit is further separated into an ascending section and a descending
section. Orbits are then written out to separate files of the. form:

cmmm.annn or cmmm.nnnd
where
is the cycle number,
is the orbit number for that cycle,
signifies ascending portiom,
signifies descending portiom.

.D-IDEE

The data is written out in the same form as it was read in. This is
consecutive records of 78 bytes each.

The program reads the minimum and maximum latitudes and longitudes
from the command line and reads the data from standard input. To
use the program to extract data from tape (/dev/rmt8, 6250bpi, input
block size 16380) HP format from NODC, from 10N to 30N and 280E to
300E:

dd if=/dev/rmt8 ibs=16380 files=34 | g_region 1 10 30 280 300
The first number on the argument line specifies whether the box
should be bounded by a latitude line(1) or a longitude line(2).

Note that longitudes are all east of Greenwich and if the box selected
spans 360E, add 360 degrees to right edge of box, ie 350 365.

110

Stdin Raw Geosat GDRs
Output
c???.,277? Geosat data within region separated in ascending and

descending orbits.

Subroutines and Subprograms Required:

geo_cyc_orb Returns the cycle number and orbit number
- for a given time.

geo_which returns an array of 1’s and 0’s for each cycle
within the desired box.
geo_erxrror prints error messages to standard error.

References:

Assumes input data contains complete orbits.

*/

#include <stdio.h>
#include <sys/file.h>
#include <math.h>
#include "geos.h"

#define NUMARG &
#define DIRARG 1
#define MNLTARG 2
#define MXLTARG 3
#define MNLNARG 4
#define MXLNARG 5

main(argec, argv)
int argc;
char *argv(];
‘struct frame fr2;
unsigned char a[ORB_PER_CYC],
d[ORB_PER_CYC],
c[ORB_PER_CYC]; /* arrays of orbits within box

char str[80]; /* string for output file name

int i,j; /* Counters

111

*/

*/

*/

short int
short int
int

short int
short int

long int

long int

double

double

FILE *fdout;

/*

Read command line arguments.

*/

dir;
orbit_num_tot;
cycle_num;
orbit_num;

~ isopen = FALSE;

asc;

llcmp,
1llmin, llmax;
1slopel,

_1slope2;

min_lat,
max_lat,
min_lon,
max_lon;
time;

if (argc >= NUMARG + 1)

{

/*
/*
/*
/*
/*
/*

/*

/*

/*
/*®

/*

Direction of lat/lom boundary

the total number of orbits

the number of cycles since

orbit number within cycle 0-244
check to see if file is already open
flag for ascending or descending

lat/lon boundary

"Slope" of orbit

input lon-lat box
time variable

output file descriptor

sscanf (argv[DIRARG], "%hd", &dir);

sscanf (argv [MNLTARG] ,"/1£",gmin_lat);
sscanf (argv [MXLTARG] ,"%1£" ,kmax_lat);
sscanf (argv [MNLNARG] ,"%1£",&min_lon);
sscant(argv[HXLNARG],"%li",&max_lon);

else

{

fprintf(stderr,
"Usage: /s dir min_lat max_lat min_lon max_lon [orb#]\n", argv[0]);

exit(1);
}

/* determine orbits to remove. ¥/

geo_which(min_lat, max_lat, min_lomn, max_lom, a, d);

/*

Mask out orbit numbers if given on command line...

*/

if (argc > NUMARG+1)

{

for (i=6; i<argc; i++)

112

*/
*/
*/
*/
*/
*/

*/

*/

*/
*/

*/

{
sscanf (argv[il, "%d", &j);

c[jl = TRUE;
}
for (i=0; i<ORB_PER_CYC; i++)
{
alfi] = a[i] && c[il;
d[i] = dli] && c[il;
}
}
/* Set 1llmin, llmax... */

if (dir == 1)

{
1lmin = (int) (min_lat*1.0e06);
limax = (int) (max_lat*1.0e06);

}

else

{
1lmin = (int) (min_lon*1.0e06);
llmax = (int) (max_lon*1.0e06);

}

/* read initial lat and long coordinates */

if(fread((char #*)&fr,1,REC_LEN,stdin) != REC_LEN)
{
geo_error(2, argv(0l);
exit(2);
}

if (fread((char *)&1r2,1,RﬁE_LEN,stdin) != REC_LEN)
{
geo_error(2, argv[0]);
exit(2);
}

/* Determine name of first orbit */

time = fr.utc + fr.utcm * 1.0e-6;
1slopel = fr2.lat - fr.lat;

geo_cyc_orb(time, &cycle_num, &orbit_num);

/*
Check to see if first orbit is ascending or
descending...
*/ '

if (lslopei > 0)
{
sprintf(str,"c%.3d.a%.3d",cycle_num,orbit_num);
asc = TRUE;

113

}
else if (lslopel < 0)

{
sprintf(str,”c’.3d.4%.3d",cycle_num,orbit_num) ;
asc = FALSE;

else

{
if (fr.lat < 0)

{

sprintf(str,"c)%.3d.a%.3d",cycle_num,orbit_num);
asc=TRUE;

else

{

sprintf(str,"c%.3d.d%.3d",cycle_num,orbit_num);
asc=FALSE;
}
}

/* Check to see if point is an orbit we want and greater
than the minimum latitude and smaller than the
maximum latitude. If so, write to the output file. If
the output file is not open, open it and mark it as
being open. */

licmp = (dir == 1) ? fr.lat : fr.lom;

if(((asc && alorbit_num]) || (lasc & d[orbit_num])) && (llcmp > llmin)
&& (llcmp < llmax))

{
it (isopen == 0)
{ .
fdout = fopen(str,"a"):
isopen = 1;
}
if(fwrite((char *)&fr,1,REC_LEN,fdout) != REC_LEN)
{
geo_error(3, argv(0]l);
exit(3);
}
}
/*
Check second point...
*/

llemp = (dir == 1) ? fr2.lat : fr2.lon;

if(((asc && alorbit_num]) || (lasc && dforbit_num])) && (llcmp > 1llmin)
&& (llcmp < 1llmax))
{
if (isopen == 0)

{

114

fdout = fopen(str,"a");
isopen = 1;

}
if(fwrite((char *)&fr2,1,REC_LEN,fdout) != REC_LEN)
{
geo_error(3, argv([0]);
exit(3); '
}

/* Read in rest of geosat data. We keep three points active
to monitor when an orbit changes from ascending to descending.
This was done because of the incomplete data at high latitudes.

*/
fr = £r2;

while(fread((char *)&fr2,1,REC_LEN,stdin) == REC_LEN)
{

1lslope2 = fr2.lat - fr.lat;
if ((1slopel > O && 1slope2 <= 0) || (1slopel < 0 && lslope2 >= 0))
¢ /* Determine name of next orbit */
time = fr2.utc + fr2.utcm * 1.0e-6;
geo_cyc_orb(time, &cycle_num, &orbit_num);

it (1slope2 > 0)

{
sprintf(str,"c%.3d.a%.3d",cycle_num,orbit_num);
asc=TRUE;
}
else if (1lslope2 < 0)
{

sprintf(str,"cl.3d.d%.3d",cycle_num,orbit_num);
asc=FALSE;
}
else
{
if (fr2.lat < 0)
{
sprintf(str,"c’.3d.a%.3d",cycle_num,orbit_num);
asc=TRUE; :

else

{

sprintf(str,"c%.3d.d%.3d",cycle_num,orbit_num);
asc=FALSE;

115

}
fclose(fdout) ; /* Close previous file */
isopen = 0;

}
llcmp = (dir == 1) ? fr2.lat : fr2.lon;

if(((asc &k alorbit_num]) || (lasc && d{orbit_num])) && (llcmp > llmin)
k& (llcmp < llmax))

{ .
if (isopen == 0)
{
fdout = fopen(str,"a");
isopen = 1;
}
if(farite((char *)&fr2,1,REC_LEN,fdout) != REC_LEN)
{
geo_error(3, argv[0]);
exit(3);
}
}
Ifr = fr2;

lslopel = lslope2;

116

Program g_repeat.c

/*
©¢(#)g_repeat.c 1.3 12/18/89

Program g_repeat.c

Written by:

Michael Caruso
Woods Hole Oceanograhic Institution
Woods Hole, MA

This program will perform a repeat track analysis
of geosat GDR’s.

Method:

1. Read in all cycles
2. Calculate the mean sea surface height (m_h)

3. Subtract mean from each cycle.

4. Calculate quadratic regression and subtract from
each cycle.

5. Calculate a second regression weighted by the
inverse of the variance of the first regression.

8. Subtract new fit from each profile to obtain
final heights.

T. Calculate mean and variance.

8. Print results.
Each GEOSAT GDR is read from a separate file.
g_repeat c¢?7?7.a002 > data.text

will perform a repeat track analysis from the cleaned and splined
GDR’s in all available cycle for track a002.

Input:

;;;;j;002 All cycles for the speciifed track cleanéd
and splined.

Cutput:

;;;;;;: Data file containing the latitude, the

117

c??7.a002_r

longitude,

the mean height(m), the rms height

variance and the number of valid points for each
location of a given orbit.

Data file containing the latitude, the
longitude and the residual height.
Subroutines Required:

cr_mat_float

cr_mat_double

gauss_elim

References:

*/

creates a floating point matrix.
creates a double precision matrix.
gsolves linear system of equations.

include <math.h>
include <stdio.h>
include '"geos.h"

#define MICRO
f#tdefine MILLI

#define MAXPOINTS

/*
*/

float
float

float
float
float
float

float
float

**h ;

**h_tmp;

*mean;
*mean2;
*mean_lon;
*lat;

*var;
*var2;

int *count;
int *count2;

double **a, *b;
double *xans;

float
float

**quado;
**quad1l;

int *cyc;
int maxcyc;

i.e-6 /* conversion from micro-deg to deg
1.e-2 /* conversion from centimeter to meter

Global Variables...

/*
/*

/*
/*
/*
/*
/*

/*

/*
/*

/*
/*
/*
/*

/*
/*

2915 /* Max point -70 to +70 degrees latitude

Original Heights. */
Temporary Heights. */

Mean of original heights (h) */

Mean of original heights - quad orbit corr.*/
Mean of Longitudes */

Latitudes of first orbit. #*/

We don’t find mean_lat because the

latitudes are fixed in a previous

program such as g_spline

*/

Variance of original heights */

Count for mean and vars/

Count for mean2 and var2*/

Used for quadratic fit*/

Used for quadratic fit */

Keep values of quadratic fit for printing */

Keep values of quadratic fit for printing */

Keep track of good and bad cycles. */
Maximum number of good points at each

118

*/
*/
*/

latitude grid point

*/
int i; /* Counter */
int ipoint; /* Counter for points read in for each cycle.

Note: program assumes each cycle has been
regridded to a common grid and has the same
number of points.

*/

main (argc,argv)

int argc;

char *argv(]l;
{
/*

Declare non-integer subroutines:

*/

float #*cr_mat_float();
double **cr_mat_double();

/*
I/0 file descriptors
*/

FILE *gfile, *ofile;

/*
Various counters.

*/

int iarg;
- int ipointold;
int £ill = FALSE;

/* .
Temporary variables for calculations prior to printing.
*/

float htmp, vtmp;

float £itO, fit1;

/*
Misc. variables.

*/
int err; /* Returned error message. */
char str[80]; /* String for filenames etc. */

/*
Create arrays described above...
*/
h = cr_mat_float(argc, MAXPCINTS);

119

h_tmp = cr_mat_float(argc, MAXPOINTS);

mean = (float *)calloc(MAXPOINTS, sizeof(float));
mean2 = (float *)calloc(MAXPOINTS, sizeof(float));
mean_lon = (float *)calloc(MAXPOINTS, sizeof(float));
lat = (float *)calloc(MAXPOINTS, sizeof(float));
var = (float *)calloc(MAXPOINTS, sizeof(float)):;
var2 = (float *)calloc(MAXPOINTS, sizeof(float));
count = (int *)calloc(MAXPOINTS, sizeof(int));
count2 = (int *)calloc(MAXPOINTS, sizeof(int));
cye = (int *)calloc(argc, sizeof(int));
a = cr_mat_double(3,3);
b = (double *)calloc(3, sizeof(double));
xans = (double #*)calloc(3, sizeof(double));
quado = cr_mat_float{argc,3);
.quadil = cr_mat_float(argc,3);

/*

Check count2 and quadi to see if they were allocated space. If so,
assume that all other arrays were allocated ok.

*/
it ((quadl == NULL) || (count2 == NULL))
{
fprintf(stderr,")s: Unable to allocate enough storage space.\n",
argv(0]);
exit(1);
}
/*
Check to see if program is given arguments...
*/
it (arge == 1)

{ _
fprintf(stderr,"Usage: /s ¢??7.a000 > fileout.text\n",argv[0]);
exit(1);

}

/*

Read in all GDRs and calculate mean and variance...

iarg is the cycle number to read in.

ipoint is the along track point

*/

for(iarg=0; iarg<argc-1; iarg++)
{
/*
Open each input file...
*/

120

if ((gfile = fopen(argvliarg+1],"r")) == NULL)
{
fprintf(stderr,")s: Unable to open file %s. Continuing...\n",
argv(0], argv(iarg+1l);
cycliarg]l = BAD;
continue; /* If there is no file, try the next file. */

}
ipoint = 0;

while (fread((char*)&fr,1,REC_LEN,gfile)==REC_LEN)

{
if (1£i11) /* Fill latitude from first good cycle. */
{
lat[ipoint] = fr.lat;
}
else /* Check against first cycle */
{ /* to make sure points line up */
if((abs((int)lat[ipoint]-fr.lat) > 1000) && (fr.lat != 0))
{
fprintf(stderr,
"%s: Repeat tracks out of sync. Offending file
argv(0], argv[iarg+1]);
exit(1);
}
}
/*
Store Heights...
*/
hliarg][ipoint] = fr.m_h;
/*
Set up to find mean and variances...
*/

if ((fr.m_h != BAD) && (fr.lomn !=BAD))
{
mean[ipoint] += fr.m_h;
var[ipoint] += fr.m_h#*fr.m_h;
count [ipoint] += 1;
mean_lon[ipoint] += fr.lom;
}

ipoint++;

/*
If a cycle has no points, mark that cycle as BAD and
print error message.
*/
if(ipoint == 0)
i
cycliarg] = BAD;

121

s %s\n",

ipoint = ipointold;
fprintf(stderr,"s: Bad file %s, no data found\n",argv[0], argv[iarg+1]);

}
else
{
ipointold = ipoint;
1ill = TRUE;
}
}
/*
If no points were read, exit program...
*/
if ((ipoint == 0) && (ipointold == 0))
{ .
fprintf(stderr,")s: No points read, unable to perform analysis.\n", argv[0l);
exit(1);
}
ipoint-—;
/*

Find mean and variance of raw data. Also find the mean lon
at each point and determine the maximum number of cycles.
mean, var, mean_lon and maxcyc.

*/
calc_meani();

/*
Calculate quadratic regression of difference and subtract
from each cycle...

*/

fit_quad(arge, 0);

/*
Find mean and var of h_tmp.
mean2 and var.

*/

calc_mean2();

/*
Zero mean2, var2 and count2 and
Calculate weighted regression...

*/

zero_2();
fit_quad(arge, 1);
/*

Find mean and var of h_tmp after weighted

122

*/

/*

*/

regresssion - mean2 and var.

calc_mean2();

Write out residuals for each good cycle.

Concatenate "_r" to the end of the file name. This was
done instead of substitution since the user may call the
program with subdirectories - c000/c000.a002c, in which
case a prefix would change the directory name; or if the
input file does not end with an additional character -
€000.a002, substituting the last character would affect
the file name.

Cutput file format:
lat lon residual £it0 fitl

Where the residual is h - hmean, and fitO is
the resulting fit of the first quadratic and fitil
is the fit of the second quadratic.

for (iarg=0; iarg<argc-1i; iarg++)
{
if(cycliarg] != BAD)

strepy(str,argvliarg+1]);

strcat(str,"_r");

if ((ofile = fopen(str, "w")) == NULL)
{

fprintf(stderr,"’s: Unable to open file %s. Continuing...\n",

argv[0], str);
continue; /* Try next file. */

¥

for (i=0; i<ipoint; i++)
{
if((h_tmp(iargl(i] != BAD) && (mean2[i] != BAD))
{
htmp

(h_tmpliarg] [i]-mean2[i])*MILLI;

else
{
htmp
}

BAD*+MILLI;

£it0 = (quadOliarg][0] + (quadO[iarg] [1]+quadO[iarg] [2]1*lat[il)

*«lat[i])*MILLI;

fit1 = (quadiliarg][0] + (quadi[iarg][1]+quadi[iarg] [2]*lat[i])

*1lat [i])*MILLI;

fprintf(ofile,"%4d\t%8.4£\t¥8.4£\t%8.4£\t%8.4£\t%8.4f\n", i,
lat[i]#MICRO, mean_lon[i]*MICRO, htmp, fitO, fit1);

123

fclose(otile);
}

}
/*
Write out statistics to standard output.
The output is:

i lat mean_lon mean2 var var2 count2

Where i is the sequential point number, lat is the latitude
at that point, mean_lon is the mean_lon, mean2 is the mean height
with orbit error etc removed, var is the variance, var2 is the sum
of squares and count2 is the number of cycles that went into the
statistics...
*/
for (i=0; i<ipoint; i++)
{
if (mean2[i] != BAD)

sqrt(var[i])*MILLI;

g

BAD#MILLI;

8
R

1printi(stdout,“%4d\t%8.41\t%8.4I\t%8.4t\t%8.4t\t%12.4i\t%3d\n",
i, lat[i]*MICRO, mean_lon[i]+MICRO, mean2[i]*MILLI,
vtmp, var2[i], count2[il);

}

fclose(str);

}

/*
Subprogram calc_meani()

Written by: Michael Caruso
' Woods Hole Oceanographic Institution

Purpose: This subprogram is used with g_repeat
to calculate the means of input data.

*/
calc_meani()
{
maxcyc = 0;
for (i=0; i<ipoint; i++)
{
if (count[i] > 1) /* Check for at least two good points. #*/

{
meanf[i] /= count[i];
mean_lon[i] /= count{i];

124

<
;
—
‘.._l.‘
[

= var([i)/count[i] - mean[i]+*mean[i];
(count[i] > maxcyc) ? count[i] : maxcyc;

8
b
0
«
4]
0l

.mean[i] = BAD;
varfi] = BAD;

Subprogram calc_mean2()

Writtem by: Michael Caruso
Woods Hole Oceanographic Imstitution

Purpose: This subprogram is used with g_repeat
to calculate the means of temp data.

*/
calc_mean2()
{
for (i=0; i<ipoint; i++)
{
if (count2{i] > 1) /* Check for at least two good points */
{
mean2[i] /= count2[i];
var[i]l = var2(il/count2(i] - mean2[i]*mean2([i];
}
else
{
mean2[i] = BAD;
var{i] = BAD;
}
}
}
/*

Subprogram fit_quad()

Written by: Michael Caruso
Woods Hole Oceanographic Institution

Purpose: This subprogram is used with g_repeat
to fit a quadratic to an arc.

Method: fit a quadratic in a least squares sense..

num X XX

a = X XX xxx
XX XXX XXxx
Yy - Z

125

b= zxy - xz
XXy - XX

fit_quad{(numcyec, pass)
int numcyc;
int pass;

int iarg;

double x, y, z, xx, xy, xz, XXX, XXy, XXZ, XXXX;
double t, t2, t3, t4;

int err;

int num;

for (iarg=0; iarg<numcyc-1; iarg++)
{
if(cycl[iarg] i= BAD)
{

/*
Declare dummy arrays for procedure...
And set to zero.
*/

num = 0;

X =y =2 =2XX=Xy = XZ = XXX = XXy = XXz = xxxx = 0.0;

for (i=0; i<ipoint; i++)

{
it (hfliarg] [i] != BAD)
{
if (count[i] >= maxcyc/2)
{
if (!pass)

{
t = lat[i];
£2 = t*t;
t3 = t2x*t;
t4 = t3%t;
X += t;)
y += h[iargl[i];
z += mean[i];
bod += £2;
xy += t*h[iarg] [i];
xz += t#mean[i];
bood += t3;
xxy += t2+h[iargl[i];
xxz += t2+*meanl[i];
xxxx += t4;
num++;

}

else

{

if (var[i] != BAD)
{

126

/*

/*
*/

t = lat[i];
t2 = t*t;
t3 = £2%t;
t4 = t3*t;
x += t/var[il;
y += hliargl [i]/var[il;
z += mean{il/var[il;
xx += t2/var[i];
xy += t*hliargl[i]/var(il;
xz += t*mean[il/var([i];
xxx += t3/var[il;
xxy += t2*h[iarg] [i]/var[i];
XXZ += t2+mean[i]/var[i];
XXX += t4/var[i];
num++;
}
}
}
}
}
If we have less than three points, label bad cycle
*/
if (num < 3)
{ .
cycliarg] = BAD;
continue;
}
Set up matrices and solve x*xans=b...
af0][0] = num;
afol[1] = af1]1[0] = x;
af0][2] = a[1]1[1] = a[2][0] = xx;
af11[2] = al[2]1[1] = xxx;
af2][2] = xxxx;
b[0] = y-z;
bl[1] = xy-xz;
b[2] = xxy-xxz;
err = gauss_elim(a, 3, 3, b, xans);
/*
Save fit parameters for later printing...
*/
for (i=0; i<3; i++)
{
if(pass == 0)
{
quadO[iarg] [i] = xans[i];
}

127

1
/*

else

{
quadi[iarg] [i] = xans[il;

}

/*
Subtract regression from each cycle...
Put result into h_tmp and keep track of
data for mean and variance calculation - calc_mean2.

*/

for{i=0; i<ipoint; i++)
{
if(h(iarg] [1] != BAD)
{ .
h_tmpliarg] [i] = h[iarg] [i]-xans[0]-
(xans[1]+xans[2]*lat [i])*1lat[i];

mean2[i] += h_tmpliarg] [i];
var2[i] += h_tmp[iarg] [il*h_tmpliarg] [i];
count2[i] += 1;

else

{
h_tmpliarg] [i] = BAD;

}

Siubprogram zero_2()

Written by: Michael Caruso
Woods Hole Oceanographic Institution

Purpose: This subprogram is used with g_repeat
to zero mean2 var2 and count2

zero_2()

{

for (i=0; i<ipoint; i++)
{
mean2[i] = var2[i] = 0.0;
count2([i] = 0;
}

128

Program g repeats.c

/*
Q(#)g_repeats.c 1.2 4/25/90

Written by:

Michael Caruso
Woods Hole Oceanograhic Institution
Woods Hole, MA

This program will perform a repeat track analysis
of geosat GDR’s.

1. Read in all cycles

2. Calculate the mean sea surface height (m_h)

3. Subtract mean from each cycle.

4 Calculate sine regression and subtract from
each cycle.

5. Calculate a second regression weighted by the
inverse of the variance of the first regression.

6. Subtract new fit from each profile to obtain
final heights.

7. Calculate mean and variance.

8. Print results.
Each GEOSAT GDR is read from a separate file.
g-repeat ¢???7.a002 > data.text

will perform a repeat track analysis from the cleaned and splined
GDR’s in all available cycle for track a002.

Input:

;;;;j;002 All cycles for the specified track cleaned
and splined.

Output:

;;;;;;: Data file containing the latitude, the

longitude, the mean height(m), the rms height
variance and the number of valid points for each
location of a given orbit.

129

€??7?7.a002_r Data file containing the latitude, the
longitude and the residual height.

Subroutines Required:

cr_mat_float creates a floating point matrix.
cr_mat_double creates a double precision matrix.
gauss_elim solves linear system of equatioms.
References:

*/

include <math.h>
include <stdio.h>
include "“geos.h"

#define MICRO 1.e-6 /* conversion from micro-deg to deg
#define MILLI 1.e~2 /* conversion from centimeter to meter
#define MAXPOINTS 2915 /* Max point -70 to +70 degrees latitude
#define DEG_TO_RAD M_PI/180.0 /* Converstion to radians
#define OM 2.0+«M_PI/PERIOD /* Orbital Omega
#define M_2PI 2.0%M_PI /* 2 * PI
/* ,

Global Variables...
*/
float **h; /* Original Heights. */
float **h_tmp; /* Temporary Heights. #*/
double **times; /* Array of times for each GDR #/
float *mean; /* Mean of original heights (h) */
float *mean2; /* Mean of original heights - quad orbit corr.*/
float *mean_lon; /* Mean of Longitudes */
float *lat; /* Latitudes of first orbit. */

/* We don’t find mean_lat because the
latitudes are fixed in a previous
program such as g_spline

*/
float *var; » /* Variance of original heights */
float *var2;
int *count; /* Count for mean and var*/
int *count2; /* Count for mean2 and var2+*/
double **a, *b; /* Used for quadratic fit*/
double *xans; /* Used for quadratic fit #*/
float **quadoO; /* Keep values of quadratic fit for printing */
float **quadi; /* Keep values of quadratic fit for printing */

130

*/
*/
*/

*/
*/
*/

int *cyc; /*
int maxcyc; /*

int i; /*
int ipoint; /*

main (argc,argv)
int argc;
char *argv(]l;

{

/*

Keep track of good and bad cycles. */

Maximum number of good points at each
latitude grid point

*/

Counter */

Counter for points read in for each cycle.
Note: program assumes each cycle has been
regridded to a common grid and has the same
number of points.

*/

Declare non-integer subroutines:

*/

float **cr_mat_float();

double **cr_mat_double();

/*
I/0 file descriptors
*/

FILE *gfile, *ofile;
/*

Various counters.
*/

int iarg;

int ipointold;

int £ill = FALSE;

/*

Temporary variables for calculations prior to printing.

*/
float htmp, vtmp;
float fit0, fiti;

float t;
/*
Misc. variables.
*/
int err; /*
char str[80]; /*
/*

Returned error message. */
String for filenames etc. */

131

Create arrays described above...

*/
h = cr_mat_float(argc, MAXPOINTS);
h_tmp = cr_mat_float(argc, MAXPOINTS);
times = cr_mat_double(argc, MAXPOINTS);
mean = (float *)calloc{MAXPOINTS, sizeof(float));
mean?2 = (float *)calloc(MAXPOINTS, sizeof(float));
mean_lon = (float *)calloc{MAXPOINTS, sizeof(float));
lat = (float *)calloc(MAXPOINTS, sizeof(float));
var = (float *)calloc{MAXPOINTS, sizeof(float));
var2 = (float *)calloc(MAXPOINTS, sizeof(float));
count = (int *)calloc(MAXPOINTS, sizeof(int));
count2 = (int *)calloc(MAXPOINTS, sizeof(int));
cyc = (int *)calloc(argc, sizeof(int));
a = cr_mat_double(3,3);
b = (double *)calloc(3, sizeof(double));
xans = (double *)calloc(3, sizeof(double));
quado = cr_mat_float(argc,3);
quadi = cr_mat_float(argc,3);

/*

Check count2 and quadl to see if they were allocated space. If so,
assume that all other arrays were allocated ok.

*/
if ((quadi == NULL) || (count2 == NULL))
{
fprintf(stderr,"%s: Unable to allocate emough storage space.\n",
argv(0]);
exit(1);
}
/*
Check to see if program is given arguments...
*/
if (arge == 1)
{
fprintf(stderr,"Usage: %s c¢??7.a000 > fileout.text\n",argv[0]);
exit(1);
}
/*
Read in all GDRs and calculate mean and variance...
iarg is the cycle number to read im.
ipoint is the along track point
*/

for(iarg=0; iarg<argc-1; iarg++)

132

/*
Open each input file...
*/
it ((gfile = fopen(argv[iarg+1],"r")) == NULL)
{
fprintf(stderr,"’s: Unable to open file %s. Continuing...\n",
argv[0], argvliarg+1l);
cycliarg] = BAD;
continue; /* If there is no file, try the next file. */

}

ipoint = 0;

while (fread((char*)&fr,1,REC_LEN,gfile)==REC_LEN)

{
if (1£il1) /% Fill latitude from first good cycle. */
{
lat[ipoint] = fr.lat;
}
else /* Check against first cycle */
{ /* to make sure points line up */
if((abs((int)lat[ipoint]-fr.lat) > 1000) && (fr.lat != 0))
{
fprintf(stderr,
“%s: Repeat tracks out of sync. Offending file: %s\n",
argv[0], argvliarg+1]);
exit(1);
}
}
/*

Store Heights and times...
Note: Subtract time zero to keep times small.

*/

hliarg] [ipoint]

= fr.m_h;
times[iarg] [ipoint] =

(fr.utc+fr.utcm*MICRO) - TIME_ZERO;

/*
Set up to find mean and variances...

*/

if ({(fr.m_h != BAD) && (fr.lon !=BAD))
{
mean[ipoint] += fr.m_h;
var[ipoint] += fr.m_h*fr.m_h;
count[ipoint]‘+= 1;
mean_lon[ipoint] += fr.lom;
}

ipoint++;

133

/*
If a cycle has no points, mark that cycle as BAD and
print error message.
*/
if(ipoint == 0)
{
cycliarg] = BAD;
ipoint = ipointold;
fprintf(stderr,"/s: Bad file %s, no data found\n",argv[0],
argv[iarg+1]);

else
{
ipointold = ipoint; .
- i1l = TRUE;
}

/*
If no points were read, exit program...
*/
if ((ipoint == 0) && (ipointold == 0))
{
fprintf{(stderr,"/s: No points read, unable to perform analysis.\n",
argv[0]);
exit(1);
}

ipoint--;

/*
Find mean and variance of raw data. Also find the mean lon
at each point and determine the maximum number of cycles.
mean, var, mean_lon and maxcyc.

*/
calc_meani();

/*
Calculate quadratic regression of difference and subtract
from each cycle...

*/

fit_sin(argec, 0);

/*
Find mean and var of h_tmp.
mean2 and var. -

*/

calc_mean2();

/*

Zero mean2, var2 and count2 and

134

Calculate weighted regressiom...

*/

zero_2();
fit_sin(arge, 1);

/*
Find mean and var of h_tmp after weighted
regresssion - mean2 and var.

*/
calc_mean2();

/*
Write out residuals for each good cycle.
Concatenate "_r" to the end of the file name. This was
done instead of substitution since the user may call the
program with subdirectories - c000/c000.a002c, in which
case a prefix would change the directory name; or if the
input file does not end with an additional character -
c000.a002, substituting the last character would affect
the file name.

Cutput file format:
lat lon residual f£ito fitl

Where the residual is h - hmean, and fitO is
the resulting fit of the first quadratic and fitl
is the fit of the second quadratic.

*/

for (iarg=0; iarg<argc-1; iarg++)
1 .
if(cycliarg] != BAD)

strcpy(str,argviiarg+1]);
strcat(str,"_r");
if ((ofile = fopen(str, "w")) == NULL)
{
fprintf(stderr,"/s: Unable to open file %s. Continuing...\n",
argv(0], str);

continue; /* Try next file. */
}
for (i=0; i<ipoint; i++)
{
if((h_tmpliarg] [i] != BAD) && (mean2[i] !'= BAD))

{
htmp = (h_tmpliarg] [i]l-mean2[i])*MILLI;
t = remainder(OM*times[iarg] [i], M_2PI);
£it0 = (quadO[iarg] [0] + quadO[iarg][1l*cos(t) +
quadO[iarg] [2]*sin(t))*MILLI;

135

fit1 = (quadiliarg][0] + quadiliarg] [1]*cos(t) +
quadiliarg] [2]#sin(t))*MILLI;
}
else

{
htmp = BAD*MILLI;
f£it0 = fitl1 = BAD;

}

fprintf(ofile,"%4d\t%8.42\t%8.42\t%8.4£\t/,8.47\t%8.4f\n", i,
lat[i]+#MICRO, mean_lon[i]*MICRO, htmp, fit0, fitl);
}
fclose(ofile); .
}

}
/*
Write out statistics to standard output.
The output is:

i lat mean_lon mean2 var var2 count2

Where i is the sequential point number, lat is the latitude

at that point, mean_lon is the mean_lon, mean2 is the mean height
with orbit error etc removed, var is the variance, var2 is the sum
of squares and count2 is the number of cycles that went into the
statistics...

*/
for (i=0; i<ipoint; i++)
{
if (mean2[i] != BAD)
{
vtmp = sqrt(var[i])*MILLI;
}
else
{
vtmp = BAD*MILLI;
}
fprintf(stdout,"%4d\t%8.42\t%8.41\t%8.4£\t%8.4£\t%12.4£\t%3d\n",
i, lat[i]+#MICRO, mean_lon[i]#MICRO, mean2[i]*MILLI,
vtmp, var2[il, count2[i]);
}
fclose(str);
}
/*

Subprogram calc_meani()

Written by: Michael Caruso
Woods Hole Oceanographic Institution

Purpose: This subprogram is used with g_repeat
to calculate the means of input data.

136

calc_meani()

*/
{

maxcyc = 0;

for (i=0; i<ipoint; i++)

{
if (count[i] > 1) /* Check for at least two good points. */
{
mean[i] /= count[i];
mean_lon[i] /= count[il;
var{i] = var[i]/count[i] - mean[i]*mean[i]; .
maxcyc = (count[i] > maxcyc) ? count[i] : maxcyc;
}
else
{
mean(i] = BAD;
var[i] = BAD;
}
}
}
/*
Subprogram calc_mean2()
. Written by: Michael Caruso
Woods Hole Oceanographic Institution
Purpose: This subprogram is used with g_repeat
to calculate the means of temp data.
*/
calc_mean2()
{
: for (i=0; i<ipoint; i++)
{
if (count2[i] > 1) /* Check for at least two good points */
{
mean2[i] /= count2[i];
var{i] = var2[i]l/count2[i] - mean2[i]*mean2[i];
}
else
{
mean2[i] = BAD;
var{i] = BAD;
})
}
}
/* :
Subprogram fit_sin()

Written by: Michael Caruso

Woods Hole Oceanographic Institution

137

Purpose: This subprogram is used with g_repeat
to it a sin to an arc.

Method: fit a sin in a least squares sense..

num x xx
a= x XXX XXXX
xx Xxxx IXxxx
y -z
b= xy -zxz
Iy - xxz

fit_sin(numcyc, pass)
int numcyc;
int pass;

double x, y, z, xx, Xy, Xz, XXX, XXy, XXZ, XXXX, XXXXX;
double t; /* Variable to fit to */
double sin_t, cos_t; /* Sin(t), Cos(t) */

int iarg;
int err;
int num;

for (iarg=0; iarg<numcyc-1; iarg++)
{
if(cycliarg]l != BAD)

/*
Declare dummy arrays for procedure...
And set to zero.

*/
num = 0;
X =y =2Z=2XX=Xy=2XZ= XXX = XXy = XXZ = XXXX = xxxxx = 0.0;
for (i=0; i<ipoint; i++)
{
it (hfiarg][i] !'= BAD)
{
if (count([i] >= maxcyc/2)
{
if (!pass)
{
t = remainder(OM*times[iarg] [i], M_2PI);
cos_t = cos(t);)
sin_t = sin(t);
x += cos_t;
¥ += hliargl[i];
z += meanf[i];
xx += sin_t;

xy += cos_t*h[iarg] [i];
xz += cos_t*mean[i];
xxXx += cos_t*cos_t;
xxy += sin_t*h [1&1‘8] fil;
xxz += sin_t+*mean(i];
XXX += cos_t*sin_t;
IXXXX += sin_t*sin_t;
num++;
}
else
{
if (var[i] != BAD)
{
t = remainder(OM*times[iarg] [i],
M_2PI);
cos_t = cos(t);
sin_t = sin(t);
x += cos_t/var[i];
y += hliarg] [i]/var[i];
z += mean[i]/var[i];
xx += sin_t/var[i];
xy += cos_t+h[iargl [i]l/var[il;
&4 += cos_t*mean[i]/var(i];
xxx += cos_t*cos_t/var[i];
xxy += sin_t*h[iarg] [i]l/var[i];
XXz += gin_t*mean([i]/var[i];
xxXxX += cos_t*sin_t/var[i];
XXXXX += sin_t*sin_t/var[i];
num++;
}
}
1
}
}
/*
If we have less than three points, label bad cycle
*/
if (num < 3)
{
cycl[iargl = BAD;
continue;
}
/*
Set up matrices and solve x*xans=b...
*/
a[0]1[0] = num;
afolf1] = al1l[0] = x;
af0][2] = al2]1{0] = xx;
a[1][1] = xxx;
al[1]1[2] = a[2][1] = xxxx;
a[2][2] = xxxxx;
b[o] = y-z;

139

bl1]
b[2]

Iy-XZ;
IXY-XXZ;

err = gauss_elim(a, 3, 3, b, xans);

/*
Save fit parameters for later printing...
*/
for (i=0; i<3; i++)
{
if(pass == 0)
{
quad0{iarg]l [i] = xans[i];
}
else
{
quadifiargl [i] = xans[i];
}
}
/*

Subtract regression from each cycle...
Put result into h_tmp and keep track of
data for mean and variance calculation - calc_mean2.

*/

for(i=0; i<ipoint; i++)
{
if(hliarg] [i] !'= BAD)
{
t = remainder(OM*times[iarg] [i], M_2PI);
h_tmpliarg] [i] = h[iarg] [i]l-xans[0]-xans[1]l*cos(t)-
xans [2]*#sin(t);

mean2[i] += h_tmpliarg) [i];
var2[i] += h_tmpliarg] [i]*h_tmpliarg] [i];
count2[i] += 1;

else

{
h_tmpliarg] [i] = BAD;
}

}
/*

Subprogram zero_2()

Written by: Michael Caruso
Woods Hole Oceanographic Institution

Purpose: This subprogram is used with g_repeat
to zero mean2 var2 and count2

140

zero_2()
{
for (i=0; i<ipoint; i++)
{
mean2[i] = var2[i] = 0.0;
count2[i] = 0;
}

141

Program g_seporb.c

/*
a(#)g_seporb.c . 1.4 6/14/90

Written by:

Michael Caruso

Woods Hole Oceanographic Institution
Woods Hole, MA

Modifications:

12-15-89 MC Changed call to geo_cyc_orb so that time is
passed and not a GDR.

!
f
1
£

Read raw GEOSAT GDR and splits data into separate orbits. Each

orbit is defined as beginning at the northernmost point of a track.

Each orbit is further separated into an ascending section and a descending
section. Orbits are then written out to separate files of the form:

cmmm.annn or cmmm.nnnd
where
is the cycle number,
is the orbit number for that cycle,
signifies ascending portionm,
signifies descending portion.

Q-NEE

The data is written out in the same form as it was read in. This is
consecutive records of 78 bytes each. The last point of an ascending
or descending orbit is the most northern or most southern point of
that orbit.

Method:

Reads raw GEOSAT GDR from standard input. Calculates correct filename
using convention shown above. Tests to see when slope of lat/lon track
changes sign which indicates change from ascending to descending or
descending to ascending part of orbit.

The data is read from standard input such as direct from the NODC
data tapes: ;

dd if=/dev/rmt8 ibs=16380 files=34 | g_seporb

This would separate all the files into the correct orbits.
NOTE: input file must have at least two points.

142

Stdin Raw Geosat GDRs.
Cutput
c?77.772?7 Separated GEOSAT data.

Subroutines Required:

geo_cyc_orb Returns the cycle number and orbit number
for a given time.
geo_error Prints error messages.

*/

#include <stdio.h>
#include <sys/file.h>
#include <math.h>
#include "geos.h"

rmain(argec, argv)

int argce;
char *argv(];

struct frame £r2;

char str[80];

short int orbit_num_tot;
int cycle_num;

int orbit_num;

long int 1lslopel, lslope2;
double time;

FILE *fdout;

/* read initial data record... */

if(fread((char *)&fr, i, REC_LEN, stdin) != REC_LEN)
{

geo_error(3, argv[0]);
- exit(1);
}

/* read second data record... */

if(fread({char *)&fr2, 1, REC_LEN, stdin) != REC_LEN)
{

143

geo_error(3, argv[0]l);
exit(1);
}

/* Determine name of first orbit */

time = fr.utc + fr.utcm*1.0e-6;
1slopel = fr2.lat -~ fr.lat;

geo_cyc_orb(time, &cycle_num, Zorbit_num);

if (1lslopel > 0) /* If 1slopel > O ascending orbit else descending */

sprintf(str,”c/.3d.a’.3d",cycle_num,orbit_num);
else if (lslopel < 0)

sprintf(str,"c).3d.d%.3d",cycle_num,orbit_num);
else

{

if (fr.lat < 0)
{

sprintf(str,"c.3d.a%.3d",cycle_num,orbit_num);

else
{
sprintf(str,"cll.3d.d%.3d",cycle_num,orbit_num);
}
}

fdout = fopen(str,"a"); /* open a new file or append an old */

/* Write out first two records to opened file... */

if(fwrite((char *)&fr, 1, REC_LEN, fdout) != REC_LEN)
{
geo_error(3, argv(0]l);
exit(3);
}

if(fwrite((char *)&fr2, 1, REC_LEN, fdout) != REC_LEN)
{

geo_error(3, argv[0]);
exit(3);
}
/* Read in rest of geosat data */

fr = 1fr2;
while(fread((char *)&fr2, 1, REC_LEN, stdin) == REC_LEN)
¢ 1slope2 = fr2.lat ~ fr.lat;
if ((1slopel > O &% lslope2 <= 0) || (lslopel < O && lslope2 >= 0))
{

/* Determine name of next orbit */

144

time = fr2.utc + fr2.utcm * 1.0e-6;
geo_cyc_orb(time, &cycle_num, &orbit_num);

if (1slope2 > 0)
sprintf(str,”c%.3d.a%.3d4",cycle_num,orbit_num);

else if (1lslope2 < 0) .
sprintf(str,"c%.3d.d%.3d",cycle_num,orbit_num);

else
{
if (fr.lat < 0)
{
sprintf(str,”c’%.3d.a).3d",cycle_num,orbit_num);
}
else
{
sprintf(str,"c’.3d.d%.3d",cycle_num,orbit_num);
}
}
fclose(fdout); /* Close previous file */
fdout = fopen(str,"a"); /* Open new or append filex/

}

if(terite((char *)&fr2, 1, REC_LEN, fdout) != REC_LEN)
{
geo_error(3, argv[0]);
exit(3);
}

ir = fr2;
1slopel = lslope2;

145

Program g.spike.c

/*
o(#)g_spike.c 1.4 11/14/89

Program g_spike.c

Written by:

Michael Caruso
Woods Hole Oceanograhic Institution
Woods Hole, MA

This program will remove spikes from data by a series
of quadratic fits.

Method:

1. Break data into continuous segments
2. Fit each segment with a quadratic

3. If fit is within outlier, keep point

else, remove two worst points and
1it segment with another quadratic.

4. If fit is within outlier, keep point
else, calculate a linear fit.
5. If linear fit is within outlier, keep

point. Else reject point as bad

6. Delete points that do not have enough
neighbors and segments that do not have
enough points.

The GEOSAT GDR is read from standard input.
cat c000.a002 | g_spike deltmax neighbors outlier > c000.a002s

will remove the spike records from the GDR in c000.a002.

Input

Stdin ‘Clean GEOSAT GDRs

deltmax Seconds that define gap in record
neighbors Number of neighbors required for spline.
outliers Centimeters for rejection of point after

spline fit.

146

Stdout: GEOSAT GDRs with spikes removed.

Subroutines Required:

gauss_elim Solves linear equation Ax=b by Gaussian Elimination.

Subprograms Required:

comp_fit_quad Computes quadratic least squares fit.
comp_fit_lin Computes linear least squares fit.
find_bad_pts Finds two worst points in segment.

write_gdr Writes a single GDR to stdout or prints error.

References:

*/

include <math.h>

include <stdio.h>
include "geos.h"

#define NUMARGS
#define DARG
#define NARG
#define OARG
#define MICRO ie-6

WN =W

#define BADFIT -99989.0

/* Conv for utcm */
/* Return if least sq malformed */

#define SWAP(u,v) {(xswap)=(u);(u)=(v);(v)=(xswap);}

double **a, *b;

double *#*al, *bil;

double *xans, *xansi;
struct frame frs[3000];
short int kstart, kstop;
double max0, maxl;

int imax0, imaxi;

double *h_fit;

double t;

int num;

double xswap;

main (argc,argv)
int argc;
char *argv(];

/*

/*
/*
/*
/*
/*
/*
/*
/*
/*

/*
/*

Arrays for quad fit */
Arrays for linear fit */
Results for quad and linear fit */
GDRs */
Start and stop for each fit */
Two worst points to remove */
if first fit is bad */
Temp array of fits for find_bad_pts */
Temp time variable */

Number of points in fit segment */
Temp swap variable x/

Declare subroutines and subprograms...

147

*/

double **xcr_mat_double();

double comp_fit_quad();

double comp_fit_lin();

int find_bad_pts();

int write_gdr();

int err; /* error returned by gauss_elim */

int neighbors;

double timel, time2; /* Read in times for gap determination */
double h_new; /* Calculated height */
float deltmax; /* Maximum time for gap */ .
float outlier; /* Maximum offset for rejected point */
short int seg_len[1000]; /* defines each segment */
short int seg_beg[1000]; /* */
short int points=0; /* Counters */
short int segments = 0; /* */
short int i, j, k, ii; /* */
/* .
Check arguments...
*/

if ((argc !'= NUMARGS+1) &% (argc != 1))

{

fprintf(stderr,"Usage: %s [deltmax deighbors outlier] < filein > filout\n",
argv{o]l);
exit(1);

}
it (argc == NUMARGS+1)

{

sscanf (argv([DARG],"%f", &deltmax);
sscanf (argv[NARG],"%d", &neighbors);
sscanf (argv[0ARG],"%f", &outlier);

}
else
{
deltmax = 3.3;
neighbors = 13;
outlier = 50.0;
}
/*
set up matrices for least squares...
*/
a = cr_mat_double(3,3);

148

al = cr_mat_double(2,2);

b = (double *)calloc(3, sizeof(double));
b1 = (double *)calloc(2, sizeof(double));
xans = (double *)calloc(3, sizeof(double));
xansl = (double #*)calloc(2, sizeof(double));

h_fit = (double *)calloc(neighbors, sizeof(double));

/*

Read in all GDRs...

*/
while (fread((char*)&frs[points],1,REC_LEN,stdin)==REC_LEN) points++;
points—-;

/*
1. Break into data segments...
x/

seg_len[0] = 1;

seg_beg[0] = 0;

time2 = frs[0].utc + frs[0].utcm*MICRO;
for (i=0; i<points; i++)

{

time2;
frs[i+1].utc + frs[i+1].utcm*MICRO;

timel
time2

if ((time2 - timel) <= deltmax)

{
seg_len[segments]++;

}

else

{.
segments++;
seg_beg[segments] = i + 1;
seg_len[segments] = 1;

}
}

if (seg_len[0] == 0) exit(1);

/*
2. For each segment...
*/
for (i=0; i<=segments; i++)
{
/*
2a. Ignore segment if there are too few
points...
*/
if (seg_len[i] < neighbors) continue;
/*

2b. Fit a quadratic through each point...

149

*/
else

{
for (j=seg beglil; j<seg_begl[il+seg_len[i]; j++)

kstart = j - neighbors/2;
kstop = kstart + neighbors;
imax0 = imaxl = ~-1;

h_new = comp_fit_quad(j);

/*
3. If fit is tolerable write out point...
*/
if ((fabs(h_new-frs[j].m_h) < outlier)
&& (h_new != BADFIT))
{
write_gdr(j, argv[0]);
}
/*

3a. Else remove two worst points and recompute fit...
If fit is malformed, remove first and last point and recompute fit...

*/
else
{
if (h_new == BADFIT)
{
imax0 = 0;
imax1 = num - 1;
}
else
find_bad_pts();
/* .
Recompute fit...
*/
.h.new = comp_fit_quad(j);
/*
4. If fit is tolerable write out point...
*/

if((fabs(h_new-frs[j].m_h) < outlier)
&% (h_new != BADFIT))
{
write_gdr(j, argv[0]);

else

{

h_new = comp_fit_lin(j);

t = frs[jl.utc + frs[j].utcm*MICRO;

150

/*
6. If fit is tolerable write out point...

*/
if((fabs(h_new-frs[jl.m_h) < outlier)
&& (h_new != BADFIT))
{
write_gdr(j, argv[0]);
}
else
{
fprintf(stderr,"Rejected point -> \tTime: \t%lf \n",t);
fprintf(stderr,”\t\t\tOriginal h: \t%d\n", frs[jl.m_h);
fprintf (stderr,"\t\t\tComputed h: \t%7.11f\n", h_new);
}
}
}
}
}
}
}
/*

subprogram comp_fit_quad.
Written by: Michael Caruso
Woods Hole Oceanographic Institution

Purpose: This subprogram is used with g_spline to
compute a quadratic fit.

*/

double
comp_fit_quad(j)
int j;
{ .
double x, y, xx, Xy, XXX, XXy, XXXX;
double h_new;
double t, t2, t3, t4;
int k;
int err;

num = 0;
X =y =XX=Xy = XXX = XXy = xxxx = 0.0;
for (k= kstart; k< kstop; k++)
if ((k !'= (kstart+imax0)) && (k '= (kstart+imaxi))

gk (k 1= j))
{

151

t = frs[k].utc + frs[k].utcm*MICRO;
t2 = t*t;

t3 = t2+%t;

t4 = t3=t;

X += t;

y += frs(k]l.m_h;

xx += t2;

xy += t*frs[k].m_h;

xxx += t3;

xxy += t2*frs[k].m_h;
xxxx += t4;

num ++;
}
}
alo][o0] = num;
al0] [1] = al1][0] = x;
afo][2] = al1][1] = af2][0] = xx;
a[1][2] = a[2][1] = xxx;
a[2][2] = XXXX;
b[0] = y;
bl1] = xy;
bl2] = xxy;

err = gauss_elim(a, 3, 3, b, xans);

t = frs[j].utc + frs(j].utcm*MICRO; -
h_new = xans[0] + xans[1]*t + xans[2]*t=*t;

if (err == 0)
return(h_new);

else
return(BADFIT);

}

/*
Subprogram comp_fit_lin

Written by: Michael Caruso
Woods Hole Oceanographic Institution

Purpose: This subprogram is used with g_spline to
compute a linear least squares fit.

double
comp_fit_lin(j, prog)
int j;
char #*prog;
{
double x, ¥y, xx, xy;
double h_new, t, t2, t3, t4;
int err;

152

int k;

xx = xy = 0.0;

4]
[}
I«

num 0;

for (k= kstart; k< kstop; k++)

{
if((k '= (kstart+imax0)) && (k != (kstart+imaxl))
&& (kx != j))
{
t = frs(k].utc + frs(kx].utcm*MICRO;
12 = t*t;
x += t;
y += frs(k].m_h;
xx += t2;
xy += t*frs(k].m_h;
num++;
}
}
aifo] [o] = num;
a1[0] [1] = at[1][0] = x;
a1l1][1] = xx;
b1f0] = y;
bif1] = xy;

err = gauss_e;im(ai, 2, 2, bi, xansi);

t = frs[jl.utc + frs[j].utcm*MICRO;
h_new = xans1[0] + xansi[1]=*t;
if (err == 0)
return (h_new);
else
return (BADFIT);

}
/*

Subprogram find_bad_pts

Written by: Michael Caruso
: Woods Hole Oceanographic Institution

Purpose:

This subprogram finds the two worst points
in a series for program g_spike.

x/
find_bad_pts()
{

short int ii;

for (ii=0; ii<num; ii++)
{
t = frslkstart+ii].utc + frs[kstart+ii] .utcm*MICRO;
h_fitlii] = frslkstart+iil.m_h - (xans[0]+xans[1]*t + xans[2]*t*t);

153

}
if (fabs(h_fit[0]) > fabs(h_fit[1]))
{
max0 = fabs(h_fit[0]);
maxl = fabs(h_fit[1]);
imax0 = 0;
imaxl = 1;

max0 = fabs(h_fit[1]);
maxl = fabs(k_£it[0]);
imax0 = 1;
imax1l = 0;
for (ii=2; ii<num; ii++)

if(fabs(h_tit[ii]) > maxi)
{
maxl = fabs(h_tit[ii]);
imaxl = ii;
}
if (max1 > max0)
{
SWAP(maxi,max0);
SWAP (imax1,imax0);
}

}
/*

Subprogram write_gdr

Written by: Michael Caruso
Woods Hole Oceanographic Institution

Purpose: This subprogram writes the selected GDR to
standard output.

*/
write_gdr(j, prog)
int j;
char *prog;
{ ‘
if (ferite((char *)&frs[j], 1, REC_LEN, stdout) != REC_LEN)
{
geo_error(3,prog);
exit(3);
}

154

Program g_spline.c

/*
a(#)g_spline.c 1.3 12/15/89

Program g_spline.c

Written by:

Michael Caruso
Woods Hole Oceanograhic Institution
Woods Hole, MA

Modifications:

12-15-89 MC Changed call to geo_cyc_orb so that time is
passed and not a GDR.

This program will spline all geosat GDR data except the
10 per second heights againts the latitude value.

1 Break data into continuous segments

2. Fit each segment with a spline

3. Spline each data value.

4 Write out all data between min and max

The GEOSAT GDR is read from standard input.
cat c000.a002 | g_spline dir min max deltmax timestep> c000.a002s
will spline the records from the GDR in c000.a002 between min

and max latitude if dir is 1 and between min and max longitudes
if dir is 2.

Input

Stdin Clean GEOSAT GDRs

dir Determines boundaries of spline:
1 - Use latitude
2 - Use longitude

min Minimum lat or lomn.

max Maximum lat or lon.

deltmax Maximum gap in seconds for a contiguous
segment.

timestep Interval between spline points.

155

Stdout:

Splined GEOSAT GDRs. Values in gaps

between valid segments are set to all

Zeros.

Subroutines Required:

geo._

natcubspline

cyc_orb Returns the cycle number and orbit number
for a given time.

References:

*/

include <math.h>
include <stdio.h>
include "geos.h"

#define NUMARGS
#define DIARG
#define MIARG
f#tdefine MAARG
#define DEARG
#define TIARG

o W N =

#define MICRO 1e-6
#define MAXPOINTS 2915

/*

/* Conv for utcm

Computes a spline

*/
/* +/- degrees latitude x/

Define some globals to share with fit subprograms...

*/

int

ii, jl k;.

int latstart, latstop;

struct frame frsin[MAXPOINTS];
struct frame frout{MAXPOINTS];

float
short
float
float
float
float

float

/*

Variables for orbit amalysis.

*/

timestep;
int points=0;
*X3
*y2;
*xlat;
*yi
x0, minval, maxval;

int orb, cyc;
double rs, rs3, cosinc, prec, rot, dthdt;
double time, theta, sinth, latO, lonO, tmp;

short

int seg_len[1000];

/* frame MAXPOINTS/2 is defined at'the equator */

156

short int seg_beg[1000];
unsigned char ascorb;

‘main (argc,argv)
int argc;
char *argv(];

int fit_time();
int tit_data();

double timel, time2; /* time variable used to determine gap */
float deltmax;
short int i;

short int dir;
short int segments = 0;

static char SccsId[] = "@(#)g_spline.c 1.4\t6/23/89";

x = (float *)calloc(MAXPOINTS, sizeof(float));
y2 = (float *)calloc({MAXPOINTS, sizeof(float));
y = (float *)calloc(MAXPOINTS, sizéof(float));
lat = (float *)calloc(MAXPOINTS, sizeof(float));

it ((argc !'= NUMARGS+1) && (arge != 1))
{
fprintf(stderr,"Usage: %s [dir min max deltmax timestep] < filein > fileout\n",
argv[0]);
exit(1);
}
if (argc == NUMARGS+1)
{
sscanf (argv[DIARG],"%hd", &dir);
sscanf (argv[MIARG],"%f", &minval);
sscanf (argv[MAARG] ,"%f", &maxval);
sscanf (argv[DEARG],"%f", &deltmax);
sscanf (argv[TIARG],"/f", ×tep);

else
{
fprintf(stderr,“Usage: %s [dir min max deltmax timestep] < filein > fileout\n",
argv[0]);
exit(1);
}

/*

157

Read in all GDRs...

*/
while (fread((char*)&frsin[points],1,REC_LEN,stdin)==REC_LEN) points++;
points—;

if (points <= 0)

{
fprintf(stderr,"%s: No points to spline\n\n",argv[0]);
exit(0);
}
/*
Determine if orbit is ascending or descending...
*/

if((frsin[0] .lat < frsin[1].lat) && (frsin[1].lat < frsin[points].lat))
¢ ascorb = TRUE; |

elze if((frsinf0].lat > frsin[1].lat) && (frsin(1].lat > frsin[points].lat))
¢ ascorb = FALSE;

else
{
fprintf(stderr,"%s: Unable to determine if orbit is ascending or ");
fprintf(stderr,"descending\n", argv([0]);
exit(1);
}
/*
Set up for direction. If dir != 1, then we
find the latitude that corresponds to minlon
and maxlom.

*/

if (dir !'= 1)

{
lon_to_lat();

}

/*
Fill latitude array and find starting index...
*/

for (i=0; i< MAXPOINTS; i++)
{

if (ascorb)
{
lat[i] = DEG*asin(sin((i-MAXPOINTS/2)+*timestep*M2PI/PERIOD)*sin(INC));
if (minval > lat[i]) latstart = i+1;
}
else
{
lat[i] = DEG*asin(sin(((MAXPOINTS/2)-i)+*timestep*M2PI/PERIOD)*sin(INC));
it (maxval < lat[i]) 1latstart = i+1;

}

158

¥

/*
1. Break into data segments...
*/ ’
seg_len[0] = 1;
seg_beg[0] = 0;
time2 = frsin[0].utc + frsin[0].utcm*MICRO;
for (i=0; i<points; i++)

{

time2;
freinfi+1] .utc + frsinl[i+1].utcm*MICRO;

timel
time2

iz ((time2 - timel) <= deltmax)
{
seg_len[segments]++;
}
else
{
segments++;
seg_beglsegments] =
seg._len{segments]
}

LER |
- M
..+
-
-

}
if (seg_len[0] == 0) exit(1);
/*
2. Initialize data and fit a spline to each segment...

*/

for{i=latstart; i<MAXPOINTS; i++)

{
frout[i]l.lat = (int){(lat[i]/MICRO);
frout[i] .lon = BAD;
frout[i].m_h = BAD;

}

for (i=0; i<=segments; i++)

{
fit_time(i); /* initialize spline =/
fit_data(i,0); /* lon */
fit_data(i,1); /* h */
fit_data(i,2); /* orb */
fit_data(i,3); /* s_h =/
fit_data(i,4); /* geoid */
fit_data(i,5); /* swh %/
fit_data(i,8); /* s_swh */
fit_data(i,7); /* s_nght */
fit_data(i,8); /* age */
fit_data(i,9); /* s_agc */
fit_data(i,10); /* s_tide */
fit_data(i,11); /* o_tide */

159

fit_data(i,12); /* w_fnoc */

1it_data(i,13); /* w_smmr */
fit_data(i,14); /* d_fnoc */
fit_data(i,15); /* iono =/
fit_data(i,18); "~ /% dh_swh */
fit_data(i,17); /* dh_fm */
fit_data(i,18); /* att */
}
/*
Write out points...
*/
for (k=latstart; k<j; k++)
{
it (fwrite((char *)&frout[k], 1, REC_LEN, stdout) != REC_LEN)
{
geo_error(3,argv[0]);
oxit(3);
}
}
.
Ve

Subroutine fit_time

Written by:
Michael Caruso
Woods Hole Oceanographic Institution
Woods Hole, MA

Purpose:

This subprogram fits a spline to the time variable in a
GEOSAT GDR.

*/

int fit_time(i)
int i;

{

~float yout;
ii = 0;
for (j=seg_beglil; j<seg_beglil+seg_len[i]; j++)
{

x[ii] = frsin[j].lat*MICRO;

y[ii] = (float)(frsin[j].utc - frsin[seg_begli]].utc)
+ (float)frsin[j].utcm*MICRO;
ii++;
}
x0 = x[0];

160

/*
spline(x-1, y-1, ii, 1.e30, 1.e30, y2-1);
*/

natcubspline(x, y, ii, x0, &yout, 0);

j = latstart;
while ((ascorb &k (lat[j]l < x0)) || (lascorb && (lat[j]l > x0)))
{
j++;
}
while ((lat[j] > minval) && (lat[j] < maxval))
{
it ((ascorb && (lat[j] > frsin[seg_beg[il].lat*MICRO) &&
(lat[j] < frsin[seg_beglil+seg_len[il-1].lat*MICRD)) ||
(tascorb && (lat[j] < frsin[seg_beg[il].lat*MICRO) &&
(lat[j]l > frsin[seg_begl[il+seg_len[il-1].1lat*MICRO)))

{
/*
splint(x-1, y-1, y2-1, ii, lat[jl, &yout);
*/ .
natcubspline(x, y, ii, lat[j], &yout, 1);
frout[j].utc = (int)yout + frsin[seg_begl[il].utc;
frout[j]l.utem = (int)((yout - (int)yout)/MICRO);
}
else
{
frout[jl.lat = (int)(lat[j]1/MICRD);
frout[j].utc = 0;
frout[j].utcm = 0;
}
j++;
} .
natcubspline(x, y, ii, lat[jl, &yout, 2);
return;
}
/*

Subroutine fit_data

Written by:
Michael Caruso
Woods Hole Oceanographic Institution
Woods Hole, MA

Purpose:

This subprogram fits a spline to the data segment
specified.

*/

int fit_data(i, var)

161

int i, var;

float yout;

int iyout;

ii = 0;

for (j=seg_beglil; j<seg_beglil+seg_len[i]; j++)

x[iil = frsin[j].lat*MICRO;
switch (var)

{

case O:
y[ii] = (float)frsin(j].lon;
break;

case .1:
y[ii]l = (float)frsin[j].m_h;
break;

case 2:
yliil = (float)frsin[j].orb;
break;

case 3: .
yl[ii]l = (float)frsinl[j].s_h;
break;

case 4:
y[ii] = (float)frsin[j].geoid;
break;

case 5:
y[ii] = (float)frsin(j].swh;
break;

case 6:
y[ii] = (float)frsin[j].s_swh;
break;

case 7:
y[iil = (float)frsin(jl.s_nght;
break;

case 8:
y[ii] = (float)frsin(j].agc;
break;

case 9:
y[iil = (float)frsin[jl.s_agc;
break;

case 10:
ylii] = (float)frsin[j].s_tide;
break;

case 11:
y[ii] = (float)frsin(j].o_tide;
break;

case 12:
y[ii] = (float)frsin[j]l.w_fnoc;
break;

case 13:
ylii]l = (float)frsin[j].w_smmr;
break;)

162

case 14:
y[iil = (float)frsin[j].d_fnoc;
break;

case 15:
y[ii] = (float)frsin(j].iono;
break;

case 16:
y[ii] = (float)frsinlj].dh_swh;
break;

case 17:
y[ii] = (float)frsin[j].dh_fm;
break;

case 18:
y[ii]l = (float)frsin[j].att;
break;

default:
return(1);

}

iit+;
}
x0 = x[0];
/*
spline(x-1, y-1, ii, 1.e30, 1.e30, y2-1);
*/
natcubspline(x, y, ii, x0, &yout, 0);

js= latstirt;
while ((ascorb && (lat[jl < x0)) || ('ascorb && (lat[j] > x0)))
{
jt+s
}
while ((lat[j] > minval) && (lat[j] < maxval))
{
it ((ascorb && (lat[jl > frsin[seg_begl[il]l.lat*MICRO) &&
(lat[j] < frsin[seg_begl[il+seg_len[i]-1].1lat*MICRO)) ||
(tascorb && (lat[j] < frsin[seg_begl[i]].lat*MICRO) &&
(1at[j] > frsin[seg_beg[il+seg_len[i]-1].lat*MICRO)))
{
/*
splint(x-1, y-1, y2-1, ii, lat[j], &yout);
*/
natcubspline(x, y, ii, lat(jl, &yout, 1);

iyout = nint(yout);
set_data(j, iyout, var);

else
{
set_data(j, BAD, var);
}
j++;
}
natcubspline(x, y, ii, lat[jl, &yout, 2);

163

return(0);

}
/*

Subroutine set_data

Written by:
Michael Caruso
Woods Hole Oceanographic Institution
Woods Hole, MA

Purpose:
This subroutine simply puts the data into the
correct element.

*/
int set_data(point, data, var)
int point;
int data;
int var;
{
switch (var)
{
case 0:
frout [point].lon
break;
case 1:
frout[point]l.m_h = data;
break;
case 2:
frout [point].orb
break;
case 3:
frout [point].s_h
break;
case 4:
frout[point].geoid = data;
break;
case 5: -
frout [point].swh = data;
break;
case 6:
frout[point].s_swh = data;
break;
case 7:
frout [point].s_nght = data;
break;
case 8:
frout [point].agc = data;
break;
case 9:
frout[point] .s_agc = data;

data;

data;

data;

164

break;

case 10:
frout [point].s_tide = data;
break;

case 11:
frout [point].o_tide = data;
break;

case 12:
frout [point].w_fnoc = data;
break;

case 13:
frout [point] .w_smmr
break;

case 14:
frout [point].d_fnoc = data;
break;

case 15:
frout [point].iono = data;
break;

case 16:
frout [point].dh_swh = data;
break;

case 17:
frout[point].dh_fm = data;
break;

case 18:
frout [point].att = data;
break; '

default:
return(i);

}

data;

}
/*

Subroutine lon_to_lat

Written by:
Michael Caruso
Woods Hole Oceanographic Insititution
Woods Hole, MA

Purpose:

This subroutine converts the minval and
maxval when given in longitude to latitude.

*/
int
lon_to_lat()
{
int i;
float tmpval;
double tmptime;

165

/* Determine orbit number */
tmptime = frain[0].utc + frsin[0].utcm*MICRO;
geo_cyc_orb(tmptime, &cyc, &orb);

rs = RE + frsin[0].orb;

rs3 = rs*rs*rs;

cosinc = cos(INCL);

prec = -1.5%J2%sqrt(GM/rs)*RE+RE*cosinc/rs3;
rot = prec - (M_PI_2/5D);

dthdt = M2PI/PERIOD;

/*
Loop until we find min_lat and
max_lat.
*/
lon0 = frsin[0] .lon*1.0e-6*RAD;
time = 0.0;

if (ascorb)

{
i=0;
while (lon0 > maxval*RAD)
{
i++;
lon0 = frsin[i].lon*1.0e-6+RAD;
}
while (lon0 < maxval*RAD)
{
time -= timestep;

theta = dthdt*time;
sinth = sin(theta);

lat0 = (frsin[i].lat*1.0e-6)*RAD + asin(sin(INCL)#sin(theta));

tmp cosinc*ginth/cos(lat0);

tmp = (tmp>1.0) ? 1.0 : tmp;

tmp = (tmp<-1.0) ? -1.0 : tmp;

lon0 = (asin(tmp) + rot*time) + frsin(i].lon*1.0e-6+*RAD;

}

lon0 = frsin[points].lon*1.0e-6*RAD;
tmpval = latO#*DEG;

time = 0.0;

i = points;

while (lon0 < minval*RAD)

{
i--;
lon0 = frsin(i].lon*1.0e-8%RAD;
}
while (lon0 > minval*RAD)
{

166

time += timestep;

theta = dthdt*time;

sinth = sin(theta);

lat0 = (frsin[i].lat*1.0e-6)*RAD + asin(sin(INCL)*sin(theta));

tmp = cosinc*sinth/cos(lat0);
tmp = (tmp>1.0) ? 1.0 : tmp;
tmp = (tmp<~1.0) ? -1.0 : tmp;
lon0 = (asin(tmp) + rot*time) + frsin[i].lon*1.0e-6+*RAD;
}
minval = tmpval;
maxval = 1latO*DEG;

lon0 = f£rsin[0].lon*1.0e-6%RAD;
time = 0.0;
i=0;
while (lon0 > maxval*RAD)
{
i++;
lon0 = frsinfi].lon*1.0e-6%RAD;
}

while (lon0 < maxval*RAD)
{
time -= timestep;
theta = dthdt*time;
sinth = sin(theta);
lat0 = (frsin[i].lat#*1.0e-6)*RAD + asin(sin(INCL)*sin(theta));
tmp = cosinc*sinth/cos(lat0);

tmp = (tmp>1.0) ? 1.0 : tmp;
tmp = (tmp<-1.0) ? -1.0 : tmp;
lon0 = (asin(tmp) + rot*time) + frsin[i].lon*1.0e-6%RAD;

}

maxval = latO*DEG;

lon0 = frsin[points].lon*1.0e-6*RAD;
time = 0.0;

i = points;

while (lon0 < minval*RAD)

{
i==;
lon0 = frsin[i].lon*1.0e-6+*RAD;
}
while (lon0 > minval*RAD)
{

time += timestep;

theta = dthdt*time;

sinth = sin(theta);

lat0 = (frsin[i].lat*1.0e-6)*RAD + asin(sin(INCL)*sin(theta));

tmp = cosinc*sinth/cos(lat0);

167

tmp = (tmp>1.0) ? 1.0 : tmp;
tmp = (tmp<-1.0) ? -1.0 : tmp;
lon0 = (asin(tmp) + rot*time) + frsin[i].lon*1.0e-6+*RAD;
}
minval = latO+*DEG;

168

Program g_uncompress.c

/* :
Q(#)g_uncompress.c 1.2 6/14/90

Written by:

Pierre Flament
Oceanography Department
University of Hawaii
Honolulu, HI .

Modifications:

Mike Caruso
Woods Hole Oceanographic Institutiomn
Woods Hole, MA

Uncompress compressed geosat data from 18 bytes/frame to
standard NOAA data frame; leave O for items lost
in compression.

item parameter units range type

1 TIME since start a000 ms 0 to 1.47e9 long int (4)

2 HEIGHT cm 0 to 32766 short int (2)

3 CYCLE number 0... char (1)

4 LATITUDE+90 deg. 10-4deg 0 to 18e5 unsigned int (3)
5 LONGITUDE 10-4deg 0 to 36e5 unsigned int (3)
6 SIGMA HEIGHT cm 0 to 255 unsigned char (1)
7 SWH Scm 0 to 255 unsigned char (1)
8 So .1db 0 to 255 unsigned char (1)
9 FLAGS char (1)

10 OCEAN TIDE cm -128 to 128 char (1)

Method:

Usage

18-byte data record

Output:

169

Pseudo Geosat GDR

*/
include <stdio.h>

define PERIOD 6037.551518571
define START_TIME 58406188.43 /* equator xing orbit c000.a000 #*/
define BAD 32767

/* this is the standard geosat frame */

struct in_frame { .
long int utc,utcm,lat,lon,orb;
short int m_h,s_h,geoid,h[10],swh,s_swh,s_nght,agc,s_agc;
char £1[2];
short int h_off,s_tide,o_tide,w_fnoc,w_smmr,d_fnoc,iono,dh_swh,dh_fm,att;

};
struct in_frame in;

/* this is the compressed frame. Order is important since compiler
forces short int on even word boundaries */

struct out_frame {
long int utc;
short int m_h;
char cycle_n;
char lat{3],lon(3];
unsigned char s_h,swh,s_nght;
char fl;
char o_tide;

};
struct out_frame out;
char junk[4];

double time,cycle=244*PERIOD;

int i,j;
main()

{

while(fread((char#*)&out,1,18,stdin)==18)
{ ,
time=out.utc/1000.+START_TIME+out.cycle_n#cycle;
/* implicit cast to long int */
in.utc=(long int)time;
in.utcm=(long int)((time-(long int)time)*1e6);

170

junk[1]=out.lat[0];
junk[2]=out.lat[1];
junk[3]=out.lat[2];

in.lat=(*(long int*)&junk[0]-900000)%100;

junk[1]=out.lon(0];
junk[2]=out.lon[1];
junk [3]=out.lon[2];

in.lon=(*(long int*)&junk[O])*iOO;
in.m_h=out.m_h;

in.s_h=(out.s_h==2557BAD:out.s_h);
in.swh=(out.swh==255?BAD:out.swh*5);
in.s_nght=(out.s_nght==2557BAD:out.s_nght*10);
in.f1[1}=out.f1;
in.s_h=(out.s_h==255?BAD:out.s_h);
in.o_tide=(out.o_tide==1277BAD:out.o_tide*10);
fwrite((char*)&in,1,78,stdout);

}

171

Program g_which.c

/*
o(#)g_which.c 1.4 11/14/89

Program g_which.c

Written by:

Michael Caruso

Woods Hole Oceanographic Institution .
Woods Hole, MA

Modifications:

Original concept by P. Flament
Woods Hole Oceanographic Institution
Woods Hole, MA

Reads minimum latitude and longitude, maximum latitude and
longitude and returns the orbit numbers within that box.

The program reads the minimum and maximum latitudes and longitudes
from the command line. If only two arguments are given, they are
taken to be a lat/lon point and the nearest ascending and descending
tracks are found.

g-which 30 45 280 300

or

g-which 30 280

Orbit numbers suitable for use in a chain of pipes:
cat ¢c0/c000.‘g_vhich 30 45 380 300° | g_ext 1 L

Subroutines required:

geo_which returns an array of 1’s and 0’s for each cycle
within the desired box.

172

References:

Assumes input data contains complete orbits.

*/

#include <stdio.h>
#include <sys/file.h>
#include <math.h>
#include "geos.h"

#define NUMARG

#idefine NUMARG2
#define MNLTARG
#define MXLTARG
#define MNLNARG
#define MXLNARG
#define MNLNARG2

N e WM =N

char *cm=""; /* single , for print statement */

main(arge, argv)
int argc;
char *argv[];

unsigned char a[ORB_PER_CYC],
d[ORB_PER_CYC]; /* arrays of orbits within box

int i; /* Counter */
double min_lat,
max_lat,
min_lon,
max_lon; /* input lon-lat box
/%
Read command line arguments.
*/

if (argc == NUMARG + 1)
{
sscanf (argv [MELTARG],"/1£f",&min_lat);
sscanf (argv[MXLTARG] ,"%1£f" ,&max_lat);
sscanf (argv [MNLNARG] ,"%1£",&min_lon);
sscanf (argv [MXLNARG],"%1£" ,&max_lon);

173

*/

*/

}
else if (argc == NUMARG2 +1)
{
sacanf (argv [MNLTARG] ,"%1f" ,&min_lat);
sscan?f (argv [MNLNARG2] ,"%1£",&min_lon);
max_lat = min_lat;
max_lon = min_lon;

else

{
fprintf(stderr,"Usage: %s min_lat max_lat min_lon max_lon\n", argv[0]);
fprintf(stderr,” Or\n");
fprintf(stderr,” %s lat lon\n", argv[0l);
exit(1);
}

/* determine orbits to remove. */
geo_which(min_lat, max_lat, min_lon, max_lon, a, d);

fprintf (stdout,"{");
for (i=0; i<ORB_PER_CYC; i++)
{
if(ali]) {fprintf(stdout,"¥sa’03d",cm,i);cm=",";}
if(dli]) {fprintf(stdout,"¥sd’03d",cm,i);cm=",";}
}
fprintf(stdout,"}");

174

Program s_ext.c

/*
o(#)s_ext.c 1.1 12/14/89

Program s_ext.c

Written by:

Pierre Flament
Oceanography Department
University of Hawaii
Honolulu, HI

5 October 1989

Modifications:

14 October 1989 MJC changed include ssmi.h to
geos.h for future compatibility.

Purpose:

To extract user specified data from an SSMI record

Method:

Reads raw SSMI data from standard input and applies

corrections and conversions. Reads user desired output variables
from command line arguments. Writes output on standard output in
ASCII format.

Usage:

The SSMI data are read from standard input and output variables are
read from the command line.

cat s000.2002 | s_ext t 1 L > file.asc

will extract the time, latitude and longitude for each point
in the file s000.a002.

Input:

Stdin Raw SSMI data, except for the times which are in
GEOSAT time.

Qutput

Stdout Extracted ASCII format

175

Subroutines required:

None

References:

include <math.h>
include <stdio.h>
include <string.h>
include "geos.h"

define MXP 9 /* max number of parameters */
define NCH 4 /* number of SSMI channels:

0 and 3 are long int

1 and 2 are short int */
define PRINT(X) printf(form[collil],X)
char* val [NCH+5] ={|lt" . "1" R llLll R lltlll R 'lwsll R llvpll R Ilclll R llmll R L1} cwWs ll};

/* in which

t (seconds) time since START_TIME

1 (degrees) latitude

L (degrees) east longitude

1 (=) flag indicating data characteristics

=0, over ocean
=1, no orbit altitude information
=2, over land
=3, over sea ice
ws (meters/second) wind speed (NOTE: if = BAD, no wind due to rain)

vp (kg/m*m) columnar water vapor (NOTE: if = BAD, no water
vapor due to rain)
cl (kg/m*m) columnar cloud water
rm (mm/hr) rain rate
cws (meters) SSMI correction for water vapor
*/
/* formats for printing output fields */

char* form[NCH+5]={"%10.11f\t","%6.21f\t","%8.212\t","%d\t",
"%6.211\t" ,"%6.211\t","%8. 412 \t", "7 .31\t ",
M%8.41L\t"};

int i,j,col[MXP];

176

double ws(),vp(),cl(),rn(),cws();
double lat,lon;

main (argc,argv)
int argc;
char *argv[];

{
for(j=0; j<MXP;j++)
colfi] = -1;
afgc—-;
argv++;
if (argc==0)
{

fprintf(stderr,"sext: argument error\n");
exit(1);
}

/* find which channels should be processed
i: argument/column index
j: channel number
colli]: channel number corresponding to column i

*/

for (i=0;i<argc;i++)
for (j=0;j<NCH+6;j++)
if('stremp(argvlil,valljl)) {collil=j;break;}

while (fread((char*)&frssmi,1,12,stdin)==12)
{

lat

lon

frssmi.lat*1.0e-02;
frssmi.lon*1.0e-02 + 180.;

if (frssmi.flag!=0) continue;

for (i=0;i<argec;i++)

if (coll[i]==0)
PRINT(frssmi.utc-START_TIME);

else if (col[i]==1)
PRINT(lat);

else if (coll[il==2)
PRINT(lon);

else if (col[i]==3)
PRINT((int)frssmi.flag);

else if. (col[il==4)
PRINT(ws());

else if (col[i]==5)
PRINT(vp());

else if (col[il==86)

177

PRINT(c1());

else if (collil==7)
PRINT(rn());

else if (col[i]l==8)
PRINT(cws());

printz("\n");
}
}

double wsa()
/* computes wind speed */

{
double wind;
wind = 0.2*%(frssmi.win - 30.);
if (wind == 45.0) wind = BAD;
return(wind) ;
}
double vp()
/* computes water vapor */
{
double vapor;
vapor = 0.04*(frssmi.vap - 5.0);
it (fabs(vapor - 10.) < 1.e-3)
vapor = BAD;
else
vapor = vapor#*10.;
return(vapor) ;
}

double cl()
/* computes cloud water */

{
double cloud;
cloud = 0.5%(frssmi.cld -32)*1.0e-02;
return(cloud);

}

double rn()

/* computes rain rate */

{

dounble rain;

rain = 0.193*cl()*1.0e02 -0.48;
if (rain < 0.0)

rain = 0.0;
return(rain);

178

}

double cus()
/* computes GEOSAT correction for water vapor

References:

P.A. Phoebus and J.D. Hawkins, ’The impact of water vapor
attenuation on the interpretation of altimeter-derived ocean
topography in the Northeast Pacific’, submitted to JGR, special
GEQSAT issue, June 1989

B.D. Tapley and J.B. Lundberg, ’The SEASAT altimeter wet
tropospheric range correction’, JGR 87 pp. 3213-3220, 1982

*/
{
double wettrop;
it (vp() == BAD)
wettrop = BAD;
else
wettrop = -0.00636*vp();
return(wettrop);
}

179

Program s_region.c

/*
Q(i#t)s_region.c 1.2 12/14/89
Program s_region.c
Written by:

Michael Caruso
Woods Hole Oceanographic Imnstitution
Woods Hole, MA

Modifications:

Mimi Baker
Oceanography Department
University of Hawaii
Honolulu, HI

modified g_region to s_region to process SSMI data
4 October 1989

MC 14 Oct 1989, changed include file ssmi.h to geos.h
for future compatibility.

MB 28 Nov 1989, changed calls to geo_cyc_orb to reflect
changes in geo_cyc_orb.

Decodes SSMI data and separates raw data into separate orbits. Each

orbit is defined as beginning at the northermmost point of a track.

Each orbit is further separated into an ascending section and a descending
section. Orbits are then writtenm out to separate files of the form:

smmm.annn or smmm.nnnd
where
is the cycle number,
is the orbit number for that cycle,
signifies ascending portien,
signifies descending portion.

QNEE

The data is written out in the same form as it was read in. This is
consecutive records of 12 bytes each.

The program reads the minimum and maximum latitudes and longitudes
from the command line and reads the data from standard input. To use

180

the program to extract data from the tape (/dev/rmt8, 6250bpi, input
block size 14400) issued by Wentz, from 10N to 30N and 280E to 300E:

dd if=/dev/rmt8 ibs=14400 | s_region 1 10 30 280 300

The first number on the argument line specifies whether the box

should be bounded by a latitude line(1) or a longitude line(2).

Note that longitudes are all east of Greenwich and if the box selected
spans 360E, add 360 degrees to right edge of box, ie 350 365.

Input

;;;;;- Raw SSMI data

Cutput:

;;;;T;;?? SSMI data within region separated in ascending and
descending orbits, with times consistent with GEOSAT
times.

Subroutines required:

geo_which returns an array of 1’s and 0’s for each cycle
within the desired box.

geo_error prints error messages to standard error.

geo_cyc_orb return orbit and cycle number

References:

Assumes input data contains complete orbits.

*/

#include <stdio.h>
#include <sys/file.h>
#include <math.h>
#include "geos.h"

#define NUMARG 5
#define DIRARG 1
#define MNLTARG 2
#define MILTARG 3
#define MNLNARG 4
#tdefine MXLNARG 5

2.

#define SEC_YR2 2.#365.*24.*3600. /+# 2 times seconds per year */

main(argc, argv)
int argc;
char *argv(];

181

struct frames frssmi2;

unsigned char a[ORB_PER_CYC],

d[ORB_PER_CYC]; /* arrays of orbits within box x/
char str(80]; /* string for output file name */
short int dir; /* Direction of lat/lon boundary x/
short int orbit_num_tot; /* the total number of orbits */
int cycle_num; /* the number of cycles since */
int orbit_num; /* orbit number within cycle 0-244 */
short int isopen = FALSE; /* check to see if file is already open */
short int asc; /* flag for ascending or descending */
long int llcmp,

1llmin, llmax; /* lat/lon boundary x/
long int lslopel,

lslope2; /* "Slope" of orbit */
double min_lat,

max_lat,

min_lon,

max_lon; /* input lon-lat box */
double time; /* time variable */
FILE *fdout; /* output file descriptor */
/* .

Read command line arguments.
*/

if (argc == NUMARG + 1)
{
sscanf (argv[DIRARG], "%hd", &dir);
sscanf (argv [MNLTARG] ,"/1f" ,&min_lat);
sscanf (argv [MXLTARG] ,"%1f",&max_lat);
sscanf (argv [MNLNARG] ,"%1f",&min_lon);
sscanf (argv [MXLNARG] ,"%1f",&max_lon);

else

{

fprintf(stderr,”Usage: /s dir min_lat max_lat min_lon max_lon\n", argv[0]);
exit(1);
}

/* determine orbits to remove. */

geo_which(min_lat, max_lat, min_lon, max_lon, a, d);

182

/* Set llmin, llmax... */

it (dir == 1)

{
llmin = (int) (min_lat#*1.0e02);
llmax = (int) (max_lat*1.0e02);
}
else
{
1lmin = (int) ((min_lon - 18000)#%1.0e02);
llmax = (int) ((max_lon - 18000)*1.0e02);
}

/* read initial lat and long coordinates */

if(fread((char #*)&frssmi,1,SSMIREC,stdin) != SSMIREC)
{
geo_error(2, argv(0]);
exit(2);
}

frssmi.utc = frssmi.utc + SEC_YR2;

if(fread((char *)&frssmi2,1,SSMIREC,stdin) != SSMIREC)
{
geo_error(2, argv[01);
exit(2);
}

frssmi2.utc = frssmi2.utc + SEC_YR2;
/* Determine name of first orbit */

time = frssmi.utc;
1slopel = frssmi2.lat ~ frssmi.lat;

/*
orbit_num_tot = (int)floor((time-TIME_ZERO)/PERIOD);
cycle_num = orbit_num_tot / ORB_PER_CYC;
orbit_num = orbit_num_tot), QRB_PER_CYC;

x/

geo_cyc_orb(time, &cycle_num, &orbit_num);

/*

Check to see if first orbit is ascending or

descending...

*/

if (1lslopetl > 0)

{)
sprintf(str,"s.3d.a%.3d",cycle_num,orbit_num);
asc = TRUE;

}

else if (lslopel < 0)

183

{
sprintf(str,"s’.3d.d%.3d",cycle_num,orbit_num);
asc = FALSE;

else

{
if (frssmi.lat < 0)
{
sprintf(str,"s¥.3d.a%.3d",cycle_num,orbit_num);
asc=TRUE;)

else
{
sprintf(str,"s%.3d.d%.3d",cycle_num,orbit_num);
asc=FALSE;
}
}

/* Check to see if point is an orbit we want and greater
than the minimum latitude and smaller than the
maximum latitude. If so, write to the output file. If
the output file is not open, open it and mark it as
being open. */

llemp = (dir == 1) ? frssmi.lat : frssmi.lon;

if(((asc && alorbit_num]) || (!asc && dlorbit_numl)) && (llemp > llmin)
&% (llecmp < llmax))

{
if (isopen == 0)
{
fdout = fopen(str,"a");
isopen = 1;
} .
if(fwrite((char *)&frssmi,1,SSMIREC,fdout) != SSMIREC)
{
geo_error(3, argv[0]);
exit(3);
}
}
/*
Check second point...
*/

llcmp = (dir == 1) ? frssmi2.lat : frssmi2.lonm;

it(((asc && alorbit_num]) || ('asc && dlorbit_num])) &% (llemp > 1llmin)
&& (llcmp < llmax))
{
if (isopen == 0)
{
fdout = fopen(str,"a");
isopen = 1;

184

}
if(ferite((char *)&frssmi2,1,SSMIREC,fdout) != SSMIREC)
{

geo_error(3, argv[0]);
exit(3);
}

/* Read in rest of geosat data. We keep three points active
to monitor when an orbit changes from ascending to descending.
This was done because of the incomplete data at high latitudes.

*/
frssmi = frssmi2;

vhile(fread((char *)&frssmi2,1,SSMIREC,stdin) == SSMIREC)
{

frssmi2.utc = frssmi2.utc + SEC_YR2;
lslope2 = frssmi2.lat - frssmi.lat;

iz ((lslopel > O && lslope2 <= 0) || (1slopetl < O && lslope2 >= 0))
{

/* Determine name of next orbit */

time = frssmi2.utc;

/*
orbit_num_tot = (int)floor((time-TIME_ZERO)/PERIOD);
cycle_num = orbit_num_tot / ORB_PER_CYC;
orbit_num = orbit_num_tot ¥ ORB_PER_CYC;

*/

geo_cyc_orb(time, &cycle_num, &orbit_num);

if (1slope2 > 0)

{
sprintf(str,"s’.3d.a%.3d",cycle_num,orbit_num);
asc=TRUE;
}
else if (lslope2 < 0)
{ .

sprintf(str,"s’.3d.d%.3d",cycle_num,orbit_num);
asc=FALSE;

}
else
{
if (frssmi2.lat < 0)
{
sprintf(str,"s%.3d.a%.3d",cycle_num,orbit_num);
asc=TRUE;
}

185

else
{ .
sprintf(str,"s%.3d.d%.3d",cycle_num,orbit_num);
asc=FALSE;

}
}
fclose(fdout); /* Close previous file #*/
isopen = 0;
}
llcmp = (dir == 1) ? frssmi2.lat : frssmi2.lonm;

if(((asc && alorbit_num]) || (lasc &% dlorbit_num])) &% (ilcmp > 1llmin)
&% (llcmp < llmax))
{
if (isopen == 0)
{
fdout = fopen(str,"a");
isopen = 1;
}
if(fwrite((char *)&frssmi2,1,SSMIREC,fdout) != SSMIREC)
{
geo_error(3, argv[0l);
exit(3);
}
}

frassmi = frssmi2;
lslopel = lslope2;

186

Subroutine geo_cyc_orb.c

/*
a(#)geo_cyc_orb.c 1.3 6/14/90

Written by:

Michael Caruso

Woods Hole Oceanographic Institutionm.
Woods Hole, MA

Moditied by:

Mimi Baker
Oceanography Department
University of Hawaii
Honolulu, HI

28 November 1989, to make subroutine frame independent
and a function of time omly.

This subroutine calculates the orbit number of
a given GEOSAT GDR or SSMI data.

geo_cyc_orb(time, cyc, orb)

double time time of record
int *cyc; the cycle number
int #*orb; the orbit number
Returns
-1 on error.
Reference:
None.

*/

#include '"geos.h"
#include <math.h>

int geo_cyc_orb(time, cyc, orb)
double time;
int #*cyc, *orb;
{
double orbit;

187

int orbit_num_tot;

if ((time - TIME_ZERO) < 0)
return(-1);

orbit = (time-TIME_ZERO)/PERIOD;
orbit_num_tot = (int)floor(orbit);

if((orbit - (int)orbit) > 0.99)
orbit_num_tot += 1;

orbit_num_tot / ORB_PER_CYC;

*Cyc =
*orb = orbit_num_tot % ORB_PER_CYC;
return;

188

Subroutine geo_error.c

/*
Q(#)geo_error.c 1.2 6/14/90

Written by:

Michael Caruso

Woods Hole Oceanographic Institution
Woods Hole, MA

October 1988

This program prints an error message to standard error
along with the name of the program that generated the
error.

geo_err(num, progname)

int num Error number to print.
char *progname Program generating error.
Input
num Error number to print.

*progname Pointer to name of program generating error.

Subroutines Required:

Hone.

*/

#include <stdio.h>
#define NUMMSG 4

189

/*
define array of error messages...

*/

char *mesg[] = {"Unrecoverable error\n",
"c???.[ad]???\n",
"Error reading file\n”,
"Error writing file\n"};

geo_error(num, prog)
long num;
char *prog;

if (num < NUMMSG)

tprintf(astderr,"¥s: %s", prog, mesg[num]);
else

fprintf(stderr,’¥s: %s", prog, mesg[0]);

190

/*

*/

Subroutine geo_mask.c

Q(#)geo_mask.c 1.3 6/14/90

Written by:

Pierre Flament
Oceanography Department
University of Hawaii
Honolulu, HI

Modifications:

Mike Caruso
Woods Hole Oceanographic Institution
Woods Hole, MA ’

Reads in environment variable GMASK if available
and converts to integers. Any character other
than a 0 or a 1 is ignored.

Checks to see if the user has set an environment
variable GMASK. If so, the program returns it.

Input:

None

Cutput:

msk

valid

Returns:
msk an integer with bits set to correspond

to GMASK values of 1

valid an integer with bits set to correspond
' to GMASK values of 0 and 1

#define NULL O

ge

o_mask({msk,valid)

short int *msk,*valid;

191

char * getenv();
char* gt="1--———- O=r=—e 00"; /* default msk; - can be any char */
~int i;
if (getenv("GMASK")!=NULL) st=getenv("GMASK");
for (i=0 ; =(st+i)!=°\0’ && i<i6 ; i++)
¢ if (*(st+i)==11?) =xvalid += 1<<i;

if (*(st+i)==71? || *(st+i)==?0?) *msk += 1<<i;

}

192

Subroutine geo_which.c

/*
Q(#)geo_which.c 1.3 6/14/90

Written by:

Pierre Flament

Woods Hole Oceanographic Institution
Woods Hole, MA

Modified by:

Michael Caruso
Woods Hole Oceanographic Institution
Woods Hole, MA

This procedure determines which orbit numbers cross a given
area.

Method:

Find the times vhen ascending and descending parts of orbit 000
cross min_lat and max_lat. Find the corresponding longitudes for
that orbit. Then repeatedly shift the orbit by INCR, the ground
spacing between successive orbits, and flag those that cross the
box.

Only a first order sinusoidal approximation of the orbit ground path
is used.

geo_which(min_lat, max_lat, min_lon, max_lon, a, d)
int min_lat, max_lat
int min_lon, max_lon
unsigned char *a, *d

Input:
min_lat minimum latitude of box.
max_lat maximum latitude of box.
min_lon minimum eastward longitude of box.
max_lon maximum eastward longitude of box.
Output:
*a array of 244 elements. Array has

1 in location i if ascending orbit

193

*d

i crosses box, 0 otherwise.
Same as *a, except for descending
orbits.

Subroutines Required:

double fold(x)

Reference:
None.

*/

#include "geos.h"
#include <stdio.h>
#include <math.h>

define SWAP(X1,X2) {x=X1;X1=X2;X2=x:}

define NODE

define OM

define DELT
*/

define INCR
*/

define REP

define SIKNCL
define COSCL
define EPSLAT

double
min_time_a,
min_time_d,
max_time_a,
max_time_d,
min_lon_a,
min_lon_d,
max_lon_a,
max_lon_d,

del_lon,
X3

int
i, s8;

(START_LON#*RAD)
(2+«M_PI/PERIOD)

(2%*M_P1/244.)

(2%M_PI*17./244.)

(OM*17./244.)

(sin(INCL))
(cos(IRCL))

(5.

/*
/*
/*
/*
/*
/*
/*
/*
/*
/*

e-2)

time orbit a000
time orbit 4000
time orbit a000
time orbit d000

longitude'
longitude
longitude
longitude
longitude

where
where
where
where
width

dummy variable

/*
/*

folds angle x, in radians, to the range 0-2*M_PI.

the longitude Xing of c000.a000 */
orbital omega */

/* the increment between adjacent orbits
/* the increment between successive orbits
/* 1/17 of the repeat cycle */
/* the sin of inclination */
/* the cos of inclination */
/* tolerance at +- INCL #*/

crosses min_lat */

crosses min_lat */

crosses max_lat */

crosses max_lat */

asc orbit crosses min_lat */

dec orbit crosses min_lat */

asc orbit crosses max_lat */

dec orbit crosses max_lat */

of the box */

*/

geo_which(min_lat, max_lat, min_lon, max_lon, a, d)
double min_lat, max_lat, min_lon, max_lon;
unsigned char *a, *d;

194

double fold();

/* check order of min,max_lat, SWAP if necessary, convert to RAD */
if (min_lat > max_lat) SWAP(min_lat,max_lat);

min_lat #*= RAD;

max_lat *= RAD;

/* check to see if min,max_lat exceed satellite inclination.*/

min_lat = (min_lat>M_PI-INCL?M_PI-INCL-EPSLAT:min_lat);
min_lat = (min_lat<INCL-M_PI?INCL-M_PI+EPSLAT:min_lat);
max_lat = (max_lat>M_PI-INCL?M_PI-INCL-EPSLAT:max_lat);

max_lat = (max_lat<INCL-M_PI?INCL-M_PI+EPSLAT:max_lat);

/* convert lon to RAD and check to see if the calling program has
selected an individual point */

min_lon *= RAD;
max_lon *= RAD;

if (min_lon == max_lon)
{
min_lon = min_lon-DELT/2;
max_lon = max_lon+DELT/2;

}

/* min,max_lon are always given in the right order. Fold them
so that they are always in the range O to 4*M_PI and
max_lon>min_lon */

while (min_lon > max_lon) max_lon += 2%M_PI;
del_lon = max_lon - min_lon;

min_lon = fold(min_lon);
del_lon = fold(del_lon);
max_lon = min_lon + del_lon;

/* find times at which orbit a000 crosses min_lat and max_lat;
the origin of time is at the ascending node */

min_time_a = asin(sin(min_lat)/SINCL)/OM;
max_time_a = asin(sin(max_lat)/SINCL)/OM;

/* find times at which orbit d000 crosses min_lat and max_lat;
d000 is BEFORE a000; the origin of time is at the ascending node */

-PERIOD/2 - min_time_a;
-PERIOD/2 - max_time_a;

min_time_d
max_time_d

/* 1ind corresponding longitudes; here min_lon_? correspond to min_time_?,
and do not necessarily mean a minimum longitude */

195

min_lon_a = fold(NODE+atan2(COSCL*sin(OM*min_time_a), cos(OM*mln time_a))-
min_time_a*REP);

min_lon_d = told(NODE+atan2(COSCL*s1n(0M*m1n time_d),cos(OM*min_time_d))~
min_time_d*REP);

max_lon_a = fold(NODE+atan2(COSCL*sin(0OM*max_time_a),cos(OM*max_time_a))-
max_time_a*REP);

max_lon_d = fold(NODE+atan2(COSCL*sin(OM*max_time_d),cos(0M*max_time_d))-~
max_time_d*REP);

/* check if orbit crosses the given box, then shift the orbit by INCR.
A given orbit crosses the box if the top right and bottom left
corners fall on opposite sides of an ascending orbit, or if the
top left and bottom right corners fall on the opposite sides of
a descending orbit. This can be expressed by the conditions

(min_lon-min_lon_a)#*(max_lon-max_lon_a)<=0

(max_lon-min_lon_d)*(min_lon~max_lon_d)<=0

given the definition of min_lon_a, etc...

*/

for(i=0;i<244;i++)
{
/* special care must be taken when the orbit spans 360; in that
case, max_lon_d and min_lon_a were folded too much and 2*M_PI

must first be added to them */

if(min_lon_a<max_lon_a) min_lon_a += 2+M_PI;
if(min_lon_d>max_lon_d) max_lon_d += 2*M_PI;

alil=alil=0;

/* test if the orbit crosses the box and the box shifted by +- 2*M_PI */

for(s = -1 ; 8 <= 1 ; s++)
{ .
if((min_lon+s*2*M_PI-min_lon_a)*(max_lon+s*2+M_PI-max_lon_a)<=0)
alil=1;
if((max_lon+s#*2*M_PI-min_lon_d)*(min_lon+s*2*M_PI-max_lon_d)<=0)
dlil=1;
}
min_lon_a = fold(min_lon_a-INCR);
min_lon_d = fold(min_lon_4d-INCR);
max_lon_a = fold(max_lon_a-INCR);
max_lon_d = fold(max_lon_d-INCR);
}
}
/*

196

Function fold

Written by:
Pierre Flament
Woods Hole Oceanographic Institution
Woods Hole, MA

Modifications:
None.

Purposei
To fold an angle to the range 0-2*M_PI by removing or adding an integer
number of 2*M_PI.

Method:
None.

Usage:
r = fold(x)
double r, x

Input:
x angle to be folded, in radians

Cutput:
None.

Returns:
r folded angle corresponding to x.

Subroutines Required:
remainder(x,y) double x,y; which returns a number in the range -y/2 to
y/2 which differs from x by an integer number times y, as defined in the
reference.

Reference:
ANSI/IEEE Std 754-1985

double fold(x)

double x;
double r;

r=remainder(x,2*M_PI);
return(r<07r+2*M_PI:r);

197

C Shell Listings

This appendix contains listings and descriptions of shell scripts used in this
report. Experienced shell programmers may wish to modify the scripts for
complicated analysis. For novice shell programmers, a description of each of
the scripts is given along with necessary modifications.

.C.1 Repeat Analysis

This shows how to use the basic programs to clean and correct raw GEQSAT
GDRs and perform the repeat analysis described in section 6. This particular
shell script uses the C-Shell instead of the Bourne Shell 4 since the C-Shell
provides the command foreach. With a few minor modifications, these scripts
could perform an analysis on an entire region instead of one orbit. The first
script assumes that each file is in a directory named with the cycle number and
the filename follows the convention given in section 4.

#csh
shell for generating single orbit repeat
track analysis
mkdir means
foreach i (c?77)
echo $i
#
cat $i/8i.”$1” | g_cleanl | g_correct | g-clean2 >! tmp
(cat tmp | g.spike | g-spline 1 22 48 3.3 0.97992165 >
$1/8i.7817¢)
- end
#
echo Performing repeat analysis.
g-repeat c*/c*.”$1”c > means/mean.”$1”¢c
This script is called with the orbit number desired:

gs-repeat a002

First a directory is created to hold the means. Then a loop is created using
all the cycle subdirectories. The desired orbit a002 is then cleaned, corrected
and splined for all available cycles. When all cycles are processed, the repeat
analysis is performed and the mean/geoid is placed in the means subdirectory.

The second script is similar to the first except that it assumes that each
file is in the current directory.

#csh

shell for generating single orbit repeat
track analysis

foreach i (c?77.81)

echo $i

#

*There are many good shell programming books available to describe the similarities and differences
between the C-Shell and the Bourne Shell.

198

cat $i | gcleanl | g_correct | g_clean2 >! tmp

(cat tmp | g-spike | g-spline 1 22 48 3.3 0.97992165 >
”si”c)

end

#

echo Performing repeat analysis.

g-repeat "$i”c > mean.”$1”

C.2 Data Extraction

Sometimes it is useful to view cleaned and corrected data. The following scripts
show how this may be done.

#

shell script for extracting clean sea surface heights

#

cat $1 | g_cleanl | g correct | g-clean?2 | g_spike | g_ext 1
L ha > ”$§1”h

#

This script would remove bad data and extract the latitude, the longitude and
the sea surface height. :

#
shell script for extracting clean significant wave heights

#

cat 81 | g_cleanl | g_correct | g_clean?2 | g-spike | g-ext 1
Lwsw>"$1"w

#

This script would extract the significant wave height and the standard deviation
of the significant wave height.

C.3 Imaging

This script shows how to create a variability image using the output from the
repeat script shown above. This script uses the UNIX command cut to select the
necessary data from the input files. In this example, the latitude, longitude and
the variability columns are extracted and piped to g_image. The arguments to
g-image are the minimum and maximum latitude, the minimum and maximum
longitude and the number of rows and columns in the output image. This image
is in SDPS floating point format and needs to be remapped to a bitmap image.
This is done using the program sdps_ftb which converts floating point images
to byte images. The arguments to sdps_ftb specify that the bitmap should be
scaled from 0.0 to 0.5 and any values less than 0.0 should be set to 254 and -
values greater than 0.5 should be set to 255. '

199

#

shell for generating equirectangular image

of variability.

.

cat mean.a* | cut -f2,3,7 | g-image 22 48 284 316 416 512
> vara.sdpsf

cat vara.sdpsf | sdps_ftb -mxlh 0.0 0.5 254 255 > vara.sdps

The following script is only a variation of the previous script. It merely
demonstrates how to create an image of the mean sea surface height of all the
descending tracks in a region. Since there were no arguments given to sdps.ftb,
the minimum and maximum are found and used for scaling the output bitmap
image.

#

shell for generating equirectangular image

of mean sea surface height.

:

cat mean.a* | cut -12,3,6 | g-image 22 48 284 316 416 512
> meand.sdpsf

cat meand.sdpsf | sdps_ftb > meand.sdps

200 -

DOCUMENT LIBRARY

January 17, 1990
Distribution List for Technical Report Exchange

Attn: Stella Sanchez-Wade
Documents Section

Scripps Institution of Oceanography
Library, Mail Code C-075C

La Jolla, CA 92093

Hancock Library of Biology &
Oceanography

Alan Hancock Laboratory

University of Southern California

University Park

Los Angeles, CA 90089-0371

Gifts & Exchanges

Library

Bedford Institute of Oceanography
P.O. Box 1006

Dartmouth, NS, B2Y 4A2, CANADA

Office of the International
Ice Patrol
c/o Coast Guard R & D Center
Avery Point
Groton, CT 06340

NOAA/EDIS Miami Library Center
4301 Rickenbacker Causeway
Miami, FL 33149

Library

Skidaway Institute of Oceanography
P.O. Box 13687

Savannah, GA 31416

Institute of Geophysics
University of Hawaii
Library Room 252
2525 Correa Road
Honolulu, HI 96822

Marine Resources Information Center
Building E38-320

MIT

Cambridge, MA 02139

Library

Lamont-Doherty Geological
Observatory

Colombia University

Palisades, NY 10964

Library

Serials Department
Oregon State University
Corvallis, OR 97331

Pell Marine Science Library
University of Rhode Island
Narragansett Bay Campus
Narragansett, RI 02882

Working Collection

Texas A&M University

Dept. of Oceanography

College Station, TX 77843

Library

Virginia Institute of Marine Science
Gloucester Point, VA 23062

Fisheries-Oceanography Library
151 Oceanography Teaching Bldg.
University of Washington

Seattle, WA 9819S$

Library

R.S.M.A.S.

University of Miami

4600 Rickenbacker Causeway
Miami, FL 33149

Maury Oceanographic Library
Naval Oceanographic Office
Bay St. Louis

'NSTL, MS 39522-5001

Marine Sciences Collection
Mayaguez Campus Library
University of Puerto Rico
Mayagues, Puerto Rico 00708

Library

Institute of Oceanographic Sciences
Deacon Laboratory

Wormley, Godalming

Surrey GU8 SUB

UNITED KINGDOM

The Librarian

CSIRO Marine Laboratories
G.P.O. Box 1538

Hobart, Tasmania
AUSTRALIA 7001

Library

Proudman Oceanographic Laboratory
Bidston Observatory

Birkenhead

Merseyside L43 7 RA

UNITED KINGDOM

Mac90-32

50272-101

REPORT DOCUMENTATION
PAGE

1. REPORT NO.
WHOI-90-45

2. 3. Recipient's Accession No.

4, Title and Subtitle

Altimeter Processing Tools for Analyzing Mesoscale Ocean Features

5. Report Date
September, 1990

7. Author(s)

Michael J. Caruso, Ziv Sirkes, Pierre J. Flament, and M.K. Baker

8. Performing Organization Rept. No.
WHOI 9045

9. Performing Organization Name and Address

The Woods Hole Oceanographic Institution
Woods Hole, Massachusetts 02543

10. Project/Task/Work Unit No.

11. Contract(C) or Grant(G) No.
(©) N00014-86-K-0751
G) '

12, Sponsoring Organization Name and Address

Funding was provided by the Office of Naval Research.

13. Type of Report & Period Covered
Technical Report

14.

15. Supplementary Notes

This report should be cited as: Woods Hole Oceanog. Inst. Tech. Rept., WHOI-90-45.

16. Abstract (Limit: 200 words)

for comparison.

Satellite altimeters provide many opportunities for oceanographers to supplement their research with a valuable new data set.
The recent GEOSAT exact repeat mission is the first of several altimetry missions proposed during the next decade. To utilize this
new data, a software package was developed at the Woods Hole Oceanographic Institution and the University of Hawaii to facilitate
the extraction of useful information from the NODC distributed GEOSAT data tapes. This software package was written with
portability and modularity in mind. It should be possible to use this package with little or no modifications on data from future
altimeters. The code was critten in C and tested on Sun workstations and is oriented toward UNIX operating systems. However,
since standard code was used, the programs should port easily to other computer systems. The modularity of the code should enable
users to create additional programs. Additional programs designed to handle collocated water vapor corrections are also included

1. GEOSAT
2. altimeter
3. software

c. COSATI Field/Group

b. Identifiers/Open-Ended Terms

17. Document Analysis a. Descriptors

18. Avallability Statement 19, Securlty Class (This Report) 21. No. of Pages
. T .. LASSIFIED
Approved for publication; distribution unlimited. UNCLASS 209
20. Security Class (This Page) 22. Price
(See ANSI-Z39.18) See Instructions on Reverse OPTIONAL FORM 272 (4-77)

(Formerly NTIS-35)
Department of Commerce

