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Abstract 7 

Thematic maps are often derived from remotely sensed imagery via a supervised image classification 8 

analysis. The training and testing stages of a supervised image classification may proceed ignorant of 9 

the presence of some classes in the region to be mapped. This violates the assumption of an 10 

exhaustively defined set of classes that is often made in classification analyses. In such circumstances, 11 

the overall accuracy of a thematic map produced by the application of a trained classifier will be less 12 

than the accuracy of the classification of the test set by the same classifier. This situation arises 13 

because the cases of an untrained class can normally only be commissioned into the set of trained 14 

classes. Simple mathematical relationships between classification and map accuracy are shown for 15 

assessments of overall, user’s and producer’s accuracy. For example, it is shown that in a simple 16 

scenario the accuracy of a thematic map is less than that of a classification, scaling as a function of the 17 

abundance of the untrained class(es). Impacts on other estimates made from thematic maps, such as 18 

class areal extent, are also briefly discussed. When using a thematic map, care is needed in 19 

interpreting and using classification accuracy assessments as sometimes they may not reflect 20 

properties of the map well.  21 

 22 

 23 

1. Introduction 24 

The widespread availability of remotely sensed data in space and time together with their synoptic 25 

viewpoint and information content make them an attractive source of data for mapping applications. 26 

The maps generated from remote sensing are, and indeed should be expected to be, imperfect. All 27 

maps provide a generalization of reality and hence deviate in some way from it. The nature and 28 
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magnitude of the deviation from reality will vary as a function of many issues such as the features to 29 

be mapped and the data and methods used. The basic issues and challenges for mapping are well 30 

known. For example, to address fundamental issues connected to cartographic scale for a basic 31 

pocket-map the “grandest idea of all” (Carroll, 1893; p 169) would be to map at a 1:1 scale which 32 

would be impractical as well as of questionable value. Maps are thus imperfect and partly as a result 33 

of this it has been be claimed that they are “the most used and least understood documents of modern 34 

civilisation” (L A Brown, 1953, cited in Maling, 1989; p 144). Awareness of the limitations of maps 35 

may, however, enhance map interpretation and use. Here, the focus is on thematic maps such as those 36 

depicting land cover obtained by popular supervised image classification analyses. 37 

 38 

Remote sensing is widely used to generate thematic maps via a supervised image classification 39 

analysis. The basic process is very simple and the entire mapping process applied to appropriately 40 

pre-processed imagery comprises three stages: training, allocation and testing. In training, pixels of 41 

each class of interest are identified in the image to be classified and characterised quantitatively. The 42 

latter characterisations are training statistics that are used in the second stage to allocate every pixel in 43 

the imagery of the region of interest to be mapped to a class on the basis of their relative similarity to 44 

the class characterisations. The accuracy of the allocations made is assessed in the testing stage by 45 

comparison of predicted and actual class labels for a sample of pixels drawn from the region of 46 

interest that was mapped. There are, of course, many detailed considerations in each stage and 47 

variants of this process exist. The training statistics could, for example, arise from spectral libraries, 48 

training sites could be from outside the region to be mapped and objects rather than pixels may be 49 

used as the fundamental spatial unit but the general nature of the classification analysis remains the 50 

same. More critically to this article, there are fundamental assumptions made in a classification 51 

analysis. 52 

 53 

A range of assumptions are made in a classification analysis. For example, in a conventional ‘hard’ 54 

classification a key assumption made about the data is that the pixels are pure (i.e. each represents an 55 

area covered by a single class). Unfortunately, pixels are arbitrary spatial units determined mainly by 56 
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the sensor’s properties and can have little relation to natural units on the ground. The major problem 57 

arising from deviation from the assumed condition is the presence of mixed pixels; the problem does 58 

not disappear in an object-based approach as mixed objects can be common (Costa et al., 2017). The 59 

magnitude of the problem is a function of the relationship between the image spatial resolution and 60 

the landscape mosaic on the ground. Means to address this type of problem, perhaps via a soft 61 

classification analysis or super-resolution mapping exist (Foody, 2004a), and may need to be used for 62 

accurate mapping.  63 

 64 

Assumptions are also made about the classes in a classification analysis. For example, it is normally 65 

assumed that the classes are discrete and mutually exclusive as well as exhaustively defined. Often 66 

this is not the case and deviation from the assumed condition can be a source of error and uncertainty 67 

in thematic mapping. For example, classes are often not discrete and mutually exclusive. Many 68 

classes intergrade. Continuous classes such as found in many semi-natural environments cannot be 69 

represented well in a standard ‘hard’ classification (Foody, 2004a). While a continuum can be divided 70 

into a set of classes this is a poor characterisation of reality and neighbouring classes along the 71 

continuum may share qualities. The boundaries between these and other classes are not natural but fiat 72 

and dependent on human decisions (Smith and Mark, 1998: Vogt et al., 2012). Many classes may, 73 

therefore, be defined in a variety of ways and the process may be inherently political (Comber et al., 74 

2005a; 2005b). Again the basic issues are well-known and that many classes are human constructs 75 

which can be a definitional challenge rather than natural features is evident in a quote attributed to 76 

Wittgenstein: “What is or is not a cow is for the public to decide” (Toulmin, 1953; p51). Care must, 77 

therefore, be taken to define classes appropriately and in many studies it is necessary to harmonise 78 

legends if meaningful results are to be obtained. Critically, assumptions are made about the classes 79 

and deviation from the assumed condition can impact negatively on analyses and hence needs to be 80 

addressed. This article is focused on just one of the assumptions often made in supervised 81 

classification and how it impacts on the accuracy of class allocations made by a classifier: the classes 82 

have been defined exhaustively (i.e. every class that occurs has been included in the analysis). Of 83 

central concern to the article is the reference data set used in the testing stage. The latter are typically 84 
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obtained from fieldwork or interpretation of fine resolution imagery and may be acquired following 85 

established guidelines to ensure value (Olofsson et al., 2014; Stehman and Foody, 2019). Critically, 86 

however, it is suggested that a distinction be made between reference data for the set of classes used 87 

in training the classification and reference data that represent all the classes contained within the 88 

region of interest that was mapped. In the context of this article, the former may be used to indicate 89 

the accuracy of the classification while the latter may be used to indicate the accuracy of the map 90 

generated by application of the trained classifier to the imagery of the region of interest to be mapped. 91 

 92 

The value of a thematic map is influenced substantially by its quality. There is, therefore, considerable 93 

interest in the accuracy of thematic maps produced by a classification analysis. Indeed, an accuracy 94 

assessment is viewed as a fundamental component of a mapping programme (Strahler et al., 2006). 95 

Many challenges are, however, encountered in an accuracy assessment (Congalton and Green, 2009; 96 

Ye et al., 2018; Stehman and Foody, 2019). The interpretation of an accuracy assessment may also 97 

not always be straightforward and can be complicated by a failure to satisfy underpinning 98 

assumptions. 99 

 100 

Typically, interest is focused on the properties of the map generated by a classification although in 101 

some notable exceptions, such as classifier development, interest may lie in aspects of the 102 

classification such as the degree of inter-class separability present. The quality of the map and the 103 

ability to discriminate classes in the imagery are intimately related and can often be usefully 104 

expressed in terms of thematic accuracy. However, the accuracy with which the set of trained classes 105 

is classified by a classifier (referred to here as classification accuracy) may differ from the accuracy 106 

with which the entire set of classes present in the region of interest to be mapped is classified via the 107 

same classifier (referred to here as map accuracy). The classification exists within the map and hence 108 

classification and map accuracy are related but can be different. Thus, while the terms classification 109 

accuracy and map accuracy are often used synonymously it may be more appropriate for them to be 110 

thought of as relating to different, albeit related, properties. Differences between classification and 111 

map accuracy can arise for a variety of reasons. One key reason for differences between classification 112 
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and map accuracy, and the focus of this article, is that the fundamental assumption that the set of 113 

classes has been defined exhaustively which underlies many supervised classification analyses for 114 

thematic mapping may be violated. 115 

 116 

A wide range of approaches to classification and many different classifiers have been used in thematic 117 

mapping from remote sensing (Lu and Weng, 2007; Tso and Mather, 2009; Li et al., 2014; Ghamisi et 118 

al., 2017). In essence, these analyses seek to separate the classes in the feature space provided by the 119 

remotely sensed imagery. The concern in this paper is that the analysis may proceed ignorant of the 120 

existence in the region to be mapped of one or more classes beyond the set used to train the 121 

supervised classifier. If the feature space is partitioned fully by the classifier, cases of such untrained 122 

classes must be commissioned into the set of trained classes and hence degrade map accuracy relative 123 

to the accuracy of the classification of the set of trained classes. Not all classification analyses are 124 

sensitive to this problem. There are, for example, exceptions such as classifiers that partition feature 125 

space locally or have the capacity to detect and reject cases from an unknown class (Hudak, 1992; 126 

Foody 2004b; Gui et al., 2018). A basic boxcar or parallelepiped classifier, for example, may 127 

associate regions of feature space with classes leaving other parts unassociated with any class. A case 128 

to be classified that lies within the unassociated area of feature space would be left as ‘unclassified’ or 129 

labelled as something such as ‘other’. Similarly some classifiers allow a threshold to be set that allows 130 

a proportion of cases atypical of all classes to be left unclassified or labelled as ‘other’. Researchers 131 

may also sometimes be able to mask out regions containing classes of no interest to a specific study 132 

or, with a focus on a specific class of interest, reduce a study to a binary classification, the class of 133 

interest versus others, ensuing that an exhaustive set of classes is used. However, it is common for a 134 

classifier that fully partitions feature space to be used and such classifications only are considered in 135 

this paper. 136 

 137 

This paper aims to explore some key impacts associated with the violation of the assumption of an 138 

exhaustively defined set of classes. Specifically, the focus is on the accuracy of a classification and 139 

the accuracy of a map for a region containing one or more untrained classes, both obtained from the 140 
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application of the same trained classifier. In this scenario the mapping is undertaken ignorant of the 141 

existence of the untrained class(es). This scenario is common and indeed may be the predominant 142 

situation in typical mapping applications. The core aim is to show and explain the effect of such 143 

ignorance on classification and map accuracy. This will help address and explain a widely observed 144 

but rarely discussed situation in which a thematic map may be evidently less accurate than the 145 

(classification) accuracy statement that accompanies it suggests. 146 

 147 

 148 

2. The problem of ignorance 149 

Ignorance has many dimensions but here the focus is on unawareness. The key concern is on 150 

situations in which a supervised image classification analysis is used to produce a thematic map of a 151 

region of interest but undertaken in such a way that the analysis is unaware of the existence of one or 152 

more thematic classes in the region being mapped. The focus in this paper is entirely on classifiers 153 

that fully partition feature space and assume an exhaustively defined set of classes. Particular attention 154 

is directed to the relative magnitude of accuracy estimated for a classification and then for a map 155 

arising from the application of the same classifier to remotely sensed imagery. Although untrained 156 

classes impact on soft classifications (Foody, 2000) these and other issues related to rigorous accuracy 157 

assessment (Olofsson et al., 2014) are not considered further purely to facilitate a focus on the relative 158 

magnitude of classification and map accuracy.  159 

 160 

In a supervised image classification, the analyst defines the set of classes to be included in a study. In 161 

most situations, this requires training data to be acquired for each and every class. These training data 162 

are used to generate training statistics that form spectral signatures which, essentially, characterise the 163 

appearance of the classes in the imagery. The latter may then be used to form a thematic map from the 164 

imagery via a classification analysis. In the classification, each image pixel (or other suitable spatial 165 

unit) in the region to be mapped is allocated to one of the defined set of classes on the basis of their 166 

relative spectral similarity. So, for example, a classical maximum likelihood classifier should be 167 

trained upon every class and each pixel in the region to be mapped would be allocated to the class 168 
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with which it had the largest posterior probability of membership. Critically, each pixel can be 169 

allocated to only one of the set of defined classes upon which the classifier was trained. This type of 170 

approach can be a highly effective and accurate way to classify a remotely sensed image to produce a 171 

thematic map. Implicit in the analysis, however, is the assumption that the set of classes has been 172 

defined exhaustively (Lu and Weng, 2007).  173 

 174 

If a class has been excluded from the training stage, there is no spectral signature for that class and the 175 

classifier cannot allocate pixels to that class. Cases of an untrained class can only be allocated to one 176 

of the classes that the classifier was trained on. Thus, commission into the set of trained classes can be 177 

expected when the set of classes has been defined non-exhaustively (Foody, 2001; 2002).  The 178 

presence of these misclassifications impacts also on the assessment of the quality of the map that is 179 

obtained from the application of the trained classifier to imagery of the region of interest.  180 

 181 

Violation of the assumption of an exhaustively defined set of classes must lead to misclassification, 182 

with cases of the untrained class(es) commissioned into the set of trained classes. However, if the 183 

testing set used in accuracy assessment includes only the set of trained classes such errors may not be 184 

observed even though they may exist in the region to be mapped. For example, if the training and 185 

testing data sets were acquired at the same time and contain only cases of the set of trained classes 186 

then the assessment of accuracy is focused upon only the accuracy with which the set of trained 187 

classes are classified. This measure of classification accuracy can be useful but could be misleading in 188 

relation to the quality of the thematic map that arises from the application of the classifier to imagery 189 

of a region of interest. It is, for example, a potentially poor and misleading assessment of the accuracy 190 

with which all classes that exist in the region of study are classified and so is an imperfect measure of 191 

map accuracy. If the region of interest contains untrained classes, cases of these classes must be 192 

commissioned into the trained set of classes and hence the overall accuracy of the map will be lower 193 

than that of the classification as it will contain more erroneous allocations. Map accuracy may, 194 

therefore, be incorrectly represented by classification accuracy which will, relative to map accuracy, 195 

be optimistically biased. Critically, classification accuracy may not be fully representative of map 196 
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accuracy as it fails to include information for all classes that exist. It may be helpful, here and more 197 

generally, to distinguish between classification and map accuracy. Although the two expressions are 198 

often used synonymously, which may be appropriate when the class set has been defined 199 

exhaustively, classification accuracy is taken here to be the accuracy with which the set of defined 200 

classes used in training has been classified while map accuracy is the accuracy with which a region of 201 

interest, including areas of untrained class(es), is mapped. 202 

 203 

Before exploring the issue further with a focus on the relationship between classification and map 204 

accuracy, it may first be useful to determine if this is a real problem worthy of concern rather than an 205 

unimportant detail that can be ignored. A relatively superficial assessment of the problem, which 206 

aimed simply to show its existence and potentially non-trivial magnitude, was gained through a search 207 

of literature using Google Scholar (15 July 2020). To facilitate focusing on studies in which the 208 

problem may arise, the focus was on a type of study in which the set of classes might conceivably 209 

have been defined non-exhaustively. The study scenario selected was for the mapping of crops. 210 

Specifically, a search for ‘Landsat crop map classification accuracy’ was undertaken. The aim was to 211 

find articles reporting results for the mapping of crops in a region of sufficient size to include a range 212 

of non-crop classes. It would be possible to imagine a study, for example, including all the crops that 213 

are grown in a study area and maybe some additional classes such as grasses and forests but ignoring, 214 

deliberately or accidentally, other classes that exist in the region of study such as urban areas and 215 

water. It is also perfectly possible for an analyst to have successfully defined all of the thematic 216 

classes that fall within the region of interest but still encounter cases of an untrained class. For 217 

example, transient features such as clouds or floods can obscure the ground surface and could, 218 

therefore, represent an untrained class within the region of study. A total of 64,400 outputs was 219 

returned from this search and the first 50 were examined.  220 

 221 

In many cases, the articles identified in the search did not provided sufficient information for the 222 

purposes of this investigation. For example, the exact test site used was sometimes unclear. In some 223 

articles, an existing thematic data set was used to mask out classes beyond the set of interest (e.g.  Li 224 



9 
 

et al., 2015) and, if the mask is accurate, in such instances classification and map accuracy may be the 225 

same. However, there were two studies that were described well and appeared to offer the potential 226 

for the problem of a non-exhaustively defined set of classes to arise. Furthermore, as the region of 227 

interest to be mapped in each study was well defined, it was possible to locate it within a reference 228 

land cover map that had an exhaustive class set produced at a time close to that of the mapping 229 

reported in the papers. Thus, for each of the two papers, a reference land cover classification that had 230 

an exhaustive set of classes was available to compare against the results reported. The two papers of 231 

interest were Skakun et al. (2016) and Sonobe et al. (2017) and their mapping was compared against 232 

that in the 30m resolution global land cover map FROMGLC version 2. The latter is one of a series of 233 

Finer Resolution Observation and Monitoring of Global Land Cover (FROMGLC) maps produced 234 

and based on data for approximately the year 2015 (Li et al., 2020). This map provided a 235 

representation of the test sites at a broadly comparable time which  should be at an appropriate scale, 236 

spatially and thematically, to relate to the maps reported in the selected papers.  While the exact 237 

definition of the test sites and the time period between the map products are likely to be sources of 238 

error, the core aim here was simply to show that classes beyond the set defined in training existed and 239 

gain some indication of their abundance.  240 

 241 

In their article, Skakun et al. (2016) show a land cover map and discuss its accuracy. Their interest 242 

was focused on 8 crop classes but they did include some other classes, notably water, grass and forest 243 

in the analysis. However, other classes, such as urban, may exist and this was assessed with the 244 

FROMGLC version 2 map. The latter showed that approximately 2.28% of the test site was 245 

impervious cover, an untrained class. This situation fits well with the discussion above, where an 246 

analysis may focus on the classes of interest plus other common classes in the region but still fail to 247 

include all classes. It is also one in which it would be feasible to imagine that reference data acquired 248 

by, for example, a randomised sample design might also fail to include any cases of an untrained 249 

class, as rare, and hence the analysis and interpretations could proceed ignorant of their presence. The 250 

other article, Sonobe et al. (2017), was focused on 6 crop classes and presents a land cover map of the 251 

specific region of interest. The latter, however, included a range of classes that were not present in the 252 
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training of the classifications. In comparison to the FROMGLC map, it is evident that the set of 253 

defined classes occupied approximately 61.73% of the region of interest that is mapped. That is, 254 

approximately 38.27% of the study region was covered by cases of one or more untrained classes; the 255 

latter includes a relatively large urban area, Memuro, in the region mapped which appears to have 256 

been labelled mostly as belonging to the maize class. Critically, a large proportion of the region of 257 

interest mapped, over a third of its total area, was comprised of untrained classes the cases of which 258 

were commissioned into the set of trained classes. The accuracy of the thematic map produced would 259 

have to be substantially less than the high classification accuracies reported (up to 94.5% overall 260 

accuracy) as the impact of the cases of untrained classes would need to be addressed in the assessment 261 

of map accuracy.  262 

 263 

The key issue of relevance to this article is that regions mapped may contain untrained classes. The 264 

cases of these untrained classes are commissioned into the set of trained classes and the magnitude of 265 

the potential problem can be sizeable. It must be stressed that the untrained classes may not have 266 

impacted negatively on key aspects of the studies discussed above and no criticism is suggested, 267 

indeed these papers deserve credit for providing sufficient details to allow the analysis to be 268 

undertaken. Critically, however, untrained classes do occur in mapping studies, their effect on map 269 

accuracy is sometimes overlooked and yet could be very substantial. Indeed the concern relates to the 270 

issue of applicability that is flagged as a grand challenge in image classification (Small, 2021). The 271 

applicability problem is in some ways similar to model overfitting with a classifier's applicability to a 272 

region beyond that it was developed in a function of geographical differences. Here, the key 273 

differences of concern is that the region a classifier is applied to may contain classes not present in 274 

that upon which the classifier was developed. A variety of actions can be taken to try and reduce the 275 

problem of untrained classes. Researchers could, for example, seek to identify and mask out pixels 276 

that are atypical of all trained classes and hence potentially members of an untrained class. 277 

Alternatively, a classifier that does not fully partition feature space or which allows a proportion of 278 

cases to be left ‘unclassified’ could be used. Perhaps more appropriately, effort could simply be 279 

invested in ensuring that an exhaustively defined set of classes is used. However, the problem can 280 
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arise unknowingly and hence it may be useful to know the relationship between classification and 281 

map accuracy. 282 

 283 

3. The relationship between classification and map accuracy 284 

Taking the term classification accuracy to relate to the accuracy with which the set of trained classes 285 

is classified and map accuracy to be that of a thematic map that arises from the application of a 286 

classifier to imagery of the region of interest, which could include untrained classes, a simple 287 

exploration of the relationship between classification and map accuracy was undertaken. This 288 

exploration is based first on a basic discussion of the situation for a theoretical example and then a 289 

scenario based on real data is presented. 290 

 291 

Table 1 shows a basic confusion matrix used in accuracy assessments. In the matrix illustrated, the 292 

actual class of membership obtained from a reference data set is shown in the columns of the matrix. 293 

The predicted class of membership obtained from a classification analysis is shown in the rows of the 294 

matrix. Purely for ease of presentation it will be assumed that the testing set used to form this matrix, 295 

and all other matrices presented, was acquired by simple random sampling. The cases that lie along 296 

the main diagonal of the matrix are those that have been correctly allocated (i.e. pixels that have been 297 

labelled as belonging to the class that they actually do belong to). Conversely, those cases that lie in 298 

off-diagonal elements of the matrix are misclassifications (i.e. pixels allocated to a class that is 299 

different to the actual class of membership). The overall accuracy of the classification, O, may be 300 

quantified using equation 1. 301 

 302 

 
𝑂 =

∑ 𝑛𝑖𝑖
𝑡
𝑖=1

𝑛
 

(1) 

 303 

where n indicates the total number of cases drawn from the set of t thematic classes on which the 304 

classifier had been trained. 305 

 306 
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On a per-class basis, accuracy may be calculated from the user’s and producer’s perspectives 307 

depending on the type of misclassification error of concern (Story and Congalton, 1986; Olofsson et  308 

 309 

 310 
 Class 1 Class 2 Class 3 Class 4 Σ 

Class 1 n11 n12 n13 n14 n1· 
Class 2 n21 n22 n23 n24 n2· 
Class 3 n31 n32 n33 n34 n3· 
Class 4 n41 n42 n43 n44 n4· 

Σ n·1 n·2 n·3 n·4 n 
 311 

Table 1. The confusion matrix used in accuracy assessment. The columns show the actual class 312 

as indicated in a reference data set and the rows the class predicted in the classification 313 

analysis. All other confusion matrices in this paper show the same layout. 314 

 315 

 316 

al., 2014). If interest is focused on commission errors, the focus is on the rows of the confusion matrix 317 

and the user’s accuracy for a class, U, may be calculated from: 318 

  319 

 𝑈𝑖 =
𝑛𝑖𝑖

𝑛𝑖∙
 (2) 

 320 

Alternatively, if interest is focused on omission errors, the focus is on the columns of the confusion 321 

matrix and the producer’s accuracy, P, may be calculated from:  322 

 323 

 𝑃𝑖 =
𝑛𝑖𝑖

𝑛∙𝑖
 

 

(3) 

Other measures of accuracy and additional properties, such as class areal extent, may be estimated 324 

from the confusion matrix and may be impacted by the presence of one or more untrained classes. For 325 

example, the area of a class is also often of interest and can be estimated with regard to the classified 326 

area and expressed as a percentage from: 327 
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 328 

 𝐴𝑐,𝑖 = 100
𝑛𝑖∙

𝑛
 

 

(4) 

where the subscript c,i indicates belonging to class i in the classification output. Alternatively, area 329 

could be estimated based on the reference data and expressed, as a percentage, using: 330 

 331 

 𝐴𝑟,𝑖 = 100
𝑛∙𝑖

𝑛
 

 

(5) 

where the subscript r,i indicates belonging to class i in the reference data; this approach to area 332 

estimation is often recommended as good practice (Olofsson et al., 2014). As area estimation is 333 

common in remote sensing studies this issue will be briefly touched upon. Issues such as adjusting 334 

estimates for different sample designs and the fitting of confidence intervals are not considered here to 335 

aid focus on the impact of an untrained class on the relative magnitude of accuracy estimates.   336 

 337 

The classifier can only allocate cases to the classes upon which it was trained and only the trained set 338 

of classes can be represented in the confusion matrix. In the context of this paper such a matrix may 339 

be used to estimate classification accuracy. Such a matrix would commonly arise if, for example, the 340 

reference data for training and accuracy assessment were acquired at the same time and divided into 341 

separate training and testing sets. If, for example, the reference data were collected following a 342 

stratified by the actual class design it is possible the analyst would have no knowledge of the 343 

existence of the untrained class(es). The reference data could feasibly be collected such that the 344 

required number of cases for each class were acquired one class at a time until data had been acquired 345 

for the full set of desired classes for use in training the classifier. The reference data set could then be 346 

divided into independent training and testing sets. The imagery might then be classified and the 347 

testing set used to evaluate the accuracy of the classification. Such an analysis could be useful but it is 348 

not a good indication of the accuracy of a map generated by the application of the same trained 349 
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classifier to a region of interest that contains one or more untrained classes. Cases of an untrained 350 

class would act to degrade the accuracy of the thematic map.  351 

 352 

Had the data for accuracy assessment been acquired following a stratified by mapped class design a 353 

different situation to that outlined above may be obtained. Critically, it would be expected that some 354 

of the sites selected off the map for use in the accuracy assessment would be found to be members of 355 

the untrained class; the number of sites representing an untrained class would be a function of its 356 

abundance in the region mapped and the size of the sample selected. Similarly, had the sample of 357 

cases for accuracy assessment been acquired following another approach, such as a  simple random 358 

sample of pixels drawn from the map, it would be expected that some cases of the untrained class 359 

would be included and the analyst, therefore, becomes aware of its presence. It may be that the 360 

researcher decides to simply ignore such cases as they do not relate to the classes of interest and 361 

cannot be entered into the confusion matrix. Many challenges are encountered in an accuracy 362 

assessment and classes as well as sample cases are sometimes deliberately excluded. For example, in 363 

the validation of the IGBP DISCover land cover map, two classes (snow and ice, and water) were 364 

excluded because of difficulties in acquiring suitable reference data and if the set of interpreters 365 

labelling sampled cases could not agree a label for it case it was excluded from the assessment 366 

reducing the size of the sample used in the validation (Scepan, 1999). Such actions may at times be 367 

necessary and, while not ideal, can still support a useful accuracy assessment if the work is fully and 368 

transparently documented (Stehman and Foody, 2019). However, what should ideally happen is that 369 

the untrained class(es) should become apparent and action to include it (them) in the accuracy 370 

assessment made. 371 

 372 

Cases of an untrained class cannot be inserted into the planned confusion matrix for classification 373 

accuracy assessment as this would represent only the set of trained classes. On becoming aware of an 374 

untrained class it, thus, becomes appropriate to add a column to the confusion matrix to represent it 375 

(Table 2). Although measures of accuracy can be derived for non-square confusion matrices (e.g., 376 

Finn, 1993) it would be simple to also add an empty row to the matrix for this class to allow standard 377 
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accuracy assessments from a square confusion matrix; the row is empty because no cases can be 378 

allocated to the untrained class as the classifier was not trained upon it. Thus both the row and column 379 

for the untrained class become apparent and need to be included in the assessment of map accuracy; 380 

multiple rows and columns would be added if there was more than one untrained class. Critically, for 381 

the simple scenario under discussion, an expanded confusion matrix emerges. As some elements of 382 

the confusion matrix associated with the untrained class take on a value >0 while others are set at 0, 383 

the presence of an untrained class may impact on some aspects of accuracy assessment and other 384 

analyses based on the confusion matrix.  385 

 386 

At this point it may be helpful to visualise the confusion matrix for classification and map accuracy 387 

assessment when an untrained class is present. In keeping with the discussion thus far, Table 2 shows 388 

key properties for the simple scenario under discussion when a classifier is trained on a set of 4 389 

classes but applied to imagery to produce a map of a region that contains an additional class (class 5). 390 

Accuracy assessments are based on a simple random sample of cases drawn from the region of 391 

interest. Critically, cases selected for inclusion in the accuracy assessment may include members of 392 

the untrained class. As these cannot be inserted into the anticipated 4x4 confusion matrix and may not 393 

fit the core focus of a study, such cases may (wrongly) be ignored. Only the sub-set of the sample of 394 

cases that relate to the set of trained classes would normally be used to indicate classification 395 

accuracy. This simple scenario is used throughout the discussion in this paper. It is, for example, 396 

similar to the scenario used in the assessment of the accuracy of the IGBP DISCover map (Scepan, 397 

1999): cases are selected at random from the map and those cases not confidently associated with a 398 

trained class are ignored reducing the sample size for the accuracy assessment. The accuracy of the 399 

map arising from the application of the trained classifier to the imagery for the region of interest, 400 

however, should account for the untrained class and be based upon the full sample of cases selected 401 

for accuracy assessment. 402 

 403 

 404 

 405 
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 406 

 407 

 Class 1 Class 2 Class 3 Class 4 Class 5 CΣ MΣ 

Class 1 n11 n12 n13 n14 n15 (≥0) n1· m1·=(n1·+ n15) 
Class 2 n21 n22 n23 n24 n25 (≥0) n2· m2·=(n2·+ n25) 
Class 3 n31 n32 n33 n34 n35 (≥0) n3· m3·=(n3·+ n35) 
Class 4 n41 n42 n43 n44 n45 (≥0) n4· m4·=(n4·+ n45) 
Class 5  n51 (=0) n52 (=0) n53 (=0) n54 (=0) n55 (=0) n5· (=0) m5·=(n5· + n55)=0 

CΣ n·1 n·2 n·3 n·4  n  
MΣ m·1=n·1 m·2=n·2 m·3=n·3 m·4=n·4 m·5 (>0)  m=n + m·5 

 408 
Table 2. Basis of confusion matrices for classification and map accuracy assessment when an 409 

untrained class may occur. The superscript prefixes C and M indicate that the total value shown 410 

relates to the classification or map respectively. The example shown is for the situation in 411 

which a classifier has been trained on 4 classes but there is also one additional, untrained, class 412 

(class 5) that lies within the imagery of the region of interest  to be converted into a thematic 413 

map via the trained classifier (see text for further discussion). If the analysis is ignorant of the 414 

presence of the untrained class the row and column for class 5 and associated marginal values, 415 

the elements highlighted in grey, are unobserved and play no role in the calculation of 416 

classification accuracy. Classification accuracy is based entirely in the information for only the 417 

trained classes (classes 1-4). The classifier’s application to the imagery to produce a map for 418 

the region of interest should mean that cases of the untrained class become apparent. These 419 

cases cannot be inserted into the 4x4 confusion matrix used to assess the classification accuracy 420 

and necessitate adding an additional row and column (for class 5). Note that as cases cannot be 421 

allocated to the untrained class the new row for the untrained class is empty, all elements 422 

contain 0 cases. Note that as a result of adding the empty row the column totals for classes 1-4 423 

remain constant. The column associated with the untrained class does, however, contain cases; 424 

the total number of cases of the untrained class encountered is m·5. The cases of the untrained 425 

class can only be commissioned into the set of trained classes and thus the top four elements of 426 

the column for the untrained class may have a value >0 if the relevant class is confused with the 427 

untrained class. As a consequence of the commission errors associated with cases of the 428 
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untrained class, the row marginal values can be equal to or larger than those used in the 429 

calculation of classification accuracy.  430 

 431 

 432 

If the analyst is unaware of the untrained class, the elements shaded grey in the confusion matrix 433 

representing the data for the untrained class (Table 2) would be absent and estimates of properties 434 

such as classification accuracy obtained from the confusion matrix ignorant of its presence. The 435 

untrained class does, however, exist and may be made apparent yielding the expanded, 5x5, confusion 436 

matrix that includes it. The former matrix (4x4) indicates only the accuracy with which the set of 437 

trained classes can be classified from the specific sample of data acquired (i.e. classification 438 

accuracy). This differs from the accuracy of the map if untrained classes are contained as they must be 439 

commissioned into the set of trained classes. To distinguish between the accuracy of the classification 440 

and that of the map obtained by its application to an image of the region of interest  the superscript 441 

prefixes C and M will be used to indicate the focus on the classification and the map respectively. For 442 

the simple scenario in which a random sample of cases was used to form the testing set for accuracy 443 

assessment, the accuracy of the map of the study region obtained through the application of the 444 

trained classifier may be obtained from 445 

 446 

 

𝑂M =
∑ 𝑛𝑖𝑖

𝑡
𝑖=1

M

𝑚
 

 

(6) 

where m is the number of cases sampled from the mapped region. Note that the summation can still be 447 

made over the t trained classes as n55=0; alternatively the equation could be written to sum over all 448 

classes but the result would be the same. Note also that the sample size is larger than that used in the 449 

assessment of classification accuracy, n, by the inclusion of the cases of the untrained class, with, in 450 

the example under discussion, m = n + m·5. In the assessment of classification accuracy the m·5 cases 451 

of the untrained class may have been (wrongly) dropped from the study as not fitting the focus of the 452 

study on the trained classes or because of some other concern such as uncertainty in the labelling. It 453 
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may be preferable to keep the cases of the untrained class and include them as an ‘other’ class which 454 

can be added to the confusion matrix. This would ensure that the set of classes is exhaustive. 455 

 456 

Estimates of user’s accuracy for classes in the map may be obtained from: 457 

 458 

  M𝑈𝑖 =
𝑛𝑖𝑖

𝑚𝑖∙
 

 

(7) 

Similarly, estimates of producer’s accuracy may be obtained from: 459 

 460 

 M𝑃𝑖 =
𝑛𝑖𝑖

𝑚∙𝑖
 

 

(8) 

Finally, the areal extent of a class may be estimated using the marginal values m·i  or mi· and m rather 461 

than n·i or ni· and n in equation 4 or 5 as appropriate to the study. 462 

 463 

It should be evident that, for the very basic scenario outlined, simple relationships may exists between 464 

classification and map accuracy and of other properties estimated from the confusion matrix such as 465 

the areal of extent of classes based on classification or map matrices. These relationships can also be 466 

described mathematically, forming essentially simple laws that relate the interpretation from a 467 

classification and that from a map. Moreover, the explanation for these relationships lies in the effect 468 

of the cases of the untrained class(es) that violate the assumption of an exhaustively defined set of 469 

classes. As such a simple theory to explain the observed relationships can be offered. For the basic 470 

scenario being considered, four key relationships are especially apparent and relevant to typical 471 

remote sensing projects:  472 

 473 

(i) Overall map accuracy ≤ overall classification accuracy. The overall accuracy of the classification is 474 

obtained from equation 1 (calculated over 4 classes). Specifically, in the example shown in Table 2, 475 

 476 
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𝑂C =
∑ 𝑛𝑖𝑖

𝑡
𝑖=1

C

𝑛
 

 

(9) 

The only difference in the calculation of overall map accuracy relative to overall classification 477 

accuracy is the inclusion of the cases of the untrained class, class 5. In the calculation of overall map 478 

accuracy, the numerator in the equation remains unchanged from that in the assessment of 479 

classification accuracy as its calculation for map accuracy is based on the addition of no new correctly 480 

allocated cases since n55=0; as class 5 has not been included in training no cases, correctly or 481 

incorrectly, can be allocated to it. The denominator of equation 1 for map accuracy assessment does, 482 

however, differ from that used in the calculation of classification accuracy as the inclusion of the 483 

cases of the untrained class(es) increases the total number of cases such that m = n + m·5. Because of 484 

this situation,  485 

 486 

 ( 𝑂M =
∑ 𝑛𝑖𝑖

𝑡
𝑖=1

𝑚
 ) ≤ ( 𝑂C =

∑ 𝑛𝑖𝑖
𝑡
𝑖=1

𝑛
 ) 

 

(10) 

since m > n and the relationship between map and classification accuracy for the scenario under 487 

discussion takes the form: 488 

  489 

 𝑂 = 𝑂
𝑛

𝑚
CM  

 

(11) 

The magnitude of the difference between classification and map accuracy is thus dependent on the 490 

difference between n and m which is a function of the abundance of the untrained class(es). Critically, 491 

overall map accuracy scales with classification accuracy by a function of n/m. That is, map accuracy 492 

is the classification accuracy weighted by the proportion of the region of interest covered by the 493 

trained classes. This can be illustrated further with the confusion matrices based on a real data set 494 

shown below.  495 

 496 
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(ii) User’s accuracy from a map ≤ user’s accuracy from a classification. User’s accuracy is a measure 497 

of commission error and as cases of untrained classes are commissioned into the set of trained classes 498 

it follows that the accuracy estimated for a map can only be decreased relative to that estimated from 499 

a classification if there is confusion between the specific class of interest and the untrained class. 500 

Thus, as the numerator of the equation to calculate user’s accuracy remains constant whether 501 

considering map or classification accuracy but the denominator changes it follows that  502 

 503 

 ( 𝑈𝑖
M =

𝑛𝑖𝑖

𝑚𝑖∙
 ) ≤ ( 𝑈𝑖

C =
𝑛𝑖𝑖

𝑛𝑖∙
 ) (12) 

 504 

because  𝑚𝑖∙≥ 𝑛𝑖∙ due to commission errors associated with the untrained class. Note that the scaling 505 

of map and classification accuracy is class specific and by ni·/mi· for the scenario considered with 506 

 507 

 𝑈 = 𝑈
𝑛𝑖∙

𝑚𝑖∙

CM  

 

(13) 

(iii) Producer’s accuracy from a map = producer’s accuracy from a classification. Note from the 508 

producer’s perspective, both the numerator and denominator for the calculation of map accuracy 509 

remain unchanged from that used for classification accuracy after the inclusion of an untrained class; 510 

a pixel cannot be omitted from a trained class to be commissioned into the untrained class. As the row 511 

associated with the untrained class is, therefore, full of 0 values (Table 2), it follows that, 512 

   513 

 ( 𝑃𝑖
M =

𝑛𝑖𝑖

𝑚∙𝑖
 )   =  ( 𝑃𝑖

C =
𝑛𝑖𝑖

𝑛∙𝑖
 ) 

 

(14) 

because 𝑚∙𝑖 = 𝑛∙𝑖 (Table 2). 514 

 515 

(iv) Area estimates from a map may differ from those obtained from a classification. The detail of the 516 

difference is in part dependent on the perspective adopted and whether area estimation is based on 517 
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equation 4 or 5. For the scenario under consideration, if area is estimated with regard to the actual 518 

class, which is often the recommended approach (Olofsson et al., 2014), then the area estimated from 519 

a map < area estimates from a classification if an untrained class is present. This is because the 520 

marginal value associated with a trained class remains the same (𝑚∙𝑖 = 𝑛∙𝑖) but the total number of 521 

cases, used as the denominator, increases from n to m. Since the untrained class must occupy space 522 

within the region mapped it follows that the proportional cover of the other classes must decline and 523 

in a manner determined by the difference between n and m. If area was to be estimated from the 524 

allocated class labels the situation is different. Here, if the class of interest was confused with the 525 

untrained class and commissions cases of it, the total number of cases allocated to the class will 526 

increase (𝑚𝑖∙ > 𝑛𝑖∙).and hence its apparent area may increase. If, however, the class was not confused 527 

with the untrained class, the number of allocations remains constant (𝑚𝑖∙ = 𝑛𝑖∙) but, as the total 528 

number of cases rises from n to m, the area estimated from a map will decrease relative to that 529 

estimated from a classification. Hence, for area estimation based on the allocated class labels, it is 530 

possible for the area estimates to show a class specific response to the untrained class, with the 531 

direction and magnitude of any change dependent on the degree to which the class of interest is 532 

confused with the untrained class. 533 

 534 

To help illustrate the effect of an untrained class and give a guide to the magnitude of the impacts of 535 

ignorance on the estimation of classification and map accuracy it may be helpful to explore the issues 536 

with a real data set. In previous studies, airborne thematic mapper (ATM) data have been used to 537 

classify and map crop classes in the vicinity of the village of Feltwell, Norfolk, UK (Foody and Arora, 538 

1997).  Based on the experience of these studies, attention focused on the classification of data 539 

acquired in three ATM bands, 0.60-0.63, 0.69-0.75 and 1.55-1.75 μm, with a discriminant analysis 540 

using training and testing sets designed to fit with standard recommendations for size (Foody and 541 

Arora, 1997). The training sets comprised 100 cases for each defined class and the testing set 542 

comprised 320 randomly selected cases.  543 

 544 
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Attention focussed on 6 land cover classes: sugar beet (SB), wheat (Wh), barley (Ba), carrots (Ca), 545 

Potatoes (Po) and grass (Gr). It was assumed that this was an exhaustively defined set of classes, 546 

although, as in other studies, it is likely that other classes (e.g. impervious, water etc.) were actually 547 

present. However, it was possible to select one class to be excluded from the training of the classifier 548 

and hence represent an untrained class. As this is most likely to occur with relatively rare classes, the 549 

grass class, which was least abundant in the region of interest, was not included initially in the 550 

training set. A classification with a discriminant analysis was undertaken, trained on the 500 cases of 551 

the 5 classes selected for training and then applied to the 320 cases in the test set. Cases of grass, the 552 

untrained class, in the test set were (i) ignored as not fitting the goal of the study and enabling 553 

classification accuracy for the 5 trained classes to be assessed or (ii) used to add a row and column to 554 

the confusion matrix to allow map accuracy assessment from a 6x6 matrix. The key features of both 555 

the 5x5 and 6x6 matrices that arise are shown in Table 3. Critically, the highlighted row and column 556 

associated with the untrained class are not observed in the assessment of classification accuracy (5x5 557 

matrix) but are in the assessment of map accuracy (6x6 matrix). 558 

 559 

 560 

Table 3. Confusion matrices for the analyses of the ATM data. When the grass class is 561 

unknown the row and column associated with it and associated marginal values, highlighted in 562 

grey, are unobserved and are not part of the calculations of accuracy. However, when the grass 563 

class is manifest the highlighted elements are included in the accuracy assessment. The overall, 564 

user’s and producer’s accuracies are also shown (as %). Note 𝑂C =90.4%, 𝑂M =85.6% and 565 

n/m=0.9468. 566 

 567 
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In Table 3 it is evident that of the 320 cases selected for accuracy assessment, 17 were actually 568 

members of the untrained grass class. When these cases were ignored, the classification accuracy 569 

assessment was based on the allocations for the remaining 303 cases. The cases of the untrained class 570 

were, however, manifest in the assessment of map accuracy as they appear as commission errors and 571 

map accuracy assessment is based on the full set of 320 cases. 572 

 573 

The impact of the untrained class on the accuracy assessments is evident. When the analysis was 574 

ignorant of the grass class, the classification accuracy was estimated to be 90.4%. Knowledge of the 575 

untrained class’s presence and confusion with the set of trained classes results in a map accuracy of 576 

85.6%; the classification accuracy scaled by n/m.  577 

 578 

On a per-class basis, it is evident that the presence of the untrained class was associated with an 579 

increase in commission error for some classes. For example, the largest error was associated with the 580 

carrots class, which commissioned 9 cases of the untrained class. As a result, the accuracy of the 581 

classification for the carrots class could change when the analysis was aware of the grass class. 582 

Specifically, the user’s accuracy for carrots declined from 96.6% to 74.3%; scaling as a function of 583 

ni·/mi·. The producer’s accuracy for each of the trained classes, however, remained the same, 584 

unaffected by knowledge of the untrained class as no case could be allocated to the untrained class 585 

and the row for the class full of 0s. Thus, for example, the producer’s accuracy for the carrot class 586 

obtained from both the classification and map was 87.8%. Finally, the presence of the untrained class 587 

impacts on other properties such as area estimation. For area calculated with regard to the reference 588 

class, all area estimates (%) are reduced, scaling by n/m. For example, the carrot crop changes from 589 

10.9% to 10.3% and the untrained class itself covers 5.3% of the region. For area estimates made 590 

relative to the classification labels, extent can increase if cases of the untrained class were 591 

commissioned by the class or could decline if not. For example, the sugar beet class was not confused 592 

with the untrained class and inclusion of the untrained class in the analysis results in the area 593 

estimation dropping from 29.3% to 27.8%. Conversely, with the carrot class, which did commission 594 
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cases of the untrained class, the area estimate rises from 9.9% to 12.1% when its presence is included 595 

in the analysis. 596 

 597 

Ideally, once the presence of the untrained class became apparent the analysis should have been 598 

repeated with it included in the training stage to ensure the satisfaction of the exhaustively defined set 599 

of classes assumption. Repeating the classification with grass included in the training set, now 600 

comprising 600 cases, yielded a classification which could be summarised in Table 4. Note that the 601 

inclusion of the grass class impacted on overall and per-class estimates of accuracy. Note also that the 602 

inclusion of the grass class impacts upon the training of the classifier. Since the grass class is now 603 

included in the training set it will influence the fitting of the class decision boundaries that separate 604 

the classes and this does impact on the accuracy of the classification. For example, it is evident that 605 

the inclusion of the grass class in training actually results in 1 additional case of the sugar beet class 606 

being classified correctly. Conversely, 1 less case of wheat is correctly classified when grass is 607 

included in the training set (Tables  3 and 4). These differences highlight that the class set defined for 608 

use in training the classifier also influences the classification and its accuracy.  609 

 610 

 611 

Table 4. Confusion matrix for the classification of the ATM data when all 6 classes included in 612 

training. 613 

 614 

4. Conclusions 615 

Thematic maps are commonly produced from remotely sensed imagery through the application of a 616 

supervised classifier. The reference data used to form the training and testing sets  to respectively 617 

develop the classifier and evaluate the class allocations produced  are typically acquired from imagery 618 
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of the region of interest to be mapped. However, reference data for only a sub-set of the classes that 619 

exist within the region of interest may sometimes be acquired which violates the assumption of an 620 

exhaustively defined set of classes made with many classification methods. As a result, some parts of 621 

the region of interest to be mapped belong to a class beyond the set upon which the classifier was 622 

trained. When the analysis is ignorant of the existence of a class, the accuracy of the classification, 623 

assessed with the testing set of cases, may be a misleading guide to the accuracy of the thematic map 624 

produced by the application of the same trained classifier to the imagery of the region of interest. 625 

Since the cases of an untrained class can only be commissioned into the set of trained classes by most 626 

classifiers it follows that the overall accuracy of the map must be less than the accuracy of the 627 

classification as it must contain more incorrectly labelled cases. Similarly, on a per-class basis, the 628 

user’s accuracy for a class will be less than suggested from the classification accuracy assessment if 629 

the class is confused with an untrained class due to increased commission error. Producer’s accuracy 630 

for the set of trained classes, however, is unaffected by the presence of an untrained class. Other 631 

measures estimated from the classification confusion matrix, such as class areal extent, may also be 632 

impacted by the presence of untrained class(es).  Simple relationships to scale map and classification 633 

accuracy were illustrated for a basic scenario which highlight that the magnitude of any difference 634 

between map and classification accuracy is a function of the abundance of the untrained class(es). 635 

Given interest is typically on the map, researchers may need to take care when interpreting and using 636 

classification accuracy statements. 637 

 638 
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