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Abstract
Over recent years, many approaches have been proposed for the denoising or semantic segmentation of X-ray computed
tomography (CT) scans. In most cases, high-quality CT reconstructions are used; however, such reconstructions are not
always available. When the X-ray exposure time has to be limited, undersampled tomograms (in terms of their component
projections) are attained. This low number of projections offers low-quality reconstructions that are difficult to segment.
Here, we consider CT time-series (i.e. 4D data), where the limited time for capturing fast-occurring temporal events results
in the time-series tomograms being necessarily undersampled. Fortunately, in these collections, it is common practice to
obtain representative highly sampled tomograms before or after the time-critical portion of the experiment. In this paper, we
propose an end-to-end network that can learn to denoise and segment the time-series’ undersampled CTs, by training with
the earlier highly sampled representative CTs. Our single network can offer two desired outputs while only training once,
with the denoised output improving the accuracy of the final segmentation. Our method is able to outperform state-of-the-art
methods in the task of semantic segmentation and offer comparable results in regard to denoising. Additionally, we propose
a knowledge transfer scheme using synthetic tomograms. This not only allows accurate segmentation and denoising using
less real-world data, but also increases segmentation accuracy. Finally, we make our datasets, as well as the code, publicly
available.

Keywords Deep learning · Semantic segmentation · CT denoising · Knowledge transfer · X-ray microtomography ·
Sparse-angle tomography · Time-resolved tomography · Synthetic tomograms

1 Introduction

Since its invention by Hounsfield et al. [1], X-ray computed
tomography (X-ray CT) has become increasingly popu-
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lar amongst industrial users and researchers studying the
hidden inner structure of many different biological and non-
biological systems. In applications ranging from medicine
and cell biology to material science and geology, X-ray
microcomputed tomography is an essential imaging tool
which provides researchers with detailed representations of
what they are studying, usually in the form of a volumet-
ric reconstruction. However, one of the most difficult tasks
associated with almost all tomography studies is the seman-
tic segmentation of the resulting volumetric datasets, which
requires many human hours, in some cases weeks, if done
manually. Fortunately, recent automatic techniques based
upon deep learning [2–6] have shown an unprecedented
improvement in segmentation accuracy, where sufficient
annotated data are available. Deep learning approaches
achieve this by learning an end-to-end mapping between the
tomography volumes and the annotated data, and later apply
it for the automatic annotation of new tomography volumes.
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Nevertheless, there are situations in which only a lim-
ited time is available for the CT scanning of an object,
which consequentially results in only a small number of
projections being captured. This is the case in high-speed
4D CT datasets capturing metal corrosion, which comprise
sets of consecutive tomograms depicting time-related events
within the samples. Since only a small number of projec-
tions is attained for each component tomogram of a 4D
dataset, higher numbers of tomograms may be captured,
which increases the time-resolution of the dataset. Unfor-
tunately, acquiring projections from a low number of angles
makes the reconstruction of these undersampled tomograms
an ill-posed problem. This results in low-quality recon-
structions in which the level of noise is high and ray or
streak artefacts are prevalent; see Fig. 1a–d. To address this
issue, iterative reconstruction methods such as the Conju-
gate Gradient Least-Squares method (CGLS) [7] are used.
Figure 1a, c shows a dataset reconstructed using the non-
iterative Filter Back Projection method (FBP) [8] using a
high number of projections. These methods are, however,
designed to work analytically and regardless of the nature of
the tomograms; when only a small number of projections are
available, even with the use of the CGLS [7] method, there is
still a high degree of noise, making further processing com-
plex.

Motivated by the above, we present an end-to-end deep
learning approach for the dual tasks of denoising and seg-
mentation of reconstructions of undersampled tomograms,
also referred to as low-dose or sparse-angle tomograms. As
is common practice during 4D dataset collection, highly
sampled tomograms with a large number of projections can
be captured before or after the time-critical portion of the
collection, “book ending” the lower resolution data with
high fidelity, single time-point representations. It is therefore
possible, using as prior the high-quality volume reconstruc-
tions of these representative highly sampled tomograms, to
tackle both the denoising and segmentation of the low-quality
reconstructions of the undersampled tomograms.

We achieve this by stacking two proposed DenseUSeg
networks, described here. The stacked networks are inspired
by Newell’s [12] approach of Stacked Hourglasses, with the
first denoising the input and the second segmenting it. Stack-
ing two networks creates an intermediate result that allows
for an intermediate loss to be applied in order to obtain the
denoised output. Additionally, stacking the networks enables
the denoised output to be utilised by the follow-up network
to achieve more accurate segmentation predictions. Training
time required is also decreased, compared to training two
networks separately. This is because there are software and
hardware advantages due to parallelism, which allow more
efficient and faster training when it is performed simultane-
ously rather than separately.

Finally, we propose a knowledge transfer scheme in order
to achieve high levels of segmentation accuracy in situations
where the available amount of annotated data is small. We
achieve this by employing Kazantsev et al.’s [13] Tomo-
Phantom software to construct synthetic tomograms, using
random geometrical objects (e.g. cylinders, ellipsoids, etc.)
to approximate the different classes present in the real-world
data. The synthetic tomograms are then used to train net-
works. This way, key knowledge such as the attenuation
levels of different classes and shape descriptive features can
be transferred to the parameters of these networks’ convolu-
tional layers, using procedurally synthesised tomograms that
are by default already annotated. These networks are then
used as a stepping stone, initialising the parameters of new
networks before the latter are further trained/fine-tuned using
a small amount real-world data. Provided that the synthetic
tomograms approximate a broader family of different real-
world tomograms with the same segmentation classes, these
“pretrained” networks can be used multiple times for the
fine-tuning of new networks targeted towards the segmenta-
tion or denoising of different real-world datasets. Therefore,
the additional time cost of manufacturing synthetic tomo-
grams and training “pretrained” networks is not repeated
for every new real-world tomogram, the user would like
to segment or denoise. As we further explore in Sects. 4
and 5, the knowledge learned from synthetic tomograms
increases segmentation accuracy considerably. In fact, we
find that the necessary amount of annotated data required
for a highly accurate segmentation after training/fine-tuning,
can be as low as 5% of the original training set of segmen-
tation instances. This is essential for the application of our
approach in industrial practice, where the absence of the suf-
ficient annotated tomographic data is frequent.

In summary, in this paper:

1. We propose our DenseUSeg architecture that extends
upon the DenseSeg architecture [5] through the intro-
duction of a “decoder” module similar to UNet [14].

2. We propose an end-to-end deep learning approach that
produces two different outputs, the denoised counterpart
of the input and its segmentation map. This network,
named Stacked-DenseUSeg, utilises the denoised output
to further improve its segmentation accuracy compared
to DenseUSeg and other state-of-the-art methods.

3. Wedemonstrate that our approaches outperform the state-
of-the-art over the Intersection over Union (IoU) metric
for the semantic segmentation of low-quality reconstruc-
tions of undersampled tomograms.

4. We show that our approaches are at least as good as state-
of-the-art methods over the Peak Signal-to-Noise Ratio
(PSNR) and Structural SIMilarity index (SSIM) for the
denoising of the low-quality reconstructions. The reason
the same methods are used for both the denoising and
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Fig. 1 Cross section of our real-world dataset reconstructions and
annotations. a FBP reconstruction from 3601 projections [9] (these are
cropped and centred around themetallic pin of Label 1), bCGLS recon-
struction from91 projections [10] (these are cropped and centred around

the metallic pin of Label 1), c, d are zoomed versions of a, b, respec-
tively, and e are annotations for the same area [11]. Label 0 in b refers to
the air outside the base material, Label 1 in e refers to the base material,
Label 2 are the magnesium deposits and Label 3 are the air pockets

segmentation comparisons is that current published CT
denoising approaches have not exploited the most recent
advances in deep learning architectures that have proven
to offer noteworthy results regardless of task.

5. We propose a scheme that transfers knowledge from pro-
cedurally generated synthetic tomograms.This allows the
use of less real-world data than before, higher segmenta-
tion accuracy and also reduced time required for training.

2 Related work

Over the recent years, deep learning approaches have offered
remarkable results in the area of semantic segmentation.Gen-
erally, these approaches can be split into two categories:
approaches using pixel-wise networks that label one pixel
(or voxel) of the input and approaches using fully convolu-
tional neural networks that label multiple pixels (or voxels).

In approaches that employ pixel-wise networks, the net-
works’ task is to predict the class of a single pixel at a time,
using as input the pixel values of a neighbourhood around
that pixel. One of the first attempts at pixel-wise segmenta-
tion came from Ciresan et al. [15] who used a convolutional
network followed by fully connected layers to predict the
class of individual pixels. Its performancewas later improved
by Pereira et al. [16], who deepened the architecture and
demonstrated that by careful image preprocessing, segmen-
tation accuracy can be improved further. Moeskops et al.
[17] and Havaei et al. [18] introduced multiple pathways
into the network to increase accuracy using multi-scale con-
textual information. In a recent publication, Kamnitsas et al.
[19] introduced Conditional Random Fields (CFRs) to gain
additional accuracy in segmentation. However, as shown by
Salehi et al. [20], fully convolutional neural networks tend to
have both better performance and faster training and testing
times.

Fully convolutional approaches are designed to offer pre-
dictions for the whole (or a subsection) of the input image
or volume. First proposed by Long et al. [21], fully con-
volutional networks replace the fully connected layers of
pixel/voxel-wise networks with upscaling operations. It is
then possible to attain accurate predictions for a more coarse
version of the input, compared to a single pixel/voxel. Based
on this principle, Badrinarayanan et al. [22] demonstrated
that the classification architectures that were previously
proposed in other publications can be easily modified for
segmentation tasks. By partially using the same architec-
ture (VGG-16 [23] in their case), it is possible to initiate
the parameters of certain layers using the parameters of
pretrained classification networks, leading to higher seg-
mentation accuracy compared to using random parameter
initialisation, due to the knowledge transferred from the
classification networks. This fact, combined with recent pub-
lications [24,25]which demonstrate hownetworks trained on
synthetic datasets can be useful for real-world applications,
is what inspired our proposed knowledge transfer scheme.

Later, Ronneberger et al. [14] introduced the UNet archi-
tecture, which uses a “decoder” module with upscaling
operations, convolutions and skip connections to achieve
new standards in segmentation accuracy. Similarly, Cicek
et al. [3] modified this architecture for 3D volumes, propos-
ing 3D-UNet. In 2016, an important year for deep learning,
He et al. [26] presented their residual network architecture,
ResNet, that combats the gradient degradationwhich appears
in deep networkswhen they start to converge. Their proposed
architecture, by summing feature maps with ones calcu-
lated in earlier layers, allowed the deep network to converge
more easily by effectively learning just the residual informa-
tion between the different feature maps. Their contribution
inspired many deep learning approaches, some of them per-
forming semantic segmentation [4,4,27].Oneof the proposed
approaches, introduced by Chen et al. [4], demonstrated that
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deep supervision [28] can offer an additional improvement of
the segmentation accuracy. Recently, innovating towards the
same direction, Huang et al. [29] proposed their DenseNet
architecture offering better performance by further minimis-
ing the degradation problem. Using concatenation instead
of summation, their proposed network is able to more flex-
ibly utilise the feature maps produced by early layers, and
converge even faster. Their architecture was also adapted for
the task of segmentation, with Bui et al. [5] and Zhang et
al. [6] demonstrating improved segmentation results. Lately,
Li et al. [30] proposed such a dense network that includes
a “decoder” module; however, their proposal for handling
the network’s large memory demands is to sum the upscaled
feature maps with the ones passed by skip connections. Nev-
ertheless, as we will describe in Sect. 3 there is still a way
to use concatenation instead of summation, which as demon-
strated by Huang et al. [29] is a more flexible way to combine
feature maps.

Deep learning methods for denoising the reconstructions
of undersampled (low-dose or sparse-angle) tomograms have
also been developed, though these aremuch fewer in number.
Most of these [31–36] utilise simple deep learning architec-
tures, as the recent advantages of deep learning have only
been recently showcased. Because of that, the recent and
deeper architectures like [3–5] have yet to be adopted for
this task. However, based on the general trend in deep learn-
ing network architectures, deeper architectures tend to offer
higher performances regardless of the task (classification,
segmentation, etc.). For this reason, in Sect. 5 we compare
our proposed architectures against themore recent anddeeper
[3–5] approaches.

3 The network architectures

3.1 Densely connected layers

In this section, we will showcase our DenseUSeg and
Stacked-DenseUSeg networks (see [37] for the code) as
shown in Fig. 2. Specifically, the Stacked-DenseUSeg net-
work is composed of two of our proposed DenseUSeg
networks stacked sequentially; the DenseUSeg architecture
is formed by expanding upon the DenseSeg architecture pro-
posed byBui et al. [5] through the introduction of a “decoder”
module similar to UNet [14]. This “decoder” using consec-
utive transpose convolutions and additional convolutional
layers is proven to offer more accurate segmentation results.
Similar to DenseSeg, our architecture is composed of the
Dense Blocks proposed by Huang et al. [29]. Specifically,
the output feature maps of the lth Dense Module within a
Dense Block are:

xl = Hl([x0, x1, · · · , xl−1] (1)

where [x0, x1, . . . , xl−1] is the concatenation of the feature
maps formed in the earlier 0, 1, . . . , l − 1 layers and Hl the
composite function of the lth Dense Module. Based on the
above and as shown in Fig. 2c, each Dense Module receives
as input the concatenation of the all the previous DenseMod-
ules’ feature maps. The number of feature maps after l Dense
Modules is therefore k0 + l · g where k0 is the number of the
initial feature maps provided to the Dense Block and g the
growth rate, is the number of feature maps produced by each
Dense Module.

Based on preliminary testing, we set the growth rate of
DenseUSeg and Stacked-DenseUSeg to g = 64, in an effort
to achieve good performance before further increases lead to
diminishing returns.

3.2 DenseUSeg

In our architecture, before the use of the first Dense Block
the input passes through 3, 3×3×3 convolutional layers that
produce k0 = 32 feature maps followed by a 2× 2× 2 con-
volution with stride 2 to reduce their scale. The architecture
then consists of 4 Dense Blocks each with 4 Dense Modules
(see Fig. 2c) separated by 3 Transitional layers. Each of the
DenseModules contains a bottleneck 1×1×1 convolutional
layer and a 3×3×3 layer. To mitigate the extensive increase
in feature maps as the network becomes deeper, Transition
Blocks are placed between each of the Dense Blocks. These
include a 1×1×1 convolution that decreases the number of
feature maps by a factor of θ = 0.5, followed by a 2× 2× 2
convolution with stride 2 for scale reduction. This way the
network condenses the information extracted from each scale
of the input, before continuing with the extraction of infor-
mation at smaller scales. It is also important to mention that,
before each convolutional layer present either in the Dense
and Transition Blocks, batch normalisation and the Rectified
LinearUnit (ReLU) are employed to improve robustness [38]
and introduce the necessary nonlinearity [39], respectively.
Similarly, these layers are also present in the initial three
convolutional layers, but are placed after the convolutions.
Finally, a Dropout layer with rate p = 0.2 is placed at the
end of each DenseModule, since this has been proven to help
with over-fitting problems [40].

Moving forward to the architecture’s decoder, DenseUSeg
uses a scheme similar to UNet [14]. The network upscales
the feature maps of the last Dense Block using a 4 × 4 × 4
transpose convolutional layer with stride 2 and padding 1,
similar to the transpose convolutions of U-Net [14]. These
features are then concatenated with the feature maps of the
earlier Dense Blocks with the same resolution (same number
of voxels for the height, width and depth). The feature maps
then pass through two consecutive convolutional layers, and
the upscaling is repeatedwith similar transpose convolutions.
Since the number of feature maps is very extensive after the
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Fig. 2 a Our proposed DenseUSeg architecture, b Our final Stacked-DenseUSeg architecture utilising 2 modules of DenseUSeg from panel a
omitting repeating the initial 3 convolutional layers, c Dense Block used in DenseUSeg, feature maps A–D are described in text

Dense Blocks, both the transpose convolutions and the first
of the two consecutive convolutions in the decoder reduce the
number of convolutions by half.When the featuremaps reach
the same resolution as the input volume, they pass through a
1× 1× 1 convolution and a Softmax Layer which produces
the probabilities for each of the voxels belonging in each of
the classes. By assigning each voxel to the class which has
the highest probability of belonging, the final segmentation
map is formed.

3.3 Stacked-DenseUSeg

As Fig. 2b shows, when combining two DenseUSeg nets in
our Stacked-DenseUSeg architecture the initial 3 convolu-
tional layers (the ones between the feature maps A and B)
are common. The denoising part of our architecture then pro-
duces the final feature maps of the denoised output (feature
maps C), followed by the denoised prediction for the input
(output D). These then pass through 3 × 3 × 3 convolu-
tions (with batch normalisation and ReLU layers) and the
resulting feature maps are summed with initial feature maps
(B) to provide the input for the segmentation DenseUSeg.
Since the input to the segmentation DenseUSeg receives
information from the 3 convolutional layers (feature maps
C) of the denoising DenseUSeg, the 3 convolutional layers

are not repeated in the segmentation DenseUSeg. As shown
in Sect. 5, the existence of a Dropout layer in DenseUSeg
and DenseSeg [5] improves the performance only in the case
where the input is noisy and has no effect when the input is
noiseless. Therefore, while for the denoising DenseUSeg a
Dropout layer with rate p = 0.2 is selected, in the respec-
tive segmentation network the rate is set to p = 0 as it
receives a denoised input. The connection between the net-
works is inspired by Newell et al. [12], in which the authors
stack multiple hourglass networks with intermediate super-
vision in order to improve the network’s final predictions.
For our architecture, the goal is to produce a denoised output
which assists in the accuracy of the final segmentation output.
The stacked approach is necessary, as it allows for the cre-
ation of an intermediate output of the same size (number of
voxel dimensions) as the input. This enables the application
of an intermediate loss function to the network, in order to
obtain the desired denoised output. Our Stacked-DenseUSeg
architecture is therefore able to offer two different outputs
within one forward pass. This is translated into a potential
reduction of training time of two networks, since software
can better schedule the required operations and may per-
form many of them in parallel. While training of the two
networks could occur in parallel but separately, the segmen-
tation output would not benefit from the denoised output due
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to the separation. Furthermore, in applications where only
the denoising or the segmentation is desired, it is possible
both the intermediate and the final output to be used either
for segmentation or denoising. This means that the interme-
diate output would not be a secondary output, but just an
entry point for additional supervision. As shown in [12,28]
additional supervision increases the accuracy of the final out-
put.

4 Data and training

4.1 Representative real-world and synthetic
tomograms

The real-world highly sampled tomogram used to train our
networks was produced at the Diamond Light Source I13-2
beamline [46], and is used in [47]. The tomogram depicts
a droplet of salt water on top of a 500 micron aluminium
pin with magnesium deposits. It was captured at the end
of a time-series of undersampled tomograms that forms a
4D dataset, itself part of a study to measure the corrosion
of the metallic pin by the salt-water droplet over time [48].
Since the tomograms captured by Diamond Light Source
are 2160 × 2560 × 2560 in size after reconstruction, even
a single tomogram can in practice provide plenty of train-
ing instances after cropping. The use of a single tomogram
(dataset) is a reflection of the limited availability of annotated
data in this domain, where a set of multiple annotated tomo-
grams cannot be a representative of future tomograms, due
to the unique nature of the samples being imaged in every
tomogram collection. This means that proposed networks in
this domain would have to retrained on new representative
highly sampled tomogram, that accompany the correspond-
ing new time-series of undersampled tomograms. Manual
annotation of these large 2160 × 2560 × 2560 highly sam-
pled tomograms is a difficult and time-consuming process.
Aswe note later, we incorporate the availability of only a very
limited amount of training data into the core of our method,
introducing synthetic data to help overcome this limitation.

The real-world, highly sampled tomogram, used in Sect. 5
is captured at the end of a time-series, and as such it has
been possible to capture it with a high number of projec-
tions, namely 3601 instead of the 91 projections in the 4D
dataset tomograms. Collection of these “book end” repre-
sentative highly sampled tomograms is common practice for
researchers dealing with 4D datasets. These tomograms are
attained either before or after the capture of a 4D dataset,
providing tomograms that can be used as reference, but with-
out interfering with the time-critical part of the study. Even
though not a part of the 4D dataset, they contain valuable
information about the features of the samples under study
which the researchers want to identify and label. Therefore,

they can be used for training segmentation or denoising net-
works, which will later be applied on the reconstructions
of the 4D dataset’s tomograms. In addition to such real-
world, highly sampled datasets, synthetic, highly sampled
tomograms are later utilised for the knowledge transfer exper-
iments, as shown in Fig. 3. Such artificial datasets allow for
better generalisation of the denoising and segmentation tasks,
which elevates the accuracy of the networks. Furthermore,
they are useful when the amount of annotated real-world
tomograms is limited, which would otherwise not allow for
the training of highly accurate networks.

For training, three highly sampled tomograms are used.
Two of them are synthetically constructed and the other is
a real-world tomogram. The real-world tomogram is recon-
structed using theSavuPythonpackage [49] and the synthetic
tomograms using Kazantsev et al.’s [13] TomoPhantom soft-
ware. For the synthetic tomograms,TomoPhantomconstructs
them using a file made by the user that lists a number of vir-
tual objects placed in a virtual stage, in a similar way to
how real-world objects are placed in a stage prior to them
being CT scanned. The virtual objects can constructed to be
of any shape formed from a predetermined list of geomet-
rical shapes. The aforementioned file details the shape, size
and orientation of the virtual objects as well as their virtual
absorption rate, which will determine their brightness during
the rendering of the synthetic reconstructions.

4.2 Tomogram reconstructions used for training

For each of the tomograms synthetic or real-world, two
reconstructions are produced. The first are made using the
Filter Back Projection method (FBP) [8] algorithm and
all 3601 available projections. The resulting high-quality
reconstructions [9,41,42] provide the ground truth used in
the denoising experiments and in the denoising part of
Stacked-DenseUSeg. The second reconstructions are made
with the Conjugate Gradient Least-Squares method (CGLS)
[7] reconstruction algorithm and uses only 91 projections
(1st, 41st, . . . , 3601st projections) ignoring some of the
intermediate projections. These low-quality reconstructions
[10,43,44], which are provided as input during training, have
the same visual quality as the reconstructions from the under-
sampled tomograms in the 4D datasets, when only a small
number of projections are used. The reason two different
algorithms are used for the two reconstructions per tomogram
is that the iterative CGLS method improves the reconstruc-
tion qualitywhen applied to undersampled tomograms,while
it offers poorer results than the more simple FBP method
when applied to highly sampled tomograms. Figures 1, 3
provide cross sections of the two reconstructions for the real-
world and synthetic tomograms, respectively, as well as their
annotations, which depict the classes that the network aims
to segment. The annotations [11] of the real-world tomogram
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Fig. 3 Cross section of our synthetic tomogram reconstructions and
annotations used during the knowledge transfer experiments. a, e
FBP reconstruction from 3601 projections from synthetic tomograms,
respectively, with [41] and without [42] rotating artefacts (these are
cropped and centred around the metallic pin of Label 1), b, f CGLS
reconstruction from 91 projections from synthetic tomograms, respec-

tively, with [43] and without [44] rotating artefacts (these are cropped
and centred around the metallic pin of Label 1), c, d, g, h are zoomed
versions of a, b, e, f, respectively, and i are annotations for the same
area [45]. Similar to the real-world data Label 0 in b refers to the air
outside the base material, Label 1 in e refers to the base material, Label
2 are the magnesium deposits and Label 3 are the air pockets

are obtained using Luengo et al.’s SuRVoS [50] software tool
using the high-quality reconstruction [9].

The synthetic tomograms’ annotations are predetermined
[45]. Based on these the respective tomogram projections
and reconstructions are created. In contrast to the real-world
annotations, the synthetic annotations are not human esti-
mations of the ground truth, rather they are the absolute
ground truth. This is very significant since due to imaging
artefacts, even in highly sampled tomograms, human anno-
tators may unintentionally introduce bias to the data that
will later be used for training, which in turn may reduce the
accuracy of the final segmentation [51]. Synthetic datasets
lack this potential bias, and by transferring knowledge from
networks trained on synthetic data to networks that infer
on real-world data, the latter may offer predictions in dif-
ficult cases which are potentially more accurate than human
annotators. Two synthetic tomograms are used during exper-
iments: one more realistic, with simulated rotating artefacts
(Fig. 3a–d) that are also present in real-world data, and the
other less realistic dataset, without such artefacts (Fig. 3e–
h). This effectively gives us two levels of physical simulation
quality to compare. For both tomograms, similarly to the real-
world tomogram, there are two subsequent reconstructions: a
high-quality reconstruction which provides the ground truth
used in the denoising experiments and in the denoising part of
Stacked-DenseUSeg (Fig. 3a,c,e,g), and a low-quality recon-

struction used as input during training, because it has the
samevisual quality as the reconstructions from the real-world
undersampled tomograms (Fig. 3b,d,f,h).

There are four classes to be segmented: the air outside
the base material (Label 0 in Figs. 1c, 3i), the base material
which is the water and aluminium (Label 1 in Figs. 1f, 3i),
the magnesium deposits within the base material (Label 2 in
Figs. 1f, 3i) and lastly the air pockets within the basematerial
(Label 3 in Figs. 1f, 3i). In the synthetic tomograms, 5000
randomly oriented and sized virtual ellipsoids are randomly
placed within a virtual cylinder for each class and assigned
Labels 2 and 3. These simulate the magnesium deposits and
air pockets, respectively, with the quantity chosen to roughly
simulate the class balance present in the real-world data. The
virtual cylinder in turn simulates themetallic pin found in the
real-world data. Note that, due to the large number of ellip-
soids introduced, there is occasional overlappingof ellipsoids
which diversifies the shapes present in the tomograms (see
Fig. 3c,g,i).

Since the training of the network is performed using a sin-
gle tomogram at a time, they are normalised (if real-world
data; synthetic tomograms are produced pre-normalised) and
split into multiple non-overlapping 64 × 64 × 64 samples.
Before entering the network each of the samples is either ran-
domly rotated between 90, 180, 270 degrees, or horizontally
or vertically mirrored. Of these samples, 70% are randomly
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chosen for training, 10% for validation and 20% for testing.
This results in, for the real-world tomogram, 3723 samples
used for training, 532 for validation and 1065 for testing. For
the synthetic tomograms, 4646 samples are used for train-
ing, 663 for validation and 1329 for testing. The samples
are cropped from the area of the tomograms that contain the
desired classes to segment, because most voxels in the tomo-
grams belong to Label 0 and sampling from the tomograms
as a whole would create a great class imbalance. Thankfully,
in most datasets (4D datasets or single tomograms) of this
type [48] the region of interest which has to be segmented,
is located in a single area of the tomogram. Using sim-
ple low-level imaging analysis techniques (edge detection,
thresholding, etc.), it is possible to isolate this area, reducing
the volume that the networks have to segment, and allowing
for shorter inference times. During inference, the samples are
chosen to be overlapping, and the final prediction is obtained
by averaging predictions in areas of overlap. The predictions,
that are the probabilities of which class each voxel belongs
to, are used after averaging to infer the class of each voxel.
Non-overlapping samples are used during training for clear
separation between training, validation and testing samples.
During inference, however, overlapping eliminates potential
border artefacts in the output subvolumes and helps resolve
potential uncertainties in the class of some voxels.

4.3 Hyperparameters and training settings

For backpropagation, the stochastic gradient-based optimi-
sation method Adam [52] is used, with minibatches of 8.
For DenseUSeg the learning rate is set to 10−5, while for
the Stacked-DenseUSeg the corresponding learning rates for
both the segmentation part the denoising part of network are
displayed in Fig. 4a. The reason for this duality of learning
rates in the Stacked-DenseUSeg is that the denoising part
has to train faster than the segmentation part, as the second is
partially dependent on the output of the first. In all tested net-
works (ours and the state-of-the-art), a weight decay [53] of
0.0005 is used, that acts as a L2 regularisation which applies
penalties whenweights/parameters collectively get too large,
which can lead to overfitting. Additionally, Fig. 4 displays
the learning rate schedule regarding both the case of using
a high amount of training data (Fig. 4a) and the case of low
amount of training data (Fig. 4b).

Each epoch lasts for 300 minibatches and the network
passes through 100 epochs during training. In order to verify
the accuracy of the network variations presented in Sect. 5,
every training session is repeated 3 times in a threefold fash-
ion. For each of these iterations the 70-10-20 split between
training, validation and testing samples, respectively, is kept;
however, the samples for validation and testing are differ-
ent with no common samples between each iteration. The
weighted cross-entropy loss criterion is used for the seg-

Fig. 4 The learning rate schedule of Stacked-DenseUSeg, both for its
denoising part and its segmentation part. a is regarding the case where
all or 50%of the training data is used for training (the later case probably
for the case of knowledge transfer) and b is regarding the case where
10%, 5% or 1% of the training data is used for training or fine-tuning
of a pretrained net to real-world applications following a knowledge
transfer scheme

mentation output and the Mean Square Error (MSE) for the
denoising one. The weights for the cross-entropy are calcu-
lated as:

W = median(P/S)/(P/S) (2)

where P is a vector of the pixel counts of the different classes
and S is a vector that contains the number of samples of
each class is present. The combined criterion for Stacked-
DenseUSeg is:

LCombined = LCross_Entropy + λLMean_Square_Error (3)

where λ balances the two losses and it is empirically set
to 10. The LCross_Entropy loss uses as ground truth the
segmentation annotations while the LMean_Square_Error the
high-quality reconstruction.

4.4 Metrics and execution time

As a segmentation metric, the Intersection over Union (IoU),
also known as the Jaccard index, is used. Specifically, the
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IoU metric of class l is,

I oUl = |{v|v ∈ Cl} ∧ {p|p ∈ Cl}|
|{v|v ∈ Cl} ∨ {p|p ∈ Cl}| = T Pl

T Pl + FPl + FNl

(4)

where v ∈ Cl are the voxels that belong to class l, are p ∈ Cl

the predicted voxels that belong to class l. The IoU of class
l can be calculated also from IoU’s second definition as seen
in the second fraction of Eq. 4. T Pl is the total number of
voxels predicted to belong to class l that actually do, FPl
is the total number of voxels predicted to belong to class l
but do not, and FNl the total number of voxels predicted to
belong to any other class other than l, but they do in fact
belong to class l. Therefore, the IoU of a class is penalised
both by predicting voxels to belong to other classes when
they belong to the class under consideration, and by predict-
ing voxels to belong to this class when in fact they belong
to others. This means that it is a good metric for segmenta-
tion, since it does achieve high values by overpredicting or
underpredicting certain segmentation classes.

Furthermore, we also use as a segmentation metric, the F1
score, also known as the Sørensen–Dice coefficient (DSC).
The F1 score of class l is,

F1l = 2|{v|v ∈ Cl} ∧ {p|p ∈ Cl}|
|{v|v ∈ Cl}| + |{p|p ∈ Cl}| = 2T Pl

2T Pl + FPl + FNl
.

(5)

The F1 score and the IoU are similar as they both penalise the
same elements described earlier, in a similar but not identical
manner. We include the F1 score as it is a popular metric for
the measurement of segmentation accuracy [5,30] in certain
domains, which some readers may be more familiar with.

For denoising, the Peak Signal to Noise Ratio (PSNR)
metric (which is a logarithmic representation of the mean
square error, see Eq. 6), and the Structural Similarity Index
(SSIM) [54] (see Eq. 7) are used to quantitatively evaluate the
image restoration quality compared to the ground truth (in
our case the high-quality reconstructions [9,41,42]). Namely
PSNR is,

PSN R(D, G) = 10 log10

(
1

‖D − G‖2
)

(6)

where D is the denoised output of the network and G the
denoising ground truth. The PSNRmetric represents the ratio
between the maximum possible power of the signal, in our
case is the low-quality reconstruction (produced with CGLS)
of the high-sampled tomogram, and the power of noise that
affects its fidelity and distance it from the ground truth, which
in our case is the high-quality reconstruction (produced with
FBP) of the high-sampled tomogram. PSNR is a metric of

the signal-to-noise ratio and high PSNR values, expressed
in the logarithmic decibel scale, signify higher restoration
qualities. Additionally, the equation for the SSIM index is,

SSI M(D, G) =
(
2μDμG + (k1L)2

) (
2σDG + (k2L)2

)
(
μ 2

D + μ 2
G + (k1L)2

) (
σ 2
D + σ 2

G + (k2L)2
)
(7)

where μD is the mean of D, μG is the mean of G, σD is the
variance of D, σG is the variance of G, σDG is the covariance
of D and G, L is the dynamic range of the voxel-values, and
by default k1 = 0.01 and k2 = 0.03. The SSIM index oppo-
site to PSNR, which estimates the signal-to-noise ratio and
visual quality based on absolute errors, is a perception-based
metric. It considers image degradation as a cause of quality
decrease, but ignores illumination and contrast alterations
that do not cause structural changes on what it is imaged.
It detects inter-dependencies between spatially close pix-
els, and by estimating how much of them remain unchanged
between the networks’ denoising predictions and the ground
truth, is able to measure the perceptual improvement in the
quality.

4.5 Pseudocode for our method

Based on the information provided by the earlier subsections,
Algorithm 1 shows the pipeline for the training, validation
and testing processes of our network Stacked-DenseUSeg.

Algorithm 1 also describes how we train, validate and test
DenseUSeg and the other networks that we use as baselines
in the following section. The only difference is the omission
of the input D if the network will be used for segmentation
or input A if will be used for denoising. Also, depending on
the operation (denoising or segmentation) the corresponding
loss function is used (mean square error or weighted cross-
entropy, respectively). Algorithm 2 describes the inference
process for Stacked-DenseUSeg.

Training for 100 epochs takes approximately 18 hours
in PyTorch [55] on 4 NVIDIA Tesla V100s. Naturally, a
termination condition can be employed during training/fine-
tuning with lower amounts of training samples, since the best
performing epoch comes early (see Fig. 7c–e), and so reduce
the time needed for training even further.

5 Experiments

5.1 DenseUSeg and Stacked-DenseUSeg comparison
to the state-of-the-art using real-world data

In this subsection, we present and compare the results
obtained from our Stacked-DenseUSeg and DenseUSeg [37]

123



   75 Page 10 of 22 D. Bellos et al.

Algorithm 1: Training, Validation and Testing of
Stacked-DenseUSeg
Input: I the low-quality reconstruction of a highly sampled representative

tomogram,
D the high-quality reconstruction of a highly sampled representative
tomogram,
A the semantic annotations of a highly sampled representative
tomogram

Result: M the trained Stacked-DenseUSeg network for denoising and
segmentation

1 Cropping of the inputs I , D, A to k0 non-overlapping 643 subvolumes. Each
subvolume from I has a corresponding subvolume from D and A.

2 Random permutation of the previous subvolumes.
3 Random rotation or mirroring of the previous subvolumes.
4 70% of k0 is reserved for training, 10% for validation and 20% for testing.
5 Initialisation of a Stacked-DenseUSeg network.
6 Initialisation of an Adam optimiser with appropriate learning rates for each part
of the network.

7 Creation of a weighted cross-entropy loss function and a Mean Square Error
loss function.

8 for i ← 0 to 100 epochs do
// Training

9 for j ← 0 to 300 do
10 Forward propagation using the Stacked-DenseUSeg network and a

minibatch of 8 subvolumes of I from the ones reserved for training.
Both denoising and segmentation predictions are generated.

11 Calculation of the Combined loss with Eq. 3 against the ground truth
corresponding subvolumes from D and A.

12 Backpropagation using the Combined loss and the Adam optimiser.
13 end

// Validation
14 v ← 0.1 ∗ k0/8.
15 for j ← 0 to v do
16 Forward propagation using the Stacked-DenseUSeg network and a

minibatch of 8 subvolumes of I from the ones reserved for validation.
Both denoising and segmentations predictions are generated.

17 Calculation of accuracy, IoU and confusion matrix against the ground
truth corresponding subvolumes from D and A.

18 end
19 Store a model checkpoint.
20 Aggregation and storage of the validation accuracy, IoU and confusion

matrix.
21 Saving of the index of the epoch that had the highest mean IoU so far.
22 Depending on the number of the epoch i change the learning rates

according to the learning rate schedule.
23 end

// Testing
24 Load model M which is the model checkpoint for the epoch that reported the

highest validation mean IoU.
25 t ← 0.2 ∗ k0/8.
26 for j ← 0 to t do
27 Forward propagation using the Stacked-DenseUSeg network and a

minibatch of 8 subvolumes of I from the ones reserved for testing. Both
denoising and segmentations predictions are generated.

28 Calculation of accuracy, IoU and confusion matrix against the ground truth
corresponding subvolumes from D and A.

29 end
30 Aggregation and storage of the testing accuracy, IoU and confusion matrix.

architectures to the state-of-the-art methods of DenseSeg [5],
3D-UNet [3] and VoxResNet [4]. In the following exper-
iments, we increase the growth rate of DenseSeg [5] to
g = 64, as with the use of the original growth rate (16 in
[5]), we observed very low performance in preliminary tests
and additionally this setting (g = 64) allows us to produce
results comparable to DenseUSeg (which also has g = 64).

The denoising networks are trained networks using the
Mean Square Error (MSE) as the loss criterion, except for
Stacked-DenseUSeg which is trained based on the combined
loss described in Eq. 3 in Sect. 4. The input to the networks
is the low-quality reconstruction [10], and the high-quality
reconstruction [9] acts as ground truth. For the denoising
task, the final Softmax layer in the networks is removed or
replaced with a 1 × 1 × 1 convolution, if there is no one
present before it.

Algorithm 2: Inference with Stacked-DenseUSeg
Input: I a low-quality reconstruction of an undersampled

tomogram,
M a trained Stacked-DenseUSeg network for denoising
and segmentation

Result: PD a denoised version of the input I ,
PS a segmentation map of the input I ,

1 Cropping of the input I to k0 overlapping 643 subvolumes.
2 k ← k0/8.
3 for j ← 0 to k do
4 Forward propagation using the M of a minibatch of 8

subvolumes.
5 Storage of the 8 denoising predictions.
6 Storage of the 8 segmentation predictions - segmentation

probabilities.
7 end
8 Combination all segmentation predictions - segmentation
probabilities by appropriately averaging in the overlapping areas.

9 Obtaining the segmentation prediction of all voxels PS, by
checking which class has the highest probability in each voxel
(after the earlier averaging in the overlapping areas has been
performed)

10 Combination all denoising predictions by appropriately
averaging in the overlapping areas and acquiring PD .

This experiment is performed in order to determine which
architecture is best for the task of denoising. As shown in
Table 1 our DenseUSeg architecture performs similar to, or
better than, other state-of-the-art methods across both PSNR
and SSIM [54] metrics. As can be seen in Fig. 6 from mark
(F), the DenseUSeg is able to restore the air pocket with the
correct intensity and size. Furthermore, frommark (G) it can
be seen that it is better able to restore the difficult case in
which the base material consists of water and not aluminium
than the other networks. Table 1 also displays the perfor-
mance of Stacked-DenseUSeg’s denoised output, and while
it is not as accurate as a single DenseUSeg trained for the task
of denoising, it still outperforms DenseSeg [5] on PSNR and
3D-UNet [3] on both PSNR and SSIM. However, given that
Stacked-DenseUSeg’s denoised output is its secondary and
not primary output, its performance is noteworthy. Further-
more, it can be seen in Fig. 5a,b that both of our networks
converge stably, and based on the standard deviation in Table
1 our networks’ predictions vary similarly to the other state-
of-the-art methods.

Nevertheless, it is important to point out that in Fig. 6i–m,
compared to Fig. 6h, the exact structure of the small inter-
nal components cannot be recovered. This is due to large
undersampling of projections in the input (the undersampled
tomogram) and, as can be observed in Fig. 6a, spatial infor-
mation is permanently lost.

For the task of segmentation, DenseUSeg and the state-
of-the-art methods are trained using as loss criterion the
weighted cross-entropy described in Eq. 3 in Sect. 4. Two
segmentation experiments are conducted. In the first, the
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Table 1 PSNR and SSIM
results from testing on denoising
using the 91-projection CGLS
reconstruction as input and the
3601-projection FBP
reconstruction as ground truth

Method PSNR (dB) SSIM

Stacked-DenseUSeg [37] (ours) 36.33 ± 4e−01 0.910 ± 2e−03

DenseUSeg [37] (ours) 36.79 ± 4e−02 0.914 ± 4e−04

DenseSeg [5] (g = 64) 36.24 ± 5e−03 0.906 ± 1e−03

3D-UNet [3] 35.98 ± 2e−01 0.905 ± 1e−03

VoxResNet [4] 36.86 ± 7e−02 0.914 ± 4e−04

The growth rate of DenseSeg is increased from 16 to 64 in order to offer more comparable results. The values
presented are averages between the 3 iterations of the threefold validation/testing and the ones after the± sign
refer to the standard deviation that the approaches achieved in threefold validation/testing. For both metrics,
higher is better, while for standard deviation, smaller is better
The bold value(s) in each column signify the network(s) that achieved the best PSNR or SSIM score respec-
tively

high-quality reconstruction [9] (see Table 2a and Fig. 5c)
is the input, and in the second the low-quality reconstruction
[10] is the input.

In the first, the goal is to learn the accuracy of the dif-
ferent networks under optimal conditions. This is attained
by the high-quality reconstruction due to the absence of
noise andwith potentially fewer of the artefacts which appear
when using a smaller number of projections. In this experi-
ment both DenseUSeg and DenseSeg are set with a Dropout
rate of p = 0, as in preliminary tests it was seen that
Dropout was not helpful when noise is absent. In addition,
Stacked-DenseUSeg is not listed in Table 2a as this network
is designed to upscale the low-quality reconstruction [10] by
using the high-quality reconstruction [9] and the annotations
of Fig. 1a,e, respectively, as ground truths; in this first seg-
mentation experiment, we are already given optimal data as
input.

Based on Table 2a and Fig. 5c, it can be deduced that
under optimal data input conditions, DenseUSeg is able to
outperform or match performance of the other methods in
the IoU of individual classes and in the mean IoU. Also the
same can be observed for the F1 score, the only exception
being for class 0, where it is only slightly behind the F1 score
for the class 0 of DenseSeg. Looking ahead to Table 2b and
Fig. 5d, where the data are not optimal, it can be seen that the
accuracy gap between the DenseUSeg and the second best
approach, 3D-UNet [3] is greater, which provides clear evi-
dence regarding the elevated accuracy that the DenseUSeg
offers compared to the state-of-the-art. Additionally, as it can
be seen in Fig. 5c DenseUSeg is similarly stable during train-
ing as the rest of the state-of-the-art methods. The confusion
matrices of the methods presented by Table 2a can be seen
in the Supplementary Fig. S1.

Moving to the second experiment, here we are using
as input the low-quality reconstructions [37]. As can be
seen from Table 2b and Fig. 5d, the DenseUSeg and
Stacked-DenseUSeg achieve higher accuracy compared to
the other state-of-the-art methods. Stacked-DenseUSeg per-
forms notably better than the other approaches, presumably

thanks to the denoised output. As can be seen in Table 2b,
our DenseUSeg, and particularly our Stacked-DenseUSeg
approach, segments more accurately the more challenging
2nd and 3rd labels, which due to the small size of objects that
they represent lose much of their spatial details during the
projection undersampling. Moreover, from Fig. 5d and the
standard deviations presented in Table 2b, both approaches
are similar in terms of stability to other state-of-the-art meth-
ods. In terms of qualitative results, examining the marks
(A–E) in Fig. 6 shows that Stacked-DenseUSeg can offer
more accurate segmentation predictions, presumably due to
utilising its denoising module. Specifically, it is the only
approach that accurately separates objects of the same class
that are in close proximity [marks (B), (D) and (E)], and does
not overestimate the size of the internal components in the
tomogram [mark (A)]. Finally, the confusion matrices of the
methods presented by Table 2b can be seen in the Supple-
mentary Fig. S2.

As it was shown earlier, DenseUSeg performs similar
to, or better than, other state-of-the-art methods regarding
the denoise of the undersampled tomograms. This com-
bined with DenseUSeg’s exceptional performance regarding
the segmentation of undersampled tomograms, justifies our
selection of two stacked-DenseUSegs for the formation of
our proposed Stacked-DenseUSeg.Additionally, since stack-
ing multiple networks is easier when these networks have
the same structure (no complications connecting them), our
selection ofDenseUSeg for the denoising part is also justified
despite the slightly better performance of the VoxResNet [4].

5.2 Experiments regarding knowledge transfer from
synthetic tomograms

In the previous subsection, we demonstrated that our net-
works have similar, if not better, results to the state-of-the-art
in regard to denoising low-quality reconstructions of under-
sampled tomograms, and outperform them in regards of
semantic segmentation. However, typical to deep learning
approaches, they require a sizeable amount of annotated
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Fig. 5 a Validation PSNR results for the denoising experiments, bVal-
idation SSIM results for the denoising experiments, c Validation mean
IoU for the segmentation experimentswhere the input is the high-quality
reconstruction of the real-world tomogram, d Validation mean IoU for
the segmentation experiments where the input is the low-quality recon-
struction of the real-world tomogram. All values are averages between
the 3 iterations of the threefold validation/testing and they are also aver-
aged based on 10 epoch moving average. The error bar heights refer to
the standard deviation that the approaches achieved based om a (3×)10
epoch moving standard deviation

real-world data for successful training before they can be
applied to real-world applications. This is a challenge. Anno-
tated micro-CT data are hard to come by and expensive to
produce as they require many hours of manual labour. Nev-
ertheless, through the development of software tools like the
TomoPhantom by Kazantsev et al.’s [13], it is possible to
automatically create both realistic synthetic tomograms and
their corresponding annotations. Specifically, their annota-
tions [45] (phantoms) are first designed and created by a user,
and then their simulated tomographic counterparts [41–44],
similar to capturing the described ground truth by a physical
CT scanner, are produced by the software. This is a physical-
based rendering, which, as we shall see (Fig. 3a–d), can even
include imaging artefacts appropriate to CT scanners. This
makes them ideal for use in conjunction with a deep network
as they are physically viable, and are generated with their
annotations. In this subsection, we will present how these
tomograms can be used within a knowledge transfer scheme,
use of our proposed Stacked-DenseUSeg network (the best
performing in the previous section), to further increase its
overall segmentation accuracy. Additionally, by simulating
data we can run effective training using only a small amount
of real-world annotated data.

Inspired by Badrinarayanan et al. [22] where parameters
of networks trained in similar tasks are used for parameter ini-
tialisation of new networks, and recent advances regarding
of the use of synthetic data to increase the network’s per-
formance [24,25], we propose a knowledge transfer scheme
where initial instances of Stacked-DenseUSeg are pretrained
using synthetic tomograms, and these learned parameters
are utilised in the parameter initialisation of new instances
of Stacked-DenseUSeg, trained to perform the true task of
denoising and segmenting real-world data. Using this pro-
cess, the advantages are twofold. First, it enables the transfer
of knowledge to the new real-world instances of Stacked-
DenseUSeg,which allows for better generalisation in theway
the network infers its predictions, leading to higher accuracy.
Second, the transfer of knowledge allows for low-level infor-
mation regarding the nature of X-ray tomography, which is
easily simulated by synthetic analogues, to pass into the new
networks, permitting the use of less annotated data to suffi-
ciently train them for use in real-world applications.

As can be seen in Fig. 3, there are two different kinds
of synthetic tomograms used during the knowledge trans-
fer experiments, resulting in two different networks that are
trained on them. The first synthetic tomogram lacks rotat-
ing artefacts [42,44] (see Fig. 3e–h) and was generated to
increase performance; however, it was suspected that the
addition of rotating artefacts (see Fig. 3a–d) similar to the
ones present in real-world tomograms, may yield a notewor-
thy improvement in the segmentation accuracy, leading to
the creation of a second synthetic tomogram [41,43]. As can
be seen in Table 3, by initialising the network’s parameters
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Fig. 6 Segmentation and Denoising Results on the real-world tomo-
gram. a Input to the denoising and segmentation networks, the CGLS
reconstruction from91 projections [10],bAnnotations: Label 0 in black
refers to the air outside the base material, Label 1 in red refers to the
base material, Label 2 in yellow are the magnesium deposits and Label
3 in white are the air pockets, c–g Segmentation output of the respec-

tive networks, h the FBP reconstruction from 3601 projections that is
ground truth for the denoising networks, i–m are the denoised outputs
of the respective networks when they work to denoise (a) using (h) as
ground truth. For Stacked-DenseUSeg c and i are produced simultane-
ously and there is no need for retraining. Marks (A–G) are described in
text

using a Stacked-DenseUSeg already trained with a synthetic
tomogram with rotating artefacts (which we refer to as “pre-
trained nets”), our network (Stacked-DenseUSeg as well),
that predicts the real-world data is able to achieve a higher
accuracy score in segmentation, versus no use of parameter
initialisation.

Additionally, the network that is trained/fine-tuned with
real-world data in order to offer predictions for the real-world
use-cases is able to do so only using a small number of real-
world annotated samples, without any accuracy sacrifices as
the data annotated samples lessen. Specifically, it is only after
training/fine-tuning with 1% of the real-world training sam-
ples, namely 37 64×64×64 samples (approximately a 213×
213×213 of annotated volume), that the accuracy is compa-
rable to when nearly all the available real-world data is used,
even for themore challenging 2 and 3 class labels. Even in the
case where no fine-tuning with real-world data is employed,
it is still able to achieve a noteworthy segmentation accuracy,
which is testament to the quality of the synthetic data. Finally,
by observing the standard deviation in Table 3 and the error
bars in Fig. 7, it can be deduced that the network achieves

more stable predictions, compared to the case where no pre-
trained net is used to initialise the parameters. The confusion
matrices of the methods presented by Table 3 can be seen in
the Supplementary Figs. S3,S4.

Regarding the parameter initialisation using the pretrained
net derived from the synthetic tomogram without rotating
artefacts [42,44], it is can be observed both in Table 3 and
in Fig. 7 that its use is not as advantageous as the pretrained
net from synthetic datawith rotating artefacts [41,43]. This is
especially true by examining the last rows of Table 3. When
using the pretrained nets directlywithout fine-tuning, the per-
formance of the pretrained net from the synthetic without
rotating artefacts is especially poor. This is to be expected as
the physical rendering is less realistic without these artefacts.
However, in cases where the available amount of real-world
training data is fairly small, the parameter initialisation using
any pretrained net is essential. In any case, the improved per-
formance via the use of any pretrained net (with or without
rotation artefacts) compared to random parameter initialisa-
tion (not pretrained), signifies that isworth investing, creating
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the synthetic tomograms and training the pretrained nets
despite of the additional time that both processes require.

Specifically, the dictation of a file that describes how
TomoPhantom [13] should generate a synthetic tomogram,
may take a only few minutes from the user to be completed.
Alternatively, for more complex synthetic tomograms the
above file can be partially generated via code. In contrast,
the required partial annotation of a real-world tomogram,
using special software like SuRVoS [50],may take from a few
hours to a day for an experienced user to annotate, depending
also on the complexity of the tomogram. In comparison, the
complete annotation of a tomogram 2160 × 2560 × 2560 in
size similar to ones used here, may require multiple days to
weeks by a single annotator, or evenmultiple annotators. This
means that the human involvement when using the knowl-
edge transfer scheme may be for just one day compared
to weeks in the case of a complete tomogram annotation.
Combined with the couple of minutes, mentioned earlier, to
dictate the file that would generate the synthetic tomogram,
the human involvement would probably not exceed that of
one day, compared to weeks required for a complete tomo-
gram annotation. The additional computational time required
for the synthetic tomogram rendering and the training for the
generation of pretrained nets, may take close to 24 hours
depending of course on the available hardware. During this
time, no human involvement is required and again compared
to weeks of manual work required for a complete tomogram
annotation there is an obvious benefit. Furthermore, since
the synthetic datasets can be general enough to simulate a
variety of similar real-world tomograms, the aforementioned
additional time required render new synthetic tomograms and
create pretrained nets, might happen less frequently. Overall,
below are all the steps for obtaining a Stacked-DenseUSeg
with less real-world annotated data via knowledge transfer.

1. Generation from the user of a file with the placement,
orientation and absorption rate of virtual objects within
a virtual stage that will generate a phantom.

2. Generation of the earlier phantombyTomoPhantom [13].
The phantom is also a segmentation map.

3. Generation with TomoPhantom of synthetic tomograms
based on the earlier phantom. From this phantom, the
following are generated:

(a) A high-quality tomogram reconstruction using many
projections (emulating a highly sampled tomogram)
and also the FBP reconstruction algorithm [8].

(b) A low-quality tomogram reconstruction using a lim-
ited number of projections (emulating an undersam-
pled tomogram) and also the CGLS reconstruction
algorithm [7].

4. Training with Stacked-DenseUSeg using:

(a) As input the previous low-quality synthetic recon-
struction.

(b) As denoising ground truth the previous high-quality
synthetic reconstruction.

(c) As segmentation ground truth the synthetic phan-
tom/segmentation map.

5. From the above, a pretrained net has been acquired.
6. Partial manual segmentation of a real-world representa-

tive highly sampled tomogram using SuRVoS [50] or any
other annotation tool.

7. Parameter initialisation of a Stacked-DenseUSeg the ear-
lier pretrained net. This Stacked-DenseUSeg is being
training/fine-tuned with real-world data using:

(a) As input, a low-quality reconstruction (produced
with CGLS) of the earlier real-world highly sampled
tomogram that is undersampled artificially.

(b) As denoising ground truth, a high-quality recon-
struction (produced with FBP) of the earlier highly
sampled tomogram.

(c) As segmentation ground truth, the tomogram anno-
tations obtained the highly sampled tomogram via
SuRVoS or any other tool.

8. The final Stacked-DenseUSeg trained/fine-tuned with
real-world data and initialisedwith a pretrainednet gener-
ated using on synthetic data, will have high segmentation
accuracy despite using only a small portion of real-world
annotated data.

Moving on by viewing, Fig. 8 and specificallymarks (H, I,
K,M) we can also qualitatively infer the advantage of using
a pretrained net from a synthetic tomogram with rotating
artefacts [41,43]. The obtained accuracy using only 5% and
10% of the available real-world training data is comparable
to the use of 100% of the available real-world training data,
but without any parameter initialisationwith a pretrained net.
Also, from marks (J, L) we can see that the network is more
accurate for such difficult cases as these, where a great loss
of spatial information is present due to the projection under-
sampling.

Finally, looking into Stacked-DenseUSeg’s secondary
output, the denoised output, from Table 4 we can see that
with the use of a pretrained net, the restoration quality is
also increased. Nevertheless, the improvement is only slight
and it is dependant on the amount of real-world training
data used and the nature of the pretrained net utilised for
parameter initialisation. It seems that for low amounts of real-
world training data, both PSNR and SSIM [54] reach higher
scores using the pretrained net from the synthetic tomogram
with rotating artefacts [41,43], which for the 5% and 10% of
real-world used for fine-tuning is by a slight amount. Never-
theless, for the use of 1%or nofine-tuning the improvement is
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Fig. 7 Validation mean IoU for the segmentation experiments where
the input is the low-quality reconstruction of the real-world tomogram,
and by initialising the parameters using pretrained nets produced from
synthetic data with rotating artefacts [41,43], without rotating artefacts
[42,44] or without the use of a pretrained net. a The network is then
fine-tuned using 100% of available real-world training samples, b 50%
of available real-world training samples, c 10% of available real-world
training samples, d 5% of available real-world training samples, e 1%
of available real-world training samples and lastly f mean IoU of the
nets during their training with synthetic data, but tested on real-world

data. As it can be seen using the pretrained net produced from training
with a synthetic tomogram with rotating artefacts offers overall higher
accuracy, even in when using very small amounts of real-world data
for training/fine-tuning, while it is also very stable based on the error
bars. All values are averages between the 3 iterations of the threefold
validation/testing and they are also averaged based on 10 epoch mov-
ing average. The error bar heights refer to the standard deviation that
the approaches achieved based om a (3×)10 epoch moving standard
deviation

noteworthy, due to the synthetic data with rotating artefacts
resembling more closely the real-world data. When higher
amounts of real-world training data are available for fine-
tuning, the pretrained net from synthetic tomogram without
rotating artefacts [42,44] achieves slightly higher perfor-
mance, which is unexpected. One hypothesis is that this is
because while training with the synthetic tomogram with-
out rotating artefact, the high-quality reconstruction better

represents the ground truth (no additional artefacts) than the
high-quality reconstruction of the synthetic tomogram with
rotating artefacts. It could therefore be a good idea for the
future to combine the two synthetic tomograms during the
training of a pretrained net. For that, the low-quality syn-
thetic reconstruction which is the input would have rotating
artefacts and the high-quality synthetic reconstruction (that
is the denoising ground truth) would not have rotating arte-
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Fig. 8 Segmentation and Denoising results of Stacked-DenseUSeg
with progressively lower amounts of the real-world training samples
and by initialising the parameters using pretrained nets produced from
synthetic data with rotating artefacts [41,43], without rotating artefacts
[42,44] or without the use of a pretrained net. a The CGLS reconstruc-
tion input from 91 projections [10] that is the networks input, b the FBP
reconstruction [9] from 3601 projections that is ground truth for the
denoising part of Stacked-DenseUSeg, c Annotations: Label 0 in black

refers to the air outside the base material, Label 1 in red refers to the
base material, Label 2 in yellow are the magnesium deposits and Label
3 in white are the air pockets, d–f Using 100% of training samples
for the 3 parameter initialisation options, g–i Using 50% of training
samples, j–l Using 10% of training samples,m–o Using 5% of training
samples, p–rUsing 1% of training samples, s–t Inferring directly using
the pretrained nets without any training/fine-tuning. Marks H–M are
described in text

facts. But to note, we can deduce from Table 4 the potential
improvement is expected to be only slight. Also, in Table 4
we can observe that the standard deviation of both metrics
is comparable between the use of a pretrained map or not,
which indicates the denoised output remains consistent.

6 Discussion

Based on the earlier results of Sect. 5, our approaches
DenseUSeg and Stacked-DenseUSeg (code available from
[37]) outperform the state-of-the-art accuracy of Dens-
eSeg [5], 3D-UNet [3] and VoxResNet [4] regarding the
volumetric semantic segmentation of undersampled tomo-

grams and the highly sampled tomograms (except from
Stacked-DenseUSeg that is only applied on undersampled
tomograms). Especially, our Stacked-DenseUSeg network,
by producing a second denoised output, is able to utilise
it to achieve higher segmentation accuracy compared to
a single DenseUSeg dedicated for segmentation. Further-
more, DenseUSeg, in the task of denoising, is able to match
VoxResNet in the SSIM metric, and be only slightly behind
it in PSNR metric. This means that our DenseUSeg is
well-suited for both the tasks of denoising and segmenta-
tion of undersampled CT tomograms, and therefore for the
4D datasets collected at Synchrotron facilities such as Dia-
mond Light Source. Moreover, this is also the underlying
reason that Stacked-DenseUSeg is composed of two stacked-
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DenseUSegs. Finally, Stacked-DenseUSeg denoising output
is better than the other two methods, DenseUSeg and 3D-
UNet, in both the PSNR and SSIM metric being the third
best model in the denoising accuracy after DenseUSeg and
VoxResNet in both metrics. This is a significant achievement
considering that Stacked-DenseUSeg is focused on the dual
tasks of denoising and segmentation.

Furthermore, using aknowledge transfer schemedescribed
in Sect. 5.2, the use of synthetic tomograms to train initial
versions of Stacked-DenseUSeg (pretrained nets) to initialise
that parameters of Stacked-DenseUSegversions operating on
real-world data offers multiple advantages. Firstly, both the
segmentation and denoising accuracy are increased. Using
the pretrained net training on synthetic data with rotating
artefacts is the most beneficial for the improvement of the
segmentation accuracy. It seems the addition of further real-
istic elements in the form of rotating artefacts facilitates the
creation of better quality pretrained nets. Thismeans that net-
works that are trained/fine-tuned on real-data and use these
pretrained nets for parameter initialisation, are better pre-
pared for the task of segmentation. Additionally, with the use
of knowledge transfer, a second advantage becomes appar-
ent, that the same segmentation accuracy can be acquired
with significantly less real-world highly sampled annotated
data. This is highly significant as manual annotation of real-
world CT reconstructions is difficult and time-consuming to
obtain.

The last argument brings forward the third advantage of
the use of knowledge transfer which is that time needed
to employ the knowledge transfer scheme is considerably
less that the time needed to manually annotated real-world
CTs. In addition, the time needed for application of knowl-
edge transfer is mainly computational time and the need for
human involvement is minimal. Finally, knowledge transfer
also improves the denoising accuracy; however, the improve-
ment is not as noteworthy as that reported for segmentation.
As reported at the end of Sect. 5.2, it may be a good future
idea to use both synthetic tomograms for the training of a
pretrained net. For each of the synthetic tomograms, there
are two reconstructions, one low-quality reconstruction used
as input and one high-quality reconstruction used as the
denoising ground truth. It would therefore be a good idea
to use the low-quality reconstruction of the synthetic tomo-
gram with rotating artefacts as input and the high-quality
reconstruction of the synthetic tomogram without rotating
artefacts as the denoising ground truth. The use as input of the
low-quality reconstruction of the synthetic tomogram with
rotating artefacts would create pretrained nets that expect
rotating artefacts in the input as they also appear in real-world
data. The use as the denoising ground truth of the high-quality
reconstruction of the synthetic tomogram without rotating
artefacts would create pretrained nets that produce denoising
outputs without any rotating artefacts. After the parameter Ta
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initialisation of the resulting pretrained nets, the network
operating on real-world data may potentially be better pre-
pared and able to denoise more accurately, which may also
improve its segmentation accuracy.

7 Conclusions

Concluding, in this paper, we propose the DenseUSeg (code
available from [37]) architecture which is able to denoise
and segment undersampled tomogram reconstructions in
an end-to-end fashion. Inspired by Newell et al. [12], our
Stacked-DenseUSeg architecture is constructed by sequen-
tially stacking two of our proposed DenseUSeg networks
and applying an intermediate inspection. Contrary, though,
to Newell et al.’s approach our intermediate inspection is
not regarding an early version of the segmentation outputs
for a secondary denoising output. With this approach, our
network is able to increase the low signal-to-noise ratio
of the input undersampled tomogram and improve its seg-
mentation accuracy. Furthermore, our proposed DenseUSeg
network expands Bui et al.’s [5] architecture with the addi-
tion of a decoder module similar to the one proposed by
Ronneberger et al. [14]. For the experiments of Sect. 5, our
network performs well on both the tasks of denoising and
segmentation, with the Stacked-DenseUSeg outperforming
the other approaches in segmentation by utilising its denois-
ing output.

Moreover, through the use of procedurally simulated
synthetic tomograms, we propose a knowledge transfer
scheme that can offer an increase on the semantic seg-
mentation accuracy of Stacked-DenseUSeg, and produce a
high level of accuracy. Specifically, the procedurally gen-
erated synthetic tomograms are used to train instances of
Stacked-DenseUSeg, the pretrained nets. The parameters of
the pretrained nets are then used to initialise the parameters
of Stacked-DenseUSeg that will be trained/fine-tune in order
to operate on real-world data. The resulting Stacked-Dense-
USeg’s will have more generalisable knowledge for how to
accurately segment the real-world tomograms, resulting in
more consistent and accurate predictions. This knowledge
also reduces the need for large amounts of annotated real-
world data. This is also translated to a time reduction for the
application of Stacked-DenseUSeg in new varieties of real-
world data, and especially the reduction of time regarding
human involvement.

Supplementary Information The online version contains supplemen-
tary material available at https://doi.org/10.1007/s00138-021-01196-
4.
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