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Abstract 

Two novel families of non-LTR retrotransposons, named Syrinx and Daphne, were cloned and 

characterized in a putative ancient asexual ostracod Darwinula stevensoni. Phylogenetic analysis reveals 

that Daphne is the founding member of a novel clade of non-LTR retroelements, which also contains newly 

described families from the sea urchin and the silkworm and forms a sister clade to L2-like elements. The 

Syrinx family of non-LTR retrotransposons exhibits evidence of relatively recent activity, manifested in high 

levels of sequence similarity between individual copies and a three- to ten-fold excess of synonymous 

substitutions, which is indicative of purifying selection. The Daphne family may have very few copies with 

intact open reading frames, and exhibits neutral within-family ratio of non-synonymous to synonymous 

substitutions. It can additionally be characterized by formation of inverted truncated head-to-head 

structures. All of these features make recent activity less likely than in the Syrinx family. Our results are 

discussed in light of the evolutionary consequences of long-term asexuality in general and in Darwinula 

stevensoni in particular. 

1. Introduction 

The paradox of sex remains the queen of evolutionary problems (Bell, 1982) until today, and the existence 

of the so-called ancient asexual scandals (Judson and Normark, 1996) provides one of the most exciting 

possibilities to investigate the long-term consequences of the absence of sex and meiosis. To date, only 

three examples of putatively ancient asexual animal taxa are being studied in detail at the molecular level – 

bdelloid rotifers (Mark Welch and Meselson, 2000), oribatid mites (Maraun et al., 2003) and Darwinulidae, a 

family of non-marine ostracods (Crustacea) (Martens et al., 2003). Although darwinulid molecular data on 

the whole are still scarce, Darwinula stevensoni, the type species of this ostracod family is supposed to 

have reproduced asexually for at least 25 Myr (Straub, 1952). It can further be characterized by an 

exceptionally low mutation rate in both the hsp82 nuclear gene and the ribosomal ITS1 region (Schön and 
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Martens, 2003; Schön et al., 1998), an exceptionally long generation time of 1 to 4 years depending on the 

latitude (McGregor, 1969; Ranta, 1979; Van Doninck et al., 2003) and low fecundity (Ranta, 1979; Van 

Doninck et al., 2003). Furthermore, ecological investigations have shown that D. stevensoni has an 

extremely wide tolerance for temperature, pH (Van Doninck et al., 2002) and oxygen (Rossi et al., 2002). 

Likelihood permutation tests (McVean et al., 2002) on sequence data from hsp82, a calmodulin intron and 

ITS1 did not provide any evidence for recombination, whereas homogenizing mechanisms such as gene 

conversion appear to be restricted to the multi-copy ITS1 region only (Schön and Martens, 2003). 

Several studies hypothesized that long-term asexuals should be encumbered by lesser amounts of 

parasitic DNA (Hickey, 1982; Zeyl and Bell, 1995) or that part of their genome could be genetically silenced 

(Schön and Martens, 2000). Moreover, an important contributor to the maintenance of sexual lineages and 

to the early extinction of asexuals could be the operation of meiosis-dependent mechanisms that may 

prevent the unchecked increase of deleterious transposable elements (TEs), in addition to general TE 

control mechanisms (Arkhipova and Meselson, 2000; 2005). We therefore initiated studies of TE content in 

Darwinula stevensoni, with the expectation that the patterns of distribution and evolution of TEs in these 

ostracods, in light of their putative ancient asexuality, may reveal interesting features with respect to TE 

transmission properties, proliferative and mutagenic potential, and transposon-host interactions that could 

result in increases or decreases in host fitness. 

TEs are ubiquitous components of eukaryotic genomes, and in animal species they may comprise from 

only a few to more than fifty percent of total genomic DNA (Kidwell and Lisch, 2001; Kazazian, 2004). 

Those TEs that insert into or near genes could cause mutations, while those found in specialized 

chromosome compartments such as centromeric or telomeric heterochromatin could be actively 

participating in the establishment and function of such compartments (Pardue and DeBaryshe, 2003; 

Lippman et al., 2004; Sun et al., 2004). Two major categories of TEs may be distinguished by their mode of 
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transposition and coding capacity: retrotransposons move via an RNA intermediate and code for reverse 

transcriptase (RT), while DNA transposons do not have an RNA intermediate and code for transposase.  

The genome structure and TE content in species belonging to the Phylum Arthropoda, the most 

species-rich phylum on Earth, is primarily inferred from sequence information accumulated during genome 

sequencing studies of model insects, such as fruit flies, mosquitoes, and silkworm (Kaminker et al., 2002; 

Boulesteix and Biemont, 2005; Goldsmith et al., 2005). Little information, however, is available regarding 

genome structure and TE content in crustaceans. Scarce reports of crustacean TEs include such host 

species as an isopod and horseshoe crab (rDNA-specific non-LTR retrotransposon R2; Burke et al., 1999), 

waterflea (rDNA-specific DNA transposon Pokey from the piggyBac superfamily; Penton et al., 2002), and 

hydrothermal crab (mariner-like DNA transposon Bytmar1, Halaimia-Toumi et al., 2004; they also mention 

jockey-like gag and CR1-like RT fragments).Thus, the vast majority of crustacean TEs remains unexplored. 

In view of the lack of prior information on any existing ostracod TEs, we chose the search method that 

is most broadly targeted towards detection of RT-related sequences and is applicable to most eukaryotic 

organisms (Arkhipova and Meselson, 2000). This technique targets the most conserved catalytic domains 

of RT with nested degenerate primers, and was shown to amplify short RT-specific products in 23 animal 

phyla from protists to vertebrates (loc. cit.). Using these fragments as a starting point, sequences can be 

extended in the 5’ and 3’ direction to yield complete copies and their adjacent flanking DNA. In this study, 

we focus on RT-encoding non-LTR retrotransposons, also called LINEs, which were detected by the above 

technique in all animals tested, with the sole exception of rotifers of the Class Bdelloidea, for which there is 

evidence of ancient asexuality (Mark Welch and Meselson, 2000; Mark Welch et al., 2004). TEs of this type 

rarely, if ever, undergo horizontal transmission between species and are inherited vertically from parents to 

offspring in most animal, plant, and fungal species (Malik, Burke and Eickbush, 1999; Eickbush and Malik, 

2002). Here, we report on diversity, genomic environment, phylogenetic placement, and patterns of 

evolution of two different families of non-LTR retrotransposons identified in D. stevensoni. 
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2. Materials and Methods 

2.1. DNA manipulations.  

Living specimens of Darwinula stevensoni were collected from the saline lake Hollandersgatkreek 

(Belgium) in early summer of 2003. This population has also been subjected to ecological (Van Doninck et 

al., 2002) and genetic (Schön et al., 1998, Schön and Martens, 2003) studies and appears to be 

monoclonal (Van Doninck et al., 2004). DNA was extracted from 50 pooled adult females with the DNA 

Minikit (Qiagen) following the manufacturer's protocol, yielding about 0.5 µg of DNA. Prior to DNA 

extraction, animals were thoroughly washed in distilled water to avoid contamination from gut content and 

surface. To test for the presence of non-LTR (LINE-like) retrotransposons, we utilized nested degenerate 

primers corresponding to the highly conserved RT domains (Arkhipova and Meselson, 2000; Table 1). 

Genomic DNA of D. stevensoni was used in a two-step PCR reaction, and the resulting amplicons were 

cloned with the aid of the Topo-TA kit (Invitrogen) and sequenced. The resulting 120-130 bp sequences 

displaying homology to LINE-like elements were used to design four primers in each direction (Table 1), as 

required for Universal Fast Walking (UFW) (Myrick and Gelbart, 2002). This PCR-based technique allows 

amplification of unknown sequences flanking a known segment of genomic DNA without relying on the 

presence of restriction sites in the vicinity, and does not involve restriction or ligation steps. LA Taq DNA 

polymerase (error rate 8.7x10-6, www.takaramirusbio.com) and custom oligonucleotides (Invitrogen) were 

used for UFW, with the following modifications: the annealing time in Step 1 was increased from 30 to 45 

sec and the extension time from 15 sec to 1 min 30 sec in order to obtain longer first-step extension 

products. UFW products were subjected to Topo-TA cloning and sequencing, using custom internal primers 

when needed (Table 1), and the resulting sequences were assembled into contigs. Sequences were 

examined for divergence, intactness of open reading frames (ORFs), and used to design additional sets of 

primers for subsequent rounds of UFW, until the flanking host sequences were reached and an 

uninterrupted ORF was assembled.  
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2.2. Sequence analysis.  

For alignments and and calculations of Ka/Ks ratios, we used the Wisconsin Package (Accelrys). Protein 

secondary structure prediction was done on the JPRED server (http://www.compbio.dundee.ac.uk/~www-

jpred/). Phylogenetic studies and estimates of genetic divergences were performed with the Beta10 version 

of PAUP 4.0 (Swofford, 1998), MEGA 3.0 (Kumar et al., 2004), MrBayes 3.1.1 (Ronquist and Huelsenbeck, 

2003), Tree-Puzzle (Schmidt et al., 2002) and Phylip 3.6 (Felsenstein, 2004). Neighbor-joining trees 

constructed with PAUP were based on relative distances (without any special model for molecular 

evolution) and random data input, parsimonious trees were constructed with branch-and-bound search and 

furthest taxa input. Maximum likelihood trees in Phylip were run with proml, the Jones model for protein 

evolution and variable rates among sites. Trees in Tree-Puzzle were constructed with the Adachi-

Hasegawa substitution model for amino acids (Adachi and Hasegawa, 1996), gamma distributed rates, and 

both clock and no-clock assumptions. Bayesian analysis was run with the following settings: 4 Markov 

chains, 106 generations, Hasegawa-Kishino-Yano (DNA) or Jones (protein) model, invariable plus gamma 

across-site rate variation, each 100th tree sampled, and the first 200 trees discarded as burn-in. Statistical 

support was verfied by bootstrapping of 100 (Phylip) or 1000 (PAUP) replicates, by checking the total 

number of resolved quartets, or by likelihood mapping (Tree-Puzzle, Strimmer and Von Haeseler, 1997). 

Sequences obtained in this study were deposited in GenBank (accession Nos. XXX-YYY). Consensus 

sequences were deposited in Repbase. 

3. Results 

3.1. Initial screening for the presence of LINEs.  

Two-step PCR amplification of D. stevensoni genomic DNA designed to amplify regions between the most 

conserved RT motifs (see 2.1) yielded 120-140 bp products corresponding to the region between motifs 4 

and 5, which were cloned and sequenced (Fig. 1A-B). Sequence analysis of 32 individual clones revealed 

two groups, containing 11 and 3 sequences, which had an uninterrupted reading frame and differed by a 
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few bp within each group. Because of the expected low sequence similarity at the DNA level, we conducted 

BLASTP searches of protein databases with translated amino acid sequences. These yielded low-scoring 

matches (as expected for such short fragments) to RT sequences of known non-LTR retrotransposons, in 

one case belonging to the jockey clade found in insects, and in the other case - to the CR1 clade which 

includes representatives from insects, vertebrates, flatworms, and nematodes (Malik et al., 1999; Eickbush 

& Malik, 2002). We therefore focused on these two sets of sequences as possibly originating from recently 

active multicopy non-LTR retrotransposons from two different families. The remaining 18 sequences were 

shorter than the expected size range and encountered only in single clones. They carried frameshifts 

and/or in-frame stop codons, did not yield any matches to known RTs, and were not analyzed further.  

3.2. UFW strategy.  

Nucleotide sequences of the short RT fragments were used to design primers for UFW in the 5’ and 3’ 

direction (see 2.1) for each of the two families, which we named Syrinx and Daphne. UFW products from 

each round were cloned and sequenced from both ends, and additional primers corresponding to internal 

TE sequences were synthesized to fill in the gaps in longer clones (Table 1). Since the initial, most 

conserved RT4-RT5 fragment is not centrally located within the large RT-containing ORF, we had to 

employ an additional round of 5’ UFW to obtain the sequence of the N-terminally located endonuclease 

(EN) domain, while the C-terminus of the RT, the 3’ UTR, and the adjacent flanking sequences were easily 

reached with a single round of 3’ UFW. The results of the sequence assembly for Syrinx and Daphne are 

presented in Fig. 1A-B and Fig. 2A. Since most of the cloned copies were more than 95% identical, it is 

reasonable to assume that the assembled consensus sequence differs only slightly from the sequence of 

the active progenitor copy. 

3.3. Coding sequences.  

The assembled consensus ORF sequences of Syrinx and Daphne are 871 and 902 aa in length, 

respectively, and consist of the ~450 aa RT domain (rvt, pfam00078) and ~350 aa N-terminally located 
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APE (apurinic-apyrimidinic endonuclease) domain (Exo_endo_phos, pfam03372) (Fig. 2A). All of the 

expected conserved motifs in each domain can be readily identified in both elements; only the EN motifs I-II 

could not be reached by UFW and are missing from the consensus (see 3.4). The two families exhibit only 

29% and 19% amino acid identity in the RT and EN domains, respectively. The extreme C-terminal RT 

regions, hypothesized to be involved in recognition of different 3' terminal sequences during 

retrotransposition (Kajikawa et al., 2005), do not exhibit any similarity between the two elements. In the 

APE domain, the distances between motifs V-VI and VII-VIII are shorter than the corresponding AP-pinches 

in AP endonucleases, and are similar to most other non-LTR elements, indicating that, like other LINEs, 

they should not be able to recognize apurinic/apyrimidinic DNA (Kajikawa et al., 2005). Secondary structure 

predictions for the EN domain of Syrinx and Daphne also correspond to that for other non-LTR 

retrotransposons (Kajikawa et al., 2005) and do not reveal an extra β-sheet implicated in sequence-specific 

interaction of TRAS1 EN with Bombyx mori telomeric DNA (Maita et al., 2004) (Fig. 2A). 

Out of 12 Syrinx 3' UFW products, five were 3' incomplete, either as truncated genomic copies or as a 

result of a short UFW (Figs. 1, 3B). Of the remaining seven, six had long uninterrupted ~250 aa coding 

sequences, somewhat diverging in the most C-terminal 30-40 aa, and one had a frameshift resulting from a 

(TA)4->(TA)6 slippage polymorphism. Out of 10 Syrinx 5' UFW products, three contained long uninterrupted 

coding sequences, three had frameshifts resulting from small (1-5 bp) indels, three were 5' truncated and 

had flanking sequences (Fig. 3A), and the last one, with intact RT ORF, belongs to a closely related but 

different Syrinx' subfamily, with 55% nucleotide (51% amino acid) identity to Syrinx (Fig. 2B). 

Similarly, out of 9 Daphne 3' UFW products, three had an intact 270-aa coding sequence, one had a 

single in-frame stop codon, three had frameshifts resulting from 4-17 bp insertions, and two were 

incomplete at the 3' end as a result of a short 3' UFW (Fig. 3D). Out of 6 Daphne 5' UFW products, only 

one had an intact ORF, two shared a 2-bp deletion, and three were highly similar and shared the same 

truncation points (Figs. 1C, 3C). Two more 5' UFW products were amplified from a Daphne-related 
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subfamily, which had 43% nucleotide (35% amino acid) sequence identity to Daphne (Table 2), and two 

additional decayed copies had only 24/43% amino acid identity/similarity (Fig. 2B). 

3.4. 3’ and 5' termini.  

The 3’ UTR of Daphne is about 440 bp in length and includes the AATAAA signal immediately followed by 

(TTA)4-6. Such microsatellite-like endings are thought to originate from RT slippage during its engagement, 

and are often observed at the 3’ termini of non-LTR retrotransposons instead of the more common oligo(A). 

Interestingly, Syrinx has a much longer 3’ UTR totaling about 1 kb in length, which includes two internal 

polymorphic oligo(A) stretches (A6-12 and A12-20) and ends in a typical variable-length oligoadenylate stretch 

(A)10-25, which is, however, separated by 425 bp from the nearest preceding AATAAA signal. Long 3’ UTRs 

are generally not typical of non-LTR retrotransposons, the only exception being telomere-associated 

retrotransposons for which 3’ UTRs may reach several kb in length (Pardue and DeBaryshe, 2003). 

Two rounds of UFW in the 5’ direction allowed us to approach the N-terminus of the EN domain, but 

additional UFW rounds did not yield any further extensions in the 5’ direction. In the case of Daphne, 

extensions became complicated because of its apparent propensity to form head-to-head structures, 

consisting of two 5’-truncated copies of different length in inverted orientation (Fig. 1C). Four identified 

types of these structures consist of a Daphne copy truncated within the RT domain and another inverted 

Daphne copy truncated within the EN domain; all truncations occurred at different points. In three cases, it 

was possible to identify microhomology overlaps at the inversion junction (Fig. 1C). Obviously, the 

existence of such structures represents a major obstacle to UFW, as the primers would invariably match 

both copies in inverted orientation and yield preferential amplification of inverted-repeat junctions. Although 

such structures were not encountered for Syrinx, UFW beyond the EN domain did not operate either, which 

could be explained by the presence of very few full-length master copies. Eventually, the primers began to 

amplify unrelated high-copy-number sequences, such as other DNA transposons, which had fortuitous 

matches with the terminal nucleotides of the primer.  
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3.5. Divergence patterns.  

For Syrinx, we compared the sequences of 11 clones from 5' UFW and 12 clones from 3' UFW (0.5-4.5% 

difference) that contained exclusively coding sequences. The average distances based on the branch 

lengths from the Bayesian trees were 2.08% (± 0.88%) for the 5' and 2.57% (± 1.05%) for the 3' end of 

Syrinx. We observed three- to ten-fold excess of synonymous substitutions for each pairwise comparison, 

which is indicative of purifying selection (Li, 1997) acting on Syrinx-encoded RT (Table 3A,B). Such 

selection is likely to be element-based rather than host-based, as the commonly observed cis-preference in 

retrotransposition of non-LTR elements does lead to preferential proliferation of active copies (Wei et al., 

2001). We did not observe evidence of purifying selection acting on Daphne sequences (Table 3C), which 

is not too surprising, as most of the cloned copies were apparently 5' truncated. Average distances for 

cloned Daphne sequences were 1.80% (± 0.74%) and 2.70% (± 1.83%) for the 5' and 3' end, respectively. 

3.6. Adjacent flanking regions.  

We examined up to a kilobase of flanking host DNA adjacent to Syrinx and Daphne, obtained in the course 

of UFW. For Syrinx, six UFW clones extended into the 3' flanking region. Two of these clones had very 

similar 3' flanks with only 13 differences over a 1.75-kb 3' terminal region of Syrinx (4 in the coding 

sequence and 9 in the 3' UTR) and 3 differences in a 400-bp flanking region, suggesting their origin from 

recent duplication, gene conversion, or allelic difference, since the number of differences is too high to be 

attributed to PCR errors. Another clone had a 250-bp segment of very limited nucleotide sequence 

similarity (59%) to these two, interrupted by (TGTC4)3. No coding sequences were found in the 3' flanks, 

except for a 5' truncated fragment of a decayed R2-like retrotransposable element in the same 

transcriptional orientation. In three 5’ truncated Syrinx copies, we found several minisatellite repeats (9-15 

bp, repeated 2-7 times) in the 5' flanking regions, and two of these regions also contained long polyguanine 

tracts (G15-16). No poly(G) tracts were found in the 3' flanks. Finally, one of the UFW products contained a 
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copy of Syrinx that underwent an insertion of a mariner-like element in the opposite transcriptional 

orientation upstream of RT motif 1.  

For Daphne, 3' flanking sequences were inspected in four different copies. Two of the flanks were 

highly similar, and differed by 10 single nucleotide substitutions and by a 87-bp indel. None of the 5' UFW 

products could have originated from an intact Daphne copy, since all of them exhibited 5' truncation. Two 

Daphne' copies from a related family contained 5' flanking sequences with different truncation points; the 

flanks did not exhibit any characteristic features such as repeats or known genes. Three 5' UFW Daphne 

products (L2a34,41,45) were arranged in a head-to-head truncated orientation, as described above, and 

had different 5' truncation points, indicating independent origin of each insertion event (Fig. 1C). Three 

more, highly similar, UFW products apparently originated from the same insertion event: the junctions 

between 5' truncated copies are identical and contain 0.5 kb of unrelated sequence (Fig. 1C; L2a28,29,43). 

There are 7 differences over 2 kb between the two most similar copies with this structure, and 15 

differences between the more divergent pairs. Moreover, the longest intact Daphne ORF segment (L2a3B, 

Fig.3C) is also truncated at the same junction, with the same unrelated sequence, and differs from the 

other three by 1-2 bp throughout ~0.7 kb of overlapping sequence, indicating that all of them share the 

same origin. A combination of recent segmental duplication, gene conversion, and/or allelic divergence 

could account for such differences.  

3.7. Phylogenetic placement.  

While initial BLAST searches indicated affiliation of Syrinx and Daphne with the jockey and CR1 clades, 

respectively, phylogenetic analysis of the combined EN and RT domains reveals a more intriguing position 

for both elements (Fig. 4). Our analysis was conducted using non-LTR retrotransposons with the N-terminal 

APE domain, and did not include the early-branching lineages with the REL (restriction enzyme-like 

endonuclease) domain to avoid loss of resolution from limiting the analysis to the RT domain. In the 

combined EN+RT phylogeny spanning approximately 900 amino acids in a dataset of 45 non-LTR 
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elements with representatives of the known clades, Syrinx appears as a sister element to the jockey clade, 

although it is not possible to say whether it is a basal branch of this clade or a new sister clade until other 

Syrinx-related elements are identified. Inclusion of both the RT and the accompanying AP-EN domain in 

the phylogenetic analysis, based on the assumption of monophyletic EN acquisition, allows better 

resolution of the overall phylogeny of AP-EN-containing non-LTR retrotransposons: the jockey clade 

assemblage (Eickbush and Malik, 2002), consisting of jockey and CR1 clades, which was poorly supported 

in the RT- or EN-based neighbor-joining analyses, is now supported with 100% clade credibility value. 

Notably, Daphne is the founding member of a new clade, which appears as a sister clade to human L2, 

eel UnaL2 and fugu Maui elements (Fig. 4) (Poulter et al., 1999; Kapitonov and Jurka, 2003; Kajikawa et 

al., 2005). We were able to identify two additional members of the Daphne clade, which we named Sake 

and Urca, by computer-assisted search of the genome sequencing project databases of the silkworm 

Bombyx mori, and the sea urchin Strongylocentrotus purpuratus, respectively. The complete consensus 

Sake element is 5.1 kb in length, has a 240- bp 3’ UTR and a 280-bp 5’ UTR, and ends with (TTTGA)n. As 

judged by the presence of three different polymorphic variants of the Sake 5’ UTR, there are at least three 

different full-length master copies present in the B. mori genome, while its 3’ UTR is present in hundreds of 

copies, reflecting a high degree of 5’ truncation. We also identified a 548-aa upstream ORF1 associated 

with the Sake element (see Discussion). The consensus Urca element codes for a 985-aa EN/RT ORF, has 

a 380-bp 3’ UTR, and ends in (CCAA)n, immediately preceded by the AATAAA signal. The presence of at 

least three copies of a tandem repeat upstream of the Urca ORF did not allow us to assemble a complete 

consensus sequence from the available trace reads, and its 5’ end remains undefined until larger contigs 

become available in the whole-genome assembly.  

Neighbour-joining trees showed similar tree topologies with good bootstrap support when compared to 

the Bayesian tree. Maximum-likelihood trees constructed with Phylip were alike although they lacked strong 

bootstrap support for deep branches. Maximum-likelihood trees constructed with Tree-Puzzle also confirm 
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the topologies from Bayesian reconstructions. Quartets (groups of 4 sequences) are used as an alternative 

to bootstrapping in Tree-Puzzle to test for statistical support. Likelihood mapping provided additional 

evidence for a better-supported phylogeny if Syrinx and Daphne sequences were clustered within their 

groups from the Bayesian trees. With clustering, 87.7 and 95.2%, respectively, of all quartets favoured 

treelikeness. Without the two clusters, only 63.2% of all quartets supported treelike structures.  

4. Discussion 

4.1. The Daphne clade. 

This study provides the first insights into diversity, structural organization, and phylogeny of 

retrotransposable elements in the poorly explored class Ostracoda of the arthropod subphylum Crustacea. 

Interestingly, we were able to identify a novel clade of non-LTR retrotransposons, called Daphne, which 

currently includes representatives from crustaceans, insects, and echinoderms. The fact that members of 

the Daphne clade can be found in both protostomes and in deuterostomes most likely indicates its ancient 

origin, since horizontal transfers of non-LTR elements are exceedingly rare. It has been previously argued 

that the origin of each non-LTR clade dates back to the pre-Cambrian era (Malik et al., 1999). The position 

of Syrinx with respect to the jockey clade also agrees with its vertical inheritance from the common 

ancestor of arthropods. It is also worth mentioning that the recently described L2-like non-LTR 

retrotransposons Samurai and Abyss from B. mori and Anemonia sulcata, respectively (Abe et al., 2005; 

Greenwood et al., 2005), clearly belong to the L2, and not to the Daphne, clade. 

The detection of a novel kind of an upstream ORF1 in one of the members of the Daphne clade, the 

Sake element from B. mori, is also of interest, as it increases the diversity of additional ORFs found in non-

LTR retrotransposons. The N-terminal half of Sake ORF1, with a coiled-coil domain, reveals a statistically 

significant homology to SMC proteins (structural maintenance of chromosomes; domain COG1196 in the 

database of clusters of orthologous groups) found in many eukaryotes, with E-values of similarity to SMC3 
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proteins from PSI-BLAST iterations reaching 2x10-84. SMC3 is a subunit of the heterodimeric SMC1/SMC3 

cohesin complex, which is essential for sister chromatid cohesion and also acts in recombination and 

double-strand break repair (Losada and Hirano, 2005). However, it is also possible that it is the coiled-coil 

domain per se that yields high E-values, as no other motifs expected for SMC proteins can be identified in 

Sake ORF1. The only other case of a coiled-coil domain in non-LTR ORF1 is known in mouse L1 elements, 

where it is essential for L1 retrotransposition, ORF1 trimerization, and nucleic acid chaperone activity 

(Martin et al., 2003). There is a +1 frameshift between ORF1 and the EN/RT-containing ORF2, and ORF2 

expression might occur via ribosomal frameshifting, similar to Ty1 (Kawakami et al., 1993), rather than by 

re-initiation, since the first available ATG codon is located between the EN motifs I and II. 

Although the presence of a similar ORF1 in other members of the Daphne clade is now only a matter of 

speculation, it is not unreasonable to suggest that its presence may be a characteristic feature of the clade, 

similar to the esterase- or PHD-domain-containing ORF1 from members of the CR1 clade (Kapitonov and 

Jurka, 2003). Members of the jockey clade, to which Syrinx may belong, usually contain a different type of 

ORF1, with several Zn-knuckle motifs characteristic of retroviral gag proteins, which is believed to 

participate in the replication cycle by binding to the template RNA and participating in formation of an RNP 

complex consisting of template RNA, ORF1p, and ORF2p (Eickbush and Malik, 2002). 

4.2. Non-LTR retrotransposons Syrinx and Daphne from Darwinula stevensoni. 

We characterized in detail two families of non-LTR, or LINE-like, retrotransposable elements, Syrinx 

and Daphne, which occupy different positions in the overall phylogeny of non-LTR retrotransposons. One of 

these families, Daphne, is the founding member of a novel clade of non-LTR retrotransposons, which also 

includes elements from organisms as diverse as sea urchins and silkworms. 

Most of the Syrinx sequences analyzed are 95-99% similar, suggesting their relatively recent activity. 

Moreover, these copies exhibit strong evidence of purifying selection, manifested in a three- to ten-fold 

excess of synonymous over non-synonymous substitutions. This pattern is typical of other non-LTR 
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retrotransposons, which usually exhibit a strong cis-preference in transposition, leading to preferential 

proliferation of active copies (Pelisson et al., 1991; Wei et al., 2001). The difficulties in obtaining 5' terminal 

sequences may indicate that proliferation of these elements depends on only a few master copies, perhaps 

even a single copy, resulting in poor representation of 5' ends in genomic DNA and overabundance of 3' 

ends. Such organization is known in Caenorhabditis elegans and C. briggsae, in which one or a few master 

copies give rise to a large number of 5' truncated copies (Marin et al., 1998; Zagrobelny et al., 2004). 

Another possible explanation for UFW failure in the 5' direction would be terminal localization of Syrinx 

copies, similar to HeT-A and TART elements of D. melanogaster (Pardue and DeBaryshe, 2003), which 

would lead to difficulties in amplifying terminally exposed ends. If Syrinx is associated with telomeres, its 

atypically long and A-rich 3' UTRs may share functional similarities with long 3' UTRs of TART and HeT-A, 

which are thought to play a role in formation of telomeric heterochromatin. In this respect, it is worth noting 

that telomere-associated retrotransposons in Giardia lamblia also possess long 3’ UTRs and, moreover, 

give rise to both sense and antisense small RNAs (Arkhipova and Morrison, 2001; Ullu et al., 2005).  

Daphne, on the other hand, is less likely to be active, although a few clones do contain intact reading 

frames and may originate from active elements. However, the neutral pattern of amino acid substitutions in 

comparisons between copies indicates that most of the copies could be defective, which agrees with the 

fact that most of the 5' UFW products were in a head-to-head 5' truncated arrangement and could no longer 

be active. Such inverted structures are not very typical of LINE-like elements in general, although they were 

described previously for two elements (Ostertag and Kazazian, 2001; Burke et al., 2002). In mammalian L1 

elements, the junctions between inverted segments contain no extra sequences and have a microhomology 

overlap (Martin et al., 2005). The structures we observed in three head-to-head inverted Daphne copies are 

very similar and were likely formed by the same mechanism as the mammalian L1 inversion junctions, with 

the added complexity of utilization of two different templates (as in L2a34, Fig. 1C). A likely explanation for 

the presence of unrelated DNA at the junction of four highly similar Daphne copies is its origin from 
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readthrough transcription initiated by a fortuitous upstream promoter. In this case, the Daphne RT should 

act mostly in trans (on other copies) and not in cis, since at least one of the two copies found in the inverted 

arrangement could not have originated from the RT-providing copy because of its incompleteness. This is 

also supported by finding of a shared 2-bp deletion in two Daphne ORF clones, which apparently originated 

from different insertion events, having formed different inversion junctions (Fig. 1C).  In combination with a 

high degree of 5' truncation, the tendency to form inverted repeats and the high efficiency of trans-action 

may preclude the spread of full-length intact elements throughout the genome. It may also contribute to 

efficient silencing of all homologous elements and to heterochromatin formation by facilitating dsRNA 

production from such hairpin-forming structures. 

Comparison of adjacent flanking sequences in both elements did not reveal any pronounced insertion 

site preferences, although certain trends may be pointed out. For Syrinx, each of the 5' flanks carried 

minisatellite-like repeats, and in two cases they were also associated with long oligo(G) tracts. The remnant 

of an R2-like retrotransposon detected in the 3' flanking sequence of Syrinx is not associated with rDNA, as 

is expected for this group of retrotransposons; most rDNA-specific elements in non-rDNA locations are 

inactive and undergo decay (e.g. Xiong et al., 1988). The presence of either simple repeats or other 

transposons (R2, mariner) in the vicinity and the absence of any recognizable genes argue in favor of 

Syrinx association with heterochromatic regions, as observed, for example, for a number of plant 

retrotransposons (Jiang et al., 2003; Lippman et al., 2004). Weak sequence similarity observed in some of 

the flanking regions may reflect affinity for certain targets, although their nature remains obscure. 

Within each family, two copies were found to have nearly-identical or very similar 3' flanks, with the 

number of differences too high to be attributed to PCR errors. The simplest explanations for the 

appearance of such copies are either allelic divergence or recent segmental duplication. Specific insertion 

into the same target is more difficult to imagine, as utilization of other target sites indicates no strict target-

site preference. Duplications, however, could have played a role in formation of extra copies, since for 
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Daphne we could identify three or perhaps even four highly similar copies of the same insertional event, as 

judged by the identity of the junction segment between two inverted copies.  

As expected for non-LTR retrotransposons, no signs of horizontal transfer were detected so far in 

overall phylogenetic analysis of RT / EN domains, although rigorous tests would require additional analysis 

of other ostracod species. Members of both families could have existed in darwinulid ostracods throughout 

their evolutionary history, as average genetic distances amongst among different copies of Syrinx or 

Daphne would equal at least 2-10 Myr of molecular evolution. These estimates, however, are rather 

speculative, as the only molecular clock available for the nuclear genome of Darwinula stevensoni is based 

on the ribosomal ITS1 region (Schön et al., 2003). It remains to be determined whether these elements 

have acquired any host functions, possibly related to maintenance of such essential structural elements of 

chromosomes as centromeres and telomeres (Hall et al., 2003; Lippman et al., 2004; Sun et al., 2004).  

Our findings on the presence of LINE-like elements in Darwinula stevensoni differ from those in 

anciently asexual bdelloid rotifers (Arkhipova and Meselson, 2000, 2005), where no such elements could 

be detected. This is not necessarily evidence against ancient asexuality of darwinulid ostracods, although 

rare sex still remains a possibility for both darwinulids and bdelloids. Both groups of putative ancient 

asexuals differ in several aspects, such as mutation rates (Schön and Martens, 2003), generation time, and 

number of offspring (Van Doninck et al., 2003). It is not unlikely that deleterious genetic elements were still 

present in the genomes of darwinulid ostracods when sexual reproduction was abandoned. The long 

generation time of D. stevensoni together with a low overall mutation rate might turn the purging of such 

elements into an exceptionally slow process. In addition, the processes balancing the overall load of 

transposable elements may reveal additional levels of complexity. If Syrinx or Daphne have become 

domesticated and acquired any host functions, they might have become part of darwinulid genomes 

despite ancient asexuality. Future research should reveal in more detail how reproductive mode and load of 

transposable elements are related in different taxonomic groups. 
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LEGENDS TO FIGURES 
 
 

Fig. 1. Overview of structure and sequence coverage for the Syrinx (A) and Daphne (B,C) families. The 

endonuclease (EN) and reverse transcriptase (RT) domains in the coding sequence are shaded, and 

conserved motifs within each domain are indicated by corresponding numbers (Roman for EN, Arabic for 

RT). (A)n, (T)n and (TTA)n denote polymorphic regions in the 3' UTR (n=4-25). The UFW strategy and the 

placement of individual clones along the consensus are shown below each element. Different flanking 

sequences are shown by dashed or dotted lines, with similar flanking sequences having the same dotting 

pattern. Thick lines with arrows in the flanking sequences denote fragments of mariner-like and R2-like 

elements in the opposite transcriptional orientation. (C) Detailed structure of four different 5' truncated 

head-to-head inversion junctions in six Daphne copies. Correspondence between direct/inverted segments 

and the consensus Daphne sequence is indicated by vertical lines. Arrows indicate the direction of the 

sense strand; squares denote 4-6 bp microhomology overlaps at the inversion junctions (also shown on the 

right), which may be assigned to either direct or inverted copy (arrows). The thick dashed line denotes a 

divergent Daphne' copy in L2a34. A thin dashed line represents unrelated sequence at the inversion 

junction in three nearly-identical copies. A space between two inverted copies is introduced for alignment 

purposes, and does not imply any additional sequence between two black squares. 

 

Fig. 2. (A) Alignment of consensus amino acid sequences coded by Syrinx and Daphne in the BoxShade 

format, together with their top database matches: Juan-like non-LTR retrotransposon from the African 

malaria mosquito, Anopheles gambiae (gi:57920422;57911403), and Urca non-LTR retrotransposon from 

the sea urchin, Strongylocentrotus purpuratus (this study). Highly conserved residues are denoted by 

asterisks; identical residues are shaded in black, and chemically similar residues in gray. Shown are the 

most conserved motifs of the AP endonuclease domain (III-IX) (Martin et al., 1996; Feng et al., 1996) and 
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the RT domain (core motifs RT0-RT7 and the thumb domain motifs RT8-RT9, designated in square 

brackets) (Malik et al., 1999), as well as the C-terminal conserved region (CTCR) identified by Kajikawa et 

al. (2005) in the eel UnaL2 and related elements. Also shown are the results of protein secondary structure 

prediction on the JPRED server for the first 400 amino acids of Syrinx (top) and Daphne (bottom) 

encompassing the EN domain. (B) Alignment of the N-terminal RT region (motifs RT0-RT4) of Syrinx and 

Daphne with the corresponding divergent lineages Syrinx' (clone L1a42) and Daphne' (clones L2a34 and 

L2a21) obtained in the course of 5’ UFW.  

 

Fig. 3. Divergence and phylogenetic relationships of individual Syrinx (L1 series, left) and Daphne (L2 

series, right) nucleotide sequences, obtained in the course of 5’ UFW (top) or 3’ UFW (bottom). Four 

Bayesian phylograms are drawn on the same scale. Clade credibility values exceeding 50% are indicated. 

Copies that may originate from intact elements are underlined; asterisks denote in-frame stop codons; 

deletions and insertions within ORFs are shown by upward- and downward-pointed triangles, respectively, 

with the following number indicating their length; arrows pointing left and right indicate copies that are 5’ or 

3’ truncated, respectively. L1asa45, 34, 41 are the inverted parts of L1a45, 34, 41, which could not be 

combined because there is no guarantee that they originate from the same copy. Square brackets indicate 

copies that share similar flanking sequences (not included in the alignments used for analysis).  

 

Fig. 4. Phylogenetic placement of Syrinx and Daphne among non-LTR retrotransposons. AP-EN and RT 

domains of elements from the reference dataset (Eickbush and Malik, 2002) were used in Bayesian 

analysis. Additional elements included into the analysis were TAHRE from D. melanogaster (gi:48596584), 

Juan-like from A. gambiae (gi:55235907), CR1-like from Branchiostoma floridae (gi:17529698), Sake from 

B. mori (this study), and Urca from S. purpuratus (this study). Clade credibility values exceeding 50% are 

indicated; square brackets denote the names of the known clades. 



Figure 1
Click here to download high resolution image

http://ees.elsevier.com/gene/download.aspx?id=13543&guid=7f3a089c-8f9f-4a98-ae04-742c4457d5fd&scheme=1


A                                   III EEEEEEE                  IV EEEEEEEE         EEEEEEE V 
Syrinx_Ds    1 ------------------GTYCRG--SAVYILS------NLDSELISRSWQTDSEIIGVKILFSLT----TLSVFHAYFPPNFP------ 
Juan_Ag     43 PDINFSLKGYHFLRLDRQGTTTRGGGVAIIVRS------GINFNQISHLNTTVIEALGIEVQLSIG----LIKIIVAYCPMQCRRNDGKA 
Urca_Sp     80 SPDMFNLPNYKLI--RADRKGRRGGGVAFYITQ------NINFKIRSDIKLTQAESLFIEINNSNAK---NVIIGLIYRPPDSN-CDLFC 
Daphne_Ds    1 PSFQYSLQGYSSE--FFCRSSTRGGCVALYVRDDHPAIPLPELSQLSSENNIEITAVRILNPNWKHLPDLPLIALSVYRPPNGN-FTVFF 
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Syrinx_Ds   55 -PSPSDLDFINQINGPSLLLGDLNAHSPDLSFCSEPNTTGNILSDFIASSSFSILNDDSPTHHCPGLGNSYRIDLALGNAQFLPFFHSVS 
Juan_Ag    123 AAFKNDLNIITRSHQRLIVGGDLNARHQAWNNLRR-NTNGELLFRHSETGQFTVDFPDSPTYISAGGTFS-TLDLFLTNVK----ISKPE 
Urca_Sp    158 DELDFYLHKIGDENKHNFILGDFNINFSPSSDNS--NSTNCMQLMHSYG-FFSIIN--KPTRINPHSSTQ--IDNIFSNVH--NNKTIGG 
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Syrinx_Ds  144 IGEDVGSDHVPILINCNFSHEPPPST---SLPRFDFRNADWHSFQDVLETLLPHSLPLETVPQLEEAVTLITEAIQIAQNIAVPKTTPSH 
Juan_Ag    207 TLDELTSDHFPVVTEVDCSVSA-GS----IRRRKDYQNVNWQRFGRLVDN-QIQSTEILSVPEVNIAIANLEIAVRSAEAACVKESMIRG 
Urca_Sp    239 ILCSEVSDHLPIFLTCECKLSGRKSFDELIYRKESKRNIELLKQDLFFEG----WAEVYSVNDVNTAYKHFSNKLQYYYEKNIPLGKMSN 
Daphne_Ds  167 VVPNDDSDHHQLCLRIPLETKT-QSYP-PTNFRRLLIPSAVKKASNFLESIN--WTSLMSSKSVDDQLDTLMGKIHASQARSLPTKRITP 
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Juan_Ag    291 EFS-----DMDSHTLALIKERNRLRRIFQHTG-DITAKRLASTIAKQISARVEIIRNENFGRSIQRMDTRAPA--FWKVSRILKQR-PKP 
Urca_Sp    325 KRNKPRTPWITKGLLKSIQTRNRLYKLHLHNP-TDTNLNTYKIYRNKLTKLIRTSRRLHFSNKIKKASSNTTA--TWKIIKEVMGKKTNP 
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Daphne_Ds  341 TIVGLRE-NDLLLTNGEDIANRMRSHFSSLFSPHTPP-------ISSVPVGSSPQ--------FSFFLQPITELETLTIISHLSSTKATG 
               EEEEE           HHHHHHHHHHH                                                           *  * 
                                                                                             
Syrinx_Ds  410 PDNIFVNSIKHLSERALHSLYLIYNACLRLGHVPLGWKSAIITMIPKPDKDLSDPSSFRPISLLSCLQKLLERILTSRLNDYLETNNLLS 
Juan_Ag    454 FDKIFNILIKHLQVKALCLITKVFNICFELGYFPSTWKCAKVVPILKPGKDPTLPTSYRPISLLPSLGKLFERIILDRLQNWVSELNLIR 
Urca_Sp    493 FDKISMSLLKEIMYPLAKPLTHIFNHSLSQGVFPDLLKLAKVNPILKKD-DPHEISNYRPISLLPSISKVLEKIVHNRLHKFITKHKILN 
Daphne_Ds  415 PDNVSAKFIKKIAQSIALPLTLIFNNSLSTGVFPSALKQGKLIAIHKKG-EKDIVSNYRPITILPVISKVFEQLVQQRLDSYLNCISFIS 
                *       *              *     *  *   *      * *           ***  *    *  *     **                 
                                                 
Syrinx_Ds  500 PSQSGFRKNLCTTDQLVRLHHDALVAVHSKMHLLALFFDVTKAFDKVWHAGLIFKLFFHFKIPLQLLRWTASYLTERSFRVRVG-NSFSE 
Juan_Ag    544 PEQFGFRQEHSTVHQLLRVKGCIEQNKTDSKSTAVALLDVEKAFDSVWHGGLLHKLVDFG-LPVYLVKIISSYLKHRTFRVALH-SALSD 
Urca_Sp    582 SNQYGFRKNYSTDLALIQIYDKITSAIANKEHVIGIFCDLSKAFDTLNHAILLSKLSHYG-IRGQPLLWFKDYLTNRRQYVTFN-SYDSD 
Daphne_Ds  504 QSQFGFRSNRSTQDALLHFLKEVQSILNRNQAAVGIFYDIAKAFDSISHKLLLQKLESLG-VRGVANSWFQSYLSNRQAAVHHR5VHVSE 
                 * ***    *     *                    *  ****   *  *  **                **  *   *       *  
                                               
Syrinx_Ds  589 TRSPTAGVPQGSVIAPLLFILYVNDLSSSIPRKLNVCTSQYADDTALWLSGRDVTALESRAQAALNALSYYCRNWRISMNPSKSSLILFA 
Juan_Ag    632 PNPVPAGVPQGSLLAPLLYILYTTDIPPLPCDGMLF---LFADDTAIAVKGRNMIELKSRLQRCLDAFLRFAADWKIKINPSKTQAIVFP 
Urca_Sp    670 PLLIQCGVPQGSILGPLLFLLYVNDIINTSPLLSFI---LFADDTNIFYSHKDLNSLNNTLNYEINKVSDWFKSNKLSLNTKKTHFMYFK 
Daphne_Ds  597 PINITSGVPQGSVLGPLLFLIYINDLPTNAPKIHLT---LFADDTTACLPVSRNSTPTSVSTSCDIAIDSWTTNNGLRLNASKTTRVLFS 
                     ******   ***   *  *                ****                                  *  *     *  
                                         
Syrinx_Ds  679 RDRKP--HSVNVRLDGVLIPRSRFTRFLGVNFDSNLRWNEHVNVIRTKSIRKLNCLKILAGVN-KCEPHVILKLYVTYLRPVLTYAFAAW 
Juan_Ag    719 HRFKKT4LSPGLLVNGTTVPWSPSVKYLGLTIDYKMIFRGHVESILERGHLLLKCLYPLISRRSRLSQLNKLAVYKQIILPVATYAAPVW 
Urca_Sp    757 HHSHNTETPLYIKIDGMLLEKKTNSKFLGVLIDETLTWNDHLHQVTMCISKSIGIISKLKFLLP---HATLFLLYNSLVLPYITYCNSVW 
Daphne_Ds  684 TLRR----------TDPPLTFATSTTFLGIRFDPYFRWDNQVDHGCRLLKYAAASIYRLSSILS---QEDLKKMYYALAFPHLSYGLLAW 
                                          **   *                         *       
                             
Syrinx_Ds  766 ANCPETVLDQLERIERAAIRYAFRLPTYFS-NSYIYRISGLTPLSRHASQLAYNYYNDPKRPGDIKEIPVRLNKKFTIGRFKHCKTYPYN 
Juan_Ag    812 STCAETHLCRLQIMLNKLLRMITDTSRFTR-NADLYTIAGVLPFKEEIQN 
Urca_Sp    844 ANCGSTKINSIFKLQKKAIRICTGSHFLAHTDPLFYKLKTLKIFDLNTTQVAVIMFKYINNLLPPSFDNMFRFNNSVHSYSTRISGNFHL 
Daphne_Ds  761 GHCSERHVCRILSLQKRIVRTILHKSIRTTCRPLFPKLKFLTFPSLVLFHTSVYFHAIVSK-------NEAISNAGVHSYDTRSKNDYHR 
                        *     *   *    *  *                *                                    
                                      
Syrinx_Ds  855 KILERLGKTTNCSPPDP 
Urca_Sp    934 TNPKLSITHKSVRHSGPDIWNDLPDNIKSCSTIYSLKATLKRQIIQSYAPPL 
Daphne_Ds  844 SIDSSALASRLIFSWGPHYFNSIPRSIRQLNHTAFRRQLKELFLSHPLYSFSEFFDITW 
 

B 
                                                                                
Syrinx LTYEITLDEIEAAIKVSPNKAPGPDNIFVNSIKHLSERALHSLYLIYNACLRLGHVPLGWKSAIITMIPKPDKDLSDPSSFRPIS--LLSCLQKLLERILT 
L1a42  LLGPITIEEIIKTILPLPNKAPGPDKIYNKALQKGTFKLYELLTQLYNSCITYRYFPSTWKSALVTMIPKPDKDLSKPSSYRPIS--LLSVLGKTLERIIT 
L2a34                 LKNGKSPGVDEILAETLKAMGTDGCSLLYRVCQAAWESGTAPRDWQTSVVVPLFKKG-DSRECTNYRGTT--FLMPV-KVCSKVLE 
L2a21  YQMRFLVINSLMIGKLKVGKATGPDGIPARVIKETAREISVPLRIIFDSSFSRGEVPKDWRRANVVPIFKKG-EKSNPGNYRPVRDSDTSIPGKIMESILR 
Daphne LQPITELETLTIISHLSSTKATGPDNVSAKFIKKIAQSIALPLTLIFNNSLSTGVFPSALKQGKLIAIHKKG-EKDIVSNYRPIT--ILPVISKVFEQLVQ 
                          *  * *                 *             *            *           *           * 
                                                        
Syrinx SRLNDYLETNNLLSPSQSGFRKNLCTTDQLVRLHHDALVAVHSKMHLLALFFDVTKAFDKVWHAGLIFKLFFHFKIPLQLLRWTASYLTERSFRVRVGNSF 
L1a42  DRLTAFLESNGILHPAQAGFRRSMCTSDQLVRLQNDILNAGNSNYPLLALFFDVEKAFDKVWQRGLLYKLRFNYKLPLGLVALIESYLSNRTLKVRIEDST 
L2a34  KRTRAVVG--DAIQEEQCGFRSWRSTTDQLFTLHQILEGHWEFAEDVYMCFVDLEKAYDRVPRR-KLWRVLQEYGIKGQLLRAVQSLYSDCRSCLRVSGRS 
L2a21  DHLLDFLEGNALIRDSQHGFRRRRNCLTNLLEFYDWATEERDKGNPVDIVYLDFAKAFDTVPHK-RLRVKLEAHGIQGRTSEWISSWLAGREQRVMINGEA 
Daphne QRLDSYLNCISFISQSQFGFRSNRSTQDALLHFLKEVQSILNRNQAAVGIFYDIAKAFDSISHK-LLLQKLESLGVRGVANPWFQSYLSNRQAAVHHRDHT 
                       * ***        *                      *  ** *                          *                
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Table 1. Primers used for UFW and sequencing of UFW products. L1 = Syrinx, L2 = Daphne. 
Highly degenerate primers RT-3 – RT-7 were used for nested PCR of regions between the 
conserved core RT motifs (Arkhipova and Meselson, 2000); primers s1-s4 and as1-as4 were used 
for UFW in the sense and antisense direction, respectively, as described in Myrick and Gelbart 
(2002); primers labeled "internal" were used to close the internal sequence gaps.  
 
Primer  Orientation Sequence 
RT-3 sense GCTCTAGAYITIINNNVNGSNTWY 
RT-7 antisense GGAATTCAINIBIDNNCCNARRWM 
RT-4 sense GCTCTAGAINGGNIBNCSNCARGG 
RT-5 antisense GGAATTCRNNRNRTCRTCNGCRWA 
DsL1-s1 3’ (sense) GGCTCAGTAATAGCACCCCT 
DsL1-s3 3’ (sense) CCCCTTCTTTTCATTCTCTACG 
DsL1-s2 3’ (sense) CTCTACGTWAACGACCTCTCN9A 
DsL1-s4 3’ (sense) AGCTCKATCCCTCGTAAACT 
DsL1-as1 5’ (antisense) AGTTTACGAGGGATMGAGCT 
DsL1-as3 5’ (antisense) GAGAGGTCGTTWACGTAGAG 
DsL1-as2 5’ (antisense) CGTAGAGAATGAAAAGAAGGGN9A 
DsL2-as4 5’ (antisense) AGGGGTGCTATTACTGAGCC 
DsL2-s1 3’ (sense) GGCTCGGTCCTTGGTCCA 
DsL2-s3 3’ (sense) GGTCCACTCCTCTTTCTAAT 
DsL2-s2 3’ (sense) ATATTAACGACCTCCCCACCN9A 
DsL2-s4 3’ (sense) CCAAGATTCACCTCACGCTC 
DsL2-as1 5’ (antisense) GCGAAGAGCGTGAGGTGAA 
DsL2-as3 5’ (antisense) GGTGAATCTTGSGAGCGTT 
DsL2-as2 5’ (antisense) GGTGGGGAGGTCGTTAAYATN9A 
DsL2-as4 5’ (antisense) AGGAGTGGMCCAAGGACC 
DsL1a 5’ (antisense) internal GATGCAAAAACGGAGGCTTG 
DsL2a 5’ (antisense) internal GAGATCAATGTTGAAGTCACC 
DsLI3 3’ (sense) internal TAGATATTGGAGGTGTGTGA 
DsL1SI1 3’ (sense) internal CAGCCCCAAATCTACTAACC 
DsL2-32 5’ (antisense) internal GGTCCGATCGTTGGAACAATGC 
DsL1as4a2 5’ (antisense) internal GATGCAAAAACGGAGGCTTTG 
 
 
 
Table 2. Features of amplified Syrinx and Daphne sequences.  
 
Family Consensus 

ORF 
Similarity RT/EN 
(% aa) 

No. of UFW 
products 3'/5' 

No. of truncated 
products 3'/5' 

No. of intact 
sequences 3'/5' 

No. of frameshifts 
3'/5' 

Syrinx 871 aa 29 /19 (S/D) 
51 (S/S') 

12/10 5/3 6/3 1/3 

Daphne 902 aa 29/19 (S/D) 
35 (D/D') 

9/6 2/3 3/1 3/2 

 
aa = aminoacids. S = Syrinx. S' = Syrinx-related subfamily. D = Daphne. D' = Daphne-related 
subfamily.  3' = 3' UFW products. 5' = 5' UFW products. 
 
 

Table(s)



Table 3. Ratios of non-synonymous (Ka) to synonymous (Ks) substitutions for Syrinx (L1) and 
Daphne (L2) sequences (3' UFW and 5' UFW products for Syrinx, 3' UFW products for Daphne). 
 
A (L1s) L1s18 L1s33 L1s23 L1s26 L1sB6 L1sB8 L1s16 L1s5 
L1s33 0,24        
L1s23 * 0,24       
L1s26 0,19 0,11 0,19      
L1sB6 0,16 0,09 0,16 0,34     
L1sB8 0,23 0,15 0,23 0,77 0,57    
L1s16 0,26 0,20 0,26 0,36 0,28 0,37   
L1s5 0,27 0,14 0,27 0,21 0,31 0,42 0,17  
L1s3 0,24 0,13 0,24 0,22 0,09 0,17 0,20 0,23 
 
B (L1a) L1a58 L1a60 L1a90 C (L2s) L2s29 L2sB2 L2s28 L2s17 
L1a57 0,26 0,09 0 L2sB2 0,89    
L1a58  0,22 0,26 L2s28 1,07 *   
L1a60   0,09 L2s17 1,39 0,96 1,50  
L1a90    L2s31 0,69 0,31 0,49 0,53 
 
*Ratio could not be calculated, because Ks=0. 
Average is 0,25 ± 0,13 for Syrinx and 0,87 ± 0,41 for Daphne. 
 
 




