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Abstract. We used population models to explore the effects of the organochlorine contam-

inant p,p ′DDE and fluctuations in vole availability on the population dynamics of Burrowing

Owls (Athene cunicularia). Previous work indicated an interaction between low biomass of

voles in the diet and moderate levels of p,p ′DDE in Burrowing Owl eggs that led to repro-

ductive impairment. We constructed periodic and stochastic matrix models that incorporated

three vole population states observed in the field: average, peak and crash years. We modeled

varying frequencies of vole crash years and a range of impairment of owl demographic rates in

vole crash years. Vole availability had a greater impact on owl population growth rate than

reproductive impairment if vole populations peaked and crashed frequently. However, this dif-

ference disappeared as the frequency of vole crash years declined to once per decade. Fecundity,

the demographic rate most affected by p,p ′DDE, had less impact on population growth rate

than adult or juvenile survival. A life table response experiment of time-invariant matrices for

average, peak and crash vole conditions showed that low population growth under vole crash

conditions was due to low adult and juvenile survival rates, whereas the extremely high popu-

lation growth under vole peak conditions was due to increased fecundity. Our results suggest

that even simple models can provide useful insights into complex ecological interactions. This is

particularly valuable when temporal or spatial scales preclude manipulative experimental work

in the field or laboratory.

Keywords: Athene cunicularia, Burrowing Owl, DDE, elasticity, interactive effects, matrix

population model, multiple stressors, population level risk assessment, prospective analysis.
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Introduction

Contaminants have long been recognized as a threat to ecological systems but assessing

risk to levels of biological organization above that of the individual has been systematically

undertaken only recently (e.g., Newman and Jagoe 1996, Kammenga and Laskowski 2000,

Pastorok et al. 2002). Despite this increasing attention, it is still far from obvious how to

assess the effects of pollutants on wild populations. Methods that are highly successful at

predicting risk to individuals do not adequately predict population-level effects (Kammenga et

al. 1996, Forbes and Calow 1999, Stark and Banks 2000). They also rarely account for the

effects of interacting stressors, the variable nature of exposure in free-living organisms, and the

spatial distribution of contaminants.

A major challenge in determining the impacts of contaminants on populations is the fre-

quent exposure of organisms to multiple contaminants, and the resulting non-linear interactions

among contaminants (Birnbaum et al. 1985, Davis and Safe 1988). Anthropogenic stressors

such as persistent organic pollutants may also interact non-linearly with natural stressors. Con-

taminants can interact with environmental factors such as food availability, density dependence,

or predation to produce population responses that differ sharply from those demonstrated by

populations exposed to only the contaminant. For example, toads in carbaryl-treated ponds

had higher survival than toads in untreated ponds, apparently because their algal food source

underwent competitive release from zooplankton in the presence of carbaryl (Boone and Seml-

itsch 2002). In another study, toxicity of nitrate fertilizer interacted with low pH in ponds and

UV B radiation to reduce the survival of frogs (Hatch and Blaustein 2000). Organism density

also has been shown to have potentially dramatic effects on the impact of a contaminant on a

population (Linke-Gamenick et al. 1999, Boone and James 2003, Forbes et al. 2001, Forbes et
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al. 2003).

Because of this complexity, at least three questions must be addressed before ecological

and population-level impacts can be assessed. First, what conditions or factors interact with

contaminants and influence how toxic effects are expressed? Second, are the interactions syn-

ergistic, antagonistic, or additive? Third, are the conditions persistent, or, if intermittent, at

what frequency do they occur?

Assessment of the population-level effects of contaminants is difficult because contaminant

effects can vary through time as a result of variation in the contaminant itself or through

variation in an interacting contaminant or stressor (Keith and Mitchell 1993, Gervais and

Anthony 2003, Hatch and Blaustein 2003). The appropriate spatial and temporal scales often

preclude data collection of sufficient scope or duration to directly estimate effects in the field.

Experiments are difficult for the same reasons, in addition to ethical constraints on deliberately

applying persistent contaminants to the environment. A feasible alternative is to combine

information from multiple sources into an estimate of the effect on the population. Demographic

modeling offers the opportunity to integrate the effects of multiple stressors acting on different

aspects of an organism’s life history and evaluate the impact of those stressors at the population

level.

We used population modeling to explore the potential effects of a contaminant acting syner-

gistically with a natural stressor on Burrowing Owl (Athene cunicularia) population dynamics.

This investigation was motivated by study of a Burrowing Owl population that lived in an in-

tensive agricultural matrix of the San Joaquin Valley of California (Gervais et al. 2000, Gervais

et al. 2003, Gervais and Anthony 2003). Owls in the study population foraged in agricul-

tural fields that were treated with pesticides highly toxic to birds (Gervais 2002, Gervais et al.

2003). Individual females had sufficient body burdens of contaminants to lay eggs containing

4



Gervais, Hunter and Anthony

up to 33 µg/g wet weight of organochlorine contaminants. The most prevalent contaminant

was p,p ′DDE, the para, para isomer of dichlorodiphenyldichloroethylene (Gervais and Anthony

2003), the primary metabolite of DDT. Although egg concentrations of contaminants indicated

that all females maintained elevated concentrations of p,p ′DDE, only a few owls were associated

with highly contaminated eggs and this number varied from year to year (Gervais and Anthony

2003). Despite evidence of exposure to agricultural chemicals and persistent organochlorine

residues, no direct relationships between contaminants and survival or fecundity were found

(Gervais et al. 2003, Gervais and Anthony 2003).

However, there was a relationship between low rodent biomass in the diet during years when

rodent prey was scarce and reduced fecundity in individual owls with moderately contaminated

eggs (Gervais and Anthony 2003). This synergistic effect was not present in years when rodents

were more common in the owls’ diet. The annual proportion of owls in the population laying

eggs with levels of p,p ′DDE associated with impaired reproduction varied widely, from none

of the eggs collected to all of them (Gervais and Anthony 2003). In addition, rodent popula-

tions appeared to undergo dramatic changes in density on a year to year basis. Assessing the

population-level consequences of the observed synergy between contaminants and reproductive

success will require consideration of a range of environmental conditions and contaminant levels.

In this paper, we examine the effects of organochlorine contaminants and fluctuations in

prey availability on the dynamics of this Burrowing Owl population. Our primary goal was

to determine whether contaminant level exposures such as those that we documented could

impair population-level processes. We evaluated the effect of varying the frequency and inten-

sity of contaminant impacts on reproduction and survival using deterministic and stochastic

population models. We also performed prospective and retrospective analyses to investigate

how changes in demographic rates affected overall population growth rate. Our secondary goal
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was to evaluate the consistency of the conclusions from different model analyses given the un-

certainty arising from incomplete data. Finally, we explore the utility of these types of analyses

in assessing risk to populations.

Study Population

The study population consisted of 63-85 resident breeding pairs of Burrowing Owls living on

Naval Air Station (NAS) Lemoore (36◦18’N, 119◦56’W), 50 km southwest of Fresno, California

USA. The owls nested in burrows along the runway easements and in adjacent fallow fields.

The landscape was primarily intensive row crop agriculture. Dominant crops were cotton and

alfalfa, with lower proportions of tomatoes, safflower, and other crops. The region has been

treated with a wide variety of agricultural pesticides in recent years (California Department of

Pesticide Regulation 1998, 1999).

Organchlorine chemical analysis of whole egg contents from owls nesting in this area between

1996 and 2001 (n=92) detected persistent organochlorine contaminants, most notably p,p ′DDE

(Gervais et al. 2000, Gervais and Anthony 2003). Overall, eight percent of the eggs contained

organochlorine residues at concentrations sufficient to cause reproductive harm in other avian

species (Gervais et al. 2000). On an annual basis, contaminant levels of concern were found in

none to all of the eggs sampled that year (Gervais and Anthony 2003).

In the Lemoore population, there was a relationship between low rodent biomass in the

diet and reduced fecundity in owls with moderately contaminated eggs (Gervais and Anthony

2003). Burrowing Owls with > 4 µg/g p,p ′DDE in their eggs and a dietary biomass of rodents

of < 3g/pellet raised only 2.0 owlets to fledging (95% CI: 0.7 - 3.2, n=5), whereas owls that did

not meet these two conditions raised 3.8 owlets to fledging (95% CI: 3.1 - 4.5, n=62; Gervais and

Anthony 2003), a 47% reduction in fecundity. Egg contaminant levels fluctuated widely from
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year to year but in general only a few eggs were highly contaminated (Gervais and Anthony

2003). The annual percentage of owls with moderate contaminant residues and low vole biomass

in their diet ranged from none to 15% between 1996 and 2001. The exception was 1996, when

all egg samples exceeded the threshold of 4 µg/g p,p ′DDE, but specific diet information was

not available for this year (Gervais et al. 2000). Overall reproduction in the population could

have been halved in 1996. However, it is not clear whether this could have reduced population

growth rate.

Population Dynamics

Burrowing Owls are relatively short-lived; in the Lemoore population they were rarely

recorded as living more than four years (J. A. Gervais and D. K. Rosenberg, unpublished data).

They breed at one year of age and are capable of producing up to twelve fledglings per nesting

attempt (Haug et al. 1993). We constructed a two-stage, female-only matrix model, based on

a post-breeding census (Fig. 1). Juveniles were considered to be age 0-1 year and adults were

aged > 1 year. Survival differed between adults and juveniles. Because this was a post-breeding

census, juveniles breed when they enter the adult class, we assumed reproduction of adults and

juveniles entering the adult class was equal. Although Burrowing Owls have been known to

produce two broods in a year (Gervais and Rosenberg 1999), this is rare and we did not account

for it in our model. The annual projection matrix is

A =




sjb sab

sj sa


 (1)

where sj is juvenile survival probability, sa is adult survival probability, and b is fecundity.

All analyses were conducted in matlab.
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Estimates of demographic rates

We parameterized transition matrices for four years (1997-2000; Table 1) from data collected

at Lemoore. Observations of individually marked birds were used to estimate survival rates (the

probability of survival from time t to t+1) and capture probabilities (the probability a marked

individual that is alive at time t is encountered at time t) using the mark-recapture methods in

program MARK (White and Burnham 1999). An a priori set of modified Cormack-Jolly-Seber

models that examined survival rates and capture probabilities in relation to age, gender and

time were developed based on field experience and perceptions about likely sources of variation

in these parameters. For a thorough introduction to survival estimation using mark-recapture

techniques see Williams et al. (2001), and for detailed methodology including the full set

of models considered see Gervais (2002). Models were compared using Akaike’s Information

Criterion, AICc, adjusted for small sample bias (Burnham and Anderson 2002). AICc ranks

models based on optimization of fit and precision so that the best approximating model in

the set provides the most parsimonious explanation ofthe data. Estimates of adult female

and juvenile survival were taken from the model with the most support based on AICc which

allowed survival to vary by gender, year, and age in a linear combination, and allowed recapture

probability to vary by gender. Survival is assumed to be underestimated due to emigration,

which we could not estimate, but our focus here is on relative rather than absolute population

effects. We hereafter refer to survival as apparent survival. Fecundity was estimated from

standardized nest watches (Gervais 2002). This is also underestimated because of the difficulty

in detecting all young in burrow-nesting species (Gorman et al. 2003). This bias is likely to be

year-specific, as environmental conditions affect emigration rates and the detectability of young

owls, but measures of this bias were not available. Fecundity is expressed as female young

produced per female, assuming an even gender ratio of young at birth.
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Time-specific demography

Observed demographic rates were highly variable among the four years of the field study

(Table 1). We examined the dynamics that would be produced if the demographic rates observed

in a single year were to remain constant over a long period of time, evaluating this for each

of the four years separately. We refer to the projection matrices for 1997, 1998, 1999 and

2000 as A97, A98, Ap, and Ac, respectively. High demographic rates were observed in 1999 in

response to high densities of California voles (Microtus californicus), which were a primary food

source (Gervais 2002, Gervais and Anthony 2003). We designate this as a peak year. A vole

population crash in the following year (2000) was accompanied by extremely low demographic

rates (Table 1), and we designate this as a crash year.

Linear time-specific dynamics are described by the population projection equation n(t+1) =

An(t), where n(t) is the population vector at time t. We used the dominant eigenvalue, λ, of

A as a measure of the long-term population growth rate. We calculated the stable stage

distribution and reproductive value as the right and left eigenvectors, w and v, respectively,

of A that correspond to λ (Caswell 2001). To evaluate potential effects of reductions in the

demographic parameters (i.e. sa, sj and b) that might result from pesticide contamination

we calculated the elasticity of λ to changes in the parameters (i.e. the proportional change

in λ resulting from a proportional change in a parameter). The elasticity of λ to change in a

parameter θ is (Caswell 2001)

eθ =
θ

λ

∂λ

∂θ
=

θ

λ

∑

i,j

∂λ

∂aij

∂aij

∂θ
(2)

where aij is the ijth entry of A.

We used a life table response experiment (LTRE) analysis (sensu Caswell 1996) to determine

contributions of the parameters to differences in λ among years (Caswell 1996, Levin et al.
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1996, Caswell 2001). We classified the projection matrices as average (A97 and A98), peak

(Ap) and crash (Ac) conditions based on vole availability as a food source. We used the mean

of the two average matrices as the reference matrix, Aa. We estimated contributions of the

parameters to the change in λ between average and peak conditions and between average and

crash conditions. Let λ(a) and λ(p) be population growth rates under conditions in average and

peak years, respectively. Effects of the parameters on the change in λ are measured relative to

Aa using the first-order linear approximation:

λ(p) − λ(a) ≈
∑

i

(
θ
(p)
i − θ

(a)
i

) ∂λ

∂θi

∣∣∣∣
(Ap+Aa)/2

(3)

where θ
(a)
i is the ith parameter in the matrix Aa. The ith term in the summation is the

contribution of differences in θi in Aa and Ap to the difference in population growth rate. The

contributions to the change in λ between average and crash years (λ(a) and λ(c)) were calculated

in the same way.

Growth rate projections from deterministic models assume that the population has reached

the stable stage distribution. We evaluated the transient dynamics of the time-invariant model

using the methods of Fox and Gurevitch (2000).

Modeling frequency and intensity of contaminant effects

Time-specific analyses characterize the environments (average, peak, and crash vole condi-

tions) in terms of their ability to support owl population growth, but they tell us only what

would happen if a particular set of conditions remained constant over time. In reality the owls

experience some sequence of these conditions, causing owl populations to fluctuate over time.

A peak vole population year is generally followed by a population crash the next year, and this

two-year sequence is separated by some number of years with intermediate vole abundance.

The number of intervening years may vary, depending on whether vole populations cycle every
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two years, less often, or whether they fluctuate in a more unpredictable fashion (Pearson 1966,

Garsd and Howard 1981).

Because p,p ′DDE contamination affects owl demographic rates in years when owls consume

fewer voles (Gervais and Anthony 2003), the effects of p,p ′DDE contamination on population

dynamics will depend on i) the frequency of vole population crashes; ii) the arrangement of av-

erage, peak and crash years within the cycle, and iii) the level of impairment of a demographic

rate under crash conditions. Evaluating contaminant effects on owl population dynamics re-

quires incorporating this periodicity in a population model. The matrices representing owl

demographics under different scenarios of vole availability (Aa, Ap and Ac) can be combined

in either a periodic model, in which different conditions are assumed to occur in a repeated

deterministic sequence, or in a stochastic model, where each set of conditions has a particular

probability of occurring at each time step. The effects of the frequency of vole crashes on

population growth are difficult to predict a priori. Because peak and crash years are linked,

reducing the frequency of vole population crashes reduces the frequency of both good years

(the best conditions) and bad years (the worst conditions). This attenuates their effects, and

conditions in the intervening years have increasing influence on population growth.

Deterministic periodic analyses

To model cyclic vole population crashes, we constructed a periodic model with an annual

time step. The periodic model specified a repeated deterministic sequence of average (Aa

as defined above), peak (Ap) and crash years (Ac) that corresponded to average, peak and

crash vole abundance, respectively. A peak year was always followed by a crash year and this

combination of years was separated by a specified number of average years. The dynamics over
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time were modeled as

n(t + y) = Ac ApAk
an(t) (4)

where k is the number of average years occurring in a cycle. The total number of years in

the cycle is y = k + 2, the number of average years plus a peak year and a crash year. We

calculated the annual long-term population growth rate (λpd) as the yth root of λB, the dominant

eigenvalue of the periodic matrix product B = Ac ApAk
a,

λpd = λ
1
y

B (5)

We investigated the effects of both the frequency and intensity of impairment associated

with p,p ′DDE. Vole populations at Lemoore peaked and crashed only once between 1996 and

2001 and the average length of vole cycles in this region is unknown. We therefore investigated

a range of plausible vole cycle lengths. To explore the effects of the frequency of vole crash

years we varied the interval between vole crashes from three to twelve years by varying k from

1 to 10. We explored the effect of contaminant intensity by independently reducing each demo-

graphic parameter by 0% to 50% in vole crash years. All eggs sampled in 1996 contained levels

of contaminants that could have caused 50% reproductive impairment under low rodent condi-

tions. Although only reproduction appeared to be impaired by p,p ′DDE (Gervais and Anthony

2003), we examined the effects of perturbations of both reproduction and survival, altering each

demographic rate independently. This allowed us to explore the potential consequences of an

interactive effect with other toxicants, such as a carbamate insecticide (e.g., James and Fox

1987) that do affect survival.

For each combination of cycle length and intensity of impairment, we calculated λpd and

the elasticities of λpd to the demographic parameters. As in the time-specific analyses, the

elasticities estimate the effect on λpd of potential reductions in the demographic parameters.
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The elasticities of λpd to the parameters in a periodic model depend on how a parameter θ

affects the matrices Ac, Ap, and Aa. The elasticity of λB for the periodic cycle B to θ was

calculated as

eλB
θ =

θ

λB

∂λB

∂θ
=

θ

λB


∑

i,j

∂λB

∂a
(c)
ij

∂a
(c)
ij

∂θ
+

∑

i,j

∂λB

∂a
(p)
ij

∂a
(p)
ij

∂θ
+ k

∑

i,j

∂λB

∂a
(a)
ij

∂a
(a)
ij

∂θ


 (6)

where the superscripts in parentheses denote the annual matrix (Caswell and Trevisan 1994,

Lesnoff et al. 2003). The elasticities of λpd to a
(x)
ij , ∂λB

∂a
(x)
ij

in (6) were calculated according to

equation 13.40 in Caswell (2001). Because λB describes growth over a cycle of y = k + 2 years,

the elasticities were converted to an annual basis as

e
λpd

θ =
1
y

(
λ

1−y
y

B

)
θ

λB

∂λB

∂θ
(7)

We used a Monte Carlo approach to generate the standard error of λpd. We drew the

survival parameters from beta distributions to constrain the values to between 0 and 1, and

the reproduction parameter from a gamma distribution to impose a lower bound of 0. All

parameters were drawn independently using the means and standard errors given in Table 1, a

matrix constructed, and λpd calculated. This process was repeated 10,000 times. The resulting

distribution of λpd describes the uncertainty in the estimate of λpd arising from uncertainty in

the parameters.

The population growth rate and elasticities are asymptotic properties of the model. The

rate of convergence to these asymptotic values and any oscillations prior to convergence are

governed by the subdominant eigenvalues. For a two-stage model, as in our case, convergence

is determined by the damping ratio, ρ,

ρ =
λpd(1)∣∣λpd(2)

∣∣ (8)
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where λpd(1) and λpd(2) are the dominant and sub-dominant eigenvalues of B, respectively.

Convergence is more rapid for larger ρ. We calculated ρ as a measure of transient effects in the

periodic model.

Stochastic analyses

Vole cycles are not precisely periodic in this region. The interval between a crash year and

the next peak year is variable, as are the peak-year densities (Pearson 1966, Garsd and Howard

1981). We investigated the influence of variation in the frequency of occurrence of peak and

crash years with a stochastic model

n(t + 1) = Atn(t) (9)

in which the projection matrix At was generated by a 3-state Markov Chain model of the

environment (Figure 2). As in the periodic model, a peak year was always followed by a crash

year and a crash year was always followed by at least one average year. There was a probability

q that an average year was followed by a peak year and a probability (1− q) that an average

year was followed by another average year.

We varied the expected frequency of crash years, f , over the same range as in the periodic

model, from once every three years to once every twelve years. The long-term frequency satisfies

f =
2q + 1

q
(10)

We investigated the same range of intensity of impairment as in the periodic model, inde-

pendently reducing each demographic parameter by 0% to 50%. We estimated the stochastic

population growth rate as the average growth rate of the population over 100,000 time steps

(Caswell 2001). That is,

log λs =
T−1∑

t=0

log
(

N(t + 1)
N(t)

)
(11)

14



Gervais, Hunter and Anthony

where N(t) =‖ n(t) ‖= ∑
i |ni(t)| is the total population size and T = 110, 000 is the length of

the simulation. The first 10,000 time steps of the simulation were discarded to allow convergence

to the stationary distribution and thus remove any transient effects.

We calculated the stochastic growth rate and the elasticity of the stochastic growth rate to

changes in the parameters for each combination of frequency and intensity of impairment. The

elasticity of log λs to change in a parameter θ was calculated as

∂ log λs

∂ log θ
=

1
T

T−1∑
t=o

Jt θt vT (t + 1) ∂At
∂θ w(t)

R(t)vT (t + 1)w(t + 1)
(12)

where

R(t) =
‖ Atw(t) ‖
‖ w(t) ‖ (13)

(Caswell in press). Here, Jt is an indicator variable defining the type of year in which θ is

perturbed. To calculate the elasticity of logλs to θ in all years Jt = 1. To calculate the

elasticity of logλs to θ in crash years Jt = 1 if the environment is a crash year and 0 otherwise.

We calculated Monte Carlo standard error estimates for logλs in the same manner as for

the periodic model, drawing parameters independently from gamma or beta distributions for

reproduction and survival, respectively. Standard errors for logλs were calculated from 1,000

iterations.

Results

Time-specific dynamics

The long-term population growth rates for constant conditions corresponding to average,

peak or crash conditions varied widely, from 0.396 to 1.320 (Table 1). These growth rates

are hypothetical projections since conditions do not remain in one of these states over time.
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However, they show that Burrowing Owls are clearly capable of substantial population growth

in peak years and may suffer substantial losses in crash years.

The stable stage and reproductive value distributions were fairly consistent among years.

The stable stage distribution under peak year conditions was approximately a 66:33 ratio of

juveniles to adults. In all other years the stable stage distribution was approximately a 50:50

ratio of juveniles and adults. The reproductive value of adults was about four times that of

juveniles under all conditions.

The elasticities of λ to the parameters were similar in average and crash years (Fig. 3). The

elasticities of λ to apparent juvenile survival and to fecundity were lower than to apparent adult

survival in these years. The pattern of elasticities was reversed for peak year conditions. Under

these conditions the elasticities of λ to apparent juvenile survival and fecundity were higher

than to apparent adult survival. For the life cycle structure we used, which featured two stages

with all possible transitions, the elasticities of λ to apparent juvenile survival and to fecundity

are always equal in the time-invariant, deterministic case. Although the elasticities of λ to

elements of the transition matrix always sum to unity, the elasticities of λ to parameters in the

model do not. Transient dynamics did not appear to be important under constant conditions.

Convergence to the stable stage distribution was reached in one or two time steps for matrices

for all years.

The LTRE analysis indicated that the higher λ observed for peak year conditions was almost

entirely a result of increased fecundity (Table 2). Both adult and juvenile apparent survival

differed little between average and peak years, and made little contribution to the difference in

λ under these conditions. The lower λ observed under crash conditions was mostly a result of

reduced apparent adult survival (54%) and apparent juvenile survival (34%).
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Deterministic periodic dynamics

For the periodic model, Burrowing Owl population growth rate increased as the frequency

of vole peak-crash events declined and the intervening conditions predominated (Fig. 4). Con-

fidence intervals for λpd were wide as a result of large standard errors for the parameters (Fig.

4). However, the increasing relationship between λpd and length of the vole cycle was observed

in more than 90% of runs. This suggests the uncertainty in λpd may shift the line for the mean

estimates up or down, but it would not change the relationship.

When cycle length was short, small alterations to the frequency of crash years had a greater

effect on λpd than small parameter reductions (Figs. 5 and 6). Decreasing the frequency of vole

peak-crash events from once every three years to once every four years resulted in a 3.3% increase

in λpd (Figs. 4 – 6). Fecundity in crash years would need to be reduced by nearly 50% to cause a

change in λpd of an equivalent magnitude for a vole cycle of this length. However, the magnitude

of the change in population growth diminished with increasing numbers of intervening years.

These results are not dependent on the fact that estimates of reproduction and survival already

incorporate impacts in crash years. The percentage change in λpd resulting from changes in

the frequency or intensity of modeled impacts are similar if baseline parameter values in crash

years are increased to equal those estimated for average years. Evaluating the effect of measured

levels of p,p ′DDE on population growth rate for the Lemoore Burrowing Owl population was

not possible without more information on vole population dynamics in the region.

A reduction in adult or juvenile apparent survival had a greater effect on λpd than a reduction

in fecundity (Figs. 5 and 7). The elasticities of λpd to sa, sj and b in crash years were low in the

periodic model, even for short intervals between vole crash years (Fig. 7). The elasticities for

these parameters all decreased as the interval between vole crash years increased, because this

decreased the frequency at which they were perturbed. The similarity between the elasticities
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of λpd to apparent adult and juvenile survival were a consequence of the particular parameter

values used in the model (see Table 1) and not a constraint of the periodic model structure.

Different values for these parameters would not necessarily result in such similar elasticities.

There were negligible transient dynamics in the periodic model. The subdominant eigen-

value, λpd(2), is nearly zero, so convergence is extremely rapid.

Stochastic dynamics

Results for the stochastic model were very similar to results for the periodic model. Popula-

tion growth rate for the stochastic model, λs, was very similar to the periodic model, λpd, and

the population growth rate confidence intervals for the two models were almost completely over-

lapping (Fig. 4). λs showed the same response as λpd to changes in cycle length and reductions

in the three demographic parameters (Fig. 5). The elasticities of λs to the parameters and the

change in the elasticities with cycle length were nearly identical in the stochastic and the peri-

odic models. These results suggest that conclusions about population growth in a deterministic

environment with variable vole densities are robust to the inclusion of stochasticity.

Discussion

Effects of frequency and intensity of contaminant impacts

Contaminant impacts on this Burrowing Owl population are mediated by the population

dynamics of voles, their major prey species, because p,p ′DDE effects are only observed when

rodents are less frequent in the diet. We found a non-linear relationship between vole crash

frequency and owl population growth rate. The impact of vole peak-crash events on Burrowing

Owl population growth rate therefore depends on the frequency at which vole peak-crash events

occur. Frequent vole peak and crash events result in substantial reductions in Burrowing Owl
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population growth rate. Long vole cycles, in which peak-crash events occur less than once every

ten years, have a much smaller impact.

The relative importance of vole cycle length and of contaminant effects on parameters to

Owl population dynamics also depends on the frequency of vole peak-crash events. A change

in the frequency of vole peak-crash events from once every four years to once every three

years decreased population growth rate by about 3.3%. Owl reproductive impairment in vole

crash years would need to be nearly 50% to cause an equivalent decrease. However, as the

interval between vole peak-crash events increased to ten years, a relatively small decline in owl

productivity of 10% becomes equally important to owl dynamics as a one-year change in the

vole cycle length. These general patterns appeared to be robust to the range of parameter

values and the types of models we investigated.

The effect of vole peak-crash events on the Lemoore Burrowing Owl population depends on

the frequency at which these events occur. Determining the relative importance of vole peak-

crash events and reproductive impairment also requires estimates of reproductive impairment

and of variability in both vole peak-crash events and reproductive impairment. Unfortunately

we do not have data to estimate either the frequency or variability of vole peak-crash events.

Vole populations at Lemoore peaked once between 1996 and 2001, or once in six years, but

evidence exists for both more frequent and less frequent major fluctuations in vole populations

in California. Evaluating more specific effects on the demography of Burrowing Owls at Lemoore

will require a better understanding of vole population dynamics in the region.

Vole populations in California typically do not show the extremely regular patterns so preva-

lent at higher latitudes (Pearson 1966, Garsd and Howard 1981, Cockburn and Lidicker 1983).

The driving factors of vole population dynamics are not well understood. Small rodents in Chile

responded to the El Nino Southern Oscillation (ENSO) event in 1991 with greatly increased
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densities (Jaksic et al. 1997), and the vole population increase documented at Lemoore began

in an ENSO year (1998). However, earlier records of increased vole abundance in California

(Pearson 1966, Garsd and Howard 1981, Cockburn and Lidicker 1983) do not match up with

ENSO events. Food does appear to be at least partially responsible for vole density increases,

but many other factors are likely to be involved (Garsd and Howard 1981, Ford and Pitelka

1984). A major challenge to understanding how contaminant impacts are affected by other en-

vironmental conditions will be understanding how these conditions themselves are determined.

Greater population growth in Burrowing Owls in years when voles were abundant resulted

primarily from increased reproduction. This is consistent with other studies that suggest that

food availability is a major determinant of nesting success in Burrowing Owls (Wellicome 2000,

Haley 2002). The potential for substantial population growth is no doubt driven partly by

the large clutch size of this species (up to 12 eggs, Haug et al. 1993). Elasticity analyses also

showed reproductive output was more important in peak than in crash vole years. Shifts such

as this in the importance of different parameters under different conditions have seldom been

documented with real data, but are beginning to be recognized and are no doubt more common

in species in highly variable environments (Wisdom et al. 2000, Smith et al. in press). The life

history characteristics required to generate such variable patterns are worth further exploration.

Burrowing Owls may produce from none to over ten fledglings per nesting attempt, depending

on annual conditions (Haug et al. 1993, Gervais and Anthony 2003). They appear to follow

a strategy of maximizing reproductive output in years when conditions are favorable, but not

investing greatly in reproduction in unfavorable years. This life history strategy, in conjunction

with the variable environmental conditions, is likely responsible for the reversals in elasticity

values.

The stochastic and periodic analyses demonstrated that apparent survival of both juvenile
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and adult owls was relatively more important than fecundity. These analyses represent an

integration of the different annual conditions, and are therefore more reflective of reality than

the hypothetical case where a single set of environmental conditions is projected over a long

period of time. We had expected fecundity to be more important for the Burrowing Owl,

a short-lived species capable of producing a large number of offspring (Emlen and Pikitch

1989, Heppell et al. 2000). The small impact of fecundity in our analyses was due in part

to low reproductive output in average years. The importance of fecundity becomes greater as

reproductive output increases.

Most previous studies investigating the effects of p,p ′DDE on individuals found greater ef-

fects on reproduction than on survival at exposure levels comparable to those documented at

Lemoore (Blus 1995, 1996, and references therein; Keith and Mitchell 1993). Because contam-

inant effects on reproduction in this study population occur when reproduction has relatively

little impact on population-level processes, fairly severe contaminant effects on reproduction

are necessary to substantially alter population growth. It is therefore not surprising that even

high levels of reproductive impairment had relatively little effect on Burrowing Owl population

dynamics in our models.

Burrowing Owl survival was likely severely underestimated in the vole crash years as a result

of increased emigration following widespread reproductive failure (e.g. Jackson 1994, Wicklund

1996, Serrano et al. 2001, Catlin 2004). However, no estimates of emigration or immigration

are available for this population. Estimation of fecundity is also known to be negatively biased

(Gorman et al. 2003); therefore, no inferences should be made regarding absolute values of

population growth rate, as they are clearly biased low. Movement in particular cannot be

ignored if unbiased estimates of population growth or an indication of population status are

desired.
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Matrix population models in ecotoxicological risk assessment

The link between individual-level effects and population-level consequences lies at the heart

of ecotoxicology (Truhaut 1977, Moriarty 1983, Caswell 1996, Stark and Banks 2000). Demo-

graphic models provide a powerful tool for making this link, especially for longer-lived organisms

for which data are more difficult, time-consuming and expensive to collect. In many cases, ex-

perimental work will not be possible due to issues of scale and ethical constraints. Demographic

models have many benefits. First, they provide a simple, flexible framework for evaluating pop-

ulation impacts. It is simple to incorporate different stressors on different life stages or at

different points in the life cycle, to evaluate potential changes in environmental conditions, and

to account for uncertainty in the data (e.g. by calculating confidence intervals). Second, demo-

graphic models synthesize the effects of toxicants into overall indices of population performance,

such as population growth rate. Third, the lack of ”complete” data is not an impediment to

demographic modeling. Models can explore the potential impacts of unknown parameters and

identify the most important pieces of missing information.

Our analyses show that demographic modeling can provide a reasonable analysis of contam-

inant effects at the population level even given uncertainty about the structure of the system

and the owl’s response to the environment. The Burrowing Owl is a fairly typical example of

population-level risk assessment where only some demographic data are available. Although

more complex models may be necessary to answer specific questions regarding risk or particular

management strategies, our simple model captures the essential dynamics and is flexible enough

to integrate effects occurring at varying temporal scales. Despite the wide confidence intervals

in estimated population growth rate, the response of λ to changing vole cycle frequencies and

demographic rates was consistent across a range of analyses that included both periodic and

stochastic models. In this case, a simple model provides insight into the risk posed by an
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anthropogenic stressor and provides useful information for management and future research.
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Tables

Table 1: Estimates of adult survival (sa), juvenile survival (sj), fecundity (b), the number

of nesting pairs (data from Gervais 2002), and population growth rate (λ) for time-invariant

models for 1997 to 2000 .

Year Adult Juvenile Fecundity Number λ

survival (SE) survival (SE) (SE) of pairs

1997 0.540 (0.120) 0.277 (0.100) 1.175 (0.249) 65 0.866

1998 0.557 (0.071) 0.292 (0.056) 0.975 (0.168) 63 0.842

1999 0.575 (0.065) 0.307 (0.053) 2.426 (0.244) 85 1.320

2000 0.294 (0.053) 0.120 (0.025) 0.850 (0.198) 64 0.396

Table 2: Percent contribution of demographic parameters to the change in λ in peak (1999)

and crash (2000) years relative to average (the mean of 1997 and 1998) years from an LTRE

analysis.

% contribution

Year change in λ sa sj b

Peak (1999) 0.454 0.058 0.087 0.880

Crash (2000) -0.470 0.542 0.337 0.097
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Figure captions

Figure 1. Two-stage Burrowing Owl female life cycle based on a post-breeding census: sa is

adult survival, sj is juvenile survival, and b is fecundity.

Figure 2. Transition graph for the 3-state Markov Chain for the stochastic model, Avg, Peak

and Crash correspond to average, peak, and crash year conditions, respectively, and q is

the probability of an average year being followed by a peak year.

Figure 3. The elasticity of population growth rate to apparent adult survival, sa, apparent

juvenile survival, sj , and fecundity, b, for the time-invariant matrices A97,A98,Ap,Ac.

Figure 4. Population growth rate for the periodic model (λpd; heavy solid line) and stochastic

model (λs; heavy dashed line) as a function of the interval between vole crash years. Light

lines are ± one SE from bootstrap estimates of population growth rate.

Figure 5. Population growth rate for the periodic model (λpd; left panels) and stochastic

model (λs; right panels) as a function of interval between vole crash years and percentage

reduction in (a,b) apparent adult survival sa, (c,d) apparent juvenile survival sj , and (e,f)

fecundity b. The white contour lines represent lines of equal population growth rate. The

near vertical alignment of these contours demonstrates the small response of λpd and λs

to parameter reductions. A greater change is seen along the x-axis, showing a greater

response to changes in the frequency of vole crashes. Note the difference in scale on the

y-axis for reductions in fecundity.

Figure 6. Percent change in λpd resulting from a 10% decrease in reproduction (dashed line) or

from a one year increase in the number of average years occurring between vole peak-crash

events (solid line).
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Figure 7. Elasticity of population growth rated for the periodic model, λpd, to apparent adult

survival (sa), apparent juvenile survival (sj) and fecundity (b) in vole crash years as a

function of the interval between vole crash years. The elasticity of λpd to sa and sj for a

given interval are identical.
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