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Abstract

A meeting to review research progress on double-diffusive phenomena in the
ocean was held September 26-29, 1989, at the Woods Hole Oceanographic Institu-
tion. Twenty-five oral presentations were made and a number of discussion session
were held. This report contains manuscripts provided by meeting participants, sum-
maries of the discussion sessions and an extensive bibliography on oceanic double-
diffusion. Since double-diffusive processes appea to play an important role in ocean
mixing, furher research in this field should have high priority. It is hoped that this
update on the status of our current understanding wil facilitate planning of addi-
tional research.
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Forward

This report provides a sumar of a meeting held in Woods Hole in late

September, 1989, that focussed on the topic of Double Diffusion in OCtanogra-

phy. This is a field which has sen rapid progress and growth in the past decade
and which seems poised for significantly more progress in the nineties. The report
consists of papers submitted by meeting speakers in "camera ready" form, reports
on discussion sessions which identify areas ripe for future work, and a bibliography
on ocean double diffusion.

The meeting was motivated by a number of factors. These include:

1. A markedly improved data base on ocean double diffusion resulting from re-
cent field programs in tropical and high latitude regions which has advanced
understanding of the phenomena.

2. Emerging evidence which indicates that double diffusion is an important ocean
mixing mechanism, clearly dominant in some regions and significant in much
of the main thermocline of the subtropical gyre.

3. A perceived need to promote interactions among observationalists, experimen-
talists, theoreticians and modelers.

4. The significant growth in the field as reflected in the volume of literature on
the topic (Figure 1).

5. The obvious needs for: more quantitative laboratory experiments, additional
numerical modeling, new observational tools, well-designed, process-oriented
field programs and development of double diffusive parameterizations for ap-
plication to large scale models.

6. Finally, it was felt that the identification of major problems and possible
solution paths would help to foster future progress.

The meeting was open to all interested parties and was promoted by letters of
invitation and announcements on electronic mail and in EOS, the Transactions of
the American Geophysical Union. There were 25 prepared talks and 4 discussion
sessions. Several fims and videos were shown of laboratory and model results.
Social functions consisting of a reception hosted by WHOI Director Dr. Craig
Dorman at Meteor House and a New England Clam Bake at Fenno House were well
attended.
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An additional feature of this report is the bibliography on double diffusion. It
was compiled from bibliographies by Janice Boyd, Nick Fofonoff, and Jiro Yoshida
and was augmented by contributions from a number of others. Its purpose is to
bring together in one place all the references on double diffusion which have par-
ticular oceanographic relevace. In addition, a smal number of references on other
aspects of ocean mixing or double diffusion in other media are included to provide
connection to a broader range of literature. An attempt was made to be all inclusive
with respect to oceanographic double diffusion; the choices of related papers were
subjective. References for the last two or three years are probably less complete
than earlier years. Hopefully, the compilation wil simplify the work of students

and researchers of ocean mixing.

The bibliography also serves an additional purpose; it ilustrates the dramatic

growth in this area of research in the past several decades. If the double diffu-
sive references alone are summed in five year groups, the change from one or two
papers/year to nearly 20 papers/year from the '60s to the '80s is readily seen (Fig-
ure 1). If references from the double diffusive literature in geology, astrophysics
and materials science had been included, the growth would be even more dramatic,
especially in the last decade. This growth has occurred mostly by the efforts of
individual investigators. It is felt that there now exists suffcient "critical mass" to
warrant more coordinated and systematic research programs. Some ideas for the
focus of such efforts are given in the discussion session summaries on Salt Fingers,
Diffusive Convection and Thermohaline Intrusions.

Acknowledgments

Special thanks are accorded Craig and Cynthia Dorman for generously hosting
the reception at Meteor House. Ellyn Montgomery and David 'iVellwood assisted
with meeting arrangements. Veta Green helped prepare this report. Support for the
meeting and the preparation of this report was derived from grant OCE 88-13060
from the National Science Foundation.
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DOUBLE DIFFUSION IN OCEANOGRAPHY

Woods Hole Oceanographic Institution
Woods Hole, MA

September 26-29, 1989

A meeting to survey recent progess in understanding double-diffusive mixing in the
ocean and to identify areas where future work might profitably focus.

Sched ule:
Monday, September 25: Meteor House

6:00 pm Reception with the Director

Tuesday, September 26: Redfield Auditorium

8:30 am Welcome

Science Session 1, Salt Fingers: Results from C-SALT
Moderator: Trvor McDougall

9:00 Ray Schmitt, WHOI

"Overview of C-SALT"

9:45 Mike Gregg and Tom Sanford, Univ. of Washington
"Some observational puzzles about double-

diffusion"

10:30 Coffee Break

10:45 Marc Fleury, Chesapeake Bay Institute
"Horizontal variation of dissipation and
characteristics of a single interface"

11:30 Rolf Lueck, Chesapeake Bay Institute
"Vertical coherence of horizontal temperature
gradients"

12:15 Lunch
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Science Session 2, Salt Fingers: Models
Moderator: Barry Ruddick

1:30 pm Eric Kunze, Univ. of Washington
"Behavior of salt fingers in shear"

2:15 Colin Shen, Naval Research Laboratory

"An overview of numerical salt finger experiments"

3:00 Break

3:15 George Veronis, Yale University

"Inversion of C-SALT data"

4:00 Trevor McDougall, CSIRO, Tasmania

"Interpretation of C-SALT layers"

Wednesday, September 27: Redfield Auditorium
Science Session 3, Salt Fingers: Other Observations
Moderator: Eric Kunze

8:30am Tom Osborn, Chesapeake Bay Institute
"The Salt Fountain"

9:15 Steve Mack and Howard Schoeberlien, Applied
Physics Lab

"Observation of salt fingering from a towed

conductivity array"

10:00 Break

10:15 James Hamilton and Neil Oakey, Bedford Institute of
Oceanography
"Double-diffusion and turbulence in the Canary
Basin"

11:00 Dave Hebert, Oregon State Univ.

"Salt finger fluxes in a Meddy"

11:45 John Taylor, Univ. of Western Australia
"The growth of salt fingers after disruption
by turbulence

12:30 Lunch
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Science Session 4, Diffusive Convection
Moderator: Barry Ruddick

1:30 pm Harndra J. Fernando, Arizona State U Diversity
"Laboratory experiments on mixing across double-
diffusive interfaces"

2:15 Ruby Krishnamurti, Florida State University
"Laboratory experimental studies on sub critical

double-diffusive convection"

3:00 Break

3:15 Laurie Padman, Oregon State University

"Arctic double-diffusive steps"

4:00 Ray Schmitt, W.H.O.I.

"Mean shear and the density ratio in the Central Water"

Thursday, September 28: Redfield Auditorium

Science Session 5, Thermohaline Intrusions
Moderator: Ray Schmitt

8:30am Barry Ruddick, Dalhousie University
"Thermohaline Intrusions"

9:15 Jiro Yoshida, Tokyo University

"The behavior of double-diffusively induced
secondary currents"

10:00 Hideki Nagashima, Institute of Physical
and Chemical Research, Japan
"Numerical models of double-diffusive
density currents"

10:15 Break

10:30 Ellen Thomas, Stanford University
"Intrusions into a thermohaline stratification I:
Experiments"
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11:15 Jeff Koseff, Stanford University
"Intrusions into a thermohaline stratification II:
numerical simulations"

12:00 Lunch

Open period

5:30 pm New England Clam Bake, Fenno House, Quisset Campus

Friday, September 29: Redfield Auditorium
Discussion Session 1: Prospects for Future Work:
What are the primary areas where additional observations, analysis,
laboratory experimentation, numerical modellng, or technical
developments can advance our understanding of double diffusion in the ocean?

8:30 am Salt fingers
Moderator: R. Schmitt

9:30 Break

9:45 Diffusive Convection

Moderator: B. Ruddick

10:45 Thermohalne Intrusions

Moderator: T. McDougall

11:45 Lunch

Discussion Session 2: A mixing experiment in the Central Water

1:15 pm Jim Ledwell, Lamont-Doherty Geo. Observatory

"NATRE: The North Atlantic Tracer Release
Experiment"

2:00 Open discussion, with contributions from:
M. Gregg, E. Kunze, R. Lueck, N. Oakey,

B. Ruddick, R. Schmitt, A. Wiliams
and Others.

4:00 Close of Meeting
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Overview of C-SALT
R. W. Schmitt

Woods Hole Oceanographic Institution
Woods Hole, MA 02543

Abstract

The Caribbean Sheets And Layers Transects (C-SALT) field program was organized to

survey the prominent thermohaline staircases found in the western tropical North Atlantic. In

addition to two hydrographic occupations of the step region there were large area AXBT surveys,

a current meter mooring and intensive microstructure measurements. One striking result of the

survey work was a very large horizontal coherence length to the layers and systematic trends in

the temperature and salnity of individual layers. The spatial trends in T-S are quite similar to

the temporal trends observed in laboratory salt finger experiments, where salt is transported at

a greater rate than heat. The numerical value of the heat/salt flux ratio is slightly larger than

expected from salt fingers alone. Several mechanisms are considered to explain this; all of them

require significant salt fingering. The actual rates of mixing are diffcult to establish from the large

scale surveys because of eddy variabilty, but the microstructure measurements suggest a vertical

salt diffusivity of order 10-4 m2/s. This indicates that the C-SALT region is a "hot spot" for

vertical transport in the thermocline.

1. Introduction

The C-SALT field program was carried out in the spring and fal of 1985 in the tropical

North Atlantic east of Barbados. An extensive thermohaline staircase consisting of approximately

10 well mixed layers between 150-600 m depth was found. The layers were 5-40 m thick; high

gradient interfaces between them were 0.5-5 m thick. Temperature contrasts of order 0.5 to i.

°C existed across the interfaces (Figure 1). The layers were found over an area of about 1 milion

square kilometers and some layers appeared to be traceable for 3-400 kilometers. Temperature data

from the current meter mooring indicated that the layers were present continuously from March



,-

-t
.

23.
,

34.2

5.
o.

iOO.

200.

~ 300.

~ 400.

~ 500.c:

600.

700.

800.

12

DENSITY RATIO
0 t 2. 3.
, . , , ,

POTENTIAL DENSITY
24. 25. 26. 27.

, . . , .

SALINITY (PSU)
34.8 35.4 36.0 36.6

, , , , .

TEMPERATURE (DEG. C)
it 17 23. 29.

4.
,

28.
.

37.2

35.

er8

Figue 1. A thermohaline staircase from Station 49 during the spring cruise from the
C-SALT surey area. Profiles of t~mper~ture, salinity, potei:tial density (0"8) and den-
sity ratio (Rp) are shown. The density ratio was computed using ~east s~u~es fits over a
sliding 40 m vertical interval. The layers only appear when the density ratio is less than 1. 7.

through November 1985. The currents were weak and variable within the steps (350-450 m) and

in the core of the underlying Antarctic Intermediate Water (850 m) where current meters were

deployed. A project overview is given in Schmitt (1987) and various results are presented in the

October 1987 issue of Deep Sea Research, 34 and in Boyd (1989); Kunze (1987); Marmorino (1989);

Schmitt (1988) etc,.

One of the most interesting results of the C-SALT hydrographic surveys was the discovery

that the layers displayed distinct patterns on a T-S diagram (Schmitt et aL., 1987). This is readily

seen on a T-S scatter plot because of the higher density of points from the mixed layers (Figure 2.a)

or in a volumetric T-S diagram (Figure 2.b). Layer temperature - salinity values are grouped in

well defined lines. Examination of closely spaced tow-yo casts (Schmitt et aL., 1987) and towed

thermistor chain data (Marmorino et aZ., 1987) reveals that changes within layers are often gradual,
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but occasionaly punctuated by more abrupt transitions involving a temperature inversion within

the layer. T-S points falng on the same line serve to identify individual layers over horizontal

separations of hundreds of kilometers. This permits mapping of temperature and salnity variations

within layers over the survey area (Figure 3.a, 3.b). The pattern of spatial variations in T-S

properties of the layers is a rather direct confirmation of differential heat and salt transport. That

is, strikingly similar groupings of T-S points are seen in the temporal evolution of laboratory salt

finger experiments (Lambert and Demenkow, 1972). The horizontal density ratio within layers,

R _ aViTH - ßVi.S (1)

where a = -~ M, ß = ~ ~ and Vl = lateral gradient within a layer, showed no systematic

variation with depth or time, being about 0.85 in the spring data set, 0.84 in the fall (Table 1).

This number is well below the local vertical density ratio (1.6) which means that mechanical tur-

bulence cannot be responsible for the layers. It is also less than one, which means that isopycnal

mixing is not a primary cause of the layers. However, it is close to what would be expected for a

vertically divergent salt finger field. Specific interpretations of this ratio wil be the topic of the

following section (2). Section 3 wil discuss the estimation of mixing rates for the staircase from

the microstructure data. A brief summary is given in section 4.

Table I

Horizontal density ratio of the C-SALT layers, a VT / ßV S

Layer Spring Fall

1 0.837 0.843
2 0.860 0.875

3 0.866 0.889
4 0.872 0.864

5 0.873 0.847

6 0.853 0.833

7 0.828 0.834

8 0.846 0.807
9 0.871 0.820

10 0.817 0.772
Average 0.852::0.019 0.839::0.032
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2. Effects of Mixing in T-S Space

A very useful approach to problems in thermohalne ming is to consider the action of the

vaious mixing mechanisms in a space defined by the separate contributions of temperature and

salnity to density. That is, the axs are given by 0:6T and ß6S where 6 represents the deviation

away from a mean state (Figure 4). On such a diagram, different mixing and advection processes

are represented by vectors having different slopes (assuming 0: and ß are locally constant. See

McDougall's article in this collection for elaboration on cases where the flux ratio is not equal to

the flux divergence ratio.) Isopycnal mixing or advection has a slope of unity. Simple vertical

mixing and advection are represented by a vector with a slope equal to the local vertical density

ratio, about 1.6 for the C-SALT area. Salt fingers transport more salt than heat and have an

expected slope of 0.5-0.8, which is equal to the flux ratio of the fingers. No other known mixing

process has a slope below unity; cabellng for instance, leads to vertical entrainment which has a

slope of 1.6. Thus, the observed horizontal density ratio of 0.85 seems a decisive indicator of a

significant salt finger presence. However, this ratio is somewhat above that expected for fingers

alone, which is an issue worth exploring in some detaiL.

Mixing Processes

VERTICAL

aôT
0.85 OBSERVED

1.0 lSOPYCNAL

0.7 )
SALT FINGERS

0.5

ßôS

Figure 4. T - S density perturbation diagram. The slopes representing various mixing

processes are shown.



17

The heat/salt flux ratio for salt fingers is determined by two components: the advective flux

carried within the fingers and the conductive fluxes across the interface. The advective flux ratio is

simply given by the ratio of the heat and salt density perturbations within the fingers, since both

components are subject to the same velocity field. The diffsive flux of salt across an interface is

negligible compared to the conductive heat flux, which is simply determined by the mean vertical

temperature gradient within the interface. That is, the density fluxes are given by:

aFT = a w'T'+aKT Tz

(2)

ßFs = ß w'S'

where w', T', S' are the velocity, temperature and salnity perturbations within the fingers, KT is

the thermal conductivity, and T z is the mean vertical temperature gradient.

The total flux ratio (I) is:

aFT aT' aKTTz
1 = ßFs = ßS' + ßFs (3)

The diffusive correction (second term) to the flux ratio can be expressed in terms of the Stern

number (Stern, 1969), defined by:

A
ßFs(1 - 10) (

vßSz(Rp - 1) = vN2
( 4) ¡

,.,

Lr
,

The Stern number (A) is found to be about one in most low density ratio laboratory experiments

(Schmitt, 1979; McDougall and Taylor, 1984). The conductive correction to the flux ratio is thus:

KT
-(1 - 10) RpjA(Rp - 1)v

(5)

Since the Prandtl number (v j KT) is about ten at these temperatures, the conductive cor-

rection is typically 0.1.

The advective flux ratio (/0) is what is normally reported from laboratory studies. Turner

(1967) reported 10 = 0.56 for Rp ? 2; Schmitt (1979a) estimated 10 = 0.72 for Rp -( 2. and
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McDougal and Taylor (1984) quote a value of ïo 0.5 for Rp 0( 2.0. In principal, any value of

ïo less than one is a viable salt finger flux ratio. Some theoretical vaues are available from the

flux maxmization theory of Stern (1976) bo = 0.25) and the growth rate maxmization theory of

Schmitt (1979) bo = 0.62 at Rp = 1.6). The Schmitt (1979) model works well at explaining the

higher experimental flux ratio of the sugar/salt finger system and yields accurate predictions of the

salt finger wavenumber spectrum (Gargett and Schmitt, 1982), so we are partial to it. If we accept

this number and add the conductive correction, we would predict a total flux ratio for oceanic

fingers of about 0.72. If we use the experimental value of Schnutt (1979b) and add in the conduc-

tive correction we get an expected value of 0.82, in reasonable agreement with the observations.

However, the Schmitt experiments have a rather high value compared to other experiments and we

must question their generality. Thus, we wish to explore several alternative mechanisms. The first

involves a modified salt finger model, the others involve various combinations of salt fingers and

other processes.

2.a Broadband Salt Fingers

The width of salt fingers bears a very close relationship to the flux ratio. This is because

a thin finger more rapidly looses its temperature anomaly, and thus has a lower flux ratio than

a thick finger. This dependence is readily seen in Figure 5, where the flux ratio - wavenumber

relationship is plotted for the sinularity solutions of Schnutt (1979a) at a density ratio of 1.6 and

for the "equilibrium" salt finger (Huppert and Manins, 1973; Lambert and Demenkow 1972) for

1 0( Rp 0( 100. The closeness of the curves despite very different growthrates indicates that this is a

robust relationship which should hold nearly independent of the dynamic state of the fingers. If the

finger field were composed of only the fastest growing finger (or sheet in the presence of shear) then

the expected flux ratio is 0.62 as noted above. However, if the spectrum is rich in high wavenumber

fingers, which carry salt but not much heat and are highly dissipative, then the flux ratio wil be low.

If the spectrum is red, containing fingers with nearly equal T and S anomalies and being weakly

dissipative, then the flux ratio wil be high. Gargett and Schmitt (1982) considered the evolution of
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salt finger spectra grown from 2 different red seed spectra using the Schmitt (1979a) model, which

used a white seed spectra. Here we reexamine such spectral calculations for the effect on the flux

ratio. That is, the flux ratio wil be determined by flux contributions 
at all wavenumbers, not just

the fastest growing, and we must sum the fluxes from the whole finger spectrum.
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Figure 5. Salt finger flux ratio versus non-dimensional wavenumber for three cases:

Equilibrium fingers for 1 -c Rp -c 100 (-), fastest growing fingers for 1 -c
Rp -c 100 (- - -), and the whole spectrum of salt fingers at Rp = 1.6, (-)

This has been done for several different seed spectra using relationships given in Schmitt

(1979a). Figure 6 displays the evolution of the flux ratio with time for fingers grown from salinity

seed spectra having slopes of -4, -2, -1 and o. Also shown is the (invariant) flux ratio for the fastest

growing finger. All the curves tend toward the fastest growing flux ratio, as this wavenumber comes

to dominate the flux. However, it is somewhat surprising that only the reddest seed spectrum causes

much elevation of the flux ratio.
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It is iluIlnating to consider the causes of this decreased flux ratio for the less red seed spec-

tra. The essential element is the fact the salt anomales are the driving force for the convection.

The salt also has a richer high wavenumber spectrum (no matter what the seed spectrum) than the

temperature, because of the factor of 1/100 smaler diffusivity. Despite the viscosity being 1000

times larger than the salt diffusivity, the velocity spectrum is also relatively enriched at higher

wavenumbers because it is driven by the salt anomales. The temperature spectrum fals off most

sharply of the three spectra at wavenumbers greater than the fastest growing. The fact that the

low wavenumber portion of the spectrum has relatively high flux ratio and thus nearly canceling

T and S anomalies also means that this portion of the spectrum has weaker gravitational forcing

of the velocity field. Thus, the wavenumbers greater than the fastest growing make a tangible contri-
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Figure 6. The evolution of the net flux ratio for salt finger spectra growing from initial
salnity seed spectra having slopes of -4(0), -2(0), -1(~), and O( +). The

constant flux ratio of the fastest growing finger is also shown (-).
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tribution to the salt flux, though not to the heat flux, and lower the overal flux ratio to a value

less than that of the fastest growing alone unless the seed spectrum is very red. The spectra of

shear, temperature and salnity gradient for salt fingers is in stark contrast to ordinary turbulence,

which is forced by larger scale velocity gradents. For turbulence, we expect the shear, T and S

spectra to peak at successively higher wavenumbers, .which are quite distinct from one another.

For salt fingers we expect them al to peak at the same wavenumber (the fastest growing) with salt

and velocity shear having relatively more high wavenumber variance than temperature. This poses

some interesting questions for microscale observations. In particular: 1. Can we develop probes to

resolve the salinity gradient spectrum? and 2. Is the 2 cm resolution of the typical shear probe

adequate to resolve al the shear variance 
in salt fingers? Higher resolution probes operated from

a low noise platform might provide information on the dynamic state of the fingers.

In summary, unless the forcing spectrum for salt fingers is very red, a broadbanded salt

finger spectrum is more likely to lower the flux ratio than raise it. Thus, broadbandedness is

not particularly promising to explain the elevated "flux ratio" observed in the C-SALT layers.

However, consideration of the effect does raise possibilities for understanding the dynamical state

of the fingers through higher resolution measurements.

2.b Salt Fingers Plus Turbulence

One mechanism that could elevate the net flux ratio is turbulence. Assuming that turbulent

patches are suffciently intense to completely mix the temperature and salinity gradients then the

flux ratio due to turbulence is simply equal to the vertical density ratio, about 1.6. Occasional

turbulent events that augment the more continuous salt fingering could raise the net flux ratio by

the appropriate amount.

This can be roughly quantified by assuming that "horizontal" advection within the layers

balances the vertical flux divergence due to the salt fingers and the turbulence. That is, the
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temperature and salnity balances are given by:

U . a"ViT = ¡KSF ßSzz + KTua Tzz

(6)

U . ß"ViS = KSF ßSzz + KTuß Szz

where KSF is the effective salt finger diffusivity and KTu is the turbulent diffusivity. Since within

the layers, T and S are well correlated, we can write:

U .a"ViT = RH U .ß"VlS (7)

where RH is the horizontal density ratio in the layers (0.85). Using the foregoing substitution we

find:

RH
¡KSF + RpKTu=

KSF + KTu

or

KSF = (~H-_R;) KTu

For Rp =1.6, RH = 0.85, and taking ¡ = 0.72, I estimate that the salt finger diffusivity is 5-6 times

(8)

the turbulent diffusivity. If the finger diffusivity is 0 10-4 m2/s then KTu = 2 x 10-5 m2/s, which

seems a bit high considering that Gregg (1989) estimates a diffusivity of this order in a number of

stronger shear regions (C-SALT had anomalously low internal wave shears). However, Marmorino

(1990) finds evidence for occasional shear instabilties in C-SALT which may be suffcient to explain

the elevated flux ratio. Another possibilty is that the layer convection was suffciently intense

that turbulent entrainment across the interfaces occurred. Some of the laboratory experiments

of Schmitt (1979) displayed elevated flux ratios due to entrainment. We conclude that turbulent

mixing of unknown origin is a possible explanation for an elevated "flux ratio" in the C-SALT

layers. If it is primarily turbulence it must be modulated in a way that is proportional to the

salt finger flux, since there is no systematic variation of the apparent flux ratio with depth in the

staircase.
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2.c Salt Fingers and Vertical Advection

Here we consider the effect of a cross-interface velocity, which might be due to upward or

downward entrainment offiuid across the interface. The effective heat/salt ratio for such advection

is given by the vertical density ratio Rpo Formulated as in the simple model above we obtain:

U. a"VlT + WaTz = ¡KSFßSzz

(9)

U. ß"VlS + WßSz = KSFßSzz

This leads to the relation for the vertical velocity:

W = KSF Szz (RH - ¡)
Sz (RH - Rp) (10)

Evauated for the observed vertical and horizontal density ratios, a diffusivity of 1 x 10-4 m2/s, and

a halocline scale height of 200 m, we obtain a vertical velocity of -1 x 10-7 m/s. This magnitude

is typical of thermocline upwellng rates and an order of magnitude smaller than Ekman pumping

rates. We have to emphasis though, that this is a "dia-interface" velocity, not strictly diapycnal

or vertical. A specific mechanism to produce such a velocity would have to be identified. One

candidate is the asymmetric entrainment observed in the salt finger experiments of Schmitt (1979).

The observed upward migration of the interface would correspond to the downward flow required

here.

2.d Salt Fingers and Isopycnal Mixing

Since processes which lead to exchange and mixing of water parcels along density surfaces

influence temperature and salinity in the proportion a/ ß, or with a "flux ratio" of 1, it is possible

to combine fingering with isopycnal mixing to match the observed horizontal density ratio in the

layers. Here we model the isopycnal mixing as being due to flux divergences caused by an "eddy"

diffusivity acting on the Laplacian of T and S on isopycnal surfaces. That is:

U . a\lIT = ¡J(SFßSzz + K¡ß\l¡ S (11 )
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U. ßVtS = IKSFßSzz + K¡ßV¡S (12)

Where K¡ is the isópycnal diffusivity.

This leads to the relation:

K. - K Szz (RH -I)i - SFV¡S (1- RH) (13)

For the eddy resolving C-SALT hydrographic data we find strong isopycnal gradients of T and S

but also find that it is diffcult to pick out a particular length to characterize a convergence scale.

The eddy field is suffciently robust that the sign of the isopycnal gradients changes over 10s of

kilometers. In this situation, the above relation cannot be applied quantitatively. If we assume

a vertical scale height of 200 m and a horizontal length scale of 200 km then we find that KH

must be 106 x KSF, a plausible number. However, since the isopycnal mixing would again have to

maintain a strength that was proportional to salt fingers in order to preserve depth independence

of the layer density ratio, it seems somewhat unlikely that isopycnal mixing is an important factor

in establishing the value 0.85 for the horizontal density ratio, though we cannot rule it out.

One could interpret the temperature inversions within layers as evidence of horizontal stir-

ring. But they could merely reflect an occasional concentration of the horizontal temperature and

salnity variations within layers. That is, the large scale hydrographic surveys reveal changing

T, S and density over scales of 200-400 km within the layers. The finer scale towyos and towed

chain data of Marmorino (1989) showed that these changes could be concentrated in certain regions

where inversions within the layers would appear. The density ratio of the inversions is necessarily

the same as the large scale horizontal density ratio, 0.85. Thus, they are capable of supporting

diffusive convection. Whether these intrusions are actively generated and driven by double-diffusive

flux convergence, occur simply because of horizontal variability in the vertical flux convergence, or

are passive concentrations of the large scale gradients by mesoscale eddy stirring, is beyond the

scope of our present data.
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2.e Salt Fingers and Cabellng

Because seawater has an equation of state which has a nonlnear dependence on tempera-

ture, any process which destroys thermal variance wil lead to "densification" of the participating

fluid. This includes vertical mixing processes as well as the traditional scheme in which seawater

parcels of identical density but different T and S are mixed to produce a mass of higher density

than the original parcels. McDougall (1981a,b,c) and Schmitt (1979) have noted an asymmetrical

entrainment effect in double-diffusive experiments. In the fingering case the lower mixed layer

erodes the interface and expands while the top of the interface grows into the upper mixed layer.

This leads to an upward migration of the interface of the sense required to explain the variations in

the C-SALT layer properties. McDougall (this volume) explores this mechanism in some detail and

concludes that it is a viable candidate. Here we note that the vertical advection case considered in

2.c above is relevant.

2.f Summary of Mechanisms

Of al the above processes two seem more probable than the others, those are the scenarios

involving turbulence and cabellng in addition to salt fingers. Marmorino (1989) and Fleury and

Lueck (this volume) cite evidence of a turbulence incidence of order 1% which would contribute

to raising the effective flux ratio above the theoretical salt finger value of 0.62. McDougall (this

volume) provides arguments indicating that the effect of a nonlinear equation of state may account

for half to all of the required flux ratio elevation. Thus, plausible explanations exist for the observed

horizontal density ratio in the layers. Proof that these particular mechanisms do indeed operate in

the C-SALT layers would probably require time series measurements of microstructure (Lagrangian

and/or moored). Such capabilities are at a very preliminary stage of development.



26

3. Mixing Rates

In the aftermath of the C-SALT field work Lueck (1987) and Gregg and Sanford (1987)

emphasized the smalness of the turbulent dissipation and the disagreement with one particular

laboratory data set to conclude that the fingers were not particularly vigorous. This is under-

standable if approached from the perspective of conventional turbulence. However, this is quite

misleading, as has been noted by Schmitt et al. (1987) and Schmitt (1988), since double-diffusion

differs from turbulence in fundamental ways. Here we reiterate the issues to discourage further

propagation of such risinterpretations.

3.a Salt Finger Effciency

Turbulence derived from internal wave breaking in the thermocline is a rather ineffcient

process from the standpoint of mixing. Only a smal fraction (10-20%) of the kinetic energy

derived from the shear is converted to a change in potential energy of the stratified fluid and the

rest is dissipated. Thus, the turbulent dissipation is the largest energy sink in a mixing event

and relatively easy to monitor. In contrast, salt fingers are expected to convert over 70% of the

energy derived from the salt field into a change in potential energy for the temperature field. The

turbulent dissipation is a small energy sink for salt fingers; they are much more effcient at mixing

than shear driven turbulence. The buoyancy flux, which is equal to the dissipation, is the difference

between the heat and salt fluxes, and is thus rather small for salt fingers. This dichotomy between

the processes is reflected in the expressions relating the dissipation rate to vertical diffusivity. For

turbulence the Osborn (1980) equation holds:

r Rj J E EKp ~ l1 _ Rj N2 ~ (0.1 - 0.2) N2 (14)

where RF is the flux Richardson number, usually taken to be 0.15.
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In contrast, for sat fingers the relevant relation (derived by McDougal (1987 personal

communication) and given by Hamilton, Lewis and Ruddick (1989) and Schmitt (1988)) is:

KSF =
(Rp - 1) ~ '" (1 -+ 4)~1 - 'Y N2 - N2 (15)

Thus, there is a difference of a factor of 5 to 40 in the estimated vertical eddy diffusivity depending

on whether the dissipation is due to turbulence or double diffsion!

There are also reasons to suspect that conventional shear probes cannot resolve the full

shear spectrum of salt fingers. In turbulence the shear spectrum peaks at a lower wavenumber

than the temperature and salinity gradient spectra. As noted in 2.a above, for salt fingers the

shear, temperature and salnity gradient spectra al peak at about the same wavenumber, and the

salnity and shear fal off more slowly than the temperature at higher wavenumbers. This is because

it is the smal scale salt anomales that are driving the flow. Given the very small structure seen

in the shadowgraph images, it is possible that a significant portion of the dissipation spectrum is

unresolved by shear probes with a 2 cm scale cutoff. Similarly, data processing procedures which

assume the shear should follow empirical turbulence spectra would underestimate the dissipation.

Using the Lueck (1987) and Gregg and Sanford (1987) estimates of dissipations in the range

of 2 to 5 X 10-10 W /kg and relation (15) above, yields vertical salt diffusivities in the range of

0.2 to 2.5 x 10-4 m2 Is (Schmitt, 1988). In contrast, diffusivities estimated for shear instabilty of

internal waves are one to two orders of magnitude smaler, in much more strongly sheared regions

(Gregg, 1989). Thus, the thermohaline staircase may have one of the largest vertical transfer rates

in the main thermocline, despite a relatively low turbulent dissipation.

3.b Interface microstructure

Marmorino (1987) and Lueck (1987) reported on the narrow band thermal microstructure

found within the interfaces of the staircase. The wavelength of the dominant structure is 5-10 cm,

in excellent agreement with the theoretical finger size. The predicted -1/4 power dependence of

the wavelength on the vertical temperature gradient is supported by Marmorino's data. His data
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also indicate that the amplitude of the fingers scales with the 3/4 power of the vertical temperature

gradient, as predicted by the model of Kunze. Also, on average, the thermal cox number is near

ten, in excellent agreement with the model of Kunze (1987) (and that of Stern (1969) as shown

by Schmitt (1988)). The buoyancy flux (assumed equal to the dissipation) also appears to be

consistent with the collective instabilty model of Stern (1969, 1975) in that the "Stern number"

(or nondimensional dissipation) is about 1 for the C-SALT interfaces.

However, in several respects the interfacial microstructure differed from expectations. These

include the following points:

i. The interface thicknesses were greater than expected from laboratory experiments and highly

variable. A typical interface thickness of 2 m (Boyd, 1988) with excursions to 10 m contrasts

with the 20-50 em thickness obtained by application of laboratory results (Kunze, 1987;

Schmitt, 1988).

11. There was low vertical coherence of temperature microstructure over a few centimeters (Lueck,

1987).

iii. The shadowgraph imagery revealed nearly horizontal lamina rather than the vertical structure

seen in salt finger experiments and other ocean regions (Kunze, et aI., 1987)

iv. The Cox number of the interface varied inversely with interfacial temperature gradient (Mar-

morino, 1989; Lueck and Fleury, 1990). No model has predicted such dependence.

Point i must be related to the low dissipation measured in the staircase. That is, if the

fluxes had been as large as predicted by application of the laboratory "4/3" power laws, then the

interface should have been thinner to maintain a Stern number of order unity. It is not unreasonable

to expect that interfacial internal waves and other processes could vary the interface thickness, and

thus modulate the strength of the fingers.

Lueck (1987) suggested that the low vertical coherence indicated that the fingers were not

vertical pipes as seen in the laboratory. However, such vertical structure only becomes appa.rent



29

in the later stages of the typical lab experiment. The early fingering interface can be rather

non-uniform and display a more isotropic microstructure. Simiar isotropic structure is seen in

the numerica model of Shen (1989). Another explanation for low vertical coherence is that the

fingers are bent over by shear. This would also explain the shadowgraph results, which consistently

displayed horizontal lamna in al of the interfaces; no isotropic structures were seen except in rare

turbulent patches outside the step interval. Thus, shear-tilted fingers seems to be the most probable

explanation of points ii and iii.

Point iv is an intriguing result which should motivate development of finger models which

take into account the temporal evolution of the interface. Internal waves or other external influences

may have to be incorporated into the models. The inverse relation between Cox number and

temperature gradient means that the integral of thermal dissipation (X) within an interface depends

only on the temperature difference from layer to layer and not the interface thickness. Thus, a simple

linear flux law may be applicable.

4. Summary

The C-SALT field program provided the first detailed look at a thermohaline staircase.

The system of about ten layers was found to cover a large area (1 millon kilometer2) and to be

surprisingly coherent in the horizontal. Historical data and an 8 month mooring record suggest that

the staircase is a permanent feature of the western tropical North Atlantic. Water mass changes

within the layers are consistent with the expected difference in vertical mixing rates for heat and

t
f

salt due to salt fingers.

Similarly, there was strong evidence for salt fingers in the small scale data. Narrow band, lim-

ited amplitude thermal microstructure was observed on the interfaces at the predicted wavenumber

and amplitude. The interfaces were generally thicker than expected from laboratory experiments

and fluxes were modestly lower, perhaps due to modulation by internal wave strain or shear. Also,

the vertical coherence of temperature microstructure was small and shadowgraph images showed
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nearly horizontal lamina. Both these effects are probably due to weak vertical shear across the

interfaces. A vertical salt diffusivity of order 1 x 10-4 m2/s is estimated for the staircase from the

ficrostructure data. This indicates that the C-SALT region has enhanced vertical transport in

the main thermocline, which is most likely one or two orders of magnitude smaller in nonstaircase

regimes.
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Abstract
Measurements of velocity and temperature microstructure and hydrography made over a distance

of 40 km, along a single interface in a double-diffusive staircase, reveal strong horizontal variations
in the characteristics of the interface. The thickness of the interface varied from 0.2 to 12m while
the temperature and salinity difference across the interface remained nearly constant. The thermal
Cox number C was small, with most values fallng between 1 and 10, and varied with the mean vertical

temperature gradient according to C=0.9 I",Tz~'i. making the local vertical heat flux independent
of the interfacial thickness. The interface was turbulent in one 500 m long section where the average
dissipation rate was 3.4xl0.8W kg'l. The rate of dissipation was low in the remaining 39.5 km, averaging

10x10-IO W kg-I in the interface and 3xlO'IO W kg'l in the adjoining mixed layers. The flux ratio deduced

from the average heat flux and the average rate of dissipation in the mixed layers is 0.56.

Introduction
The results presented here come from data collected in and around a single interface during

the C-SAL T experiment in November 1985 (Schmitt et al. 1987). The interface was located in the

central region of the C-SAL T site (12° 06' N, 56° 30' W) and at mid depth (450 m) where the staircase

like structure of the thermo-halocline was well established. The measurements were made from
a towed vehicle that repeatedly crossed the interface in a saw-tooth pattern for a total of 220 crossings

over a distance of 40 km. The profiles provide a picture of the horizontal variations of the
characteristics of the interface (thickness, vertical gradients, heat flux and dissipation rates). We
will briefly describe our instrumentation and data processing, present the results and discuss their
implication.

Instrumentation and Data-Processing

The data reported here were collected with the towed body HOTDAD (Lueck, 1987). Two fast
thermometers (FP-07 thermistors) and two airfoil type velocity probes were mounted at the nose
of the vehicle. The thermometers were separated vertically by 0.035 m and produced signals

proportional to temperature and its along-path gradient (~aT iax). The two velocity sensors were
separated horizontally and athwartship by 0.035 m and produced signals proportional to the along-
path gradient of athwartship velocity (~av/ax) and an orthogonal velocity (~8w/8x). With the
help of some signal correction, the spatial resolution of the thermometers is 0 to 100 cpm while

the resolution of the velocity sensors is 1.5 to 100 cpm. Also aboard the towed body were a Sea-
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Bird temperature and conductivity sensor, a strain-gauge pressure transducer, a tri-axial accelerometer
and a two-component electro-magnetic velocity sensor.

The fast thermometers resolves the temperature gradient variances satisfactorily because the
temperature gradient spectra due to double-diffusion are band-limited. The spectra have been
corrected for the speed dependent frequency response of the sensors (Vachon and Lueck, 1984)
and were integrated from i to 60 Hz when U .: i m S-l and i to 80 Hz when U;: i m S-l where U is
the speed of the body. The thermometers did not resolve the entire gradient spectrum in the turbulent
region of the interface.

Two estimates of the rate of dissipation of kinetic energy, fw and fv' are available from the velocity

probes, assuming isotropy. For reasons which are not yet understood, the noise level of the Bv/Bx

probe increased with speed while the noise from the Biv/Bx probe decreased with speed. We estimated

the rate of dissipation of kinetic energy with the data collected in the mixed layer in the following
manner:

(i) all shear data were high-pass filtered at 1.5 Hz with a 5 pole elliptic filter,
(2) power spectra were computed for each one-second block of data and the rates of dissipation,

fv and f,. were estimated by integration from i cpm to 60% of the Kolmogorov wavenumber,

(3) we retain the lower of the two dissipation estimates from (2) and the spectra associated with

them, and, for each crossing of the interface, we average these spectra in wavenumber space,

(4) the average wavenumber spectrum was then integrated from i cpm to 60% of the Kolmogorov
wavenumber to produce a mean dissipation estimate and this mean was adjusted for the
missing data from below i cpm and above 60% of the Kolmogorov wavenumber using the
Nasmyth empirical spectrum (Oakey 1982).

At a level of about 2x10-10 W kg.1 (1 W kg-1 == 103 W m-3) the fit to the empirical spectrum is poor

and we took this to be the noise level of our instrumentation.

Our method for estimating the rate of dissipation in the interfaces was similar to the technique
used on the data from the mixed layers except that we only used f,.. The interface was highly stratified

and the assumption of isotropy in the dissipation range of the wavenumber spectrum may be incorrect.

Yamazaki and Osborn (1989) showed that f,. is correct to within better than 35%, whereas f,. may
be too low by more than an order of magnitude. The spectra from the interface contain more energy

at low frequencies than the spectra from the mixed layer and this may have resulted from the small

but, not insignificant, temperature sensitivity of the velocity sensors. Spectral leakage from low
frequencies is reduced by the 1.5 Hz low-pass filter. The average difference between the upward

(U;: i m S-l) and downward (U 0: i m S.l) profiles is 5xlO.io W kg-I. If we take the noise level in the
interface (2xIO-10 W kg-1) to be the base noise level in the absence of temperature contamination,

then the average noise level in the interface is 4.5xIO.io W kg.!.
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Results
The towed body crossed the interface 220 times during its 40 km trip and its presence in the

interface accounted for 20% of the total distance travelled. Isotherms constructed with the temperature

data from each crossing (figure 1) show that the depth of the interface had a peak-to-peak amplitude
of 30 m and an apparent wavelength of 15 km in addition to smaller amplitude displacements at
shorter scales. The thickness varied widely and the interface was bifurcated over the last 8 km
of our observations. The bifurcation split the interface into two thin interfaces separated by a mixed
layer approximately 3 m thick. The isotherms leaving the interface represent horizontal inhomogeneities

in the surrounding mixed layers.

Upper and lower mixed layers characteristics
The potential temperature and density, salinity and density ratio of the mixed layers adjacent

to the interface were not horizontally uniform (figure 2a). Anomalously cold, fresh and light water
was observed over 8 km simultaneously above and below the interface (km 21 to 29). The magnitude

of this anomaly was slightly stronger below than above the interface and resulted in a lowering
of the density ratio from 1.6 to i .3. The intermediate points in figure 2a represent the characteristics
of thin mixed layers inside of the interface. When main mixed layer values are plotted in a O-S
diagram (figure 2b) the points follow a curve of constant density ratio equal to 0.85 (0.82 and 0.87
respectively for the lower and upper mixed-layer). The spread of the data points and the slope
of the curve is mainly determined by the 8 km long anomaly. A similar result was obtained by Schmitt

et al. (1987) for data covering 300 km and was interpreted as a measure of the flux ratio. The 8 km
long anomaly is associated with thermohaline inversions in the mixed layers, probably caused by
an intrusion (Marmorino et aL. i 987) and, because the horizontal scale of the anomaly was only 8 km,

we prefer to interpret the slope in O-S space as a measure of the density ratio of the inversions.

lnteiface thickness
We define the thickness of an interface as the vertical distance in which the temperature in an

interface changes by 95%. Because the body intersects the interface at an angle 0b:::: i 0°, our

estimates of the thickness are biased if the interface is not horizontaL. Our estimate of the thickness
of a sloping interface is wrong by a factor of sin(Oj::0b)/sin(Ob)' where OJ is the interface slope. Because

internal wave motions produce only small values of OJ (OJ-d° at most from figure 1) this error is limited

to 10%. We did not observe any significant difference between up and down going profiles which
would have led us to suspect an error in our estimates.

The thickness of the interface ranged from 0.2 to 12 m (figure 3), nearly two orders of magnitude.

The interface was very thin at km 1 i where we measured values between 0.25 m and 0.5 m at 7
consecutive crossings in 400 m. The mean vertical temperature gradients were 1.4 to 2.6 °C m'l.

The interfaces were also very thin in the bifurcation region (as low as 0.22 m) but, since these interfaces
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support only half of the temperature difference between the upper and lower mixed layer, the gradients
were only 1 °C mOl. According to Kunze's model (1987) fingers cannot extend through the entire

interface if its thickness t is greater than tmax = 0.27",aT/aZ"~oi/4 i: 0.25 m where we took Kunze's

parameter C..=1/2. The interface was thinner than Kunze's criterium in three observations, only
20% thicker in 4 observations and 20 to 50% thicker on 7 crossings.

Heat flux
The thermal Cox number, defined by

c = ",C'VT)2HaT/az~-2,

is estimated using

"'C'VT)2~ = 3",(aT/ax)2~ and ",aT/az~ = b.T/i

where '" ~ denotes the ensemble average from a crossing of the interface, the variance is estimated

from the integral of the wavenumber spectra and b.T is the temperature difference across the interface

of thickness t. We used a factor of 3 which is appropriate for isotropic conditions because the numerical

simulations of Shen (personal communication) and the microstructure analysis of Lueck and Fleury

(1989) indicate that the temperature gradient is close to isotropic in a double-diffusive interface.
The average Cox number was 8.2 with most estimates lying between 1 and 10 (figure 4a). The largest
values come from the region where the interface was thickest, which is seen by comparing figures
3 and 4a. For the 7 crossings where the interface was thinner than 0.5 m, the average Cox number
was 2 (0.05 to 8.5) and stands in sharp contrast to the value of several hundred predicted by Kunze's

model for contiguous fingers across an interface. The Cox number was also close to 1 where the
interface was bifurcated (km 37 to-42). The Cox humber clearly decreased with increasing mean
temperature gradient and a regression (figure 4b) yields

C = 0.91 ",aT/cJ=:;.i.08

which agrees with Marmorino (1989). The points associated with shear-induced turbulence (figure
4a) have been excluded from the regression. The large range of temperature gradients was essentially

provided by the variations of thickness of the interface but, plotting the Cox number against thickness,

does not reduce the scatter from our regression. The average Cox number is close to the value of
7 (Rp= 1.5) predicted by Kunze (1987,1989) but, his model does not portend a dependence on the

mean temperature gradient.

The average contribution of the heat flux towards the buoyancy flux was estimated by averaging

the product of the Cox number and the mean vertical gradient at each crossing of the interface.
This method introduced a slight bias because thin interfaces are sampled more quickly (hence, more
frequently) per unit distance travelled than are thick interfaces. No correction was made for this
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possible bias. Our flux estimate excludes the molecular conductive flux by the definition of the
Cox number. The average buoyancy flux by heat was

FT = gK,olcxCol8Tj8z;;;; = 3.8x1O-io W kg-i

and wil later be compared to the dissipation rate in the mixed layer to deduce the flux ratio.

Dissipation rates

Estimates of the rate of dissipation of kinetic energy (figure 5) revealed low values in both
the mixed layers and the interface as well as the presence of shear-induced turbulence. A 500 m
long section (at km 13) of the interface was turbulent. At one crossing in this section, the density

structure had a 4 m vertical overturn implicating a Kelvin-Helmholtz instability. The dissipation
rate in this overturn was 7.4x1O-8 W kg-i (average of the two velocity probes). The non-dimensional

dissipation rate, tjIiN2.=572, is much larger than the minimum value of 16 required to support a

buoyancy flux (Rohr et aL. 1988) and also larger than the minimum value for isotropy in the dissipation
range of the velocity wavenumber spectrum (Garget et aL. 1984). The average rate of dissipation

in the turbulent section was 3.4x 10-8 W kg-i and the length of this section represents 1.3% of the

total length of our observations. The frequency of occurrence of turbulence is consistent with the

estimate of 1 % by Marmorino (I989) based on overturns of the isotherms. Although a relatively
high value of t occurred at some places (in particular in the bifurcation region) the remaining 39.5 km

of the interface cannot be considered turbulent because tjliN2. was less than 10 and frequently as

low as 1. Excluding the region of shear induced turbulence, the mean rate of dissipation in the
interface was

t = 9.5xlO-10 W kg.i

after we subtracted a noise level of 4.5x 10.10 W kg.l.

An examination of the dissipation rates in the mixed layers (figure 5) reveals 12 large estimates.
Two of the large values are associated with the turbulent section near km 13 and these are probably
reaL. However, the remaining 10 large values are artifacts of our instrumentation. They all occurred
in the lower mixed layer and just after the towed body turned around and started its ascent (figure

5). During the previous descent and at the same depth no turbulence was observed. Furthermore,
the large values were only observed for a narrow range of amplitude and frequency in the depth
cycle of the towed body. We believe that the remaining 10 large dissipation values are the result
of crossing the wake of the tow line which is impossible in a steady ascent and descent but can occur
if the trajectory is cyclic. Excluding the 10 spurious peaks, all of which are larger than 2x 10-9 W kg.!,

the mean rate of dissipation in mixed layers was:
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€ = 3xlO-10 W kg-I

after subtracting a noise level of 2xlO-IO W kg-I. The mean value rises to 13xlO-IO W kg-I if we include

the 10 spurious values. The mean rate of dissipation in the mixed layer agrees with Kunze's (1987;

1989) modeL.

The dissipation rate in the interface was 3.2 times larger than in the mixed layers. Gregg and
Sanford (1987) reported a ratio of 3.5. These authors found an average value of L.4xlO-IO W kg-!

for mixed layers between 300 and 600 m depth. However, all layers did not have the same dissipation

rates. Layer 5 (our lower layer) of Gregg (1988, figure 7) had a relatively high dissipation rate

(2.5xlO-10 W kg-I) in agreement with our results, whereas layer 4 (our upper layer) was below their
noise level of L.Ox 10-10 W kg-I.

Discussion
If we assume that the dissipation in the mixed layers is exclusively produced by the buoyancy

flux generated by double-diffusion in the interfaces, then the buoyancy flux produced by the heat
flux and the dissipation rate can be used to estimate the flux ratio with

Rf= FT/Fs = (1 + €/FT)-I = 0.56,

where € = 3x1O.10 W kg-I and FT= 3.8xlO.10 W kg-I (considered as a positive number). Our estimate

falls between the laboratory based estimates of Schmitt (1979, RpO.72) and Turner (1967, RpO.6)
and those of McDougall and Taylor (1984, Rp~0.45). The theoretical prediction (Kunze, 1987)
is 0.63. If we do not subtract the noise level, we get 0.43 and if we take the dissipation rate measured

by Gregg and Sanford (1987) (€=1.4xlO-1O W kg-I), we get 0.73. The deduced flux ratio is very sensitive

to the measured dissipation rate and because our mean dissipation rate is very close to the noise
level of our instrumentation, our flux ratio should be considered a lower bound.

Our estimates of the oceanic dissipation rates, heat flux and the flux ratio of a double-
diffusive interface agrees quit well with the theoretical predictions of Kunze (J 987; 1989) but, they
all also differ from his model in one crucial way - the heat flux is independent of the mean vertical

gradient. The flux is limited by some mechanism internal to the interface even when the interface
is thinner than the maximum thickness for contiguous fingers in Kunze's modeL. Also at variance

with all models of double-diffusion is that the microstructure temperature gradient is isotropic
Shen 1989; Lueck and Fleury 1989). Therefor, considerable progress has been made towards predicting

the fluxes in oceanic double-diffusion but, the physics of oceanic double-diffusion is still not fully
understood or modelled.
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Introduction
The structure of a single double-diffusive interface was examined using data collected during

the C-SAL T experiment in November 1985 (Schmitt et al. 1987). The interface was located in the

central region of the C-SAL T site (12° 06' N, 56° 30' W) and at mid depth (450 m) where the staircase-
like structure of the thermohalocline was well established. The measurements were made from a

towed vehicle that repeatedly crossed the interface in a saw-tooth pattern for a total of 220 crossings

over a distance of 40 km. The path of the body, while it traversed the interface, was never more

than 15° from horizontaL. The ship towing our instrument headed north-east at a speed of 2 knots.
The thermal structure of the interface was revealed with two thermometers mounted at the nose

of the towed body and separated vertically by 0.035 m. Lueck (1987) provided a more detailed

description of the instrumentation.

The thickness of the interface varied from 0.2 to 12 m (Fleury and Lueck, 1990) while the

temperature difference between the adjacent mixed layers bounding the interface remained nearly

constant. The heat flux across the interface was also nearly uniform in contradiction with the models

of Kunze (1987, i 989). In the view of Kunze's and other models of double-diffusive interfaces,

we have examined the data for evidence of a finger or sheet structure. We will present first the

coherence and phase of the transfer function of the temperature gradients measured by the two

thermometers. These two signals should be very coherent in a finger and sheet structure. We have

also estimated the isotropy of the local temperature gradient because the variance of the horizontal

component should be much larger than the vertical component in a structure dominated by sheets

or fingers. Finally, we wil show some samples of the two-dimensional temperature gradient

microstructure observed in the interface.

Coherence of the Temperature Gradients
Evidence for coherence between the signals from our two thermometers was first sought by

examining their time series (figure 1). We interpret the time series as a space series because the speed

of the body was fairly uniform while it traversed the interface. In the example (figure i), which
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is typical of our observations, the interface was 0.25 m thick, its mean vertical temperature gradient

was 2.6 °C m-1 and the density ratio was 1.6. The vehicle traversed the interface in a horizontal distance

of 3 m. The edges of the interface are clearly defined by the absence of temperature gradients in

the adjacent mixed layers (figure i, x -c 0.3 m and x;: 3.4). The value of the thickness is slightly

larger than the maximum finger length of 0.21 m predicted by Kunze (1987) when using Kunze's

parameter Cw = i /2. Thus, according to his model, the interfacial structure should consist largely

of vertical cells with a typical width 0.025-0.05 m. In the presence of shear, cells should transform

into sheets aligned with the direction of the shear (Kunze, 1989). Consequently, with or without

shear, the signals from the two thermometers should be correlated during most of the crossing of

the interface. The signals were indeed dominated by features with wavelength less than O. I m, but

there is no evidence for a relation between them although some isolated peaks (at x=2.5 m and x=0.5 m

for example) occur simultaneously. Shifting one signal relative to the other does not improve the

correlation.

We computed the coherence function r and the phase cp of the transfer function using

r(f) = S 1~(f) S 1i1(f) S 2/(f) (1 )

where C¡ is the complex Fourier coefficient computed from a one-second section of the temperature

gradient aT¡/ax, Sij = -c C¡ Cj * ;: is an ensemble average of these one-second estimates and the subscript

identify the sensor. The phase of the transfer function H( f) = S 12(f) S 22-1(f) was compu ted usi ng

cp(f) = tan-1 rlm(H)/Re(H)J (2)

where the functions Re and Im extract the real and imaginary parts of their arguments. Figure 2

shows the coherence and phase for a 400-meter section where the vehicle crossed the interface 6

times and where the thickness of the interface was less than 0.55 m (the section shown in figure I

is included). The coherence decreases above i Hz and approaches zero for frequencies above 4 Hz

(or 4 cpm with an average speed of I m 8"1). The spectra do peak between 10 and 20 cpm, as also
noted by Lueck (I987), and this is consistent with the predicted width of fingers. However, no coherence

is observed in this spectral range. The phase of the transfer function (figure 2, lower panel) also

indicates that the two temperature gradient signals are uncorrelated - the phase is randomly distributed

between :t1T at frequencies above 4 Hz. Thus, the coherence and the phase show that, over a vertical
distance of 0.035 m, the two temperature gradients are not vertically correlated for horizontal wavelength

smaller than 0.25 m. This result is not specific to the 400 m long section shown in figure 1. We have
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examined various sections for coherence, and even made an estimate for the entire set of observation.

None of these efforts revealed any correlation between the two temperature gradient signals.

Isotropy

In a finger or sheet structure, local vertical gradients should be much smaller than horizontal

gradients and the ratio of the variance of these two gradients should be small compared to 1. We

have estimated the local vertical gradient of temperature using

ÁT ¡Áx) = (Ti(x) - Tix))/d (3)

where d=O.035 m is the vertical distance between the upper and lower thermometer. By definition,

ÁT ¡Áx) is the local mean vertical gradient over the vertical distance d. In order to obtain an estimate

of the locl horizontal temperature gradient with a spatial smoothing identical to (3), we have estimated

the horizontal gradient using
ÁT Hix) = (Ti(x) - Ti(x+d)lfd

ÁTHix) = (Tix) - Ti(x+d))ld.

(4a)

(4b)

The two thermometers provide two independent estimates and using aT iax directly is incompatible

with (3). Three caveats apply to equations 3 and 4. The gradients are not exactly horizontal and

vertical, they are not precisely orthogonal and there is some attenuation of variance near the peak

of the spectrum. The path of the body deviated from horizontal by as much as 15°. The gradient
in (3) is not exactly orthogonal to the vector in (4). The line joining the sensitive tip of the two

thermometers was exactly orthogonal to the longitudinal axis of the towed body. However, the direction

of travel was not exactly parallel to the axis of the body because of hydrodynamic lift. A comparison

of the direction of travel, deduced from the speed and pressure records, against the inclination of

the body, inferred from the record of the axial accelerometer, indicates that these two directions

differed by as much as 6°. The finite difference applied in equation (3) and (4) acts like a low-pass
filter with a null response at 1/0.035 = 28.6 cpm and a half-power response at 13 cpm. Thus, variance

near the peak of the gradient spectrum was attenuated, but the amount of attenuation was the same

for both components of the gradient.

For each crossing of the intenace we computed the mean variance of ÁT HI' ÁT H2 and ÁT v between

the wavenumbers of 1 and 50 cpm. The ratio ",ÁT v~/",ÁT HI~ (figure 3) contradicts the notion that

the interface was largely composed of fingers or sheets. Instead of being small compared to unity,
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the ratio of the variance was generally near 1 and ranged from 0.5 to 6. On average, the variance

of the vertical gradient was larger than that of the horizontal gradient and the mean ratio was 1.54.

The average of the ratio olT v~/olT H2~' computed with the gradient measured by the second thermometer,

was 10% higher. Spectra of the vertical and horizontal temperature gradients indicate that vertical

gradients are larger between 1 and 10 cpm and that the two components are comparable at higher

wavenumbers. Thus, the gradients with long length scales (0.1 to 1 m) were somewhat flattened

into the horizontal plane while gradients with shorter length scales were close to isotropic. This

picture is consistent with the numerical models of Shen (1989) and laboratory observations of Taylor

(1990).

Microstructure
The thermal microstructure in the interface is shown by plotting the instantaneous temperature

gradient along the path of the vehicle (figure 4a). Sticks are plotted with a density of 64 per meter

and represent the orientation and magnitude of the temperature gradient. Because we are interested

in the local structure and not merely the variance, equations 3 and 4 are inadequate because the

horizontal gradient is displaced by half of one data point. To bring the two components into coincidence,

we calculated the horizontal and vertical temperature gradients using

(ßT ~x) + ßT ~x+d))/2

(ßT m(x) + ßT m(x))/2

(5a)

(5b)

where the variables are given in (3) and (4). Thus, the sticks (in figure 4a) show the local gradient

smoothed.equally in the vertical and horizontal direction over a distance of 0.035 m. In the first

example considered, the temperature from one sensor and the two components of the gradient are

plotted against depth (figure 4b). The interface was 0.56 m thick and had fairly sharp edges. Its

mean vertical temperature gradient was 1.15 °C mOl and the density ratio was 1.6. The profile (figure

4b indicates that the temperature stratification was weakly disturbed -the mean vertical gradient

was comparable to the rms fluctuations. The local gradient was directed upwards with only small

variations in its orientation. When the interface was thicker, the structure was different. A stick

diagram of a subsection of a crossing is shown in figure 5. The interface was weII defined, was 0.75

m thick, had a mean temperature gradient of 0.9 °C mOl and a density ratio of 1.6. The sticks are

orientated randomly with numerous inversions (sticks pointing downward) and this structure was

frequently observed when the interface was about 1 to 2 meters thick. Vertical celIs and sheets should

produce horizontal gradients (horizontal sticks) alternating in directions over length scales of
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0.025-0.05 m. This was not observed and figure 5 suggests an eddy-like structure. The last example

selected was relatively rare (figure 6). The interface was 2.0 m thick, its mean gradient was 0.3 °C mol

and the density ratio was 1.6. The portion between x=7.8 and 9 m contained a contiguous inversion

wíth a vertical scale of 0.5 m. The sticks veered towards a normal orientation above depth 404.0 m

and the structure below 404.8 m was eddy-like. There was no enhanced dissipation of kinetic energy

associated with the temperature inversion, in fact, the non-dimensional dissipation rate £(vN2)-l

was 2, much too small for a turbulent mixing process (Rohr et aL. 1988). Thus, it appears likely that

the structure revealed by figure 6 represents a density compensated intrusion inside an interface.

Conclusion

A finger- or sheet-like structure was not observed in the thermohaline interface although the

conditions were favorable to the formation of such a structure - a density ratio of 1.6 and a well

defined staircase. Two temperature sensors separated vertically by 0.035 m and moving nearly
horizontally showed no coherence at wavelengths shorter than 0.25 m. Thus, although the peak of

the gradient spectra (10-20 cpm) is in agreement with the theoretical width of the "fingers", no coherence

was observed at this scale and fingers do not appear to be present. An eddy-like structure describes

the interface more appropriately. A comparison between the vertical and horizontal temperature
gradients indicates that the structures were isotropic at length scales shorter than 0.1 and that it was

slightly flattened into the horizontal plane at length scales 0.1 to 1 m. The average variance of the

vertical gradient exceeded the variance of the horizontal gradient. Stick diagrams of the temperature

gradient vector also suggest an eddy-like structure, although some parts of the interface were hardly

disturbed away from a layered pattern.

The observed structures undoubtedly represent the result of double diffusion because the heat

flux across the interface could not have been generated by shear induced turbulence (Fleury and

Lueck, i 990). The wide variety of microstructure observed may be related to the large (1 decade)

scatter of the heat flux estimated by Fleury and Lueck. Our observations agree qualitatively with

the numerical simulation of Shen (1989) and the laboratory experiments of Taylor (1990). The buoyancy

driven motions that would otherwise lead to the formation of sheets and fingers appear to be suppressed

before these motions form structures with vertical length scales exceeding their horizontal scales.

This may account for the absence of coherence at a vertical separation of 0.035 m, and Kunze's (1987)

Richardson number constraint may not be the first factor limiting the growth of fingers and the

flux associated with them.
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Figure 1. Temperature gradients in an interface from the two sensors separated vertically by 0.035 m.
The interface was 0.25 m thick.
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show the 90% confidence interval. The data were collected on 6 successive crossings
of the interface where its thickness ranged from 0.25 to 0.55 m.
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Figure 3. Ratio of the variance of the vertical temperature gradient and the variance of the horizontal
temperature gradient at each crossing of the interface.
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Figure 5. Stick diagram of the temperature gradient in a portion of the interface where it was
0.75 m thick. The density ratio was 1.6 and mean vertical gradient was 0.9 °C m-l.
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1l BEHAVIOR OF SALT FIGERS IN SHEAR

mc Kunze
School of Oceanography, WB-lO, University of Washington, Seatte, WA 98195

ABSTRCT

Shadowgrph profies collected in the thennhalne stacae east of Bardos reveal
nearly-horizonta badig -- unlie the vertcal banding found in other figerg-favorable
pars of the ocan. A plausible inteipretation of this optica micrstrctu is that vertca

shear is tiltig over the figers. Ths paper sketches results frm a moel for shea-tiltig
of fingers (to appear describe in greater detal in Kunze, J. Mar. Res., 1989). The DAN
inertal wave shea observed durg C-SAL T would tit over and damp out squar planorm
(kx=ky) fingers so rapidly that they could not prouce signifcant fluxes. Vertcal sheets
algnéd with the shea (ky=O) will behave lie unshear figers provided the shea is

steady. But beuse oceaic shear is domiantly near-inertal, tung with tie to prouce
a component of shear nor to sheet crsts, sheets wil ultiately be tilted over. Ths
happens slowly enough that they can grw to signicant lengts. When such growig,

titig sheets ar lited by a crtical inverse finger Richardson numbe, (Vxvf2lN2 - 3-8,

the model is able to reprouce the obsered micrstrctu and inerred fluxes in C-SALT
within our uncertnty. However. this constrnt does not explain the density ratio
dependence in laboratory studies and numerical simulations. What constrs the growt
of fingers needs to be better understoo.

INODUCfON

This note describes the effect of vertcal shea on sat fingers to tr to explain the nearly-

horizonta lamae observed with a shadowgrph profier in the fingerig-favorable .

thermohaline staicae east of Barbados (Kunze et aI.. 1987). The strng correlation
between the presence of lannae and fingerig-favorable conditions in the profies suggests
that they are in some way connected with the salt-fingerig form of double-dfusive
instabilty.

A model for sat sheets in an inenialy-ror.ting shear can reproduce the spatial strctu of

temperatur and salinity inferr from the C-SAL T microstrctu measurements (Lueck,
1987; Manorino et al., 1987; Gregg and Sanford, 1987; Kunze et al., 1987). The
inferred fluxes (Gregg and Sanord, 1987) and flux ratio (Schmitt, 1988; McDougal,
1989) can be reproduced by a combination of growing, tilting sheets and molecular
diffusion if it is assumed that the growth of the sheets is disrupted at a crtical inverse finger
Richardson number, (Vxvy.lN2 - 3-8. The Schmitt flux ratio deduced from the layer
density ratio (0.85) would constrn the dissipation rates, fluxes and Cox numbers to the
lower bounds allowed by the measurements. Smaller finger flux ratios imply larger finger
fluxes in this modeL. McDougall's inferences from the nonlinearty of the equation of state
suggest that the layer density ratio cannot be used as a constraint on me flux ratio, and that
intenace migration (RF=Rp=1.6) must be makng a contrbution. If this is tre, men all
that can be said about the combined finger/molecular flux ratio is that it must be less than
one to produce a staicase.
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EQUA nONS OF MOTION

The equations of motion for tited salt fingers in a uniform shear Uz are

I~ + ~ - vV2u + U,W = - ~ I

iJ ~aw rnp
- + U - - vVlw= - - +g(aôT-ß8S)iJ ax . , dz

aôr ~
-a + ~ - K:TVlôT +Tzw = 0

(1)

aDS ~
-a +~- KSVl8S+Szw=O

I~ + ~ = 0 I
(Kunze, 1989). The terms in ooxes are those not found for unshead sat fingers (Stem,
1960). These include (i) the u-momentum equation, (ii) a pressur term in the
w-momentum equation, (ii) conservation of mass and (iv) advection Uaidx by the
background flow (in double boxes). Loking for solutions proportonal to
exp(i(kxx+kyy+kzz)), Kunze (1989) showed that (1) could be reduced to a diagnostic
equation for w and two evolution equations

g(aôT - ßDS)w=
vk2(l +s2) - sUz

"
"

DôT
Dr = -K:Tk2ôT - Tzw

t
r

(2)

D8S
pr = -K:sk2DS - Szw.

In a shea field, the finger wavevector will be continuously-deformed just as with internal
waves in shear (e.g., Lighthil, 1978; Phillips, 1966). From WK theoI) (e.g.,
Frankignoul, 1970; albers, 1981), the fingers preserve their horizontal wavenumber but
their vertical wavenumber changes continuously

I~ = -kxU z .1
(3)
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A NURICAL MODEL

In ths section, the evolution of fingers in shear is examned numerically. Equations (2)-(3)
were solved with a Runge-Kutta rouUfe (Press et al., 1986) using a tie-step of

21Ú(200N). Envinmental pareters were set to values tyical of the interfaces in the
thermohalne staiase east of Barbados (Kunze, 1989) and the fingers given initial seed
heights ho=2wofeJo=m(2ko), where ko is the total wavenumber and eJo is the associate

growth rate at t=O (see Kunze, 1989).

Liden's (1974) laboratory experiments demonstrate that the domiant double-dffusive
intabilty in stedy shear was vertcal sheets algned with the shea (kx=O). However, the
shear in the C-SALT stacase is not steady but near-inertal (Gregg and Sanford, 1987).
Therefore, üfingers sta grwing as sheets aligned with the shear(kx. ky)=(kH. 0), where

the shear is in the y-don initialy, then as tie progresses the shear wil rotate,
(Uz'vz)=IVzl(sin(ft),eos(ft)), introducing a slowly-growing component of the shear
normal to the sheets which will cause them to nlt over.

Fig. 1 displays the normalze (by their innal values) vertcal finger grdients of
temperatu and salinity, Tzli VoT 0' and Sz/l VoSol as functions of vertcal wavelength.
Rec that the vertcal wavenumber is incrsing in magnitude in time (3). Thus, the
vercal wavelength diminishes in tie and tie incres to the left. As the sheets grow.
the temperatue- and salnity-grdients increase unti molecular diffusion smooths out their
strctu. This occur at a wavelength of 3 em for temperatue and 1 em for salt. The sat

wavelength is identical to that of the optical strations in the shadowgrph images,
supportg the hypothesis that the observed lamnae are due to salt. The temperatur scale
is larger than the sat scale, but not as large as the 6-em temperatur vertca wavelengt
reponed by Gregg and Sanford (1987). This may be the scale at which the sheets go
unstable.

FLUXES

Replicating the sces of the observed microstrcture does not guartee that the model can
reproduce the observed fluxes. If the model is appropriate, it should also be able to
provide the flux ratio, RF-o.85 (Schmitt et aL., 1987) or RF~1.0 (McDougall, 1989),
dissipation rates (e-5x10-lO Wlkg in the interfaces and 1.4x1o-lO Wlkg in the layers; Gregg
and Sanford, 1987) and Cox numbers (6-30; Gregg and Sanford, 1987; Marorino et aL.,
1987; Lueck, 1987) deduced from the C-SALT measurements.

McDougall (1989) deduced a flux ratio of 1.4 frm the layer density ratio (0.85) and the
nonlinearty of the equanon of state. He argued that this was made up of a contrbution
from fingers and molecular diffusion (Rpd), and interface migrtion (RF=Rp=1.6); the
combined finger/diffusion flux must have a flux ratio less than one to prouce and maintain
a staicase (Kelley, 1988). Internal wave-generated turulence appeas to be too weak to
prouce significant interface fluxes.

Allowing sheets to grow unrestrcted by any amplitude constraint produces average
dissipation rates and buoyancy-fluxes two orders of magnitude grater than observed.
Therefore, some constraint must limit the growth of sheets.

What limts the magnitude of salt-fingering fluxes in the laboratory and ocean has ben a
longstanding question in the field, and is still unresolved. Stem (1969) proposed that
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Figure 1: Normalized vertcal temperature- (upper panel) and salinty-grdients (lower

panel) vs vertical wavelength for horizonta wavelengts of 2-7 em. The vertcal
wavelength deceases in time, so time increases to the left As fingers grw, their vertcal
gradents incrse unul the wavelength beomes suffciently smal that molecular difusion
eradicates the signatue. Ths occurs at a vertcal wavelengt of 3 em for temperatu and
1 em for salt.
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fingers grw unti their normalize buoyancy-flux, F¡JvN2 (hencefort refer to as the

Stem number, A), excees a crúcal value -0(1). Then their fluxes ar disrupted by
(collective) instabilty of the fingers. Holyer (1981) showed that the Stem number should
be 1/3, however, in a later paper (1984) identified a different instabilty which arse at
Stem numbers -D( 10-2).

For vertcal fingers, the Stem number is identical to an inverse finger Richarson numbe,
Ri¡-1=(VXVPIN2=(VJfPIN2 (Kunze, 1987), where the horizontally-shear vertcal
velocty replaces the vertcally-sheared horizonta velocity of the more famar Richardson
number. Fig. 2 displays laboratory (Schmitt, 1979; McDougal and Taylor, 1984; Taylor
and Bucens, 1989) and computer simulanon (Shen, 1989; Whitfeld et al., 1989) esnmates
of the average approximae Stem numbe ß~Fs"l(vciz) as a funcòon of density raòo Rp
along with model cures of this quantity (Kunze, 1987) for critical A=Ri¡-l =4,8 and 16
(assuming fastest-grwing fingers). Neither the lab nor numerical results support fingers
being disrpte at Stem numbers -0(10-2) although Wltfeld et al. (1989) repo that
perturbaúons on fingers grw at grwth rates tonsistent with Holyer (1984). The
numercal values (Shen 1989; Whitfeld et aI., 1989) might be questioned beause the
simulations ar two-ensional and corrspond to Prandtl and Lewis numbers much

closer to one than appropriate for heat-salt fingers. Taylor and Bucens (1989) suggest that
the very high values found at very low Rp by McDougall and Taylor (1984) may be due to
their unique intial conditions. Neverteless, the fact that numerica simulations and
laboratory measurments independently give very high Stem numbers at low Rp raises
doubts about the applicabilty of the Stem number constrnt.

This constrt will be used all the same. For the constat density raòo found in C-SAL T,

the density ratio dependence in Fig. 2 is not a serious concer. It will be assumed that new
sheets ar initiated imedately after the old sheets go crtical (unstable). Therefore,
averaging is cared out from t=O to the tie tc when the crtica inverse figer Richarson
number is exceeed.

The fit fingers to beome crúcal for Ri¡l c=4 (at Ntc121C55 , lowermost panel in Fig. 3)

correspond to fastest-grwing vertical fingers initially (À=Àr3 em, 80-0"). They have the
Schmitt (1988) flux ratio but average dissipauon rates, buoyancy-fluxes and Cox numbers
a factor of thee smaller than the C-SAL T observations. Choosing a larger crucal inverse
finger Richardson number wil reproduce the C-SALT dissipation rate, buoyancy-flux and
Cox number as well as be more consistent with Fig. 2, but then the flux rauo wil be lower
than the Schmitt value. Ths is not a concern if 

we believe McDougall's (1989) arguments
that the layer density rauo is not idenúcal to the flux ratio and that interface migrtion must
be contrbutig to the layer propertes. Alternatively, al the C-SALT microstrcture
invesugators assumed isotrpy and therefore multiplied their measur varances by a
factor of thee. Reducing their values by the same amount also reonciles them with the
fit sheets to go crtical in Fig. 3. Arguing agaist this alternative, Lueck (1989) presents

evidence for near-isotropy in the interface microstrcture.

The sensitivity of the fluxes is examned assumng that when the fastest-grwig sheets go
unstable, they disrupt the fluxes associated with other sheets and so domiate the overall
fluxes. Fig. 4 displays the average flux ratio, dissipation rate, buoyancy-flux, Cox
number, and final tit angle as functions of initial conditions and crtical inverse figer

Richardson number. The rage of values inferred frm the C-SALT measurments is
stippled (with account taen for ansotropy). There is little ot no sensitivity to the initial
conditions as a consequence of nearly exponential growth but there is dependence on the



66

00

r
Schmi t t (1979)

.. 0
McDougall and Taylor (1984) 0

4

°1

Taylor and Bucens (1989) .
Shen (1988) ..

3 AO ¡ 00 Whitfield et a1. (1989) A0
N~?.."
(/

Li~v
~ môx Rif-i

2 16.

.
8

4

2 3 4 5
R

p

Figue 2: Average approximate Stern number fkFs~/varz vs density ratio Rp from
laboratory measurments and numerical simulations. The solid cures ar model (Kunze,
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Figure 3: The average flux ratio RF, dissipation rate C:D. buoyancy-flux c:b~. Cox

number c:CT~ and tie Nrc/27r the sheets tae to reach crtica invers finger Richardson
number of 4 as a function of horizontal wavelengt and initial tit angIe. The first sheets to
go unstable ar marked by the patch of stippling (Nrcl2n=5.5). They have wavelengths

and initial tits correspondig to fastest-grwing fingers (Â.3 em. 8o=0i,. Their flux
ratios ar -D.8-0.85. dissipations -13xlO-lJ W/kg, buoyancy-fluxes -5-6xlo-lJ W/kg and
Cox numbers 2. The ridge of high dissipation C:D and buoyancy-flux c:b~ running frm
Â..x=3 em, 80=00to -8 em, 60 ° corresponds to sheets which initially have tota wavelengts
equal to the fastest-grwing wavelength. Thus, for a given tit, sheets with the fastest-
growing wavelength ultimately grow more than sheets of higher or lower wavenumber.
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crtical inverse finger Richardson number. The Schmtt flux ratio provides the strngest
constrnt on Ri¡-l.limting it to a range of 2-3. On the other hand, the C-SAL T layer

buoyancy-flux implies a crtical Ri¡-l of 3-6 and the interface Cox number and dissipation
rates imply crtical values of 4-16. McDougall's (1989) arguments indicate that the flux
ratio is not a useful constraint The remaining meur quantities alow crtica
Richardson numbers between 4-6. This is commensurte with the laboratory and
numerical estimates (Fig. 2) at Rp=1.6.

But if the sheets go unstable before being fully tilted over, the question arses of how the
optica micrstrctu is prouced. Ths is eaily addrssed. Instabilty of the sheets wi
dipt fluxes and smoth both velocty and tempeature micrstrct beause of the
higher molecular difusivities associate with these quantities. But passive sanity
micrstrctur will rema on sces too sma to drve vercal motions and wil contiue to
be shear until it reches the 1-e wavelengt where molecular diusion can eracate it.

CONCLUSIONS

To sumze, the model results will be reviewed to se how they far agaist the C-SAL T
observations. The I-em limiting wavelengt for sat is identica to the wavelengt of the
optical shadowgrph micrstrctu (Kunz et al., 1987), supportng the hypthesis that
the Laplacian of the index of refrction emphasizes the smaest sces which wi be
domiated by sat beause of its very low molecular diffusivity.

Constrning finger grwt with a crtical inverse finger Richaron number (Vxv¡ilN2 of
-3-8 reproduces the C-SALT microstrcture (Fig. 3) with our present uncertaity.

Initialy vertcal sheets with horizontal wavelengts of -3 em are the first to go unstable.
This is consistent with the -6 em observed with towed thermstors and conductivity
sensors (Marorino et al., 1987; Lueck, 1987) when account is taen that towed sensors
cross the finger crsts at radom orientations which leads to a overestimate bias of -1.5.
At maum amplitude, these sheets have tit angles of -20-30° (vercal wavelengts of
5-6 em), consistent with the vertcal temperatu microstrctue (Gregg and Sanford,
1987). The nearly-horizonta I-em lamae in the shadow grph images appear to be salt
remnants that have continued to be shear-tited long after instabilty has disrpted the finger

fluxes and molecular proesses have smoothed the temperature and velocity micrstrctue.

The crtical Stem or inverse finger Richardson number Ri¡-l c - 3-8 is the weaest li in

this modeL. Laboratory measurements and numerica simUlations (Schmitt, 1979;
McDougall and Taylor, 1984; Shen, 1989; Whitfeld et al., 1989; Taylor and Bucens,
1989) contain much scatter at the low density ratios of oceaogrphic interst. More
laboratory and numerical studies are neeed in the Rp=1-2 regime.

In light of these results and me prevalence of nea-inertal shea in the ocean, it is difficult
to explain how vertcal banding could be observed anywhere. Internal wave shear was
weaker (-OAN) in, above and below the C-SALT meimohaline stacase man me O.7-1.0N
typically found in the pycnocline (Garett and Munk, 1979; Evans, 1981). It may be that
below me Medterrean salt tongue and in the Tyrhenian Sea (William, 1975), shea is
so weak that venical fingers can grow unhindere. This would reuir shea ",O.IN.

The model fluxes are sensitive to density rano Rp and the magnitude of the nea-ineral
shear. Higher density ratios or shears leads to a smaller finger contrbution to the tota flux

so that the combined finger/molecular flux rano is greater than one. For a flux ratio greater
man one, the buoyancy-flux is down gradient or 'diffusive' and tends to smooth
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finestrctue, preventing formation and maintenance of a stacase (Kelley, 1988). Ths

sensitivity may explain why well-defined therohalne staases are found in only a few
locales despite most of the upper Central waters being favorable to figerg.

Finally, grss diffsivities are estiated by normalzig the average fluxes by grents
smoothed over the stacase strcture. The diffusivity of heat -15xio-5 m2ls is only
slightly grater than molecular while that of salt -3x1o-5 m21s is mostly due to fingers.
The model salt diffusivity is an order of magnitude larger than the inferred eddy difusivity
due to turbulence in a diusively-stable (no figerig) regime with a GM level internal

wave field (Gregg and Sanford, 1988). Ths is beause fingers are more effcient at
trsportg heat and salt than tubulence. Wlle for tubulent mixing K-e.ElN' where the

mixing efficiency e=O.l-O.2, for salt-fingerig K-((Rp-l)I(l-RF))-ElN' where the
'efficiency' ((Rp-1)1(1-RF))-1-3 (Hamton etal., 1989; Schmitt, 1988). Thus, fingers
may be the pricipal agent of water-mass change on timescales of deces.
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FIGURE CAPONS

Figure i: Normalize vertcal temperature- (upper panel) and sainty-grdients (lower

panel) vs vertcal wavelengt for honzonta wavelengts of 2-7 em. The venical
wavelengt decses in time. so time incrases to the left As figers grw. their venical
gradents incrse unti the wavelength beomes suffciently smal that molecular diusion
eradicates the signatue. Ths occurs at a venical wavelengt of 3 em for temperatu and
1 em for salt.

Figu 2: Average approximate Stem numbe ~ s-;lvdI: vs density ratio Rp from
labratory meurments and numencal simulations. The solid cures ar model (Kunze.
1987) values for varous critical Ri¡l (n~mbers along right ax). For Rp-;l.5. most of the

data ar consistent with crtical Ri¡-l =4-16. Taylor and Bucens (1989) suggest that the
ver high values at low Rp found by McDougal and Taylor (1984) may l: due to their
unique initial conditions. However. sinuiar values ar found in numerica simulations.

Figu 3: The average flux ratioRF. dissipation rate c:e:. buoyancy-flux db;;. Cox
number c:CT;; and ti Ntc12ic the sheets tae to rech crtica invers figer Richarn

number of 4 as a function of horizontal wavelengt and initial tit angle. The fit sheets to

go unstable ar maked by the patch of supplig (Ntcftc5.5). They have wavelength
and initial tits corrspondig to fastest-grwig figers (Â.3 em. 80=0"). Their flux
ratios ar -0.8-0.85. dissipations -13xlO-ll Wlkg. buoyancy-fluxes -5-6xlo-ll Wlkg and
Cox numbers 2. The ridge of high dissipauon c:~ and buoyancy-flux db-; runng frm
Â.x=3 em. 80=00to -8 em. 60 

° corresponds to sheets which initialy have tota wavelengts
equal to the fastest-grwing wavelength. Thus. for a given tit. sheets with the fastest-
grwing wavelength ultitely grow more than sheets of higher or lower wavenumber.

Figue 4: Contours of average flux ratio RF. dissipation rate c:e:. buoyancy-flux db;;.
Cox number c:CT;; and fial tit angle trfor the fit sheets to go cntica (Â.x=3 em. 8o=0i,
as a function of crtical inverse finger Richardson number Ri¡-l and initial conditions.
Stippling indicates the rage of C-SAL T observations. These ar consistent with a crtica
inverse finger Richardson number of 3-8.
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NURICAL MODELING OF SALT FIGERS AT A DENSIT INTERFACE
Coli Y. Shen

Ocean Dynamcs Brach, Cod 5140
Acoustics Division, Naval Researh Laboratory

Washington, D. C. 20375

Abstrt

Ths paper sumarizes results from numerica modelig of salt figers at a density interface by
mea of pseudo spetral computation. The evolution of the figers at th interface is describe for a heat-

salt fluid system, a sugar-salt fluid system in a Hele Shaw cell and an ad hoc unty-Pradtl-number fluid.
Speific reults sumar addrss issues concenug the strctre of th interfacial figerig zone and the
figer fluxes. Thes include the verication of th theoretica figer scale preict previousy bas on the
hypthesis of figer growt rate maxmization and its equivalent buoyancy flux maxmization. An
interpretation is alo made of existig theoretica and laboratory flux results that tae into account the
evolving mea strtifications of the diffsive components in the figerig zone. The importce of the
evolving mean strtifications in limitig the finger zone thckness is pointed out. Finaly, the possible
existnce of a saturated equilibrium figer spetr is describe..

1. Introduction

A reent development in the study of salt fingers is the dit numencal computation of the
evolution equations for salt fingers. Ths approach allows more complete modelig of the double-
diusive fingenng processes than possible previously. The computation so far has been restrcted
mainly to a two-diensional domai in order to achieve maxmum resolution of disparte figer
scales. The results so obtained neverteless remain relevant and useful since the double-dfusive
figerig processes occur in both two and th diensions; valuable insight into the procsses can
sti be gaied with the two-dimensional modelig.

Ths paper presents a sum of reent results frm numencal modelig of salt fingers at
a density interface between two uniform fluids. The interfacial salt-fingenng processes have
received considerable attention in the literature both theoretically and expenmentaly. Here the
numencal models are useful for testing existing salt-finger hypotheses as well as for interpreting
some recent laboratory measurements. The results summarzed are drawn from the present
author's own work, in which fingers between two convecting mied layers ar modeled as in the
laboratory situation. The entire evolution of the fingers from initial growth to fully developed
mixed layer convection is obtaned in the computation. The initial finite-amplitude growth stage
has also been simulated numencally by Piacsek and Toomr (1980) and Whitfield, et al (1989);
both simulations obtaed finger growth strctures consistent with the ones reported here.

This paper is organized as follows: In Sec.2, numencal expenments on salt fingenng at a
density interface are summarzed. In Sec.3, simulation results from numencal expenments are
presented to address thee main issues presently of interest in the analytical modeling of fingers.
These concern the vertcal stratification of the difusing components in the interface, the liting

condition for finger height, and the buoyancy flux and growth rate maximizations. In SecA
diferent flux results obtained from theones and expenments are interpreted. In Sec.5, evidence
for the existence of an equilbnum salt-finger spectrm is given. A proposed model for such a
spectrm is bnefly descnbed.

2. Numencal Expenments

The numencal salt-finger expenments summarzed here were cared out on the Cray X/
at the Naval Research Laboratory. For the simulations three different kinds of fluid systems were
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tred: the heat-salt fluid, the sugar-salt fluid, and ad hoc two-component fluids of low viscosity-to-
diffusivity ratios in the range of 1 to 10. The heat-salt and sugar-salt fluids are common types of
fluids used in the laboratory experients. The ad hoc fluids with low viscosity-diffusivity ratios
are hypothetical. They serve mainly to provide additional parameter values for comparson with
the heat-salt and sugar-salt fluids, both of which have a high viscosity-to-diffusivity ratio of about
103. The numerical experients for these thee systems are al simlar in design, Le., two uniform
density layers are separated by a horizontal interface and contained in a square computation
doman. There is a diference, however, with the sugar-salt system which is furer assumed to be
contaied in a Hele Shaw cell (a narow gap ta). This choice is made so that the resultig finger
strcture can be compared diectly to the laboratory observation of sugar-salt fingers in a Hele
Shaw cell (Taylor and Veronis, 1986), which has so far provided the clearest visualization of
finger strcture. Another reason is that the narow gap of the cell constrains the finger motion to
be two-dimensional. Thus, the condition in the Hele Shaw cell is closest to the two-dimensional
computation of salt fingers, which is employed in all the numerical experients described here.

The governing equations for salt fingers assume (as usual) an incompressible fluid, a linear
equation of state for the fluid density, and a Boussinesq approximation of the density. In two-
diensional form, the equations are as follows:

àV2,1 0" an i= J(\j V2\j) - ~ + VV4\jàt ' Po ax

~~ = J(\j,T) + KrV2T

~~ = J(\j,S) + Ks V2 S

~ = aCT - T) + ß(S - 5)
Po

h . h f. t72. h . . d J( )- ~ ~ Th d'ff .were \j is t e stream unctIon, Y \j is t e vorticity, an \j, - àxàz - àzàx . eiusive

density components are denoted by T and S, with T being the more rapidly diffusing one; T and 5
denote the respective horizontal averages. The constants, a and ß, are the respective density
contraction (or expansion) coefficients; for a heat-salt system, a is negative. The constant Po is a
reference density, and g is gravity. Finally, v, KT' and Ks are the kinematic viscosity and the

diffusivities for T and S, respectively. In the Hele Shaw case the appropriate viscous term is -IlV2\j
wmch replaces the +VV4\j term above, and the momentum equation is reduced to a balance between
the buoyacny term and the viscous term. Here ll=v/d2 is the Darcy drag coefficient with d
denoting the gap width of the Hele Shaw cell.

The boundar conditions for T'(=T-T), S'(=S-5) and \j in the above set of equations are
periodic. Such boundar conditions dictate that the amount of fluxes leaving and entering the
computation box always remains equal. In salt-finger convection this has the effect of mataning,
on average, a constant density difference between the two fluid layers, which allows the
convection to possibly reach a statistical equilibrium state. This is in distinct contrast to the, "run
down", situation in the laboratory salt-finger experiment in which convection evolves in a closed
tank with the density difference between the layers increasing steadily with time. Physically, the
periodic boundary conditions are equivalent to modeling an unbounded fluid composed of
infinitely many identical layers in the vertcal.
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Spetral calculation in Fourer-wavenumber space has been used to obta solutions to the
above governg equations. Ths method offers the advantage of an accurate evaluation of finger
motions down to near the grd scale, as the physical varables can be represented by complete
Fourer-basis functions up to the trncation wavenumber, which is set at 120 for al experients

using a 2562 grd. The same solution procedure as that described in Shen (1989) is used for all
experients. i.e.. leapfrog-forward time-stepping, dealiased pseudospectral evaluation of the

Jacobian term. and implicit. treatment of the difusion terms. In the heat-salt case. the difusion
terms are treated exactly using the integration factor for diffusion. For the varous numerical
technques mentioned here. the reader is referr to Canuto, et al. (1988).

The time integration was staed in each experient by applying a small white noise
perfbation to the fluid interface. Fig.l shows thee snapshots of the evolvig salt-fmger density
field from the simulations of (a) the sugar-salt case in a Hele Shaw cell. (b) the unity-Prandtl-
number case. and (c) the heat-salt case. The density field for each case shows that vertcal
convection has evolved from the intial white noise disturbance. with the characteristic alternately
upgoing and downgoing motion of salt fingering. This alternating fingerig motion in the unity-
Prndtl- number case is not well shown because of the highly iregular finger strctu associated

with the low viscosity (Shen. 1989), as well as the weak density contrast between fingers.

UJ a) Rp= 1.5 1=3 ¡.=80 UJ b) Rp=2. 1=10 0= 1 CD c) Rp=2. 1=100 0=7~ ~ ~
z z

256 256 256

x x x

FigureL. Salt-finger denity field for (a) me sugar-salt case in a Hele Shaw cell, (b) the ad hoc case with the Prandtl
nwnber a=v!KT=l. and (c) the heat-salt case. Contours represent lines of constant density. Dashed contus mark
regions of gravitationally untable density stratification. Rp=atoT!ßtoS is the density ratio based on the T and S
dierences acoss the fingerig inteface. 't=KT!KS. and me Datcy drag coffcient ¡. has been normalze by the Brwt-
Vaiala frequency of the inteac.

Another feature shown by the density plots is the breakp of the finger convection into
plumes. This transition is an important feature previously observed in laboratory salt-finger
experiments. In the unity-Prandtl-number case, the plumes show up as large-scale, rapidly
expandig mushroom-like thermals. Sinular mushroom thermals ar also visible in the heat-salt
case. The convecting plumes in a Hele Shaw cell do not exhibit the mushroom strcture but are
elongated lie figers. These elongated plumes are distinguished dynamcally from salt fingerig

by their gravitationally unstable density structure. shown by the dashed density contours in the
figure. These dashed contours have density values, respectively, less and greater than that of the
uniform layers above and below. Sinular gravitationally unstable structure is exhibited by the
convecting plumes in the unity-Prandtl-number and heat-salt cases. The plumes for these two latter
cases eventually drve the fluid in the layers to convecting turbulence as observed in laboratory
experiments. The plumes in the Hele Shaw case, however, do not become turbulent but continue
to elongated.

The salt-finger structure from the Hele Shaw case has been compared to the laboratory
observation of fingers in a Hele Shaw cell obtained by Taylor and Veronis (1986). This
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comparson is ditly of interest beause, as pointed out earlier, the fingering motion is essentily
two-dimensional in a laboratory Hele Shaw cell as in simulation. The narow, vertically
convecting cell strcture shown in Fig.1a is consistent with that observed in the laboratory
experiment The simulation also reproduced the finger penetration process observed in the
experient and, addtionaly, identied two other proesses, namely, figer mergig and splittg.

It has been shown that these processes brig about transition of finger scales in an evolving
convection to matain maximum buoyancy flux (Shen and Veronis, 1989). Fig.2 shows an
exaple of the scale trsition prouced by these diferent prosses.

z

Fi.8e 2. The tranition of fi~er cell
wiath frm large to sma scae (with tie
increasin from left to riglt) thougl the
mergin ofJUw figer (shade regions)
en th peetation of wide aners into th
figer zoe (arws). Addtional merging
and peetration are se to the ndit of the
shad regions. The last panel snows the
tranition to sma scale in which the two
large peeiratg figer cell split to form
a pai of nanow fmgers. The distance
along the x and z axes are given in tenn
of gnd nwnber.
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3. The Finger Zone

Concernng the interfacial fingering region, there are presently thee issues that have
received considerable theoretical attention. (a) What is the mean vertcal stratication of the S
component across this finger zone? (b) What sets the finger height and hence the finger zone
thickness? And (c) What sets the finger cell width within ths finger zone? Specifcaly, does the
width-selection process promote the mamization of the buoyancy flux or the finger growth rate?
Analysis of the simulation results indicates that the S component in the heat-salt system is weaky
strtied in the vertcal but does not necessary become uniform as hypothesize in earlier studies.
It also indicates that the T strtication plays the important role of liting figer height and that the
hypothesize buoyancy-flux maxization and the finger growth-rate maximization are basically
equivalent. More detals on these results are given below,

a. The S profile

The amount of S that is lost by fingers to horizonta diffusion depends on the trsit tie of

S though the fingers and the size of the S diffusivity relative to the T diffusivity. For a heat-salt
fluid, the low S-to-T diffusivity ratio of i to 100 in the presence of a typical convection speed
permts little or no diffusion of S in the finger zone. In such a case, upgoing and downgoing
fingers retain the S concentrtion in the respective reservoirs from which they originate, and thus,
the horizontaly averaged S can be expected to have a uniform value of ÄS/2 over the height of the
finger zone, where ÄS is the salt difference between the two reservoirs.

Fig.3 is a plot of four instantaneous vertcal S profies (a-d) from the heat-salt case; the
simulation in this case used the value 2 for the system density ratio, Ro=aÄT/ßÄS. These profies
show that S takes on the value of either 0 or 1, Le., the S value of the fower and upper reservoirs,
with negligible loss to diffusion as expected. (The alternating 0 and 1 values occur because of the
iregular lateral undulatio.l of the upgoing and downgoing finger cells past the profiling position.)
The mean vertcal profie S (Fig.3, profile e), however, does not exhibit the expected uniform ÄS/2
value, but shows S changing systematically across the finger zone. The cause of this stratification
cannot be attributed to the finger undulation, which by itself can at most produce irregular
distortion of ÄSI2 values, not the systematic change of S with depth. The actual reason has to do
with the vertcal change of the finger cell width. The cell width tends to decrease in the direction of
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the flux as the convection spee aclerates. Given ths tendency, it can be readiy shown that the
Š is necssary a fuction of z and taes on the form, (ÂS/i)(b(z)/ô), where b(z) denotes the width

of the tapere figers, assumed here antisymetrcal for the up 
going and downgoing figers; ô is

the vertcal average of b(z). Physical presence of the tapered figer width is viible in the density

contour plot (Fig.Ic). Although the S strtication does not vans-h, figer convection clearly

weans it, as is evident frm the contrt between Š (pofie e) and T (profie f); the lattr profùe
is mostly unafecte by convection. The weaknig of S has implication to the figer flux as wi
be dicussed in Sec.4.

CD
onN

e f 9 ~

a

z

-1 0
S(X,Z) 5(z) i(z) pCz)

Figue 3. Profies a, b, c, and d are intaUs vercal S p!ofies as a fuction of the depth z chosen from four
dieren horita lotions x for the heat-sat cas wiui R.ø=2. The range of S values have be norm to betwee
o and 1. ~ofie.e is the mea S profie compute by norintaly averaging over al x. Profies f and g are the
corrspnd honznt averges ofT an p, restively.

b. Finger height

What lits the figer height and hence the figerig-zone thckness has been studied from

the view point of the stabilty of the figers. Stern (1969) showed that the fingers can become
collectively unstable to pertbation when the ratio A=Fp/(vpz) in the figer zone is grater than a
cntical value, where Fp is the horiontay averaged mean density flux and Pz is the vertcal mean
density grent. For a given density dierence Äp across the ringer zone, ths critical condition
implies that for the existence of figerig the finger height, H (=Äp/Pz) , can not be greater than
ÄpvAIpi where A denotes the critical value of 1/3 (Holyer, 1984). Experienta measurments
of A in the ringer zone have consistently obtained a value greater than 1/3 required for finger
stabilty. Simiarly large A values are also obtained from the simulations (FigA). These

disagrments with the theortical crtical value have not yet ben resolved by rent mor thorough
analyses of the stabilty (Howard and Veronis, 1987; Holyer,1984)
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An alternative explanation of the finger height, however, can be provided based on the
diference in the evolution of the mean fields, T and S. The evolution of these two mean quantities
is governed basically by two processes, the mean vertcal flux divergence and the mean vertcal
difusion. The S evolution jends to be afected mostly by the flux divergence because of the smal

S diffusivity, while the T evolution is affected more strongly by veI!ical diffusion. The
consequence of the convective spreadig of S by flux divergence is tha-t the S interface across the
figer zone tends to expand rapidly in the vertcal exceeg ttat of the T interface. This crates the
situation sketched in Fig.5, where_the density-destabilzing S stratification near the edges of the

interface is not stabilzed by the T stratification as convection evolves. In these grayitatlonaly
unstable regions, the necessar condition for the existence of salt fingerig, namely, laTzlJlßSzl ~ 1,
is obviou~ly violated. It follows that the ringerig is necessary limited by the thckness of the
evolvig T interface. The presence of unstable (invert) density regions in the actual mean density

profie from the simulation can be seen in Fig.3, profile g.

FINGERING
ZONE

_____1______

Figure 5. A sketch of T, Š and ri
acoss the fingerg zone. The shaded
regions are the gravitationally
unstable density stratifcations due to
the extension _of the S stratification
beyond the T -stratified fingering
zoe.
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C. Flux and growth rate maimization

The salt-finger models of Howard and Veronis (1987) and Stern (1976) postulate that
physically realizable fingers ar those which maximize the vertcal buoyancy flux. On the other
hand, the models of Schmitt (1979a) and Kunze (1987) assert that the flux and scales are set by
those fingers which grow most rapidly from initial perturbation. Prediction based on this latter
assumption agrees well with the domiant ringer wavenumber that occurred in the simulations; the
agreement exists way beyond the initial finger growth stage to which assumptions of fastest
growing fingers is expected to be applicable. Fig.6 shows two examples of this persistent
agreement after fingers have ceased to grow and the kinetic energy of the convection has reached
equilbrium. Analysis indicates that in this later stage the fingers, although not growing
temporally, are 'fastest growing' in the spatial sense; that is, their amplitudes increase with
distance in the direction of the flux at the maximum possible rate. It is in this sense that the
assumption of the fastest growth continues to be applicable.

The above interpretation of fastest growing fingers as spatially growing fingers can be
made by noting that in the finger zone interior, the temporal growth of the finger perturbation
amplitudes, T' and S', at a given depth wil eventually be offset by the advection of smaller T' and
S' amplitudes to that depth from reservoirs above and below. Incorporating this vertcal advective
effect in the fastest growing ringer model mentioned above, the vertical convection speed w can be
shown to become steady, increasing only with distance, Z~O, in the direction of the flux as
Iwl=AmZ, where Am is equivalent to the growth rate of the fastest growing finger The T' and 8'
amplitudes are similarly steady and increase with Z as 1T'1=(Am/(Am+K km2))lòT/òzIZ and
IS'I=(Am/(Am+Kskm2))lòS/òzIZ, where km is equivalent to the wavenumber of the fastest growing

finger. This dependence of w, T' and S' on Z is consistent with that found in the simulations



81

(Shen and Veronis, 1989). Under the foregoing interpretation, maximizing growth rate then
becomes the same as maxizig the rate of increase of w with Z. In this case it can be shown
with above steady state solutions that the buoyancy flux too is maxized. This consequence is
thus in accord with the buoyancy flux maxzation assumed in the figer models of Stern (1976)
amd Howard and Veronis (1987). The models based on these two different but essentially
equivalent assumptions have al obtaned nearly the same optil figer wavenumber in the heat-
salt case. The dierence in the flux ratios obtaed in these models has to do with the magntude of
aš/az assumed in each modeL. TIs is discussed furer in SecA.
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4. Finger Fluxes

Two flux quantities that have been the focus of laboratory measurments ar the coefficient
c in the 4/3 power law for the salt flux, i.e., Fs=c(ßK'g)I/3(ßS)4/3, and the density flux ratio,
RFaFT/ßFS, of heat to salt. For comparson with laboratory measurements, the values of c
determned from the simulations are plotted in Fig.7a which includes laboratory data from Taylor
and Bucens (1989) (hencefort referred to as TB) as well as those form McDougall and Taylor
(1984) (hencefort referred to as MT) and Schmitt (1979b). The values of density flux ratio from
the simulations are plotted in Fig.7b together with the laboratory data from MT. These figures
show that in the low Rp range, the simulation values of c and Rf are generally close to those of
MT. The c values tend to be somewhat higher than those obtained by TB and Schmitt. The Rf
values, on the other hand, are about 0.2 lower than those of Schmitt and TB (not shown).

The differences between measurements noted above have been attrbuted to the different
experiental conditions under which measurements were made; specifcally, it has been suggested
that the salt flux, and hence c and Rf, could be affected by the initial S difference used in the
experient and by the maer in which the fingering interface is intialy set up (MT and TB). One
possible objection to such an explanation is that the experimental conditions could have simarly
afecte the heat flux and thus, in the case of Rf, rendered the ratio Rf of the two fluxes unaffected.
Analysis of the flux results from the simulations indicates that the differences are likely the
consequeI!ce of salt fingering itself. In the case of Rf, it can be shown that the weakened mean salt
gradient, Sz, caused by fingering can infuence the final Rf values. In the case of the salt flux and
c, the dependence of the buoyancy flux on the mean density gradient in the finger zone appears to
be the determing factor.

The effect that Šz has on Rf has been well ilustrated in past salt-finger studies. The finger

models of Stern (1976) and Howard and Veronis (1987) show that in the lLmit of vanishing Šz, the
Rf ratio approaches a low value, -0.25. At the other limit, i.e., maimum Sz for a given ßS across
the finger zone, Schmitt (1979a) and Kunze (1987) show that Rfreaches a value of about 0.6 for
density ratio Rp~2. (In these theoretical models maximization of buoyancy flux or its equivaleI!t,
the growth rate maximization, has been assumed as discussed earlier in Sec.3c.) The actual Sz
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occu!g in the finger zone, as shown in Sec.3a, tends to fall somewhere in between the above
two Sz limits. Fig.7b shows the theoretical esti!pates of Rf (the x symbols) repeated for the figer
modls mentioned above using the finger zone Sz from the simulations. (Furter details are given
in Shen, 1990.) The estimates fall between the values of 0.25 and 0.6 obtaed by the previous
investigators, but are in reasonably good agreement with those determned diectly from the
simulations as well as with thos-t measure by MT. The agreement with MT's measurements
£ould be fortitous as the precise Sz values are not known in their experints.; neverteless, that

Sz could crcially affect the determation of Rf is strongly suggested by the above estites.
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Figure 7. (a) Coeffcient c in the 4(3 power law for salt flux versus Ro in a heat-salt system from labratorx measurement (ope
squares) obtaed by TB with additiona data (solid squares) from mT and (open circles) from Scluin (1979b). Results from
numerical simulations are marked with solid circles (Shen. 1990). (b) The density flux rato Rf versus Ro from laboratory
measements (open circles and triangles) of MT witl additional results (solid circles) from numerical simulations and (x) from
theoretical estimates (Shen 1990). The * symbol on Rf is to indicate tlat tle conduction heat flux ha be removed from the
laboratry daa. (Fig.7a adapte form TB; Fig.7b adpte from MT.)

3.0

For the coefficient c, the key factor appears to be the dependence of the mean density flux,
Fp, on the mean density gradient, Pz. The simulation results indicate that these two mean
quantities are proportonal. This relationship is implied by the constacy of the Stem number ratio,
A=Fp/(vpz). Although the relevance of this ratio to the evolution of fingers is presently unclear as
discussed in Sec.3b, the simulations show that this ratio approaches approximately a stationar
constant with the evolving convection. This tendency has been observed in all cases simulated;
some examples are given in Shen (1989). Laboratory determnation of A is subject to large
measurement uncertainty. Nevertheless, in the heat-salt case, measurements so far appear to
indicate the existence of a constant value for the Stem number A, that is of approximately unity
magnitude around Rp=2 (see FigA). If A is in fact a constant around Ro=2 as the evidence
suggests, then it is possible for experients done with different Pz to have different density fluxes
via the Stern number relationship and hence different salt fluxes and c values. In MT's
experiments, thinner density interfaces were typically produced, which would tend to yield larger
Pz than experiments that use thicker interfaces as those cared out by TB, which compare closely
to MT's experiments in the choice of L1S and L1 T. This difference could have thus contrbuted to

the larger salt flux and c value obtained in MT's experiments. It may be noted that the Stern
number relationship invoked here has also been used by Schmitt (1988) and Kunze (1987) to
satisfactorily explain the low salt (buoyancy) flux measured in ocean density interfaces, which are
typicaly an order of magnitude thicker than those produced in laboratory experiments, whence Pz
and finger fluxes for the ocean interfaces can be expected to be correspondingly weaker.

5. Equilbrium Finger Spectrm

With the white noise intial pertrbation applied to the interface, multiple finger modes were
excited in the simulation. Initially this broad band finger spectrm grows in T and S amplitudes as
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envisioned by Schmitt (1979a), i.e., with the spectral amplitude sharly peaked at the wavenumber
of the fastest growing finger mode. However, as finger convection evolves, the spectral
amplitudes of low wavemumber modes also begin to grow and eventually catch up to that of the
fastest grwig mode, resultig in a final spetr 

level that is flat between the lowest wavenumber
resolvable and the wavenumber of the fastest growing mode. The spectral level of high
wavenumber modes (beyond the fastest growing finger wavenumber), on the other hand, are
strongly damped with the amplitude decreasing rapidly toward zero. Thus the shape of the
spectr which the fingers ultimately evolve to in the simulation is as shown in Fig.8. This
spectr shape is obtaied in all the salt finger cases that have. been simulated Such a spectral
shape is consistent with that of ocean temp~ratue figer spectra obtaed by Gargett and Schmtt
(1982). For a spectrm of this shape, the correspondig horizontal T gradient spectrum
necssary has a +2 spectr slope. Thi is consistent with the slope of 

the horizonta temperatu

gradient spectra measured in the ocean by Manorio (1987) and Mack (1989) as well as that
obtaed in the laboratory experients by Taylor and Bucens (1989). The latter experients have
also obtaed horzonta S grdient spectra consistent with those in the simultions.~ (a) 0$2 (b)
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Figure 8. The horint wavenumber sptr for (a) T varance and (b) S' varan from numencal simulations (solid cues)
and. tle th~re.tica upper bound calculation (dahed cures). The sptral peak in the simulation wavenumbe spetra have no
stastica signcace.

The evidence from the simulations, ocean measurements and laboratory experiments all
point to the existence of an 'equilbrium' horizontal wavenumber spectrum for fingers. The shape
of ths spectr as shown in Fig.8 is characterize by nearly constant spectral density followed by

rapid decay beyond the wavenumber of the fastest growing mode. This 'equilbrium' shape can be
compared to the 'spectral upper bound' for finger T' and S' amplitudes obtained from the finger
model referred to at the end of Sec.3c. That model takes into account the nonlinear vertical
advective effect (Shen, 1989), which leads to the solutions of upper bounds for T' and S'. The
upper bound amplitudes normalized by L\T and L\S are T'jL\T=A!(Â.+KTk2) and S'jL\S=A!(Â.+Ksk2),
where k is the wavenumber and Â. is the positive root of the finger dispersion relation Â.=Â.(k).
Fig.8 (dashed curves) shows the spectral densities given by the upper bounds, approximated here
as (T'jL\T)2j2 and (S'jL\S)2j2, and the corresponding T' and S' varance spectra from the simulation
for the heat-salt case at Rp=2. There is generally a good agreement between the model and the
simulation except at the high wavenumber end of the S' spectrm where the simulation spectrm
has more varance, perhaps because of the 'square-wave' strcture of S' fluctuations not accounted
for in the modeL. This comparson suggests that the double-diffusive process causes T' and S'
fluctuations at al scales ultimately to satuate and the T' and S' spectra to equilbrate. It should be
pointed out that the fastest growing mode in the sense discussed in Sec.3c remains the dominant
mode. Separte analyses of buoyancy flux spectra have shown that the peak of the flux spectrm
nearly always occurs around the fastest growing mode wavenumber, even though the spectral
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densities for the fastest growing mode in the T' and S' varance spectra are statistically no larger
than those at other scales.

6. Conclusions

Results frm numerical modeling of salt fingers have made it possible to addrss a number
of importt issues that arse from laboratory and theroretical studies of salt fingering. This paper

summed some of the modling results that address issues relate to salt figerig at a density
interface. The mai conclusions of ths paper ar: (1) An accurte knowledge of mean vertcal S
stratications in the interfacial figer zone is required for the comparon and prection of the ratio
of T to S density fluxes. (2) The finger density flux can be proportonal to the mean vertcal
density grdient in the figer zone vi the Stem number relationship. (3) The density-stabilg T
strtication controls the figer height and thus the thckness of the figer zone. (4) The preferred

scale for finger width is that which maximizes the finger growth rate or equivalently the rate of
buoyancy flux generation, both before and after convection has reached equilbrium. Finally, (5)

the finger wavenumber spectrm for T and S evolves toward the equilbrium shape of constant
spectr density level with difusive decay occurg beyond the wavenumber of the fastest growing

finger mode.

The study of salt fingers by means of direct numerical simulation is a fairly recent
development as mentioned in the introduction. Such simulation yields full solutions of fingering
motion, allowing wide aspects of fingering processes to be studied. The results summarzed in
this paper represent only a fraction of what can be potentialy extracted from the solutions. Further
future numerical modeling of salt fingers would most liely be fruitful toward a full understading
of their propertes. It would also be of interest to extend current two-dimensional simulations to
three dimensions as more computing power becomes avaiable. The extension to thee dimensions
should allow more complete modeling of the mixed-layer dyamics above and below the finger
zone. Addtional laboratory experients with heat-salt fluids would also be desirable, parcularly,
the measurement of the mean T and S stratifications in the finger zone. These two mean field
quantities have been generally taken as known variables in laboratory experiments or theoretical
studies. But, as has been pointed out in this paper, they in fact evolve with fingers and can
signifcantly affect the finger fluxes in the process (conclusions 1-3 above). In future laboratory
studies these mean field quantiites need to be treated as an intrnsic par of the fingering process
and measured together with the finger fluxes.
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Abstract

The inverse procedure based on the advective-diffusive equation and mass continu-
ity is applied to C-SALT data to determine velocity and vertical diffusion coeffcients.
It is shown that the horizontal velocity is highly variable but very weak and the verti-
cal velocity is downward. The vertical diffusion coeffcients of both temperature and
salinity show positive values and the former is bigger than the latter. The calculated

vertical flux ratio of density by heat and salt is about 0.88 which is somewhat bigger
than the values measured by salt finger experiments. The estimations for vertical
flux across the interfaces show that the vertical diffusion transports heavier water
downward and dominates over the vertical convective flux which transports lighter
water downward. This result suggests that the salt fingering activity is an important
physical process maintaining the staircases in C-SALT region.

1 Introduction

Knowing the velocity and the diffusion coeffcient is essential to understanding the
physics of the thermohaline staircase. Only a few direct measurement of velocity have
been made. The vertical diffusivity has often been parameterized using the flux law based
on laboratory experiments but recently the applicabilty to salt fingers in the ocean has
been questioned by the results from the C-SALT experiment(Schmitt et al.,1987).

We have applied the inverse method to the data from C-SALT to determine the veloc-
ity and the vertical diffusion coeffcients. The model is based on the advective-diffusive
equation and mass continuity. Different macroscopic vertical diffusion coeffcients are used
for different tracers. To check the appropriateness of the model, the diffusion coeffcients
have not been constrained to be positive. The results reported here are based on the

distributions of temperature and salinity.

2 Formulation

The model makes use of the steady state advective-diffusive and mass continuity
equations. Assuming that the advective processes are balanced by vertical diffusion, the
equations are .. BC B c BCV .\lC+w- = -K-

Bz Bz v Bz
(1 )
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- ßWV . V + - = 0 (2)
ßz

where V = (u,v) and ware velocities, C is the tracer concentration (temperature, salinity
etc.), and K: is the diffusion coeffcient of tracer C. It is assumed that the diffusion

coeffcient is different for each tracer.
Vertically integrating the equations in a layer

~ ßC t
V. (VC) + ¡wC - K: ßz I" = 0

V . V + ¡wJ~ = 0

(3)

(4)

where 0 is the integral, and band t represent the bottom and the top of the layer

respectively. V is replaced by the product of the layer thickness and the vertically averaged
velocity.

Equations (3) and (4) are written in the finite-difference forms based on a seven-point
grid network(Figure 1). Co corresponds to Ci,i,k; ui+~ to Ui+~J,k; hk-1 to hi,i,k-l etc..

(Co + Ci+1)(ho + hi+d (C'-1 + CO)(h'-1 + ho)
21ii ui+! - 21ii Ui_! (5)

(Co + Ci+i)(ho + hi+i) (Cj-l + CO)(hj-1 + ho)+ v. i - V. i2111 3+2 2111 3-2
2 (hk+1Co + hoCk+i) 2(hoCk-1 + hk-iCO)+ wk+ i - Wk 1ho +hk+1 2 hk-i + ho -2

4( Co - Ck+i) KC 4( Ck-l - Co) KC _
+ h h v k+ i - h h v k-I - 00+ k+1 2 k-l + 0 2
ho + hi+l h,-i + ho ho + hi+1 (6)U 1 - U. l + V. i
21ii i+2 21:i 1-2 2111 3+:¡

hj-i + ho

21 Vj_! + Wk+! - Wk_~ = 0
II

where I:i, 111 and h are grid lengths in x, y and z directions respectively. The lengths 1:i and
III are constant but h is variable in this study. Here, u, v, w, K: are unknown variables. The
coeffcients are given by measured tracer data and grid lengths. There is one equation per
grid cell per tracer and a number of tracers is needed to make the system overdetermined.
However, there are too few tracers to do so in a real problem, so some simplification is
required to overcome the underdeterminancy(as described in Lee and Veronis,i9S9). For
this reason, we have approximated wand K: as

w = w (z) = constant for each layer, and

KC = KC = f 1. constant for each layer (model i), orv v(z) 1 2. polynomial expansion in z direction (model 2).
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------- ------

Figure 1: The seven-point grid network for finite differencing.

We have used a low order Legendre polynomial for model 2.
For a given array one can rewrite the system of equations as the linear algebraic

equation Ax = b, where A E R",xn is the coeffcient matrix, x E Rnxl is the vector
of unknowns, and b E R"'XI is the data vector. m and n represent the numbers of
equations and unknowns respectively. There is no inhomogeneous term in the system
described above, so we have changed the system by dividing all elements of x by one of
the unknown variables, say xr. Then, the new algebraic form is written as

Gy=d, (7)

where y = Xi/Xr, (i :l r) E R(n-l)xl is the vector of relative unknowns, G E R",x(n-l)
is the coeffcient matrix, and d E R"'xl is the data vector made up of the coeffcients in
the rth column of A. H there is a priori information to determine a value of the reference
variable, one can finally obtain values of x from solutions of y.

Solutions have been obtained by the total least squares(TLS) procedure (Golub and
Van Loan, 1983). TLS solves the problem which contains noisy data both in the coeffcient
matrix and in the data vector. Unlike the least squares method, the TLS solutions are

independent of the choice of the reference unknown variable in Eq.(7).

3 Data

The data used in this study are chosen from data obtained during the spring cruise
in the C-SALT experiment. Calculations were made for the 4x4 horizontal array(boxed
in Figure 2). The array lies in the region where the strong thermohaline staircase is

observed(Figure 3). Though the step structure appears in most of the region, its charac-
teristic features are not unique between stations. That is, the thicknesses are different for
different layers and interfaces, the number of layers is not the same between stations, and
the depth of the staircase varies horizontally. These make it diffcult to define layers



90

C-SALT. SPING 1985

600W 550"

Figure 2: The map of the survey region in C-SALT. The inverse model is applied to the
4x4 array in the boxed area. The mooring station is indicated by...
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Figure 3: (a) The vertical profie of salinity and temperature at . in Figure 2. (b) The
detailed temperature profie in region 1. Six layers are used for inversion.
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Figure 4: Potential Temperature-Salinity diagram of layers from 4 x 4 array in Figure 2.
The numbers correspond to those in Figure 3(b).

for the inversion by using single properties such as isobaric, isopycnal, or neutral surfaces.
To defie layers here we have used the layered T-S diagram(Figure 4) which represents

the horizontal correlation of layers. Six layers which are shown in Figure 3 are chosen
for the inverse modeL. H the vertical profie does not show the staircase, we have taken
means along the depth range so that mean values of temperature and salinity lie on the
corresponding line of Figure 4. And also if there is a structure which is not appropriate
to the model such as a thick interface and perhaps a smaller mixed layer embedded in a
major interface etc., we have changed the shape to fit the layered T-S diagram.

There are 288 equations with two tracers(temperature,salinity) and continuity, and
the number of unknowns is 260 in model i or 252 in model 2.

4 Results

Figure 5 shows the solutions for horizontal velocity by the two models. The solutions
are relative values(the reference variable is a diffusion coeffcient of salinity in the top

layer in modell, and is a coeffcient of the lowest order in the polynomial expansion of
diffusion coeffcient of salinity in model 2), and show that the velocity is highly variable
but the magnitude generally decreases with depth. There is some disagreement between
the velocities calculated from the two models. Though there is a direct measurement of
the horizontal velocity at the site marked by a triangle in Figure 2, unfortunately it is
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Figure 5: Inverse solutions of the horizontal velocity from (a) model i and (b) model
2. The velocity scale at the top right is obtained by assuming that the magnitude of
horizontal velocity at the top layer of the mooring site is 0.02 m/s.
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Interlace w(10 '7m/s) . K; (10 4m2/s) , K: (104m2 Is)
i R¡

7 
(top) 

-4.0/-5.8 5.9/ 5.6 11.7/11.7 0.83/0.79

6 -4.6/-5.5 5.9/ 7.7 11.7/15.3 0.81/0.84

5 -3.8/-4.5 17.1/ 9.9 32.4/18.0 0.84/0.86

4 -4.4/-4.7 18.9/ 9.9 41.4/18.9 0.80/0.92

3 -2.8/-4.4 9.0/10.8 17.1/16.2 0.90/0.90

2 -2.5/-4.4 4.0/ 5.9 6.3/10.8 1.03/0.89

1 
(bottom) 

-2.4/-3.4 4.8/ 1.4 8.1/ 2.6 0.97/0.96

Mean -3.5:10.9/ 9.4:16.1/ 18.3:113.3/ 0.88:10.09/

-4.8:10.9 7.3:13.3 13.3:15.6 0.88:10.06
,

Table 1: Solutions of vertical velocity and vertical diffusion coeffcients, and the vertical
flux ratio. The two values in each column are the corresponding results of two models(i.e.
model1/modeI2). Except for the vertical flux ratio all values are obtained by assuming
that the magnitude of horizontal velocity at the top layer in the mooring site is 0.02 mIse

hard to use it as a priori information1. But if we estimate the magnitude of horizontal
velocity at the mooring site as 0.02 mIs, the velocities in the region are very weak (less
than 0(0.01 m/s)). The scale shown in Figure 5 is for this case.

All solutions of the vertical velocity are negative( downward) and the magnitude gen-
erally decreases with depth(Table 1) in both models. The downward velocity is consistent
with Ekman pumping by the mean wind system at the survey region.

For the vertical diffusion coeffcient, solutions show all positive values. The diffusivity
of salinity is bigger than that of temperature by a factor of about two. These are very
important results not only for understanding the physics of C-SALT staircase but also
for the inverse model itself. Since different diffusion coeffcients emerge for heat and salt,
that indicates that something other than turbulent mixing is maintaining the staircases in
the C-SALT region. For the inverse calculation itself, it is very meaningful that positive
diffusion coeffcients can be obtained without requiring that K~ :: ° in the modeL. But it
may not be true for a general data set. The data used here are taken from the staircase,
so the truncation error which is related to the finite-difference approximation is relatively
very small when compared with that for general oceanic data.

One interesting result is that the vertical diffusivity of the middle region(interfaces

3,4,5) is bigger than that of layers above or below. Since the mean thicknesses of the
mixed layers show the same pattern, it suggests that the thickness of the mixed layer may
be related to the size of vertical diffusivity. But this needs further investigation.

The last column in Table 1 shows the vertical flux ratio of density by heat and salt

,
~

.
"-~-,

lThe mooring data were provided by Dr.H.Perkins. The mooring was deployed the day after the hy-

drographic measurement. The velocity shows fluctuations which may be dominated by tides and inertial
currents and the long term average is near zero. With high fluctuations of the velocity, a one day gap in
the data introduces a substantial uncertainty in estimating a velocity magnitude.
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Inter- awD.T ßwD.S wD.p aFT ßFs Fp

face (io-um/s) (10-um/s) (io-um/s) (1O-9m/s) (10-9m/s) (10-1Om/s)
7 -5.4/-7.9 -3.3/-4.8 2.1/3.0 -2.7/-2.6 -3.2/-3.3 -5.5/-6.5

6 -4.7/-5.7 -2.9/-3.5 1.8/2.2 -2.0/-2.8 -2.5/-3.3 -4.7/-5.1

5 -4.8/-5.8 -2.9/-3.5 1.9/2.3 -7.1/-4.3 -8.4/-5.0 -13.4/-6.5

4 -5.1/-5.6 -2.9/-3.3 2.1/2.4 -7.3/-4.0 -9.1/-4.3 -17.8/-3.2

3 -2.8/-4.4 -1.7/-2.6 1.1/1.7 -3.1/-3.0 -3.4/-3.4 -3.6/-3.4

2 -1.8/-3.2 -1.1/-1.9 0.7/1.2 -0.9/-1.3 -0.9/-1.5 0.3/-1.6

1 -1.6/-2.3 -1.0/-1.4 0.6/0.9 -1.1/-0.4 -1.1/-0.4 -0.3/-0.6

Mean -3.7i:1.6/ -2.3i:1.0/ l.Si:O. 7 / -3.5i:2. 7 / -4.0i:3.3 / -6.4i:6. 7 /

-S.0i:1.9 -3.0i:1.1 2.0i:0.7 -2.6:11.4 -3.0i:1.6 -3.8i:2.3

Table 2: The vertical flux estimates across the interfaces. The two values in each column
are the corresponding results of two models(Le. modell/model 2). All values are obtained
by assuming that the magnitude of horizontal velocity at the top layer in the mooring site
is 0.02 mise

which is defined as R¡ = aFT/ßFs where a = -~~, ß = ~~, FT = -K;~~ and
Fs = - K; ~~. Although there is a small difference between the results of the two models,
the mean value of R¡ is 0.88 which is somewhat bigger than values measured in salt-finger
experiments(Schmitt,1979, Mcdougall and Taylor,1984). It is also interesting that the
flux ratio increases with depth. The same trend is shown in the slope of the layered T-S
diagram.

Table 2 shows the vertical flux estimates across the interfaces. The vertical veloc-
ity convects positive anomalies in temperature and salinity downward. For the density
anomaly, D.p = ßD.S - aD.T, it convects lighter water downward. The vertical diffusive
density fluxes due to temperature and salinity, aFT and ßFs respectively, are downward
and are bigger than the vertical convective flux by nearly two orders of magnitude. Since
the vertical diffusive density flux due to heat is less than that due to salt, the total vertical

density flux which is given by Fp = ßFs - aFT is negative, Le. heavier water downward,
and dominates over the positive vertical convective flux of density anomaly. This also
suggests that salt fingering activity maintains the staircases in the C-SALT region.

5 Conclusions

The principal findings from inversion of C-SALT data are:
1. It is shown that horizontal velocities are highly variable but very weak (less than

0(0.01 m/s)). Since the horizontal velocity is weak, the role of the horizontal diffusive
process must be explored.

2. Vertical velocities are downward(probahly due to the Ekman pumping) and they
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convect lighter water downward across the interfaces.
3. It is shown that all vertical diffusion coeffcients are positive and the vertical diffu-

sivity of salt is bigger than that of heat.
4. The calculated vertical flux ratio is about 0.88 which is somewhat bigger than the

value measured in laboratory salt finger experiments. -
5. Vertical diffusion transports heavier water downward across the interfaces and

dominates over the vertical convective flux of density anomaly. It therefore tends to

reenforce the stratification. Such a redistribution of density can only be due to double
diffusive processes.
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THE NEED FOR INTERFACE MIGRATION IN CSALT TO EXPLAIN
THE LATERAL HEAT-TO-SALT RATIO OF 0.85

Trevor J. McDougall

CSIRO, Division of Oceaography, GPO Box 1538,
Hobar, TAS 7001, Australa.

ABSTRACT

The strngly constat value of the slope of the layer propertes on the 5-8 diagr, at a
value of 0.85 cals for an explantion. The observed propertes along layers such as ths are
the result of the divergences of propert fluxes and it is shown that a simple explanation of
the 0.85 ratio in terms of the vercal divergence of only double-dsive fluxes would
reuie the flux ratio of salt figers to be greater than one. Ths implies that in adtion to
salt-figerig, there must be some other process or processes at work in CSALT in order to

expla the ostensibly simple 0.85 ratio of the grdients of potential temperatue and saity
along the layers. It is shown that the interfacial mass flux though the CSALT interfaces is
very liely the extr physica proess. TIs smal interfacial velocty may only account for a

few percent of the salt flux, but is responsible for rougWy hal of the change in salty
along the layer. We have tended in the past to dimiss this interfacial advection as only
being importt at very low temperatues across interfaces that have an Rp approachig unty
(such as in the Weddell Sea), but beuse of 

the natue of the "layered coordiate system"
that seems a natu one with the CSALT data, the smal interfacial advection tus out to be
surrisingly importt The reuir interfacial velocty is only a factor of two larger than
that found by extraplatig the results of laboratory experients to smal values of the
interfacial salinty dierence.

THE NEED FOR SOMETHING BESIDES PURE SALT FINGERS

We begi by assumig that the latera changes of potential temperature and sanity along the
layers are caused by only double difusion. The salt-fingerig buoyancy flux ratio and the
verca density ratio are defined as

apB
Rf == ßPs and R = aBz

P - ß Sz '
(1)

where the thermal expansion and hale contrction cofficients are defined by

( J ( J-i
_ 1 dp _ 1 dp dBa -- P dlll,p - - p arls,p arl,p (2)

and

ß =!dPI -! dPI + adBI
P dS B,p - P dS T,p as T,p'

(3)
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where T is the in-situ temperatu and (J is the potenua temperatu. Assumg a steady

state, the latera advection of properes along the layer, V. V iS and V. V lJ ar due to

mius the vertcal divergence of the double-disive fluxes, - FzS and - F'8, so that

Ri == aV.V lJ
ß V. V iS

- a F.8= z
- ß F'S '

(4)

and Ri is observed to be 0.85. Our tendency is to assume that the ratio of the double-
disive flux divergences in (4) is equal to the buoyancy flux ratio, Ri, but there ar two
reans why th may not be the case; fitly, the flux ratio may var with depth, and the
secnd reon is due to the nonlea natue of the equation of state. Ths can be seen by

derivig an expression for a Fz8/ ß Fzs by vertcay dierentiatg the defition of the

buoyancy flux ratio, (1) to obta

r == a Fz8 = Rf(i _ ~(A) FSJ + dRf FsS .ß F.S a ß z F.s dz F.z z z (5)

The varation of the buoyancy flux ratio wi be addressed below so for now, let us tae Ri

to be constat. The ratio a / ß vares by 25% over the vercal extent of the CSAL T stacae

(200 m), so that ~ (ß t is 0.2512 m-1. The mean flow in the staase region is thought
to be to the nort-west so that the fluid in the layers gets waner, more salne and denser as

it advances though the stacase region. This implies that FzS is negative (the same sign as

FS) and that FS / Fzs is greater than 200 m: I shal tae ths vercal lengt scale over which

the double-difusive salt flux vares to be 300 m. Equation (5) then implies that

r = Rf( i - 0.2~~00 J = 0.625 Rf. (6)

Under the assumption of this section that the only mixing process is salt-fingering, (4) and (6)

imply that the buoyancy flux ratio of the salt-fingerig must be Rf = 0.85/0.625 = 1.36.
This is quite obviously unacceptable as it is energeticaly inconsistent for the buoyancy flux
ratio of double-dusion to exceed 1. An alternative way of expressing this fidig is to say
that salt-fingerig (with a constat buoyancy flux ratio) would be expeted to yield an

observed value of Ri == aV,Vi(J /ßV.ViS of r = 0.625 Rf, which would be between
0.44 and 0.50 for Ri between 0.7 and 0.8.

In ths section it has been shown that the most obvious cause of CSALT's latera heat-
to-salt ratio of 0.85, namely the vertcal varation of the double-diffusive heat and salt fluxes,
is consistent with the data only if the buoyancy flux ratio of the salt fingers is significantly
greater than 1. Since this is energeticaly impossible, it is the aim of this work to deduce what
other physical mechanism is acting in conjunction with the salt-finger convection so as to
achieve the observed tight correlation of 0.85 on the scaled S-(J diagram, rather than the value
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less than or equal to 0.5 that would have ben found in ths thermohalne stacase if the salt-
figerig had ben actg alone. It is concluded that the migrtion (or entrment) of fluid
acrss the double-dfusive steps is most liely to be the extr process that is required to
explai the 0.85 ratio. It wil be shown that the requi entrnment is quite sma in ter of
the flux of salt or heat acrss the steps, and that the buoyancy flux ratio of the combination of
sat-figerig and entrent is very litte dierent to tht of sat-figerig alone. TIs smal
amunt of entrnt has a relatively large inuence on the evolution of the layer propertes
beaus the vertcal advection of fluid thugh the inteifaces inerently acts as aflux
divergence rather than as aflux, and so is much more effective at water-mass conversion than
the sma chage in the buoyancy flux ratio would imply. TIs is another example in
ocogrphy where vertcal advecon canot be overlooked and yet it is often our habit to
do so. It is also ver common to confse fluxes and flux divergences in our thg.

Obsered chages in fluid prpertes in the ocea are always due to flux divergences, and
when deducing a flux divergence from known relationships that hold between the fluxes, the
nonlear natu of the equation of state often raises its ugly head as it has in ths work.

In addition to the discussion below of the inteifacial advection thugh the CSAL T
steps, varous other processes have been considered. Whle these processes wil not be
discussed here, they include (i) the varation of the buoyancy flux ratio with height, (ii)
vertcal tuulent mixig by isotrpic tubulence, (il) double-dsive interleavig occurg
in the steps, (iv) the possibilty that the CSALT steps and layers ar actualy caused by
lateral double-dusive interleavig rather than as manly the result of 

vertcal processes, (v)

the possibilty that the buoyancy flux ratio of salt-fingerig is actualy greater than 1 in
CSALT and the required energy for stig the stable density flux though the layers comes
from breakg internal waves in the layers, (vi) the presence of lateral ming along the
layers, (vü) the presence of lateral miing along neutr suraces, and (viü), the possibilty
that the fluid in the CSALT layers actualy gets cooler, less salne and less dense as it moves
to the south east rather than to the north west. Most of these processes can be dismissed on
the basis of the CSAL T data.

HOW MUCH INTERFACIAL ADVECTION IS REQUIRED?

Letting the velocity of fluid through the inteiface be wi, the steady-state conservation
equations for salt and potential temperature are

V.Vi) wie 9 (7)+ = -Fz 'z

and
i

V. Vl S + wiSz
S (8)

r

= -Fz'

Linea combinations of these equations can be taen to elinate either the latera or the

vertcal advection term, obtaning

V.VlS S (Rp - r)= -p
z (Rp - Ri)

and
wi Sz = (Ri - r)
_ps

(Rp - Ri) ,z

(9)

(10)



100

where Ri and r ar defied in the fit pars of equations (4) and (5). Continuing to assume

that the buoyancy flux ratio is depth-independent, r is close to 0.5 (see the discussion below

(6)) so that (Ri - r l/( Rp - Ri L is about 0.47 in the CSAL T staase. Th meas that in
order for the combined proesses of sat-fingenng and interfacial advection to explain the
0.85 ratio, interfacial migrtion must account for 32% (= 100% x 0.47/1.47) of the salinty
chage that ocur along the layers, with the vertcal divergence of the double-disive salt
flux accountig for the remander (68%). Is it reonable to ask ths of intenacial
entrent?

Double-diive interfaces between two well-mied layers have ben obsered to
migrte vertcally in laborator expenments (SCHM, 1979 and MCDOUGAL (1981b)).
Th intedacial migrtion has ben ascrbe to the asymetrc entrent of fluid acrss the
intedace. The asymtt is pary due to the larger buoyancy flux in the lower layer of such
expnts and pary due to the deceaed static stabilty at the lower edge of the interface.
Both of these effects are in tu caused by the nonliea natue of the equation of state as a
function of potential temperatue. MCDOUGAL (1981c) proposed that ths interfacial
advection would be importt in the "diffusive" interfaces in the Weddell Sea where large
steps in potential temperature ocur at low values of the stabilty ratio. The laboratory
expenments of MCDOUGAL (1981b) were specifcally designed to measure the rate of
interfacial migration, and by eX1Fpolatig these results to the conditions appropriate to the
Wedell Sea the interlacial salt and heat fluxes were found to be signicat frctions of the
double-difusive fluxes. In more normal situations in the ocean we have tended to ignore
the interlacial mass flux beause it generay represents a small frction of the total propert
fluxes across the double-diusive interlaces (see, for example, KELLEY, 1987).

The results of the two-layer salt finger laboratory experiments of MCDOUGALL
(1981 b) were expressed as hal the apparent salt flux contrbuted by the asymetrc
entrainment, divided by the double-diusive salt flux, namely

.1 wi fi

E == 2_pS ' (11)

and was plotted as a function of Rp for varous values of a parameter, 8, that represented the
extent of the nonlinearty of the equation of state, namely

8 = .2 aa 110 Rp2a ao (Rp - 1) ,
(12)

where fi and 110 are the steps of salinty and potential temperature across the interface.
The expression "apparent flux of salt" is used because there are subtle issues associated
with the actual salt flux across an interface when the corresponding mass flux is non zero
(see MCDOUGALL, 1981a). The apparent salt flux is that derived from the temporal change
of the layer salinities in a two-layer laboratory expenment. At Rp = 1.6, the laboratory

results ca be approximated by the linear relation E = 0.2 g. For the CSALT interfaces,

(j "" 0.045, so that by extrapolating the laboratory results to the less nonlinea interfaces of
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CSALT, one fids a predcted value of E of only 0.00 so that the interfacial advection
contrbutes only 1.8% of the tota apparent salt flux across the CSAL T interfaces.

The relevant question then is ths:- "Is it consistent to have wi AS / - FS as litte as

0.018 whie (from 10) wi Sz/ - Fzs is as large as 0.47?" In two-layer laboratory expriments
these two ratios are equal beause with only a single interface, the apparent sat fluxes from
both prosses ar simply relate to the correspondig vertcal divergences of the sat fluxes
by the mean layer height In the CSAL T sitution, the salty step across an interface is
simply the layer height ties the mea (large-scale) salty grdient, but the vertcal

divergence of the double-dusive salt flux ca be quite a sma frction of the sat-flux.

Using a mean layer height of21 m (BOYD and PEKIS, 1987) and FS / Fzs equal to
300 m as before, the required interfacial velocity can be expressed as

Wi AS = 21m (Ri - r) = 0.033,
_Fs 300m (Rp - Ri)

(13)

which is less than a factor of two larger than the value deduced from the laboratory
experients, namely, 0.018. We must conclude that these previously neglected interfacial
mass fluxes caused by the asymetrc entrnment of fluid across the double-dfusive
interfaces can be suirisingly efficient at causing water-mass conversion, even though they
may account for a much smaler frction of the apparent property fluxes themselves. The
diference between fluxes and flux divergences lies at the root of ths issue and we
ocanogrphers are often guilty of ignorig the distiction between them. The interfacial
mass flux given by (13) would have the effect of increasing the buoyancy flux ratio (defined
in term of the tota apparent fluxes of potential temperature and salnity) from say 0.7 to

0.73 (equal to (R¡ + 0.033Rp )/1.033); a very smal change in the buoyancy flux ratio.

However, beause vertcal advection is so effcient in causing water-mass conversion, it has
saved us invoking a totaly unealstic buoyancy flux ratio of 1.36 to explain the CSALT
observations.
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Discriminating Salt-Fingering from Turbulent Induced Microstructure in
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Abstract

Meaurents made with a towed ary of coIoc teperatu and conductivity sers ar us to
evalua tehnques for dig beee mirotu pahes caus by ttence an thos ca
by double-on. Hornta tows in the Saras Sea revea numerous patches th ar idetied as due
to sat-figenng an others as due to nibulen. Deity ratio, conductivity grdient sptr slope, and
conductvity grdient kusi are evalua as potenti diintors. The density ratio compute frm
sigle se pa gives unlile values when the sers fai to cut thugh isopycna sunaces. Spetr
slop have be copute usg both a dit sp tehnque, which is computaonay ineffcient, and
a tehnque usg rao of varce in two wavenumbe bads. Th power rao slope tehnque shows goo

sepation between the dibutions for sat-rmgenng and tuulence with sat-figering slopes:; 1.2 and
tuulence slope c: 1.2. Kursis (K = c:c4:;/-:'2:2) al shows goo separtion with K c: 4 for sat-

figenng and K :; 4 for tubulence. Thes diriatrs improve upon the us of Rp alone since they

revea th deted charics of the pah and ar rous for varous tow angles with ret to ispycna

suraces. The dibution for 10g(K is more nealy gausia th tht for kusis and shows less overlap

between sat-figenng and tuulence. A dirion tehnique using a log-lielioo approch for the
joint probabilty density fuctions of slope and log(K is suggeste

Introduction

Studies to investigate the relationship between internal waves and tubulence and to
understand the importce of double-difusion and turbulence to ocean mig require a
knowledge of the cause of the observed microstrctue as well as the volume fraction of

each contrbution. To separate tuulence from double-diffusion, field measurements can
be conducte in a disively stable envinmnt, which excludes the possibilty of double-

diffusion. However, contiuous measurments of vertcal temperature and salinity are
requir to ensur that frne-scale (of order few meters) temperatu or salinity inversions

are not present (Gargett and Schmitt, 1982). Alternatively, studies of salt-fingering or
diffusive convection can be conducted in the environments favorig these instabilties.

Whe ths can enhance the lielioo of observg these instabilties, it does not exclude
the possibilty of tubulence. Simultaneous measurements of the small-scale signatue of
mixing and measurements of the finestrcture environment are really required to
discnmiate between double-difusive and tubulent induced microstrctu. In this way,

ocan measurments that cover both the diffusively stable and difusively unstable regies
can be used to investigate the importance of turbulence, salt-fingering, and diffusive
convection.

In this paper we explore varous techniques applied to a towed aray of co-located
temperatu and conductivity sensor to discnate between salt-figenng and tubulence.
We have evaluated the density ratio (Rp = aTz!ßSz), conductivity gradient spectral slope,

and conductivity grdient kurosis (K = .lci4~/.lc'2~2). Several studies have shown that
salt-fingenng is more likely in the supercntical regime of the density ratio between 1 and 2
(Schmitt 1979, Schmitt and Georgi 1982, Mack 1985, 1989). Other studies (Gargett and
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Schmitt 1982, Marorino 1987, Manorino and Greenewalt 1988, Mack 1989, Shen
1989) indicate that spectral slopes for temperature or conductivity gradient should be == 2

for salt-íingering and less man or equal to 1 for tubulence. Holloway and Gargett (1987).
suggeste kuosis as a potential discrnator. Maorino and Greenewalt (1988) applied

ths to a towed conductivity sensor.

A useful discnator should be both accurte and computationally effcient. Density

ratio requirs vertcal grdients of temperature and salinity and is ideally suited to vertcal

profiers. However, vertcal profiers do not measure me mostly horizontal signature of

salt-figers and ar unable to cover large aras. Towed aray conductivity sensors usually
lack the necessar intersensor calibration accurcy to provide the meaningful vertical
salinity grdients between vertcal sensors to measur Rp. Mack (1989, "M89") described
the use of a single sensor pai (tempeatu and conductivity) to compute density ratio from
towed sensors. As long as the sensors cut though isopycnal suraces and a component of
the vertcal is measured, useful Rp values can be obtained. Towed arays cover large
distances, measure vertcal swaths, and detect me horizontal signature of salt-fingers.
However, unreliable Rp values ar obtaned when the tow path is parallel to isopycnals.
Furthermore, Rp is computed from smoothed temperature and salinity gradients, but
smoothing causes a lack of corrlation at the edges of patches where the microstrctue
abruptly stars or ends. It is importnt to supplement Rp information with measurements
that exploit the character of the mixing to obtain the best estimate of the frequency of
occurrence of the different mixing events. Spectral slope or kurtosis could be quite useful
discriminators ü they provide characteristics suffciently different in salt-fingering and
turbulence and üthey ar computationaly effcient

Experimental and Analysis Description

The towed aray consists of 30 pairs of nearly co-located planar four-electrode
conductivity cells (Farggia and Fraser, 1984) and Thermometrcs P20 mermstors spaced
50 cm apar. The instrment system and data set (Sargasso Sea, Fall 1984, tows near
30oN, 700W) are descrbed in M89. Only the characteristics relevant to this paper are
discussed here. The conductivity output has been pre-emphasize with an analog filter that
has no gain at low frequencies and rises at 6 dB per octave from approximately 0.7 Hz to
100 Hz. A 5-pole Bessel anti-alias fiter with 3-dB frequency at 160 Hz has been applied.
Conductivity was sampled at 320 samples per second. The measured spatial response of
the conductivity sensor (3 dB down at 8 cpm) has been used to correct for the conductivity
spectra out to 30 cpm.

We consider the tow segments of approximately 2.2 km each (as shown in Figures
5, 7 and 8 of M89) that include patches identified as likely salt-fingering or turbulence
based on Rp and spectr slope. Loalize portons of these tow segments have been used

to generate the spetral slope and kurtosis distrbutions for salt-fingering and turbulence.

These are labelled "Case 1 SF Loal" (M89 Figur 5 sensors 5-17 from 08:00 - 08:03:30),
"Case 2 SF Loal" (M89 Figue 7 sensors 6-14, 16 from 19:00 - 19:05) and "Case 3 Turb
Loal" (M89 Figure 8 sensors 22-25, 28-30 from 08:51:30 - 09:00). Spectral slope has
been computed every 1 sec (-3 m of tow) by direct spectral method incorporating least-
squares fit to the conductivity gradient spectra (corrcted for electronics and sensor spatial
response) over the wavenumber range of 0.7 to 12 cpm in order to avoid the peak in the
salt-finger spectr tyically seen between 10 and 20 cpm.

A more computation ally efficient technique for estimating slopes makes use of the
variance in two wavenumber bands computed by bandpass filtering, squaring, and
averaging after editing, applying de-emphasis filter, and differentiating the raw pre-

emphasized conductivity data. This technique assumes a spectral slope model such that
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G(k) = kP, where G(k) is the grent sptrm, k is the wavenumber, and p is the slope; it
uses a sensor response of the form IH(k)12 = 1 +ak+bk2+ck4; and then integrtes.
G(k)IH(k)12 over two bands (low band = 0.3 to 1 cpm and high band = 3 to 20 cpm). Ths
procss is repete for p = -0.5 to 3.5, and a table of expeted log power ratio (ELPR) vs.
slope is constrcted wher:

¡i G(k)IH(kt dk)
ELR - 10 liili-l-- gIG i-l~k)'H(ktdk

Conductivity grdient varance in the two bands is compute for the data (30 m smoothg
of the low band is applied to include an equal number of cycles in both the low and high
band) and the 'observed' log of the ratio of the varance is computed (Observed Log
Power Ratio). IT a micrstrctu patch is encountere (zero-crossings grater than 2, se
M89), the slope is detered by means of a table lookup and interpolation of the modl
ELPR.

(1)

Results

One of the tow regions used for generatig the statistics appropriate to salt-figerig is

shown in Figur 1. The fit 6 miutes were shown as Figu 5 in M89. The salt-figer
patch is seen by sensors 3 though 17 durg the first 3.5 minutes. Note the excellent
correlation between the microstrcture and low Rp values as depicted by the gray scale
superiposed on the pre-emphasize conductivity (plotted in min-max format every 0.25
sec.) Although there is a goo corrlation between low Rp and microstrcture, note that
some sensors such as 17 have Rp values that are outside the gry scale rage but appear to

be par of the sam patch. Ths occur when the chain does not cut though isopycnal.
Conductivity grdient spectra have been computed every 1 sec for the 'Case 1 SF

Loal' sensors as well as the 'Case 2 SF Loal' and 'Case 3 Turb Loal' regions. Some
representative sptr ar shown in Figu 2. The spetr were compute using geometrc
band averaging over 16 bands. The distrbution of spectrl slopes over several hundred
I-sec intervals are shown in Figur 3a. The nearly gaussian distrbutions (shown by the
dahed lines) have means of 1.91 and 0.79 respetively for salt-fingering and tubulence.
The histograms show a reasonable separation at 1.4 with about 15% of each distrbution
overlapping the other. Slightly lower slopes were obtaned by least-squars fit to the raw
sptr without geometrc band averaging.

The distrbutions of spetr slopes obtaed by the power ratio technique ar shown

in Figure 3b. The mean slope is 1.50 for salt-fingering and 0.71 for turbulence. The
mean ar less than those for the dit spetr technique, parcularly for the salt-fingerig

case (the high wavenumber band includes par of the roll off region of the spectra), but the
standad deviation has decased The two distrbutions now cross at about a slope of 1.2
with only about 10% overlap. Hence a better separtion between the salt-finger and
tubulent distrbutions is obtaed by the power ratio technique.

Holloway and Gargett (1987) noted that the salt-finger observations of Gargett and
Schmtt (1982) showed a limte amplitude temperature signature compar with turbulence
and suggeste the kuosis as a potential discnator. They found a mean kurtosis of 3.04

for data identifed as salt-fingering and a value of 6.75 for turbulence. They suggested
kurtosis in par because of the possibilty of computation in near real time and thus a near
real-time survey of the extent of salt-fingering. Kurtosis of the pre-emphasized

conductivity has been computed on 1 sec intervals after the conductivity has been wild-
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point edted and de-meaned. The kuosis histogrs for the three 'Loal' tow segments ar
shown in Figu 4a. These ar compared with the spectrl slope histogrms computed by
the power ratio technique in Figue 4b. The salt-fingerig regions have a mean kurosis of
about 3.2 and standard deviation of 0.56 to 0.82, whereas the turbulent regions have a
mean of 6.11 with a much larger standad deviation of 3.4. The distnbutions have
miimum overlap at K=4. Note that the kurtosis histograms have long tas at high K
values, suggesting that y=log K would give a better fit to a gaussian modeL. Table 1
summarzes the statitics for the sptr slopes and kurosis.

We have used the criteria suggested by the slope and kuosis histograms and applied
ths to the 2.2 km tow segments that include the regions from which our histograms were
computed and other microstrctue patches of unkown origin. Figur 5 shows the 'Case
l' tow segment with a gry scale basd on slope using the criteria that slopes ~ 1.2 imply
salt-fingering and slopes ~ 1.2 imply tuulence. Ths technique clearly improves upon the
Rp gray scale plot of Figue 1. In parcular the microstrctur observed by sensor 17 at
-08:01:30 is identied along with the rest of the contiguous patch as due to salt-fingerig.
Severa of the other patches later in the tow ar identified as mostly due to turbulence even
though some have Rp values less than 2.

The results from discriminating on the basis of kurtosis, where K ~ 4 implies salt-
fmgering and K ~ 4 implies tubulence, ar shown in Figure 6. The patch from 08:uO to

08:03 is identifed as due to salt-fingering. The patches later in the tow ar identified as
mostly tubulence but with a smal percent indicate as potentially salt-fingering.

These results suggest the joint use of slope and kurtosis to identify the percent of salt-
fingering and turbulence. An indication of the joint distrbutions is given by the scatter
diagrs shown in Figure 7. The upper plots (7a) represent only the data points generate
from the population of just salt-fingering or turbulence ('Local'). The lower plots (7b)
include all 12 minutes (2.2 km) of tow and all working sensors surrounding the 'Lal'
regions. 'Case 1 Salt-finger' and 'Case 2' both show a tight distrbution of nearly all salt-
fingerig. With the inclusion of the full ary, the distrbution grows to include the lower
slopes and higher kuosis values of turbulence. Only 'Case 3' includes just turbulence for
both the local and full 12-min regions. These distrbutions are similar to the results of
Manorino and Grenewalt (1988).

We are currntly exploring optimal discrimination techniques under the assumptions

that spectral slope (S) and 10g(K) are distrbuted as a stationary, bivariate normal
distrbution in both salt-finger and turbulent regions. We estimate the parameters of the
joint density function (mean, varance, and co-varance of Sand 10g(K)) in salt-finger and
turbulent regions and form the log-likelioo ratio given by:

Â(S,log(K)) = In( P(S,logKISF) J
P(S, log KITurb) (2)

Such a technique provides a statistically rigorous way of deciding what should be called
salt-fingering (Â. ~ 0) and turbulence (Â. .. 0) and further offers a measure of the relative
error in such estimates. This work is curently in progress.

Summary

Conductivity gradient spectral slope and kurtosis are applied to towed aray data to
distinguish salt-fingering from turbulence. For our towed data in the Sargasso Sea, these
discriminators are more effective than Rp. particularly where tows are parallel to
isopycnals. The power ratio technique of computing slopes is computationally effcient and
shows goo discrimination between salt-fingering and turbulence. These discriminators
should improve upon the use of Rp alone since they can identify the portion of turbulence
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at Rp values that could also support salt fingering and can help remove any ambiguity of
inteipretation. Optimal use of the joint statistics of slope and kuosis is suggested.
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Table 1. Statistics for spectral slope (by different slope techniques), kurtosis and log-
kurtosis.

Case 1 Case 2 Case 3

Salt-Finger Salt-Finger Turbulence
Mean Sigma Mean Sigma Mea Sigma

Slope
(Raw Spetr) 1.64 .47 1.45 .64 .57* .51
Slope
(Oeo Band Ave 1.91 .47 1.73 .66 .79* .58
Spectr)
Slope
Power Ratio 1.50 .26 1.49 .33 .71 * .35
(smoothing)
Kurtosis 3.18 .56 3.25 .82 6.11 3.40

Log Kurtosis 0.50 .064 0.50 .081 0.75 0.16
* sensors 22-25 not included.
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THE SCALED DISSIPATION RATIO AS AN INDICATOR OF SALT FINGER MIXING

James M. Hamilton and Neil S. Oakey
Physical and Chemical Sciences Branch, Department of Fisheries and Oceans,
Bedford Institute of Oceanography, Dartmouth, Nova Scotia, Canada, B2Y 4A2

ABSTRACT
The ratio of thermal to turbulent kinetic energy dissipation, r, as

determined from microstructure measurements, was shown by Oakey (1988) to be
larger in regions where double diffusion was favored. Hamilton, Lewis and
Ruddick (1989) developed a model using this "scaled dissipation ratio", r, to
distinguish bebween turbulent mixing and salt finger mixing. This is
necessary because of the discrepancy bebween the calculated vertical mixing
rates for each of the bwo processes. To explore this model a preliminary
analysis of microstructure measurements from the top 500 m. of the Canary
basin is discussed here. Although there may be a suggestion of some salt
finger activity from the calculated values of r, problems with the merging of
EPSONDE and CTD data, and the selection of appropriate averaging intervals,
means that further work is required.

1.0 INTRODUCTION

Oakey(1988) showed that regions near a MEDDY where salt fingering was

favored had an excess of large values of r. r, the "scaled dissipation

ratio" is the ratio of thermal to turbulent kinetic energy dissipation

calculated from microstructure quantites. Hamilton, Lewis and Ruddick (1989)

considered two different vertical mixing models and demonstrated that it was

necessary to be able to distinguish between them before accurate vertical

mixing rates could be calculated from observations of microstructure data.

The two models, a turbulent mixing model and a salt finger model, describe

two rather different physical processes. The maj or difference between them

is that turbulence, which uses shear in the flow to produce mixing, acts to

raise the potential energy of the water column. Salt fingering on the other

hand extracts energy from the salinity field to produce the mixing, resulting

in a lowering of the center of mass of the water column. This basic
difference in the energetics of the two processes leads to different mixing

rates as calculated from the relevant observable quantities. Even if all of

the mean and microstructure quantities are properly measured, an incorrect

assumption about which of the two mixing processes dominates can result in

errors in mixing rates of a factor of 2 or 3 ( Hamilton et. al., 1989 ).

It was proposed by Hamilton et. al. that observations of the scaled

dissipation ratio, r, could be used to distinguish between the two mixing
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processes. If it is assumed that T = T(z) only. then r is defined in

terms of measurable quantities as

r =
N2XT

-2
2 E T

z

(1)

H N. h b f ( - 6 0 T' 2 ). th t fere. 1S t e uoyancy requency. X 1S e ra e 0T z
dissipation of thermal variance where 0 is the molecular diffusivity of heat,

and E ( - 7.5 v u,2 ) is the turbulent kinetic energy dissipation where v is
z

the kinematic viscosity of water. Fluctuating quantities are denoted by

primes while mean quantities are denoted by over-bars.

The microstructure quantities, X and E, can be estimated using EPSONDE.
T

We will examine the value of r as an indicator of salt fingering activity

using a CTD and EPSONDE data set from the Canary Basin of the North-Eastern

Atlantic. Here low values of the density ratio, R (- Q T / ß S ) and somep z z
steppiness in the T-S profiles, suggest the presence of salt fingers

(Schmitt, 1979; Mack, 1985).

2 .0 THE MIXING MODELS

2.1 The Turbulent Mixing Model

In a turbulent non-double-diffusive system, the vertical diffusivity of

any scalar variable is given by

K
scalar, t

r E/ N2t (2)

(Osborn, 1980; Oakey, 1982), where r is a constant of proportionality in at
turbulent system. Osborn (1980) proposed a value for r of 0.2 based ont
energy arguments. Lilly et. al. (1974) found rt = 0.33 from atmospheric

measurements, while oceanic values of 0.26 have been measured (Oakey. 1982

r = 0.26 l 0.21, and similar values from Oakey, 1985).

2.2 The Salt Finger Model

In a salt finger system, Hamilton et. al. (1989) have shown that the

vertical diffusivity for salt is given by

K ( R ( r + 1 ) - 1 ) E / N2S,f P f (3 )

where r is the value of r characteristic of a salt finger system. They also
f

derived an expression for r in terms of the salt finger flux ratio. rf f
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rf

r (R - 1)f P

R (1 - r )p f (4)

By assuming that Stern's (1975) equation for the salt finger flux ratio which

is given as

r _ R1/2( R1/2 _ (R _ 1)1/2)f P P P (5)

is appropriate in oceanic salt finger systems, they found that the values of

r as computed from (4) are significantly different than those expected in af
turbulent system for all but very low values of R .

p

3.0 THE DATA

The data set used in this analysis consists of a merged set of EPSONDE

and CTD data. Values of X, E, and T averaged over 15 m. have beenT z
calculated from EPSONDE microstructure measurements for 92 drops, over a

depth range of 150 to 450 m. Values of Nand R averaged over 40 m. have
p

been obtained from CTD casts. These casts were not done simultaneously with

EPSONDE drops, but were typically within two kilometers and two hours of the

corresponding EPSONDE station. Upon merging of the corresponding profiles

from each of the two instruments, R was recomputed to make use of the 15 m.
p

temperature gradient data available from the EPSONDE data set using
g 0: T

z

go:T _N2
z

(6)R
p

Over 1000 values of rand R computed on a 15 m. scale were derived from this
p

data set for statistical interpretation and comparison to the mixing models.

4.0 DATA ANALYSIS AND DISCUSSION

In an attempt to better understand the nature of the mixing between 150

and 450 m. in the Canary Basin, the dependence of r on R was examined. A
p

functional dependence in the case of salt fingers is expected, but not for

shear-driven turbulence.

Shown in Figure 1 are the measured r values plotted as a function of

R . A program (Dan Kelley, Personal Communication) which uses Tukey's (1977)
p



113
box-and-whisker method, is used to display the data. The bar through each

box designates the median for the prescribed R range, with upper and lower
p

quartiles defined by the horizontal borders of the box ( 50 % of the data is

within the box). The "whiskers" extend to the most extreme data point that

is within l. 5 interquartile ranges of the upper and lower quartiles. Minor

outliers, shown as open circles, represent data points that fall between l. 5

and 3 interquartile ranges beyond the upper and lower quartiles, while

extreme outliers, which fall outside 3 interquartile ranges, are shown as

filled circles.
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Figure 1 - Computed 15 ID. averaged l values from 92 EPSONDE stations over the
depth interval, 150 - 450 m. Also shown are expected values for turbulence

(l =0.26), and for salt fingers (l) where (Eqn 5) is considered appropriatet f
for the salt finger flux ratio.

Also shown in Figure 1 are the curves which describe the values expec ted

for l for each of the two models. A value of 0.26 is used for l , while lt f
is described by (4) where Stern's expression for the salt finger flux ratio
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is considered appropriate. The measured r values, which have been calculated

according to the description in Section 3.0, show a functional dependence on

R , which is not expected if turbulence dominates in the mixing. However, at
p

values of Rp ~ 2 it is unlikely that salt fingering can be occurring to any_

great extent, yet the measured r values continue to increase. The r in the005

range stable to salt finger formation is much larger than the turbulent value

we would expect. The data as processed here must be considered suspect.

To resolve the apparent problem with the computation of r, several areas

need to be addressed. It has been assumed that merging of 40 m. averaged CTD

data with the EPSONDE data is reasonable, considering the closeness of the

stations in space in time. It might be instructive to compare the

temperature gradients as computed from each of the instruments to see at what

scale the two correlate well. This might be the most sensible scale on which

to compute r. The data available to us here was processed for a different

purpose, so may not be ideal for this type of analysis in its present form.

Another area of concern is the way in which R has been computed. .The N
p

computed from the CTD on a 40 m. scale, and temperature gradient from EPSONDE

on a 15 m. scale was used in equation (6) to calculate a local EPSONDE value

of R. R was then correlated with r which was determined from values of f,P P 005
X , and T measured with EPSONDE. Where the salinity gradient contributesT z
significantly to the density gradient, as is the case here, this approach

may not be appropriate.

Further work with the data set is required before it can be clearly

determined whether microstructure measurements from this region lend support

to the salt fingering mixing model of Hamilton et. al. (1989). It is

interesting that there are many large outliers in the r data at low R This
p

may be a suggestion that salt finger activity is producing large values of r

consistent with their model. There are, however, large values of r at larger

R where only turbulent mixing is expected. These values are thought to be a
p
result of merging and scaling of available data from instruments measuring on

different space and time scales. Particularly, the calculation of N and the

application of equation (6) at large R may be suspect. Further work is
p

required before a conclusive answer to these questions can be obtained.

Therefore, the result shown in Figure i must be accepted only with

reservations.
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Salt-Finger Fluxes in a Meddy
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ABSTRACT

Salt-finger fluxes based on changes in salinity and temperature profiles through the centre of a
Mediterraean salt lens over a year are compared to estimates of salt-finger fluxes using laboratory flux
laws, a model of Kunze(1987) and a criterion of Stern(1976) applied to some of the steps observed in the
profies. The fluxes using laboratory flux laws are an order of magnitude larger than the observed fluxes
while fluxes using Kunze's model for thick interlaces and Stern's criterion are consisent with the observed
fluxes.

The rate at which the Meddy lost saIt is compared to an estimate based on the flux estimate through
the bottom of the Meddy by salt-fingers. This salt-finger rate is approximately two orders of magnitude
too small. Simple salt-finger fluxes through the base of the Moody cannot be responsible for the observed
lost of the salt content of the Meddy.

1. INTRODUCTION

Past salt-finger flux estimates in the ocean have been made by applying laboratory
flux laws to observed steps in the salnity and temperature profiles (e.g. Lambert and
Sturges, 1977; Schmtt and Evas, 1978). The applicabilty of these laboratory flux laws,
also known as the 4/3 laws since the fluxes depend on 6.S4/3 where 6.S is the change
in salinity across the salt-fingering interface between two homogeneous layers, has been
questioned recently (Gregg and Sanford, 1987; Kunze, 1987; Lueck, 1987; Schmitt, 1988).

Assuming that the buoyancy flux provided by salt-fingers Fb balanced the dissipation €
observed in the salt-figering interfaces, dissipation measurements in C-SALT staircases
(Gregg and Sanford, 1987; Lueck, 1987) gave a Fb approximately 30 times smaller than
the buoyancy flux calculated using the laboratory flux laws on the observed steps.

There are several problems in comparing ocean dissipation rates in salt-fingering
interfaces with buoyancy fluxes using laboratory flux laws (Hebert, 1988c). One major
problem is that the buoyancy flux due to salinity (gßFs) is partially compensated 

by

the buoyancy flux due to temperature (gaFT). Thus, the total buoyancy flux (Fb =

gßFs(l -I)) depends on the flux ratio, = aFT/ßFs. Laboratory flux measurements

(Schmitt, 1979; McDougall and Taylor, 1984) find that, ranges from 0.6 to 0.7 when the
density ratio Rp = a8T/8z/(ß8S/8z) is approximately 2 and that ,-+ i as Rp -+ 1 (Stern,
1975). A 10% error in the estimates of gßFs and gaFT in the laboratory experiments gives
an uncertainty in, and Fb of 35% if, = 0.7 and 60% if, = 0.8. As ,-+ 1, the uncertainty

in Fb increases dramatically. Also, laboratory flux experiments have not been performed
for Rp less than 1.2.

Rather than attempt to examine the applicability of the laboratory flux laws in the
ocean by comparng the difference between the salinity and temperature fluxes, it would
be more desirable to compare the salnity and temperature flux estimates using these
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laboratory formulae diréctly with the observed fluxes or flux divergences in the ocean. In
this note, the fluxes estimated from the large-cae vertica changes in a Mediterranea salt
lens wil be compared with estimates based on the obsered steps in the profies (Section
2). In Section 3, the salt-flux estimates by salt-figer at the bottom of the ¥eddy will 'be
compared to the salt lost rate of the Moody over one yea.

2. SALT FINGER FLUXES

The study of a Mediterrea salt lens (Meddy) over a two yea period (Hebert,
1988a,b; Armi et al., 1989) alows us to estimate the vertica flux due to salt-figers.

Mediterranean salt lenses are coherent anticyclonic eddies of Mediterraea water found
in the North Atlantic which are severa tens of kilometers in radius and hundreds of metres
in thicknes. The salt lens discussed in this paper wa tracked in the eatern North Atlantic
using SOFAR floats which alowed the Meddy to be found and sureyed four times (Figure
1) with CTD and velocity profìers. Arm et al.(1989) have sumzed the observtions

25°
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OCT. .84

23°

Figure 1. The trajectory of the Meddy over a
two year period as shown by a SOFAR float.

The float track is marked every 10 days by a
solid dot. Location and size of the Meddy at
eac survey are shown to scale (solid circle:
core, open circle: total size, dashed circle:
salinity front).
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made during the study of this Meddy. The Mediterranea salt lens, located at a depth
of 1000 db, was much warer (2.5°C) and saltier (0.6 PSU) than the Atlantic water at
the same depth. With this salnity and temperature anomaly we would expect double-

diffusive processes to be active at the top (diffusive convection) and bottom (salt-figers)
of the Meddy. In fact, steps in the salnity and temperature profies at the top and bottom
of the central region of the Meddy were present; a positive sign that double-ffusion
processes were likely an important mixing mechanism in these regions. For the first two
survey periods, the Meddy had a central core region which has very small or non-existent
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horizontal gradients. Any change at the centre of the Meddy was most likely due to
vertica mixing. By the third survey period, intrusions had reaed the centre of the
Meddy (Figure 1). Hebert(1988a) showed that the total horizontal flux of salt and heat
due to intrusions was more than two orders of magntude larger than the total vertica flux

due to salt-fingers as estimated below. Therefore, we caot assume that changes at the
centre of the Meddy after the thid surey were due to salt-figers. Also, flux estimates
based on changes between the June 1985 and October 1985 surey periods are likely to
be overestimates but we ca't determne their effect on the observed fluxes since we don't
know when the intrusions reaed the centre of the Meddy. The chanes in the centre of
the Meddy over the fist three sureys will be assumed to result from mig in the vertica

(i.e., a one-mensional model).
As the Meddy aged, it moved in an erratic but generaly southward direction (Figue 1)

into cooler, fresher bacground water (Hebert, 1988b). The separation between isopycnals
at the centre of the Meddy decreaed with time as the total angular momentum of the
Meddy decreaed. As the Meddy moved southwad, the depth of the isopycnal in the
bacground water also changed. These effects wil change the vertica structure of the
Meddy without producing a vertica (diapycnal) flux by salt-figers. To eliminate these
non-mixing effects, the vertica profies were stret"hed to have the same vertica density
structure as the June 1985 surey (Figue 2). Details of this pressur stretchng are given
in Hebert(1988c).
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Figure 2. Profiles of salinity through the
centre of the Meddy for the three survey

periods: October 1984 (thin line), June 1985
(thick line) and October 1985 (dashed line).
The salinity profiles for the October 1984
and October 1985 survey periods have ben
stretched (see text).
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Any change in the vertical salinity structure of the Meddy in this stretched pressure
system is assumed due to a vertical flux divergence. In other words,

a ip2

at S dp = Fs(pz) - FS(Pi)Pi
(1 )
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where Fs(p) is the salinity flux at pressure p. '10 estimate the average salt-finger flux, it
is necessar to determine the pressure interva over which to determine the total salinity
change. The upper pressure limit is obvious; it can be anywhere in the stably stratifìed
region but a pressure of 1150 db was chosen to reduce the infuence of the intrusions for
the third surey. Thus FS(Pi) = O. The location of the lower pressure is more subjective.
It is necessar to choose a pressue when salt-figers were active for the three surveys,
say when Rp -( 1.5. It should also be where steps were observed for the June 1985 survey
period since we want to compare the flux determined in this section with estimates based
on the observed steps. Finaly, it was decided to use the pressue where the :fux would be
a maxmum between the second and third surveys, that is, the pressure where the salinity
profies from the two sureys intersect (Figue 2). The pressure chosen was 1286 db.

From the changes in the salinity structure of the Meddy centre, we find both 9orFT
and gßFs are 5 X 10-9W kg-i (October 1984 - June 1985) and 9 X 10-9W kg-i (June
1985 - October 1985). The net buoyancy flux is zero since we forced the vertical density
structure in al profiles to be the same (i. e. 1 = 1). Of course, this is incorrect since we

know that the density flux ratio is less than 1 for salt-fingers (e.g. Schmitt, 1979); it is
necessary to account for 1 #- 1 in determining the stretched pressure.

A flux ratio less than 1 implies that as a parcel of water loses salt (assuming there is
no flux into it), it also loses mass thus becoming lighter. With a flux of salt and heat into a
parcel as well as out of the parcel, the change in density of the parcel is po(l- r )/:S where
6.S is the change in salinity ofthe parcel and r = (orôFT/ôz)/(ßôFs/ôz), the ratio of flux
divergences. Since 1 is a fnnction of Rp and Rp varies over the salt-figering region, both

1 and r wil vay over this region. Assuming that 1 does not change significantly between
the salt-finger flux into and out of the parcel, then r = I. Table 1 of Hebert( 1988c) showed
that i' based on a fit to laboratory flux measurements and a theoretical model of fastest

growing figers, ranged from 0.63 to 0.94 for the observed steps. Rather than choosing a
functional dependence for 1 (and r) on Rp such as Kunze's(1987) relationship, I decided to
use a constant value of 0.7 for r. To determine the new stretched pressure for the October
1984 and October 1985 survey profies, it is necessary to find the pressure of the water
parcel (PL'T) that had a pressure Po, density Po, and salinity So for June 1985 survey and
had a density PL't and salinity SL't for the October survey and satisfies the relationship

PL't(PL't) - Po(Po) = Po(1- r)ß(SL't(PL'i) - So(Po)) (2)

We see that when r = 1 that the density flux due to salinity is completely compensated
by the density flux due to temperature. The density of a water parcel remains the same
as it loses salt; this is the pressure stretching used for Figure 2.

The difference between the three salinity profies, with the profiles for the October
1984 and October 1985 survey periods stretched using (2), is reduced (Figure 3). (The
large increase in salinity in the June 1985 profile at approximately 1320 db forces the
pressure coordinate for the October 1984 and October 1985 profiles to be greatly stretched
producing the almost homogeneous layers in the October 1984 and October 1985 profies
below 1320 db.) The salt-finger fluxes using the change in the salinity and temperature
profiles in the pressure range 1150-1286 db are:
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October 1984-June 1985
June 1985-October 1985

gaFT/(10-9 W kg-i)
2.2
3.3

gßFS/(10-9W kg-i)
2.9
4.5

Fb/(10-9W kg-i)
0.7
1.2
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Figure 3. Profiles of salinity through the
centre of the Meddy for the three survey

periods: October 1984 (thin line), June 1985
(thick line) and October 1985 (dashed line).
The salinity profiles for the October 1984
and October 1985 survey periods have been
stretched using r = O.7(see text).
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In the above discussion, the point of view for determning the chge in the salnity
profiles was a. Lagrangian one. That is, the position of an individual parcel of water was
tracked between the three sureys (using the assumption that the flux divergence ratio
was 0.7). It is also possible to examine the 'Y :: 1 effect from an Eulerian point of view
(McDougall, 1987). The change in salinity on an isopycnal is

ôS = _ ôFs ¡Rp-rl
at ôz Rp - 1

where
aôFT/ôz
ßôFs/ôz (3)

The salnity profies in Figu 2 have been stretched in such a way that changes in salnity

at a constant pressure represnts changes in salinity on an isopycnal. To correct the flux
estimates using these profies for 'Y :: 1, it is necessar to determine the factor (Rp -
r)j(Rp - 1). Using a Rp of 1.3 and assumng r :: 'Y :: 0.7 as before, the flux estimates
found for 'Y = 1 should reduce bya factor of 2 to give the true salt-figer fluxes -

approximately what is found when the profiles were stretched using r = 0.7.
Hebert(1988c) examned several of the steps durng the June 1985 survey (see Table

1 in Hebert, 1988c). Fluxes of salnity, temperature and buoyancy for these steps were
determined using the laboratory flux law formulae of Kelley(1986), Kunze's(1987) model
and Stern's(1976) criterion. The average fluxes from these different formulae are shown in
Figure 4. (Note: For the fluxes based on Stern's(1976) criterion, A=4 was used instead of
A=l as used in Hebert, 1988c.) We see that both the laboratory flux laws as presented by
Kelley(1986) and the maximum fluxes using Kunze's(1987) model for thin interfaces are
more than an order of magnitude larger than maximum fluxes predicted by Kunze's(1987)
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model for thick interface. Using Stern's criterion (with A = 4), we fid the fluxes are
approximately the same as found for Kune's(1987) model for thick interfac.

The average fluxes based on laboratory measurments (either KelIey's(1986) formulae
or Kunze's(1987) thin interfac formulae) are an order of magntude larger than the fluxes
determined from the change in the structure of the Meddy (Figue 4). The maximum flux
.estimates using Kunz's(1987) model for thick interfaces or Stern's(1976) criterion (with
A=4) are in good agreement with the estimates using the chage in salnity at the base of

the Meddy.
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Figure 4 Average salt finger fluxes using (a) laboratory flux laws á la Kelley(1986), (b) Kunze's(1987) thin
interface formulae, (c) Kunze's(1987) thick interface formulae and (d) Stern's(1976) criterion (A=4) applied
to steps observed during June 1985. Salt finger flux estimates from changes in the salinity and temperature
structure of the Moody using r = 0.7 for (e) October 1984-June 1985 and (f) June 1985-Qctober 1985.

3. DECAY OF THE MEDDY

To determine the decay of the Meddy by salt-figer fluxes at the base of the Meddy,
it is necessary to determine both the salt fl by salt-fingers and the area over which
the salt-finger flux is occurring. In the previous section, we found the vertica flux of
salt to be approximately 5 X 10-7 PSU m 8-1 at the centre of the Meddy. The region
where salt-fingering may be present can be determined by 'Irner angle (Figure 5). It

is generally believed salt-figers are very active when then 'Irner angle is greater than
78.70 (Rp -c 1.5). We see that the base of the Meddy is one area where salt-figerig
should be occurrng (Figure 5). Assuming the above salinity flux occurred over this region,
which extended to a radius of approximately 17 km, the Meddy would be losing salt at
a rate of 900 kg 8-1. The observed rate of salt lost ranged from 2.5 x 1Q4kg 8-1 to

6.6 x 104kg 8-1 over the October 1984 - October 1985 period (Hebert, 1988a; Armi et
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al., 1989). Definitely, the fluxes due to salt-fingers at the base of the Meddy were not
responsible for the large observed changes in the salt content of the Meddy.

Intruions were present at the outer edge of the Meddy for al surveys (Arm et al.,
1989). Estimates of fluxes by these intrusions using different models and representations
(Hebert, 1988a; Ruddick and Hebert, 1988; Hebert et al., 1989) were found to agree with
horizontal flux estimates based on the observed salt lost rate and horizontal extent of the
Meddy (Hebert et al., 1989). Intrusions transport salt to the outer edge of the Meddy
where the salt is removed from the vicinity of the Meddy by some unown process.

4. SUMMARY

Fluxes determined from laboratory flux laws and a model by Kune(1987) applied to
some observed steps during the second survey, June 1985, of the Meddy were compared
to fluxes estimated from changes in the salinity and temperature structure of the centre
of the Meddy. The maximum fluxes through thick interfaces (Kune, 1987) or fluxes using
Stem's(1976) criterion with A=4 agreed with the observed fluxes (using a flux divergence
ratio of 0.7). The maximum fluxes predicted for thin interfaces (Kunze, 1987) or fluxes
determned from empirical fits of laboratory measurements (Kelley, 1986) are an order of
magntude larger than the observed fluxes.

Evidence that the high fluxes predicted by laboratory flux iàws are incorrect
cae from dissipation measurements made through salt-figering regions. As stated
in the introduction, there could be several problems in comparng observed dissipation
measurements and estimated buoyancy fluxes (Hebert, 1988c). The average dissipation
measured by Oakey(1988) in the salt-fingering region was l" 20 X 10-l0W kg-l. This
dissipation rate agrees with the buoyancy flux found for the r = 0.7 case. The buoyancy
flux from Kunze's(1987) model for the maximum flux through thick interfaces also agrees
with the observed dissipation rate. The laboratory flux laws overestimate the buoyancy flux
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by an order of magntude. It appears that dissipation measurements from microstructure

profiers can be used to determine buoyancy fluxes in salt-figering regions.
A major diffculty with both the Kunze(1987) and Stern number methods for

determning salt-fingering fluxes is that the vertical gradient of salinity and temperature
through the interface must be known. It is desirable to determine the fluxes by salt-fingers
in terms of larger scale properties such as the size of the homogeneous layers between
the interfaces as found for the diffusive regime by Kelley(1984) or Rp (Schmitt, 1981).
Schmitt(1981) attempted to parameterize the salt-finger fluxes, using laboratory flux laws,
as an eddy diffusivity that depended on Rp. For the Meddy, the diffusivity for salt would
be O(1O-4m2s-1) using the proper flux. Assuming that the fluxes used by Schmitt(1981)
overestimated the true flux by an order of magnitude as found for the Meddy, the eddy
diffusivity determined for the Meddy would agree with revised estimates of Schmitts(1981)
diffusivities. Until the physics which determines the size of the convection region and/or
a parameterization for the thickness of this layer or the salt-finger flux on larger scale
gradients is found, it wil be necessar to determine the thickness of salt-fingering interfaces
to calculate fluxes of salinity, temperature and/or buoyancy.
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The Growth of Salt Fingers After Disruption by Tubulence t

J. Taylor
Centre for Water Reearch, University of Western Australia

N edlands, W A 6009

ABSTRACT

We studied the re-tablihment of salt fingers after disruption by turbulence in a laboratory experi-
ment in which the effects of bacground oceaic turbulence were simulated by dropping a square-bar
grid through a gradent zone containg well developed salt figers. As the turbulence generated
by the grid decays the high wavenumber cut-ff of the velocity shear spectrum wil fal below the
fastest growing finger wavenumber when £.. Pr vN2 and the salt fingers should begi to reform.
Flow viualisation and calculations of the buoyancy flux ratio derived from horizontal temperature
and conductivity profiles showed that the fingers did re-form in a timescale consistent with this
argument. Maxmum finger Cox numbers were reached after a period of 5 to 7 times the e-folding
time of the fastest growing salt fingers. While this period is of the same order as the predicted
timescale for fingers to reach their limiting amplitude, there was al signifcant modification of the
background T and S gradients in this time in the laboratory experiments and this may alo have
been important in limiting the finger amplitude.

INTRODUCTION

It is probable that salt fingers in the ocean wil often be disrupted by intermittent turbulence driven
by processes quite independent of the fingers. So to understand the contribution of salt figering to vertical
ming in the ocean we need to find out how salt fingers respond. to imposed turbulence. Here we describe
laboratory experiments in which we investigated the re-tablishment of salt figers following the decay of

energetic turbulence.
Briefly, the experiments entailed setting up salt fingers in the gradient region between two uniform

layers. 'Irbulence was then generated by a grid fallng through the salt fingers. The subsequent decay of the
turbulence and growth of the fingers was followed by recording repeated horizontal and vertical temperature
and conductivity profiles through the gradient region. The fingers were also vIualised by adding fluorescent
dye to the upper layer and iluminating from the side with a laser generated light sheet.

In previous laboratory experiments Linden (1971) found that steady mechanical ming generated by
oscilating a grid in the layers above and below a finger region completely dominated salt fingering when the
rms turbulent velocity near the interface, u', was 4.5 times the finger velocity, w. In the ocean we would
expect most turbulent events to be similarly energetic and ilustrate this with the following argument based
on laboratory measurements of decaying grid turbulence (Itsweire et al., 1986) and typical conditions in the
C-SALT staicase (Kunze, 1987). A weak turbulent event in the gradient zone in the staircas would be one
which had a dissipation of turbulent kinetic energy just suffcient to support a positive buoyancy flux. In
their laboratory experiments Itsweire et al. (1986) found that p'w' = 0 if £ = £tr where

ttr = 15(::1) vN2 (1)

where N is the buoyancy frequency; v is the kinematic viscosity (the constant in Eq. 1 was dependent
on the grid parameters, 15 was the minimum value found). For a typical C-SALT interface this gives ttr
of 3.3 x 10-9W kg-1 and the corresponding vertical scale for an overturn, given by the Ozmidov scale
(10 = 27r(tjN3)1/2), is O.2m. The rms turbulent velocity, u' .. (£10)1/3 = 8.7 x 10-4ms-1, compared
to a typical C-SALT finger velocity, estimated by Kunze (1987), of 1 x 10-4ms-1, giving u'jw = 8.7.

Comparing this scaling result with Linden's (1971) experimental results suggests that even when conditions

t Environmental Dynamics Report ED-329-JT
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are apparently favourable to salt fingers, such as in the C-SALT gradient zones, they could be disrupted
by weak turbulence. Clearly then it is important to understand the transient response of salt fingers to
turbulence.

In the following, we consider the conditions under which fingers reform after disruption and review

theoretical predictions of their growth rate and time to reach maxmum amplitude. We then describe the
experiments and show the evolution of the horizontal temperature gradient spectrum in the growing fingers
as well as the evolution of the buoyancy flux ratio, Cox number and stability ratio. Finally, we review the
comparison between the model and experimental results and discuss possible implications for oceanic salt
fingering.

PRELIMINARIES

In a decaying turbulent velocity field salt fingers should first begin to form when the organised boundary
layers which drive the salt fingers are not disrupted by the turbulent strain field. This should occur when the
appropriate turbulence spatial scale, the wavenumber at which the rate of strain due to turbulent fluctuations
is balanced by viscous diffusion, the Kolmogorov wavenumber

kK = (f/v3)1/4 (2)

is of the same order as the most favoured scale for the evolving salt fingers. The appropriate salt finger scale
is the wavenumber which gives the maxmum growth rate (Kunze, 1987)

k¡g = (( gaTz )(1 _ R;1 ))1/4,
VKT

(3)

where we define: Rp = aTz/ßSz, the salt finger stability ratio; Tz and Sz, the mean vertical T and S
gradients; a and ß, the "expansion" coeffcients for T and Sand KT the thermal diffusivity. Rewriting
k ¡ 9 in terms of the buoyancy frequency, N, given by N2 = gaTz (1 - R; 1) and equating kK and k ¡ 9 we
estimate that the dissipation rate when fingers may be formed is

f¡ '" Pi' vN2 (4)

where Pr is the Prandtl number V/KT' The ratio of f¡ to fIr (Eq. 1) is Pr/15 i: 1/2 for heat and salt
(although it is likely that there is a further 0(1) constant on the right hand side of Eq. 4). The magnitude
of f ¡ / ftr is also consistent with the argument advanced in the introduction that when f ~ ftr salt fingers
wil be disrupted by turbulence.

Eq. 4 gives an estimate for conditions under which salt fingers can begin to form as turbulence decays.
To estimate the timescale for the fingers to become established we used the salt finger growth rate in a region
of constant T and S gradients and zero mean shear by Schmitt (1979) and Kunze (1987). The maxmum
growth rate (normalised by N) is

"
,

~,
-E:

O"ma:c i: ~((~)1/2 - 1)
N Pr1/2 Rp - 1 (5)

where we have assumed that T ~ Rp (where T = I\S/I\T). As discussed by Schmitt and Evans (1978) the
e-folding timescale (defined as O"~~:c) for the fingers varies approximately linearly from one buoyancy period
(27r/N) at Rp = 2 to 3.6 buoyancy periods at Rp = 5. In Kunze's (1987) model of finite length fingers
these e-folding times are doubled. Kunze also predicts times for the fingers to reach a limiting amplitude,
determined by the horizontal shear between the fingers reaching a critical value,

_ (( 8Pi' ) 1/2 1/4 fD fi 3/2)O"ma:i,tnia:c - in CwRi¡ (Rp - 1) (V Rp + V Rp - 1) (6)
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U Reg Cd EO Experiment
ms-1 m2s-3

1 0.112 6.0 x 103 0.924 1.30 x 10-2 1,2,3
2 0.057 3.0 x 103 0.924 1.68 x 10-3 9,10
3 0.044 2.3 x 103 - 7.82 x 10-4 6,7,8

Tale 1. Grid paramtes. The grid Reynolds numer is defined as Re, = U M / v where M = 0.05 m

is the grd mesh size and U is the grid fal speed.

where Ri J is the critical figer Richardsn number and Cw is a constant equal to i if the figers have a
square planarm. Tyical vaues of tmiu are from 4. 7 O';;~ at Rp = 2 to 5.90';;~~ at Rp = 5, asng Ri J
is 0.25.

The long finger models may have litations when applied to laboratory salt fingers. For instance, the
models asume that the fingers are growig in a region with uniform background gradients and that, since
there is no Hux divergence in z, that these gradients are independent of time. This may not be true in a
laboratry experiment where, as we shall se, the timescale for the mean gradients to evolve can be of the
same order as the predicted times for the fingers to reach their linuting amplitude.

EXPERIENT

The exeriments were penormed in a tank 1200 mm long, 400 mm wide and 500 mm high constructed

of 10 mm thick clear acrylic sheet. To mi heat transfer between the Huid and the envionment the
tan sat on a base of exanded polystyrene foam 90 mm thick and all sides were inulated with 50 mm sheets
of the same materiaL. A 10 mm thick sheet of foam was also Hoated on the free surface. A section of the
insulation on the front of the tank could be removed to enable How visualisation.

At the start of a run the tank was filled to a depth of 200 mm with filtered tap water which was then
heated to the desired upper layer temperature by circulating it through an external thermostat. When the
set temperature Was reached a measured quantity of salt and rhodamine WT dye was mied into the upper
layer. At this stage the temperature and conductivity probes and floating lid were positioned. The lower

layer of fresh tap water was then introduced through three difusers mounted on the bottom of the tank and
the tank filled to a depth of around 400 mm. When filling was complete a square bar grid of 50 mm mesh size
with 10 mm bars was allowed to fall through the water column. Subsequently both horizontal and vertical
temperature and conductivity profiles were recorded. The conductivity and temperature instrumentation
and the processing of the profies was as described by Taylor and Bucens (1989) with the exceptions that
both direct and diferentiated temperature and conductivity signals were recorded and the horizontal probes

were traversed at 0.05 ms-1. Salnity was derived from the measured conductivity and temperature (low
mean salinities were used in these experiments to miimise the influence of temperature on the salinity
calculation) .

To visualie the evolution of the fingers the fluorescence of the rhodarre dye was recorded with a video
camera. The dye fluorescence was excited by iluminating the tank from the side with a thin (.. 1 mm)
vertical light sheet generated by a 1.5 w argon-ion laser. The thickness of the sheet was nunimsed by
expanding the laser beam and positioning the waist of the Gaussian laser beam in the region of interest in
the tank.

The fall speed of the grid, U, was determined by recording its position in a sequence of frames digitised
from videotape. Over the depth range visualised (approximately half the depth) the grid velocity was
constant and was used to infer the drag coeffcient for the grid,

::

-i~

'l,

Cd = 2gm/poU2 A (7)

where gm is the immersed weight of the grid, Po a reference density and A the area of the tank (Linden,
1980). The buoyancy of the grid was adjusted to achieve the different drop speeds shown in table 1.
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Fig. 1. Dye fluorescence images of the establishing salt fingers in experiment 6. The field of view
is 240 x 190mm. Images were taken at: Nt = 6.4 (29 s) top left; 12.3 (56 s) top right; 19.8 (89 s)
bottom left; 25.8 (116 s) bottom right with t = 0 at the time the grid fell. The turbulence decay
timescale, Nttr, was 3.8 for this experiment and the predicted finger e-folding time, N(umaz)-i,
was 22.2.

RESULTS

The dye fluorescence field after the decay of the grid turbulence and the establishment of the salt fingers
is shown in Fig. 1. The rapidity of the growth of the fingers is shown by the fact that fingers are clearly
established in the second image, which was captured less than half a finger e-folding period after the grid
was droppped.

Decay of the Grid Turbulence

Itsweire et al. (1986) have made comprehensive measurements of the decay of grid turbulence behind a
stationary grid in a stratified water tunnel. In particular, their experimental results show that the dissipation
decays with increasing distance from the grid according to a power law

f = fo(Ut/M)-2.6 (8)

which is independent of the stratification (at least while f ~ ftr). In our experiments the development of
the turbulence in the gradient region as a function of time should parallel the downstream development of
the turbulence in the water channel as it is advected through the test section, provided that the influence of
the grid stopping at the bottom of the tank is small. The power per unit mass input by the grid in falling
through one mesh spacing (t = M /U) is ~CdU3 / M and assuming that this power input is balanced by
turbulent dissipation gives an estimate for fO (Table 1). Using fO and Eq. 8 and Eq. 1 we could estimate the
decay time for the grid turbulence. To determine N2 the vertical temperature gradient profile was filtered
with a low-pass filter (3 db point at 10 cpm) then the first point where the filtered temperature gradient
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exceeded 0.5 of the mean (and where a depth threshold was exceeded) was taken as the upper edge of the
gradient zone. A similar procedure was used to find the lower edge of the gradient. The mean density
gradient was then calculated from the average temperature and conductivity gradients between these two

depths. To average some of the distortion of the mean profile caused by the fallng grid the mean of N2
from the first two profiles was used in calculating turbulence and finger times scales.

Table 2 shows the estimated time for fÝw' to fall to zero in each experiment. Clearly, without direct
measurements of the dissipation, these values are only approximate, however, they show that the rapid
reformation of the fingers we observed in these experiments (ilustrated by Fig. 1 and the time that fingering

was first observed in the videotape, table 2) are consistent with the decay timescale for the turbulence and
the transition criterion given by Eq. 4. Also shown in this table is the value of the Cox number (Osborn and
Cox, 1972) for the first horizontal profile. Itsweire et al. (1986) found that when € = €tr the Cox number
was 5.4(:l2)Pr or approxiately 40 for heat. All Cox numbers for the first horizontal profiles were greater
than 40, indicating that the turbulence was stil active at the time of the first horizontal profile, consistent
with the calculated decay times.

The large values of €o/vN2 (table 2) show that the initial turbulence generated by the grid was more
active than is typical for turbulence in the ocean thermocline; at least that is when the turbulent dissipation
is averaged in vertical intervals greater than several meters (for example Gregg (1989) found a maximum 10
m average €/vN2 of 2.2 x 103 over a range of oceanic conditions). Of course, the peak dissipation values
within these vertical averages could be much higher. However, Linden's (1971) 

laboratory results show that
weak turbulence levels could disrupt the fingers and we suggest that the comparative intensity of the initial
turbulence level in these experiments is relatively unimportant. We would expect the fingers to be completely
destroyed by any turbulent event in which € :; €tr .

Experiment €o/vN2 C Nti Nttr Ntj N O";;~'" Rpo

1 1.9 X 104 77 - 4.4 - 50.1 5.5

2 8.2 x 104 456 1.4 3.7 - 13.2 2.0

3 3.4 X 104 256 1.6 4.1 12 14.6 2.2

6 1.1 x 103 192 3.6 3.8 10 22.2 2.9

7 2.2 x 103 337 1.8 3.5 - - -
8 1.9 X 103 221 2.4 3.5 5 16.7 2.4

9 2.6 x 103 106 2.2 3.9 14 33.7 4.0

Table 2. Thrbulence and salt finger time scales. C is the Cox number for the first horizontal
profile and Nti is the dimensionless time of that profile. Uttr/Ji1 and Nttr are the dimensionless
times for € = €tr from Eq. 8 and Nt j is the time fingers were first observed in the video. N O";;~'"

is the e-folding time for finite length fingers (Kunze, 1987) (twice the value from Eq. 5) and Rpo an
estimate of the stability ratio just after the grid felL. In experiments 1 and 2 video records of finger
formation were not recorded. Experiment 7 was stratified with heat only.

Establishment of salt fingers

Evolution of the Temperature Gradient Spectrom.

A band averaged spectrum of the horizontal temperature gradient, cPT, was calculated from FFTs of
1024 point segments of each horizontal profile. Prior to calculating the FFT the linear trend was remoyed
from each segment and a Hanning window applied. As well, the average temperature for each horizontal
profile was computed and compared with the nearest, in time, vertical profile. If the average temperature of
the horizontal profile did not fall within the gradient region in the vertical profile the horizontal profile was

disgarded. However, even with this precaution it is possible t.hat, because of the large amplitude internal
waves generated by the grid, sections of the profile may have fallen outside the finger zone. Since the
characteristics of the temperature gradient spectrum within t.he fingers and in the convecting layers aboye
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and below the fingers are quite different (Taylor and Bucens, 1989) the spectra may be biased by passing
through the convecting or decaying turbulence regions above and below the fingers. In further analysis some
spectra wil be tested for stationarity using techniques described by Imberger (1989).

S 103
Al,

~102......
IS 101

o
o

.,: 10°....
cŠ
_ 10-1
f-~
.. 1 0 - 2

100
K/ cpm

S 103
Al,

;: 1 0 2......
IS 101

o
o

~ 100....
~

~ 10-1
~
co

~ 10-2
1 10 100 1000

K/cpm

(a)

d
~ ~

~ .".:
1
~ .
~ .
'-

~ ~
.. .... .

",i;

Exp3:

~.wP .;

1°"..!f ..a!~
'i, e'~ ..0°

Tempore Lura grod Lon L 8p~C L~o

l .
~ ~

~ .".:
1
~ .
~ .
'-

~ ~
.. .... .

~

Exp9:

'l.ri~
1°"

...", ..ø-~
0"~.. eo' ..Tempera lure grad Lon L epee trc

(b)

Fig. 2. Horizontal temperature gradient spectra from experiments 3 (upper) and 9 (lower). (a)

raw spectra (b) interpolated spectra.

Fig. 2 shows the evolution of 4iT in experiments 9 and 3. In (a) the raw spectra are shown while

in (b) the time evolution of the same spectra have been emphasised by interpolating the spectra on to a
regular grid and using a logarithmic time axis. The interpolated spectra were cut-off at a wavenumber of
400 cpm to remove the contribution from high frequency noise which lies beyond the limits of resolution of
the thermistor.

The dominant features of the spectra are the initial rapid drop in power with the decay of the grid
turbulence and the emergence of a peak due to salt fingers at a wavenumber of around 100 cpm. In most
experiments there was no well defined minimum in the peak amplitude of 4iT between the decay of the
turbulence and growth of the fingers. Comparison with two runs with similar density gradients but no
salinity gradients suggests that the lack of a clear minimum is due both to the rapid growth of the fingers
and slow decay of the temperature gradients left by the turbulence or generated by internal waves. The only
experiment which had a very well defined minimum amplitude had the strongest density stratification and
the highest initial Rp.

At the low wavenumber end of the spect.rum there was often an increase in power at first (as in exp
9, fig.2b), presumably as energy was transferred from turbulence to internal waves, then a decrease as t.he
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internal wave field decayed. The peak in the spectrum due to salt fingers becomes more proITnent as a
result of a decrease in the level of the spectrum at low wavenumbers and corresponding increase in the slope
of the spectrum for K .. Kpeak. As the fingers evolved the high wavenumber cut-off in the temperature

gradient spectrum moved to lower wavenumbers, this is best ilustrated by the raw spectra from experiment
9.which was allowed to run down for longer than the other experiments. The shift in cut-off wavenumbers is
consistent with the behaviour of the equilibrium finger wavenumber (Stern, 1975) which Taylor and Bucens
(1989) found marked the high wavenumber limit of the finger spectrum. Overall the bandwidth of the finger
spectrum decreases as the fingers run down the salinity gradient, although the peak remains close to the
fastest growing wavenumber given by Eq. 3, even for Rp ~ 20.

Evolution of overall parameters.
We can derive several quantities from the horizontal profiles of temperature and conductivity and their

respective gradients which give a more quantitative picture of the development of the fingers. These include
the x-component of the Cox number (Osborn and Cox, 1972)

( ôTI ) 2 2Cx = -- / (Tz) . (9)

Cx is of interest since, by comparing measurements of the fluxes through a salt finger interface derived
from the rate of change of the properties of the convecting layers above and below the fingers, Taylor and
Bucens (1989) have shown much of the thermal buoyancy flux through salt fingers can be accounted for by
the simple steady balance between vertical advection of heat and horizontal diffusion implied in deriving the
Cox number (Gargett and Schmitt, 1982).

We also compared the wavenumber of the peak in the temperature gradient (¡(peak) spectrum with the
theoretical finger wavenumber,(2V27r)-lkfg (Eq. 3), and derived an estimate for the buoyancy flux ratio,

Rj , defined as
Rj = (a/ß)(cTO'wO'T/CSO'wO's) (10)

where O'w is the rms vertical velocity and O'T and O's are the rms temperature and salinity respectively. CT
and Cs are correlation coeffcients. If we take CT = Cs (Taylor and Bucens, 1989) then Rj can be derived
from integrating the T and S spectra. We computed two estimates for Rj; one based on the variance found

by integrating over all wavenumbers up to a 400 cpm (the 3db point for the conductivity sensor response)
and the other by integrating only from Kpeak to 400 cpm. The two estimates of Rj were calculated to show
the contribution of the low wavenumber portion of the spectra to Rj.

To emphasise the transient aspects of these experiments the results to be presented in the remaining
figures have been plotted against O'maxt where O'max is the maximum growthrate (Eq. 5) based on the
average of Rp and N from the first two vertical profies. The time origin was set where ( = (tr (Table 2).

Buoyancy flux ratio: For turbulent mixing the flux ratio defined by Eq. 10 should ideally be equal
to Rp and hence be greater than one. As salt fingers begin to dominate Rj falls below one and on the
basis of previous laboratory experiments should approach a relatively constant value lying between 0.5 and
1.0. The data follow this trend although the estimates (solid lines in Fig. 3), calculated by integrating over
the full wavenumber range, are greater than one for a longer time consistent with the slower decay of the
low wavenumber fluctuations in the gradient spectra. At high wavenumbers the rapid establishment of the
fingers is shown by the fact that mostRj estimates are less than one at the time of the second profile. By 4
e-folding periods the two estimates of Rj have converged.

In experiment 1, which had the highest initial Rp, Rj was greater than one for a longer time than in
the other runs. This difference in behaviour is due in part to two factors. Firstly, because there was no peak
in the temperature gradient spectrum in the second horizontal profile the two estimates of the flux ratio
calculated from this profile were equal and greater than one. Secondly, there was then a break in the data
collection due to an equipment malfunction which limited the time resolution of the flux ratio estimates.
However, it may also be possible that the growth rate scaling breaks down at high initial stability ratios and
this should be investigated further.
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Fig. 4. kpeadkjg plotted against (Jmaxt. Symbol: exp 2, others as for Fig. 10. Error bars show
the typical uncertainty in Kpeak caused by the spacing of the frequency estimates in the band
averaged spectra.

Peak wavenumber: "'Ie have already commented that the peak in the temperature gradient spectrum
correlates quite well with (2V2:¡r)-lkjg given by Eq. 3. Fig. 4 shows that this is particularly true in a well
developed finger field. For (Jmaxt )- 5 almost all the spectral peaks fell within one error bar of kpeak/kjg = i,
noting that the size of the error bars simply indicates the relatively coarse frequency resolution of the band
averaged spectra. At earlier times the peak wavenumbers were more scattered with their values depending
on exactly what stage of the evolution of the decayed turbulence/growing fingers the profile captured.

The Cox number: The x-component of the Cox number (Fig. 5) decreased rapidly as the grid turbu-
lence decayed, passed through a minimum then grew again as the salt fingers became established and their
amplitude increased. The time to reach maximum Cox numbers was in the region of 5 to 7 e-folding periods,
times reasonably consistent with those to reach the limiting finger amplitude from Eq. 6. The Cox number
then decreased gradually as the fingers ran down, a trend consistent with the decrease in Cox number with
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increasing Rp observed by Taylor and Bucens (1989). The higher values of the Cox number shown on Fig. 5
relative to the earlier work (note to make a direct comparison the present results need to be doubled to
account for isotropy in the horizontal) are probably due to the different methods used to estimate Tz in the
two sets of experiments. In the present e:i."periments the edge of the finger zone was not as clearly defined

as it was in the earlier laboratory work due to the thickening of the gradient by the grid turbulence and the
method of calculating Tz was probably influenced by the weaker temperature gradients at the edges of the
finger zone.

The stability ratio: In any salt fingering run-down experiment Rp increases as the S gradient in the
fingers decreases and Rp changes in this way in the present experiments (Fig. 6). However, the fact that the
fingers are growing in the initial stages is shown by the way in which the rate of change of Rp with time is,
on average, greater at later times than it is in the first 3 to 4 e-folding periods. The scaling of the time axis
by the maximum finger growth rate (table 2) also collapses the data from all but experiment 1 well at earlier
times. After the initial growth period we would expect other factors, such as the thickness of the gradient
region as compared to depth of the reservoir layers, to affect the rate at which the system runs down and
would not expect the growth rate scaling of time to collapse the data.
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In the 5 to 7 finger e-folding periods over which it takes the Cox number to reach its maxum value
Fig. 6 shows that Rp increased by an average of 50%. Such a change in Rp suggests that in a moderately
scaled laboratory experiment, like the present one, the rundown timescale of the property differences across

the figer zone is too close to the timescale for the finger's evolution for an accurate determiation of the
limting conditions across the finger zone.

DISCUSSION

Our experiments have shown that, at moderate stability ratios in the laboratory, salt fingers wil become
established rapidly after turbulence has decayed to the state where a positive buoyancy flux can no longer be
supported. This was most clearly shown by the behaviour of the flux ratio, which at wavenumbers greater
than the fastest growing finger wavenumber, was generaly dominated by salt figering (Rj .c 1) between
the times when the first and second horizontal profiles were taken (and corresponding to one finger e-folding
period). Maximum finger Cox numbers were reached within 5 to 7 (uma.,)-l, of the order of the time for
the fingers to reach a limiting amplitude predicted by Kunze (1987). However, it is not clear that this can
be interpreted as the fingers reaching a self-limiting amplitude as the variation of Rp with time shows that,
because the experiments were carried out in a relatively shallow tank, the mean T and S gradients in the
fingers were changing in a similar time tö the theoretical estimates for the time for the fingers to reach a

limiting amplitude.
The results of these experiments suggest that against a background of intermittent oceanic turbulence

salt fingers should be become established rapidly in the quiet periods between events. However, even when
the mean T and S gradients are favourable to salt fingering, much of the ocean appears to be quiet without
the microstructure signatures of turbulence or salt fingering (Mack, 1989). Recent work by Kunze (this
volume) shows that, even in the absence of turbulence, the unsteady background shear in the ocean places
severe constraints on the finger growth rate and, like turbulence, could be important in restricting the range

of Rp in which fingers can grow in the ocean.
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AN EXPERIMENTAL STUDY ON THERMOHALINE STAIRCASES

by

H.l.S. Fernando and C.Y. Ching
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Tempe, AZ 85287-6106, USA

1. Introduction:

Interest in the genesis and dynamics of thermohaline staircase suuctures - a series ofturbulenily

convecting layers separated by thin, stable, diffusive density intedaces - has been revived recently

because of the increasing number of oceanic observations that repon their existence (Pad man & Dillon

1987, Muench et aL. 1990). The upward transport of heat and salt through the oceanic double-diffusive

layers is said to playa prominent role in the regional heat and salt budgets. A large number of laboratory

experiments on varous aspects of this problem, e.g., layer-formation mechanism, height of the layers,

convection within the layers, heat and salt fluxes across the intedaces, and intedacial migration, have

been reported The main purpose of this paper is to summarze some results of a set of laboratOI)' studies

pertnent to: i) the thicknesses of the convecting layers; and ii) intedacIal migrtions. The details of the

experimental procedure, results and relevant theoretical considerations wil be given in a future

publication.

2. Thicknes of the Convecting La)'ers

Two opinions on the formation mechanism of thermohaline starcase suuctures exist. Turner

(1968) considered the case of heating of a stable salinity grdient from below and proposed that the
second convecting layer, which is above the first one, is formed when the thermal boundary layer, which

."rides" on the growing first layer, becomes unstable at a crtical Rayleigh number. The thickness of the

first convecting layer at the onset of the instabilty was considered to be the thickness hi of the bottom

layer of the staircase. Based on this assumption a model, which was tested using laboratory experiments,

was developed to predict hi. This model has been extended to the prediction of the thicknesses of the

"remaining layers of the staircase by Huppen & Linden (1979). A different view was taken by Fernando

(1987), who proposed that the layer thicknesses are determined by a balance of the venical kinetic and
potential energies of the turbulent eddies within the layers. The accompanying analysis yielded an

expression for hI' which was tested using a laboratory experiment. A generalization of this work to

oceanic and laboratory layers, that are located far from solid boundares, has been reponed by Fernando

(1989). Accordingly, the height ofthe layers h, stemming from the transformation of an initial! y-smooth
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salinity gradient of stability frequency N. to a staircase of interfacial density-stability ratio Rp, is given

by

-

h = Ci (~). 1/2 (1 - ciRp)
N~ (1- Rp.i r4

(1 )

where ah is the heat flux transmitted through the layers, and ci depends on the nature of the diffusive

interface (ci = 0.15 for the low-stability regime and 'tIll for the difusive regime, where 't is the Lewis

number, the ratio of the molecular diffusivities of salt and heat). Based on the results of previous studies,

c¡ was estimated as 12.5. A comparson of (1) with available oceanic data indicated a satisfactory

agreement with c¡ = 14, but laboratory tests of (1) are yet to be reponed. To this end, a therniohaline

staircase was generated in the laboratory by heating a linearly (salinity) stratified fluid from below, as

in Turner (1968). While the staircase is evolving, venical salinity S and temperature T profiles through

the layers were taen; h for different layers, Rpand the conductive heat flux through the interfaces were

extracted from this information. A comparson of the measurements with (1) is shown in Figure 1, for

the experiments cared out at different N. and bottom buoyancy (heat) fluxes a.. The regime of the

interface and hence ci' was determined by calculating the Rayleigh number and Rp of the layers and by

using Figure 6 of Fernando (1989); all of the interfaces were found to be in the diffusive regime. Note

that the data include h for the second to fifth layers of the staicases. The best-fit line to the data shows

a grdient of 1.002 and ci = 11, indicating suppon for (1). It is also noted that Kelley (1984) has proposed

an alternative formulation for h.

3. Interfacial Migration

The mechanisms responsible for interfacial migration and the effects of interfacial migration on

heat and salt fluxes and layer thickness have been discussed, in detail, by Kelley (1987). When

differential turbulence levels exist across an interface due to convergence of the buoyancy flux, the

interface tends to migrate towards the side with the lower turbulence leveL. The unsteady nature of the

buoyancy transpon process, nonlinearty of the equation of state (McDougall 1981 ), or a combination

thereof may contrbute to the non-uniform spatial distrbution of the buoyancy flux. As was first pointed

out by Kelley (1987), and experimentally verified by Muench et al. (1990), sometimes the interfaces can

split and then migrte to form additional layers.
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Figure 1: A plot of h versus (qj.,)la (1 - -ria Rp) (1 - Rp -i).'~. The layer number (the bottom
layer was assigned number one) corresponding to each data point is also indicated.
The parameters ranges were 3.75x1~;: ci;: 7.88x1Q-' (mis.3) and 1.3;: N.;: 1.0

(rad S.i).

The interfacial migrtion model of Kelley (1987) assumes that the interfacial-migrtion velocity

.u. is determned by the resultant of two velocities, evaluated by assuming that either one or the other layer

is.not convecting. Based on previous laboratory experiental results, the (uni-directional) entrainment

law for a single-layer convecting case was taen as E = c3Rib-l. where E = u)w. is the entrainment

coeffcient, u. is the entrinment velocity, w. is the convective velocity, Rib = lJbh/w.i is the Richardson

number based on the buoyancy jump lJb across the interface and c3 = 0.25. It should, however, be kept

in mind that this entrnment law is valid only in a limited parmeter range. At very high Ri., the

entrnment process is dominated by molecular diffusive effects and the entrainment rates are small

(Philips 1977); at low Rib the interfacial stratification becomes unimportant and high entrainment rates,
as in non-stratified fluids, can be seen. It is the latter mechanism which is of interest here because of its

possible role in the evolution of oceanic staircases with relatively low Rp and large Cl.
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A set of salinity profiles obtained during the experiments is shown in Figure 2. During the

experiments, at first, the bottom mixed layer is developed; it grows until its growth is inhibited by

buoyancy effects, whence a second layer is formed above the first. This sequence of events continues,

forming multiple layers. Figure 3 shows the time evolution of hi, from which the initial rapid growth

and the trnsition to a slowly growing regime, when h/Cqj;Y12 = 42.7, is evident. Note that this vallie

of hi is close to the quasi-steady height he of the bottom layer above which, according to Fernando C 1 987),

the mennohaline staircase can be sustained. The shadowgraph observations also confimied the

evolution of the second convecting layer after growth levels off at he' When hi ,. he' the movement of

the interface is sluggish, but after some time, indications of a sudden migration of the interface to a new

hi, from which the interface resumes its sluggish growth can be seen. This rapid growth was recurrent,

followed by a period of sluggish growth.

A possible cause for this sudden "jump" of me interfacial position is me drop of the inteiíacial

stability below a critical value, thereby making the interface susceptible to engulfment by turbuleni

eddies, as if no buoyancy forces were present. If the thickness of the interface is Õ, the stability of the

interface is signified by the interfacial Richardson number Rii= ßbo /w.2; when Rii decreases below a

critical value, say Rie, me "jump" phenomenon can be expected. During me experiments, T and S profiles

were taen ai specific time intervals and Rii was calculated from me profies taken before and after well-

identifiable interfacial "jump" events. The results are shown in Figure 4 and indicate a drop of Ri6 below

a critical value before a rapid migrtion event. Because the data were taken at discrete intervals, this

critical value is hard to estimate, but analysis of a large number of profies suggest that Ri, -= 2.

/7 ea~ of'M tank

Figure 2: A set oftemperature profiles taken at 2 min. intervals. The scales of the plot are indicated
and the estimated upper boundary of the first layer is shown by the solid line. The
experimental parameters are 1", = 1.04 (rad S.l) and CL = 2.04xlO.ó m2s.3.
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Figu 3: The growth of the non-dimensional thckness of the fist convecnng layer with non-

diensional nme. The data for two experiments with N. = 1.04 rad S.I, and

a. = 2.0x 1 U"isoi (x) and 2.9x 10062si (Â) ar shown. Also indicated by an arw is the
miimum hi that is reuired for the development of a starcase strctue (Fernando 1987).

4. Mixed-Layer Growth Without Multiple La~'ering

It is instrcnve to note that heatig of a stable salinity grdient from below does not al ways lead

to stacae strctures. Undercenain condinons (which involve high salinity strnficanons and low heat-

'fluxes), the mixed layerconnnues to grw, beyond he' without any evidence of multiple layering. This

situation is depicted in Figure 6 (a,b). Apparntly, under these conditions, the mixed-layer growth is

diffusion domiated and Uc is determined by the compenng effects of the weaening of the interfac~al

buoyancy grdient by difusion and entrnment of the weaened layer by the tubulent eddies. It can

be shown theorencay that the natue of the interfacial events in such situanons is determined by the

relative magnitudes of Rp and 'til (Fernando & Zagrdo 1990); here Rp is the ratio of buoyancy

grdients, above the mixed layer, due to salinity gß S. and temperature gcx T.. Diffusion-controlled
entrnment takes place when Rp .: 'til, and contraction of the mixed layer (detrnment) occurs when Rp

~ 'til. No interfacial movement is possible when Rp = 'tin. Figure 7 shows the results of Hull et aI. (1989)

concerning the growth of convective mixed layers in ammonium chloride solar ponds. The solid line

represents the theoretical demaration line Rp = 'tin between entraining (E) and non-entrining (N) cases.

Note the good agreement between the theoretical prediction and experimental observations.

i

r

s
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Figure 4: The varation of the interfacial Richardson number during an interfacial "jump" event.

The ranges of pareters are 3.77xl0-6:; q,:; 7.5xlQ-' (m2s.3) and
1.4:; N.:;1.0 (rad S.I). The profile taken just before the appearance of a rapid entrinment
event was arbitrly assigned t=O.

Figure 5 shows a photogrph taken during a rapid-growth event.

Figue 5: A photograph taen at the onset of a "rapid" entrainment event. The bottom layer was
dyed with fluorescein and the iluminauon was provided by an Argon-ion laser sheet. The
photograph was taken through an optical filter that can only transmit fluoresced light so
that only the bottom layer is visible. The figure shows the englufment of the fluid of the
second layer by the ovenurning fluid motions (eddies) of the bottom layer (Feature A).
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Figure 6: Time evolution of (a) temperature (b) salinity profies when multiple layers are absent:
q, = 3.78xlO.7 m2s.3 and N. = 1.98 Tad s.l. According to Fernando (1987), the multiple
layers should be expected when hi:: lcm.
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Figure 7: The results of the experiments of Hull et al. (1989). The units are in ms.2.

~J

Æ
i'S. Summary and Conclusions f

Some results of an experimental study that was cared out to investigate properties of

thermohaline staircase strctures were summanzed in the foregoing sections. Evidence was presenie~

in support of the theoretical layer-thickness formula (1), which can be used to predict the layer

thicknesses of oceanic starcases. It was pointed out that the entrainment law for uni-direcrional

entrainment is determned by the operating regime within the parameter space so that the application of

laboratory-based entrainment laws to oceanic interfacial-migrtion prediction models should be done

with caution. When Riii 0: 2, anomalously high entrainment rates could be observed. The heating of a

-salinity grdient from below does not always lead to multiple layering. In such cases, the mixed-layer

growth is diffusion controlled and the evolutionar characteristics are determined by the relative
magnitudes of R and 11/2.~ P

'6
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ABSTRACT

In the first of two sets of experients, (work done with L.N. Howard) a honzontallayer of

fluid is subjected to a destabilizg temperature gradient and a stabilg salty gradient such

that the layer is staticaly stably stratifed. Ths is achieved by using porous boundares between

the workig fluid layer and reservoirs of controlled temperatue and saliity. The overal heat

flux is fixed by the power input to an electcal heater. Thermal and saline Nusselt numbers are

measured for fied heating rates. A maed hysteresis is observed in the Nusselt number-power

input curves obtaied by increasing, then decreasing the heating rate. The mium Rayleigh

number at which convecton occus is measured and found to var with the salt Rayleigh number

and with the difusivities ratio. For certai values of these parameters, this mium Rayleigh

number was found to be an order of magnitude below the liear theory prediction. Th

parameter-dependence is discussed in relation to some mathematical models of double-diffusive

convection.

In the second set of experients (work done with Y. Zhu) the set-up was as in the first set

but now a unorm vertical mass flux was imposed though the layer. For sufciently large

imposed flux, the stabilg salt gradient is swept away from most of the interior. However the

destabilizing thermal temperatue gradient is litte afected because of the larger thermal

disivity. Linear stabilty analysis and laboratory expenmental results are presented.

INTRODUCTION

Ths is a report on some laboratory experients designed to test certai linear stability

theories and other mathematical theories on double-disive convection. These theories treat a

layer of fluid whose density is determed by temperatue and salinty, and whose lower

boundar is maitaied at temperature To + LlT, salty So + Ll, whie the upper boundar is

maitaied at temperature To, salinty So' The slower difsing salt is stabilizing and the faster

diffusing heat is destabilizing, but the boundar values are aranged so that the density decreases

monotonicaly upwards. Linear stability theory (1,2) indicates that such a layer would be

unstable to an oscilatory distubance when the Rayleigh number RT, defined below, exceeds a

certai critical value Ros given by:
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~ = 27 n4(1+t )(1+~) + (O"+t)~nos T CT (U ¿'"
Here, ~ = gßßS d3/ic is the salt Rayleigh number, RT = ga.T d3/ic is the thermal Rayleigh

number, d is the layer depth, g the gravitational acceleration, a the thermal expanion coefficient,

ß the salt contraction coeffcient, ßS the salinty diference across the layer, ßT the temperature

. dierence across the layer, les the salt difusivity, lC the thermal difsivity, v the kiematic

viscosity, 0' = v/le the Prandtl number, and't = lCsllC the disivity ratio. This linear stabilty

result is indicated in figure 2. Veroni (1965) analysed the finite amplitude problem using a

trncated five-component model with stress-free boundaries, and found steady subcritical flows

at Rayleigh numbers as low as ~ given by Rm = 'tRs. Ths is plotted in figure 2 and
labelled "Veronis." For heat and salt dising in water 't:: 10-2 so that Rm would be smaler

than Ros by a factor of 10"". However, with more modes included in the analysis, Rm was

found to increase (Veronis, 1968), thus leaving in doubt the actual magntude ofRm for the

Boussinesq equations. (Ts latter study by Veronis was restncted to 't ~ 0.1 and no subcntical

flow was found.) However, Veronis gave the following convincing physical argument for the

possibilty of occurence of subcritical instabilty. If some finite amplitude diturbance intialy

stirs the fluid layer, the internal distnbution of temperatue and salinty would be nearly

isothermal and isohaline, with boundar layers to match the internal fields to the imposed

boundar values. Afer the intial ditubance the temperature field would difuse back towards

its destabiling linear profie, but the slower difusing salt field would be stil nearly isohaline in

the intenor. Thus most of the fluid layer experiences a destabiling temperature field but no

stabiling salt field so it may be possible for such an intial finite amplitude disturbance to

survive, even at Rayleigh numbers such that an inintesimal amplitude ditubance could not

grow on the liear profies. But the magntude of the mium Rayleigh number and its

parameter dependence could not be accurately determined by the low order modeL.

In their numerical studies Huppert and Moore (1978) found steady finte amplitude flows

below the oscilatoiy critical Rayleigh number. The mium Rayleigh number of occurence of

these steady flows for't = 0.1,0' = 10 was given by Rm = 1033 + 0.844 Rs. For Rs ~~ 10\

Rmin:: 0~844 Rs. We note that for the same parameters Ros:: 0.92 Rs'
Proctor (1981) showed, using boundar layer arguments with finite amplitude E, that for 't

.... E":": 1 and for ngid boundares, steady finite amplitude convection could occur above a

mium Rayleigh number given by Rmin = R(o) + C't/II R/II where R(o) is the critical Rayleigh

number for Rs = O. This result is valid for Rs lh .... 1 and is labelled "Proctor" in figure 2.

Finaly, Joseph (1970) in a generalized energy analysis of global stabilty showed that, for

stress free boundaries and the case of Rs :: 't~T' the necessar and sufficient condition for

stability is that the Rayleigh number be less than the following:

,r.
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R, .( 1 Rs + 2( ¥-114 (2-12) 1 ~)+ ¥114 (1-1 )2

The results for rigid and for free boundares are shown and labelled "Joseph" in figure 2.

Thus we have Rmin given by the linear instability criterion, by steady subcritical flows with

various degrees of applicabilty to experiments, and by a lower bowid from the energy method.

The divergence of these predictions is elear from figue 2.

For the second set of experiments the boundaries are once agai maitaied at fixed

temperatue and salinty, but a uniform vertcal velocity w 0 is imposed. In the absence of

convection, the heat and salt equations are, in steady state,

dT _ Kd2T
Wo ëI - dz2

ci d2S
Wo eI = Kdz2

The dimensionless numbers controlling the shapes of the profiles of T and S are the Peelet

numbers "t = wod. and Ys = wod/s' Profiles ofT and S are shown li figure 3. A linear

stabilty analysis for smal Ys and"t is shown in figue 4. The oscilatory instability curve is

modied slightly, but the monotonic instabilty curve is markedly decreased for increasing Ys.

Physicaly th seems reasonable since the sweeping of the salt field by the imposed w 0 removes

the stabilizg salt grdient in most of the fluid layer.

THE LAB ORA TORY EXPERIMENTS

The purpose of these experiments with controlled temperatu and salinty boundar

conditions, was to measur heat and salt fluxes, and hence heat and salt Nusselt numbers. From

these results we can determine the parameter range in which convection occurd, thereby testing

the existing theories regardig mium Rayleigh number for convection to occur, as well as

parameter dependence of fluxes.

Four diferent tan were used in these experiments. The largest was 45 cm in diameter, the

remaig thee were 20 cm in diameter. The workig fluid layer was set at varous depths from

0.5 to 2.54 em. The top and the bottom boundares of ths layer ar formed by tightly strtched

porous membranes (Versapor 800) of thckness .008 in. 1bs membrane alows heat and salt to

difuse though it but fluid is not alowed to flow though. By measurg salt difusion across the
membrane it was determed that its disivity was very nearly the same as that of water. In

view of its thiess then, the boundar condition on the workig fluid is one of constant

temperature and constant salinty. Both above and below ths workig fluid layer are reservoirs

of water of controlled salinty and temperature. The fluid is subjected to a destabilizing
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temprature gradient and a stabilizing salinty gradient by heating and salting the lower reservoir,

and cooling and fresheIUg IDe upper reservoir. The overal heat flux is fixed by the power input

to an electical heater in IDe lower reservoir, and IDe temperature of IDe boundar is maitaied

uniorm by stirg IDe fluid in IDe reservoir. Constant stiing was accomplished with

teflon-coated magnetic stiring bars mounted in each reservoir and drven from outside IDe

reservoir by electro-magnet coils. A guard baID suroundig each tan is maitaied at a

temperatue equal to that in IDe lower reservoir. Thus al of IDe heat input is caried upward

though IDe workig fluid layer. In IDe upper reservoir, a coil of tubing wiID circulating cold

water from a constant temperature circulator kept IDe upper reservoir temperature fixed. lls

uppr reservoir was also stired constantly in IDe same marer as the lower reserVoir. For each

setting of IDe heater, IDe cooling circulator temperature was set so IDat IDe mean temperatue of

the workig fluid remaied approximately constant thoughout al IDe experimental runs. The

boundar salinties are held fi.ed by flushig the reservoirs wiID water of fi.ed salinties.

Because the boundaries are porous, care was taken to prevent forced flow through IDe workig

layer. Thus when the top reservoir was being flushed with fresh water, the pipes to IDe bottom

reservoir were closed. Then the top reservoir would be closed, IDe pipes to IDe bottom reservoir

opened, which was IDen flushed wiID saline water. Ths process was controlled by an oscilator

circuit operating a set of solenoid values. Whe IDe solenoid valves were open, the flow rate was

controlled by the dripping of the flushig fluid from a capilar tube fed from a constant-head

reservoir. The outflow from each reservoir was collected in bottes. A rotating table holdig 48

bottes was aranged to collect IDe outflow for one hour for each pai of bottes. At IDe end of 24

hours, IDe volume flow per hour and IDe spcifc gravity of each sample were measured.

Salties were deduced from IDe specifc gravity.

Our procedure for IDe conduct of an experient was as follows. A stabiling salirty

grdient was establihed by maitaig IDe flushig of boID reservoir whie IDere was no

heating or cooling and the temperatures of IDe two reservoirs were equal. (Ths takes from i to

15 days depending upon the layer depID and upon IDe disivities of IDe solutes used.) Then, a

smal rate of heatig of IDe bottom and cooling of the top reservoir was stared and maitaied

unti a steady state became established. The power input, IDe temperatues of each reservoir (l b

in IDe bottom, Tt in IDe top), IDe salinity in each reservoir (Sb in IDe bottom, St in IDe top), IDe

volume flow rates (% though the bottom, qt through IDe top reservoir), and the two salirties

S(in) of IDe inow and IDe two salinties SCout) of the outflow were measured. Then ths

procedure was repeated after a smal increment in the heating and cooling rates. If at some stage

convection set in, the salinity diference across the layer would drop. We compensated for this

approximately, by increasing q, but as a result Rs was only approxiately constant during IDe

course of one series of experiments. After convecton had set in, we decreased the heating
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rate and corrspondig coolig rate by smal decrements, waiting for steady measurements afer

each step, then repeating the above measurements. This procedure was followed until convection

had ceased and the measurd quantities gave a Nusselt number of unty. Because of hysteresis, it

was important to ru each series of experients continuously. Thus one series would ru

continuously for many weeks. Power faiures or breakdown midway in a series required

restaring the series.

The above data alows us to compute Nusselt numbers. In the steady state, the total heat

flux FT is given by the total power input V'/R divided by the area A of the workig layer, where

V is the rms voltage drop across the heating element of resistance R. The thermal Nusselt

number NT is the ratio of the total to the conductive heat fluxes:

NT
V2d

J ART

where .1 T = T b - T t, k is the thermal conductivity of the workg fluid and J is the mechaical

equivalent of heat.

Simarly the total salt flux Fs' in the steady state is, (using top reservoir data, for example)

Fs = qt(Stout - Stin)/A. The salt Nusselt number Ns is the ratio of the total to the disive salt

fluxes:

q (Sout_SIn)N = t t t dS ks ASA

where .1S = Sb - St.

The second set of experients was pedormed at lower values of Rs since we knew from the

results of the first set that hysteresis would then be mium and liear stabilty theories could be

tested.

DISCUSSION OF TH RESULT
Figues 1 a, b, c show that the Nusselt number remais one as the power is increased and the

Rayleigh number is aproximately 80% of the liear oscilatory value Ros' However, once

convection sets in and the Nusselt number is 3 or 4, decreasing the power input does not result in

a cessation of convection, unti R has been decreased in some cases to approximately 1/20 of

Ros. Ths value of Rayleigh number below which the Nusselt number drops to unity is labelled

Rmi' A series of experiments with differig values of Rg and 't each gives an Rmi wruch is

shown in figure 3. It appears to be as far away as possible from the five diverging theoretical

cures. There is agreement of al of these only at very smal Rs'
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In an effort to understand the observed Rmin we propose the following simplifed modeL.

As the power input is lowered and the convection weakens, the salt boundai layers thcken so

that the convecting layer, now of thckness d. .c d is sandwiched between these two difusive

layers. We suppose that convection ceases when the conditions of 
th di layer satisfies the liear

oscilatory instabilty criterion:

R.zx3 = Rc + 1~(T R,yx3

where x = did, y = S/tiS, z = T/tiT and where 51 and T1 are the salinty and temperatue at the

intenace between the convecting and difsing layers. In addition to th cut-off condition, we

must match the fluxes at the interface. Here we asswne that the disive flux in one oscilation

period (given by linear theory) is cared away by the convective flux. Ths gives us the

following two relations:

( !.-i) = ~( !.-i) fI~) ~ ~x~y 20 x ~ y

( ~-1) = i( ~-i) r+;) ~y~x~

We fid the mium RT consistent with these flux conditions. Ths is labelled RA in figue 2.

In the second set of experients the Rayleigh nwnber and flux curves are shown in figues

5a, b, c. Figue 6 shows that the amplitude of oscilations goes to zero at RT greater than the Rc

indicated by arows, at which the Nusselt number drops to unty, indicating that steady

convection does occur below the R for oscilatory convection when 'Ys is suffciently large.
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Diffusive-Convective Staircases in
the Arctic Ocean

Laurie Padman

College of Oceanography
Oregon State University
Corvlis, OR 97331

Abstract

This paper is a summar of the results obtained from an analysis of microstructure
data from the Arctic Internal Wave Experiment, followed by a review of work stil

in progress and a discussion of possible future progras. Diffusive-convective (d-
c) staircases are a common feature in Arctic Ocean (T, S, ad profiles, and their
existence appears to be an indicator of where no other energetic processes are
present, based on a comparison of where steps are, and are not, found. Horizontal
vaiability of individual layers suggest than processes on scales of 0(1) kI are

important: intermittent internal wave breakng and non-turbulent straining are
obvious possibilties. The diffusively driven convection in the layers appears from
simple energy/dissipation arguments to be important to the decay of the internal
wave field, and a parameterization of the d-c instability for large-scale models may
need to take this interactive relationship between double-diffusion and internal
waves into account. Similar measurements from the Yermak Plateau, near where
the Atlantic Water first enters the Arctic, suggest that steps cannot be found
where turbulent mixing is large: in this case it may be necessary to estimate the
role of the differing molecular diffusivities of heat and salt in setting the effective
vertical diffusivities of both parameters in mixing patches.

1. Introduction

Diffusive-convective (d-c) staircases have been found in many regions of the Arctic
Ocean, in particular the Canada Basin and Beaufort Sea (Fig. 1), and on the upper edges
of intrusions of Atlantic water into the ambient Arctic water north of the Yermak Plateau
(the bibliography to this paper contains several references to these observations which are
not explicitly referred to in the text). The most recent observations from the Arctic Internal
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Wave Experiment (AIWEX) have been discussed by Padman and Dilon (1987, 1988, 1989;
hereafter PD87, PD88, and PD89), and the first section of this paper wil summarize the
findings of those papers. More recent data collected during the Coordinated Eastern Arctic
Research Experiment (CEAREX) in March-May 1989 wil also be discussed as a contrast
to the low energy environment of the Canada Basin. The final section suggests ways in
which further studies may be able to improve our understanding of the principal dynamic
and thermodynamic processes in geophysical d-c staircases.

Figure 1. Location of AIWEX (A), CEAREX (C), and Ice Island
T-3 measurements by Neshyba, Neal and Denner (1971) (N). Arrows
indicate circulation of Atlantic Water.

1.1 Setting

The Arctic Ocean is a semi-enclosed basin which is predominantly ice-covered for
most of the year. Relatively warm, salty, Atlantic Water (AW) enters the Arctic as the
West Spitzbergen Current, flowing northward through Fram Strait, around the islands of
Svalbard, then generally anti-clockwise around the Arctic. The inferred flow of A V\T is
shown in Fig. 1. The location of AIWEX, CEAREX, and the measurements reported in
Neshyba, Neal and Denner (1971) from the ice island T-3, are also indicated. AIWEX was
located on the southern side of the clockwise Beaufort Gyre, a flow which is the reverse

of the general Arctic circulation and driven by both mean atmospheric conditions and the
perturbations due to the Chukchi Cap. CEAREX involved an ice camp drift from deep
water north of the Yermak Plateau, partially up the slope, then westward across northem
Fram Strait.
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Typical profiles of temperature, T, salinity, S, and density, at, at both the CEAREX
and AIWEX sites are shown in Fig. 2. The surface mixing layer in each case is very close to
the freezing point for the observed salinity, because of contact with the ice. The Atlantic
layer is seen as a temperature maximum of about 2.5°C at 250 m at CEAREX, and 0.5°C
at :: 450 m in AIWEX. In the former case, the mixed layer is contiguous with the AW:
in the latter case the shallow mixed layer is buffered from the AW by the Bering Strait
Summer and Winter layers. In both cases, however, the result is a layer of fluid above
the A W core which is unstable in the d-c sense to double-diffusive mixing. Below the A W
core at CEAREX, the necessary conditions for the salt-fingering instabilty are also found,
although this region wil not be addressed in the present paper.
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Figure 2. Typical profies of T (solid), S (dashed) and (Fi (dotted)
for (a) AIWEX and (b) CEAREX.

Why study the d-c staircase in the Arctic? PD87 and PD89 showed that the heat
flux through the staircase, even including the observed probability of shear instabilities in
the internal wave field, is orders of magnitude too small to explain the loss of AW heat as
a vertical diffusive process, so that previous suggestions of the major heat loss occurring
through interactions with lateral boundaries remain the most plausible. However, the
staircase is of interest for several reasons, some of which have already been published:

. Measurements of the thermal microstructure provides valuable support for conceptual
models derived from instability theories and laboratory observations.

. The semi-regular sequence of well-mixed layers and sharp interfaces is a unique acous-
tic medium.
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. Existing heat flux "laws" can be validated by comparison to the thermal microstruc-

ture in both the interfaces and the layers.

. The ice pack provides a stable platform for internal wave vertical and horizontal
coherence meaurements, which are necessary to interpret the effect of internal wave
shear on the staircase.

. There exists the possibility, not yet fully explored, that the mixing of internal wave
momentum by the layer convection may be a significant sink of internal wave energy.
If this is the case, the principal role of the staircas may be to modify the internal
wave climate throughout the water column.

There is, therefore, a need to understand the interaction of the d-c staircase with
the velocity field, and to be able to determine the necessar conditions for the existence
of a staircase. We are presently treating the d-c steps as simply one component of the
Arctic system, whose ability to modify the internal wave spectrum may be relevant to
turbulent mixing elsewhere in the water column, and also to the avalability of internal
wave momentum for critical layer absorption in submesoscale eddies (Manley and Hunkins,
1985; Padman et al., 1990).

2. Previous Results

2.1 Distribution of staircase parameters

PD87 measured not only the mean characteristics of the AIWEX staircase, tiT, tiS,
and density ratio Rp for each interface (or 'sheet'), and the height H of the layers, but also
the probabilty distributions for each parameter as a function of depth. These distributions
do not support the view of a uniform series of stacked, regular sheets and layers, but rather
show that these parameters vary in depth, horizontal position, and presumably time. The
staircase can be thought of then as a set of interleaving laminae of finite extent, and with
a time-dependence set by such processes as intermittent large-scale mixing events, non-
turbulent internal wave straining, and local vertical flux divergences due to the differing
properties of adjacent interfaces.

2.2 Heat and salt flux estimates

PD87 found by application of the Marmorino and Caldwell (1976) flux laws that the
heat flux through the staircase, using the mean temperature step and density ratio in 10
m vertical bins, was about 0.05 VV m-2 in the upper staircase, decreasing to about 0.01
VV m-2 in the deep staircase, suggesting a vertical divergence of heat flux. However, by
considering instead the distribution of heat fluxes resulting from the joint distributions of
tiT and Rp, a less divergent profie emerged, with a mean heat flux of about 0.08 W m -2.
Fluxes of salt were obtained from the Huppert (1971) equation for the buoyancy flux ratio
as a function of Rp. Both heat and salt fluxes are smaller than needed to explain the decay
of the AVv as it circulates around the Canada Basin.
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2.3 Horizontal coherence of layers

PD88 found d-c steps in almost all profiles which reached below 300 m throughout the
AIWEX drift of 200 km. When this observation is added to those from T -3, and the exten-
sive set of hydrocasts in the western Canadian Arctic by Mellng et al. (1984), it appears
that the d-c staircase is ubiquitous above the AW core in the Canada Basin/Beaufort Sea,
except close to boundaries. The horizontal continuity of individual features is, however,
less simple to determine. Analysis of a 20 h series of closely spaced microstructure profies
showed that many layers could be tracked continuously over the approximately 600 m of
drift: since the deep circulation velocities are low, this is also the expected track length
at the depth of the steps. However, some layers thinned until they disappeared into a

sheet, others were destroyed by localized turbulent mixing on vertical scales of several
layer heights, and the temperature in many layers varied significantly from one profile to
the next. Tracking layers by temperature becomes unreliable when the temperature change
from one profile to the next exceeds a significant fraction of a typical fjT across a step:
this often occurs in the AIWEX data for stations more than 50 m apart.

2.4 Comparison with conceptual/laboratory models

PD89 investigated the thermal microstructure through the AIWEX staircase in terms
of conceptual models based on linear instability theory (Veronis, 1965), the mechanistic
ideas of boundary layer separation suggested by Linden and Shirt cliffe (1978), and flow
visualization experiments. Many thermal anomalies were found in the otherwise homo-
geneous layers, with temperature and length scales consistent with those expected from
the separation of the buoyant, predominantly thermal, boundary layer of the diffusive in-
terface, when the boundary layer Rayleigh number approaches 0(1000). These buoyant
anomalies are found only within 0.5 m of their source interface: a vertical velocity scale
for them based on a simple balance between Stokes drag and buoyancy is about 2 mm
S-l, giving a decay time scale of 0(200)s. The implied diffusivity is then 0(10-S)m2 S-l
(~ KT, the molecular diffusivity), consistent with the interpretation of the layer as being
actively turbulent, based on the large layer Rayleigh number of 0(108).

Heat flux estimates based on the Marmorino and Caldwell (1976) flux laws can be
approximately validated from the measurement of temperature gradients within the inter-
faces. The typical observed gradients of 0.1 °C m-1 imply heat fluxes of 0.06 W m-2, very
close to the MC76 values.

2.5 The addition of internal waves to staircase thermodynamics

Perhaps the most interesting aspect of the AIWEX analysis is the staircase response to
the internal wave field. As discussed above, the ice pack provided the opportunity to make
detailed measurements of the horizontal and vertical coherence scales, spectra, and total
energy of the internal wave field, which was found to be fundamentally different from the
mid-latitude canonical internal wave field as represented by the Garrett-Munk "universal"
spectrum. Levine et al. (1987) found that the mean energy density was only 0.05 of the
canonical value, while the frequency spectrum was proportional to w-1, rather than w-2.

Levine (1989) has shown from coherence measurements that fitting the observations to a



166

G-M form requires a much richer vertical modal structure than canonical, represented by
an increase in the 'equivalent' number of vertical modes, j*, from 3 to 30. Interestingly,
the result of these modifications is to maintain the shear vaiance at almost the canonical
level, with a 'variance' Richardson number of 0(2), as found by Desaubies and Smith
(1982) for mid-latitude internal waves. This observation lends credence to Munk's (1981)
suggestion that the internal wave field saturates when the probability of mixing is some
constant value.

PD89 averaged the dissipation rates for the two turbulent patches found in the rapidly
sampled sequence, estimated the heat and salt fluxes within them by a constant flux

Richardson number, then scaled the vaues by the observed probability of mixing, about
1.5%. The result was an increase through shear instability of about 20% in the total heat
flux, and a factor a 10 in salt flux, the difference in the two being that diffusive convection
transports heat much more effectively than salt, while shear instabilities mix properties
according to their stratification on the scale of the mixing event, where salt stratification is
the dominant term in the density equation. Even so, neither flux appears to be important
in the large scale heat and salt budgets of the region.

3. Research in Progress

The results of the previous section indicate that our present mode of operation, making
vertical profiles of T, C, and velocity shear microstructure, is a viable way of verifying the
analytical and laboratory visions of the thermodynamics of d-c staircases. In addition, we
have been able to assess the importance of the addition of internal waves to the staircase
evolution. The principal result from the Arctic studies, that even with internal waves the
d-c fluxes are negligible, is not necessarily true elsewhere: in regions where ~T is large
or Rp small, d-c fluxes may be significant, and the AI\iVEX data provides support for the
application of existing flux laws to these other regions. However, perhaps by looking at
the Arctic environment as a system where the steps are passively responsive to larger scale
processes, we are missing other processes of importance.

3.1 The Role of Diffusive Convection on Internal Wave Energy Dissipation

Consider the system depicted in Fig. 3. Internal waves with vertical scales much larger
than an individual layer height impinge upon an existing staircase structure. Each internal

wave component is a wave propagating at some angle to the vertical from a source, for
example from the surface where the waves are forced by the relative motion of the under-ice
topography through the mixed layer. Although the applied wave velocity profile through
a particular layer varies with time, the double-diffusively driven convection can partially
homogenize the momentum within the layer. Fig. 3 shows a velocity profile which might
result for a steady applied shear: in this case the final velocity gradient in the layer is given
by stress continuity, so by estimating the eddy viscosity J(m in the layer and assuming
viscosity in the interface to be purely molecular, we can relate the velocity shears in both
layers and sheets. The kinetic energy released by this process is lost either as dissipation to
heat, or through buoyancy fluxes, essentially entrainment of gravitationally stable sections
of the adjacent interfaces into the turbulent layers.
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We can estimate the rate of loss of kinetic energy, c:, from the turbulent properties of
the layer, i.e. integral length and velocity scales, calculate the maximum dissipation rate,
and compare it to the divergence of internal wave energy flux. By making the assumption
that the velocity shear is linear, c: reduces to a simple function of shear, layer height
H, and a constant which relates the turbulent length scale to the layer height. Present
rough estimates of the downward energy flux, based on a G-M type model spectrum with
the AIWEX parameters invoked, suggest that provided the turbulent length scale exceeds
D.IH, the staircase can dissipate most of the incident wave energy for the observed mean
energy levels.

'Applied' internal wave
velocity

, Sheet'

K :;:; v
m

'Layer'

8ulôz :;:; ~8ulôz:;

" t

'Adjusted' internal wave
veloci ty

Figure 3. Schematic of internal wave/diffusion convection interaction modeL. Mixing

in layers is driven by double-diffusive convection originating at the interfaces, and results
in an effective viscosity Krn??/J, the kinematic viscosity. Internal wave kinetic energy is
dissipated as the time-dependent 'applied' internal wave velocity profile is continuously
adjusted by mixing towards the 'adjusted' profie. Intensification of shear 8u/8z relative
to the local mean gradient (8u/8z) at interfaces may lead to shear instabilities such as
Kelvin-Helmholtz billowing. Large-scale mixing by shear instabilities independent of the
diffusive convection (Gregg, 1989) is not shown but may also be important.

This is a significant result, because much of the energy input at the surface by wind
stress comes in storm events. Open ocean measurements find that even so, the internal
wave energy level remains roughly constant, to within a factor of 2 or so, while in the

Arctic, the energy level decays rapidly following a storm (pers. comm. M. Levine). A pos-
sible interpretation is that there is a dissipation process unique to the Arctic which rapidly
attenua.tes vertically propagating energy, so tha.t the energy density is closer to being in
equilibrium with the wave generation processes tha.n in the open ocean.n'Thile there are
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many plausible candidates in the Arctic, such as the unique surface boundary condition
and the generation spectrum being tied to the 2-dimensional horizontal wavenumber spec-
trum of the under-ice topography, it is also possible that absorption in the staircase is a
significant sink.

Testing this hypothesis may be diffcult: the process is likely to be continuous at a low
level which tracks the slowly varying wave shear, rather than consisting of intermittent,

large, easily observable events as in shear instability. It is also not clear how a staircase
might fist evolve from an initialy smooth density profile if the ambient internal wave field
in the absence of steps were to be comparable to G-M canonical 

levels. However, we can
imagine a plausible scenario where the layers are actually initiated by breaking events in
the internal wave field, resulting immediately in d-c absorption of further incident wave
energy, which acts to sharpen the initial interfaces by entrainment as part of the total
energy balance.

While all this is speculative, it does suggest a real possibility for diffusive convection to
be important to the overall energetics of the Canada Basin. A further topic being pursued
by Murry Levine and myself is the role of critical layer absorption of internal wave energy
by submesoscale coherent vortices in the Canada Basin, and part of this project is an

understanding of the reasons for the anomalous internal wave spectrum. There is thus a
potential for feedback from the steps into the energetics of SCVs, which are known to be
a major component of the momentum, heat and salt fields in the upper 300 m.

3.2 Double-Diffusion in CEAREX

Typical profiles of Turner angle, Tu, for both AIWEX and CEAREX (Fig. 4) show
that while in AIWEX only the d-c instability is possible in the sampled depth range, in
CEAREX both the d-c and salt-fingering instabilities are possible. Furthermore, Tu in
sections of CEAREX approaches more closely to -900 than anywhere during AIWEX. Since
-900 corresponds to Rp=l, i.e. the most energetic regime for the d-c instability, we would
expect that d-c layering might be even more well-developed in CEAREX than in AIWEX.
However, this is not the case. Very few steppy features are actually found in over 1400

microstructure profies, either above (d-c) or below (salt-fingering) the A W temperature
and salinity maximum near 250 m. Presently we attribute this observation to two factors,
(a) the early age of the AW inflow (see Fig. 1), and (b) the high values of turbulent kinetic
energy dissipation rate, which appear to be correlated with the diurnal topographically
trapped vorticity wave associated with the Yermak Plateau (Hunkins, 1986; Chapman,
1989). Unless aided by the creation of finestructure by some other process, d-c steps
take several months to form themselves out of an initially small perturbation to otherwise
uniform temperature and salt gradients. Conventional wisdom is that steps therefore need
several months in a peaceful environment to grow a well-developed staircase structure.
The diurnal cycle of energetic mixing events (in some cases turbulence extends from the
surface to over 250 m), would be suffcient to erase any steps which may drift into the
region affected by the vorticity wave. Any step-like structures, which are found at most
depths randomly located in time, are presumably simply finestructure associated with
active or decayed mixing events, independent of the double-diffusive nature of the density
stratification.
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There is stil a need, however, to determine whether our previous assumption of equal
diffusivities for salt and heat in turbulent patches is really vaid in a d-c regime, even
when layering is not present. Since the salt and thermal microstructure exist at different
scales because of their differing molecular diffusivities, there is some potential for their
enhanced eddy diffusivities also to differ. While this may be an important research area
to understanding the turbulent limit of a d-c environment, it is not addressable with the
CEAREX data set because of our inabilty to resolve the salinity microstructure. With our
present sensor, a Neil-Brown conductivity cell, our best resolution of salinity is about 10-20
cm, about 100 times that of the Batchelor wavelength for salt at the observed dissipation
rates.
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Figure 4. Typical profiles of Turner angle, Tu, for AIWEX (solid)

and CEAREX (symbols). Tuo(-45° is d-c unstable: Tu)-+45° is salt-
fingering unstable.

4. Suggested Further Research

The following research topics are suggested in no particular order, however the combi-
nation of these efforts could substantially clarify our understanding of diffusive convection
in geophysical environments.

4.1 Revisit Lake Yanda (Antarctica)

Lake Vanda is a saline, ice-covered lake in Antarctica which is well-known for itsd-c
staircase (Shirtcliffe and Calhaem, 1968: Huppert and Turner, 1972), resulting in a net flux
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of heat from the surface to the bottom (about 65 m), and bottom temperatures of near
25°C. Although Rp is high, about 7.5, the temperature steps are very large compared with
the Canada Basin data, leading to large heat fluxes, determined both from laboratory flux
laws and by the large scale heat budget for the lake. In addition, the land-fast ice cover
implies no energetic source for internal waves, so the site should be a good candidate for
a study of pure d-c layering. Microstructure profiing equipment such as our RSVP is now
suffciently developed to be able to measure thermal and velocity microstructure reliably
in this environment. The high heat, and hence buoyancy, fluxes through the interfaces
are presumably reflected in high layer dissipation rates. An investigation of the length,
velocity, and dissipation scales of the pure d-c driven layer turbulence is therefore well
suited to this site. Lake Vanda would be used as a large laboratory tank, without the
concomitant problem of secondary circulations induced by lateral boundaries.

4.2 Numerical simulation

Simulation can be used to verify with non-linear equations, the conditions for interface
breakdown which have previously been derived analytically with a linear stability analysis
(Veronis, 1965). One of the perplexing features of laboratory work is the apparent de-
pendence of flux ratio on the magnitude of the heat flux: there is at least a factor of two
difference in salt flux over the common geophysical density ratio range of 2 -( Rp -( 8, for
flux laws from different experimenters. The present limit to 2-D simulation (pers. comm.
C. Shen) may pose a problem in interpretation, but as at least a qualitative guide to the
salt flux dependence on changing heat flux, it could be valuable.

4.3 Understand Kelley's (1984) layer height model

Despite the poor coverage in Rp in Kelley's original data set, basically just a low and
a high Rp point, the addition of the AIWEX data set shows that this empirical law is
capable of predicting layer height to about a factor of two. The AIWEX data falls below
the proposed curve, although when all layer heights are plotted against it, the curve is seen

to describe an upper limit to AIWEX step heights. The proposed form is intriguing because
it essentially reduces to a constant layer Rayleigh number which is much larger than the
assumed value for transition to 3-dimensional turbulence. The best existing explanation
is Fernando's recent work relating the layer scale turbulence properties to the entrainment
rate of the bounding interfaces. It is believed that Lake Vanda measurements (see 4.1)
would be a useful tool in verifying this model and therefore explaining the Kelley curve.

J

4.4 Laboratory measurements of wave attenuation due to diffusive convection

Our results from interpreting An~TEX data suggest that at least in the Canada Basin,
the interaction of internal waves with the staircase is probably the most important role of
the staircase, since the d-c fluxes are too low to be important of themselves. There are a
number of useful studies which I would hope could be addressed in laboratory tanks.

. The effect on the decay rate of interfacial waves for a constant density step as the two-
component stratification is varied from diffusively stable through a range of Rp. This
would be combined with flux estimates and flow visualization in order to determine if
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interfacial instabilities might be an important source of flux enhancement, as expected
at low Rp where the flux ratio is known to approach unity.

. The effect on the decay rate of large scale waves through a series of multiple steps as

the two-component stratification is vaied as above.
. The effect of the d-c instabilty on turbulent diffusivities of heat and salt in an actively

turbulent regime. An experiment such as reported by Taylor for the salt-fingering
instabilty may allow a better interpretation of our CEAREX data, as well as providing
clues to how the steps initially develop in a geophysical context.

4.5 Revisit the Canada Basin

In view of the discussions based largely on C-SALT analyses, there is evidence that
further microstructure data from the Arctic Ocean, with supporting data (moorings) de-
signed specifically for a staircase study, may be of value in understanding other processes
in the staircase, such as the isopycnal fluxes of heat and salt required to balance vertical
divergences. This suggestion is based largely on the possibility of the present Canadian Ice
Island (see EOS, September 12, 1989) leaving its present location in shallow water and en-
tering the Beaufort Gyre circulation over the deep water of the Canada Basin. This would
provide an inexpensive platform for collection of a longer time series for step tracing, as
well as a vertically dense mooring measuring T and S, covering several steps. Our AIWEX
expenence indicates that isopycnal displacements are not larger than a few meters, so that
it should be possible to retain a few steps in the aperture of a mooring spanning perhaps
30 m only. The microstructure system used in AIWEX could not be run continuously for
more than 30 h based on manpower constraints: the revised system used in CEAREX
and available for future studies can be run continuously for several days (in CEAREX we
obtained 20 days with a maximum data gap of 1 h).
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What Drove the Intrusions that mixed Meddy "Sharon"?

Bar Ruddick
Deparent of Oceanogrphy

Dalousie University
Halifax, N.S., B3H 411, Canada

Abstract

The intrsions from Meddy "Shaon" were found to be latey coherent in a seuence of

stations extending mdiy outwar. The migrtion of thes intrsions across density suraces had
a distinct pattern, sloping in opposite senses in the upper and lower par of the Meddy. This
pattern was found to be consistent with that expete for the McIntyre (1970) instabilty for
Prandtl number less than one, in which ca mass flux (equa in heat and sat) dominates over
viscosity. The slopes were also consistent with thermohaline intrsions, in which diffusive
fluxes dominate in the upper, diffusively strtified porton of the Meddy, and finger fluxes
dominate in the lower, finger-strtified par. In either ca, the intrsions are dnven by mass
fluxes, not by momentum fluxes.

1. Introduction

From October 1984 to October 1986, an anticyclonic eddy of Mediterranean overfow
water was tracked in the Norteast Atlantic and its movements, evolution, turbulent mixing, and
decay were monitored. This is the longest an identiable oceanic water parcel has ever been
tracked (Arm et al, 1988,1989). The originators of the experiment, Lary Ar and Tom Rossby,
wanted to understand the role played by these "Meddies" in the dispersion of salt and heat
throughout the Atlantic. For instance, Arm and Stommel (1983) calculated that if thee Meddies
per year were to enter the ß-trangle region and disperse their salt anomaly, the resulting salt flux
divergence could equal the advective flux divergence in that area. The mechanisms of movement
and the processes that govern the evolution and salt loss of the Meddy wil obviously influence the
role played by Meddies in latera dispersion in the deep ocea.

Another reason for interest in the experient was that it provided a unique opportunity to
observe the changes over time of an identified water parcel, and to therefore infer the rates and
mechanisms of mixing. By comparng these inferred mixing rates with the directly observed
microstrcture and finestrcture signatures, we can lear which mixing mechanisms dominate and
how rapidly they work. The observations of the Meddy at four stages of its life (Ar et al, 1989)
clearly show lateral mixing of the core by intrsions (these can be seen in fig. 1 below), and that
the inward erosion of the salinity and velocity strcture is associated with the intrsions. The
turbulent microstructure in the intrsive region, and in the salt fingering region below the core
(Oakey, 1988), was found to be greatly intensified with a ratio of thermal to velocity varance
dissipation inconsistent with purely mechanical turbulence. Hebert (1988,1989) interprets the
partial erosion from below of the Meddy core and the formation of a series of steps and mixed
layers, as being due to salt finger mixing, and finds that the salt finger fluxes must be an order of
magnitude weaker than predicted by laboratory-based flux laws, but are consistent with Kunze's
(1987) Stern Number criterion. He estimates that the salt loss by vertical salt fingering leads to a
salinity decay timescale of 20 years, a factor of 20 slower than observed. Hebert et al (1989) find
that the loss of salt and heat content, kinetic and potential energy, and the aspect ratio changes of
the Meddy are consistent with the dominance of lateral processes, with a radial salt diffusivity of

KH ~ 2 m2s-l.

It appears from the above as though lateral intrusions succeeded in mixing salt, heat, and
angular momentum radially outward, to be dispersed in the surrounding ocean as the Meddy
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Surey I : October 1984 Figure la. Sequence of salinity
(PSU) vs pressure (decibars)
stations from the outer core and
intrusive regions of the Meddy.
The salinity scale is correct for
the leftmost station, closest to
the core; successive stations have
been offset by 0.5 PSU.
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Figure lb. positions of the
stations shown in (a). The radius
of the intrusion-free core is

shown as the innermost circle.
The outer circle shows the extent
of the intrsive region.

(b)



175

drifted. Figure la, taken from Hebert et al (1988), shows a sequence of salinity vs depth traces

from the first survey of the Meddy. The positions of these stations with respect to the Meddy is
shown in figure Ib. Figure Ib also shows schematically the (assumed circular) intrsive region,
with salinity inversions larger than 0.01 PSU, and the intrsion-free core region. The final six
profies are from a closely-spaced "tow-yo", in which the CI was raised and lowered as rapidly
as possible over a limited depth range while the ship was steamng radially, resulting in a station
spacing of less than 1 km. Several of the inversions in this sequence appear to be laterally
coherent, and are more so when plotted against density rather than pressure. In this note we
examine the slope of these intrsions with respect to isopycnals in order to determne whether they
are drven by angular momentum diffusion (McIntyre, 1970), or by unequal mixing of heat and
salt as in the thermohaline intrsion models exemplified by Stern (1967). In the next two sections,
we review these instabilties, focussing on the relationships between instabilty dynamics and
intrsion slope, and then we compare the observed slope with the model predctions.

2. The McIntyre (1970) Instabilty

While investigating the flow at large Prandtl number in a differentially heated rotating
annulus, McIntyre (1968) discovered that viscosity can destabilize the flow. He investigated the
linear instability of a baroclinic vortex (McIntyre, 1970) and found that unequal diffusivities of
momentum v and mass 1C allow small-amplitude axisymmetric layering motions to grow
exponentially even when the flow is stable according to classical inviscid criteria. The instability is
thus analogous to salt fingering with the two diffusing components being mass and angular
momentum. There is also an overs table oscilatory instabilty analogous to thermohaline double-
diffusion, but McIntyre (1970) showed that the direct instability always occurs before the
oscillatory one, and since the direct instabilty has greater advective effects and produces larger T-S
anomalies, we wil not consider the oscilatory mode further. CaIman (1977) demonstrated in the
laboratory that layering can occur at large Richardson number, and veried that the dependence of
critical Richardson number and fastest-growing wavelength on Prandtl number a=v/K were in
accord with predictions for a;:l.

McIntyre described the physical mechanism for frctional destabilization in the following
way. Consider a basic state consisting of a circular baroclinic vortex in thermal wind balance:

fVi = gaTr. (1.)

where v(r,z) is the azimuthal velocity, aT(r,z) is the density field, and overbars denote the basic
state. As shown in figure 2, the vertical gradient in the (radial) Coriolis force is balanced by the
vertical gradient in the pressure gradient force (PGF), and this is supported by the isopycnal tilt.
We now consider the perturbations to be influenced by friction but not diffusion of mass.
Consider moving a parcel of fluid from point A to point B in the (r,z ) plane. This motion
corresponds to motion in the "wedge of instability" in baroclinically unstable flows. The motion of
mass downward across geopotentials, but downgradient from dense fluid to light, tends to reduce
the slope of isopycnals and constitutes a release of potential energy. If the fluid parcel can remain
at position B, this potential energy release will be the source of energy for the perturbations. Will
the fluid parcel remain at B, continue onward, or return to A? If friction is absent, the Coriolis
force acting on the radial velocity of the parcel during its travels from A to B act in the azimuthal
direction to decelerate the parcel (this can also be seen to be a consequence of angular momentum
conservation). Thus, when the parcel reaches point B, the Coriolis force is reduced, and the
pressure gradient force acts to restore the parcel to point A. With neither friction nor diffusion
acting on the parcel, it will undergo an inertial oscilation about point A if perturbed. However, if
friction prevents the parcel from decelerating as it moves to point B, then the Coriolis force on the
parcel will not be reduced, and the parcel can "slide down" the gravitational potentiaL. The
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instability taes the form of sloping layers with dynamcs similar to salt fingers, in which the
unstable (in the radiål diection) density field is convected by the perturbation, which can grow
because of the more rapidly diffusing angular momentu field.
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Figure 2. Sketch of the basic state baroclic shea

flow showing the direction of fluid parcel
displacements for CD 1. A geopotential (level)
surace is shown as a dashed lme. Isopycnals
are shown as solid lines.

Figue 3. Sketch of the isopycnal displacements

and velocity pertrbations for ad. The
orientation of the distubance is shown by the
dashed lines. Isopycnals are shown as solid
lines.

A simiar argument can be made for the case 0'....1, in which mass diffusion dominates
over frction. The perturbations sketched in figure 3 tilt in the same sense as the mean isopycnals,
but much more steeply. Consider the effect of advection in the mean gradients on an upgoing
parcel of fluid. Advection of density (predominantly the term w(ap/az)) causes the density
perturbation to become positive, and gravity acting on this perturbation density gives rise to a

restoring force. Advection of momentum in the vertical shear (the term w(av/az)in the azimuthal
momentum equation) produces a negative v-perturbation (out of the page) and a perturbation
Coriolis force which reinforces the original upward motion. If neither friction nor diffusion are
important, the perturbation acts like an internal wave, bobbing up and down as buoyancy and
inertia forces alternately dominate. However, if diffusion can act to reduce the restoring density
perturbations, the perturbation Coriolis forces reinforce the original motion and cause the
perturbation to grow.

The simple physical arguments above suggest that the instabilty has two distinct
mechanisms. For 0')-1, the perturbations have a shallow slope, and friction erases the velocity
perturbations, allowing the density perturbations to release the grvitational potential energy of the

basic state. For 0'..1, the perturbations have a steep slope, and diffusion erases the restoring
density perturbations. The pertbations trsfer y-momentum downgradient, releasing the kietic
energy of the mean shear flow.

McIntye (1970) gives bounds enclosing al unstable disturbance slopes:

uiø",= (();I)(I:ct_ :~nanr (2.)
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where: ø is the angle to the vertical made by the distubance orientation

r = tan -1 r Vz/ (I + Vr) J is the angle made by the lines of constat circulation C=fr+v

e = ta-ii1:lf,ìis the angle to the verucal mae by the mea isopycnals
Ri = ta e/ta r is the moded Richardson number

Ri= (0'+1)2/40' is the crtical Richardson number, with growth when Ric:Ri.

If Ric:l, the system is unstable to direct overting (McIntye calls this the "classical"
instabilty), so 1 c:kRic. It can then be shown that:ta e c: ta ø c: 0' tan r for cpl, and (3.)

0' tan e c: tan ø c: tan r for 0'c:1. (4.)
These limits are shown in figue 4. For 0'::1, the disturbance slopes lie between those of the
geopotentials and isopycnals. For O'c:l, the distubance slopes lie between the vertcal and the
lines of constat circulation, which are closer to verucal than the isopycnals.
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Figure 4. Range of allowed onenlaüons of McIntyre's (1970) instability, corresponding to equaüons 3 and 4.

3. Thermohaline Intrusions

Stern (1967) discovered that lateral T-S gradients were unstable to quasi-horizontal
intrusive layering drven by double-diffusive vertcal mixing. A war salty intrsive layer can

have salt fingers below it and diffusive thermohaline convection above it. Turner (1978) found in
a series of laboratory experiments that warm salty intrusions can slope either upwards or
downwards as they extend laterally according to whether the finger or diffusive buoyancy fluxes
domiate. If the finger fluxes dominate, the ratio of heat to salt change along the layer is

d(aT)
d(ßS) = rF

(5.)
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where ex and ß are the thermal and haline expansion coeffcients, and 'Y the salt finger flux ratio.
Eq. 5 is equivalent to

!-5 -1- (6 )P d(ßS) - rF' .
which states that intrsions wil become less dense as they become less saline (and vice-versa) if
salt fingers dominate. Similarly, if diffusive fluxes act alone with salt/eat flux ratio rD, the ratio
of heat to salt change along the layers is

d(aT)
d(ßS)

1
(7.),

rD

which is equivalent to

!-5 - 1- -1
P d(ßS) - r D '

(8.)

and in this case intrsions wil become less dense as they become more saline and vice-versa.

Most models of the intrsion process (Stern, 1967, Toole and Georgi, 1981, Ruddick and
Turner, 1979) assume for simplicity that the finger fluxes dominate. In-situ observations have
often noted intrsive layers migrating across isopycnals in a manner consistent with this

assumption (Joyce, Zenk, and Toole, 1978, Gregg, 1980). However, some intrusion models
(Ruddick, 1984, McDougall, 1985a,b) have argued that the density changes induced in the layers
by salt finger fluxes must eventually lead to the diffusive fluxes becoming important, and vice-
versa, so that both finger and diffusive fluxes may be important in intrsions.

4. Intrusion Slopes in Meddy "Sharon"

The Meddy core rotated anticyc10nically about once each six days, and the isopycnal tilts
necessary to maintain the high pressure in the core must be in the sense shown in figure 5a.
Intrusive motions associated with the McIntyre (1970) instability for a:;l have slope more
horizonta than the isopycnals as in the left of figure 5a, and since the Meddy core is salty, the
density versus salinity graph for intrusions wil be as shown in figure 5b. Similarly, for a:; 1 ,

intrusions slope more steeply than isopycnals, leading to the pattern in figure 5c.
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As we saw in Figure 1, the overall stratification of the Meddy (averaging over several
intrusions) was diffusive sense above 900 m depth, and figer sense below about 1000 m. If the
intrsions are thermohaline, we expect one of three things: (1.) they can be influenced primarly
by salt finger fluxes over the whole depth range (as argued by Ruddick and Turner 1979, and
assumed by Stern, 1967), with slope as in figure 5d, (2.) they can be influenced primarly by
diffusive fluxes with slope as in figure 5e, or (3.) they can be influenced by diffusive fluxes in the
upper par (eq. 8) and finger fluxes in the lower par (eq. 6), with slopes as in figure 5f.

In figure 6 we show a sequence of S vs crl (cri = pi-1OO, where PI is the density referenced to
1000 db pressure) curves from down traces 481101-481150, the closely spaced intrsive stations

in fig. I. The positive extrema in S have been marked by circles, the negative extrema by squares.
Several intrsions can be tracked from one station to the next, consistently crossing isopycnals,
although the traces tend to obscure the picture somewhat. It is possible to link the obvious
intrsion extrema together, ensurg that no two extrema from the same station are linked, and then

to use the pattern thus developed to help deduce furher lins between the extrema.
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~
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35.9 36.0 36.1 36.2

SALINITY (PSU)

Figure 6. Potential density (0'1) versus salinity for the closely-spaced stations 481101-481150. Positive S-
extrema are marked by cirles, negative extrema by squar.

The results of this linking of intrsive S-extrema are shown in figue 7a for the positive
extrema, 7b for the negative extrema. The filled circles (or squares, in the case of fig. 7b) denote
intrusions of greater than 0.01 PSU salinity excursion. These were used in regressions of S on
O'i, resulting in the solid lines shown. The slopes show a clear pattern of intrsions crossing
isopycnals, consistent only with figure 5c or 5f. The uncertainties on the regression slopes are
small enough that this pattern could not have occured by chance. The slopes are inconsistent with
any of the other hypotheses summanzed in figures 5b, d, and e.

s. Discussion l

The McIntyre (1970) instabilty discussed in section 2 assumes lCS=lCT:;V in Its
parameterization of small-scale vertical fluxes (equal heat and salt diffusivities, unequal to
viscosity. The pareterizations for thermohaline intrsions assume -i:;lCT (for salt fingers, KT =
'YF Rp-i KS), so that heat and salt diffusivities are unequal. If the intrsions are caused by the
McIntyre instability, then mass diffusion must dominate over viscosity. Since there is no known
oceanic mixing mechanism giving Prandtl number less than one, this seems to be an unlikely
possibility. If the intrsions are thermohaline in nature, then the diffusive regions must dominate
the buoyancy fluxes in the upper par of the Meddy and finger fluxes the lower par. This seems
plausible, since the upper par of the Meddy is stratified in the diffusive sense overall, and the
lower par is stratified in the finger sense. In any case, the intrusions must be drven by mass
fluxes, not by viscous effects.



Figure 7. (a) S vs potenual density (0"1) locations of posiuve extrema from fig. 6. Extrema associated with

intrusions of salinity pea-to-pea amplitudes greater than 0.01 PSU are shown as filled circles, and these are used
in regressions of Son 0"1, shown as solid lines.

(b) As in (a), but for negauve extrema, shown as solid or open squares.
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ABSTRACT

The linear theory of double diffusive intrusion in a rotating system is applied to
several laboratory and field data on thermohaline intrusions. The results show that the

intrusions are strongly affected by the effect of rotation, and the observed thickness of
intrusions agree fairly well with those predicted by the theory.

1 INTRODUCTION

Yoshida; N agashima and Niino(1989)(hereafter referred as YNN) investigated the
effects of earth's rotation on the stabilty of a thermohaline front of finite width by
means of a linear theory. They found that when the rotation is present two different
types of unstable modes are possible. When the front is narrow and a Rossby radius of
deformation based on Ruddick and Turner's vertical scale(1979) is large compared with

the width of the front, the fastest growing intrusion is nearly two-dimensional (non-

rotational mode) and it's vertical scale is given by Ruddick and Turner's scale. When
the Rossby radius becomes small, in addition to the non-rotational mode, there appears
another unstable mode(rotational mode) wruch has smaller vertical wavenumber than

the non-rotational mode. By the introduction of rotation, the fastest growing mode
has non-zero along-frontal wavenumber, namely, the intrusion becomes tilted in the
along-frontal direction. When the Rossby radius of deformation is suffciently small
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compared with the width of front, transition from the non-rotational mode to the
rotational one occurs. The transition from non-rotational to rotational mode becomes
less pronounced when the width of front is increased for a fixed horizontal density
compensating gradients of temperature and salnity. For a wide front the growth rate
and vertical wave number for both modes becomes similar, which agrees with the results
of previous studies for infinite front that rotation does not modify the behavior of the
intrusion except for the occurrence of along-frontal tilt.

In the present study, we applied our theory to the results of laboratory experi-
ments (Chereskin and Linden(1986)) and field observations (Voorhis, Webb and Mil-
lard(1976), Horne(1978), Posmentier and Houghton(1978) and Meddy(Ruddick and
Hebert(1988)) data on thermohaline intrusions. Weare particularly interested in eval-
uating the effect of rotation on the intrusions and comparing the observed tmcknesses
of intrusions with the predicted ones.

2 GOVERNING PARAMETERS

In their linear theory, YNN found that stability of the front is described by the four
parameters, Frontal stability parameter Ra = N2d6 / K;a2, Nondimensional Coriolis pa-

rameter J = j¿i/Ke, the Schmidt number E = l/e/Ke and Turner number ç = ßSz/cxTz'

Where N is the Brunt- Väisälä frequency, Ke is the vertical eddy diffusion coeffcient of

salt, a is half width of the front, j is the Coriolis parameter, l/e is the eddy kinematic
viscosity, a and ß are the temperature expansion and saline contraction coeffcients,
respectively and Tz and Sz are vertical temperature and salinity gradient, respectively.
In their theory ç is between 0 and 1, so that the basic stratification supports the salt
finger convection. d is proportional to Ruddick and Turner's characteristic vertical
length scale

d _ g~p(1 - 'Y)
- PoN2 '

where, 9 is the gravitational acceleration, 2~p is density difference due to horizontal
temperature or salinity gradient across the front, 'Y is the density flux ratio, Po is a
reference density.

The frontal stabilty parameter Ra gives a criterion on the width of the front. If
Ra is decomposed into

a4(d/a)6 N2Ra = 2 '
Ke

one notices that, for a given horizontal gradients of salinity and temperature (i.e.,
d/a - const), large(small) Ra corresponds to a wide(narrow) front. YNN found that-2 -
Ra/ j = N2d2 / j2a2 rather than f itself is useful for describing the effect of rotation
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on the intrusions. Note that this parameter corresponds to the stratification parame-
ter(Pedlosky, 1987, p.356) or reciprocal of the internal rotation Froude number. That
is, the large(small) value of this parameter corresponds to that the Rossby radius of
deformation 'xd = N d/ f is large(small) compared with the width of the front, and thus
the thermohaline intrusion is in non-rotational(rotational) mode.

Most of the values of these parameters can be estimated from the observed vaues
such as the width of the front, vertical temperature and salnity gradients and so
on. However, there are severe diffculties in determining the Schmidt number f. Ke
could be determined from 4/3 power law for vertical salt flux (Stern and Turner(1969))
and horizontal salinity difference across the front (see Nüno(1986)). The value of Ke

thus determined ranges from io-3em2 / see to 10-1em2 / sec. Much less is known about

the magnitude of lie. If we use molecular value(10-2em2 / see) instead, f may be of

0(10) - 0(10-1). For simplicity, f is taken to be unity in the following analysis. The
density flux ratio 1'is known to be a function of Turner number ç (e.g. Schmitt(1979)),
and is constant value 0.56 for ç .. 0.5(Turner(1967)). From typical POLYGON area
data(Fedorov(1978)), ç is calculated to be 0.15, then l' is taken to be 0.56 in the

following analysis.

3 RESULTS AND DISCUSSION

Thermohaline intrusion has been observed both in laboratory and field. For labo-
ratory experiments, double diffusive thermohaline intrusions in a rotating system was
investigated by Chereskin and Linden(1986). They produced intrusions by sidewall
heating a salinity gradient in a rotating tank, and obtained thicknesses of intrusions.

Field observations on thermohaline fronts sometimes reveal the existence of intrusion
layers. In some cases, double diffusion is considered to be the driving mechanism.
Voorhis, Webb and Milard(1976), Horne(1978) and Posmentier and Houghton(1978)
conducted precise CTD observations near Shelf/Slope Water or Slope Water Front re-

gions in the North Atlantic. They discovered frontal intrusion layers and pointed out the
possible role of double diffusive mixing on thermohaline intrusions. Recently, small sub-

surface eddies having large anomaly in properties have found in the Atlantic(McDowell
and Rossby 1978). These eddies are considered to be Mediterranean origin, and called
as Meddy. The importance of the Meddy for transporting anomalous temperature,
salinity and nutrients are discussed by many investigators( e.g. Anni et al. 1989).

Ruddick and Hebert(1988) pointed out that thermohaline intrusion are the dominant
mechanism for mixing of the Meddy, and discussed the intrusion processes occurred in
Meddy in precise detaiL.
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Having estimated the parameters described in section 2 based on above mentioned
data, we have used YNN's theory and calculated the growth rate O"max, the verti-
cal wavenumber mmcx and the along-frontal wavenumber lmax of the fastest growing
mode for each case. The results are listed in Table.1a(laboratory experiments) and
Table.1b(field observations) together with the values of parameters. These results are

also plotted on Fig.l(laboratory experiments) and Fig.2(field observations), in which
mmax are plotted against Rait for various combination of 1 and Ra.

For laboratory experiments data(see Fig.l), in all experimental runs, intrusions
should be categorized as rotational mode(Ralp 0( 1) and the fronts are relatively
narrow(Ra rv 0(10) - 0(103)). The predicted vertical wavelength show fairly good

agreement with the observed ones, except for two cases where the fronts are extremely
narrow.

For field observation data(see Fig.2), intrusions are categorized as rotational mode,

but fronts are relatively wide (Ra rv 0(101) - 0(109)). We can also see the fairly good
agreements between them. But for the Meddy data, there exists a large discrepancy
between them. One reason for the occurrence of such discrepancy considered is the

diffculties of determining the Schmidt number c. Ruddick and Hebert (1988) pointed
out that if the Schmidt number is 40, the vertical scale of the intrusions in the Meddy
is well coincided with that predicted by Toole and Georgi's(1981) theory. If we use this

value instead, the predicted vertical wavelength becomes 38.7, and is also well coincided
with the observed value of 27.3.

4 CONCLUDING REMARKS

The linear theory of double diffusive intrusion in a rotating system is applied to
some laboratory and field experiments data on thermohaline intrusion. The results
show that such intrusions are strongly affected by the rotation, and the observed thick-

ness of intrusions agree fairly well with the predicted ones. But the estimation of Ke and

l/e is rather critical in predicting the behavior of double diffusive thermohaline intru-
sions. As for the Thrner number E, and the density flux ratio 'Y, recent works(somewhere

in this issue) report that these values should be close to unity and hence 0.85 in the
North Atlantic frontal region. Further improvement in evaluation of such parameters
is needed in future.
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THE BEHAVIOR OF DOUBLE DIFFUSIVE GRAVITY CURRENT
LABORATORY AND NUMERICAL EXPERIMENTS

H. NAGASHIMA
Institute of Physical and Chemical Research(RIKEN)

2-1 Hirosawa, Wako-slu, Saitama 351-01, Japan

J. YOSHIDA AND M. NAGASAKA
Tokyo University of Fisheries
4-5-7 Konan, Minato-ku, Tokyo 108, Japan

ABSTRACT

The behavior of double diffusive gravity current are investigated both by laboratory
and numerical experiments. For laboratory experiment, the behavior of double diffusively
induced secondary currents are investigated. We obtained a simple power law for the velocity
maximum of the current vs. density ratio. For numerical experiment, double diffusive lock-
exchange flow were produced with extremely smal density differences. The results shows
that initial density anomaly due to salt between the lock-gate have a strong influence on the
behavior of current.

1 INTRODUCTION

The behavior of gravity current has been investigated extensively relating to the problem
of the waste water discharge near the coast and the meteorological problem, such as the Dust
Devil and so on( e.g. Benjamin(1968)). But if the density of the current system is determined
by two properties, such as temperature and salt, large differences of the molecular diffusivities
between them might cause the vigorous convection under certain circumstances. That is,
double diffusive convection. There are very few studies about the behavior of double diffusive

gravity current(Thangam and Chen(1981), Maxworthy(1983), McDougal(1984) and Yoshida,
Nagashima and Ma(1987)).

The dynamic behavior of double diffusive current has investigated intensively by Max-
worthy(1983). By considering force balances, he obtained various relationships between the
length of current and time. The interesting point he noticed is that when the surface current
was produced by releasing the constant volume of solution on the solution which has different
properties, the surface current eventualy stops. And also he noticed that when the density
difference of two solution is very small, secondary current was induced by the vigorous double

diffusive convection, and this secondary current might have influence upon the behavior of

f
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surface main current. Yoshida et aL.(1987) conducted double diffusive lock-exchange flow

experiment with extremely small density difference, arid pointed out the possibilty of the
existence of the current by the double diffusive convection, even if the density difference is

exactly the same.
In the present study, we examine the behavior of double diffusive current both by labo-

ratory and numerical experiments. First, we noticed the double diffusively induced secondary
currents which was first noticed by Maxworthy(1983), a.nd conducted the same type of ex-
periments as Maxworthy have done, bu t with rather smaller density differences. The results
are shown in section 2. Second, focused upon the results of Yoshida et aL., the behavior of
double-diffusive lock exchange flow are examined numerically in section 3.

2 LABORATORY EXPERIMENT

We show the schematic definition of the flow field in Fig.1. In the present study we only

consider the case when salt finger convection is occurred a.t the interfa.ce. Then we discharget .P2

i-l-1-
H 5.5

i

-
pi

100
(em)

.:..~ ~~
~ Lb--

Fig.1 Schematic definition of the flow field. Pi(salt) = Po(1 + o:6.T).

Pi(sugar)=po(l + ß6S) (Po: Reference density, o:6T,ß6.S : Density
anomaly due to salt and sugar), H =Total depth. L.=:Length of
surface current. Lb=:Length of bottom secondary current.

the light suga.r water of density Pi = Po(l + ß6.S) on the slightly heavier salt solution of
density Pi = Po(1 + cx6.T). Here, Po is reference density, ß6.S and Ci6.T are density aIioma.Iy

due to sugar and salt, respectively. We changed these density anomalies and total depth If
variously and to measure the length of surface and bottom current (L.. and Lb) respectively

against time.

In Fig.2, we show the typical example of the flow field. Initially, sugar water is stored in
the left reservoir and salt water is stored in the right tank, a.nd barrier is insulted in between.
Immediately after the withdrawal of the barrier, ordinary gravity current develops on the
surface(Fig.2a). But soon after, salt finger convection develops a.t the interfa.ce(Fig.2b). This
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Fig. 2 Sequential flo\\ fields(a-f) of a typical example of double diffusive density cnrrent.
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salt finger convection develops while surface current keeps advancing, and active convective
plume fal down to the bottom of the tank(Fig.2c). As convective motion becomes active,
the thickness off the surface current becomes thinner, and some dense fluid are piled on the
bottom by falng down plume(Fig.2d). At last, secondary gravity current is formed on the
bottom and start to advance. At this time, surface current almost stops(Fig.2e). At later
stage the thickness of the bottom current increases and the surface current stays behind, but
does not stop any more. Finaly, bottom current reaches the end wal and diffusive type
interface is formed. Notice that surface current keep on advancing at this stage(fig.2f).

Typical example of the development of surface and bottom current with time are shown
in Fig.3a and Fig.3b, respectively. Intialy, surface current spreads linearly with time, but

gradualy decreases its speed and stops. At that time, the formation of the bottom secondary
current is completed and current starts to advance. The velocity of this current seems to
increase rapidly first and to decrease gradualy. It is noted that the surface current does not
keep stopping but begins to start again. This is the different phenomena that Maxworthy
observed in his experiment.

To focus upon the behavior of secondary current, we plot the velocity of current against
time for some cases(FigA). We can clearly see that there exists a maximum in the velocity
variation with time for each cases. And this velocity maxmum(Ubmax) becomes large as
density difference tip becomes smal. Äp is expressed as

tip = Pi - P2 = po(aÄT - ßÄS) = poßÄS(Rp - 1) (1 )

Here, Rp is density ratio. It is known that when Rp becomes unity, the salt finger convection
becomes active and hence vertical transport of T and S becomes large. To notice this, the
velocity maximum of the secondary current(Ubmax) are plotted against Rp - 1 in Fig.5. Ubmax

is normalized by Ý g* H, where, g* is reduced gravity defined as gtip/ p. It can be seen that

normalzed maxmum velocity becomes large as Rp becomes unity, namely as salt finger
convection becomes so active. And there exists a simple power law between them, that is,
normalzed maximum velocity varies as the power of (-4/5) of Rp - 1.

3 NUMERICAL EXPERIMENT OF DOUBLE DIFFUSIVE
LOCK-EXCHANGE FLOW

The results of laboratory experiments in section 2 indicate that the gravity current
in double diffusive system are somewhat different from those of a single component case
especially when the density difference is very small. Yoshida et al(1987) found that the current

velocity for the center lock exchange flow in the double diffusive system is much larger than

those in single component case. Moreover, the occurrence of the double diffusively induced
currents are suggested even if the density difference approaches zero. In this section, we try
to elucidate these findings in the laboratory experiments by using two-dimensional numerical

model of the heat(T) and salt(S) system.
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The governing equations are as follows:

:~ + J(ØiÜ = g(-O'Tx + ßSx) + v'V2ç (2)

aT +uaT +waT =KT'V2T (3)
at ax az
as + u as + w as= KS'V2S (4)
at ax azç = au _ aw = 'V2ø, (5)

az ax
where t is time and x, z are the horizontal and vertical co-ordinate, respectively. u, w represent
the. velocity components of x and z direction, respectively, J the Jacobian, ç the vorticity
and ø the stream function defined by

aø-=u
az

aø---w
ax - . (6)

v,I( T and K s are molecular values of viscosity, heat and salt diffusivities.

We focus on tIie fingering convection and parameterize the vertical fluxes of heat a.nd
saIt using Stern's parameterization(Stern 1967). Thus, the equation (2) is reduced to:

aT aT aT a2T ß .a2s
-a +u-a + w-a = KT-a 2 + --yR-a 2't x z x 0' Z (7)

where -y represents the density flux ratio, I( the vertical eddy diffusivity of salt. Equation
sets (2) and (4) to (7) are solved numerically by using the finite diference method.

Schematic view of the model is shown in Fig. 6. The dimension of the model tank is 50cm
long and 6em deep. Lighter hot-salty water is filled in the left half of the tank, a,nd hea.vy cold

i
6 em

1

h 0 I CO I d

Fig, 6 Schematic view of the model

for the lock excha.nge flow.

rigid rid - barrier

. . I I Y Ire. h

K 60 em ~I

fresh water in the right half. The rigid rid surface is assumed. The value of the parameters
used here are K = 10-2em2ls,KT = 10-1em2ls,v = 10-1em2ls,'Y = 0,56. We calculate
five cases of the initial density difference (L'p = 0.004,0.002,0.001,0.0005,0.0002glem3) for
different three density anomalies due to salt (ßL'S = 0.0,0.0135, OJ). Notice that v, I(T and
Ks are taken to be larger in order of magnitude than the. usual molecular values. A typical
example of numerical calculations is shown in Fig. 7. The behavior of the current shows a

triangle shape which is also found in the laboratory experiment(Yoshida et aL. 1987). The
current speed is almost constant and is larger than tha.t of single component case which is

shown in Fig. 8. From these figures, we calculate the a.clvalicIlig speed of the salt head. The

results are summarized in Fig, 9. As clearly shown in this figure, the double diffusive effect
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make faster the current speed, and the larger the ß!:S is, the faster the current speed is. Fig.
10 is the case when Âp is exactly equal to zero. The result shows that the double diffusive
effect induce the density anomaly and the occurrence of the current is clearly found.

4 SUMMARY

The behavior of double diffusively induced secondary currents are investigated in labo-

ratory experients by discharging the sugar solution on the surface of heavier salt solution.
The advancing speed of surface decreases with time and eventualy current stops, but restart
again after a while. The behavior of surface current is strongly affected by the secondary
current which is induced by the active salt fingering convection from the surface current.
There exists a maxmum of the current velocity. It is found that the maxmum velocity is
proportional to (-4/5) power of Rp - 1. The meaning of this power is rather ambiguous,

however, we are now examining the meaning of this relation more precisely by numerical
experiment.

The behavior of double diffusive lock-exchange flow is investigated numerically. The
results shows that initial density anomaly due to salt(ßÂS) between the lock-gate have a
strong influence on the behavior of current. The larger ßÂS is, the faster the current speed
becomes. Moreover, double diffusive convection induce the current even if the density differ-
ence between the lock-gate is exactly zero. All results obtained here support quantitatively
the conclusion of the laboratory experiments in Yoshida et al.(1987)
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Preface

My main purpose in presenting this paper was to inform the double diffusion
community of plans for a mixing expriment to take place in a low density
ratio regime in 1992. Hence, the text that follows is the overview of a
proposal that was submitted to the U. S. National Science Foundation in June,
1989. The funding status of this proposal is uncertain at the time of this
writing, but indications are positive that there will indeed be such an
experiment as scheduled. The results of a prototype experiment in Santa
Monica Basin are described in Ledwell et al. (1986), and in Ledwell and Watson
(1989). Further discussion of tracer release experiments, their motivation,
overall strategy, and mechanics can be found in the other publications listed
below.
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NORTH ATLANTIC TRACER RELEASE EXPERIMENT: AN OVERVIEW

by James R. Ledwell

with contributions from:
Eric Kunze, James F. Price, Rolf G. Lueck,
Barry R. Ruddick, and Raymond W. Schmitt

INTRODUCTION

This package of proposals is for a direct study of diapycnal and isopycnal
mixing in the main pycnocline of the North Atlantic. The idea of the experi-
ment is to release a conservative tracer and a cluster of neutrally buoyant
floats as near as possible to an isopycnal surface, and to measure their
dispersion over the subsequent year. The float work will be proposed by J.
Price and P. Richardson later this year (see Appendix A). Larger scale
characteristics of the environment in which the mixing takes place will be
monitored from the floats, from research vessels, and from moorings, both as
part of this experiment and as part of the Subduction Experiment to be funded
as an Accelerated Research Initiative by the Office of Naval Research (ONR).
Techniques to obtain long time series of relevant finestructure from
Richardson numer (RiNo) floats and fine structure and microstructure from a
mooring will be tried at the same time as the tracer release experiment.

The experiment will begin in the spring of 1992 in the eastern subtropical
North Atlantic. Sampling of the tracer will be performed immediately after the
injection, again in the fall of 1992, and finally in the spring of 1993.
Thus, the tracer data will yield the diapycnal diffusivity for a sumer period
and a winter period. The floats will be tracked daily and thus will yield full
trajectories for lateral mixing studies. Two RiNo floats will be deployed for
both periods, with a recovery and redeployment during the middle tracer
survey. These will yield time series of temperature gradients, salinity
gradients, and shear on 1 to 5 meter vertical scale for tracks in the tracer
patch for virtually the whole period. The fine- and microstructure mooring
will be set in the region of the patch, and will be recovered and reset during
the middle survey. It will yield temperature gradients and shears on a 5 m
scale and will be a pilot attempt to obtain long time series of temperature
variance and turbulent kinetic energy dissipation rates for the duration of
the experiment.

The Mixing Experiment and the Subduction Experiment will be coordinated
with one another for mutual benefit. A float listening array will be set up
to serve both experiments simultaneously, and float manpower, logistic, and
analysis resources can be combined for the two experiments. Large scale
hydrographic and tracer surveys encompassing the site of the Mixing Experiment
will be conducted as part of the Subduction Experiment. In particular, a full
survey is planned for summer 1992, which will provide the setting on a 1000 km
scale for our experiment. An array of surface moorings to measure air-sea
fluxes will be maintained around the mixing experiment site for the duration
of the subduction experiment, thus providing unique information on the wind
forcing accompanying the mixing we observe.
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We expect other U. S. scientists to ultimately propose studies of fine
structure and microstructure during the experiment. Michael Gregg, of the
University of Washington, plans to propose surveys with expendable current
profilers during the sampling cruises to test a relation between fine scale
shear and diapycnal mixing (Appendix C). Russ Davis of Scripps Institution of
Oceanography and Gregg are examining the feasibility of mounting temperature
microstructure probes on floats which cycle up and down through the water
colum. Such devices could give long time series of temperature variance
dissipation rates along tracks in the patch. Ray Schmitt of WHOI plans to
propose a more extensive site survey than we have included here prior to the
experiment (Appendix D). He would use a free falling profiler to provide
finestructure and microstructure data as well as CTD data. He and Gregg plan
to propose one or more other site surveys using profilers during the experi-
ment. Rolf Lueck may propose to measure microstructure using a towed body
during the sampling surveys as well. These proposals will be submitted to the
NSF or ONR Physical Oceanography Programs. The projects will enhance the
experiment in that they embody different techniques to deteDmine the diapycnal
diffusion of density and heat to be compared with the diffusivity measured by
the tracer.

Strong contributions to the experiment are expected from the international
community. Andrew Watson of the Plymouth Marine Laboratory (PML) of the
United Kingdom, and several of the PML staff, have been given a mandate to
participate in the tracer release experiment. Watson will request at least 2
months use of a British research vessel for the experiment. Barry Ruddick of
Dalhousie University and Neil Oakey of Bedford Institute of Oceanography have
proposed to the National Science and Engineering Research Council of Canada
(NSERC) to perfoDm microstructure studies and CTD surveys with a profiler
during the experiment, and to deploy a mooring which will provide a time
series of the shear and the internal wave spectrum at a location within the
tracer patch (Appendix B). Their mooring activity could be combined with
Lueck's if both proposals are successful.

BACKGROUND AND GOALS

Diapycnal mixing has long played a central role in the oceanographer's view
of the structure of the theDmocline, of the deep ocean circulation, and of the
flux of nutrients to the euphotic zone. The maintenance of the density struc-
ture in the ocean interior is governed by a balance between upwelling and
diffusion (e.g., Munk, 1966). The vertical upwelling which drives the abyssal
circulation through the vorticity balance in the theory of Stornel and Arons
(1960) implies a convergence of downward buoyancy flux, at least in places
where isopycnal surfaces do not diverge toward the poles. Gargett (1984) has
pointed out that the direction of the deep interior flow inferred from a
Stommel-Arons balance can depend sensitively on how the diapycnal diffusivity
varies with depth. Numerical modellers of the ocean circulation have often
claimed that correct parameterization of the diapycnal diffusivity is impor-
tant to their success. Bryan (1987) has shown that the meridional heat flux
in a primitive equation ocean circulation model is sensitive to the value
chosen for the diapycnal diffusivity.

In addition to these issues of circulation, the biological productivity of
oligotrophic surface waters in the open ocean may well be limited by the
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diapycnal transport of nutrients into the euphotic zone. Furthermore, the
distribution of chemical species in the ocean is affected directly by the
mixing, by the circulation driven by the mixing, and by the biology possibly
fed by the mixing. Thus, the circulation, the biology, and the chemistry of
the ocean can depend heavily on the diffusivities of heat, salt and passive
tracers, and how they vary with depth. The interaction of the ocean with the
atmosphere and biosphere in determning the earth' s climate must then also
depend on the diffusivities within the ocean.

Attempts made to measure diapycnal diffusivities for the ocean interior
were sumarized by Gargett (1984). The uncertainty remaining is enormous. It
is fair to say that we do not know the order of magnitude of diapycnal diffu-
sivities for most situations, let alone how they vary with environmental para-
meters, or under what circumstances the diffusivities for heat, salt, and
passive tracers are the same, and when they differ. The situation is such
that one good measurement in any representative ocean environment would
advance our knowledge enormously.

The primary goal of the present experiment is to obtain a measure of the
diapycnal diffusivity at one level in the pycnocline of the eastern subtro-
pical North Atlanitc, for both a sumer and a winter period. A longer term
goal is to determne the physical processes governing the observed mixing, so
that the results can be generalized to other systems. The program will there-
fore develop methods of long time-series measurements of fine structure and
microstructure from which diapycnal diffusivities may be inferred, ultimately
without the necessity of a tracer release.

Perhaps an explant ion of this last point is in order. This project may be
the first of a series of experiments to begin to explore the dependencies of
the diffusivities on environmental parameters, especially those parameters
that are likely to be the products of global observation programs and numeri-
cal models of the ocean circulation. The list of independent parameters that
might govern diapycnal mixing in the ocean interior may be quite long. It is
unlikely that it will be possible to explore the full parameter space with
tracer release experiments alone in the next generation, because the technique
is labor and ship-time intensive. It may also be that the diffusivity for the
tracer differs from those for heat and salt. This is why we must continue to
hypothesize and theorize about the physics governing the mixing, and why we
must try to develop relatively inexpensive measurements from which diffusi-
vities can be estimated via these theories.

This first experiment is a pilot experiment in a technically easy site
where we can command the resources needed for a high chance of success.
Granted that, it is of interest to look forward to how this experiment will
fit as the first of a series of mixing experiments. The most important
feature of the site in the context of diapycnal mixing is the low density
ratio, Rp, defined as the ratio of the contribution of the temperature
gradient to the negative of the contribution of the salinity gradient to the
stability:

Rp = a(aT/az + r)/(ß aS/azJ

where a is the thermal expansion coefficient, r is the adiabatic temperature
gradient, and ß is the derivative of density with respect to salinity.
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Diapycnal diffusivities, especially that of salt, are expected to be enhanced
by salt fingering for Rp ~ 2.0, a regime which prevails at our prospective
site. In this respect the site is representative of the upper pycnocline of
much of the world oceans outside of the North Pacific.

The diffusivity of the tracer should be close to that of salt, since their
molecular diffusivities are simlar, so the tracer release will give a good
estimte of the salt diffusivity. On the other hand, one of the products of
the measurements from the microstructure mooring will be an estimate of the
diffusivity for heat, and both the mooring and the RiNo floats will give
estimates of what the diffusivity of heat and salt would be if salt fingering
were negligible. If the heat diffusivity appears much less than the tracer
diffusivity, we will suspect enhancement from salt fingering.

However, since this is a pilot experiment for all of the techniques, and
since it has yet to be demonstrated that the tracer and microstructure
techniques will agree under any circumstances, this suspicion would have to be
confir.ed. For this reason, the next logical experiment to perfor. would be
at a site which is simlar to the North Atlantic site, except that it is
stable with respect to salt fingering. The upper pycnocline of the North
Pacific, below the salinity minimum, is the most likely prospect, and will
probably be proposed as the second mixing experiment within the WOCE program.
The two experiments should be viewed as a pair, and the question of whether
the diffusivities of salt and nutrients are enhanced at the North Atlantic
site should not be expected to be fully answered until both experiments are
completed.

SITE SELECTION

The experiment will take place in the eastern North Atlantic between 200N
and 30oN, and most probably between 200w and 30oW. The depth will be around
300 m, near the cre = 26.8 surface. We were led to these choices by both
scientific and practical considerations. The participation in the experiment
by Andrew Watson and the Plymouth Marine Laboratory, and the likelihood of
obtaining ship time from the United Kingdom will be much greater for the North
Atlantic than for any other ocean in the early 1990' s. The presence of the
Subduction Experiment in the Canary Basin at the same time as our experiment
means that the WHOI float group, and the float listening array will be able to
support both experiments efficiently. The Subduction Experiment and the
Mixing Experiment will also reinforce one another through mooring deployments
and hydrographic surveys, and ultimately through analysis efforts, if the
Mixing Experiment is embedded within the area of the Subduction Experiment.

The specific site and depth of the experiment will be chosen with the
following factors in mind:

1.) The overall diameter of the tracer patch anticipated after one year should
not be larger than roughly 500 km, so the patch can be well sampled;

2.) The isopycnal surface of the tracer release must slope less than 100 m in
1000 km so that the mean vertical shear is low, and so that the RiNo floats,
and other isobaric floats that may be proposed, wiii stay with the patch;
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3.) Large scale salinity gradients on the target isopycnal surface must not be
so large as to create more than a 50 m departure of an isothermal float from
the target isopycnal surface over the path of the patch;

4.) The density ratio should be less than 2.0 so that the experiment will
examine the low density ratio regime for study of salt fingering effects and
for later comparison with a diffusively stable regime;

5.) Lateral TIs intrusions must be sufficiently rare and weak that the
temperature variance dissipation can be interpreted in terms of diapycnal heat
diffusivity.

These criteria are met well in the 10° x 10° region mentioned above, and
also in the 10° x 10° region to the west, which was roughly the region of the
Beta-Triangle experiment (Arm and Stornel, 1983). In fact, previous WOCE
planning documents have mentioned the Beta-Triangle region as the likely site
for the experiment (e.g., Ledwell, 1988). However, the advantages of working
in the region of the Subduction Experiment are clear, and should be pursued if
feasible.

The Subduction Experiment is still in the proposal stage, but one tentative
mooring array is shown in Fig. 1. The moorings would be deployed for 2 years
starting in the spring of 1991, and would be serviced approximately every 8
months. The mooring cruise in sumer of 1992 would also be a hydrographic
survey of the area defined by the moorings. A sensible site for the mixing
experiment would be within the southern half of this array. We have indicated
a tentative release spot at 26. 5°N, 22°W in Fig. 1. The prevailing currents
are believed to be around 1 cm/ s to the south or southwest at this site (e. g.,
Thiele, 1986); and the lateral mesoscale eddy diffusivity in the upper pycno-
cline in the general region has been estimated to be between 500 and 2000 m2/s
(Arm and Stomrel, 1983; Jenkins, 1987; Thiele, 1986; Bauer and Siedler,
1988). With these estimates of mean advection and lateral diffusion, one
would predict the tracer patch to drift into the center of the southern
triangle in Fig. 1 after about 6 months and to fill the southern portion of
this triangle after one year. The lateral extent of the patch would not be
too large to sample with a month of ship time.

The density ratio on the cre = 26.75 surface, calculated from the data of
Levitus (1982) by R. Schmtt (personal communication) is shown in Fig. 2,
where the tentative release site is again indicated. Given the anticipated
velocities and diffusion, the tracer patch will most likely remain within the
region of Rp = 1.8 contour for the duration of the experiment. Preliminary
examination of CTD casts from the transect at 24~ during Atlantis Cruise 109
and the transect along the axis of the Canary Basin during Oceanus Cruise 202
indicate that the other criteria listed above will be met between 22°N and
28°N, and between cre = 26.7 and 26.9, i.e., between about 250 and 350 m deep,
in the region of the Subduction Experiment. Data presented by Bauer and
Siedler (1988) also show that pressure and salinity variations on these
density surfaces at 270W in the same latitude range, and at 27. SON right
across the region, are well within the specified limits.

Figure 3 shows a typical CTD profile from the near the center of the region
we expect the patch to occupy. It is clear from the CTD data that the density
ratio typically increases to values at or above 2.0 more than 50 m below this
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level. On the other hand, even lower density ratios can be obtained by going
higher. The disadvantages of this though, are that the variations of pressure
and salinity on isopycnal surfaces increase, and lateral spreading is likely
to increase. On the other hand, advantages of a shallower depth are that the
experiment would be more directly relevant to nutrient fluxes, tow speeds
would be greater, and accessibility to ship-based acoustic doppler current
profiling (ADCP) would be greater. Existing hydrographic data will have to be
studied further and all these considerations weighed in the coming year before
making a final decision on the site and depth.

EXPERIMENTAL PLAN

The purpose of this section is to give an overview of operations for the
four components of the experiment, especially as they affect ship use. For
details about the field activities and the techniques to be employed for each
component, please see the individual proposals.

A site survey, float and tracer release, and mooring setting will be per-
formed in late spring, 1992, with two cruises of about 3 weeks duration each
(see Table i for a cruise schedule). The injection and initial sampling of
the tracer patch must be performed from different ships to avoid contamination
of the tracer sampling and analysis systems. The injection ship will carry
the tracking floats as well as the injection equipment. The sampling ship,
carrying the microstructure mooring and the RiNo floats, will arrive on site
during the injection, and personnel will be transferred at sea between the two
ships at the end of the injection phase. The minimum schedule to accomplish
the work proposed in this package is shown in Table 2. The schedule for both
ships can be lengthened to accomodate additional projects. The ships being
requested for the operations are R/v Oceanus and either the RRS Darwin or RRS
Discovery.

Site survey

A 5 day site survey will be performed prior to the injection by the injec-
tion ship. A 150 kI square region, centered on the prospective site, will be
sampled with a square grid spacing of 30 kI (Fig. 4). The purpose of this
survey is to provide the hydrographic setting of the injection on the eddy
scale and to help chose the ultimate site of the release. The specific site
for the release may be changed on the basis of this survey, if the original
one is perturbed by a strong eddy, or TIS intrusion. A sixth day will be
spent surveying the final site to characterize it well.

This is the minimum survey required to avoid performing the release in an
awkward spot, such as in a strong eddy. Ray Schmitt plans to propose at a
later date a more extensive site survey of a 500 kI square area which would
require a separate cruise of approximately 3 weeks duration just prior to the
injection cruise (Appendix D). He would use the WHOI High Resolution Profiler
(Schmitt et al., 1988) as an enhanced CTD, thus obtaining a survey of the
small scale physics in the region of the experiment just before injection,
including temperature variance and kinetic energy dissipation rates, and fine
scale Richardson numer, density ratio and overturn statistics. Such a cruise
would also give a survey of the full mesoscale environment of the mixing
experiment, from which it will be possible to make independent estimates of
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mixing parameters from conventional hydrographic data. This will enhance the
mixing experiment as a test of more conventional techniques.

Float System

Fifteen SOFAR floats will be deployed with the tracer to track the patch
and to measure lateral mixing parameters for the site. These floats will be
tracked by an array of moored listening stations which will be deployed as
part of the Subduction Experiment. However, since real time tracking is
crucial to the tracer experiment, the injection and sampling ships will be
equipped with deep hydrophones for shipboard listening, and 3 freely drifting
tracking buoys will be deployed during the cruises. The floats, which are
called Bobbers, are a modified version of SOFAR floats, having active ballas-
ting to home within O. 02°C (less than 2 m in the mean gradient) of the tempe-
rature of the target isopycnal surface. They will cycle once per day to
measure the layer thickness between 2 preset temperatures, about 25 m above
and below the target surface. These gradient data may substantially reduce
the uncertainty in the diapycnal diffusivity by keeping track of convergence
of water into the area of the patch.

The floats will also be equipped with an high frequency beacon (10 - 12
kHz) to track the floats from the ship with an accuracy of 100 m or so during
the initial stages of the tracer injection and sampling. (The accuracy achie-
vable with the SaFAR system is limited to about 5 km.) It will be worth while
to recover the floats at the end of the Mixing Experiment, since the sampling
ship will be in their vicinity, since the floats are relatively expensive, and
since after one year of use they will still have at least a year of useful
life left. The high frequency beacon will expedite their rapid recovery.
Since tracking of the tracer patch is so crucial to this experiment, a backup
system of simple isobaric floats that would pop up and relay their positions
via satellite at the time of the sampling surveys is also proposed.

Deployment, Sampling, and Recovery Operations

Tracer and Float Release. A series of 6 streaks will be injected in a 20
km square box pattern, as shown in Fig. 5, and the Bobber floats will be
released along the tracks. Ten days are required for this phase.

Backqround samplinq, Microst ructure Moorinq and RiNo float deployment.
About 5 days into the injection phase, the sampling ship will arrive to sample
the background level of SF6 in the general area surrounding the tracer patch
(Fig. 4). During this survey, the microstructure mooring will be deployed in
the release area. When the background survey is completed, the sampling ship
will enter the area of the injection and release the RiNo floats, having
performed temperature calibrations and ballasting adjustments. Subsequent to
deployment, several CTD casts will be performed near the floats for in situ
calibration. Five days of ship time will be required for the background
survey, mooring deployment, and RiNo deployment.

~
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Personnel Transfer. The injection and the RiNo deployments will end at
about the same time, after which personnel will be exchanged between the two
ships. Tracer and float people will go over to the sampling ship to carry out
the initial sampling cruise, while mooring people, RiNo people, and extra
hands can board the injection ship and return to port.
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Initial samplinq. The locations of the Bobber floats, available once or
twice a day, will guide the sampling ship to document the initial distribution
of the tracer. A vertical array of integrating samplers will be towed through
the patch, as located by the float positions. This sampling phase will last 8
days, during which we plan to perform at least 25 sampling tows for a total
path length of at least 150 kr, which should be enough to cover the patch.

Middle Sarnlinq Cruise. A second sampling cruise will be carried out in
October, 1992, guided by the float positions. An overall continuous sampling
track length of 1500 kr can be achieved with the integrating samplers in 28
days. This should be sufficient to sample the tracer patch well. The RiNo
floats and the microstructure mooring will be recovered, serviced, and
redeployed during this cruise. The length of this cruise will be about 35
days.

Final Sarnlinq Cruise. The final survey will be performed in late spring,
1993. An overall sampling track length of 3000 kr, this time with about 50%
gaps, will be executed to obtain the wider coverage needed at this time. The
RiNo float, the microstructure mooring, and as many of the Bobber floats as is
economical, will be recovered in the course of sampling the patch. At 6
hours per float, plus the mooring, recovery will take 5 ship days. The length
of this cruise will be about 42 days, perhaps on Darwin or Discovery.

PLANING AN COORDINATION

The coordination of the experiment will be led by J. Ledwell, with contin-
ual input from the other participants. As much as possible will be done by
telecommunications, but meetings will be held each winter for the following
purposes:

1.) plan the core of the Mixing Experiment, proposed here;
2.) coordinate the Mixing Experiment with the Subdùction Experiment;
3.) coordinate with international components;
4.) coordinate new U. S. components;
5.) facilitate data sharing and analysis, and publish results;
6.) consider the next mixing experiment.

The meeting in 1990 will start with about 15 participants, but we anticipate
that the numer of participants will naturally increase to about 25 by 1994.
The length of the meetings will also grow, from 3 days initially to 5 days in
the last two years, when there will be data to discuss, as well as plans to
make. The most convenient place to have the meetings would be in Cambridge,
Mass., as this is a short trip for the many participants at Woods Hole,
Lamont, Baltimore, and Halifax, and an equally long trip from the west coast
and the United Kingdom. Funding for the meetings is requested in the Lamont
proposal.
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Table 1. Cruise Calendar

Time Activity No. of Days

Summer 1990 Tests 5
Summer 1991 Tests 5

May-June, 1992 Survey, Injection, Bobber release 23
May-June, 1992 Deploy RiNo & Mooring, First Sampling 21

Oct., 1992 Middle sampling, recover mooring, redeploy RiNo 35
May-June, 1993 Final sampling, Bobber & RiNo recovery 42

Table 2. Cruise Schedule for Injection Cruise and First Sampling Cruise

da Injection Shio
1

2 Transit
3
4
5
6 Site survey

7
8
9

1 0 Samplino Shio
1 1

1 2 Transit
1 3
14 Injection an Background survey
15 Bobb Releas & Set mooring
1 6

1 7
1 8 RiNo float
1 9
20 Transfer Transfer
21
22 Transit
23
24 Sample
25
26
27
28
29
3 a Transit..
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Fig. 1. Prospective site for tracer and float release. The mooring
positions shown represent the tentative plan for the Subduction
Experiment (still in proposal stage). These moorings would be deployed
from the spring of 1991 until the spring of 1993. A release site has
been tentatively chosen at 26 .5~, 22OW, about 150 km north of the
southern Air-Sea Flux mooring to be deployed by WHOI as part of the
Subduction Experiment. The depth of the release would be about 300 m,
at the cre = 26.8 surface. The mean velocity at this site is believed to
be about 1.0 cml s to the south or southwest. At this speed, the center
of mass of the patch would be at the mooring after about 6 months.
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Fig. 2. Contours of the density ratio on the cre = 26.75 surface for the
North Atlantic, calculated from the data of Levitus (1982). Salt
fingering is expected at values below 2.0. The site indicated in Fig. 1
for the tracer release is shown as a cross, within the Rp = 1.8 contour.
This figure was adapted from one provided by R. Schmtt, of WHor.
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interspersed with the tracer injection, and the RiNo floats
released from the sampling ship.
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Research Prospects in Oceanic Double Diffusion

The following sections on salt figers, diffusive convection and intrusions represent
summares of topics raised durng three discussion sessions at the meeting.

SALT FINGERS

Evidence for the occurence of salt figers can be found in a wide variety of situa-
tions: the dramatic staircases of C-SALT, the thermohalne intruions found in al oceans,
and the subtle near-surace salt fountains reported by Osborn. Since vast regions of the
Central Waters may support figenng (95% of the upper kilometer of the Atlantic at 24°N
is finger favorable), and the differing heat and salt transports have first order effects on
thermocline structure, advancing our understanding of this ubiquitous mixing process is
mandatory for the improvement of ocean models.

A vaety of observational, experimental and modeling opportunities can be readily
identified. If we separate these by scale, we can discuss research problems in each area.

Microstruct ure

One of the important outcomes of C-SALT was the realization that small dissipa-
tion rates (€) are not indicative of weak mixing as is the cas in stratified turbulence. That
is, relatively high vertical diffusivities can be obtained because the dissipation is a small
term in the energy budget compared to the potential energy exchange between the salt
and heat fields. Additional problems may arse from the techniques used to estimate the
dissipation within an interface. Because fingers are driven by very small-scale salt anoma-
lies, the spectrum of the honzontal shear of the vertical velocity carries more energy at
higher wavenumbers than the temperature gradient spectrum. This is completely opposite
ordinary turbulence and we must be concerned that probe resolution and data analysis
techniques are capable of taking proper account of the difference. Progress has been made
in using spectral slope and kurtosis characteristics of temperature microstructure to dis-
tinguish salt fingers from turbulence. It would also be helpful to develop sensors for the
measurement of the salinity dissipation spectrum. The structure seen by the C-SALT
optical shadowgraph was roughly an order of magnitude smaller than that sensed by the
temperature probes; small-scale salinity varations are the probable cause. Fiber optic

refractometers may have the potential to make measurements of the smallest scales of salt
variation. This is important because quite often it is the salt (or tracer) diffusivity that is
of primary concern. The ability to accurately monitor temperature and salinity dissipation
spectra would be very valuable in distinguishing turbulence from double diffusion. Such
techniques may also be applicable to a broader range of platforms, since scalar measure-
ments are not as vibration sensitive as shear probes. Development of acoustic or optical
holographic instruments or dye techniques would be helpful in visualizing t.he morphology
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of llcrostructure. Indeed, simply utilizing existing shadowgraph technology in a variety
of oceaic environments would be a worthwhile contribution.

Laboratory experiments on salt figers can stil provide much useftÙ information,
as evidenced by the recent work of John Taylor. Studies of how fingers interact with shear

wotÙd be paricularly valuable in light of the apparent disparty between the shadowgraph
observations from C-SALT and the original laboratory work of Linden (1974). There
continues to be a need to establish fluxes across salt figer interfaces at low density ratio.
The earlier "run-down" experiments were certainly afected to a significant degree by time
dependence. Can a steady figer interface be realized using porous plates or osmotic
membranes at the top and bottom of the tank to establish constant fluxes and constant T
and S differences? In addition, laboratory experiments could help us to understand how
internal waves interact with a salt finger interface. The vaying interface thickness seen
in C-SALT suggests that the interfaces are local wave guides. Is there coupling between
those waves and convection in the layers?

Analytic and numerical modeling wil continue to provide valuable insight to salt
finger dynamcs. Two dimensional numerical simulations have recently enhanced our un-
derstanding of figer spectra and the flux ratio as well as finger splitting and merging
(Shen). Yet to be accomplished is the simulation of a steady finger interface interacting
with adjacent deep convecting layers. This presents a formidable computational challenge,
especially at realstic Prandtl and Lewis numbers, because of the diffculty of resolving
the smallest scales of salinity vaation. Three dimensional simulations are even more de-
manding of computer resources, and it is likely to be some years before problems involving
the multiscale interaction of fingers with convecting layers can be attacked numerically.
Analytic models which utilize stability arguments (Kunze) wil continue to be helpfuL.

Finestruct ure

Many mysteries remain with regard to the most prollnent form of salt-finger in-
duced fiestructure, the thermohaline staircase. As yet we have no convincing theories for

the scale of the layers, how they are formed and maintained in the presence of internal
waves and how they maintain lateral coherence over great distances in the presence of eddy
stirring. There is evidence that the internal wave field is suppressed in the steps (Gregg,
1989) - how does this occur? The horizontal changes in layer properties are occasion-
ally concentrated at intrusive fronts - do these intrusions help to maintain the lateral
coherence? What are the sizes and structure of the intrusions? Do other staircases display
lateral coherence and property changes like the C-SALT steps?

I;

In raising such questions we must consider whether we have adequate observational
tools. Obviously, much more could be done with existing profiling technology; the amount
of data obtained within staircases is stil quite small. Conventional CTD surveys can
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certainly be of help, but it is also clear that modern towed chains (Marorino, Mack) and
Sea SoarjBatfish type instruments can provide increased resolution and/or greater survey
speed. Neutrally buoyant floats, especially those equipped with instrumentation to measure
local density and velocity gradients (the RiNo of Kunze, Wiliams and Briscoe, 1990) could
be valuable in developing an understanding of the temporal evolution of steps. The step
systems have a unique saw tooth structure in the vertical profile of sound speed with
multiple local minima. This must have dramatic effects on horizontal sound propagation.
Can acoustic propagation characteristics be used as a staircase monitoring tool? The tracer
release techniques of Ledwell are also of great potential for establishing the mixing rate in

a staircase. In fact, since the layers are so well defined and mixing rates expected to be
high, fluorescent dyes could work well in relatively short term deployments. Monitoring
the spread of a tracer or dye from layer to layer would be an unambiguous measure of
mixing rate, not dependent on specific models for interpretation.

In addition to furthering our understanding of the staircases in low density ratio
regions, we must address the problem of widespread figering in the Central Waters. There

is good evidence that a modest background field of salt fingers is nearly always present.
It is modulated by internal wave strains and inertial wave shears; both can vary the
intensity of the local vertical salt gradient (Schmitt et ai, 1989). Given their high duty
cycle and high effciency and rapid growth after turbulence (Taylor), fingers could easily
be as important or more important a mixing agent as shear instability (with low duty cycle
and low effciency) over vat regions of the main thermocline (Schmitt, 1990). One very
promising approach to this problem is the tracer release experiment planned for the North
Atlantic (Ledwell). The spread of the tracer itself wil indicate the rate of mixing, and the
fine- and microstructure measurements to be obtained from moorings, floats and profilers
wil be key to distinguishing the relative contributions of fingers and shear instability. Also
useful (though challenging) would be theoretical and modeling studies of a stratified fluid
with both salt fingers and internal waves present. Towed chains of microstructure sensors
could provide a means of sampling significant portions of the main thermocline for t.he
signatures of salt fingers. It is not unreasonable t.o consider surveying wide area.s of the

Central Waters with towed instrumentation for the detection of salt fingers.

Large scale

Many interesting questions arise with regard to larger scale ocean structure once the
possibility of unequal heat and salt mixing rates is considered. Fingers transport salt at a
greater rate than heat. Unless it is compensated for by differential advection or part.icular
surface fluxes, this has the direct effect of increasing the slope of the T - S relat.ion.
or increasing Rp. In the Central Waters Rp is remarkably constant; is it ventilation or
shear which balances the finger flux in maintaining the Rp structure? (Schmit.t, 1990).
Parameterizations of salt finger mixing must be incorporated into large scale numerical
models in order to develop a realistic thermohaline circulation. In situat.ions where t.he
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finger flux is dominant, the resulting unstable buoyancy flux can drive dynamcal effects
(Posmentier and Kirwan, 1985). Very little has been done to develop an understanding
of how double diffusion afects oceanic thermohalne structure and global scale heat and
freshwater cycles, issues raised years ago by Stem (1969, 1975). For instance, salt figers
may help to explain how the subtropical thermocline remains stable despite significant
regions of unstable buoyancy flux due to evaporation (Schmitt, Bogden and Dorman,
1989).
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Discussion Session on Diffusive Thermohaline Convection

Bar Ruddick
Deparent of Oceanography

Dalousie University
Halifax, N.S., B3H 411, Canada

The science session on diffusive convection was rather small, with only three
speakers. Joe Fernando described laboratory experiments on mixing and entrainment in.a
diffusive strtification heated from below. He modelled the process by assuming that at
high Rayleigh numbers (based on layer thickness), the tlckness of the layers is determed
by a balance between vertcal kinetic energy of the turbulent eddies and the potential energy
of the strtification. Joe claims that the parameterization obtaied on this basis gives good
agreement with oceanic data. Ruby Krshnamurty described some extremely careful and
lengthy experiments in which thermal and saline boundar conditions were imposed at the
top and bottom of a smal ta, slowly altered until a single finite-amplitude convection cell
was established, and then reduced below the (linear) critical values to see at what point the
convection stopped. Laurie Padman showed us observations of thermohaline layering in
the Arctic, which appear to agree well with predictions from analytical and laboratory
models. He showed us evidence that internal wave interactions with the staircase strcture
can be important in setting coherence scales for layers, and enhancing vertical fluxes.
These presentations are summarsed in more deta in this volume.

The basic questions for double-diffusing oceanogrphers revolve around predicting
the fluxes in a given situation, and in knowing how the fluxes wil change as environmental
parameters change. Paradoxically, I think there has been less work in this area because we
have an increased understadig of the role of difusive convection in the ocean:

-We now have an empirical understanding of diffusive fluxes in situations where
layering is observable, since the laboratory formulae for diffusive interface fluxes
have been verified in-situ over a broad range of density ratios (Larson and Gregg,
1983, Osborn, 1988, Padman and Dilon, 1987). In addition, there are two current
theoretical models of the diffusive interface available to be comparatively tested
against available observations: Kelley, 1989, and Fernando, 1989a,b.

-The dependence of the diffusive flux on .0S and .0 T can be recast as a dependence
on layer thickness H and large-scale gradients. Thus we could parameterize the
flux in terms of large-scale properties if only we could parameterize H in such
terms. We have an empirical understanding of the thickness of convecting layers
due to the dimensional reasoning and comparson with observations put forth by
Kelley (1984). In this important paper, Kelley postulated that H is a function of
buoyancy frequency N, density ratio Rp, and fluid properties viscosity v, thermal
conductivity K', and saline conductivity KS. He then found that, in situations
where layers were observed, the diffusive layer thickness scales as (v IN) 1/2 with

primar dependence on the density ratio: H(N/V) 1/2 = G(Rp). While Fedorov
(1988) reported very close agreement between his layer-scale data and Kelley's G-
scaling, Muench, Fernando and Stegen (1989) concluded that it failed in parts of a
staircase in the Weddell Sea. A more detailed study of the applicability of the
scaling is now clearly in order. Are there specific conditions under which the
Kelley scaling fails? How is the scaling affected by background shear or

turbulence? Presumably the inverse Froude number or E/VN2 are relevant additional
dimensionless parameters.
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The laboratory formulae have led to small flux estimates in most situations, and the
rather pessimistic view that layers are only observed when nothing else is going on (i.e.,
when other process which might disrupt or dominate the layering are absent). But this
leads to an important set of questions which demand that we understand the interactions
between diffusive convection and the other small-scale oceanic processes: turbulence,
shear, and internal waves. A zero-order hypothesis which could be tested by quantitative
laboratory experiments is: "turbulent fluxes are not altered by the presence of double-
diffusive stratification, even for low intensity (e/vN2OC15) turbulence". Some more
qualitative questions which come to nud are:

-Are layers of the thickness predicted by Kelley's (1984) G(Rp) curve always
observed? When no layers are observed, why not? Does the lack of layers mean
that fluxes are greater or less than the formulation proposed by Kelley?
-What is required to form layers from a smooth gradient? Imposed fluxes?
Lowered density ratio? Shear? Internal waves? Lateral T-S gradients? Which
processes are most effective in fonng layers?
-How are previously formed layers and the diffusive fluxes affected by shear,
turbulence, or internal waves?

Interaction of internal waves and steady shear with double-diffusive convection
seems to be a topic ripe for exploration. Laure Padran described a first-order model for
the interaction of internal waves with the density finestrcture of diffusive layering, in
which the wave energy fluxes (energy and momentum) are strongly decreased by the
dissipation in the convecting layers. The energy exchange from the wave field to the
turbulent convection can drve increased turbulent mixing, and lead to a change in sign of
the buoyancy flux. Mike Gregg and Tom Sanford's observations of internal wave shear in
C-SALT (this volume) showed decreased wave energy levels inside the layered region
compared with the outside. Mike also recalled an experiment described by Steve Hurdis at
the 1983 Santa Barbara conference on double diffusion, in which a varicose interfacial
internal wave was found to undergo greatly enhanced dissipation in the presence of salt
fingering. Ruddick (1985) descrbed an experiment in which a standing interfacial internal
wave was allowed to decay. Enhanced wave decay was found for both fingering and
diffusive sense stratifications, falsely attrbuted to interfacial stress, but later attrbuted by
Ruddick et al (1989) to enhanced eddy viscosity in the convecting mixed layers. This is in
accord with Padman's description of wave-microstructure interactions described above.
Ruddick et al (1989) used a rotating annular tank to measure the interfacial stress across a
sheared convecting interface, and found the stresses to be quite weak, consistent with 0(1)
Prandtl number. Ruby Krishnamurti described experiments in progress in which an
annular tank with a Kato and Phillps-type grd is used to study the interaction between
vertical shear and diffusive convection. All of these results point to the need for a
comprehensive set of laboratory experiments in which internal waves are propagated
through a stratification consisting of several convecting interfaces, both finger and
diffusive. The effect of the convection on the waves, and the effect of the waves on the
convective layer strcture and the fluxes should be observed.

Are run-down experiments the wrong way to mimic ocean processes? Perhaps
fluxes should be imposed, and the evolution of the gradients and layer structure should be
observed. The experimental setup described by Ruby Krshnamurti is suitable for such
experiments, but would need to be much larger.

Laurie Padran closed off the discussion by noting that it should now be possible to
perform a valuable field experiment in a region such as Lake Yanda, where the situation is
simple enough to be completely understandable, but active enough to be relevant. Modern
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instrmentation could be used to measure the suite of basic turbulence quantities, assess
microscale isotropy, and measure the background shears. Surace fluxes could be easily
monitored, as well as chemical measurements of geothermal source waters. As in C-

SALT, it would be wise to precede the experiment with careful mesoscale sureys to
determne how one-dmensional the situation is, in case lateral inhomogeneity of sources
cause latera ciulation strctues that may be linked with the observed layerig.
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THERMOHALINE INTRUSIONS
Thermohaline intrusions are found in al oceans and are particularly likely near

fronts, eddies and rings. Recent observations in the tropical Pacific indicate that cross-
equatorial intrusions with extraordinarly long spatial scales (hundreds of kilometers) may
occur. It sems certain that they are a primary conduit for transfer of thermal and saln-
ity varance from the mesoscale to the fiescale, and thus have global significance. We

need to be able to parameterize their effects on horizontal and vertical fluxes of heat and
salt. However, effective modeling wil require improved understanding of the figering and
diffusive processes themselves, as well as how they interact in intrusion evolution.

A number of different questions arse with respect to intrusion dynamics. For in-
stance, what limits the amplitude of the intrusion? Is it a balance between the strength
of the finger and diffusive interfaces? How important is friction and eddy straining? How
do internal waves afect their evolution? Similarly, we can identify key questions for mod-
elling their effects on larger scales: How can they best be parameterised on the mesoscale
(Joyce, 1977)? How do we take account of the dynamical effects of the up-gradient density
fluxes (Posmentier and Kirwan, 1985)? How do we interpret the global effect of intrusion
migration across density surfaces (Garrett, 1982)?

Since the microscale measurement challenges of fingers and diffusive interfaces have
been addressed before, we wil focus on theoretical and observational approaches to the
intrusion problem, rather than different scales.

Theory /Modelling

Theoretical work on intrusions has been done with linear stability models (Stern,
1967; Toole and Georgi, 1981; McDougall, 1986a) and slab models (Posmentier and Hi-
bbard, 1982; McDougall, 1986b). Generally, a simple eddy diffusivity or layer to layer
exchange coeffcient is specified to model the double-diffusive transfers. However, it should
now be possible to develop more realistic models based on flux parametizations of Kunze
(1987) (figers) and Kelly (1990) (diffusive interfaces). The dependence of mixing intensity
on density ratio could be incorporated into models which calculate the effect of vertical
shear on the evolution of Rp (Schmitt, 1990), which is a first order effect in intrusions.
Very little has been done to develop numerical models of fiescale ocean intrusions, and it
seems an area ripe for progress. The recent discovery of very large scale intrusions span-
ning the equatorial Pacific (Richards and Pollard, in press) has led to an extension of the
linear stability analysis to the beta plane (Richards, in press). Do these intrusions make a
significant contribution to cross equatorial fluxes?
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Observations

Since thermohalne fronts are nearly always density fronts as well, most intrusion
observations have taken place in areas of strong dynamcal activity. This poses formdable
sampling problems for ship-board work, because features are advected and modified by
vertica sheas on time-scales short compared to ship survey times with CTD "tow-yos"
etc. (Schmitt, Lueck and Joyce, 1985). However, high speed towed bodies (Batfish, Sea-
Soar) are becoming more widely avalable for rapid fiescale surveying. Also, Lagrangian
floats which monitor local shear and density gradients (Kunze, Williams and Briscoe,
1990) would seem to offer new possibilities for studying the evolution of the intrusions.
Such a float could monitor local conditions and serve as a water tag for the deployment of
dropsondes. Similarly, the use of fluorescent dyes or trace chemicals (Ledwell, this volume)
would seem to offer the opportunity to study the actual fate of water within intrusions,
helping to determine the along front, across front and vertical transfer rates. Thus, a fine-
and microscale field program focused on intrusion dynamcs could be readily justified.
Also, statistics on the global occurrence of intrusions would be well worth developing.
Large field programs such as WOCE should make quality CTD data from all over the
world ocean more readily avalable for such analysis.
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