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Abstract:

A group of amplitude and frequency modulated signals which generate narrow synthesized pulses

and which also have smoothly varying phase are described. The frequency-sweep (chirp) signals

have exactly-defined frequency content and differentiable phase. These signals can be used with eff-

cient resonant transducers, if the resonant frequency is adjustable, and they have adequate Doppler

response for use with drifting apparatus.
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1. Introduction

In the 1980's and early 1990's ocean acoustic tomography experiments, which use pulse travel-

time measurements to create sound-speed maps, have used phase modulation pulse compression

techniques (lJ. A carrier was phase modulated with special pseudorandom codes (M-sequences),

which have single-spike, two-valued autocorrelation functions. After reception, cross-correlation of

the signals with the transmitted signal (matched fitering) yielded high travel-time resolution. The

only shortcoming of this technique, which is optimized in numerous ways (2), is that transducers

in general can not make instantaneous phase transitions, so that only approximations to the ideal

signals are actualy possible. Since the ideal M-sequence signals can not possibly be transmitted, we

evaluate the performance ofless optimal pulse compression techniques which can be more accurately

transferred from theory to experiment. In particular, we wil show properties of linear frequency

sweep signals, amplitude modulated with smooth functions, which we cal AM-FM signals.

2. Spectra of Synthetic Pulse Signals

The power spectrum of the transmitted signal is fundamentaly related to the achievable time

resolution. The optimal temporal response, the delta function, corresponds to a signal with a

uniform power spectrum. The M-sequence signals, which have specific digit lengths corresponding

to a smal number of carrier cycles, have sinc2 power spectra, the same spectra as rectangular pulses

(digital pulses, in a sense). Figure 1 shows the power spectra of M-sequence phase-modulated

signals, with two modulation angles. The power spectra are the sums of the sinc2 spectrum and

the line spectrum of the carrier. In the pulse-synthesis scheme, the correlation process (in the time

domain) can be treated in the frequency domain as multiplication of the received signal spectrum

and the complex conjugate of the transmitted signal, so that the matched-fiter outputs are equal

to Fourier transforms of squares of the transmitted signal spectrum. For the M-sequence example,

the sinc4 spectral product of the fitering procedure yields a triangular matched fiter output. A

residual mean level results from the carrier energy and is a function of the modulation angle.
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Figure 2a shows the spectrum of an M-sequence code with a shorter 3-cycle digit, with better

temporal resolution that the 4-cyclej digi t codes of Fig. 1. Figure 2b shows the spectrum of a

tenth-order butterworth bandpassed version of the same signal, simulating the filtering effect of a

transducer. After matched-filter processing, the synthetic output pulse is widened for the filtered

version of the signal, as expected (Figure 3). Side lobes also result from the limited bandwidth.

Examples of this effect can be seen in experimental data.

Figure 4 shows a time-lagged autocovariancc function of a sharp-processed M-sequence signal

from the Slice89 Experiment ¡3j. The sharp-processing matched-filter ¡4J, utilized for speed, gives a

boxcar output, instead of a triangle, so that a.n auto-correlation of the ideal synthetic pulse would

yield the indicated triangle, similar to the true matched filter. The similarity of Figures 3 and 4

is due in part to the limited bandwidth of the Slice89 transmission, and in part to the lOOO-km

propagation.

Because the M-sequences have the optimum time resolution of any codes, they have the most

energetic sidelobes and therefore are least-faithfully reproduced by apparatus. The truncation of the

sidelobes arises from the inability of the transducer to make instantaneous phase transitions, and

limits the usefulness of the optimal codes. Two diffculties also arise from ,use of the M-sequences.

One is the requirement of low Q, non resonant transducers, with no potential for efficiency gain

through resonance. The second diffculty is the extreme sensitivity of the M-sequence to Doppler

shifts.

Since the ideal nature of the M-sequences cannot be utilized due to limited bandwidths, the

other two sacrifices seem a high price to pay for their use. We investigate here a class of amplitude

and frequency modulated signals which do not force these sacrifices. The essential idea is that one

does not attempt to transmit the sidelobes, but tapers the frequency content such that the temporal

response is improved ¡.5j. The price one pays, through amplitude modulation, is the lower total

power in the signals, so that more time is required to achieve the same gain. This is an important

consideration in a rapidly fluctuating ocean environment.
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Figure 1. These are power spectrum of M-sequence phase modulated signals with 1023 digits and

4 cycles of a 250 Hz carrier per digit. Frame (a) shows the smooth sine squared envelope one gets

if the modulation angle is tan-1Cv(1023)), about 88.2 degrees, while (b) shows the result for 86

degree modulation. The extra carrier wil produce a DC component in the matched filter.
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Figure 2. Power spectra of unfiltered (a) and fitered (b) verSlOns of a phase-modulated, 3 cy-

de/digit, 250 Hz carrier M-sequence signal. A tenth-order bandpass butterworth filter is employed.
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Figure 3. Shown are one-half side of the matched filter outputs for the ideal and filtered M-sequence

phase-modulated signals, whose spectra are seen in Figure 2. The truncation of frequencies gives

the side-peaks.
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3. Spectral Control using Ampliude Modulation

Since frequency is the time derivative of phase, analytic descriptions of phase conveniently

describe frequency modulation. This makes for a more compact signal description than for the

M-sequences. We concentrate on linear frequency-sweep signals, with phase following the square of

time (plus an additional term concerning the center frequency):

s( t) = A( t)ei8(t)
bt2B(t) = "2 + wot

Amplitude modulation over time can be used to precisely control frequency content, since frequency

is a function of time (J(t) = bt + wo). The spectral density follows the inverse formula S(J) =

A(g(J)), where g(J) = (J - wo)/b is the inverse function of f(t). Since 9 is a linear function of

frequency, the spectral density S(J) follows the form A(t), with scalng.

We wil use the spectral estimation tapers for A, since they wil have the desired frequency con-

tent and wil reduce the matched-fiter sidelobes (6). The fist example is cosine-taper modulation,

A(t) = cosn(t). The case n = 2 is also caled the Hanning taper. In the absence of noise or Doppler

shifts, the frequency rate-of-change b (or the total transmission time) is not important, only the

total range offrequencies. A 120-Hz band is used, like that ofthe M-sequence example (Figure 2b).

Figure 5 shows synthetic pulse shapes (match-filter) for n = 1,2,3, and for boxcar modulation, A(t)

fied over the transmission duration (Le. fied over frequency). Since different tapers result in dif-

ferent transmitted power, match-filter outputs are normalzed by transmitted power. The matched

fitering involves the squaring of the frequency response S(J), so that the n = 1 modulation scheme

gives a pulse shape equal to the transform of the Hanning window (n = 2), and so on. This has no

effect for the boxcar, so that the boxcar produces a sinc2 pulse.

The boxcar produces the narrowest peak and the highest sidelobes, as expected. The distri-

bution of energy over the avaiable band gives the narrowness of the peak, but the sharp cutoff

produces the ringing effect. The cosinen tapers reduce the sidelobes, but broaden the peak con-

siderably. The cosine windows are often used since they are simple analytic forms, and do reduce
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sidelobeleakage, but they are not optimaL. There are many window families which reduce sidelobes

with less widening of the main lobe.

The functions which have the highest ratio of main-lobe to side-lobe energy, for a given peak

width, are the prolate spheroidal functions ¡6,7). For convenience we consider the slightly less

optimal Chebyshev tapers, which are available in the MATLAB signal-processing software pack-

age. That program wil calculate Chebyshev tapers with any desired sidelobe level ¡8). To create

synthetic pulses with the known sidelobe characteristics of the Chebyshev windows, one can use

amplitude functions A(t) following the square-root of Chebyshev windows. Figure 6 shows syn-

thetic pulse (matched-filter) output for seven Chebyshev windows with maximum sidelobes of -14

to -32 dB. These maximum sidelobes are roughly equivalent to the noise level for 1000 km ocean

transmission with typical radiators and 2-minute codes. The main lobes are not quite as narrow

as the ideal M-sequence (Fig. 3) or the boxcar transmission (Fig. 5), but are similar to the de-

graded M-sequence (Fig. 3). Therefore, careful choice of amplitude modulation can reproduce the

performance of the M-sequences with less signal complexity.

4. Doppler Response

IT there exists a non-zero relative velocity between source and receiver, a received signal wil

appear as though it were received with a compressed or stretched time scale, relative to the zero-

velocity case. For smal velocity, a good approximation to the total length of the reception is

Td = T¡l- vie)

where e the wave speed, v 0( 0( e is the relative closing velocity, and T the duration of the trans-

mission. In the cw case, since the same number of waves is receivë'â as transmitted, it is clear that

the frequency shift is near

Wd = w¡i + vie)

The effect on signal coherence is clear if one considers the difference between set - vtle) and set).

At the total duration T, the signal mismatch is maxmum. Conventionally, it is argued that a

9



id:-39 time:300 phones:25-32

3.0 \

\

\

\

2.5 \
Q) \
U

\C
0 \
I. 2.0 \0
:; \0

\u
1.5 \~ \..

(J \c
\Q)

1 .0.. \C
\

\

0.5 \

\

\

\

0.0

0 10 20 30 40
time lag (ms)

Figure 4. The autocovariance function of the square of a single example of the matched-filter

output of the slice89 experiment, which is wider than the ideal output (the ramp) and similar to

the simulation of Figure 3.
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signal with bandwidth 1lV cannot change much in time W-l, so that Doppler effects are minimal

if (9J

vT
_ ~ W-1

C

or

cWT~-
v

This time-bandwidth product criterion is very stringent for typical ocean tomographic tra.nsmis-

sions, which must be long to achieve gain. M-sequence codes of 120 s duration and 83 Hz bandwidth

loose coherence at about v = 0.05 mis, or 0.1 knots Doppler. The lost coherence results in grea.t at-

tenuation of the matched filter output. The mismatch of the precise pattern of digits is responsible

for the incoherence.

The smooth phase (or frequency) variations ofthe amplitude-modulated linear frequency sweep

signals give increased coherence between a compressed reception and a non-compressed replica.

This is because the frequency sweep rate is changed only slightly and the amplitude modulation

is smooth. The result is performance in excess of the vVT product criterion. Figure 7 shows the

Doppler performance for a 120 s, 120 Hz, amplitude-modulated frequency up-sweep. The widened

peak is quite good at 0.5 mls Doppler, and still usable at 1 m/s. The "toward", or "blue" Doppler

shift is indicated by the progressive time shift of the peak. A down sweep would have an opposite

time shift. Also shown in Figure 7 is the relative loss of gain vs. closing velocity.

The AM-FM signals have increased Doppler performance over boxcar (no AM) linear FM

sweeps. In the previous section the large sidelobes of the bóxcar linear FM sweep were shown to

be large, and Figure 8 shows how they degrade the Doppler performance relative to the AM-FM

signals. The broad multiple nature of the peaks is unacceptable, and the AM-FM signals appear

to have optimal Doppler performance as well as optimally narrow matched-filter response.
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heights from frame (a), relative to the v = 0 case.
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shift, shown in the noiseless Fig. 7a case.

case. The amplitude variation from the noise masks the slight peak attenuation from the Doppler
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5. Summary

A family of frequency sweep signals with tapered attenuation at the ends of the band can be

used to synthesize pulses with both a narrow main peak and low side peaks. The shapes of the

main and side peaks are controlled by the tapering, also called the amplitude modulation. A broad

range of taper functions can be used in this AM-FM scheme, depending upon signal/noise ratio,

expected peak spacing, etc., in order to optimize the signal. The best taper functions to use are the

spectral estimation taper functions, which have optimum properties for this operation. Tapering

with the square root of the desired taper function wil reproduce a pulse shaped like the Fourier

transform of the taper. If the frequency response of the system can be measured, this can be applied

to the taper to optimize the output, that is, the applied taper can be adjusted so that the final

transmitted spectrum has the desired shape. In theory, one can utilze the entire frequency range

of any equipment, so that the peak resolution attainable with pseudorandom M-sequences can be

achieved.

The AM-FM linear frequency sweep signals give enhanced Doppler performance over simple

linear FM sweeps, which in turn give better performance than the pseudorandom phase modulation

scheme. The gain in the presense of relative source-receiver motion of the (linear) FM chirp signal

is retained by the AM-FM chirp, but the multiple peak problem of the FM signal is greatly reduced.

To ilustrate the usefulness, a test run with a 30 second sweep and -20 dB signal/noise ratio

(ratio of signal power/noise power of 0.01) was performed (Figure 9). Two multipath arrivals at 18

ms spacing were included, and they are easily identified for the 0 to 0.5 m/s Doppler velocities of

the simulation, which used the 20dB ripple Chebyshev taper. Interestingly, the effect of the noise

on the peak amplitudes overshadows the systematic decline in amplitude with increasing relative

velocity. For a control, Figure 10 shows how random noise can slightly perturb the matched filter

amplitudes with no relative motion.
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