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Abstract 

The sensitivity of the basin-scale ocean stratification to the vertical distribution of plume 

entrainment is being analyzed. A large ocean basin supplied by dense water from an adjoining marginal 

sea is considered. The dense water flows into the ocean basin as an entraining density current and 

interleaves at the bottom (or at the level of neutral density), where it deposits a mixture of marginal sea- 

and basin water. As the basin water, i.e. 'old' plume water, is entrained and re-circulated in the plume a 

stratification develops in the basin. The mixture deposited at the bottom hence contains an increasing 

fraction of marginal sea water, and the basin density increases with depth as well as with time. A 

stationary solution in which diffusion of buoyancy from above is important is approached 

asymptotically in time.  

Non-diffusive solutions to the initial transient adjustment, as well as the diffusive asymptotic 

state, have been studied in four different parameterizations of plume entrainment. It is shown that in the 

transient regime the basin stratification and plume density are highly sensitive to how mixing is 

parameterized. The stationary diffusive solution that is approached asymptotically in time is less 

sensitive to parameterization but depends strongly on basin topography, source water density, and 

buoyancy flux at the surface.  
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1. Introduction 

Marginal seas usually have waters that are cooled (high-latitude) or evaporated, hence 

dense water is formed by either being cooler or saltier than the surrounding oceans. The dense 

water can then flow out of the marginal basin, usually through a sill or a constriction, and 

descends the continental slope as a gravity density current. The level at which the dense water, 

originated in the marginal sea, equilibrates depends on its initial density and the amount of 

mixing and entrainment that occurs between the dense water and the lighter water above it. 

Entrainment into the density current can set the bottom ocean density or in general the ocean 

stratification through a balance between upwelling of the dense water and downward diffusion 

of heat. The processes that regulate the entrainment are still poorly understood and, in 

particular, are missing from General Circulation Models making it difficult to match the 

observed ocean stratification with the modeled one in the vicinity of marginal seas. 

Parameterizations of entrainment have been developed in the past, and the one still widely used 

dates more than 40 years ago (Ellison and Turner, 1959). In the present study, we compare 

different entrainment parameterizations, including a new one, and their effect on the dense 

current and basin stratification.  

Mixing across an interface between two fluids is in general characterized by a density 

flux in two directions, meaning that entrainment as well as detrainment takes place. In the case 

of a turbulent dense plume flowing beneath a nearly stagnant ambient fluid, entrainment 

dominates over detrainment with the turbulent dense fluid 'eating' the lighter ambient fluid 

(Baines, 2002). The dense plume water then enters into the environment only by interleaving at 

the bottom of the ocean (or at its level of neutral density). This one-way 'mixing' is being used 

in most of today's plume- and numerical ocean models, along with an assumption of well-
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mixed lower dense layer in which density, velocity, etc., are constant in the vertical (see e.g. 

Price and Baringer, 1994).  

Oceanic observations (e.g. Fer et al., 2004; Girton and Sanford, 2003, Arneborg et al, 

2004; Arneborg et al, 2006) and laboratory studies (e.g. Ellison and Turner, 1959; Cenedese et 

al., 2004) of entrainment in density currents show a strong dependence on the Froude number, 

i.e. the ratio of the current velocity to the phase speed of long internal gravity waves. For 

Froude numbers larger than one, i.e. supercritical flow, the gravity currents become unstable 

and have a tendency to develop shear billows associated with strong entrainment (Ellison and 

Turner, 1959). More recently it has also been discovered that a type of breaking roll-waves 

may induce mixing in a dense current on a sloping bottom (Cenedese et al., 2004). Besides 

these (experimental) observations, similar waves have also been observed in numerical 

simulations (Ezer, 2005) and in large lakes (see e.g. Fer et al., 2002; Fer et al., 2001), where 

they were also associated with elevated mixing levels. Our knowledge of mechanisms that 

cause entrainment in subcritical flows is, however, limited. It is evident that oceanic density 

currents become diluted to a certain extent even though these are subcritical (see e.g. Duncan et 

al., 2003; Girton and Sanford, 2003; Fer et al., 2004), but little is known of the mechanisms of 

such subcritical entrainment. A laboratory experiment with comparatively small Froude 

numbers (0.1 < Fr < 4) recently showed that entrainment does also take place in a subcritical 

density current (even though the entrainment rate is small in comparison to a supercritical 

flow) (Cenedese et al., 2004).  

In this study, we examine how different entrainment mechanisms influence the plume 

water density, and what consequences this has on the ocean stratification. A dense turbulent 

plume that entrains water from the surrounding fluid can build a stable stratification in a closed 
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container as was shown by Baines and Turner (1969). The stratification is built as the plume 

deposits a mixture of source- and basin water on the bottom of the tank. Layers of old plume 

water are pushed up toward the surface but get entrained and re-circulated during the ascent. 

The plume water that reaches the bottom consequently contains an increasing fraction of dense 

source water and the basin density will increase with depth as well as in time. The turbulent 

plume studied by Baines and Turner produced a basin density that (after the initial adjustment) 

increased linearly with time but had a constant stratification shape. The stratification and time 

dependence naturally depend on how much and where entrainment occurs.  

The aim of the present investigation is to see how different entrainment mechanisms 

affect the basin stratification, in the initial transient regime for which diffusion is negligible 

and also for the stationary diffusive solution that is approached asymptotically in time. First, 

two highly simplified entrainment functions (that permit analytical solutions to the basin 

density equation) are studied.  One with constant entrainment and one with all entrainment 

localized at a single depth level where the topography steepness abruptly increases. Second, 

two entrainment functions having a Froude number dependence are investigated. The main 

difference between the two functions is that one is cut off at the critical Froude number, i.e. has 

no entrainment at all for subcritical flow. The other function continuously decreases to zero as 

the Froude number approaches zero, and thus, has a small but non-zero entrainment for 

subcritical flow. 

It is shown that the plume density is rather sensitive to the presence of this small 

subcritical mixing. One of the reasons is that in regions of small bottom slope, where 

subcritical flow may be expected, the plume has to travel a large horizontal distance in order to 

descend to deeper water. Consequently, the total entrainment over a level topography may not 
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be negligible, even though the entrainment ratio is several orders of magnitude smaller than 

that for supercritical flow (see also Hughes and Griffiths, 2005; and Speer and Tziperman, 

1990). 

As the plume water interleaves at the bottom of the basin (or at the level of neutral 

buoyancy) it affects the basin density. The basin stratification in the transient 'filling box' 

regime is highly sensitive not only to the total amount of entrainment but also to how this is 

distributed in the vertical, i.e. to whether it is localized to layers of steep topography or evenly 

spread in the whole water column. However, the stationary basin stratification that is 

approached asymptotically with time is not sensitive to the vertical distribution, even though 

the vertical variation of the plume density is. The basin stratification depends most strongly on 

the source plume density, the topography [i.e. the depth at which the region of maximum 

bottom slope is situated and how steep it is] and the surface buoyancy flux. 

 

2. Bulk parameterizations for entrainment 

As discussed above, density currents can entrain fluid from the layers above and hence 

increase their volume considerably. The water entrained has usually a different temperature 

and salinity and these properties, together with the amount of entrainment that is occurring, are 

of fundamental importance in determining the water properties of the dense current and 

ultimately the fate of such water [Price and Baringer (1994)]. The numerical global ocean 

circulation models that are used today resolve density currents rather poorly, and in particular, 

poorly calculate the mixing and entrainment that these induce. In order to represent mixing 

across the dense interface, it is consequently necessary to parameterize entrainment. 
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A successful parameterization used in the past, and still widely used to the present days, 

is one that assumes that the entrainment occurs in a localized region and that it depends upon 

the Froude number of the dense current. The entrainment velocity  

wE =EU,            (2.1) 

is considered to be a function of the local mean velocity of the flow, U, however the function 

representing the entrainment coefficient E is not longer a constant. Based upon experiments by 

Ellison and Turner (1959) and subsequent analysis (Turner, 1986), the function E can be 

represented to good accuracy by 

2
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where the Froude number is defined as 
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where U is the plume velocity, g' is the reduced gravity, h is the plume thickness, α is the slope 

of the bottom topography, and f is the Coriolis parameter. Oceanic large-scale density currents 

are generally in geostrophic balance and flow basically parallel to the depth contours with the 

geostrophic velocity 

U=g’α/f,          (2.4) 

(see e.g. Price and Baringer, 1994; MacCready, 1994; and Smith 1975). Bottom friction 

removes energy from the current and makes it descend at a small angle to the horizontal (see 

e.g. MacCready, 1994; Price and Baringer, 1994; Wåhlin and Walin, 2001). 

The novelty of this parameterization is that it couples the entrainment to the dynamics 

of the dense current. It is worth noticing the strong dependence of the Froude number on the 
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slope α and the dependence on the density difference (i.e. g’). Since entrainment becomes non-

zero only when Fr exceeds 1.25, in practice, entrainment will occur when the topography is 

steep or when the density difference between the dense current and the above layers is large. 

These conditions will increase the velocity of the dense current and consequently the Froude 

number of the current leading to a localized mixing when Fr>1.25. Given the variable 

steepness of the bottom slopes in the ocean, we should expect entrainment not only to be 

localized near the steep slopes, but also highly intermittent as shown by Price and Baringer 

(1994) and Price et al., (1993).  

Fig. 1 shows the Ellison and Turner (1959) experiments together with expression (2.2) 

(black line). Furthermore, Fig. 1 shows observational data from four different overflows, non-

rotating laboratory experiments from Alavian  and Asce (1986) and recent laboratory 

experiments for a rotating dense current flowing down a slope (Cenedese et al., 2004). The 

dependence of the entrainment function E on the Froude number is clear. However, functions 

different from expression (2.2) could be used, if considering only the observational data a 

function 3 810E Fr−=  is more appropriate (Price personal communication). The recent 

laboratory experiments of Cenedese et al., (2004) consider a dense current flowing down a 

slope for relative small Froude numbers when compared to Ellison and Turner (1959) 

experiments. The dense current was not a turbulent plume but instead consisted of a series of 

breaking “roll waves.” Cenedese et al., (2004) observed that the mixing between the dense 

current and the overlying fluid was enhanced when passing from the “laminar” to the “wave” 

regime, that is, with increasing Froude number. Mixing was believed to be caused by breaking 

waves. The entrainment function that these experiments suggest is  

4 3.54 10E Fr−= ⋅ ,        (2.5) 
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and, for a fixed Froude number, it presents a lower entrainment velocity when compared to the 

observational data (Fig. 1). Compared to the Ellison and Turner (1959) parameterization, it 

presents a higher (lower) entrainment velocity for subcritical (supercritical) flows. 

 

3. A toy model 

Fig. 2 shows a sketch of an ocean basin that is connected to a marginal sea where dense 

water is formed. Buoyancy is added to the water in the large basin and removed in the marginal 

sea. It is assumed that the buoyancy flux B [kg/m/s3] over the large basin is constant, while the 

water in the marginal sea adjusts to a dense equilibrium value ρ0. Furthermore, the density in 

the basin interior (i.e. far away from the dense plume) is assumed independent of x and y. Then 

the density equation in the basin is given by 

2

2w
t z z
ρ ρ ρκ∂ ∂ ∂

+ =
∂ ∂ ∂

,         (3.1) 

BF
z
ρκ ∂

= −
∂

   at z = 0,      (3.2) 

Bρ ρ=    at z = -H,      (3.3) 

where ρ is the density, w is the vertical velocity, κ is the (constant) diffusion coefficient, 

BF B g=  [kg/s/m2] is a constant and ρB is the density in the bottom of the basin where z = -H 

(where H is the maximum depth, which is constant and given in Table 1). Eq. (3.1) describes 

how dense bottom water is advected upwards while buoyancy from above is diffused 

downwards. The relative importance of the terms depends on the flushing time τF of the basin 

(where τF ∼ H/w). When τF  is small compared to the diffusive time-scale τD (where τD ∼ H2/κ), 

then the two terms on the left will dominate the equation. However, when τF is large compared 
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to τD, then the diffusion term on the right becomes important and a stationary solution is 

approached. 

It is now assumed that bottom water is fed into the basin by a dense plume or a narrow 

sinking region. If the plume is entraining ambient water on its way down to the ocean bottom, 

the plume density will decrease as it becomes diluted with the ambient lighter water. However, 

provided the basin water initially is homogeneous and lighter than the dense source, the plume 

will continue to be denser than the basin at all subsequent times (e.g. Baines and Turner, 1969; 

Stigebrandt 1987). Consequently, the plume will always land on the bottom, and there can be 

no interleaving of plume water at shallower depths (unless there is more than one source). 

However, by postulating a detrainment ratio, portions of the dense water can be sliced off and 

mixed with the environment even though the plume is denser than its surroundings (see e.g. 

Stanev et al., 2004; Speer and Tziperman, 1990). 

Mass conservation in the plume gives 

( ) P
P P

QQ
z z

ρ ρ ∂∂
=

∂ ∂
,         (3.4) 

ρP(0) = ρ0,          (3.5) 

where ρP is the plume density, QP is the downward plume transport, and ρ0 is the marginal sea 

(source) density. It is assumed that the plume only occupies a small portion of the basin area. 

The vertical velocity in the basin is then given by 

( , )( , ) PQ z tw z t
A

= ,         (3.6) 

where A is the basin area (assumed constant, see Table 1) and QP(z,t) is the total downward 

plume transport at level z. In order to solve (3.1)−(3.6) we only need information about QP, and 

it is not necessary to resolve the plume path, geometry or velocity. As will be discussed in 
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Section 4.3, the plume properties are, however, needed to arrive at a more realistic 

parameterization of QP.  

For simplicity it is assumed that the plume density and the plume downhill velocity are 

constant in the horizontal directions. The obtained results can be applied to a more general 

plume by defining ρP(z,t) as the horizontally averaged plume density, and QP(z,t) the 

horizontally integrated vertical velocity in the plume. Baines and Turner (1969) used the 

horizontal average based on a Gaussian profile of plume velocity and density.  Other 

assumptions about plume properties shape will satisfy equation (3.4) but naturally a different 

definition of ρP(z,t) and QP(z,t) will be necessary (see e.g. Stanev et al., 2004).  

Following the results by Baines and Turner (1969) the lower boundary condition (3.3) is 

( )B P Hρ ρ= − .         (3.7) 

Given a function QP(z,t) we can solve the equation system (3.1) - (3.6) numerically, and under 

certain simplifications analytical solutions may also be found.  

Consider first the solution to (3.1) with no diffusivity. By ignoring the diffusion term in 

(3.1), the degree of the equation is reduced and it is only possible to satisfy one of the 

boundary conditions. It is the upper condition (at z = 0) that must be dropped, since the basin 

water is advected from below. Without diffusion from above, it is not possible to control the 

surface density. Using (3.1)−(3.7) the system to be solved is 

( , ) 0PQ z t
t A z
ρ ρ∂ ∂

+ =
∂ ∂

,         (3.8) 

( , 0) Iz tρ ρ= = ,         (3.9) 
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( ) ( )PH Hρ ρ− = − ,         (3.10) 

( ) P
P P

QQ
z z

ρ ρ ∂∂
=

∂ ∂
,         (3.11) 

ρP(0) = ρ0,          (3.12) 

where ρI < ρ0 is the constant initial density in the basin. If the function QP is independent of 

time, the solution to (3.8) can be written in terms of a similarity variable η , 

( , ) ( )z t Fρ η= ,         (3.13) 

( , )
( )

z

PH

Adz t t
Q

ξη
ξ−

= −∫ . 

The function F(η) is determined from the initial condition (3.9) (for 
0

0
( )PH

A d
Q

η ξ
ξ−

< < ∫ ) and 

from the boundary condition (3.10) at z = -H (for η < 0). Consequently the (time-dependent) 

plume density must be calculated in order to determine F(η). In an initially homogeneous 

basin, for which ρI is constant, the initial plume density can be found by integration of (3.11) 

(using (3.12)), 

0
0( ,0) ( )

( )P I I
P

Qz
Q z

ρ ρ ρ ρ= + − ,       (3.14) 

where Q0 is the source transport, i.e. QP(0). At subsequent times the plume equation (3.11) has 

to be solved numerically at each time-step (however, for certain QP(z) analytical solutions may 

be found). 

According to (3.8) and (3.13), the local time-scale depends on the velocity distribution 

deeper down in the basin. The most rapid adjustment is expected close to the bottom where QP 

is largest. If w increases monotonically with depth, then the maximum time-scale (i.e. slowest 

adjustment) is at the surface and approximately given by 
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0
F

H
w

τ = ,          (3.15) 

where 0
(0)PQw
A

=  is the vertical velocity at z = 0. The adjustment time-scale in the surface is 

expected to decrease if QP increases significantly close to the surface.  

Next, consider the steady diffusive solution to (3.1), given by (3.4) and the stationary 

equivalent of (3.1)−(3.3), i.e. 

2

2

( )PQ z
A z z

ρ ρκ∂ ∂
=

∂ ∂
,         (3.16) 

BF
z
ρκ ∂

= −
∂

   at z = 0,      (3.17) 

( )P Hρ ρ= −    at z = -H.      (3.18) 

The plume density is found by vertical integration of (3.4) from z to 0 [using integration by 

parts and replacing 
z
ρ∂

∂
 with 

2

2( )P

A
Q z z

κ ρ∂
∂

 according to (3.16)], 

0
0 0

0

( ) ( ) (0) ( )
( )P

zP

Qz z D
Q z z z

ρ ρρ ρ ρ ρ
=

⎡ ⎤∂ ∂
= + − + −⎢ ⎥∂ ∂⎣ ⎦

,    (3.19) 

0
0

D
w
κ

= , 

where D0 is the diffusive depth based on 0w , i.e. the vertical velocity at z = 0. By evaluating 

(3.19) at z = -H, we see immediately that provided there is no heat flux through the bottom (i.e. 

0
z
ρ∂

=
∂

 at z = -H), the surface density ρ(0) is given by 

0 0
0

(0)
z

D
z
ρρ ρ

=

∂
= +

∂
, 

or [using (3.2)] 
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0
0

(0) BF
w

ρ ρ= − .         (3.20) 

Consequently, the surface density in the basin is given by (3.20), regardless of any entrainment 

or detrainment that takes place deeper down. That the value of the density as well as its 

derivative is fixed at z = 0 poses a rather strict condition on ( )zρ  close to the surface. A Taylor 

expansion of ( )zρ  around z = 0 shows that all solutions converge to a single curve for z << 

D0.  

If there is no entrainment, then 0( )PQ z Q=  and the solution to (3.16) is the exponential 

solution  

0
0

0

( )
z

DB
M

Fz e
w

ρ ρ= − ,         (3.21) 

similar to that found by Munk (1966). All solutions, regardless of entrainment, hence converge 

to the no-entrainment solution (3.21) in the surface layer. This result can also be seen in the 

study by Stanev et al., (2004), in which entrainment- and detrainment ratios were varied but the 

obtained solutions all converged in the surface layer. 

 

4. Results for different entrainment parameterizations 

Following the results in Section 2, we anticipate that QP(z,t) depends on the bottom 

slope, and that it will increase most rapidly in regions of steep topography. On the other hand, 

we are not certain of how strong the dependence is. For vertical plumes, the vertical rate of 

increase of plume transport is approximately constant (Baines and Turner, 1969). It was shown 

in Wells and Wettlaufer (2005) that this also holds for (non-rotating) density currents on an 

inclined plane and by Hughes and Griffiths (2005) that all plumes, including rotationally 
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influenced, can be expected to have a linear increase of plume transport in z provided the 

bottom slope is constant (see also Speer and Tziperman, 1990).  

We will proceed to test three different scenarios; (i) linearly increasing QP(z), i.e. no 

dependence on the variable topography, (ii) an abrupt increase of QP(z) at a specific level z0, 

i.e. very strong dependence on the variable topography, and (iii) two Froude-number dependent 

parameterizations according to Section 2. The two simplified functions in cases (i) and (ii) are 

time-independent and permits analytical solutions to (3.8) and (3.16). It is shown that the 

choice of function has great consequence for the basin stratification in the initial transient 

regime. However, the stationary diffusive solution that is approached asymptotically with time 

is much less sensitive to the vertical distribution of entrainment. These results also hold for 

more complex entrainment functions, as confirmed by the numerical solutions based on the 

two Froude-number parameterizations (2.2) and (2.5). The two parameterizations give rise to 

different plume densities, which affect the basin densities in the transient stage. Considering 

the difference between the obtained plume densities the stationary solutions are remarkably 

similar (as was also noted in Stanev et al., 2004). 

 

4.1. Results for constant entrainment 

Assume that the downward plume transport is given as a pre-defined linear function of 

z by 

0
0

( ) (1 )P
zQ z Q

D
γ= − ,         (4.1) 

where Q0 is the downward plume transport at z = 0 and γ is a constant describing the 

entrainment rate. The similarity variable η [cf. expression (3.13)] is then given by 
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0

0 0

0

1
ln

1

z
D tHw D
D

γ
γη

γ

⎡ ⎤−⎢ ⎥
⎢ ⎥= − −
⎢ ⎥+
⎢ ⎥⎣ ⎦

.        (4.2) 

The plume density equation (3.11) has to be solved numerically for the case of constant 

entrainment. The solution has been plotted together with (3.13) (using (4.2)) in Fig. 3 for 

different γ (other parameter values as specified in Table 1). In similarity with the 'filling box' 

solution found by Baines and Turner (1969), we note the existence of the sharp 'first front' and 

how it moves upward. This front is produced by the initial density jump at z = -H between 

plume and basin. If the basin initially has a density that increases continuously with z and 

becomes equal to the plume density at z = -H, there is no density jump and no front. Below the 

front, as a consequence of the entrainment and recirculation of basin water in the plume, the 

water is stably stratified. After the passage of the front the density difference between basin 

and plume decreases with time and depth. The solution asymptotically approaches the steady 

state ρ = ρ0, as the basin fills with water containing a successively larger ratio of source water 

(density ρ0). This is in contrast to the solution studied by e.g. Baines and Turner (1969), in 

which the source density was increased to keep a constant buoyancy flux. The most notable 

effect of increasing the entrainment ratio γ is that the initial density step at the 'first front' 

becomes smaller. This is because the plume for large γ becomes more diluted by basin water 

and its density more similar to the basin density [cf. eq. (3.19)]. The time to fill the basin with 

source water is comparable to the flushing time Fτ  [cf. eq. (3.15)], regardless of the value of γ. 

Next, consider the stationary diffusive equation (3.16)−(3.18). The solution (originally 

found by Wells and Wettlaufer (2005), but here modified to the new boundary conditions) is 

given by 
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1
2

0 0 0

1 1( ) ( ( ) ( ) )
2 2 2

B
B

F z Hz e erf erf
w D D

γ π γ γρ ρ
γ γ γ

⎡ ⎤ ⎡ ⎤−
= − − − −⎢ ⎥ ⎢ ⎥

⎣ ⎦ ⎣ ⎦
,   (4.3) 

where erf(x) is the error function defined as 

2

0

2( )
x

terf x e dt
π

−≡ ∫ . 

It remains to determine the deep basin density ρB. For this purpose we need to confirm that 

there is no buoyancy flux through the bottom. Derivation of (4.3) with respect to z gives 

0 0
(1 )

2
z z

D DBF e
z

γρ
κ

−∂
= −

∂
,         (4.4) 

and we see that the criterion is satisfied provided 
0

1H
D

>>  . It is now assumed that  

0

1H
D

>> .          (4.5) 

The surface density is then given by (3.20), and by evaluating (4.3) at z = 0 (combining with 

(3.20)), ρB is found as 

0
0

( )B
B L

F
w

ρ ρ θ γ= − ,         (4.6) 

1
2 1( ) (1 (1 ))

2 2L e erfγ πθ γ
γ γ

= − − . 

The function ( )Lθ γ  increases monotonically from zero (for γ = 0) to one (for γ >> 1). Hence, 

the deep water density is equal to ρ0 (the dense source density) for γ = 0 and decreases and 

approaches the basin surface density 0
0

BF
w

ρ −  asymptotically as γ → ∞ . It can be noted that 

the deep water, as well as the surface, density is independent of κ (as long as the criterion (4.5) 
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is satisfied), even though the stratification closer to the surface depends strongly on it [cf. 

expression (4.3)].  

The plume density is found by combining (3.19), (4.3) and (4.4), 

0 0
(1 )1 2

2
0

0 0

0

1 1( ) (1 ( ( ) ) )
2 2 2 (1 )

z z
D D

B
P

F z ez e erf erf zw D
D

γ

γ π γρ ρ
γ γ γ γ

−
⎡ ⎤

= − + + − −⎢ ⎥
⎣ ⎦ −

.  (4.7) 

The solutions (4.7) and (4.3) have been plotted in Fig. 4 for different values of γ and κ. As 

expected, solutions with different values of κ but the same γ approaches the same density as 

z H→ − . This value decreases with increasing γ. Furthermore, the surface density remains 

constant [cf. equation (3.20)] but the surface stratification is weaker for the larger κ. It can also 

be noted that the different solutions for the basin density (dashed lines in Fig. 4) corresponding 

to different γ (but the same κ) converge close to the surface. The curves can be compared to the 

non-entraining exponential solutions (3.21) obtained for γ = 0, which are also shown (thick 

gray lines in Fig. 4). All curves converge to these solutions in the surface, but approach the 

density ρB rather than ρ0 in the deep basin. 

Below the diffusive layer the basin- as well as plume densities are constant and equal. 

The plume still entrains ambient fluid but it is entraining water of the same density which 

naturally has no effect on either plume or basin. In fact, it becomes pointless to distinguish 

between plume and basin water below the diffusive layer, where their densities are equal. An 

important result may be postulated: In a steady-state, the plume can only be denser than the 

environment in the upper layer, where the basin water gains buoyancy by diffusion from the 

surface. Deeper down the plume and the environment have the same density and cannot be 

distinguished from each other. Hence, in a stationary system, dense plumes are only expected 
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to be found in a stratified environment, which is maintained by diffusion from above. By 

inserting (3.20) in (3.19) [if 0
z
ρ∂

=
∂

 then (3.19) reduces to Pρ ρ= , i.e. plume- and basin 

densities are equal], it can be shown that this result is obtained regardless of the structure of the 

function QP. 

 

4.2. Results for localized entrainment 

Assume now that all mixing takes place at a specific depth level, z = z0, where the 

topography abruptly steepens. The downward plume transport is then given as a step function 

in z, i.e. 

0 0

0 0

                
( )

(1 )      P

Q z z
Q z

Q z zγ
≥⎧

= ⎨ + <⎩
,        (4.8) 

where γ is a constant. Using (3.13), the similarity variable η becomes 

0 0
0

0 0

0
0

( ) t         
(1 )

( )                       
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w w

z H t z z
w
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.      (4.9) 

The plume density is given by  

0 0

0 0
0

         
( )      

1
P

z z
z z z

ρ
ρ ρ γρ

γ

>⎧
⎪= +⎨ ≤⎪ +⎩

,        (4.10) 

which has been plotted together with (3.13) (using (4.9)) in Fig. 5 for different γ (other 

parameter values as specified in Table 1). In similarity with the constant entrainment case  

(Fig. 3), we note the first front that progresses upward in time. However, the fluid below the 

first front is not stratified since there is no recirculation of plume water below the front. Instead 
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the plume density remains constant until the first front reaches the entraining level z0. Then the 

mixture of plume-and basin water gets entrained into the plume which becomes denser and 

produces a second front at the bottom. The process continues with successively smaller density 

jumps and successively denser basin water. The stationary solution ρ = ρ0 is also here 

approached asymptotically with time. 

Fig. 6 shows the same calculations but with z0 situated at a deeper level. The stair-like 

structure developing from the fronts is similar. However, as can be seen, the thickness of the 

stair-steps has decreased, due to the smaller distance traveled by each front before the 

succeeding front develops. The overall time-scale before the basin fills with dense source water 

is Fτ  given by (3.15) for both cases.  

Next, the stationary diffusive basin equation is given by (3.16) and (4.8) i.e.  

2

0 2w
z z
ρ ρκ∂ ∂

=
∂ ∂

  for z > z0,      (4.11) 

2

0 2(1 )w
z z
ρ ργ κ∂ ∂

+ =
∂ ∂

  for z < z0, 

BF
z
ρκ ∂

= −
∂

   at z = 0,      (4.12) 

( )P Hρ ρ= −    at z = -H.      (4.13) 

The solution can be found by matching the solutions above and below the entrainment level z0, 

0
1 2( )

z
Dz C e Cρ = +   for z > z0,      (4.14) 
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= +   for z < z0 . 

By using the matching conditions (ρ(z0) and 
0z zz

ρ

=

∂
∂

 continuous), it is seen that the coefficients 

are related according to 
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,         (4.15) 
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z
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γ
= +

+
.         (4.16) 

From the upper boundary condition we have that 

1
0

BFC
w

= − .          (4.17) 

Assuming that (4.5) holds, the surface density is given by (3.20). Evaluating (4.14) at z = 0 

(using (4.17)) accordingly gives 

2 0C ρ= ,          (4.18) 

which (using (4.14), (4.16) and (4.5)) gives the deep basin density ρB. The result is 

0

0
0

0

( )
z
DB

B S
F e
w

ρ ρ θ γ= − ,        (4.19) 

( )
1S

γθ γ
γ

=
+

. 

Consequently, in similarity with the case of constant entrainment, the deep water density 

decreases asymptotically from 0ρ  (for 0γ = ) to 0
0

BF
w

ρ −  as γ → ∞ . The entrainment has to 

take place in the diffusive surface layer in order to be effective (as can be seen by the 
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exponential decrease of the coefficient 
0

0

z
De  with z0 in (4.19)). Furthermore, for a given 0

0

z
D

, 

the surface as well as the deep basin density is independent of κ. 

The plume density is given by (3.19) or 

0Pρ ρ=     for z > z0,     (4.20) 

0
0

( )B
P S

F
w

ρ ρ θ γ= −    for z < z0, 

where ( )Sθ γ  is given by (4.19). 

The solutions (4.20) and (4.14) [using (4.15)−(4.18)] have been plotted in Fig. 7 for different 

values of γ and κ (keeping 0

0

z
D

 constant and equal to -1). As expected the solutions with 

different κ but same γ approach the same value Bρ  as z H→ − . As γ is increased, Bρ  

decreases. The surface density remains constant [cf. equation (3.20)] but the surface 

stratification becomes weaker as κ is increased.  

 

4.3. Results for a plume parameterization of entrainment 

The solutions obtained in sections (4.1) and (4.2) illustrate what to expect in the two 

cases of localized and constant entrainment. However, these two idealized cases are not very 

realistic for the ocean where there is, as discussed in Section 2, strongest entrainment close to 

the dense source and over steep topography (where the current speeds up). The two-

dimensional evolution of plume path, geometry etc. can be obtained by use of so-called stream-

tube models (see e.g. Smith, 1975; Killworth, 1977, Price and Baringer, 1994; Borenäs and 

Wåhlin, 2000), in which the outflow properties are assumed to vary only along the outflow 
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path. As a result of this assumption the plume geometry is not fully resolved, and additional 

assumptions have to be made regarding the plume width and/or thickness (e.g. by specifying 

the evolution of the outflow width, as was done in Price and Baringer (1994), or specifying the 

aspect ratio, as was done in Killworth, 1977). When the plume entrains the surrounding water 

its volume flux increases, which entails an increased cross-sectional area and/or plume velocity 

and a decrease of the density difference between plume and ambient water. The models all give 

realistic results in the outflow regions, but naturally fail when the plume water becomes too 

diluted by the basin water since the dense plumes do not interleave into the environment. 

Evidence from laboratory experiments (Baines, 2001; Baines, 2002; Baines, 2005; Pierce and 

Rhines, 1996) as well as observations (Stanev et al, 2004; Ambar and Howe, 1979) indicate 

that the plume water does interleave and detrain when the density difference becomes 

sufficiently small.  

In the present study the plume is coupled to a one-dimensional basin. Hence, we only need 

information about the total entrainment that takes place at a certain depth level, i.e. QP(z). By 

integrating the entrainment velocity wE along a closed depth contour, QP(z) is given by 

0

0
( , )

( )
sin

E
P

z C x y

wQ z Q dldξ
α

= + ∫ ∫ ,       (4.21) 

where C(x,y) is a closed depth contour, wE is the entrainment velocity, and α is the bottom 

slope (derivation can be found e.g. in Hughes and Griffiths, 2005; and Speer and Tziperman, 

1990).  

Assume now that the plume velocity as well as its density and entrainment velocity only varies 

with z. Then (4.21) is given by 
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0

0
( )( ) ( )

sin ( )
E

P
z

wQ z Q L dξξ ξ
α ξ

= + ∫ ,      (4.22) 

where L(z) is the arc-length that the plume occupies or the plume width along a constant depth 

contour. It may be noted that equation (4.22) does not contain or utilize any information about 

the plume besides the arc-length L and the entrainment velocity wE. Specifically, there is no 

information about how the entrained water is accommodated in the plume. 

Observations (e.g. MacCready, 1994; Smith, 1975; Price and Baringer, 1994) show that 

the dense overflows are basically in geostrophic balance, i.e. the along-slope velocity 

component is given by (2.4) and the down-slope velocity component is small in comparison. 

Furthermore, observations (e.g. Duncan et al, 2003, Girton and Sanford, 2003, Price and 

Baringer, 1994; Smith, 1975) of the outflow thickness show that although this varies 

quantitatively in time as well as in space it does not vary qualitatively in the outflow region. 

Hence, in order to simplify the description, it is assumed that the plume velocity VP(z) is given 

by 

2 2
P PV U w= +         (4.23) 

PU w>> ,         (4.24) 

where U is given by (2.4) and wP is the downward velocity component. It is furthermore 

assumed that h is constant. The Froude number is then given by (2.3). In order to obtain the 

entrainment velocity wE from (2.1) an assumption has to be made regarding the entrainment 

function E(Fr). As argued in Section 2, the experimental and observational data can be fitted to 

different curves and we will study the two functions (2.2) and (2.5). The main difference 

between them is that (2.2) has no entrainment at all for sub-critical flows, while (2.5) decreases 
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asymptotically to zero for small Fr. As will be shown, the seemingly small difference in E(Fr) 

has consequences for the basin density.  

As mentioned above, (4.22) does not contain any information about how the entrained 

volume flux is accommodated in the plume. Under the assumptions made so far, i.e. (4.23) - 

(4.24), (2.4), constant h, and only z-dependence of the plume properties, an increased volume 

flux in the plume is accommodated by an increase of wP (cf. eq. (4.23)) and/or an increase of L. 

We now take L to be constant, which is a rather rough simplification. However, the obtained 

solutions are not particularly sensitive to the value of L, as was seen by comparing the present 

results to those obtained with a 5 times larger L. This reduces the deep basin density but only 

by less than 10 % of the surface values, and for most cases less than 3 % (not shown here). The 

insensitivity of the solutions to the value of L indicates that the variations of E(Fr) as the 

velocity increases (over steep topography) or decreases (as a result of entrainment or by 

leaving the steep region) are sufficiently large (in the present examples) to be the dominating 

important effect. However, if L is constant it means that the increased volume flux due to 

entrainment is accommodated by an increased wP, and the assumption (4.24) eventually 

becomes violated. This happens when g' (and thereby U) becomes sufficiently small and/or 

QP(z) sufficiently large. In the subsequent calculations it was assumed that (4.24) was valid. 

After performing the calculations condition (4.24) was checked and the level at which it 

became violated (i.e. where U = wP) was identified. The density difference between plume and 

basin at that level gives an upper estimate of the error made by ignoring the wP term in (4.23). 

This error was less than 21 % of the surface plume-basin density difference for all calculations, 

i.e. far below the uncertainty expected in this highly simplified model.  

Provided L is constant then (4.21) can be written 
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0
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= + ∫ .        (4.25) 

Furthermore, it is assumed that the bottom slope α varies with z according to 

2
0

2
( )

1 2( )
z z

dz eα α α
−

−
= + ,        (4.26) 

where 1 2MAXα α α= +  is the steepest slope (situated at level z0), α2 is the minimum slope and d 

is the thickness of the steep region.  

As described here, the plume moves basically along the depth contours in geostrophic 

balance, descending at a small angle induced by bottom friction. This behavior is to be 

expected of ocean scale density currents (see e.g. Price and Baringer, 1994; MacCready, 1994; 

and Wåhlin and Walin, 2001). When the plume moves into a region of steep topography, it 

speeds up and the Froude number increases [cf. eq. (2.3)]. The entrainment coefficient, E, then 

increases, and the plume entrains ambient fluid which reduces the density difference and the 

Froude number. After passing the region where the bottom slope has its maximum value, the 

velocity will decrease because of the smaller slope but also because of the smaller density 

anomaly, and the entrainment levels are expected to be comparatively small.  

Using (2.3) the density difference where the flow becomes subcritical is expected to be 

close to ∆ρCR given by 

2
20

2CR CR
MAX

f h Fr
g

ρρ
α

∆ = ,         (4.27) 

where 2
CRFr  = 1.25 is the critical Froude number according to (2.2) and αMAX is the maximum 

bottom slope. The value of αMAX will determine the total rate of entrainment for (2.2) (and 

hence the density of the deep water) according to (4.27).  
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The two functions (2.2) and (2.5) will now be tested and compared for the time-

dependent as well as the stationary case. The main difference between the two is that (2.5) 

approaches zero asymptotically as 0Fr → , while (2.2) is identically zero for subcritical 

Froude numbers. Fig. 8 shows the time development of the basin- and plume densities as 

calculated numerically from (3.8)−(3.12) (using (4.25) and (4.26)), together with the obtained 

function QP(z,t). In similarity with the constant entrainment (section 4.1) and the localized 

entrainment (section 4.2) there is a 'first front' that moves up through the water column. Due to 

numerical diffusion it is however smoothed compared to the analytical cases. The difference in 

plume density that results from using entrainment function (2.2) or (2.5) is noticeable, in 

particular in the top 1000 m. The reason is that the subcritical entrainment that the plume 

experiences with parameterization (2.5) takes place over a large distance. Since the bottom 

slope is small, the plume travels a large horizontal distance in order to descend to deeper levels 

(as can be seen by the presence of the term sin(α) in the denominator of (4.21) (Hughes and 

Griffiths, 2005; Speer and Tziperman, 1990). Consequently the entrainment is more localized 

to the steep region when parameterization (2.2) is utilized, while parameterization (2.5) is more 

spread in the vertical.  

In the steady-state regime, it is expected (from the analytical results in the previous 

sections) that the surface basin density will be close to the no-entrainment solution (3.21) for 

both entrainment parameterizations. However, in the deep basin the value ρB should be 

approached rather than ρ0. It is also expected that the entrainment must take place in the 

diffusive surface layer in order for it to have any effect on the basin stratification. Hence, ρB 

may be estimated as (using (4.27)) 
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2
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2B M CR
MAX

f h Fr
g

ρρ ρ
α

= + ,        (4.28) 

where Mρ  is given by (3.21) evaluated at z = z0. By increasing αMAX and moving z0, we can 

increase the entrainment and move the entrainment region in order to check the prediction 

(4.28).  

Fig. 9 shows the numerical solution to eq. (3.4) and (3.16) with QP(z) given by (4.25) 

and wE by (2.1), using the Ellison and Turner parameterization (2.2) (all constants and 

parameter values according to Table 1 unless otherwise stated), for different values of κ, αMAX 

and z0. The ratio z0/D0 was kept constant and equal to -1, which means that Mρ  was constant 

even though two different κ and z0 were used. Horizontal lines indicate the location of z0 and 

show that most of the entrainment takes place above the level z0. The total entrainment depends 

strongly on the bottom slope, the steepest topography ( MAXα  = 0.16) has a 10 e-fold increase of 

the plume transport.  Whereas, the least steep topography ( MAXα =0.009) has only an increase 

of the plume transport of about 10% (hardly detectable in Fig. 9b). Also shown as pale colored 

lines are the density estimates (4.28) and as gray lines the no-entrainment solution (3.21).  As 

can be seen, the agreement is reasonable. Fig. 10 shows the same calculation but for the 

parameterization (2.5). The basin densities for the two steepest topographies are remarkably 

similar in the two cases, even though the plume densities and transports differ. However, for 

the most level topography, there is a marked difference between the two cases with the deep 

basin water being much denser for the Ellison and Turner parameterization (in fact, the deep 

water is for that case nearly undiluted source water). For small enough αMAX, the flow does not 

become supercritical. Since the maximum density difference is in the surface, we have that 

CRFr Fr<  for all depths provided αMAX < αCR given by  
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0
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where (3.20) has been used. The difference between the blue curves that can be seen by 

comparing Figs. 9 and 10, indicates that sub-critical mixing may affect the basin stratification 

also in the stationary state. In particular, this is to be expected if the maximum topographic 

slope is smaller than, or comparable to, the critical bottom slope αCR (0.0046 in the examples 

here).  

Next, a new set of calculations in which z0 was moved to below the diffusive surface 

layer ( 0 02z D= − ) was performed. It is expected from the analytical results in preceding 

sections that even though entrainment may take place below the diffusive layer, it will not 

cause any significant changes in the basin- or the plume densities. The reason is that the 

difference between the two densities will always be very small below the diffusive layer. The 

results pertaining to the Ellison and Turner parameterization are shown in Fig. 11. Even though 

entrainment does take place, it has little effect on the basin density; ρB is for all three 

topographies close to the dense source value. The results for the parameterization (2.5) are 

similar (not shown here). 

 

5. Discussion 

A one-dimensional model for a large ocean basin to which dense water is supplied via 

an entraining density current has been utilized to study the effect of various entrainment 

parameterizations on the ocean stratification. The model is similar in set-up to the ones used by 

e.g. Speer and Tziperman (1990), Munk and Wunsch (1998), Stanev et al, (2004), Wells and 
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Wettlaufer (2005), and Hughes and Griffiths (2005). The plume originates in a marginal sea 

where it has a constant source density (this is in contrast to previous studies where the density 

difference between plume and basin, or the buoyancy flux into the basin, was kept constant). 

Dense plume water is deposited at the bottom of the basin, from where it is advected up 

towards the surface where a constant buoyancy flux is applied. During the ascent the 'old' 

plume water gets entrained and re-circulated in the plume, giving rise to an increase in density 

with depth as well as with time.  

In the initial adjustment phase there is a sharp front (caused by the initial density 

difference between the plume and the basin bottom water) that moves up through the water 

column. Beneath the front the basin is stably stratified and fills with water containing an 

increasing fraction of dense source water. After the initial adjustment, a stationary solution in 

which diffusion of buoyancy from above balances the advection of dense water from below is 

approached. 

Entrainment of basin water into the plume dilutes the plume water and increases the 

plume transport. To compensate for the increased transport, the vertical velocity in the basin 

will increase with depth, while the dilution of the plume water reduces the density in the deep 

basin when compared to the source density. The basin density is consequently highly 

dependent on the plume entrainment.  The main object of this study was to test different 

entrainment parameterizations and see how these affect the basin density in the initial transient 

regime as well as in the stationary diffusive solution that is approached asymptotically with 

time. 

The important dependence is the vertical distribution of the horizontally integrated 

plume downward transport which is a function of the plume entrainment. We distinguish 
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between constant entrainment, which can be expected in the case of constantly sloping bottom 

in a rotating (Hughes and Griffiths, 2005) and non-rotating system (Wells and Wettlaufer, 

2005; Baines and Turner, 1969), and localized entrainment, which can be expected in the case 

of variable bottom topography that steepens at a certain level z0. Two idealized functions 

representing these two cases were used to solve the system analytically, and the solutions were 

studied for different entrainment ratios, γ. 

The initial adjustment on time-scales shorter than the 'filling time' 0F H wτ =  is highly 

sensitive to how mixing is parameterized, as has also recently been showed in a full-scale 

numerical model of a density current on a sloping bottom (Legg et al., 2006). The 'first front' 

that moves up through the water column after the plume has been released moves with step-

wise constant velocity (with the larger velocity below the entrainment level) in the case of 

localized entrainment, but with linearly decreasing velocity in the case of constant entrainment 

(in similarity with the studies of e.g. Baines and Turner 1969; Wells et al., 1999; Wells and 

Wettlaufer, 2005). Below the front, the stratification is continuous for the constant entrainment 

(again in similarity with previous studies), however, for the localized entrainment a stair-case 

stratification develops as the homogeneous mixture of plume- and basin water reaches the 

entraining level which abruptly increases the plume density. If the entrainment is spread over a 

larger depth range, the stair-steps become less sharp and the basin density more like the 

continuous stratification in the constant entrainment case (not shown). In both cases, the effect 

of increasing the entrainment ratio is to reduce the stratification below the first front and to 

increase the speed of the front. However, the time-scale at which the basins become filled with 

pure source water is the filling time 0F H wτ = , regardless of entrainment rate or its vertical 

distribution.  
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After the initial adjustment, diffusion becomes important and a stationary state in which 

diffusion of buoyancy from above balances the advection from below is approached. All the 

solutions, regardless of any entrainment that takes place deeper down, then converge to a 

single density profile in the surface layer. The surface profile is identical to the exponential no-

entrainment solution (3.21) obtained for constant vertical velocity and diffusivity, but based on 

the deep basin density ρ0 (i.e. the undiluted dense source value). Below the surface the 

solutions diverge and approach a less dense deep basin density ρB, the value of which 

decreases by the amount of entrainment that takes place in the diffusive surface layer. These 

results hold for localized as well as evenly distributed entrainment and are also in line with the 

findings of Stanev et al., (2004) and Wells and Wettlaufer (2005).  

It may be noted that a clearly identifiable plume (i.e. one that is denser than the 

environment) can only be found at depths to which diffusion from above reaches and the basin 

water is stratified. Below this level the basin is filled with the plume water that is deposited at 

the bottom, and the two water masses have the same density regardless of source density and 

how much or where the plume becomes diluted. It is only the entrainment that takes place in 

the diffusive surface layer that influences the deep basin density; below this depth the plume 

entrains water of equal density which naturally has no consequence for the density of either the 

plume or the basin.  

Below the diffusive layer the plume has momentum but cannot otherwise be distinguished 

from the basin water, and there is no telling from the present model if the plume interleaves at 

the level of neutral density or continues to the bottom. It has been assumed that there is no 

continuous detrainment of plume water into the basin, in which case the plume will always 

interleave at the bottom (see e.g. Baines and Turner, 1969). However, as was shown by Stanev 
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et al., (2004), CFC measurements from the Black Sea indicate that the dense plume there does 

not continue to the bottom but interleaves at intermediate depths. The same was also observed 

by Pierce and Rhines (1996) in a laboratory experiment with a dense source flow, although 

numerical simulations of the same flow showed a plume that always reached the bottom 

(Pierce and Rhines, 1996). The assumption of no detrainment is in line with the findings of 

Baines (2002) for turbulent plumes, but in contrast with the findings of Baines (2001) for 

gentle slope flows where detrainment in fact dominated over entrainment (see also Baines, 

2005). However, according to the present results the question of detrainment is only important 

in the diffusive surface layer. Below this level, the plume and the basin are equally dense and 

their densities are not affected by either entrainment or detrainment (although the distribution 

of tracers etc. is highly sensitive to entrainment and detrainment also below this level).  

How may the above results then be applied to the ocean? Laboratory studies as well as 

observations indicate that the entrainment coefficient E increases with the Froude number (i.e. 

the ratio of the plume velocity to the speed of a long internal gravity wave), and that elevated 

Froude numbers are found in regions of steep topography. This is consistent since the dense 

plume velocity is expected to be close to the geostrophic slope velocity, g'α/f, and increases as 

the plume moves into a steep region (i.e. large α). Therefore, we assume the plume velocity to 

be geostrophic and its thickness constant, which suggests that the total entrainment rate 

depends strongly on the topography, with large entrainment and strong dilution of the plume 

taking place at and above the level of maximum bottom slope. The plume density decreased 

until the Froude number was subcritical [cf. expression (4.29)] at the level of maximum bottom 

slope. 
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Two different functions that parameterize the entrainment coefficient E for various 

Froude numbers were employed. The main difference between the two is that E is identically 

zero for subcritical Froude numbers in the first, while in the second E asymptotically 

approaches zero for small Froude numbers. Hence, there is in the second parameterization a 

certain amount of mixing taking place also for subcritical flows, although it is small in 

comparison to supercritical entrainment. The subcritical mixing affects the plume density also 

in regions where the bottom slope is smaller than the critical slope αCR [cf. eq. (4.29)] at which 

the flow becomes critical. The obtained plume densities are rather different in the shallow 

regions, where CRα α< . 

The entrainment is consequently distributed vertically above the steepest region, 

according to which entrainment function is utilized. The results obtained with the stationary 

analytical solutions for the constant and localized entrainment hold for both entrainment 

functions. The basin density tends to the no-entrainment solution (3.21) in the surface, 

regardless of the topography and the entrainment rate. Deeper down a deep basin density ρB is 

approached. The topography is important for determining ρB in that a steep bottom slope gives 

large entrainment and a less dense ρB. It is also important at what vertical level z0 the steepest 

bottom slope is situated. If z0 is below the diffusive layer (and the bottom slope subcritical 

above it), then the plume will only entrain water that is equally dense which has no effect on 

either plume- or basin density. If the maximum bottom slope is large compared to the critical 

slope CRα , at which the flow becomes supercritical, then the two parameterizations of E give 

similar basin densities. However, if the bottom slope is comparable to or smaller than CRα , 

then the subcritical mixing becomes important enough (in comparison to the supercritical 



11/3/2005 34

mixing) to significantly reduce the deep basin density (as compared to the case in which 

entrainment was set to zero for subcritical flow).  

In summary, the findings in this paper indicate that the choice of entrainment 

parameterization is very important for the ocean stratification in transient regimes (as has also 

been shown by use of less simplified models by e.g. Legg et al., 2006; Chang et al., 2005; and 

Liungman et al., 2001). However, at longer time-scales, different parameterizations give 

similar basin stratification for a given topography (this was also noted by Thorpe et al., (2004) 

in a sensitivity study of a long-term climate model to the overflows over the Greenland-

Scotland Ridge). The basin density is expected to be close to the exponential no-entrainment 

profile (3.21) in the surface, but 'cut off' at the value ρB (4.28) that depends on the buoyancy 

flux, the outflow source density and transport, the maximum bottom slope and the depth at 

which the topography slopes most steeply. The exception to this rule of thumb is a basin with 

maximum bottom slope that is less than, or comparable to, the slope αCR [cf. eq. (4.29)] for 

which the flow is always subcritical. For such a basin it is important also in the stationary-state 

how the entrainment coefficient is parameterized, and in particular how it is parameterized for 

subcritical flows. Regrettably, there are very few studies focusing on entrainment processes in 

subcritical currents, and the present results indicate that these may in fact be of importance also 

globally. An investigation is underway by the authors in which observed basin stratification 

and source density are compared to the results of the present model. The results may provide a 

recommendation regarding the entrainment functions and their ability to parameterize ocean 

density current mixing. 
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Table 1. Standard values of constants and coefficients used in the text. Unless otherwise stated, 

these values were used in the calculations on which Fig. 3−11 were based. 

 

Notation Dimension Description Standard value 

f s-1 Coriolis parameter 10-4 

h m Plume thickness 100 

ρ0 kg/m3 Dense source density 1030 

FrCR - Critical Froude number 1.25 

FB kg/m2/s Buoyancy flux -6⋅10-7 

Q0 m3/s Source plume transport 1⋅106 

A m2 Basin area 1013 

w0 m/s vertical velocity at z = 0 10-7 

L m Arc-length occupied by plume 105 

d m Thickness of steep region 250 

aMAX rad Maximum bottom slope 0.009, 0.016, 0.16 

aMIN rad Minimum bottom slope 0.0016 

H m Basin depth 5000 
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Figure Captions 

Fig. 1.  Entrainment coefficient as a function of Froude number for observational data and 

experiments. Shaded areas indicate experiments from Alavian and Asce (1986) and Ellison 

and Turner (1959). Markers indicate observational data and experiments from Cenedese et 

al. (2004) according to legend. Colored lines indicate different functions fitted to the data; 

the black line is expression (2.2) and the green line expression (2.5). Modified from 

Cenedese et al., (2004) and Price and Yang (1998) with additions from Price (personal 

communication). 

Fig. 2.  Sketch of the idealized basin and some of the notations used. (a) Side view. (b) Top 

view. 

Fig. 3.  Basin (solid) and plume (dashed) density as a function of depth for five succeeding 

times, t1 = 0.01 Fτ , t2 = 0.1 Fτ , t3 = 0.2 Fτ , t4 = 0.5 Fτ , t5 = 1.5 Fτ  where 0F H wτ =  is the 

flushing time (1600 yrs). Vertical distribution of entrainment was 0
0

( ) (1 )P
zQ z Q

D
γ= −  

(i.e. constant entrainment) with Q0 = 1 Sv, D0 = 2500 m, and γ = 0.1. (a) γ = 1. (b) γ = 8. (c) 

Panel. (d) shows the three QP(z) obtained for γ = 0.1 (blue), γ = 1 (red), and γ = 8 (green). 

Fig. 4.  Basin (solid) and plume (dashed) density as a function of depth for the stationary 

diffusive solution (4.3) and (4.7). Vertical distribution of entrainment was 

0
0

( ) (1 )P
zQ z Q

D
γ= −  (i.e. constant entrainment) with Q0 = 1 Sv, and 0

0

D
w
κ

= . (a) The 

curves show the solution for three different γ, γ = 0.1 (blue), γ = 1 (red), and γ = 8 (green) 

and two different k; κ = 1.25e-4 m2/s (lower curves) and κ = 0.5e-4 m2/s (upper curves). 

Also shown as thick gray lines are the non-entraining solutions (3.21). (b) The curves show 
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the six QP(z) obtained for κ = 1.25e-4 m2/s (dashed), κ = 0.5e-4 m2/s (solid), γ = 0.1 (blue), 

γ = 1 (red), and γ = 8 (green). 

Fig. 5.  Basin (dashed) and plume (solid) density as a function of depth for 5 succeeding times, 

t1 = 0.01 Fτ , t2 = 0.1 Fτ , t3 = 0.2 Fτ , t4 = 0.5 Fτ , and t5 = 1.5 Fτ  where 0F H wτ =  is the 

flushing time (1600 yrs). Vertical distribution of entrainment was localized according to 

(4.8) with Q0 = 1 Sv, z0 = -1500 m and entrainment coefficient γ = 0.1. (a) γ = 1. (b) and γ 

= 8. (c) Panel. (d) shows the three QP(z) obtained for γ = 0.1 (blue), γ = 1 (red), and γ = 8 

(green). Note that the line types are different from Figs. 3−4. 

Fig. 6.  Basin (dashed) and plume (solid) density as a function of depth for 5 succeeding times, 

t1 = 0.01 Fτ , t2 = 0.1 Fτ , t3 = 0.2 Fτ , t4 = 0.5 Fτ , and t5 = 1.5 Fτ  where 0F H wτ =  is the 

flushing time (1600 yrs). Vertical distribution of entrainment was localized according to 

(4.8) with Q0 = 1 Sv, z0 = -3500 m and entrainment coefficient γ = 0.1. (a) γ = 1. (b) and γ 

= 8. (c) Panel. (d) shows the three QP(z) obtained for γ = 0.1 (blue), γ = 1 (red), and γ = 8 

(green). Note that the line types are different from Figs. 3−4. 

Fig. 7.  Basin (solid) and plume (dashed) density as a function of depth for the stationary 

diffusive solution (4.3) and .(4.7) (a) The curves show the solution for three different γ, γ = 

0.1 (blue), γ = 1 (red), and γ = 8 (green) and two different κ and z0; κ = 1.25e-4 m2/s and z0 

= -750 m (lower curves), and κ = 0.5e-4 m2/s and z0 = -250 m (upper curves). Also shown 

as thick gray lines are the non-entraining solutions (3.21). (b) The curves show the three 

QP(z) obtained for γ = 0.1 (blue), γ = 1 (red), and γ = 8 (green) for both z0 = -750 m (solid) 

and z0 = -250 m (dashed). The small increase in plume transport (10 %) for the blue lines is 

hardly visible. 
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Fig. 8.  Result of the Froude number parameterizations for 4 succeeding times, t1 = 

0.1 Fτ  (green), t2 = 0.2 Fτ  (yellow) t3 = 0.5 Fτ  (red), and t4 = Fτ  (blue) where 0F H wτ =  

is the flushing time (1600 yrs). The maximum bottom slope αMAX was 0.016 and situated at 

level z0 = 1250 m; all other parameter values according to Table 1. (a) Basin- and plume 

density as a function of depth for the Ellison and Turner parameterization. (b) Downward 

plume transport as a function of depth for the Ellison and Turner parameterization. (c) 

Basin- and plume density as a function of depth for the parameterization (2.5). (d) 

Downward plume transport as a function of depth for the parameterization (2.5).  

Fig. 9.  Basin (solid) and plume (dashed) density as a function of depth as calculated by the 

numerical solution to (3.16) - (3.19), with the plume transport parameterized according to 

(4.25) and the Ellison and Turner entrainment function (2.2), with the velocity given by 

(2.4) and the bottom slope (4.26). (a) The curves show the solution for three different 

αMAX; αMAX = 0.009 (blue), αMAX = 0.016 (red), and αMAX = 0.16 (green) and two different 

κ and z0; κ = 1.25e-4 m2/s and z0 = -1250 m (lower curves), and κ = 0.5e-4 m2/s and z0 = -

500 m (upper curves). Also shown as thick gray lines are the non-entraining solutions 

(3.21) and CRρ∆  as calculated by (4.28) for αMAX = 0.009 (blue), αMAX = 0.016 (red), and 

αMAX = 0.16 (green). (b) The curves show the six QP(z) obtained for αMAX = 0.009 (blue), 

αMAX = 0.016 (red), and αMAX = 0.16 (green) with κ = 1.25e-4 m2/s, z0 = -1250 m (dashed), 

and with κ = 0.5e-4 m2/s and z0 = -500 m (solid). 

Fig. 10.  Basin (solid) and plume (dashed) density as a function of depth as calculated by the 

numerical solution to (3.16) - (3.19), with the plume transport parameterized according to 

(4.25) and the entrainment function (2.5), with the velocity given by (2.4) and the bottom 

slope (4.26). (a) The curves show the solution for three different αMAX; αMAX = 0.009 
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(blue), αMAX = 0.016 (red), and αMAX = 0.16 (green) and two different κ and z0; κ = 1.25e-4 

m2/s and z0 = -1250 m (lower curves), and κ = 0.5e-4 m2/s and z0 = -500 m (upper curves). 

Also shown as thick gray lines are the non-entraining solutions (3.21) and CRρ∆  as 

calculated by (4.28) for αMAX = 0.009 (blue), αMAX = 0.016 (red), and αMAX = 0.16 (green). 

(b) The curves show the six QP(z) obtained for  αMAX = 0.009 (blue), αMAX = 0.016 (red), 

and αMAX = 0.16 (green)  with κ = 1.25e-4 m2/s, z0 = -1250 m (dashed), and with κ = 0.5e-4 

m2/s and z0 = -500 m (solid). 

Fig. 11.  Same as Fig. 9 but with z0 (level of maximum bottom slope) moved to below the 

diffusive surface layer; namely z0 = -2500 m (lower curves) and z0 = -1000 m (upper 

curves). All other parameter values same as in Fig. 9. 
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Fig. 1 
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Fig. 2 
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Fig. 3. 
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Fig. 4 
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Fig. 5 
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Fig. 6 
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Fig. 7 
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Fig. 8 
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Fig 9 
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Fig. 10 
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Fig. 11 
 
 

 
 


