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Abstract

Benthic chambers incorporating electrc stier mixing have been designed and

tested anij have proven reliable durng seven 18-31 day, 4300 ocean deployments. The

chambers are 21 cm diameter by 31 cm long acrlic tubes sealed with pvc lids. A stepper

motor and pressure tolerant electrnics contained within the lids ar magnetically coupled to

stirrng paddles to provide mixing within the chambers. The stirrers exhibit stable mixing

rates and uniform speeds between chambers, require less than 1/3 watt of power, and are

maitenance free. Laboratory calbration of stirng and mixing charactersitics demonstrate

that areal averaged equivalent seawater-sediment boundar layer thickness can be set to

agree with in situ measured values.
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Introduction
Benthic chambers, used to isolate and measure chemical exchange across small

aras of water-sediment interface, are increasingly common (Smith and Teal 1973; Smith

et al. 1979; Berelson et al. 1986; Devol 1987). The chambes generay incorporate a means

to mix the isolated overlying water so that hydrodynamics within the chamber simulate

those of the external seafoor (Smith et al. 1979; Santschi et al. 1984; Berelson et al. 1986;

Devol 1987; Buchholtz-Ten Brink et al. 1989). Methods of mixing have included
circulating water from an impeller (Smith et al. 1979; Santschi et al. 1983; James, 1974)

and use of rotating paddles or rods commonly drven by an electrc motor (Berelson et al.

1986; Devol 1987; Buchholtz-Ten Brink et al. 1989; Cahoon 1988). Studies have shown

that the rate of oxygen consumption within the chambers increases with increased stirrng

speed (Boynton et al. 1981; James, 1974) and that higher rates of consumption occur in

stired chambers as compared to un stirred ones (Hargrave, 1969). The exchange of
oxygen and other substances across the seawater-sediment interface is influenced by the

rate of diffusively mediated trsport across the thin stagnant boundar layer, the "diffusive

sublayer", separating the seawater and sediment. (Santschi et aI. 1983; Devol 1987). In

order to obtan accurate measurements of fluxes influenced by the diffusive sublayer, water

within the chamber must be ciculated at a velocity adequate to produce a sublayer thickness

similar to that outside the chamber. This velocity is dependent on rotation rate of the

stirrng paddles for a given geometry, and as a consequence, the rotation rate must be
known and constant. Diffculties in achieving constant stirng rates in some stirer designs

have been noted (Santschi et al. 1984; Buchholtz-Ten Brink et al. 1989). As par of the

development of a benthic flux instrument, we have designed and built chambers
incorporatig electrc stiers that exhibit stable mixing rates adequate to produce equivalent

difusive sublayer thicknesses in agreement with reported in situ values.

Materials and methods
The benthic chambers are 31 cm lengths of 20.8 cm i.d. x 3 mm wall cast acrylic

tube. Acrlic is inexpensive, trsparent, permitig inspection of recovered sediments and

is of low Oi permeability. Lids housing the stirrer and sampling and chemical injection

ports, are made of two PVC plates. A flat perforated baffe is secured -4cm below the lid

to break up and shed the central stiffng vortex. In operation, the plates are forced together

by a spring to provide an o-ring seal once the chamber has been implanted into the
sediment. The lower plate forms an o-ring seal with the acrylic tube. (Fig. 1)
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Fig. 1. Schematic of chamber assembly. A-Stepper motor. B-Fluid volume compensation port. e-18

pin DIP soket with 4017 ie and resistors. D-Dnve magnet E-Driven magnet. F-PVe cup. G-Stirrng
paddles. H-Baffe. I-Acrylic baeL. J-PVe chamber plate. K-PVe lid plate. L-Ud closure spnng. M-Lid
closure piston.
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The stier is a unipolar stepper motor (Warer Electrc, S. Benoit, IL) magnetically

coupled to 2.5 cm square PVC paddles fixed at a compound angle 45 degrees from the

vertcal to the ends of a PVC tee. The motor is drven by a single integrated circuit counter

and 4 field effect transistors (Fig. 2). that fit onto two 18 pm dip sockets cemented diectly

to the motor. Wells in the two portions of the upper lid plate form the housing for the

motor, drve circuit and drving porton of the magnetic coupling. An o-rig sealed pvc cup

isolates the motor from benthic chamber solution and provides a mount for the paddles and

drven porton of the magnetic coupling. A 50cc hospital solution bag fùled with Flourinert

FC-40 (3M Co.) is attached to the fluid filled housing to provide volume compensation for

the pressure tolerant system. A 3 conductor cable connects the housing to an external

battery and clock pulse. Figure 3 includes a photograph and schematic showing the motor,

drve circuit, pvc housing and stig paddles.
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Resistors: 1/4w carbon composition
Motor: Warer Electrc Model 13 Hybrid Steppe
Opto isolater: 4N32

Fig. 2. Circuit diagr of stepper motor drve electronics
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Fig. 3a. Photograph of stepping motor, drve, housing and stirrng paddles.

8 D

Fig. 3b. Schematic of stepper motor, drve circuit, and housing viewing motor face. A-Stepper motor.
B-18 pin DIP socket with 4017 IC and resistors. C-18 pin DIP socket with FET's and diodes. D-
Compression fitting port for electrcal cable. E-PVC motor enclosure
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There are several points worth noting about the motor and drve circuit design. To

achieve the miing requirements of benthic chambers deployed in stable flow regimes, the

stiers must rotate at slow stable speeds for periods up to may weeks. In cases where the

height of enclosed water may var on different deployments, the stirrng speed must be

adjustable to achieve the desired boundar layer thickness. In addition, to extend the
duration of deployment.to periods adequate for flux determnations in many pars of the

deep ocean, power required to drve the motor and electronics must be minimized. These

requiments are dificult to meet with some motors commonly used for under-sea work.

The brush commutated dc permanent magnet motor has been used in submersible

pumps, wiches and propulsion systems (Fugitt 1975; Heckman and McCracken 1979) but

is troublesome to use in oil filled pressure compensated systems requiring steady speeds.

Varable termnal resistance caused by commutator brushes arcing in the oil medium and

'hydroplaning' over the commutator cause the motor speed to var. For slow speeds (10-

100 rpm) used in benthic chambers, most inexpensive motors are operating near stalL. In

this condition, speed is very sensitive to changes insupply voltage and load torque as well

as brush resistace, all of which may var during the deployment. Gear motors commonly

used to provide slow speed, operate at high arature speed, making them susceptible to

brush hydroplaning and power losses due to the windage of arature rotation in fluid.
Although low speed 'torque' motors are available, we found the price ranged from $700-

$100/ea for small quantities. The stepper motor used in the present design avoids these
difficulties. It is brushless, operates at slow stable rotation speeds as low as 1 rpm for

periods of at least several weeks and is inexpensive ($30).

The specification of low power consumption applies to both the motor and drve

electronics. The stepper motor drws between 40 and 80 mA at 6v over its speed range of

1-90 rpm (Fig. 4). The drve circuit is CMOS technology and requires less than 20 uA at

6V. Exclusive use of solid electronic components i.e. integrated circuits, transistors,

resistors, permts the circuit to operate in fluid at ambient deep ocean pressure without the

need for pressure resistat housings or expensive undersea connectors.

The motor drve circuit operates by advancing the counter to energize successive

motor windings upon receipt of an external clock pulse. The motor speed is then
proportional to and has the same stabilty as the clock frequency. In our design, the clock

pulses are sent from a computer present on the benthic chamber platform, but the pulses

could easily be generated by a single integrated circuit such as the CMOS 4047. In the

latter case, motor speed could be controlled by a single potentiometer adjustment. Motor

speeds over the useable range of 1 to 90 rpm correspond to clock frequencies between

approximately 3-300 Hz.
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Fig. 4. Motor curent and stir rpm at stepping rates from 3-300 Hz. with 5.96 volt supply. SUrrer

was operate at 5.2 x 104 KPa and 20 C. in a laboratory pressure vesseL. Voltage and clock signals were
supplied from sources external to ta. RPM was measured using an electronic counter to count pulses
frm a 4 slot encoder. The enc'oder generated 4 counts per revoluuon of the motor shaft. For speds of 3

rpm and less, pulse were counte 3 umes for 5 minute periods and counts for each period divided by 20 to
give rpm. For other spes; pulses were counted 7 umes for 1 minute periods and counts'for each period
divided by 4 to give rpm. Curent was meaured with a digita volt meter connected between the voltage
supply and the motor circuit. Symbol size exceeds 1 sd of average rpm.

Results and discussion

As the sting mechanism is centr to performance of the benthic chamber, several

characterstics of the stier were investigated. We measured power requirements, available

torque, and speed stabilty of the stier. We also tested the effectiveness of stirrng by
determning the equivalent boundar layer thickness at the water-solid phase interface
withn the chamber.

The stirrers were tested at 5.2 x 1() KPa pressure and 20 C. in a laboratory

pressure vesseL. A slotted disk was fixed to the stirrer shaft as par of an optical shaft

encoder to provide a pulse frequency proportional to shaft rpm. External clock pulses

were sent to the assembly and current and rpm for each clock frequency were recorded.

The results, shown in figure 4, indicate that the device provides stable rotauon speeds over

the range 1-90 rpm under deep sea conditions of temperature and pressure. To test the

effect of varing voltage on stirrer speed, the stirrer was connected to a varable voltage

source, and clocked at 200 Hz. The stirrer was able to star up and rotate at 60 rpIT when

, operated at voltages ranging from 4.4-6.5 volts.
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Torque charcteristics of the motor were investigated using a simple dynamometer

consistig of an elastic band, calibrated for its spring constat, having one end attached to a

pulley on the motor shaft and the other end fixed. The motor was allowed to turn until it

began to miss steps. Transition from smooth motor operation to missing steps, to stalling

occured within approximately 3 mm of elastic band travel, corresponding to a small,

(-.35 mN-m), uncertainty in the torque determinations. Motor speed was calculated from
drve pulse frequency and the step size of 1.80. The results are shown in figure 5. The

maximum stier speed is about 90 rpm indicating that the torque required to drve the
stir is about one-tenth mN-m.
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1 0

. . . . . . . . . . . . .........v...........,............--... ...........n...__.....................,............,................................................,............,.......... .. .......... .. .......... .. ........... .. .......... .. ......... .. ......... .. ........
--¡--¡--I---¡r--r-t-!--j-r--lrr-
-r-rr-i--¡-rr--rl--f - - -

torque=13.89-2.54E-03"rpm-1.67E-03"(rpm)1\2 R=.995

20 30 40 50
rpm

60 70 80

Fig. 5. Motor torque at speeds from 15 to 72 rpm. The motor was operated 'wave drve' from a 6.25

volt supply. Torque was meaured using a simple dynamometer consisting of an elasuc band calibrated for
its forc at varous displacements. One end of the elauc band was held stauona and the other attached to
line connected to a pulley on the motor shaft. At each sped, the motor was drven unul it began to miss
steps, then stal. Displacement of the elasuc band was measured and converted to force, which applied at
the radius of the pulley allowed calculauon of torque. Displacement of the elasuc band at stal ranged from
3.5 cm at 72 rpm to 27.6 cm at 15 rpm. Transiuon from smooth motor operation to missing steps to
staling occured within approximately 3 mm of elastic band travel, introducing less than 0.3 mN-m
uncertnty in the torque values.

To test the effectiveness of stirng, experiments were performed to determne the

equivalent difusive sublayer thickness within the chamber. The thickness, z, was derived

from the rate of dissolved Cs transport between the stirred chamber solution and an
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underlying stationar be of molecular sieve, in a fashion simar to the radiotrcer

technique of Santschi (1983). When the rate of transport across the diffusive sublayer is

much slower than sorption processes in the stationar be, the rate of transport is described

by: dCt/dt=(Ct-Cri)*D/zH (1)
(Ct (t=O) = Col

where D is the molecular .diffusivity of Cs2+, Ct is the concentration of Cs2+ in the
chamber at time t, Co is the initial Cs2+ concentration, Cri is the solution Cs2+
concentration in the stationar bed layer, and H is the height of the column of stied
chamber solution. Cri is related to the change in Cs2+ concentration in the sti chamber

solution by: Cri=(Co - Ci) * b where: b = Mch/((KD * Me) + Ms), KD is the molecular

sieve distrbution coefficient, Mch is the mass of stired chamber solution, and Mr and Ms

are masses of the molecular sieve and solution in the stationar bed layer, respectively.

Substituting for Cri and integrating yields:

Dt/zH = 11(1 +b)*ln(((1+b)*Ct - b*Co)/Co) (2)
In cases where b -c-c 1, equation 2 reduces to:

Dt/zH = In (Cr/Co) (3)

the slope of a plot ofThe equivalent thickness, z, can be calculated from

lI(1+b)*ln(((1+b)*Ct- b*Co)/Co) vs. t (Fig. 6).

The magnitude of z gives the area weighted average of sublayer thicknesses over

the entire chamber floor. It does not provide information about the sublayer thickness or

overlying water velocity at any specific site. It should be emphasized that in utilzation of

the chamber it is the average value that is of prime interest in the evaluation of fluxes., We

confied that fluid velocity near the chamber floor was fairly homogeneous by visually

following the movement of injected dye. Small upward velocity components were present

and a 2-3 cm2 patch of low velocity existed near the chamber center, but flow was
generally rotationally uniform over the chamber floor.

The experiments were cared out in one of the benthic chambers cemented to an

acrlic base. Approximately 50g (70 cm3) 4A 100/120 mesh molecular sieve (Alltech

Associates) was placed in the chamber, the barrel was filled with .005N NaHC03 to

stabilze pH, and the benthic chamber lid closure was fined onto the bareL. The stirrer was

tured on and the solution allowed to circulate and equilbrate overnight. The assembly

enclosed a volume of 3282 cc, with an 8.7 cm column of water overlying a 2 mm thick

bed layer of molecular sieve. A 7 ml volume of 75.1 mM CSCl2 was added to the
circulatig solution to give 16.0 uM initial Cs2+ concentrtion. Aliquots were withdrawn at

intervals over a 2-3 hour period for Cs analysis by flame atomic absorption.
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Fig. 6. Modellng of the Cs2+ concentrations for the chamber uptae experiments used to

estimate diffusive sublayer thickness. The slope of the plots are proportonal to equivalent bounda
layer thcknes. Shown are data from severa of the exPerimenta runs.

Separte experiments were conducted at 8 sting speeds in the range 40-80 rpm.

The rates of Cs2+ removal from the stied chamber solution were at least 60 to 100 times

lower than rates measured in well shaken batch experiments, indicating the sorption rate is

rapid compared to transport across the diffusive sublayer. The value of b (eq. 2) was

small and corresponded to a maximum Crl/C t value of .06 or less throughout all
experiments. Figure 7 summarzes the effect of stirer speed on diffusive sublayer

thickness. The minimum thickness practical for the geometr we use is approximately

300um (i.e. stirrng at 80-90 rpm). This permts us to extend our coverage beyond the

rage reported for the oceans of roughly 500 to 1500um (Santschi et al. 1983; Anderson et

al. 1989). There is about a 5 percent change indiffusive layer thickness per 10 percent

change in sting speed at 60 rpm. Since varation in sting speed is less than 2 percent

(Figu 4), errors in flux estimates resulting from uncertnities in sting speed contrbute
, very little to reported flux uncertainities of 15-20 percent (Bender et aI., 1989; Berelson et

al., 1987; Deyol, 1987).
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Fig. 7. The effect of sting sped on equivalent difusive sublayer thickness.

The real test of chamber operation has come from deployment for extended periods

in the deep sea. Thee of the chambers have been built and installed as par of our free

vehicle benthic lander. The lander has been deployed 7 times at a depth of 4300 meters,

each tie for a period of 18 to 31 days. In all but one case, the stiers in all chambers

have been operating prior to and following the deployments. On the 31 day deployment,

one stier was not sting on recover due to low battery voltage.

Consumed capacity durng a deployment was evaluated for several stier batteries

to estiate the average curnt drawn by the stiers during the deployment and thereby the

average sting speed (Fig. 4). We measured the amp-hrs required to fully recharge the

batteries following the deployments and found that a capacity equivalent to 50-54 in for

the durtion of deployment had been consumed from each battery. While the consumed

battery capacity represents only the integrated curent over the durtion of deployment, it is

consistent with the measured current of 53 in (6.2V, 2 degrees C., 5.2 x 1() KPa)

corresponding to the set speed of 60 rpm.
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Conclusion
We feel the chamber design is a versatile solution to many problems encountered in

benthtc chamber operation. It exhibits mixing rates adequate to establish an equivalent

diffusive sublayer thickness that lies within the range of reported ocean values. The speed

stabilty and low power requirements of the stig mechanism wil maintain stable mixing

rates over deployments up to 1 month. Simple speed control allows the rate of mixing to

be adapted to chambers of different volumes. A single clock can be used to drve several

stiers thereby assuring uniform speeds in each chamber. The small size and pressure

balanced design allow the sting mechanism to be integrated within the chamber lid and

avoids the need for expensive pressure cases and undersea connectors. Magnetic coupling

to the stirng paddles prevents leakage of electronic fluid into the chamber and avoids

torque loss from bushing type shaft seals. Four 'D' cell alkaline batteries wil furnish

sufficient power for short chamber incubation periods up to a week, common for
deployments in coastal waters. Finally, the chambers have proven very durable. No
damage to the acrylic tube or lids has occurred in seven deployments and inspection of the

stirrers after 75 days of operation revealed no wear, fluid decomposition, or seawater
leakage. Routine maintenance consists solely of rinsing the chamber and exposed stirrng

paddes and coupling magnet with fresh water following recovery.
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