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ABSTRACT

Tests were conducted. on a ful1.,scale model of the
emergency forebody release used in the' deep-diving
submarines ALVIN, SEA CLIFF, and TURTLE. The
model was machined from metal to the same dimen.,
sional tolerances as the prototype. Resistance
strain gages, attached to the model, permitted
measurement of forces on component parts of the
device. Of primary concern wàs the bending stress
which might be set up. in the release operating
shaft when the submarine is submerged in an
inclined position. Tes ts were arranged to
simulate three possible conditions of loading of
the release device at a 30 degree vehicle list
angle: case (1) righting moment of inclined fore-
body resist~a. by release components only; case (2)
righting moment resistéd by release with assistance
from lower guides; and case. (3). righting moment
resisted by couple set up by release and rubber
support ring. Test results show that shaft bending
stresses (for ALVIN) are high (200,000 psi) for the
case (1) condition, lower (40,000-90,000 psi) for
case (2). and essentially zero for case (3). The
conclusion is that the present forebody release
design is adequate for all submarine attitudes
encountered in normal operation, provided the
vehicle has been assembled so that contact between
sphere. and rubber ring is assured at all times'..
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I INTRODUCTION

During ini tial trials of the deep-diving research
submarine ALVIN certain difficul ties were experienced
with the emergency forebody release. An effort to
actuate the release during a test in shallow water
resulted in galling of the contacting stainless steel
parts. It was also recognized at that time that
because the operating shaft projected as it did some
2-3 inches below the end of its sleeve bearing, any
unbalanced side forces on the shaft could result in
high shaft bending stresses. Normally, wi th the
submarine in an upright position, the release dogs
apply equal and opposite side forces to the end of
the shaft. If the submarine is inclined while
submerged the buoyant force of the forebody causes
a righting moment which must be resisted at least in
part by the emergency release device. It was thought
that this resisting moment could set up a severe
bending condition at the release.

In 1965 a new forebody release was designed and built
with the objective of eliminating galling and
reducing possible shaft bending stresses to a minimum
(Ref. 1) 0 It was felt that the shaft bending problem
could be lessened in two ways: (a) by reducing the
length of shaft which projects outside the hull, and
(b) by increasing the diameter of the projecting
portion of shaft. These two ideas were incorporated
into the quarter.,turn cam which is the basis of the
present design. While no difficulties of any kind
have arisen with the newly designed ,release ins taIled
in ALVIN, the need has been felt for a quantitative
evaluation of the forces in the release mechanism.
This feeling was intensified when, during the
planning of the AUTEC submarines, the same forebody
release design was adopted, but wi th a reduced shaft
diameter.

Several attempts have been made to calculate the forces
set up by unsymmetrical loading of the release.
However, investigators found that they were forced
to make certain assumptions of questionable' validity.
Because of the irregular shapes of the members,
uncertainties were present regarding points of
contact and force directions. A straightforward
solution to the statically indeterminate problem
appeared not to be possible, and those who attempted
solutions agreed that results were generally
unsatisfactory. Because of these di fficul ties the
decision was made to test a full-scale model of the
device.
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II,DESG-RIPTION OF TESTS

The full scale model of the emergency sphere release
was built from the drawings that weredus:ed, to manu-
facture the actual ALVIN release. All dimensions,
tolerances and surface finish requirements specified
for the prototype were observed 'for the modeL
Model material was aluminum' alloy 606l-T6. Pieces
were cut from3! 4 inch thick plate and were brought
to' finished dimensions on a milling machine.. ,Since

, the original release components are L 5 inches thick,
model thickness was one-half that of the actual
device. However, since the device is essentially a
. plane '''mechanismll, 'itwas considered'sufficient to
preserve full scale in the plane' of"motion. An
exception to this was' the shaft, which was made full

'scale in three dimensions.

Strain gages were mounted in three locations on the
model (Fig. 16) . Two gages were placed on the shaft
diametrically opposite each'other at s,ection Y-Y.
These gages, placed in adjacent arms of the strain
indicator bridgej responded to bending .strains at

. that section with double the sensitivity of a,single
gage. On dog No. 1 a portion was cut away below the
contact face,and a 1/32 inch slot was milled parallel
to the face and 3/16 inch away from it. This left
a cantilever beam whose outer side was the dog contact
surface. One strain gage was placed on this cantilever
as close as practicable to the fixed end ,to. provide
response to forces applied to the dog by the cam (see
alsO Fig. 1). A single strain gage was placed on dog
No. 2 at about mid-length on the innerface.~ In early
tests this gage was found to have very low"output and
i twas later discarded. . The gages'''on the shaft. and on
dog No. 1 provided all necessary data for the complete
force solution.

Calibra tion was done by separatelY'ffounti:ng"each s train-
"gaged' component firmly'to the: laboratörybench,and

applying known loads by-means of' dead weights ,'ei ther
directly or through a lever arm on aknife..'edge' support.
The loads were applied at the correct contact,points
after these points had been located in the assembled
modeL The system used for calibrating the gages on the
shaft is shown in Figure 3. Curves were plotted of
strain indicator difference readings against applied

, load. Thes e curves were later us ed to determine internal
forces in the assembled model, which resulted from the
external test load.
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Test loads were applied in such a way as to simulate
loading of the actual device when ~ ,thè .sUbmarine is
submerged in an inclined posi tiòn. An .inclination
angle of 30 degrees was used since this was
considered to be the greatest angle likely to be
encountered in normal operation. Tes.ts were
arranged to provide three possible conditions of
loading of the release: case 0-) righting moment
of inclined forebody resisted by release components
only; case (2) righting moment resisted by release
wi th assistance from lower guides; and case (3)
righting moment resisted by couple set up by release
and rubber support ring.
In all tests the model was supported .in ,a position
similar to that which it would occupy in the' submarine,
by means of a back-up plate bolted to the laboratory
floor. A vertical arm was attached to the model and
at the upper end of this arm the test loads were
applied at the desired angle. The length of the arm
was approximately equal to the height of the center
of buoyancy of the forebody 0 Actually the gravity and
buoyancy forces act at two distinct points although
in this case these points are quite close to each
other. For simplification in the tests a single point
was selected at which a force repres.enting the net
difference of gravity and buoyancy forces would be
applied. This point was located so that .thè force and
moment reactions at the sphere release would bear the
same relationship to each other in the model as they
do in the actual submarine a Figures 4 and 5 show
photographs of this arm as used in cases(l )and (2) a For
the case (2 )loading a series of tests were done for
different values of clearance between the lower quides
and the release jaws. Clearance values, set by means
of shims before each test, were 1/8 inch, 1/16 inch,
.030 inch and .015 inch.' For the case (3)tests'addition-
al wooden structure was required to represent that
portion of the sphere which contacts the rubber suppor.t
ring. This is shown in Figure 6. Case (3) testing was
done in two ways: (a) where the rubber support ring is
represented by a pivot or knife edge (Fig. 7 ), and (b)
where a roller or simple support is used for this
purpose (Fig. 8 ).
Since the model test loads were much .smaller in
magni tude than the loads encountered by thè prototype
device, it was necessary to balance out the weight of
the model and associated structural parts . This was
done by a system of counterweights. Cables from the
weights were attached as nearly as possible to centers
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of gravity of the parts. By this .means . counter.,
balancing was achieved but nno unwanted' rotational
moments were introduced.

Test loads were in the form of calibrated dead
weights which were applied'in one-hal.f, one,or five
pound increments, depending on' the'test. Readings
were taken as the weights were" added ,.and again as
they were removed. In preliminary,tes,ts,.it was
determined that strain gage readings were ,linear over
a range of. loads but began to fall offas'this range
was exceeded. This was probably caused by
internal forces being great enough to distort
slightly the original geometry of the linkage.
Subsequent testing was done within the linear range
of strain gage outputs.
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III RESULTS

The numerical results obtained from the tests are shown
in Table 1. Forces at the contact points and at the
dog pivot pins are presented in dimensionless form as
functions of the appliedtest",load-P(where'P'represents

'the net lift of the forebody -D~W) . Similarly, the
bending moments and bending stresses at the'section x-x
of the release shaft are shown in terms of P. The
actual bending stresses in the case of ALVIN are given
in the final column. The stress calculations for ALVIN
are based on data taken from the most recent weight-
stability computations for that submarine (Ref. 2).

In computing the forces in the release device, readings
of the strain gage on dog No. 1 permitted the determina-
tion of force FB directly. A summation of moments on
the shaft, using force FB and readings of the gagès ori
the shaft, provided a solution for force FA. Finally,
moment sumations were done for the dogs separately,
which yielded values for the remaining -forces. With
forces FA and FB known, it was possible to evaluate the
bending moment and pending stress at section X~X of the
shaft, where bending would naturally occur in the real
device.

The directions of the forces at the dog pi vòt pins are
the approximate ones necessary to satisfy static
equilibrium for the system.

Contact points were located by direct examination. It
was found that by placing a light source behind the
model the exact locations of contact could be seen and
photographed. An example of this technique is shown
in Figure 2.

Corresponding forces and stresses for SEA CLIFF and
TURTLE would be higher for two reasons. The net fore-
body lift of these vehicles is ,approximately 4000 pounds
against 1844 pounds for ALVIN.- Inaddition,the release
shaft diameter for the new submarines is 0.810 inch
compared to 0.9375 ,inch for ALVIN, which would cause
shaft bending stresses in SEA CLIFF and TURTLE to be
approximately 55 percent greater than those -for ALVIN.
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iv 'DISCUSSION

It can be seen that' the' -loading"of"casøt'l)"-wotrld produce
excessively high bending'strøsses--in'thè-rèlè'ase shaft.
However, it seems' unlikely that this loading would be
encountered in practise,' because 'of ',the'presence of
the lower guidés ~ 'These gùiaès"arepermanenti.y attached
to the frame members of the submarine afterbody and (in
the case of ALVIN) have- been installed with- a specified
clearance of 0.030 inch'. Thus, the'-'loading of case (2)
is probably the most"severethat- cou':ld'-be' experienced'

, , if, the pressure sphere'shou'ld,float free of the rubber
support: ring. 'The"'case (3')loadingu 'is'- that which is to
be'expected in' norma'l 'operation"of'a',correctly
assembled vehicle of the' ALVIN"type. Durin'g assembly
the air weight of the' forebbdy will compress,the rubber
of, the support ring slightly.. , Tn ,the :water'the buoyant
'forebody willtend--to rise and relax the compressed
rubber to an extent' which' will depend upon the vertical
clearance in the release device and, poss:ih:l:ec'deflection
of frame members '-to -which the'lower release components
are attached~ If the"total possible vertical motion
can be kept less than the initial compression of the
rubber, the forebody wi 11 be held firmly agains t the

, rubber ring at all times.
In- cases (1) and (2) motion"of,the forebody is,
g-enerally speaking', "one' of rotation' about a center

- located at the releasedevice~ 'In:case (1)- 'the release
alone must resist thisrotatiòn ana forces on the
release components can' reach excessively high values.

-In case (2) a contact point 'is ' established at the lower
guide on one side (Fig. 10 ). This tends to prevent
further rotation and effectively reduces the bending
tendency at the shaft. In case (3) the rubber support
ring prevents forebody rotation about the release and,
being a fixed point, acts as a pivot about which any
possible rotation must occur. The reaction at the
release is now simply a force, the direction of which
depends upon the nature of the constraint at the rubber
ring. Since the rubber ring is not attached to the
sphere a simple support is suggested, but the presence

"of. friction could cause behavior to approach that of a
pivot. In the tests ,both' ,siinple sup.:iort and pivot
were used in an effort to bracket the real situation.
Tests showed that the twocondi tions ,produced results
which did not differ markedly .In case (3a) (pivot
support) the reaction R at the release was 2190 pounds
and it made an angle ~ with the vertical of 34 degrees
(Fig. 14). In case (3b) (simple support) the force R

was 2480 pounds and the ,angle oc was 5.5 degrees
(Fig. 15). Since shaft bending was not present in
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either case, it appears that there is ,a ,range of values
of the angle 0( for which the same symmetry of forces
on the cam exists.

Time did not permit model testing at forebody list
angles other than 30 degrees but,some.brief calculations
were performed to determine the magnitude-and direction
of the reaction R at various"other values,o-f forebody
inclination. The' res.uits-Öf'these.graphiÖal solutions
are presented in Table 2 along with the values for 30
degrees. The values shown in Table 2 indicate that as
far as case (3) loading (sphere in contact with rubber
ring) is concerned, large angles of roll or list have
relatively small effect on the reactive force at the
sphere release. The maximum value ofR is seen to be
2570 pounds at a list angle of 48 degrees; this is
only 4 percent greater than the value of R at 30 degrees,
the angle at which the testing was done.

The shaft bending stresses presented herein for ALVIN
are based on linear extrapolation of the model test
resul ts . It is assumed that deformations are
negligible and that original geometry is preserved.
The relatively high loads in the actual device are
probably sufficient to cause some deformation of
release components resulting in a redistribution of
internal forces. Since preliminary model tests
indicated a falling off of internal forces as a
result of redistribution this also could be true in
the prototype. If so, predicted stresses are
probably conservative.
It should be noted that the stresses reported in Table 1
are bending stresses only. The forces on the cam (in
cases 1 and 2) are such that direct shear stresses are
also present in the shaft at section x-x. A complete
solution would include determination of these shear
stresses, and, with the aid of a Mohr circle diagram,
the determination of maximum stresses at the point in
question. However, sample calculations of this type
showed that the direct shear stresses had values which
were only 3 to 7 percent of the bending stress values~
and the resulting maximum .stresses would be not over
one, percent greater than the bendingstresse's;; Torsion-
al shearing stresses would be present ~nthe shaft only
if the shaft were rotated for the purpose of actuating
the release. The pressure of, ,thedogsagains t the cam
would set up friction forces which would resist
rotation, and the torque required to actuate the release
from wi thin the sphere would be a fùnction of these
friction forces. Rough calculations indicate that the
torque required to effect release would be approximately

-7-



100 foot pounds for the normal:level- csubrnarine (ALVIN)
and approximately 200'foot pounds for ALVIN inclined
at 30 degrees (case 3 condition). ,T-he ,torsional shear
stress in the ALVIN release shaft corresponding to a
torque of 200 foot-pounds would be,14r9-00 psi, well
below the torsional yield strength value of 62,000
psi for the Monel K-500 material of which the shaft is
made.

The foregoing torque values are approximate only, being
based on an estimated value 'for the coefficient of
friction of 0.6. A detailed study of friction effects
in the release device, relating both --to ,the torque
required to actuate, and the force reactions on the
other parts of the device, has not, -been done . It is
recognized that the effects of friction in the test
model may be different from those in the actual device.
The materials used and the presence of sea water
environment in the case of the real mechanism :make it
practically impossible to model these effects. The
intention in these tests therefore was to determine
the essential force system due to the geometry of the
release. It may be possible to collect reliable
friction data for the metals in ques-tion and modify
the test results accordingly, but this has not been
included in the work covered by this report.
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VI APPENDIX A - FIGURES
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Fig. 5 Test apparatus for case 2 loading (lower guides in place)
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Fig. 8 Detail of case 3b loading (rubber support ring represented
by roller support)
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Fig. 13 Schematic of Loading for Case 1 and Case 2
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VIII APPENDIX C .. SAMPLE CALCULATION



Calculation of Shaft Bending Stress

Sample Calculation for Case (1)

1. Strain Gage Outputs

Shaft: Ks = 60.6 Di v. per pound P

Dog No.1: KD = 244 Div. per pound P

2. Gage Calibration Constants

Shaft: Cs = 2. 33 Div .'per inch-pound

Dog No.1: - CD = 12 Div. per pound

3. Bending Moment at Section Y-Y of Shaft

Myy = 60.6 = 26 inch-pounds per pound P
2.33

4. Force at B

FB = 244 = 11. 1 pounds per pound P22
5. 'Force atA (See Fig. 16)

a. Direction of FA: 46.6° with horizontal

Sin 46. 6 = . 72 7 Cos 46.6 = .687

b. Sum of-Moments at Section Y-Y

11.1 (5.047) - .687 (5.625) FA
+ 0727 11.500) FA = 26
From which FA = 10. 8 pounds per pound P

6. Bending Moment at Section x-x

Mxx - 11.1 Co 672) - 10. 8 (. 6 8 7) ( 1. 2 5 0 )
+ 10~8 (.727) (10500)
= 9.97 inch-pounds per pound P

7. Bending Stress at-Section X--X(for ALVIN)

a. Moment - of-Inertia of Shaft

I= 1T (d)4= TT (.9375)4 = 00379 in.464 64
c = dl2 = . 468 in.



b.Bending Stress
rTxx -"Me

I
'==9. 97( .468),

.0379
= 123'psI per pound P

For'P-:=- , 1844 pounds

'rT - 123(1844) = 227,oåo psixx

8. Sum of Moments' on Dog No. 1

2.l2FD = 4.16 FB

Fb == 4.16 '(1-1.1) = 21. 8 pounds.per pound P
2.12 '

9. Sum of Moments on Dog No. 2

2Ft:= 2. 25 FA

FC == 2.25 (10.8:)":: 12.2 pounds"p'er pound P~



ix APPENDIX D- NOMENCLATURE

W - Weight in air of forebody of submersible vehicle,
pounds.

D - Displacement of forebody of submerged vehicle,
pounds of sea water.

P - Difference of displacement and air weight of fore-
body D-W¡ also value of test load anDlied to model,
pounds.

8 - Angle of list or inclination of submerged vehicle,
measured from vertical, degrees.

M - Righting moment of forebody of inclined submerged
vehicle, inch-pounds.

R - Resultant reactive force at forebody release, pounds.

~ - Angle of direction of reactive force R, measured
from vertical centerline of vehicle, degrees.

Q - Resultant reactive force at rubber support ring due
to righting moment of inclined.forebody i pounds.

Mxx- Bending moment at section x-x of release shaft,
inch-pounds 0

Myy- Bending moment at section y-y of release shaft,
inch-pounds.

o;x- Maximum bending stress at section x-x of releaseshaft, psi.
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a
t
 
s
h
a
f
t
 
b
e
n
d
i
n
g
 
s
t
r
e
s
s
e
s
 
(
f
o
r
 
A
L
V
I
N
)
 
a
r
e
 
h
i
g
h
 
(
2
0
0
,
0
0
0
 
p
s
i
)

f
o
r
 
t
h
e
 
c
a
s
e
 
(
1
)
 
c
o
n
d
i
t
i
o
n
,
 
l
o
w
e
r
 
(
4
0
,
0
0
0
-
9
0
,
0
0
0
 
n
s
i
)
 
f
o
r
 
c
a
s
e
 
(
2
)
,

a
n
d
 
e
s
s
e
n
t
i
a
l
l
y
 
z
e
r
o
 
f
o
r
 
c
a
s
e
 
(
3
)
.
 
T
h
e
 
c
o
n
c
l
u
s
i
o
n
 
i
s
 
t
h
a
t
 
t
h
e

n
r
e
s
e
n
t
 
f
o
r
e
b
o
d
y
 
r
e
l
e
a
s
e
 
d
e
s
i
ç
i
n
 
i
s
 
a
d
e
o
u
a
t
e
 
f
o
r
 
a
l
l
 
s
u
b
f
T
¿
i
r
i
n
e

at
tit

ud
es

 e
nc

ou
nt

er
ed

 in
 n

or
na

 1
 o

pe
ra

t i
 o

n 
i p

ro
vi

 d
ed

 th
e 

ve
hi

 c
 1

 e
h
a
s
 
b
e
e
n
 
a
s
s
e
m
b
l
e
d
 
s
o
 
t
h
a
t
 
c
o
n
t
a
c
t
 
b
e
b
i
e
e
n
 
s
p
h
e
r
e
 
a
n
d
 
r
u
b
b
e
r
 
r
i
n
g

i
s
 
a
s
s
u
r
e
d
 
a
t
 
a
l
l
 
t
i
m
e
s
.

W
o
o
d
s
 
H
o
l
e
 
O
c
e
a
n
o
a
r
a
p
h
i
c
 
I
n
s
t
i
t
u
t
i
o
n

R
e
f
e
r
e
n
c
e
 
N
o
.
 
6
9
-
6
8

E
X

P
E

R
IM

E
N

T
A

L 
S

T
R

E
S

S
 A

N
A

LY
S

IS
 O

F
 M

O
D

E
L 

O
F

 E
M

eR
G

E
tlC

Y
 F

O
R

E
B

O
O

Y
n
E
L
E
A
S
E
 
D
E
V
I
C
E
 
U
S
E
D
 
I
N
 
D
E
E
P
 
D
I
V
I
N
G
 
R
E
S
E
A
R
C
H
 
S
U
8
M
A
R
I
N
E
S
 
A
L
V
I
N
,

S
E
A
 
C
L
I
F
F
 
A
N
D
 
T
U
R
T
L
E
 
b
y
 
A
r
n
o
l
d
 
G
.
 
S
h
a
r
p
 
a
n
d
 
J
a
m
e
s
 
R
.
 
S
u
l
l
i
v
a
n
.

~ 
A

ug
uš

f9
. C

on
tr

ac
t N

on
r-

34
84

(0
0)

; N
P 

26
0-

10
7.

T
e
s
t
s
 
w
e
r
e
 
c
o
n
d
u
c
t
e
d
 
o
n
 
a
 
f
u
l
l
-
s
c
a
l
e
 
m
o
n
e
l
 
o
f
 
t
h
e
 
e
m
e
r
g
e
n
c
y

fo
re

 
bo

dy
 r

e 
1 

ea
se

 u
se

d 
1 

n 
th

e 
de

ep
-d

l v
i n

g 
su

bm
a 

ri 
ne

s 
A

LV
IN

, S
E

A
 C

LI
 F

F
 ,

a
n
d
 
T
U
R
T
L
E
.
 
T
h
e
 
m
o
d
e
l
 
w
a
s
 
m
a
c
h
i
n
e
d
 
f
r
o
m
 
m
e
t
a
l
 
t
o
 
t
h
e
 
s
a
m
e
 
d
i
m
e
n
-

s 
i o

na
 1

 to
 1

 e
ra

nc
es

 a
s 

th
e 

pr
ot

ot
yp

e.
 R

es
 i 

st
an

ce
 s

tr
a 

i n
 g

ag
es

,
a
t
t
a
c
h
e
d
 
t
o
 
t
h
e
 
m
o
d
e
l
,
 
p
e
n
n
i
t
t
e
d
 
m
e
a
s
u
r
e
m
e
n
t
 
o
f
 
f
o
r
c
e
s
 
o
n
 
c
o
m
p
o
n
e
n
t

p
a
r
t
s
 
o
f
 
t
h
e
 
d
e
v
i
c
e
.
 
O
f
 
p
r
i
m
a
r
.
v
 
c
o
n
c
e
r
n
 
w
a
s
 
t
h
e
 
b
e
n
d
i
n
g
 
s
t
r
e
s
s

w
h1

 c
h 

m
ig

lit
 h

e 
se

t u
p 

in
 th

e 
re

le
as

e 
op

er
at

in
g 

sh
af

t w
he

n 
th

e
s
u
b
m
a
r
i
n
e
 
i
s
 
s
u
b
m
e
r
g
e
d
 
i
n
 
a
n
 
i
n
c
l
i
n
e
d
 
p
o
s
i
t
i
o
n
.
 
T
e
s
t
s
 
w
e
r
e

ar
ra

ng
ed

 to
 s

im
ul

at
e 

th
re

e 
po

ss
ib

le
 c

on
c!

iti
on

s 
of

 lo
ad

in
ci

 o
f t

he
r
e
l
e
a
s
e
 
d
e
v
i
c
e
 
a
t
 
a
 
3
0
 
d
e
g
r
e
e
 
v
e
h
i
c
l
e
 
l
i
s
t
 
a
n
g
l
e
:
 
c
a
s
e
 
(
1
)

r
i
q
h
t
i
n
q
 
m
O
M
e
n
t
 
o
f
 
i
n
c
l
i
n
e
d
 
f
o
r
e
b
o
d
y
 
r
e
s
i
s
t
e
d
 
b
.
v
 
r
e
l
e
a
s
e
 
c
o
m
-

po
ne

nt
s 

on
ly

; c
as

e 
(2

) 
riç

ih
tin

C
! m

om
en

t r
es

is
te

d 
bv

 r
el

ea
se

 w
ith

as
si

st
an

ce
 f

ro
m

 lo
w

er
 g

ui
de

s;
 a

nd
 c

as
e 

(3
) 

ri
ci

ht
in

g 
m

om
en

t r
es

is
te

d
b
y
 
c
o
u
p
l
e
 
s
e
t
 
u
p
 
b
y
 
r
e
l
e
a
s
e
 
a
n
d
 
r
u
b
b
e
r
 
s
u
p
p
o
r
t
 
r
i
n
g
.
 
T
e
s
t
 
r
e
s
u
l
t
s

s
h
o
w
 
t
h
a
t
 
s
h
a
f
t
 
b
e
n
d
i
n
g
 
s
t
r
e
s
s
e
s
 
(
f
o
r
 
A
L
V
I
N
)
 
a
r
e
 
h
i
g
h
 
(
2
0
0
,
0
0
0
 
p
s
i
)

f
o
r
 
t
h
e
 
c
a
s
e
 
(
1
)
 
c
o
n
d
i
t
i
o
n
,
 
l
o
w
e
r
 
(
4
0
,
0
0
0
-
9
0
,
0
0
0
 
o
s
i
)
 
f
o
r
 
c
a
s
e
 
(
2
)
,

a
n
d
 
e
s
s
e
n
t
i
a
l
l
y
 
z
e
r
o
 
f
o
r
 
c
a
s
e
 
(
3
)
.
 
T
h
e
 
c
o
n
c
l
u
s
i
o
n
 
i
s
 
t
h
a
t
 
t
h
e

n
r
e
s
e
n
t
 
f
o
r
e
h
o
d
y
 
r
e
l
e
a
s
e
 
d
e
s
i
ç
i
n
 
i
s
 
a
d
e
a
u
a
t
e
 
f
o
r
 
a
l
l
 
s
u
b
r
n
e
r
i
n
e

a
t
t
i
t
u
d
e
s
 
e
n
c
o
u
n
t
e
r
e
d
 
i
n
 
n
o
n
n
a
l
 
o
p
e
r
a
t
i
o
n
,
 
p
r
o
v
i
d
e
d
 
t
h
e
 
v
e
h
i
c
l
e

h
a
s
 
b
e
e
n
 
a
s
s
e
m
b
l
e
d
 
s
o
 
t
h
a
t
 
c
o
n
t
a
c
t
 
b
e
b
i
e
e
n
 
s
p
h
e
r
e
 
a
n
d
 
r
u
b
b
e
r
 
r
i
n
~

i
s
 
a
s
s
u
r
e
d
 
a
t
 
a
l
l
 
t
i
m
e
s
.

1.
 E

xp
er

im
en

ta
l S

tr
es

s 
A

na
lY

Si
l

2
.
 
E
r
.
e
r
g
e
n
c
y
 
F
o
r
e
b
o
d
y
 
R
e
l
e
a
s
e

3
.
 
R
e
s
e
a
r
c
h
 
S
u
b
m
a
r
i
n
e
s

i
.
 
S
h
a
r
p
,
 
A
r
n
o
l
d
 
G
.

I
I
.
 
S
u
l
l
i
v
a
n
,
 
J
a
m
e
s
 
R
.

I
I
I
.
 
N
o
n
r
-
3
4
8
4
(
0
0
)
;
 
N
R
 
2
6
0
-
1
0
7

T
h
i
s
 
c
a
r
d
 
i
s
 
U
N
C
L
A
S
S
I
F
I
E
D

J
1
.
 
E
x
p
e
r
1
m
e
n
t
a
l
 
S
t
=
S
i
l

2
.
 
E
m
e
r
g
e
n
c
y
 
F
o
r
e
b
o
d
y
 
R
e
l
e
a
s
e

3
.
 
R
e
s
e
a
r
c
h
 
S
u
b
m
a
r
i
n
e
s

I
.
 
S
h
a
r
p
,
 
A
r
n
o
l
d
 
G
.

I
I
.
 
S
u
l
l
i
v
a
n
,
 
J
a
m
e
s
 
R
.

I
I
 
I
.
 
N
o
n
r
-
3
4
8
4
 
(
0
0
)
;
 
N
R
 
2
6
0
-
1
0
7

T
h
1
s
 
c
a
r
d
 
I
s
 
U
N
C
L
A
S
S
I
F
I
E
D

J

W
o
o
d
s
 
H
o
l
e
 
O
c
e
a
n
o
g
r
a
p
h
i
c
 
I
n
s
t
i
t
u
t
i
o
n

R
e
f
e
r
e
n
c
e
 
N
o
.
 
6
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-
6
8

E
X
P
E
R
I
M
E
N
T
A
L
 
S
T
R
E
S
S
 
A
N
A
L
Y
S
I
S
 
O
F
 
M
O
D
E
L
 
O
F
 
E
M
E
R
G
n
l
C
Y
 
F
O
R
E
8
0
D
Y

R
H
E
A
S
E
 
D
E
V
I
C
E
 
U
S
E
D
 
I
N
 
D
E
E
P
 
D
I
V
I
N
G
 
R
E
S
E
A
R
C
H
 
S
U
8
M
A
R
I
N
E
S
 
A
L
V
I
N
,

S
E
A
 
C
L
I
F
F
 
A
N
D
 
T
U
R
T
L
E
 
b
y
 
A
r
n
o
l
d
 
G
.
 
S
h
a
r
p
 
a
n
d
 
J
a
m
e
s
 
R
.
 
S
u
l
l
i
v
a
n
.
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T
e
s
t
s
 
w
e
r
e
 
c
o
n
d
u
c
t
e
d
 
o
n
 
a
 
f
u
l
l
 
N
s
c
a
l
e
 
m
o
d
e
l
 
o
f
 
t
h
e
 
e
m
e
r
g
e
n
~
y

f
o
r
e
b
o
d
y
 
r
e
l
e
a
s
e
 
u
s
e
d
 
i
n
 
t
h
e
 
d
e
e
p
-
d
i
v
i
n
g
 
s
u
b
m
a
r
i
n
e
s
 
A
L
V
I
N
.
 
S
E
A
 
C
L
I
F
F
,

a
n
d
 
T
U
R
T
l
E
.
 
T
h
e
 
m
o
d
e
l
 
w
a
s
 
m
a
c
h
i
n
e
d
 
f
r
o
m
 
m
e
t
a
l
 
t
o
 
t
h
e
 
s
a
m
e
 
d
i
m
e
n
-

s
i
o
n
a
l
 
t
o
l
e
r
a
n
c
e
s
 
a
s
 
t
h
e
 
p
r
o
t
o
t
y
p
e
.
 
R
e
s
i
s
t
a
n
c
e
 
s
t
r
a
i
n
 
g
a
g
e
s
,

a
t
t
a
c
h
e
d
 
t
o
 
t
h
e
 
m
o
d
e
l
,
 
p
e
n
n
i
t
t
e
d
 
m
e
a
s
u
r
e
m
e
n
t
 
o
f
 
f
o
r
c
e
s
 
o
n
 
c
o
m
p
o
n
e
n
t

p
a
r
t
s
 
o
f
 
t
h
e
 
d
e
v
i
c
e
.
 
O
f
 
p
r
i
m
a
r
y
 
c
o
n
c
e
r
n
 
w
a
s
 
t
h
e
 
b
e
n
d
i
n
g
 
s
t
r
e
s
s

w
h
i
c
h
 
m
i
g
b
t
 
b
e
 
s
e
t
 
u
p
 
i
n
 
t
h
e
 
r
e
l
e
a
s
e
 
o
p
e
r
a
t
i
n
g
 
s
h
a
f
t
 
w
h
e
n
 
t
h
e

s
u
b
m
a
r
i
n
e
 
i
s
 
s
u
b
m
e
r
g
e
d
 
i
n
 
a
n
 
i
n
c
l
i
n
e
d
 
p
o
s
i
t
i
o
n
.
 
T
e
s
t
s
 
w
e
r
e

a
r
r
a
n
g
e
d
 
t
o
 
s
i
m
u
l
a
t
e
 
t
h
r
e
e
 
p
O
S
S
i
b
l
e
 
c
o
n
d
i
t
i
o
n
s
 
o
f
 
l
o
a
d
i
n
a
 
o
f
 
t
h
e

r
e
l
e
a
s
e
 
d
e
v
i
c
e
 
a
t
 
a
 
3
0
 
d
e
g
r
e
e
 
v
e
h
i
c
l
e
 
l
i
s
t
 
a
n
g
l
e
:
 
c
a
s
e
 
(
1
)

r
i
q
h
t
i
n
q
 
m
O
M
e
n
t
 
o
f
 
i
n
c
l
i
n
e
d
 
f
o
r
e
b
o
d
y
 
r
e
s
i
s
t
e
d
 
b
,
v
 
r
e
l
e
a
s
e
 
c
o
m
-

p
o
n
e
n
t
s
 
o
n
l
y
;
 
c
a
s
e
 
(
2
)
 
r
i
g
h
t
i
n
o
 
m
o
m
e
n
t
 
r
e
s
i
s
t
e
d
 
b
y
 
r
e
l
e
a
s
e
 
w
i
t
h

a
s
s
i
s
t
a
n
c
e
 
f
r
o
m
 
l
o
w
e
r
 
g
u
i
d
e
s
;
 
a
n
d
 
c
a
s
e
 
(
3
)
 
r
i
g
h
t
i
n
g
 
m
o
m
e
n
t
 
r
e
s
i
s
t
e
d

b
y
 
c
o
u
p
l
e
 
s
e
t
 
u
p
 
b
y
 
r
e
l
e
a
s
e
 
a
n
d
 
r
u
b
b
e
r
 
s
u
p
p
o
r
t
 
r
i
n
g
.
 
T
e
s
t
 
r
e
s
u
l
t
s

s
h
o
w
 
t
h
a
t
 
s
h
a
f
t
 
b
e
n
d
i
n
g
 
s
t
r
e
s
s
e
s
 
(
f
o
r
 
A
L
V
I
N
)
 
a
r
e
 
h
i
a
h
 
(
2
0
0
,
0
0
0
 
p
s
i
)

f
o
r
 
t
h
e
 
c
a
s
e
 
(
1
)
 
c
o
n
d
i
t
1
o
n
,
 
l
o
w
e
r
 
(
4
0
,
0
0
0
-
9
0
,
0
0
0
 
p
s
i
)
 
f
o
r
 
c
a
s
e
 
(
2
)
.

a
n
d
 
e
s
s
e
n
t
i
a
l
l
y
 
z
e
r
o
 
f
o
r
 
c
a
s
e
 
(
3
)
.
 
T
h
e
 
c
o
n
c
l
u
s
i
o
n
 
i
s
 
t
h
a
t
 
t
h
e

n
r
e
s
e
n
t
 
f
o
r
e
b
o
d
y
 
r
e
l
e
a
s
e
 
d
e
s
i
g
n
 
i
s
 
a
d
e
a
u
a
t
e
 
f
o
r
 
a
l
l
 
s
u
b
m
a
r
i
n
e

a
t
t
i
t
u
d
e
s
 
e
n
c
o
u
n
t
e
r
e
d
 
i
n
 
n
o
n
n
a
l
 
o
p
e
r
a
t
i
o
n
.
 
p
r
o
v
i
d
e
d
 
t
h
e
 
v
e
h
i
c
l
e

h
a
s
 
b
e
e
n
 
a
s
s
e
m
b
l
e
d
 
s
o
 
t
h
a
t
 
c
o
n
t
a
c
t
 
b
e
b
/
e
e
n
 
s
p
h
e
r
e
 
a
n
d
 
r
u
b
b
e
r
 
r
i
n
g

i
s
 
a
s
s
u
r
e
d
 
a
t
 
a
l
l
 
t
i
m
e
s
.

W
o
o
d
s
 
H
o
l
e
 
O
c
e
a
n
o
g
r
a
p
h
i
c
 
I
n
s
t
i
t
u
t
i
o
n

R
e
f
e
r
e
n
c
e
 
N
o
.
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6
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E
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T
~
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S
T
R
E
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A
N
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Y
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I
S
 
O
F
 
M
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D
E
L
 
O
F
 
E
M
E
R
G
E
N
C
Y
 
F
O
R
E
8
0
D
Y

R
E
L
E
A
S
E
 
D
E
V
I
C
E
 
U
S
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O
 
I
N
 
D
E
E
P
 
D
I
V
I
N
G
 
R
E
S
E
A
R
C
H
 
S
U
8
M
A
R
I
N
E
S
 
A
L
V
I
N
,

S
E
A
 
C
L
I
F
F
 
A
N
D
 
T
U
R
T
L
E
 
b
y
 
A
r
n
o
l
d
 
G
.
 
S
h
a
r
p
 
a
n
d
 
J
a
m
e
s
 
R
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S
u
l
l
i
v
a
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.
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T
e
s
t
s
 
w
e
r
e
 
c
o
n
d
u
c
t
e
d
 
o
n
 
a
 
f
u
l
l
-
s
c
a
l
e
 
m
o
d
e
l
 
o
f
 
t
h
e
 
e
m
e
r
g
e
n
c
y

f
o
r
e
b
o
d
y
 
r
e
l
e
a
s
e
 
u
s
e
d
 
i
n
 
t
h
e
 
d
e
e
p
-
d
i
v
i
n
g
 
s
u
b
m
a
r
i
n
e
s
 
A
L
V
I
N
,
 
S
E
A
 
C
L
I
F
F
.

a
n
d
 
T
U
R
T
L
E
.
 
T
h
e
 
m
o
d
e
l
 
w
a
s
 
m
a
c
h
i
n
e
d
 
f
r
o
m
 
m
e
t
a
l
 
t
o
 
t
h
e
 
s
a
m
e
 
d
i
m
e
n
-

s 
1 

on
a 

1 
to

le
ra

nc
es

 a
s 

th
e 

pr
ot
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