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Introduction
Mare anals produce a remarkablt varety of sounds (Watkis and Warok 1985). A
priar goal of our bioacoustic program at the Woods Hole Oceanographic Institution

(WOI) has been to parse this varation into biologicaly signcant classes of signals.
Mare mamal sounds exhbit distinctive features associated with species (op. cit.),
individual identity (Caldwell, Caldwell and Tyack 1990), and certai behaviors. These
features have never been examed quantitatively, comparg the sounds of a wide variety
of species. Do these sounds remai distinctive as the scope of comparson broadens?
Experienced researchers can auraly and visualy (via spectrographic analysis) identif
acoustic features that appear to be species-specifc, and sometimes features unique to
individual anals; can we specif numerical algorithms that objectively recogne these
distinctions?

The logistic requirements for addressing these questions remai formdable. Many
biological and envionmental conditions potentialy contribute to acoustic varabilty. To

quantif the interspecifc and intraspecifc varabilty in mare anal sounds, large
numbers of sounds must be accumulated and analyzed for each distinct class of sounds.
Several results indicate that correct identifcation of sounds is signcantly improved by
utilg al avaiable biological inormation durig the construction or "traig" of the

classifer (Fristrup and Watkis 1992). Therefore, numeric featues extracted from
acoustic data must be conveniently referenced to species, population, group, social
context, behavior, activity, individual identity, sex, reproductive situation, age, season,
geographic location, water depth, and sound propagation.

The SOUN database system of mae anal sounds (Watkis, Fristrup, and Daher
1991) provided this capabilty. The databases and associated fies contaied thousands of
digitized sound segments. The database described the time, geographic location,
recording conditions, identity of the anal(s) producing the sounds, the behavioral

observations associated with sound production, etc. These SOUN databases
represented years of work by several people. The ONR Ocean Acoustics Program
(Marshal Orr) provided the intial funding, but continued development and expansion
were funded by a blend of Navy and private sources. The feature extraction and
classifcation program would not have been feasible without the SOUN resources. In
turn development of featue extraction and sound classifcation, funded by TRCCSMA
resulted in signcant structral improvements in the database systems. New, relational

database structures were implemented to permt flexible and convenient integration of
statistical results with the biological and envionmental inormation.

The abilty to select and to analyze acoustic measurements based on related biological or
environmental observations was crucial for these data. This could have been done by
segregating data fies for diferent species, activities, locations, etc. and independently
processing each batch. However, it would have been increasingly cumbersome and
difcult to manage data segregation as the scope and complexity of analyses increased.

Maitaig the integrty of the data (correct fie assortment by attributes, labelig
processed output) would be problematic. A more powerfl technque was to process al
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sound cuts in one batch, and to attach an identifer to the vector of measurements from
each sound cut. Automatic feature extraction for al avaiable sound cuts proceeded
unattended, with one command. The resulting measurements, with the attached identifer,
were imported as a table in a relational database program. The identifer provided a
unique li between the vector of quantitative acoustic features describing a sound and the
biological observations associated with that sound. Interactive exploration of relationships
among statistics and biological or envionmental factors followed, exploitig the
convenience and flexibilty of relational database queries.

The SOUN text databases for the recordigs and the digital sound sequences (Watkis,
Fristrup, and Daher 1991) could have accommodated new numeric data from the
statistical analyses, but the INGIC softare used to develop ths system was
unsuitable. It required restructrig the entire database each time the number of numeric

fields changed. This was not feasible: the analyses requied many iterations and
modifcations. Therefore, PAROX softare (relationa database support, with visual,
query-by-example intedace) was used. The text inormation from the SOUN databases
remaied unmodifed as distict tables, and additional tables were created for the acoustic
results. Statistical summes of subsamples were generated with specifc queries. This
structrig of inormation also permts queries using sound characteristics to identif
species and locations that have previously exhbited simar sounds.

The acoustic feature extraction program (AcouStat) was caled with one command lie
parameter, the name of the fie contaig a digital sound cut. AcouStat processed these

data, and sent the results to standard output (stdout in the C language). Rediection of
this output was used to store the data, or to pipe the acoustic featues to another program
for additional processing. For the analyses described here, these data were appended to a
text fie that was later imported into a PAROX table. PAROX queries were used
to li text and acoustic features, and the results were exported to SPLUS and SYSTAT
(data anysis packages) for classifcation analysis.

There is no scientifc precedent for quantifcation of time-frequency characteristics of
anal sounds on this scale. No prior work has dealt with so many species and such a
varety of repertoires from individual anals. The WHOI studies of marne anal
acoustics, a continuous program intiated by Wilam E. Schevi in the late 1940's, have
provided the heuristic basis for selecting features and designg algorithms. Our personnel
utile many diferent acoustic features to describe sounds and diagnose their identity. As
a first step toward the development of an automatic, objective system for identifg

anal sounds, we devised statistical measures to resolve famar acoustic features.
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The Feature Extraction Algorithm
There is no a priori basis for selecting statistics that wi maxe classifer performance.
Our approach has been iterative, guded by the followig criteria:

. Each statistic was designed to emphasize paricular parameters of anal sounds that

we recogned as important for distingushig species.
· Each statistic had to be insensitive to temponil arifacts introduced by ocean

propagation (multipath, fading).
. Most statistics had to be relatively insensitive to noise levels (resistant to outliers,

possessing a high breakdown point).
· Most statistics had to yield consistent results despite varation in the shape of the

ambient noise power spectra.
· May statistics needed to relate to obvious features in time-frequency displays of these

sounds (duration, frequency range, ...). This eased interpretation of success and
diagnosis of flawed performance.

The signal processing was relatively simple, using power spectra derived from a Fast
Fourier Transform. For most fies, FFT size was 256 sample points, but for very short
fies (low samplig rates) the FFT size was decreased to obtai a mium of 16 FFT data
blocks per fie. Adjacent blocks overlapped by 25%. The samples were level-shied to
obtai a block mean of zero, tapered with a Hamg widow, and level shied agai to
remove-e DC bias introduced by taperig. The complex FFT values were multiplied by
their complex conjugates (to form the magntude-squared values), and the energy in the
"negative" frequency bins was added to the corresponding "positive" frequency bins.
Thus, the sum of the fist Nm!2 + 1 bin equaled the sum-squared energy. Wind owing
smoothed the power spectra. Overlapping increased time resolution, and extracted useful
information from data that would otherwse have been "lost" in the tais of the widow.

More precise time-frequency analyses could be substituted for this procedure
(Wigner- Vile, RI), but resolution of signal characteristics on these scales would be
sensitive to phase pertrbations. These technques might require explicit source extraction

(envionmental deconvolution) to provide signals of suffcient qualty. Such efforts were
not indicated in the course of our analyses, but they remai an attractive option for very
brief signals.

Noise Compensation
Our noise compensation technque stars with an estimated "average" noise power
spectrum. This was computed as the median of the data blocks comprising the intial and
termal 5% of the sound fie. By convention, our transient extraction protocols included
a leader and traier of background sound. Some signal energy was occasionally present in
one of these regions, but the median spectrum was not grossly inated by these signals.
Previously, we used a large number of data blocks, taken at fied intervals throughout the
sound cut, and computed a noise spectrum from the quietest sections. The newer routine
is comparable and faster.
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A multiple of this noise spectrum is subtracted from each data block's spectrum; al
negative results are set to zero. Previously, we subtracted a constat multiple -- about 7x
the noise spectrum -- from al data blocks. This multiple was subjectively determed by
examng a varety of spectrographs. The newer technque was "adaptive" because the
level of the noise spectrum was adjusted prior to subtraction from each block's spectrum.
This enhancement was prompted by frequent observations of "swellg" noise

backgrounds: the shape of the noise spectrum seemed relatively constant, but the noise
energy fluctated widely in some cuts. Intial attempts to model this utiled orthogonal
decompositions to identif pricipal components of noise spectrum varabilty. Utiliztion

of more than two' orthogonal components was found to introduce spectrographic arifacts
in the form of frequency bandig, due to the parial correlation of some noise vectors with
transient sound spectra (biological signals). Also, the most signcant improvement was
seen to result from alowig the fist component (essentialy the mean spectrum) to var.
Thus, a simplied algorithm was devised.

Each bin in a data block's spectru was divided by the corresponding bin in the noise
spectrum, yieldig a vector of possible multipliers. "Multipliers 

II indicates that if the noise
spectrum is multiplied by one of these values, and subtracted from the data block's
spectrum, the correspondig bin in the data spectru wi be exactly cancelled. These_

values were sorted, and the value correspondig to the 6th percentile order statistic (8th of
128) was used. This multiplier always underestimates the proper scalg for the noise

spectrum, but it also is very unlely to be inated by signal energy: it is a consistent
underestimate. This order statistic must be magned by a constant value for best
pedormance. The magntude of that adjustment was determed by analyzig noise
compensation pedormance with a varety of parameter settings.

To measure noise compensation pedormance, we needed to measure the relative amounts
of noise and signal energy that were removed. Al of our sound cuts represented single
chanel recordings contaig noise and signal. Thus, synthetic signals resemblig marine
mamal sounds were generated, as were randomly generated noise sequences resembling
the backgrounds in our cuts. The noise compensation algorithm was applied to pure

signal and noise sequences respectively, and the residual energy afer compensation was
measured. Values were sought that preserved as much signal energy and removed as
much noise energy as possible.

Before discussing the results, our index of pedormance merits explanation. Residual
signal-to-noise ratio did not prove to be a useful measure, because this metric resulted in
excessively high levels of noise subtraction. The" optimal 

II values reached with this metric

resulted in spectrographs that retaied only the very loudest portion of the signal.
Criticaly important components of the signal (for classifcation) were subtracted out. A
more useful metric proved to be the percent signal energy remaig minus the percent
noise energy remaig. A simple interpretation provides heurstic justifcation for this
criterion. One estimate of expected residual signal energy is the residual noise energy
multiplied by the origial signal-to-noise ratio. This would be accurate ifboth signal and
noise energy were reduced in proportion by the noise compensation technque. Ou
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metric is proportional to the "signal excess", the actal residual signal energy mius the
expected residual signal energy. Optimal parameter values derived with this metric agreed
with subjective judgments of spectrograph qualty by experienced observers.

The most problematic sounds were relatively broad band, because more of the possible
multipliers could be inated by signal energy. This suggested that the best pedormance
would be realed with low order statistics. Figure 1 presents the results of a simulation
that used a broad-band signal and noise generated by forcing a sixh order autoregressive
model with normaly distributed white noise. Higher levels of signal excess represent
better pedormance. Each vertical lie represents pedormance at varg multiplier values,
holding the order statistic constant. The leftmost vertical lie stars at the bottom with a

multiplier of 8, and ends with a multiplier of 160. The diagonal segment to the next
vertical lie denotes the pedormance value with the largest multiplier value on the left, and
the pedormance of the next order statistic with its smalest multiplier on the right.
Successive vertical lies represent diferent ranges of multipliers, ending with a range of

1-::20 for the 50% order statistic. The graph ilustrates the falg levels of pedormance
with increasing order statistic number, and our success in bracketing the best multiplier
values for each order statistic. On the basis of these and other tests, we chose the 6th
percentile order statistic and a multiplier value of 75.

Figures 2 and 3 ilustrate the effect of noise compensation, and compare the fied noise
compensation technque used previously with the adaptive technque. Both of these
signals have poor signal-to-noise ratios, much worse than our tyical sound cut. Note the
improved retention of signal energy: fewer dropouts in the Lagenodelphis whistles, clearer
representation of the soft, introductory moan in the right whae signal. The marked
speckling in the Lagenodelphis adaptive spectrograph also represents preserved signal
energy: echolocation clicks.

This noise compensation algorithm and the methods we used to develop and test it,
represented signcant improvements over our previous work, but we do not represent
this as the optimal or state-of-the-ar technque. It allows us to achieve impressive
classifcation pedormance. In our judgment, further improvements in this area are
desirable, but not essential. The softare has been designed to faciltate replacement of
this module if we become aware of a better alternative.

Afer noise compensation, seven measurements were extracted from each data spectrum
and stored. The fist was amplitude, computed as the sum of the residual spectrum
energy. This exploited Parseval's relation (Oppenheim and Schafer 1989, p. 574) to
measure loudness afer noise compensation. The remaig measurements described
spectral characteristics. The frequency that bisected the energy in the power spectrum
was saved as the median. The frequency corresponding to the largest energy value in the
spectrum was saved as the mode.

Three estimates of "bandwidth" were saved. The mium number of spectral bins
needed to accumulate hal of the total spectral energy was computed (includig a fraction
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derived from liear interpolation); we designated this the concentration. The highest and
lowest frequencies encountered in this integration were saved as the upper and lower
frequencies; the diference between these provided a broader estimate of bandwidth,
designated as spread. The ratio of total energy to the energy in the modal spectral bin
was saved as the modewidth, the most compact bandwidth estimate of the three. We
rescaled these three bandwidth estimators by dividing them by the sample interval
represented by a single FFT block, so the resulting unts were Herts (otherwse, the same
signal would have yielded dierent values when sampled at dierent rates or processed
with diferent FFT sizes).

An analog of skewness, designated as asymmetry, was computed as
(upper-median)/(upper-lower). Asymmetry vared between 0.0 (median equal to
upper) and 1.0 (median equal to lower). Spectral asymmetry of 0.5 indicated a
symetrical density; so we later may shi these values by subtracting 0.5 from them to

render the results more intuitive (this would not afect classifer pedormance).

The lists of short-term signal measurements were sorted to extract the upper quarile (75th
percentile), median (50th percentile), and lower quarile (25th percentile) values. When
the computed index for one of the quariles had a fractional component, the nearest values
were used to liearly interpolate the desired value. The mode was estimated by fiding
the most tightly grouped set of five consecutive values, and selecting the middle of these.
The quariles were used to compute spread (upper quarile-lower quarile) and
asymmetry (upper quarile-median)/(upper quarile-lower quarile). These statistics were
analogous to the standard deviation and skewness, but they pedormed better. Amplitude
was treated diferently from the other short-term measurements. Its magntude was
arbitrar, so we divided mode and spread by the median to render them dimensionless.

A total of 27 statistics resulted from these calculations:
. Amplitude: mode/median, spread/median, asymmetry

. Frequency Mode: mode, median, spread, asymmetry

. Frequency Median: mode, median, spread, asymmetry

. Spectral Spread: mode, median, spread, asymmetry

. Spectral Concentration: mode, median, spread, asymmetry

· Spectral Modewidth: mode, median, spread, asymmetry

· Spectral Asymmetry: mode, median, spread, asymmetry

Nonparametric correlations were computed among the short-term measurements, to
quantif relationships among time, amplitude and frequency. We employed the Spearan
Ra-Order Correlation (press, W. H. et al. (1989), Numerical Recipes in C, Cambridge
Univ. Press, pp. 507-509), and utiled the deviation of the sum-squared diference of

ran from its expected value, scaled in standard deviations. A large negative value
indicated strong positive correlation, a large positive value indicated strong negative
correlation (a sign change might be introduced later to ease interpretation). The 15
statistics resulting from these calculations were:
. Time-Amplitude Deviance

. Time-Frequency Mode Deviance

· Time-Frequency Median Deviance
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. Time-Spectral Spread Deviance

· Time-Spectral Concentration Deviance

. Time-Spectral Modewidth Deviance

. Time-Spectral Asymmetry Deviance

. Amplitude-Frequency Mode Deviance

. Amplitude-Frequency Median Deviance

. Amplitude-Spectral Spread Deviance

· Amplitude-Spectral Concentration Deviance

. Amplitude-Spectral Modewidth Deviance

. Amplitude-Spectral Asymmetry Deviance

. Frequency Median-Spectral Spread Deviance

. Frequency Median-Spectral Asymmetry Deviance

To measure "flat" frequency contours, which were often important in distinguishig
among odontocete whistles, we timed the longest section in the signal exhbiting minial
change in frequency mode (maxfat). We computed the fraction of neighborig signal
blocks in which the latter had more energy than the former (attack fraction), and in which
the latter had a higher frequency median tha the former (upsweep fraction). We also
computed the average ofal changes in frequency median (upsweep mean), and the
average absolute value (sweep mean) of such changes.

Each short-term spectru also contributed to two cuulative power spectra. One
averaged al of the short-term spectra; this produced the margial spectral density of the
spectrographic representation of signal, the total spectrum. The second accumulated
energy from the loudest element of each residual spectru the modal spectrum. Figure
4 exhbits the relationship of the total spectrum (frequency margial energy density) and
amplitude envelope (time margial energy density) to a noise compensated signal. The
dark regions represent the portions of these densities that concentrate 75% of the total

signal energy. These cumulative spectra were summared with the same spectral statistics
as the short-term spectra. This produced 6 total spectrum and 6 modal spectrum

- statistics: medians, modes, spreads, concentrations, modewidths, and asymmetries.
In total, 91 fields were produced by the feature extraction program for each sound.

Classification Penormance
Two technques were used to quantif the usefuess of these acoustic features for
distinguishig among species. The fist was a classical liear classifer (Morrson 1976,
ch. 6), which would be optimal if the species diered in their group means, but shared a
common multivarate normal dispersion (common covarance matri). - This was applied to
a subset of the data consisting of isolated sound elements; it produced 73% correct
classifcation (208 errors for 784 sounds). The distribution of mistakes is ilustrated by the
bubble graph in Figure 5. Most of the errors were located in a square at the lower left
comer of the plot, which indicated confsion of one baleen whale sound for another. A
weaker tendency was incorrect identifcation of some baleen whale sounds as seals.

Linear classifcation analysis of al sounds revealed poorer pedormance: only 50% correct
(1037 errors for 2104 sounds). Figure 6 indicates the distribution of errors. Confsion
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among baleen whale sounds was agai an importt featue, but the horionta bandig in

the plot indicated that a few speces are responsible for most of the confion. Ths
stcte is pary an aract of saple sizes: more heaviy sampled speces wi of coure

produce more incorrec classifcations (these bubbles are not scaled to account for speces
sample size). Ths did not appear to be a complete explantion, and ths phenomenon wi
be stdied at greater lengt in the futue.

An alterntive technque for classifg these sounds utied tree-based models (Clark and

Pregibon 1992, ch. 9). Ths technque recsively partioned the data, using a single
varable at each binar split. At each point in the tree (caled a node), a meaure of
diversity caled "deviance" can be computed. It is defied as:

N
deviance = -2 L Yiklog(Pik), Yik = 1 if the ¡¿h individual is of class i, 0 otherwise;

k-i
pik = the probabilty that the ¡¿h individual is of class i,
estimated as the fraction of individuals in the node of class i.

Ths is equivalent to mius twce the log-lieliood fucton. Each .interor node
(includig intial node contaig al sounds) is split such tht the residua deviance of the
resutig pai of nodes is maxaly reduced. Thus, the process of splittg resuts in
successively "purer" nodes, with the process termtig when a node is suciently pure
or there are incient individuas in the node to support another split. Ths process

provides both a simple technque for classifg unown sounds (a series of tre/false
questons) and clues to the important varables for diagosis. It also accommodates
diversity with a class: if a species produces two or more distict tyes of sounds, a
tree-based anysis wi not be compromised (une a liear or quadrtic classifer).

Figue 7 exhbits the tree-based classifer for the isolated sounds. The vertcal distce
associated with each split graphicaly depicts the reducton in deviance achieved by that
split. The intial split was based on the median short-term spectal concentration; the
next two splits were based on the median frequency of the tota spectrm and the
spectal concentrtion of the frequency modulation spec. Ths anysis permts a
species' sounds to be split into more than one iileat" dependig upon their relationships to
the other sounds in the saple. Correct classifcation was 85%; ths is nealy a 50%
reducton in misclassifcation relative to the liear classifer. A tree-based classifcation
anysis of al sounds yielded 66% correct classifcation (figue 8). Tyack, Fristp and
McIntosh (submitted) have shown tht simar analyses of signatue whistes in young
bottenose dolphis correcy identied the individual for 90% of the sounds tesed.

The liear classifer had one advantae over the tree-based classifer: it provided a
mease of simarty to help judge the correcess of the identication. The tree-based
technque must be augmented to provide ths capabilty, using some distce metrc
generated from the term grupings. A staightforward adaptation would be to
calcuate a saple covarance matr for each term grouping, and use Mahanobis
distance to mease the simarty of an unown to tht group. Ths adaptation, and tests
of alternative classifcation schemes (quadratic classifer, kN votig, hybrid design), wi
be pured fuer.
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Figure 1. Noise compensation performance: higher levels of 
II signal excess" represent

better performance. Each vertical lie represents the range of performance achieved with
a fied multiplier order statistic and varg magncation. The leftmost vertical lie stars

at its mium with a magner of 8, and termates at the intersection with the diagonal
lie with a multiplier of 160. The intial and termal values of subsequent setings of
multiplier order statistic are indicated by the intersections with diagonal lies on the left

and right. The range of magncation decreases with increasing order statistic, but the
maxum performance is clearly bracketed in each case.
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Figure 2. Noise compensation pedormance: this sequence of spectrographs ilustrates a
recording of Lagenodelphis hosei, the Fraser's dolphi. The fist panel is the unmodied
signal. The second ilustrates the same signal processed using the older, fied

compensation algorithm. The thid the ilustrates the effect of processing with the newer,
adaptive compensation algorithm. The pronounced specklg in al spectrographs

represents echolocation clicks by the dolphis.
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Figure 3. Noise compensation performance: this sequence of spectrographs ilustrates a
recording of Eubalaena glacialis, the northern right whale. The fist panel is the
unmodifed signal. The second ilustrates the same signal processed using the older, fied
compensation algorithm. The thid the ilustrates the effect of processing with the newer,
adaptive compensation algorithm. Note the preservation of a fait, introductory moan in
the thid panel, near the left edge.
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Figure 4. The time and frequency margial energy densities, in relation to the
spectrograph that produced them. The dark areas of the energy densities indicate the
portions included in the calcuation of concentration, upper, and lower values. The
original spectrograph was of very poor qualty, not useable for classifer traing. Note
the leakage of low frequency noise energy, and the appearance of this energy in the shaded
portions of the margial distributions.
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Figure 5. Linear classifer performance, isolated sounds: the x and y axes represent the

species tested, the area of the circle represents the number of mistakes. The numeric
orderig closely follows systematic orderig (historical relatedness). Numbers 1-8 are
baleen whale species; numbers 9-22 are toothed whae species, 23-31 are seals, and
number 32 is a manatee. Specifcaly,
1. Balaena mysticetus
2. Eubalaena glacialis
3. Eubalaena australis
4. Eschrichtius robustus
5. Balaenoptera acutorostata
6. Balaenoptera borealis
7. Balaenoptera physalus
8. Megaptera novaeangliae
9. Physeter catodon
10. Delphinaterus leucas
11. Monodon monoceros
12. Peponocephala electra
13. Steno bredaensis
14. Delphinus bairdii
15. Delphinus delphis
16. Grampus griseus
17. Lagenorhynchus acutus
18. Globicephala macrorhychus
19. Globicephala melaena
20. Orcinus orca
21. Pseudorca crassidens
22. Phocoena phocoena
23. Arctocephalus forsteri

24. Eumetopiasjubatus
25. Odobenus rosmars
26. Phoca fasciata

27. Phoca largha
28. Ommatophoca rossi
29. Erignthus barbatus
30. Halichoerus grs
31. Leptonychotes weddllii

32. Trichechus mantus
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Figure 6. Linear classifer performce, al sounds: the x and y axes represent the species

tested, the area of the circle represents the number of mistakes. The numeric orderig
closely follows systematic orderig (historical relatedness). Numbers 1-9 are baleen whale
species; numbers 9-39 are toothed whale species, 40-53 are seals, and number 54 is a
manatee. Specifcaly,
1. Balaena mysticetus
2. Caperea marginata
3. Eubalaena glacialis
4. Eubalaena australis
5. Eschrichtius robustus
6. Balaenoptera acutorostrata
7. Balaenoptera borealis
8. Balaenoptera physalus
9. Megaptera novaeangliae
10. Physeter catodon
11. Delphinapterus lecas
12. Monodon monoceros
13. Peponocephala electra
14. Sotalia
15. Sousa
16. Stenella attenuata
17. Stenella clyene
18. Stenella coeruleoalba
19. Stenella langirostrs
20. Steno bredanensis
21. Tursiops catalania
22. Tursiops trncatus

23. Cephalarhynchus commersonii
24. Cephalarhynchus heavsidii
25. Delphinus bairdii
26. Delphinus delphis
27. Grampus griseus
28. Lagenodelphis hosei
29. Lagenorhynchus acutus
30. Lagenorhynchus albirostrs
31. Globicephala sp.
32. Globicephala macrorhychus
33. Globicephala melaena
34. Globicephala scammoni
35. Orcinus orca
36. Pseudorca crassidens
37. Phocoena phocoena
38. Neophocaena phocaenoides
39. Inia geoffensis
40. Arctocephalus roriteri

41. Eumetopias jubatus
42. Odobenus rosmarus
43. Phoca rasciata
44. Phoca groenlandica
45. Phoca hispida
46. Phoca largha
47. Ommatophoca rossi
48. Cystophora cristata
49. Erignathus barbatus
50. Halichoerus grys
51. Leptonychotes weddellii
52. Enhydra lutrs
53. Trchechus manatus
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Figure 7. Tree-based classifcation, isolated sounds: the miuscule labels at each interior
node describe the criterion that was used to split the sounds at that node into two
subnodes. The termal nodes ("leaves") of the tree, located at the bottom of the figure,
are labeled with a code describing the identities of the domiant fractions of the sounds in
those nodes. The code reflects the systematic hierarchy. The translations are:

CONCmed:median st concentration
TSmed: total spectrum median frequency
MSmed: modal spectrum median frequency
ERGrnmd:maximum/median amplitude
FMEDSPRDr : median freq. X spread corr.
EGDmodw: amplitude modewidth
MODWmod:mode of st modewidth
FMSmod: FM spectrum mode
TSmod: total spectrum mode
MSmodw: modal spectrum mode
ATAKfrac: attack fraction
FMSmed: FM spectrum median
SPRDsprd: spread of st spread
AMSmod: AM spectrum mode
UPSWfrac: upsweep fraction
TSmodw: total spectrum modewidth
ASYMod:modal st asymetry
AMSupp : AM spectrum upper frequency
MODWmed:median st modewidth
TSasym: total spectrum asymetry
FMSconc: FM spectrum concentration
SPRDasym: asymetry of st spread
AASYMr: amp 1 i tude X s t as ym. corr.
FMSsprd: FM spectrum spread
AFMODWr: ampli tude X st modewidth corr.
TSupp: total spectrum upper frequency
MSupp: modal spectrum upper frequency

st == short term

26

MIA: Balaen mysticetu
AAA: Euba/aen glacialis
AAB: Eubalaen austrlis
AB IA: Eschrichtius robustu
AC IA: Balaenoptera acutorostrata
ACIB: Balaenoptera borealis
ACIF: Balaenop~era physalus
AC2A: Megaptera novaeangliae
BA2A: Physeter catodon
BBIA:. De/phinapteru leucas
BB2A. Monodon monoceros
BDioA: Peponocephala electr

BD17A:. Steno bredonenis
BD3A: Delphinus bairdii
BD3B: Delphinus delphis
BD4A:. Grapu grseu
BD6A:. Lagenorhychus acutu

BE3B: Globicephala macrorhchus
BE3C: Globicephala melaen
BE7A: Orcinus orca
BE9A: Pseuorca crasiden

BF2A: Phocoen phocoen
CAlF: Arctocephalus ¡orsteri
CA3B: Eumetopias jubatus

CBIA: Odobenus rosmarus

CCI2F: Phoca ¡asciata
CCI2L: Phoca largha
CCI4A: Ommatophoca rossi
CC2A: Erignthus barbatu

CC3A: Halichoeru gr
CC5A: Leptonychotes weddellii
DBIB: Trichechus manatu
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Figure 8. Tree-based classifcation, al sounds: the miuscule labels at each interior node
describe the criterion that was used to split the sounds at that node into two subnodes.
The termal nodes ("leaves") of the tree, located at the bottom of the figure, are labeled
with a code describing the identity of the domiant fractions of the sounds in those nodes.
The code reflects the systematic hierarchy. The translations are:
MODWmed:median st modewidth AAlA:Balaenamysticetus
MSmod: modal spectrum mode AAA: Caperea marginataAAA: Eubalaena glaciaUsERGmxmd: maximum/median amplitude AAB:EubalaenaaustraUs
SPRDsprd: spread of st spread ABlA:Eschrichtiusrobustus
FMSmod: FM spectrum mode AClA:BalaenopteraacutorostrataAClB: Balaenoptera borealis
MSmed: modal spectrum median AClF:Balaenopteraphysalus
AMSmod:AM spectrum mode freq. AC2A:Megapteranovaeangliae

BA2A: Physeter catodonMODWsprd: spread of st modewidth BBlA:Dd~m~rems~c~
MSmodw: modal spectrum modewidth BmA:Mooodoo mooooeros
SWPabs :mean absol. delta freq. BOlOA: 

Peponocephala electra
BD12: SotaliaCONCasym: asym. of st concent. BOl3:Sousa

FMEDmed:median st median freq. BOlSA: Stenella attenuata

M fl t t t d . t' BDlSB: 
Stenell clyeneax a: see ex escrip ion BDlSC:Stenellacoemleoalba

SPRDmed: median st spread BOlSL: Stenella longirostrs
ATAKfrac: attack fraction BOl7A:Stenobredanensis
FMSsprd: FM spectrum spread BOl9B: TursiopscatalaniaBD19D: Tursiops Irncatus
SPRDmod:mode of st spread BOlA:Cephalorhynchuscommersonii
TSsprd: total spectrum spread BDlC: Cephalorhynchusheavsidii
EGDconc: ampli tude concentration BD3A:DelphinusbairdiiBD3B: Delphinus delphis
FMSconc: FM spectrum concent. BD4A: Grampusgriseus
FMEDASYMr: median freq. X asymetry corr. BDSA:Lagenodelphishosei

BD6A: Lagenorhynchus acutus
TSupp: total spectrum upp. freq. BD6B: 

Lagenorhynchus albirostrs
FMSupp: FM spectrum upper freq. BE3: Globicephala sp.
EGDsprd: ampli tude spread BE3B:Globicephalamacrorhychus

BD3C: Globicephala melaena
AFMODWr: ampli tude X modewidth correlation BE3D:Globicephalascammoni
FMEDSPRDr:med. freq. X spread correlation BE7A:Orcinusorca
TSmed: total spect. median freq. BE9A:Pseudorcacrassidens

BF2A: Phocoena phocoena
MODWmod:mode of st modewidth BF6A Neophocaena phocaenoides
ASYMasym: asymetry of st asym. BG2A:/niageoffensis
FMODmed:median of st mode freq. CAlF: 

Arctocephalusforsteri
CA3B: Eumetopias jubatus

CONCmod:mode of st concent. CBlA:Odobenusrosmams
FMDmod:mode of st median freq. CC12F:Phooafasciata

CC12G: Phoca groenlandicaAMSconc: concent. of st asym. CC12H:Phocahispida
ASYMed:median st asymetry CC12L:Phocalargha
UPSWfrac: upsweep fraction CC14A: Ommatophoca rossi

CClA: Cystophora cristata
ERGcv:amplitude coeff. of var. CC2A:Erignathusbarbatus
st == short term CC3A:Halichoemsgrys

CCSA: Leptonychotes weddellii
COLA: Enhydra lutrs

DBlB: Trchechus manatus
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