
Woods Hole Oceanographic Institution

..
L~ ',', f") t\. Q\(~ LJ ~- t k~~ ~ \.

Technical Report

March 1995

H' -!~ '...1 I "., . ~.. ~,~.
vvOO;,~ i ¡Q,e uCc;8f10Si a¡mlC

¡ "","..(..1.'..' "-'inn
li.)lj l.L ~~",)L

WHOI-95-06
eolJ J

193

A Processing System for Argos Meteorological Data

by

Nancy R. Galbraith

~
,..

..

Upper Ocean Processes Group
Woods Hole Oceanographic Institution

Woods Hole, Massachusetts 02543

UOP Technical Report 95-3

WHOI-95-06
UOP-95-03

A Processing System for Argos Meteorological Data

by

I ~DC)/¡'r")V
b,g ",) ¡IJc\. \ l

Woods ¡¡ole Oceanographic

Nancy R. Galbraith

¡ ",,'nScmWOI1

Woods Hole Oceanographic Institution
Woods Hole, Massachusetts 02543

March 1995

Technical Report

Funding was provided by the Office of Naval Research through Grant No. NOOOI4-94-1-0161.

Reproduction in whole or in part is permitted for any purpose of the United States
Government. This report should be cited as Woods Hole Oceanog. Inst. Tech. Rept.,

WHOI-95-06.

.l
ui-I"_ iro =r:z- ir3: 0::-o

II:E i--0
/To
o

.

Approved for public release; distribution unlimited.

Approved for Distribution:

Æ.~':, ~~-".t~-r .l
Philp L. Richardson, Chair

Department of Physical Oceanography

A Processing System for Argos
Meteorological Data

Nancy R. Galbraith
Upper Ocean Processes Group

Physical Oceanography Deparment
Woods Hole Oceanographic Institution

13 March 1995

Abstract
Upper Ocean Processes Group meteorological data is transmitted from
surace buoys via Argos satellte and processed in an automatic mode on a
UNIX workstation. Data is extracted from input fies based on instruent

type and experiment, processed as appropriate, and plotted, without user
intervention. Whle the processing system normaly rus automaticaly, it is
designed so that modules can also be ru directly from a termnal when
necessary. The Argos processing system alows us to monitor the

meteorological data being collected in the field, and provides early
inormation about problems with sensors, instruents, or buoys, when they
occur. The automatic process alows more information to be viewed with
less effort, and increases the usefuess of the Argos data.

i

Contents

Abstract .
i

1 UNIX Implementation and Overview
1.1 Cron...................

1

2

2 Main Processing Script 3

3 Processing VA WR Data
3.1 Shell Script gargle.sh

3.2 Program Gargle

3.3 VA WR Table Files .

4
5

5

6

7
8

9

9

4 Processing IMET Data
4.1 Shell Script Imet.sh .
4.2 Program GargleJmet .

4.3 IMET Table Files . . .

5 Processing Engineering Variables 10

6 Processing Position Data 11

7 Data Transmission Scripts 12

8 Plotting Scripts
8.1 Plot Plus Time Series Plots

8.2 Matlab Position Plot

13
13

14

9 Appendices
Appendix i. Startup Shell Scripts
Appendix II. VA WR Processing .
Appendix III. IMET Processing .
Appendix IV. Engineering PTT Processing.
Appendix V. Position Processing Scripts . .
Appendix VI. Data Distribution Scripts ..

Appendix VII. Plotting Scripts and Sample Plots

15
15
19

25
33
38
41
43

11

Acknowledgements 54

II

1 UNIX Implementation and Overview

Data tranmitted from surace buoys via Argos satellte for the Upper
Ocean Processes (UOP) Group experiments are processed in an automatic
mode on a Sun workstation, Griffon, using a series of shell scripts and C
programs initiated by the UNIX cron utilty. Files of data from al of the
UOP's active Argos transmitters are sent daily from Service Argos'
computers in Landover, Maryland, using ftp. The UNIX cron utilty rus a

script every hour which checks for incoming data. When a new data fie is
found, processing scripts are activated.

Each platform transmitter termnal, or PTT, in the field includes its own
identification number in the messages it sends to Service Argos. This
number alows Servce Argos to route each message to the correct
destination, grouping the messages it receives for retransmission to the
PTT owner. Each PTT identification number is associated with an
experiment number, which is used for routing and accounting puroses, and
so data for each experiment is bundled into a separate file. Curently, we
receive data from our Arabian Sea buoy in a file caled argos.dat, and data
from our GLOBEC buoy in fie argos2.dat.

Incoming data is processed by a suite of C programs and shell scripts.
While these programs and scripts are normaly ru automaticaly by the
UNIX scheduler, cron, they are designed so they can also be run directly
from a termnal in cases where Argos transmissions are interrupted, an
instruent must be reprocessed, or non-standard plots are desired.

The primar goal of the Argos processing. system is to monitor the
meteorological data being collected in the field, as soon as it becomes
available. The system also provides early information about problems with
sensors, instruents, or buoys, when they occur. By automating the entire

process, we alow more information to be viewed with less effort, and
increase the usefuess of the Argos data.

1

1.1 Cron

The UNIX cron utilty is curently run by user nan on Griffon. Cron
executes commands at specific times. The commands are entered into a
table, caled the cron table, by program crontab. The cron table entry on
Griffon can be edited by its owner by typing crontab -e. New cron table
entries can be started using crontab -e, or checked by typing crontab -1. The
cron table entry for the Arabian Sea and GLOBEC Argos processing is:

1 * * * * /gdata/argos/argos.sh

1 8 * * 1-5 Ipuli/data/arab/argos/dopl. sh

1 8 * * 1-5 /puli/data/globec/argos/dopl.sh

The fist entry runs the script argos.sh at one minute past every hour,

every day. The second and third commands generate plots at 8 a.m. on
weekdays only, using plotting scripts for two experiments in their
processing directories.

The crontab entries are basicaly names of shell script programs. To change
the processing system, the scripts themselves can be edited, without having
to alter the crontab entry. As experiments star and end, the appropriate
commands can be added to or deleted from the main processing scripts.

The directory j gdataj argos on Griffon contains all the shared processing
software and has subdirectories for each active experiment. These
experiment subdirectories contain archives of Argos data and information
about the instruentation. The processed data normally resides, along

with experiment-specific scripts, on another workstation, on a disk that is
mounted on Griffon using the Network File System (NFS).

IT data must be retransmitted from Service Argos for any reason, argos.sh
will automaticaly process any new data every hour. As long as Service
Argos does not send more than one fie within that time period, cron will
cause argos.sh to copy and process al incoming data fies with the names

2

specified in the script. To process an incoming fie immediately, the script
argos.sh can be invoked from the keyboard.

2 Main Processing Script

The main processing is initiated by the shell script argos.sh, in Griffon's
directory j gdataj argos. Incoming Argos data is wrtten to that directory in

fies named argos.dat and argos2.dat, which represent two different Argos
accounts. This script handles each input fie separately, first processing al
data in argos.dat.n, then argos2.dat.n.

For each experiment, the script fist checks for the existence of the
appropriate incoming data fie. IT the fie exists, it is moved to a fie named
argos(2).dat.n, where n is a monotonicaly increasing number. Note that if
the fie argos.dat.l does not exist, that fiename is used for the new fie. IT

it does exist, the directory is checked by the shell script fidlast.sh to

determne the next sequence number for the output fiename, which is
numericaly one greater than the highest existing number. Therefore,
removing the file argos.dat.l will cause erratic numbering, since the next
fie processed will be caled argos.dat.l, but incoming data fies will never
be overwtten by the automated processing system.

Once the fie archiving is done, the script processes data from the
Vector-Averaging Wind Recorder (VAWR), then data from the Improved
Meteorological (IMET) System, if it is being transmitted. IT IMET data is
not transmitted, there is normaly a tensiometer reporting, and its data is
processed after the VA WR data. Position data, generated by the Argos
system, is processed last. Processing each of these data sets requires a
separate pass through the incoming fie, looking for the appropriate Argos
transmitter ids. Each of these tasks is handled by an independent shell
script, which can be ru manualy if needed.

See Appendix I for text of the shell scripts argos.sh and fidlast.sh.

3

3 Processing VA WR Data

The script argos.sh processes VAWR data using another shell script,
gargle.sh, which in turn rus a C program to extract and scale the
incoming Argos data. Shell script fgdatafargosfgargle.sh starts one of the
gargle processing programs, which extract VA WR data from a specified
Argos input fie based on information in a calbration fie.

The VA WR data fies produced by this system contai the vaables

yearday, wind east, wind north,- wind speed, wind direction, short wave
radiation, relative humdity, barometric pressure, sea temperature, air
temperature, long wave thermopile voltage, body temperature, dome
temperature, and long wave radiation. Air and sea temperatures are
recorded in degrees centigrade, while body and dome are Kelvin
temperatures. Wind vectors are recorded in meters per second, radiation
values in watts per square meter, and thermopile voltage in microvolts.
Relative humdity is reported as a percentage, and barometric pressure is
reported in millbars. A sample output fie is contained in Appendix II.

This system unformy uses the convention that yearday 1 begins at
midnght on Januar 1. This is consistent with the UNIX date utilty,
which is used to check for invald dates and to set date limits for plots.

Occasionaly VA WR data will need to be reprocessed. This will usually
occur when corrections need to be made to a table file. If a VAWR's
interval counter resets, the date calculated by the software system wil be
incorrect, and the data will need to be reprocessed after a table fie change
has been made. To reprocess VAWR data in case of errors or resets, remove
any unwanted or incorrect data from the fie
fgdatafargosfexperfvawrnn.arch, which is appended by

the processing

system. Then cd to f gdataf argos and type

gargle. sh garglenew argos. dat . nn exper vawrn))
/gdata/argos/vawr. log 2)&1

4

where nn is the number of the argos.dat fie to be reprocessed, exper is the
experiment name and nn is the 4-digit VA WR number. The experiment
name must correspond to two data directories, one in jpuljdata and one in
jgdatajargos. The fist, jpuljdatajexper, must have a subdirectory named

argos, and the second, jgdatajargosjexper, must contain a table fie for the
VA WR to be processed.

Note that the working data fie in the processing subdirectory on Pul is
overwrtten daily by the automated processing system, so any changes

made there will be lost. To permanently alter the working data fie, the
archive version of the fie, in the j gdataj argos directory, must be modified.

3.1 Shell Script gargle.sh

Arguents to gargle.sh are the gargle program name, the input data file to
be processed, the experiment, and the VAWR name. Using these
arguents, gargle.sh generates fienames and commands to process the

incoming data.

Gargle.sh cals program gargle or garglenew with the fienames of the input
. Argos fie, the VAWR table fie and the output VAWR data fie. Then
gargle.sh sorts the new data and appends it to an archive fie in the
experiment subdirectory on Griffon. The archive fie is then sorted by date
with the UNIX sort utilty, deleting duplicate entries. The sorted version of
the fie is placed in the processing directory for the experiment on Puli, in a
fie names vawr.asc.

See Appendix II for text of gargle.sh.

3.2 Program Gargle

Program gargle extracts VA WR data from a specified Argos input file based
on information in a calbration fie, also caled a table fie. The table fie

5

contains the key to varable positions within the incoming records, alowing
data to be extracted, and contains calbration vaues to be used in scalng
the data. Program gargle wrtes data to a new fie, and will overwrte an
"existing fie if one is specified as the output fie.

Gargle was adapted by Roger Goldsmith, of WHOI's Computer and
Inormation Servces (CIS) group. The original version, caled gargoyle, was
wrtten by Thomas Danorth to ru under the SCO Zenix operating system

on a 386 PC, and was designed to work with a commercial database.
Program gargle, which rus under SunOS UNIX, uses portable ASCII data
fies. The specifics of program gargle are beyond the scope of this manual.

There are at present two versions of the gargle program. Programs gargle
and garglenew are identical except for the handlng of long wave radiation.
Both versions calculate long wave from independently scaled thermopile
voltage and body and dome temperatures, but garglenew uses a new
algorithm. Because the new type of calbration constants were not available
for the Arabian Sea VAWR, we retained the original code for the duration
of that experiment. The old version will be removed afer the first Arabian
Sea mooring is recovered.

3.3 VAWR Table Files

Program gargle uses table fies which have the same format as those used
by the tape processing programs vawr_cdf and vawr_cal, but with several
extensions needed to decode the Argos record. The table fies control the
processing of the incoming record and provide documentation of
cabrations used. The use of table fies provides some flexibilty to the
system, accommodating changes in the incoming record.

Gargle extracts the PTT numbers from the specified table fie, and uses
those numbers to decide which records to extract from the incoming Argos
fie. It also uses the position of a variable description in the table fie and

the length in bits specified to determne the position and length of the
vaable within the Argos record. The calbration vaues are used by gargle

6

to scale the raw data vaues, using the same algorithms as those used by
the tape processing system. The minimum and maxmum values for each
varable specified in the table fie prevent wild vaues from entering the data
stream. This windowing can mask problems with sensors, and must be used
very carefuy, especially during instruent evaluation.

Comment lines in table fies are denoted with a two-part forward arrow,
consisting of a dash and a greater-than symboL. Varable identification lines
begn with a number sign, an integer representing the variable position, a
colon, and the short and long version of the name of the varable. A
varable's short name is used to select the processing function to be used on
the data in the field defied by the entry, and should not be modified.

See Appendix II for a sample VAWR table fie.

4 Processing IMET Data

The IMET system in the GLOBEC experiment transmits hourly averages
to Argos. Script argos.sh processes the IMET data, as it does for the
VAWR data, by invoking a secondar shell script which in turn cals a C
program. The shell script imet.sh cals program gargleJmet, which extracts
data from the incoming fie using inormation from a table fie.

The IMET system software has the capabilty to handle many variables,
some of which have not been implemented in the IMET hardware at this
time. The program which decodes the input fie produces an intermediate
fie, which is modified by the awk script iIIet.awk before being archived and
used. In the awk script, the vaable order is changed to more closely

resemble the order of vaables in VAWR fies. The fial output file has a
format which is similar to the VA WR fies, but has several dummy
varables, which are set to o.

The varables in the working or archive version of the IMET fies are real
yeaday, wind east, wind north, dumy, dumy, short wave radiation,

7

relative humdity, barometric pressure, air temperature, sea temperature,
dumy, dumy, dumy, long wave radiation, battery voltage, mooring
tension, and precipitation. The unts for vaables which are reported by
both VA WR and IMET are described above. In addition, the IMET
battery voltage is recorded in amps, the mooring tension in pounds, and
the precipitation sensor measures cumulative precipitation in millmeters.
A sample output fie is found in Appendix III.

To reprocess IMET data in case of errors, use a text editor to remove
unwanted data from fie imet1.arch in the experiment subdirectory in
/gdata/argos. This fie is appended by script imet.sh. After any unwanted
or eqoneous data has been removed, cd to / gdata/ argos and type

imet . sh argos2. dat . no exper instruent

where nn is the number of the argos2.dat fie to be reprocessed, exper is the
experiment name, and instruent is the instruent name, normaly imetl

or imet2. The experiment name must correspond to two data directories,
one in /puli/data and one in /gdata/argos. The fist, /puli/data/exper,

must have a subdirectory named argos, and the second,

/gdata/argos/exper, must contain a table fie with the name of the
instruent and the fiename extension .tbL. Note that changes to the

working data fie in the experiment directory on Pul will be overwitten by
the automated processing. .

4.1 Shell Script Imet.sh

Arguents to imet.sh are the input fiename, the experiment/directory, and
the instruent name. Shell script imet.sh invokes program gargleJmet with

the name of the Argos input fie, the table fie and the output file. The
script rus the gargle output through an awk script to compute real

yeaday, reorder the variables and remove data with invald dates. The awk
script also adjusts the time of the data records to the hal hour by adding

8

~

30 minutes to the reported time, and normalzes air temperatures if needed.
The shell script then sorts the modified data, appends it to the archive file,
sorts the archive fie and copies it to the experiment's processing
subdirectory in fpulfdata.

See Appendix III for text of imet.sh and imet.awk.

4.2 Program Gargle..met

Garglejmet extracts the PTT numbers from the specified table fie, and
retrieves records with matching PTT numbers from the Argos fie. The
input records are decoded based on the length and position of each varable
specified in the IMET table fie. Data is converted from ASCII hexadecimal
to floating point and wrtten out in comma-separated ASCII strings.
Output is to a new fie, and, if an existing fie is specified, it will be
overwtten.

The vaiables output by program garglejmet in the present implementation
are: Integer day, hour, barometric pressure, air temperature, sea
temperature, wind east, wind north, relative humdity, short wave
radiation, long wave radiation, precipitation, battery voltage, and mooring
tension. The order of these varables is modified by the shell script imet.sh,
as described above.

4.3 IMET Table Files

The IMET table fies are similar to the VA WR table fies used by program
gargle. Because IMET sensors retur calbrated data in scientific unts, the
IMET table fies do not contain calbration coeffcients for most varables.
They do contain information needed to decode and scale the incoming data
and to control the processing itself.

At present, each Argos IMET record contains two IMET data records. To

9

accommodate that double record in one pa,s by program gargle-Imet, the
table fie essentialy contains two complete, identical descriptions of the

IMET record. See Appendix III for a sample of an IMET table fie.

5 Processing Engineering Variables

For some experiments, a separate Argos tranmitter reports mooring

tension from an iIlclep~ndent tensiometer. Oth~r varables, of interest for
engineering purposes, may be included in the Argos record for these
transmitters. For the Arabian Sea I experiment, varables transmitted are
tension and battery voltage.

Shell script dotens.sh in directory jpuljdatajarabjargos processes the data
from the engineering Argos transmitter. This script is normaly caled with
the number of the argos.dat.n fie to be processed. If it is caled with no
arguents, it will process the most recent argos.dat.n fie in directory

j gdataj argos.

Dotens.sh uses the awk script tens.awk to identify tensiometer records in
the incoming Argos fie and to calculate year day. These fields are wrtten
to fie tens.raw. Tension and battery voltage are ASCII hexadecimal fields,
and are converted to decimal values and scaled in program conv. Conv
wrtes the working tension fie, tens.asc, which contains real yearday, year,
month, day, hour, minute, second, tension, dumy, and battery voltage.

To reprocess tension data in case of errors, go to the processing directory
for the experiment, usualy on Pull. If necessar, remove any incorrect data
from the database by editing fie tens.raw, which is appended by this script,
then type

dot ens . sh nn

where nn is the number of the argos.dat fie you wish to reprocess.

10

See Appendix IV for the text of dotens.sh, tens.awk, and conv.c.

6 Processing Position Data

Position data is processed by a separate script, and stored in a subdirectory
under the usual processing directory for Argos data for each experiment.
The script that processes Arabian Sea I position data, for example, is
doposit.sh, and is found in jpuljdatajarab in the argosjposit subdirectory.

Position data is generated by Service Argos and incorporated into the
incoming VAWR and IMET records.

Unlke meteorological data, position data seldom needs to be reprocessed,
as it is not liable to contain timing errors and is not subject to calbration.
However, it is often desirable to remove portions of the position record for
an experiment, such as the stea.ng time before a mooring deployment.
This alows plotting with auto-ranging axs limits, at an expanded scale, so
that movement of a mooring can be monitored easily.

Argos position records contain a vaue indicating the qualty of the

caculated position, a number between one and three, with three as the
highest qualty. In this processing scheme, al location records are used, but

the qualty word is retained for future use. Including al position values, the
Argos positions seem to be accurate to approximately one kilometer.

To reprocess position data, use a text editor to remove unwanted values, if
necessary, from archive fies in jpulijdatajexperjargos. For GLOBEC,
which generates position records for both' IMET and VA WR PTTs, these
fies are in jpuljdatajglobecjargosjposit and are named vlpos.arch.asc
and ilpos.arch.asc. For the Arabian Sea deployment, which receives only

VA WR positions, the position fie is pripos.arch.asc. After removing any
incorrect data, cd to jpulijdatajexperjargosjposit and reprocess by typing

doposi t . sh nn

, 11

where nn is the number of the argos(2).dat fie you wish to rerun. If this
arguent is omitted, doposit will process the most recent Argos fie for the
experiment related to the curent working directory.

Position data is extracted from the Argos fie by fiding records in the fie

with a line length of 13 words and piping those records to an awk script,
posit.awk. That script calculates real yearday, normalzes longitude to 180
degrees, and wrtes out PTT number, year, month, day, hour, minute,
second, yearday, lat, long and a qualty Hag. This data is wrtten to the
temporary fie jun.dat. The shell script then checks this fie for the desired
PTT numbers, and if any exist, appends the position record, stripped of the
PTT number, to the appropriate archive fie. This fie is then sorted and
the output written over the working version of the position fie. For the
Arabian Sea experiment, that fie is /pul/data/arab/argos/posit/arab1.pos.

See Appendix V for the text of doposit.sh and posit.awk.

7 Data Transmission Scripts

To automaticaly distribute data to hosts with anonymous ftp accounts, ftp
is ru from the shell script ftp.sh, invoked by argos.sh. The script uses the

-n and -i Hags, which alow non-interactive use of ftp, redirecting input
commands from the text of the script itself. For sites receiving data via ftp,
we transmit the entire working version of the data every day, overwrting
the data previously sent.

For hosts without anonymous ftp sites, we use the UNIX mail utilty to
distribute the data. When using mail, we send only updates to the data.

Since we want to be sure to send a ful day's worth of data, we use the
UNIX utilty tail to extract the last 100 records from the working version of
the data fies. In the curnt implementation, we extract variables of

interest for our mail recipients, using an awk script, x.awk. We prepend a
header record identifyng the data as ours, and a record containing the
varable names, before invoking maiL.

12

See Appendix VI for the text of the scripts used to distribute Argos data.
Note that the hosts names and IP addresses have been changed in the

scripts reproduced there, for securty puroses. These scripts can be run
manualy to retransmit data if necessary.

8 Plotting Scripts

Plots of al incoming data are generated and printed automaticaly on
weekday mornngs. The plotting scripts, which can be different for each
experiment, are found with the processed data in the experiment
subdirectories, curently on the workstation PUL. The program Plot Plus,
wrtten by Donald Denbo of NOAA's Pacific Marne Environmental
Laboratory, is used to create multi-panel plots of instruent data. Maps of
mooring locations are created using Matlab, a commercial numerical
software package.

Plots of Argos data are used to monitor both meteorology and
instruentation, so we display the varables of meteorological interest on a
separate plot from those of engineering interest. The scripts that create

these plots are described here, see Appendix VII for examples.

8.1 Plot Plus Time Series Plots

8.1.1 Scientific Variables Plot

The command fie argoss.ppc is used with program pplus to plot VAWR
Argos meteorological data. The arguents are start day, end day, and input
fiename. The automated processing system invokes this script with a 3-day
time span ending on the curent day provided by the UNIX date utilty.

See Appendix VII.2 for the text of the script argoss.ppc and a sample
output plot.

13

8.1.2 Engineering Variables Plot

The pplus command fie argose. ppc plots the varables that are of interest
primarly for engineering puroses. Some of these vaables are reported by
the VA WR, some by the IMET or the tension recorder, depending on the
Argos confguation for each experiment. The arguents are identical to
the arguents for argoss.ppc, above. See Appendix VII.3 for the text of
argose.ppc and a sample output plot.

8.2 Matlab Position Plot

Matlab script posit1.m is used to plot Argos positions. Because it is
essential to see the most recent position value, we alow the plot to
self-scale. This assures that any change in position will be very visible on
the fial plot, not cropped because it is out-of-bounds.

For some experiments, a watch circle is overplotted on the positions. This
indicates the calculated limits of the mooring line, and is based on the
depth of the mooring. Care must be used when plotting watch circles,
however, since the accuracy of the Argos position information is only about
one kilometer. For deep-water moorings, like the Arabian Sea, this is
sufcient for the large watch circle of over 3 km. For a shalow mooring like
GLOBEC, with its watch circle of about 40 meters, the Argos error exceeds
the expected watch circle, so the watch circle is not plotted.

See Appendix VIlA for the text of the Matlab position script, and sample
output plots.

14

"

9 Appendices

Appendix i. Startup Shell Scripts

Appendix 1.1. Shell Script argos.sh

.! /bin/ sh

.

. Cl(.) argos .sh

. /gdata/argos/argos.sh

.
I usage: sh argos. sh

.

. 931005 n.galbraith

.

. Tests for presence of file before archiving and processing

. Incomin data is moved to argos (2) .dat.n where n is

. a constantly incrementing number.

.

. also processes engineering data (tension)

. uses findlast shell script in scripts subdirectory

. normally invoked by cron. use crontab -1 to check.

.

. Be Careful Editing This!!!!!

. mior mod 940725 to send stdout of gargle.sh to logfile,not mail

. 940908 remove met 1 (the pc) from the loop

. 940930 redesign: all processing done here, plotting done last

if (-f /gdata/argos/argos.dat J;

then
if (-f / gdata/ argos/ argos. dat . 1 J ;

then
lastf=' / gdata/ argos/ scripts/findlast . sh "/ gdata/ argos/ argos. dat i , ,
nextf=' expr $lastf + l'

date)) /gdata/argos/argos.log

echo II moving argos. dat argos. dat . $nextf II \
)) /gdata/argos/argos .log

15

mv I gdatal argos I argos. dat \
Igdata/argos/argos .dat. $nextf

else
nextf=1
date)) Igdata/argos/argos . log
echo II moving argos. dat argos. dat . 1 II \

)) I gdatal argosl argos. log

mv I gdatal argos I argos. dat I gdatal argos I argos. dat . 1
fi

. process primary arabian sea I VAWR

I gdatal argosi gargle. sh gargle argos. dat . $nextf arab vavr0721 \
)) Igdata/argos/vavr0721.log 2)t1

. send primar V AWR data to navy

Ipulil datal arabI argosl domail. sh 0721

. process tension

Ipulil datal arabI argos I dot ens . sh $nextf

. process position

Ipulil datal arabI argos/posi tl doposi t . sh $nextf

. process primar arabian sea II VAliR

I gdatal argos I gargle. sh garglenev argos. dat . $nextf arab2 \
vavr0720)) Igdata/argos/vavr0720.log 2)t1

. process arabian sea II tension

Ipulil datal arab21 argos I dot ens . sh $nextf

. process position

Ipulil datal arab21 argos/posi tl doposi t . sh $nextf
fi

. nov process the GLOBEC data in argos2. dat

if (-f Igdata/argos/argos2.dat J;

then
if (-f Igdata/argos/argos2.dat.1 J;

then

16

fi

lastf= r Igdata/argos/scripts/findlast. sh ((Igdata/argos/argos2. dat' , r
nextf= r expr $lastf + 1 r
date)) Igdata/argos/argos.log

echo II movin argos2. dat argos2. dat. $nextfll \
)) Igdata/argos/argos .log

mv I gdatal argos I argos 2 . dat \
I gdatal argos I argos 2 . dat . $nextf

else
nextf=1
date)) Igdata/argos/argos . log
echo II moving argos2. dat argos2. dat . 111 \

)) Igdata/argos/argos .log

mv I gdatal argos I argos2 . dat I gdatal argosl argos2 . dat . 1
fi

. process GLOBEC primar VAWR from file argos2.dat.n

Igdata/argos/gargle.sh garglenev argos2.dat.$nextf \

globec ,vavr0707)) Igdata/argos/vavr0707.log 2)t1

. process GLOBEC primar 1MET - includes tension

Igdata/argos/imet.sh argos2.dat.$nextf globec imet1 \
)) Igdata/argos/globecimet1.log 2)t1

. process GLOBEC secondar V AWR

I gdatal argosl gargle. sh, garglenev argos2. dat . $nextf \
globec vavr0380)) Igdata/argos/vavr0380.log 2)t1

. process GLOBEC secondar 1MET

Igdata/argos/imet. sh argos2. dat. $nextf globec imet2 \
)) Igdata/argos/globecimet2.log 2)t1

. send GLOBEC data to recipients

Igdata/argos/globec/ftp.sh)) Igdata/argos/globec/ftp.log 2)tl

. process position

Ipulil datal globecl argos/posi tl doposi t . sh $nextf

17 .

Appendix 1.2. Shell Script Findlast.sh

This script works with groups of fies with threepart names,where the parts
of the names are separated by periods, and the third part of the name is a
version number. It will fid the fie with name matchng the two pars
specified in arguent 1 with the highest version number on disk. Findlast
is caled by argos.sh and doposit.sh, but it can also be invoked from the
keyboard to determne the number of the most recent argos.dat or
argos2.dat fie. It returs only the number of the fie, not the complete

fiename.

! /bin/ sh
find the files in the arguent and return the number of highest

version number.

based on filenames file. ext. 1 file. ext. 2 file. ext. n
#
modified 950124 to handle deleted data files by using the version

number instead of relying on creation date of file

#
if ($# -eq 0 J

then
echo -1
exit

fi
ls $1* lawk 'BEGIN iFS="."lfprint $3)-' Isort +0 -n Itail -1

18

Appendix II. VA WR Processing

Appendix 11.1. Shell Script gargle.sh

! /bin/ sh
gargle. sh: ru one of the gargle programs and process the output

usage: gargle. sh program argosfilename experiment vawrname
example: gargle.sh garglenew argos2.dat.1 globec vawr0707
941208 n. galbraith

arguents:

$1 program to ru
$2 inputfile
$3 experiment
$4 vawrnam
cd /gdata/argos

src/$1 $2 $3/$4.tbl $3/$4.raw

sort +0 -1 -u -n $3/$4.raw) $3/$4.asc

cat $3/$4.asc)) $3/$4.arch

must be in /gdata/argos/src

must be in / gdata/ argos
subdirectory / eperiment
table file in subdir named in $3

go to incoming data spot

ru garglenew or gargle

remove incoming dupes

archive, remove duplicates and

send to processing dir

sort +0 -1 -u -n $3/$4.arch) /puli/data/$3/argos/$4.asc

garglenew
argos2 . dat . 1
glo bec
vawr0707

Appendix 11.2. Gargle output

This is a sample output fie containing VAWR data as written by program
gargle. The varables are:

yearday east north speed dir sw rh bp
m/s m/s m/s deg w/m-2 1. mb

52.229,-4.79,1.66, 5.07,25.8,-1,95.4,995.6,

52.250,-3.78,2.41, 4.48,37.5,-1,95.5,995.0,

52.260,-3.37,2.86, 4.42,29.6,-1,95.6,994.9,

52.281,-2.70,4.11, 4.92,13.3,-1,95.7,993.9,

seaT
degC
5 . 552 ,

5 . 559 ,

5 .558,
5 . 546 ,

airT TPV bodyT domeT lw

degC mv DegK DegK w/m-2
6.74,41.1,279.8,279.8,352.8
6 .59 ,42 . 9 , 279 . 7 , 279 . 6 ,352.6
6.57,44.4,279.7,279.8,352.9
6 . 68 ,48 .0,279.8,279.7 ,354.4

19

Appendix II.3. VA WR Table File

-) vawr_tabl :0721 : nan : Tue Jun 28 94

#0 :v721wr instruent identifier
01356 - PROGRA
06856 - PIT

06857 - PIT

06858 - PIT

#1 :EC east counts
16 - BITS_EC

-10.0 - MIN_EC

30.0 - MA_EC
-99.0 - MISS_EC

#2 :NC north counts
16 - BITS_NC

-10.0 - MIN_NC

30 . 0 - MA_NC
-99.0 - MISS_NC

#3 :RC rotor counts

16 - BITS_RC

-10.0 - MIN_RC

30 .0 - MA_RC
-99.0 - MISS_RC

#4 :CO CO counts

8 - BITS_CO

-10.0 - MIN_CO

30.0 - MA_CO
-99.0 - MISS_CO

-.8 - MAGVAR

#5 :VA vane counts

8 - BITS_VA

-10.0 - KIN_VA

30.0 - MA_VA
-99.0 - MISS_VA

#6 :TM time

20

16 - BITS_1M

19920101 - MIN_1M

19941231 - MA_1M
-99.0 - MISS_1M

450 - TSAM
450 - CWIS

94 - YE
10 - MONT
02 - DAY

06 - HOUR

30 - MINUE
00 - SECOND

#7 : SW short wave radiation

20 - BITS_SW

-10.0 - MIN_SW

1500 .0 - MA_SW
-99.0 - MISS_SW

25418 - #_SW

10 . 52 - CAL_SW
4.0 _ Z_SW

#8 :LW long wave radiation

20 - BITS_LW

100 .0 - MIN_LW

500 .0 - MA_LW
-99.0 - MISS_LW

28463 - #_TP

2.04164 - LW_A

1.11 - LW_B

O. - LW_C

-1018.68 - TP_A

2.04164 - TP_B

#9 :RH relative humidity

16 - BITS_RH

2.0 - MIN_RH

115.0 - MA_RH

-99.0 - MISS_RH

034 - #_RH

,

21

5.0667°- A_RH

0.04571 - B_RH

-0.0012539 - C_RH

3.51563 - TI_RH

210.32 - P20

20. - P20F ACT

#10 :BP barometric pressure
16 - BITS_BP

800.0 - MIN_BP

1100.0 - MA_BP

-99.0 - MISS_BP

43698 - # _BP

o . 0 - A_BP
0.0 - B_BP

92.68879 - C1_BP

2.672706 - C2_BP

-114.7084 - C3_BP

0.031184 - D1_BP

27.92331E-06 - TO_BP

2.636716 - TI_BP

27.85152 - T1_BP

0.831612 - T2_BP

20.34282 - T3_BP

-4035.285 - Y1_BP

0.0 - Y1_BP

-14001.10 - Y2_BP

#11 : ST sea temperature
20 - BITS_SEA

-10.0 - MIN_SEA

40.0 - MAX_SEA

-99.0 - MISS_SEA

5005 - #_SEA

9038.16 - R1_SEA

3998.49 - R2_SEA

-1.45 - F1_SEA

759. 14 - F2_SEA

.109376436E-02 - TA_SEA

22

.262474576E-03 - TB_SEA

. 146244 73E-06 - TC_SEA

3608.0 - RS_SEA

-) number of multiplexed temperature

-) sensors in the instruent

4.0 - K_TEM
#12 :AT air temperature

20 - BITS_AIR

-20.0 - MIN_AIR

40.0 - MA_AIR
-99.0 - MISS_AIR

5804 - #_AIR

12699.00 - R1_AIR

4999 .70 - R2_AIR

-131.18 - F1_AIR

711 .50 - F2_AIR

.128804283E-02 - TA_AIR

.235519671E-03 - TB_AIR

.951705804E-07 - TC_AIR

4296.0 - RS_AIR

#13 : BT body temperature
20 - BITS_B

-10.0 - MIN_B

50 . 0 - MA_B
-99.0 - MISS_B

284631 - #_LWB

23460 . 0 - Ri-B
10000.0 - R2_B

-65.50 - F1_B

712.40 - F2_B

.10125311E-02 - TA_B

.24220731E-03 - TB_B

.14217244E-06 - TC_B

4465.0 - RS_B

#14 :DT dome temperature

20 - BITS_O

-20.0 - MIN_O

23

50.0 - MA_d
-99.0 - MISS_D

284632 - '_LWD

23460 .0 - R1_D

10000.0 - R2_D

-66.56 - F1_D

711 .49 - F2_D

.10161020E-02 - TA_D

.24160036E-03 - TB_D

. 14344824E-06 - TC_D
4450.0 - RS_D

.15 : DU filler engineering byte

8 - BITS_DUM

.16 : CS checksum

16 - BITS_CHECKSUM

-) 1* must be 1st non standard canst *1

30 - LST _BYT

-) 1* must be 2nd const,O-bin 1-asc *1

1 - ASCII

24

Appendix III. IMET Processing

Appendix IIL1. Shell Script Imet.sh

! /bin/ sh
imet. sh rus gargle_imet
#
usage:

imet. sh argosfilename directory/experiment instruent

where argosfilename is the raw incoming argos file
experiment is the directory experiement i. e. globec
instruent_name is normally imet1 or imet2
#
941208 n. galbraith

#
cd /gdata/argos # go to incoming data spot
src/gargle_imet $1 $2/$3.tbl $2/$3.raw

tr ',' , , ($2/$3.raw I awk -f imet.awk Isort +0 -1 -u -n) \

$2/$3. asc # remove incoming dupes
cat $2/$3.asc)) $2/$3.arch # archive

remove dupes from whole set

and send to processing dir

sort +0 -1 -u -n $2/$3.arch) /puli/data/$2/argos/$3.asc

25

Appendix 111.2. Imet.awk

BEGIN i

pday = "date +1.j ";
NU = 0;
)-

i hour = $2 + . 5 ;
jday = $1 + (hour / 24.);

if ($1 (= pday) i

at = $4;

if (j day (91.) i
if (at) 25.) i
at = at - 35.96 - 5.;

)-

)-

printf ("1.9 .4f ,1.9. 4f, 1.9 .4f ,1.2d, 1.2d, 1.9. 4f , II ,jday, $6, $7 ,NUL ,NUL, $9)
printf ("1.9 .4f, 1.9. 4f, 1.9. 4f ,1.9. 4f ,1.2d, 1.2d, 1.2d, II ,$8, $3 ,at, $5, NU ,NU ,NU) ;
printf(II1.9 .4f, 1.9 .4f, 1.9 .4f, 1.3d\n" ,$10 ,$12 ,$13,$2)

)-

else
print $1, j day, pday, tday

)-

process argos imet

input variables:

, # day hr bp at st u v rh sw lw rn bv tens

output variables:
realday u v null null sw rh bp at st null null null lw bv tens hour

this version 950104 checks for clock jumping ahead of today's date

950202 added 30 minutes to time to reflect center point of record
950204 normalize very low temperatures
air temp max = 35.95 min = -5.
sea temp max = 38.95 min = -2.
to normalize' 'wrapped" values, subract (max val + .01), add min value

i.e. at val = 33.5, actual val should be 33.5 - 35.95 - 5. = -7.4

for this experiment, use max acceptible val for at = 25

26

Appendix III.3 Sample IMET File

Variables labelled d are dummy variables.

yearday u v d d sw rh
m/s m/s w/mA2 1.

53.1042, -5.00,5.30,0,0,0.0,91.0,

53. 1458, -4.10,7.00,0,0,0.0,90.0,

53.1875, -3.30,8.20,0,0,0.0,91.0,

53.2292, -2 . 50 ,7.80,0,0,0.0,90.0,

53.2708, -3.30 ,8. 00,0,0,0.0,88.0,
53.3125, -4. 50,7.90,0,0,0.0,87.0,

"

bp airT seaT d d d lw bv tns pre
mb dege degc w/mA2 v Ibs mm
995.8,3.10, 5.46,0,0,0,321.0,13. ,3450.,0

996.0,2.95, 5.46,0,0, Q, 322.0,13. ,3350. ,9

996 .2,2 . 55, 5.53,0,0,0,320. a , 13. ,3300 . ,9
996.4,2.48, 5.56,0,0,0,317.0,13. ,3300. ,13

996.8,2.46, 5.63,0,0,0,313.0,13. ,3050. ,13

996.8,2.35, 5.60,0,0,0,313.0,13. ,3000.,0

27

Appendix IlIA. iMET Table File

-) imet_ tabl : 01419 : roger : Thu Dec 08 95

#0 : i01419 instruent identifier
01419 - PROGRA
23657 - PIT

23658 - PIT

23659 - PIT

#1 : DA day of year
09 - BITS_DA

1.0 - MIN_DA

365 .0 - MA_DA
-99.0 - MISS_DA

#2 : HR hour of day
05 - BITS_HR

0.0 - MIN_HR

23.0 - MAX_HR

-99.0 - MISS_HR

#3 : BP barometric pressure
11 - BITS_BP

900.0 - MIN_BP

11 00 . 0 - MA_BP
-99.0 - MISS_BP

#4 :AT air temperature

12 - BITS_AT

-5.0 - MIN_AT

35.0 - MA_AT

-99.0 - MISS_AT

0.01 - SCALE_AT

500.0 - BIAS_AT

#5 : WT sea temperature
12 - BITS_WT

-2.0 - MIN_WT

38.0 - MAX_WT

-99.0 - MISS_WT

0.01 - SCALE_WT

28

200.0 - BIAS_WT

#6 :WU Wind U
10 - BITS_WU

-51.5 - MIN_WU

51. 5 - MA_WU
-99.0 - MISS_WU

0.1 - SCALE_WU

511. 0 - BIAS_WU

#7 :WV Wind V
10 - BITS_WV

-51. 5 - MIN_WV

51. 5 - MA_WV
-99.0 - MISS_WV

0.1 - SCALE_WV

511.0 - BIAS_WV

#8 :RH relative humidity

7 - BITS_RH

o . 0 - MIN_RH
100 . 0 - MA_RH
-99 .0 - MISS_RH

#9 :SW short wave radiation
11 - BITS_SW

0.0 - MIN_SW

1500 . 0 - MA_SW
-99.0 - MISS_SW

#10 : LW long wave radiation

10 - BITS_LW

0.0 - MIN_LW

750.0 - MA_LW
-99.0 - MISS_LW

#11 :RN precipitation
7 - BITS_RN

0.0 - MIN_RN

127 . 0 - MA_RN
-99.0 - MISS_RN

#12 : BV battery voltage
8 - BITS_BV

29

"

.

-20.0 - MIN_BV

15 . 0 - MA_BV
-99.0 - MISS_BV

o . 1 - SCALE_BV
#13 : TN tension

8 - BITS_TN

-20.0 - MIN_TN

12750 .0 - MA_TN
-99.0 - MISS_TN

50 .0 - SCALE_TN

-) NOTE: the cycle repeats, identical values

#14 : 02 day of year
09 - BITS_OA

1.0 - MIN_OA

365 . 0 - MA_OA
-99.0 - MISS_OA

#15 :H2, hour of day

05 - BITS_HR

0.0 - MIN_HR

23.0 - MAX_HR

-99.0 - MISS_HR

#16 : B2 barometric pressure
11 - BITS_BP

900.0 - MIN_BP

1100.0 - MA_BP

-99.0 - MISS_BP

#17 : A2 air temperature
12 - BITS_AT

-5.0 - MIN_AT

35.0 - MA_AT
-99.0 - MISS_AT

0.01 - SCALE_AT

500.0 - BIAS_AT

#18 : W2 sea temperature
12 - BITS_WT

-2.0 - MIN_WT

38.0 - MA_WT

30

-99.0 - MISS_WT

0.01 - SCALE_WT

200.0 - BIAS_WT

#19 : U2 Wind U
10 - BITS_WU

-51.1 - MIN_WU

51.1 - MA_WU

-99.0 - MISS_WU

0.1 - SCALE_WU

511.0 - BIAS_WU

#20 : V2 Wind V
10 - BITS_WV

-51.1 - MIN_WV

51.1 - MA_WV
-99.0 - MISS_WV

0.1 - SCALE_WV

511.0 - BIAS_WV

#21 :R2 relative humidity

7 - BITS_RH

0.0 - MIN_RH

100 .0 - MA_RH
-99.0 - MISS_RH

#22 : S2 short wave radiation
11 - BITS_SW

0.0 - MIN_SW

1500.0 - MA_SW

-99.0 - MISS_SW

#23 :L2 long wave radiation

10 - BITS_LW

0.0 - MIN_LW

750 . 0 - MAX_LW

-99.0 - MISS_LW

#24 :P2 precipitation
7 - BITS_RN

o . 0 - MIN_RN
127 . 0 - MA_RN
-99.0 - MISS_RN

31

#25 :C2 battery voltage
8 - BITS_BV

-20.0 - MIN_BV

15 . 0 - MAX_BV
-99.0 - MISS_BV

o . 1 - SCALE_BV
#26 : T2 tension

8 - BITS_TN

-20.0 - MIN_TN

12750.0 - MA_TN
-99.0 - MISS_TN

50 . 0 - SCALE_TN
#27 : CS checksum

16 - BITS_CHECKSUM

-) 1* must be 1st non standard constant *1
30 - LST _BYT

-) 1* must be 2nd constant O-bin 1-asc *1
1 - ASCII

32

Appendix IV. Engineering PTT Processing

Appendix IV.l. Shell Script dotens.sh

! /bin/ sh
process tension, and battery voltage for arabian sea

the engineering ptt is # 22527.

Data characters are

AA BB CC DO EE FF GG HH
where:
BB = battery voltage
CC = tension
#
#
#
#
#
#
#
#

Tension:
T = (CCd/256) * 5.0 * 2067.9 - 423.0

where:
AAd is the decimal equivalent of AA hex.

Battery voltage:

BV = (dBB/256) * 17.1

sample input Argos records:

01356 22527 3 32 H 1 1994-06-01 10:45:2441.533 289.356 0.0 401649554

1994-06-01 10 :49 ~10 4 E3 C6 18 99
00 00 00 FF
01356 22527 5 32 0 2 1994-06-01 11: 09: 54 41.528 289.356 0.0 401649554

1994-06-01 11: 06: 08 2 E3 C6 18 99
00 00 00 FF
1994-06-01 11: 15: 33 3 E3 C5 18 99
00 00 00 FF
#
output file tens. asc:
Doy, Yy, Mo,Da,Hr,Mn, Sc, Tens, Dumy, Batt Volt
155.959625, 1994, 6, 4, 23, 1, 52, 425.162109, 000, 13.158984

33

-

to remove data from the database , edit file tens. raw, which is

appended by this script

if an arguent is used, it is the number of the file to process

if called with no arguents, process most recent file

if ($# -eq 1 J

then
lastf=$l

elif (-f Igdata/argos/argos.dat.l J

then .

lastf= r I gdatal argosl scripts/findlast . sh r r argos. dat . *' , r
else

lastf=l
fi

if (-f Ipuli/data/arab/argos/tens.raw J

then
touch Ipulil datal arabI argo sIt ens . raw

fi

extract tens data from the Argos file and append

to the raw tens file
tr ':_J J J(Igdata/argos/argos.dat.$lastf I awk -f \

Ipulil datal arabI argos/tens . awk)) Ipulil datal arabI argos/tens . raw

sort +0 -n -u (Ipuli/data/arab/argos/tens . raw I \
Ipuli/data/arab/argos/conv) Ipuli/data/arab/argos/tens. asc

chod 777 Ipulil datal arabI argos/tens . raw
chod 777 Ipulil datal arabI argos/tens . asc

34

Appendix IV.2. Awk Script tens.awk

BEGIN -(star=O)-

$2 - 1225271 -(star=1)-

$1 - 113561 -(if ($2 ! - 1225271) -(star = 0)-)-
$2 ! - 1225271 -(if (star)

-(if (NF == 11) -(

year = $1;

month = $2;
day = $3;

hour = $4;

minute = $5;
second = $6;
jhour = hour/24 + minute/24/60 + second/24/60/60;

doy = day;

if (month == 1)

-(doy = day)-
if (month == 2)

-(doy = 31 + day)-
if (month == 3)

-(doy = 59 + day)-
if (month == 4)

-(doy = 90 + day)-
if (month == 5)

-(doy = 120 + day)-
if (month == 6)

-(doy = 151 + day)-
if (month == 7)

-(doy = 181 + day)-
if (month == 8)

-(doy = 212 + day)-
if (moIith == 9)

-(doy = 243 + day)-
if (month == 10)

-(doy = 273 + day)-
if (month == 11)

35

idoy' = 304 + day l-
if (month == 12)

idoy = 334 + day l-
doy = doy + jhour¡

printf (lI1.f 1.d 1.d 1.d 1.d 1.d 1.d 1.s 1.s y's\nll,

doy, $1,$2,$3, $4,$5, $6, $9 ,$10 ,$11) l-
l-

)-

36

Appendix IV.3. Program Conv.c

This program is used by the shell script dotens.sh to decode the AS.CII
hexadecimal vaues in the tensiometer PTT record.

#include (stdio .h)
#include (string.h)

main 0

-(

int ii, inb,outb, stat;

int yy ,mo ,da,hr ,mn, sc, tn, tt, bat;

float BV, T ,doy;

while(1)
-(

stat=scan (l11.f 1.d 1.d 1.d 1.d 1.d 1.d 1.% 1.% 1.%11,

tdoy ,tyy ,imo ,tda,thr ,lm,tsc,tbat ,&tn,ttt) ;

if(stat == EOF)

e%i t (0) ;

T = (tn/256.) * 5.0 * 2067.9 - 423.0;
if (T (0.5) T = 0;

BV = (bat/256.) * 17. 1

printf ("1.f, 1.d, 1.d, 1.d, . 1.d, 1.d, 1.d, 1.f, 1.d, 1.f\n II ,
doy ,yy ,mo ,da,hr ,mn, sc, T, tt ,BV) ;

ì

ì

37

Appendix V. Position Processing Scripts

Appendix V.l. doposit.sh

#! Ibin/sh

#
process Argos position data for Arabian Sea experiment
94/03/02 N. Galbraith
usage:

doposit. sh (with no arguents)
processes most recent file in Igdata/argos/argos.dat.n
doposi t . sh nn
processes file Igdata/argos/argos.dat.nn
argos. dat :
01356 06856 33 32 D 1 1994-05-20 12: 06: 37 \
41.535 289.353 0.002 401650137

cd Ipulil datal arabI argos/posi t

find the input file. If not specified on command line,

process the newest argos .dat.n file

if ($# -eq 1 J

then
lastf=$1

elif (-f Igdata/argos/argos. dat.1 J

then
lastf=' Igdata/argos/scripts/findlast ' 'argos.dat'"

else
lastf=1

fi

extract position info from Argos file

tr ':\-' , , (Igdata/argos/argos.dat.$lastf 1\

awk 'NF) 13 -(print $Oì' I awk -f posit.awk) jun.dat

if (! -f pripos.arch.asc J

38

then

fi
touch pri pos . arch. asc

np='awk '$1 == 6856' jun.dat Iwc -1'

if ($np -ge 1 J

then
echo processing primar position reporter

awk ' $1 == 6856 t print $2, $3, $4, $5, $6, $7, $8, $9, $10 J' \

jun.dat)) pripos.arch.asc

cat pripos.arch.asc I sort -n +6 -u) arab1.pos

fi

np='awk '$1 == 6859' jun.dat Iwc -1'

if ($np -ge 1 J

then
echo processing spare position reporter

awk '$1 == 6859 t print $2, $3, $4, $5, $6, $7, $8, $9, $10 J' \

jun.dat)) secpos.arch.asc

cat secpos . arch. asc I sort -n +6 -u) arab2. pos

fi

39

"

Appendix V.2. posit.awk

i year = $7;
if (y~ar) 1900) iyear = year-1900 ì

month = $8;
day = $9;

hour = $10;minute = $11; ·
second = $12 j

jhour = hour/24 + minute/24/60 + second/24/60/60 j

doy = day j
if (month == 2) idoy = 31 + day ì

if (month == 3) idoy = 59 + day ì

if (month == 4) idoy = 90 + day ì

if (month == 5) idoy = 120 + day ì

if (month == 6) idoy = 151 + day ì

if (month == 7) idoy = 181 + day ì

if (month == 8) idoy = 212 + day ì

if (month == 9) idoy = 243 + day ì

if (month == 10) idoy = 273 + day ì
if (month == 11) idoy = 304 + day ì

if (month == 12) idoy = 334 + day ì

doy = doy + jhour;
long = $14 j
if (long) 180)

ilong = $14 - 360 ì
printf ("1.d 1.2d 1.2d 1.2d 1.2d 1.2d 1.2d 1.7. 3f 1.8. 3f 1.8. 3f\n II ,

$2, year ,month, day, hour ,minute, second, doy ,$13, long) ìiì

40

Appendix Vi. Data Distribution Scripts

Appendix VI.1. Ftp Shell Script

! Ibinl sh
sends 4 files to anonymous ftp site
note: names and addresses have been changed for publication

#
ftp -n -i 128.128.99.99 ((EOF

user anonymous my.ame~myhost .myorganization.mydomain

cd incomingl globec. burin
ascii
put Ipulil datal globecl argos/vawr0707 . asc vawr0707. asc
put Ipuli/data/globec/argos/vawr0380 .asc vawr0380. asc

put Ipuli/data/globec/argos/imet1.asc imet1. asc

put Ipuli/data/globec/argos/imet2. asc imet2. asc

bye
EOF

41

VI.2. Mail Shell Script

#! /bin/sh
usage domail.sh xx where xx is 4-dgit VAWR number

#
941114 nrg - for Arabian Sea!
#
input: file vawrxx. asc
output: file nxx. asc
#
cd /puli/data/arab/argos

write the header to output file

echo " WHO! Arabian Sea Met Data - Robert A.

echo" day-time wspd wdir sr rh bp
)) n$1. asc

Weller") n$1. ascsst at lr "\

write the last 100 points to the output file

tail -100 vawr$1. asc I tr ',' , , I awk -f x. awk)) n$1. asc

send the file somewhere here. Use rcp or mail

mail -s "WHO! Arabian Sea Met Data" userUlcomp1.navy .mil (n$1. asc

Appendix VI.3. x.awk

This one-line script extracts data varables of interest to be transmitted to
remote sites.

-(printf ("1.10. 6f 1.5. 2f 1.7. 2f Y.4d Y.4.1f 1.6. 1f 1.5. 2f 1.5. 2f 1.5. 1f\n" ,

$1,$4,$5,$6,$7,$8,$9,$10,$14)1

42

Appendix VII. Plotting Scripts and Sample Plots

Appendix VII.I. Shell Script dopl.sh

Shell script dopl.sh plots VA WR and mooring information.

#! /bin/sh
940930 N. Galbraith

plot Argos data for arabian sea deployment 1

VAWR science variables
VAWR engineering t other engineering variables
position, using posit/positl.m
#
set up to ru pplus

LD_LIBRAY_PATH=/usr/openwin/lib # environment
export LD_LIBRAY_PATH
cd /puli/data/arab/argos

ed= f date "+Y.j II f
sd= f expr $ed - 3 f

date limits

if (-f ppl.metaOOl J

then
housekeeping

rm ppl. meta*
fi

do it

plot the science and engineering variables for primar VAWR

/usr/local/bin/pplus argoss .ppc $sd $ed vawr0721. asc

/usr/local/bin/pplus argose.ppc $sd $ed vawr0721.asc

chod 666 ppl.metaOOl

chod 666 ppl.meta002

plot the positions with Matlab script positl.m

which creates plot file pposi t . ps

43

cd Ipuli/data/arab/argos/posit

lusr/local/bin/matlab (positl.m

chod 666 pposit .ps

send the plotfiles to the printer

cd Ipulil datal arabI argos

lusr/local/bin/m2ps -R ppl.metaOOl Ipr
if (-f ppl.meta002 J

then
lusr/local/bin/m2ps -R ppl.meta002 I Ipr

fi

cd Ipuli/data/arab/argos/posit

Ipr pposi t . ps

M

VI1.2. Pplus Plotting Scripts

VII.2.i. Plot Scientific Variables: argoss.ppc

c pplus plotting script argoss.ppc

c
c usage:

c pplus argos. ppc styrday enyrday file
c note plot type hard wired to ° for file output

pltype,O
axset, 0,1,1, °

rotate on

window on

multplt 1,8

5.75
0.7,0.7,0.7,0.7,0.7,0.7,0.7,0.7
1.5
0.2,0.2,0.2,0.2,0.2,0.2,0.2,1.5

line 1" °

c set up the year day for the xaxis

xaxis 'pl', 'p2', .25
axlabp 0,-1

yaxis,-10,10,5,
format free
vars 1, 1 ,2
skp,2, 'p3'
rd
ylab east
plot,

yaxis, -10,10,5
format free

45

vars 1, 1 , , 2
skp, 2 , 'p3'
rd
ylab north

- plot,

yaxis, 10,40,10
format free

vars 1, 1 , , , , , , , , 2
skp,2, 'p3'
rd
ylab wt

plot,

yaxis, 10 ,40,10

format free

vars 1, 1 , , , , , , , , ,2
skp , 2, 'p3'
rd
ylab at
plot,

yaxis, -50,1200,200
yfor (i4)
format free

vars 1, 1 , , , , , 2
skp,2, 'p3'
rd
ylab sw

plot,

yaxis , 0 , 600,200
yfor (i3)
format free

vars 1, 1 , , , , , , , , , , , , , 2
skp,2, Jp3J

rd

~

.

46

,

ylab lv
plot,

yaxis, 1000,1040,10,

yfor (i4)
format free

vars 1, 1 , , , , , , , 2
skp , 2, 'p3'
rd
ylab , bp
plot,

.

axlabp -1,-1

yaxis,O, 100 ,20

yfor (i3)
format free

vars 1, 1 , , , , , , 2
skp,2, 'p3'
rd
ylab , rh
plot, Arabian Sea Argos 'p3'

47

VII.2.2. Scientific Varables Plot .1o.ok
1 _ 0.0 -
. 10.0 T

=t 10.0 to 0.0 _c
-10.0

30.0 ~
~ 28.0

~ 26.0 .
24.0
30'0~

~ 28.0
o 26.0 .

24.0 i
1 200 ~

~ 800
UJ 400

o
~ 500J

300 ~
1040 ~

.ß 1 020

1000 -
~ 1~~ i.

i- 60 .
40

20.00

~ -~ - I
.~

4~1~ ~ ~

1- -'
Î

r:
~

o
~

o
~

~ ~
I

~

-

~I ~-
~ ~~. - .

I

22.50 23.00
I

21.50 22.0020.50 21.00

Arabian Sea Argos vawr0721.asc
48

VII.2.3. Plot Engineering Varables: argose.ppc

c plot VAWR Argos engineering data for Arabian Sea

c usage: pplus argos. ppc styrday enyrday file
pltype,O
axset,O, 1, 1,0
multplt 1,7

5.75
0.7,0.7,0.7,0.7,0.7,0.7,0.7
1.5
0.2,0.2,0.2,0.2,0.2,0.2,1.5
line 1,,0

xaxis 'p1', 'p2', .25
window on

axlabp, 0,-1

yaxis, 0,10,1
format free

vars 1, 1 , , ,2
skp,2, 'p3'
rd
ylab, spd

plot,

yaxis,O ,360 ,90
vars 1, 1 , , , , 2
skp , 2 , , p3'
rd
ylab , dir
plot,

yaxis, -200 ,400,100

vars 1, 1 , , , , , , , , , , 2
skp,2, 'p3'
rd
ylab , tpile

49

plot,

.

yaxis ,275,340,5
vars 1, 1 , , , , , , , , , , , 2
skp,2, Jp3J

rd
ylab , body
plot,

yaxis, 275,340,5
vars 1, 1 , , , , , , , , , , , , 2
skp , 2 ,J p3 J
rd
ylab , dome
plot,

yaxis,
vars 1, 1 , , , , , , , 2
skp,2, tens. asc
rd
ylab , Tens
plot,

axlabp -1,-1

yaxis,
vars 1, 1 , , , , , , , , ,2
skp,2, tens. asc
rd
ylab, Voltage
plot, Arabian Sea Argos J p3 J

50

VII. 2.4. Engineering Varables Plot

20.0i:
"Ocna. 1 0.0 ~ ~~~ ~~I-:3~itl
~ 18:: 1 I ~- I ~.- ~~ I .1-

~400.t~.§20~:~~- ~ ~ ~I I
j ~¡~: I

i ~¡~: I

~ ~

~ Nw
~ I

~ r--i

I

20.50
I

21.00
I

21.50
I

22.00
I

22.50
I

2.3.00

Arabian Sea ARGOS vawr0721.asc

51

VII.3. Matlab Position Plotting Argos position values are plotted using
Matlab noninteractively with script posit1.m.

VII.3.1 Matlab Script

1. plot a position-only Argos file

1. 941006 n.galbraith - for Arabian Sea
load arab1. pos -ascii

plot(arab1(: ,9) ,arab1(: ,8))
hold on

1. get label position
minx = min(arab1(: ,9)); miny = min(arab1(: ,8));

max = max(arab1(: ,9)); maxy = max(arab1(: ,8));

axis ((minx-. 05 ,max+. 05 ,miny-. 05 ,max+. 05))
1. get and anotate end date

(xi,yi) =size(arab1);

txt = sprintf (, from: 1.7. 3f to 1.7. 3f' , arab 1 (1,7) , arab 1 (xi, 7)) ;
text (minx, miny, txt);

text (minx, miny-. 025, , star indicates last position received');

plot (arab 1 (xi,9) ,arab1(xi,8), '*');
1. plot the watch circle and the anchor position
ay = 15.5; ax = 61.5;
plot (ax,ay, 'x')

rady = 1. 75 / 60; 1. 1.75 nm 1. 60 nm = 1degree

radx = 1.75 / (cos(ay) * 60);

xcirc = zeros (360) ; ycirc = zeros (360) ;
for ii=1: 360

xcirc(ii)=radx*(cos(ii))+ax;

ycirc(ii) =rady* (sin(ii))+ay;

end
plot (xcirc, ycirc, , . ')
title('ARBIAN SEA I Buoy Position');

print pposi t . ps

52

15.56

15.54

15.52

15.5

15.48

15.46

15.44

VII.3.1 Position Plot

ARABIAN SEA I Buoy Positions

from: 1.087 to 90.075

star indicates last position received

61.4 61.42 61.44 61.46 61.48 61.5 61.52 61.54 61.56 61.58

53

Acknowledgements
The author wishes to thank members of the Upper Ocean Processes Group
for discussions and feedback during the development of the software.
Discussions with N. Brink and A. Plueddemann during the preparation of
this document are gratefully acknowledged.

54

DOCUMENT LIBRARY
Distribution Listfor Technical Report Exchange- May /995

University of California, San Diego
SIO Library 0175C
9500 Gilman Drive
La Jolla, CA 92093-0175

Hancock Library of Biology & Oceanography
Alan Hancock Laboratory
University of Southern Caliornia
University Park

Los Angeles, CA 90089-0371

Gifts & Exchanges
Library
Bedford Institute of Oceanography
P.O. Box 1006
Dartmouth, NS, B2Y 4A2, CANADA

Commander
International Ice Patrol

1082 Shennecossett Road
Groton, CT 06340-6095

NOAA/EDIS Miami Library Center
4301 Rickenbacker Causeway
Miami, FL 33149

Research Library
U.S. Army Corps of Engineers
Waterways Experiment Station
3909 Halls Ferry Road
Vicksburg, MS 39180-6199

Institute of Geophysics
University of Hawaii
Library Room 252
2525 Correa Road
Honolulu, HI 96822

Marine Resources Information Center

Building E38-320
MIT
Cambridge, MA 02139

Library
Lamont-Doherty Geological 0l?servatory
Columbia University
Palisades, NY z10964

Library
Serials Department
Oregon State University
Corvalls, OR 97331

Pell Marine Science Library
University of Rhode Island
Narragansett Bay Campus
Narragansett, RI 02882

Working Collection
Texas A&M University
Dept. of Oceanography
College Station, TX 77843

Fisheries-Oceanography Library
151 Oceanography Teaching Bldg.
University of Washington
Seatte, WA 98195

Library
R.S.M.A.S.
University of Miami
4600 Rickenbacker Causeway
Miami, FL 33149

Maury Oceanographic Library
Naval Oceanographic Office
Building 1003 South
1002 Balch Blvd.
Stennis Space Center, MS, 39522-5001

Library
Institute of Ocean Sciences
P.O. Box 6000
Sidney, B.c. V8L 4B2
CANADA

Library
Institute of Oceanographic Sciences
Deacon Laboratory
Wormley, Godalming
Surrey GU8 5UB
UNITED KINGDOM

The Librarian
CSIRO Marine Laboratories
G.P.O. Box 1538
Hobart, Tasmania
AUSTRALIA 7001

Library
Proudman Oceanographic Laboratory
Bidston Observatory
Birkenhead
Merseyside L43 7 RA
UNITED KINGDOM

IFREMER
Centre de Brest
Service Documentation - Publications
BP 70 29280 PLOUZANE
FRANCE

50272-101

REPORT DOCUMENTATION 11. REPORT NO.PAGE WHOI-95-06
4. Title and Subtitle

A Processing System for Argos Meteorological Data

2. 3. Recipient's Accession No.
UOP-95-03

5. Repor Date
March 1995

6.

7. Author(s) Nancy R. Galbraith 8. Performing Organization Rept No.

WHOI-95-06
9. Performing Organization Name and Address 10. Projectfask/ork Unit No.

Woods Hole Oceanographic Institution
Woods Hole, Massachusetts 02543

11. Contract(C) or Grant(G) No.

(C) NOO i 4-94-1-01 61

(G)

12. Sponsoring Organization Name and Address

Office of Naval Research

13. Type of Report & Period Covere

Technical Report

14.

15. Supplementary Notes

This report should be cited as: Woods Hole Oceanog. Inst. Tech. Rept., WHOI-95-06.

16. Abstrat (Umit: 200 words)

Upper Ocean Processes Group meteorological data is transmitted from surface buoys via Argos satellite and processed in an
automatic mode on a UNiX workstation. Data is extracted from input files based on instrument type and experiment,
processed as appropriate, and plotted, without user intervention. While the processing system normally runs automatically,
it is designed so that modules can also be run directly from a terminal when necessary. The Argos processing system allows
us to monitor the meteorological data being collected in the field, and provides early information about problems with
sensors, instruments, or buoys, when they occur. The automatic process allows more information to be viewed with less
effort, and increases the usefulness of the Argos data.

17. Doument Analysis a. Descriptors
automatic processing

time-series data
UNX software

b. IdentifierOpen-Ended Terms

c. COSATI Field/Group

18. Availabilty Statement

Approved for public release; distribution unlimited.

19. Seurity Clas (This Report)

UNCLASSIFIED
20. Seurity Class (Tis Page)

21. No. of Pages

60
22. Price

:Se ANSI-Z39.18) Se Instrctions on Revers OPTIONAL FORM 272 (4-77
(Formerly NTIS-35)
Department of Commerce

