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i Introduction

Atmospheric and oceanographic fields for the western North Atlantic Ocean from

various sources w:ere assembled to study the upper ocean heat budget in the vicinity

of the Gulf Stream. Atmospheric fields include the surface heat fluxes and 1000 mb

winds from the European Centre for Medium-range Weather Forecasting (ECMWF).

Oceanographic fields included the sea surface height (SSH) from the Geosat radar

altimeter and sea surface temperature (SST) from the A VHRR radiometer. The fields

used in the heat budget analysis were averages over two-week periods, at intervals of

one week. The same raw data set was used for the fields shown here, but the averages

were computed over a month. All of the fields were interpolated to the model grid,

which was 1/2-degree resolution in latitude by 1 degree in longitude.

Geostrophic velocities, derived from the SSH fields, and SST were assimilated into

an oceanic mixed layer model forced by the wind stress to obtain estimates of the net

surface heat flux as the residual of the upper ocean heat budget. The mixed layer

model was forced by wind stress computed from the ECMWF winds. Assimilation was

done using a Kalman filter on both the temperature tendency and the temperature

of the mixed layer, as described by Kelly and Qíu (1995a). The error in tempera-

ture tendency was used to derive a new surface heat flux estimate. The agreement

between the time series of spatially averaged surface flux and that obtained from the

ECMWF atmospheric model was surprisingly good. The temporally averaged surface

flux estimates from the mixed layer model were in good agreement with the' Bunker

climatological values, except in February and March, when the model mixed layer

shoaled more rapidly than expected from climatology.

The heat budget of the mixed layer was analyzed to determine the importance

of temperature advection relative to eddy diffusion and vertical entrainment, as de-
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scribed by Kelly and Qiu (1995b).

The atmospheric fields are described in section 2 and the oceanographic 'fields are

described in section 3. Section 4 contains a comparison of the heat fluxes and the

monthly mean fields are presented in the appendix.

2 Atmospheric Fields

The mixed layer model was forced by wind stress and the surface heat flux. The

surface wind data used to calculate the wind stress fields are the twice-daily 1000 mb

wind vectors from ECMWF, with horizontal resolution of 2.5° x 2.5°. Wind vectors

were converted to surface wind stress using the bulk aerodynamic formulae proposed

by Trenberth et al. (1990), then averaged temporally and finally interpolated to the

model grid.

The fluxes were available by component, short wave solar radiation, latent heat

flux, sensible heat flux and outgoing longwave radiation, as cumulative values over

two six-hour periods per day. To estimate the daily-averaged short wave solar radi-

ation from the available values, we first estimated the clear-sky radiation values and

inferred the (average) cloud cover from the 6-hour-accumulated data from ECMWF,

as described in Qiu and Kelly (1993). The short wave radiation was the only ECMWF

flux that was actually used in the mixed layer model; it was needed to estimate the

vertical entrainment. The modified short wave radiation was combined with the other

fluxes to obtain the net surface heat flux. The ECMWF estimates of net surface heat

flux were used to test and tune the prognostic model, and for comparison with the

surface flux estimates.
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3 Oceanographic Fields

The sea surface height (SSH) data were derived from the Geosat altimeter, which had

a repeat cycle of 17 days, using the new orbits and water vapor corrections (GEM-T2;

Cheney et aL., 1991). To eliminate the geoid, which dominates the altimetric height

profiles, we computed and subtracted the mean altimetric sea surface from collnear

profiles. Subtracting the temporal mean sea surface also removes the temporal mean

topography due to ocean currents. Mean sea surface topography profiles relative

to the geoid were then synthesized using the method of Kelly and Gile (1990), as

modified by Qiu et aL. (1991), and added back to the residual heights to obtain

total SSH profiles. In this method, the Gulf Stream is modeled using a Gaussian

velocity profile; the large SSH anomalies created by a narrow jet meandering far

from its mean position are exploited to estimate the center position and magnitude

of the Gaussian. The single jet model was revised to include recirculation as in Qiu

(1992). Details of the computation of the mean SSH are contained in Qiu (1994),

along with a comparison of the synthesized mean with the ~ean dynamic height from

climatological data. The absolute surface height data were objectively mapped to the

model grid.

To obtain the SST maps, we used AVHRR data and the optimal average method

of Chelton and Schlax (1991), which is an extension of the usual optimal estimate to

temporal averages of the data. The AVHRR data were weekly averages, which were

initially processed by National Oceanic and Atmospheric Administration (NOAA)

using the multichannel SST (MCSST) algorithm and then interpolated to an 18 km

by 18 km grid at the Rosenstiel School of Marine and Atmospheric Science (RSMAS).

The SST data were temporally averaged and then interpolated to the model grid. The

optimal average method gives an error map, which was used in the data assimilation
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of Kelly and Qiu (1995a), but it is not shown here to save space. The spatially

averaged SST estimated errors (figure 1) show periods of extensive cloud cover (e.g.,

December 1987-January 1988), which gave errors that were nearly a factor of two

larger than errors for times with clear skies (September 1988 and March 1989).

Spatially averaged SST errors
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Figure 1: Spatially averaged SST errors from the optimal estimates. Weekly averages
of A VHRR data were optimally averaged with an averaging interval of two weeks to
reduce random errors and those from cloud cover gaps. The error estimates varied
by nearly a factor of two, both temporally and spatially.

4 Compariso;n of ECMWF and Model Net Sur-
face Heat Flux

Two estimates of the net surface heat flux are shown in this report: the ECMWF

model estimates and the estimates derived from assimilating winds and satellte data

into the mixed layer modeL. Spatially averaged values of these two quantities agree
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rather well (figure 2, after Kelly and Qiu, 1995b); however, the details of these fields

differ substantially. In part, this is due to the way in which the heat fluxes were

estimated, as a linear combination of empirical modes derived from the weekly dif-

ferences in ocean temperature (K~lly and Qiu, 1995a). In general, the mixed layer

model fluxes tend to be more positive (atmosphere heating the ocean) than those

from ECMWF. Also, the mixed layer model fluxes become positive e~rlier in the year

(March, as opposed to April-:May), relative to the ECMWF fluxes. This latter prob-

lem is associated with a tendency for the mixed layer depth to shoal too early in the

year, relative to climatology.

Near the end of the time series (December 1988-March 1989), the two heat flux

estimates differ substantially in spatial structure. During this period, winds are con-

sistently strong, particularly the eastward winds in the northeast part of the region,

where the temperature gradients from the Gulf Stream are also anomalously strong.

This combination results in an unusually large cooling term (0.5 degree per day) from

advection by the Ekman transport. The ocean temperature does not show a corre-

spondingly large drop; thus, a large positive heat flux is inferred as the residual of

the upper ocean heat balance near the Grand Banks. Although the magnitude of this

positive flux clearly appears too large, particularly in the winter, the mean annual

net surface flux from the Bunker climatology (Isemer and Hasse, 1987) is positive

near the Grand Banks. In contrast, the ECMWF annual net flux is negative in this

region.

That Ekman transport is responsible for this excessive cooling can be seen by

examining the maps from December 1987, when winds were again strong, but the net

flux estimate does not become positive. This is undoubtedly due to the weak ocean

temperature gradients during that period, which did not produce the strong advec-

tion term. The temperature gradients were not the result of a weak Gulf Stream, but

5



C\

~ -100.

~
-200.

-300.

-400.

C\s 60.

'-
~ 40.

a) Net surface heat flux

200.

100.

o.

SONDJFMAMJ J ASONDJFMAMJ J ASONDJFMAMJ J A

1986 1987 1988 1989

b) Estimated error

100.

80.

20.

o.
SONDJFMAMJ J ASONDJFMAMJ J ASONDJFMAMJ J A

1986 1987 1988 1989

Figure 2: Net surface flux estimates from the mixed layer model and from ECMWF.
(a) Spatially averaged estimates of the net surface flux from the Kalman filter (solid
line), ECMWF (dotted line) and climatological (dashed line) and (b) an error estimate
for the Kalman filter estimate. The larger (more negative) fluxes in the fall of 1986
resulted from initializing the model with the November 1987 mixed layer depth, rather
than with a climatological estimate.
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were due to the lack of available SST data, which forced the ocean temperature esti-

mate to resemble the climatological mean. In addition, large values of the estimated

temperature error (Figure 1) caused the Kalman filter to damp the adjustment to

the flux estimate, resulting in a weaker response. These cooling episodes, as wel~ as

the tendency for the heat flux estimates to be too positive on average, suggest that

the wind stress may be too large. Mestas-Nuñez et al. (1994) have suggested that

using the 1000 mb winds, in place of 10-m winds, may produce wind stresses which

are as much as 50% too large. A simple reduction in magnitude of the wind stress

was attempted, but it did not eliminate the overall positive bias of the fluxes, and it

underestimated the mixed layer depth.
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Appendix: Monthly maps

Monthly means of heat flux Qnet, wind stress T, sea surface height SSH and sea surface

temperature SST are presented. The plots are positioIted so that Qnet and T are on

the left hand page and SSH and SST are on the right hand page. The plots were

generated using the GMT plotting package developed by Wessel and Smith (1991).
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Figure 38: May 1988
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Figure 46: September 1988
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Figure 48: October 1988
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Figure 52: December 1988
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Figure 56: February 1989
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