
WHOI-97-15.~~...

Woods Hole
Oceanographic

Institution

1930

by

Jason i. Gobat, Mark A. Grosenbaugh, and Michael S. Triantafyllou

November, 1997

. Technical Report

Funding was provided by the Office of Naval Research under
Contract Nos. N00014-92-J-1269. and N00014-95-1-01 06

Copyright ~1997by Woods Hole Oceanographic Institution. All rights reserved.

~!!-!!~~lT==
i.
ir..Õ ..:i=ir3:_0::_ CJai-:: ,.. 0_lTo- o~-~

WHOI-97-15

WHOI Cable: Time Domain Numerical Simulation of
Moored and Towed Oceanographic Systems

by

Jason i. Gobat, Mark A. Grosenbaugh, and Michael S. Triantafyllou

Woods Hole Oceanographic Institution
Woods Hole, MA 02543

November, 1997

Technical Report

Funding was provided by the Offce of Naval Research through grants NOOOl4-92-J-1269

and N00014-95-1-0106 and an Offce of Naval Research Graduate Fellowship.

Reproduction in whole or in part is permitted for any purpose of
the United States Government. This report should be cited as:

Woods Hole Oceanographic Institution Technical Report WHOI-97-15.

Copyright (£1997 by Woods Hole Oceanographic Institution. All rights reserved.

Approved for Distribution:

~ J¿ ~A:
Timothy K. Stanton, Chairman

Deparment of Applied Ocean Physics
and Engineering

Contents

Foreword

About this Manual

Acknow ledgements

Typographical Conventions

9

9

9

10

1 Introduction

1.1 Overview of problem types

1.2 WHOI Cable mathematical features

1.3 WHOI Cable implementation features

11

11

12

12

2 Mathematical and Numerical Theory

2.1 General numerical approach .

2.2 Numerical details of static problems

2.2.1 Boundary conditions

2.2.2 Initialization . . .

2.2.3 Coordinate integration .

2.2.4 Bottom interaction .

2.3 Numerical details of dynamic problems.

2.3.1 Wave forcing

2.3.1.1 Wave followers

2.3.1.2 Morison's equation.

2.3.1.3 Froude-Krylov forcing model

13

13

15

15

17

18

18

18

19

19

19

20

1

2.3.2 Coordinate integration . 20

2.3.3 Bottom interaction . . . 21

2.3.4 Dynamic pay-in and pay-out of cable. 21

2.4 Equations of motion 22

2.4.1 Two-dimensional problems 22

2.4.1.1 Static equations 22

2.4.1.2 Dynamic equations 23

2.4.2 Three-dimensional problems . 23

2.4.2.1 Static equations . . 23

2.4.2.2 Dynamic equations 24

2.5 Coordinate transformations 26

2.5.1 Two-dimensional . 26

2.5.2 Three-dimensional 27

3 Structure of a cable Problem 29

3.1 Notation and coordinate systems 29

3.2 Basic language features 29

3.2.1 Expressions . . . 30

3.2.1.1 Continuous functions 30

3.2.1.2 Discrete functions 31

3.2.2 Units 31

3.3 Components of an input file 31

3.3.1 Problem description 32

3.3.2 Analysis parameters 32

3.3.3 Environmental parameters . 35

3.3.4 Cable, chain and rope materials . 37

3.3.5 Connectors 38

3.3.6 Buoys 39

3.3.7 Anchors 40

2

3.3.8 System layout. . .

3.3.9 The end statement

3.4 Tips and tricks

3.4.1 Static problems.

3.4.2 Dynamic problems

40

45

45

45

46

4 The cable Application

4.1 Basic operation

4.2 Using the run-time solution controls

4.3 Using the C pre-processor

4.4 Summary of command line parameters

4.5 Interpreting the output from cable

5.3.1 res2asc command line parameters.

47

47

48

49

50

53

55

55

55

56

57

57

58

60

60

63

63

65

65

65

67

69

5 Post-processing cable Results

5.1 Using cable results with Matlab

5.1.1 Format of the Matlab file

5.1.2 Example Matlab manipulations .

5.1.3 res2mat command line parameters

5.2 The animate post-processing application.

5.2.1 The main animation window

5.2.2 Coordinates and zooming . .

5.2.3 Animate command line parameters .

5.3 ASCII output

6 cable's Windows Interface

6.1 Introduction......
6.2 Building an input fie .

6.3 Solving a problem ..

6.4 Viewing and converting results

3

6.5 Working with files .

6.6 Command reference

6.7 Installng WHOI Cable for Windows

6.7.1 System requirements. .

6.7.2 Installation instructions

6.7.3 Printing from animate under Windows.

6.7.4 Modifying the installation . .

6.7.4.1 File and pathnames

6.7.4.2 Templates .

70

70

71

71

72

72

73

73

73

75

79

83

89

95

99

A Subsurface Mooring Example

B Shallow Water Surface Mooring

C Deep Water S-tether Mooring

D Horizontal Array Mooring

E Towed Vehicle Example

References

4

List of Figures

Local and global two-dimensional coordinate systems.2.1

3.1 Geometric definitions for cable.

26

30

49

54

58

59

4.1 cable's graphical information and control dialog. .

4.2 The binary fie format for cable results files.

5.1 The main window of animate.

5.2 A time plot of the forces at two marked nodes.

6.1 The relationships between the WHOI Cable component programs. 66

6.2 The main window of the WHOI Cable Windows interface. 66

6.3 The solution control dialog in the WHOI Cable Windows interface. 68

6.4 The results control dialog in the WHOI Cable Windows interface. . 69

6.5 The setup dialog used to configure WHOI Cable pathnames. . 73

A.l Example result from animate for a subsurface mooring. 77

A.2 A plot of the time history of forces for the subsurface mooring example. 77

B.l The static configuration of the surface mooring example problem. . 81

B.2 The time history of total tension for the surface mooring example. 82

C.l Static and dynamic results for an S-tether mooring. 87

93

93

D.l Animation result for the horizontal mooring example problem.

D.2 Motion records for nodes on the horizontal mooring.

5

E.l Steady-state configuration of the towing example.

E.2 Depth profile of the tow sled during a tow-yow maneuver.

97

98

6

List of Tables

5.1 The names that res2mat assigns to Matlab variables. 56

6.1 Complete command structure for the WHOI Cable for Windows encapsulator. 71

7

8

Foreword

A bout this Manual

This report documents version 1.0 of WHOI Cable. While it is our intention to pro-
vide up-to-date, comprehensive, accurate documentaion, WHOI Cable is very much a work

in progress and as such undergoes frequent change. If you find something that behaves

diflerently than the way this document says it should behave then please let us know.

This report is presented largely as a user's guide for WHOI Cable. We generally provide
technical algorithmic details only to give the user a loose understanding of how problems are
solved or in places where the information is not published elsewhere. User should consult
the references listed in the bibliography for additional details (particularly ¡4, 121).

Acknowledgements

Though the current implementation of WHOI Cable is a relatively recent development, it
does owe much to several pieces of work completed over the last few years. The time domain
simulation algorithm is based on code originally developed by Christopher Howell for his
Ph.D. thesis ¡4J and modified by Thanassis Tjavares for his Ph.D. thesis ¡12J.

The funding for the development of WHOI Cable has been provided by the Offce of
Naval Research through grant numbers NOOOI4-92-J-1269 at WHOI and N00014-95-1-0106

(ONR. Code 321, Ocean Engineering and Marine Systems Program) and an Offce of Naval
Research Graduate Fellowship.

WHOI Cable is copyright (£1997 by Woods Hole Oceanographic Institution. WHOI
Cable is proprietary software; free redistribution of WHOI Cable software is not permitted.

Matlab is a trademark of The Mathworks, Inc. Pentium and Pentium Pro are trade-
marks of Intel Corportation. Windows 95 and Windows NT are trademarks of Microsoft
Corporation.

9

Typographical Conventions

This report employs a number of typographical conventions to mark buttons, command
names, menu options, screen interaction, etc.

Bold Font Used to mark buttons, and menu options in graphical environments.

Italics Font Used to indicate an application program name, e.g. res2mat.

Typewri ter Font

Used to represent screen interaction at the shell prompt. Also used for
example input files, and keywords that belong in input files.

I Key I
Represents a key (or key combination) to press, as in press I Return I to con-

tinue.

10

Chapter 1

Introduction

1.1 Overview of problem types

The types of systems that we classify as oceanographic mooring systems include simple teth-

ered buoys, towed and drifting systems, and complex strings of instrumentation suspended
in deep water. From an engineering design perspective it is important that we can predict
how these systems wil respond to a variety of environmental factors, particularly waves
and current. We might want to know just how much current it wil take to pull a surface
buoy under water or what the maximum tension wil be in a mooring line during a large
storm. The scientific purposes of a system might require that the motion of a particular
instrument not exceed a certain level in typical operating conditions. The unifying problem
behind analyzing these kinds of systems is one of nonlinear cable mechanics.

Typical oceanographic mooring systems consist of rope, wire, and chain connected to-
gether by shackles, instruments, and buoys and terminated at the ends with buoys, ships,
sinker weights, or anchors. WHOI Cable is a collection of computer programs for cable
mechanics designed specifically to solve this nonlinear problem for systems which can be
defined in these terms and which fit into one of several basic categories.

For traditional single point moorings WHOI Cable (sometimes referred to by the name
of the primary application program, cable) can solve subsurface and both taut and slack

surface moorings. The system can consist of any combination of diflerent cable/chain/rope
segments in series with one another. Instruments, floats, and connectors between segments
are treated as lumped masses (i.e., the rigid body dynamics of an in-line instrument are
not modeled, but the mass, weight and drag eflects of the instrument are considered). cable
can also solve problems in which both ends of the mooring are anchored on the bottom
and towing/drifter problems in which the subsurface end is unconstrained and the surface

11

end is free to move either under the influence of current (drifters) or with a prescribed

(possibly time varying) speed (towing). Towing problems can also include the eflects of
time varying pay-in and pay-out rates. In all cases cable can produce solutions in either two
or three dimensions and can solve either the the static (steady-state) problem given forcing

by current or the dynamic problem given forcing by both current and waves.

1.2 WHOI Cable mathematical features

WHO I Cable is built around a mathematical model that includes the eflects of arbitrary
geometric nonlinearities, material nonlinearities, material bending stiflness, and material
torsion. Including geometric nonlinearities and bending stiflness means that WHOI Cable
can accurately model systems in which cable segments go slack. The nonlinear, one-sided
boundary condition at the seabed is modeled as an elastic foundation for systems with cable
lying on the bottom. The numerical implementation includes an adaptive time stepping

algorithm to speed the solution of problems with high nonlinearity.

1.3 WHOI Cable implementation features

WHO! Cable is a suite of applications, all of which are centered around the primary solver
prograni. cable. cable is responsible for processing user input files and generating results for
all of t.ll(various problem types. Input files are constructed using an intuitive, object based
syiitax. This high-level syntax allows for the use of symbolic expressions in assignment

st.at.~iients. the re-use of object descriptions that may be stored in central database files,
aiid a largely free-form construction of input files. It also faciltates detailed error reporting.

Results can be post-processed either by converting them to Matlab format with res2mat
or by viewing them with the graphical application animate. animate provides a simple

enviroiiment for viewing system configurations in both two- and three-dimensions and for
generating graphs of result variables. Spectra of time domain results are also available.

WHOI Cable for Windows includes an encapsulator application that allows for control
of all of the component programs from within a familiar Windows style interface. This
int.erface gives the user total push button control of the various options for solving problems
and analyzing results.

12

Chapter 2

Mathematical and Numerical

Theory

2.1 General numerical approach

For all combinations of boundary conditions, 2D or 3D and static or dynamic problems, the
matlwmatical problem is posed as a system of coupled, nonlinear partial diflerential equa-
tioiis. cable solves these systems numerically by discretizing the continuous (exact) forms
of t.hese governing equations onto a grid of nodes on which it wil calculate an approxi-
mate solution. As the grid becomes finer and finer the approximate solution wil approach
tli(' exact solution. The cost of these finer discretizations which buy better solutions is an
iiicrease in computation time.

I3ot.h the static and the dynamic cable problems can be generalized as a system of N
first-order nonlinear partial diflerential equations

åY - (-)
ås + F s, Y = 0, (2.1)

where 1"1 is the vector of the N dependent variables, s is the position variable along the cable

(th(' Lagrangian coordinate), and F is a vector of functions that depends on the form of
the governing equations. For example, in the 2D static problem (the simplest of all possible
cases). equation 2.1 represents four equations in four unknowns: strain (from which we
can always derive tension via a constitutive relationship), shear force, inclination angle, and
curvature. This equation is discretized at the n nodal points using centered finite diflerences
written on the half-grid points (which makes the diflerences second order accurate ¡12, 13)).
At node k the discretized result is

- - Sk - Sk-l (- -)
Yk - Yk-l + 2 Fk + Fk-1 = O. (2.2)

13

Equation 2.2 represents an N x n system of coupled, nonlinear equations which cable solves
using a Newton-Raphson like relaxation technique ¡8J.

Equation 2.2 can only be satisfied by an exact solution for Yk. Given an inexact first
guess at this solution, yko, we need to develop an iterative scheme to calculate successively
better approximations, Y~, through a series of update vectors, ..Y~, such that

yl+1 = Y~ + .. Y~ (2.3)

where yl+l brings us closer to satisfying the equality in equation 2.2. In quantitative terms
we want to iteratively minimize the error function

-¿ (y;-i y;-i) _ y;-i _ y;-i + Sk - Sk-l (Fi pi)ek k, k-l - k k-l 2 -~ + -~-l . (2.4)

Neglecting for clarity the dependence on the previous nodal point (k - 1), we can very
loosely write

(et+1 (Y~ + ..Y~) - et (Y~) J

Sy,ik

ßëk~-
~ ßYk'

(2.5)

The derivatives on the right hand side of equation 2.5 can be calculated analytically from
the known form of the discretized governing equations (equation 2.4). If we were to re-insert
the dependence on Yk- 1, we would note that these derivatives actually constitute an N x 2N

Jacobian matrix at each k (the matrix is composed of the derivatives of the N equations
with respect to the 2N variables represented by Yk and Yk-l)' We can assemble the Jacobian
matrices from each node into a single global Jacobian matrix (much like element stiflness
matrices are assembled into global stiflness matrices in the finite element method), add
boundary condition information and formulate a linear system that wil find ..Y~ to drive
the updated error, et+1, to zero. If Ji is this global Jacobian matrix evaluated at yi then
we see from equation 2.5 that

Ji ..yi = -ë!. (2.6)

Because only two nodes (k and k - 1) are coupled by each individual Jacobian matrix
the assembled global Jacobian matrix in equation 2.6 wil be very sparse, with the only

non-zero entries clustered near the main diagonaL. cable takes advantage of this sparsity
in solving equation 2.6 by using a sparse Gaussian Elimination algorithm, NSPIV, due to
Sherman ¡lOJ. Sparse algorithms such as NSPIV exploit sparsity to reduce both memory
requirements and computation time (normal Gaussian elimination is an O(n3) operation,
sparse algorithms can be as effcient as O(n)).

The actual update to Y is scaled by a relaxation factor w

yi+l = yi _ w..yi.
(2.7)

14

The purpose of this relaxation factor is to slow (under-relax) the update in cases where
strong nonlinearities may mean that the update is not quite as robust as we would like.
For highly nonlinear problems, where small changes in parameters can mean big changes
in system configuration, the approximation of equation 2.5 becomes less valid and our
update ..i\ if fully applied (w = 1), may actually increase the total system error. A

small relaxation factor increases the accuracy of the linearized Taylor series expansion that
equation 2.5 represents. By slowing the process down (w .c 1) the movement of the system
from iteration to iteration towards equilbrium wil be smoother because the steps between
iterations wil be smaller.

The iterative updates of Y continue until the update vectors, ..Y, become smaller than
a user defined convergence value. Given the update vector

..Yk = ¡..Yi,k'" ..YN,kJ (2.8)

at each node k, the convergence condition is

~ t ¡ n~ ~ IMi'kIJ "tolerance.
(2.9)

Yi in the above are a set of canonical values that express the typical order of magnitude of
the variable represented by Yi. A canonical value for strain, for example, is 0.01.

2.2 Numerical details of static problems

2.2.1 Boundary conditions

Static boundary conditions for the various problem types can typically be described by an
anchor restraint at the first end and an applied static force at the opposite, free end. The
simplest case is a user prescribed force vector applied at the free end (general problems,
see section 3.3.1). With a force that is known a priori, cable can generate a solution with one
set of iterations directly. The problem is similar for subsurface moorings because cable can
directly calculate the buoyancy and drag forces on the completely submerged buoy at the
free end of the system. Static (steady-state) towing problems can also be solved this way by

fixing the position of the ship and applying weight and drag forces to the towed-body end of
the system. The drag on the tow body and cable is generated both by the environmentally
applied current and by an artificially superposed current that is equal in magnitude and
opposite in direction to the steady-state tow speed.

In systems with a buoy on the free surface the problem is more complicated because we
do not know the forces at the buoy end before solving the problem. Vertical and horizontal

15

forces applied by the buoy on the cable segment under the buoy are a function of the buoy
draft and the known buoyancy and drag properties of the buoy. cable begins the solution
with forces calculated from an initial guess of the draft (equal to the maximum available
draft), H2. We then calculate the actual draft, H2, for these forces. The absolute error is

eO = HO _ HOH s 9 (2.10)

If this error is positive then we can tell immediately that the buoy does not have suffcient
buoyancy to coiie to the surface. If the error is negative then we know that we need less
buoyancy and we proceed to make a series of guesses

H~+I = ßH~. (2.11)

uiit.il we get a solution such that

. . .
ei = Hi _ HiH s 9 (2.12)

is positive. With the actual solution now bracketed between H2 and H~, we proceed to use
a \'-giiia falsi root finding technique ¡2J to home-in on a final solution. This root finding

11I'ol'l'd\le fÒrins a second, outer loop of iterations. At each new guessed draft we must
go t lirougli a iiew series of iterations to solve the problem. This inner loop of iterations
is IIll process of finding the equilibrium position for a given applied static force based on
till nirnit best guess at the draft. Note that ß in equation 2.11 is an outer iteration

"1''laxat.io!l" factor that controls how fast we search for the minimum draft that brackets
till rl'l draft. It should always be smaller than unity (it defaults to 0.95). Making it too

siiall caii result in singularities because very small drafts equate to forces which may not
1)(largi' euougli to support the weight of the system.

TIll idea of outer loop iterations is also used for problems with both ends anchored on
till Iiotloiu (see example, Appendix D). In this case, we do not know a priori the reaction
lill"(I'S at. t.he second anchor. Given the position of the second anchor, however, we can

iii-rfillu out.er loop iterations by changing the applied force at the second end with each
oiill'l it.eration, until that second end is brought to its actual known position. The adjusted
applil'd f()l:e at. each outer iteration is calculated from

pHI = pk _ ß (Xk - X)
(2.13)

wlie\'' pI. is the applied force vector at outer iteration k, Xk is the calculated position of
11)(second anchor at outer iteration k and X is the desired position of the second anchor.

Ii is a "stiflness" factor defaults to 5.

The final type of problem that requires outer loop iterations is drifting systems. In
principle, solving a drifter problem requires the same boundary conditions as a towing

16

problem. The situation is more complicated for drifters, however, because for a complex
current profile we do not know the steady-state drift speed of the system. At steady-state,
the sum of the integrated drag force in the horizontal directions must be zero,

L

! ~PCdX(S)S(s) IUc(s) - ul (Uc(s) - U) ds = 0,
o

(2.14)

where the integrand represents the drag force in a horizontal direction as a function of
position due to a relative velocity that is the value of the current at that position minus
the steady-state drift speed, U. For Uc(s) constant, U = Uc satisfies this constraint and we
know that the system wil drift with the current speed. For Uc(s) not constant, however, it
is clear that at some points on the system U must be less than Uc (s) and at other points
it must be greater than Uc(s). For drifting systems, the outer loop of iterations determines
U such that equation 2.14 is satisfied.

The initial value of U is set to 105% of the maximum current speed (setting it to 100% of
the current speed leads to numerical problems because there may be no resultant horizontal
drag for cases of constant current). The outer loop iteration procedure then uses the same
regula falsi root finding scheme as discussed above to find the actual drift speed which must
be bracketed between the maximum current value and zero. The calculated speed at the end
of each iteration is determined from the drag force that is required to balance the tension
and shear forces at the top of the system. The convergence of the procedure is based on the
absolute relative diflerence between this calculated speed and the guessed speed that was
used to begin the iteration.

2.2.2 Initialization

With the system discretized according to user inputs, the first step in solving a problem is
to calculate a zero order approximate solution based on an inextensible catenary with no
bending stiflness. This solution provides the initialization for the iterative scheme outlined
in section 2.1 For multi-segment problems the catenary solution is based on a single equiv-
alent stiflness and weight. The equivalent unit weight is calculated by summing the total
wet weight of all components in the system (cable segments, connectors, and attachments)
and dividing by the total length of all cable segments. The equivalent stiflness is found by
adding all cable segments together as simple linear springs in series and then dividing by
total length.

17

2.2.3 Coordinate integration

Because the global coordinate variables x, y, z do not appear in any of the governing equa-
tions, they are simply integrated based on cable coordinates and cable orientation after
each iteration. While the coordinates do not figure directly into the governing equations

it is important that they be updated because they are used in evaluating the current at a
node, determining if a node is lying on the bottom, and fixing the position of the top node
to determine the draft of a buoy.

The first node is always located at the origin. In 2D the position of any subsequent
node, k, is then calculated from

Zk Zk-l + .6sk-1 cos cPk (1 + Ek) ,

Yk-l + .6sk-1 sincPk (1 + Ek)'

(2.15)

(2.16)Xk

.6Sk-1 is the spacing between nodes k and k - 1. Ek and cPk are the strain and tilt angle at
node k. A similar form applies in 3D, with the sin arid cos terms replaced by appropriate
functions of the four Euler parameters (see section 2.5).

2.2.4 Bottom interaction

For problems with cable segments that may be lying on the bottom, cable models the sea
bed as an elastic mattress with a linear spring. If Z is the vertical coordinate of a node
along the cable and Z , 0 (where 0 is the vertical position of the sea floor) then the vertical
reaction force applied by the bottom at that point is

J?s = k I Z I , J?s ~ WQ (2.17)

where WQ is the wet weight per unit length of the cable at that node and k is a parameter

describing the stiflness of the bottom. This representation is reasonably smooth and has
the advantage that it enforces a limit on the force exerted by the bottom (it cannot exceed
the weight of the cable). The smoothness is important to avoid the abrupt changes in
configuration that can occur between iterations in systems with high nonlinearity. The
bottom boundary condition, being one-sided, is necessarily very nonlinear.

2.3 Numerical details of dynamic problems

The solution of dynamic problems proceeds by applying the same iterative scheme at each
time step. With the continuous form of the governing equations written as

åY (-) åY - (-)
ås + M Y åt + F s, Y = 0 (2.18)

18

we can use backward finite diflerences in time for the time derivatives and write a discrete
form of the governing equations that is of the same basic form as 2.2 because we know the
solution at the previous time step. M in equation 2.18 is an N x N matrix that depends
on the form of the governing equations. The initial guess for the solution at each new time
step is simply the solution from the previous time step.

There are limits to the maximum allowable time step that can be used to propagate the
solution in time without giving rise to numerical instabilities. cable does have an adaptive
time stepping algorithm whereby if an instability arises the time step wil be automatically
reduced to try to get through that portion of the simulation. At each time step where the

baseline time increment is not small enough to accurately propagate the solution, cable wil
reduce the increment by a factor of ten and take ten steps at the smaller increment. It wil
descend as low as five orders of magnitude from the baseline increment before giving up.

Adaptive time stepping is only of limited usefulness, however, without some care being
taken in the choice of a baseline time increment. If the program is deciding that it needs a
smaller time increment at every step then it would be faster to have set a smaller time step
in the first place (rather than wasting computational resources at each time step deciding
t.hat. a smaller increment is necessary).

2.3.1 Wave forcing

2.3.1.1 Wave followers

The dynamic excitation for wave following surface buoys is the simplest of the forcing
models. For wave following buoys the model is forced by matching the vertical velocity at
the free (buoy) end to the vertical velocity of the incident wave. In 2D

Vn

Us cos(cPn)

Us sin(cPn)

(2.19)

(2.20)

Un

where Un, Vn are the tangential and normal velocities at the topmost node, cPn is the incli-
nation from vertical at the topmost node, and Us is the vertical surface velocity. There is
no imposed horizontal component of motion with this representation. Prescribed motion
with both horizontal and vertical components can be imposed using the velocity forcing
method (see section 3.3.3).

2.3.1.2 Morison's equation

Morison's equation provides a convenient way to model the hydrodynamic, wave-induced
loads on ocean structures by linearly superposing the solutions to a viscid and an invis-

19

cid problem ¡6, IJ. For cable problems it is most appropriate for modeling the forces on
subsurface buoys.

In inviscid theory we can derive a force term that is due to the wave induced inertia of
the fluid surrounding the buoy. This force can be written as

~ aOwFi = p\l (1 + CM) at (2.21)

where ClIl is an added-mass coeffcient (= 0.5 for a sphere) and Ow is the velocity of the
water particles under the waves. The viscous portion of the force is a drag term based on an
experimentally derived drag coeffcient, CD, and the relative velocity of the buoy through
the water, U;',

~ 1 ~ I ~ i
Fv = 2PCDSUR UR .

S is the projected area of the buoy.

(2.22)

2.3.1.3 Froude-Krylov forcing model

The forcing model that cable uses for surface buoys that are not wave followers is described in
¡3J and derived in detail in ¡7J It combines a Froude-Krylov force (calculated by integrating
the dynamic pressure of the wave field over the surface of the buoy) with the Haskind
relations to calculate the wave exciting and damping forces. The Haskind relations calculate

a wave damping coeffcient that is proportional to the square of the wave exciting force.

2.3.2 Coordinate integration

In a dynamic problem the coordinate integration given in equations 2.15 and 2.16 must be
modified slightly in towing problems to account for the possibility that the first node may
have moved and/or that cable may be paying out at the top node. At time step i, the
integration begins by fixing the position of the topmost node

Zin

xin

Zi-i + (ui cos d,i - vi sin d,i) dtn n '+n n '+n ,
xi-i + (ui sin d,i + vi cos d,i) dtn n '+n n '+n ,

(2.23)

(2.24)

where u~, v~ are the tangential and normal velocities of the topmost node at time step i.
Integrating from the top down then, the coordinates for subsequent nodes, k, are calculated
from

Zk ZkH - ßSk cos q;k (1 + Ek) ,

Yk+i - ßSk sin q;k (1 + Ek) .

(2.25)

(2.26)Xk

20

For other types of problems in which the first node always remains fixed at the anchor

(and thus at the origin), equations 2.15 and 2.16 stil hold.

2.3.3 Bottom interaction

The bottom boundary condition for the dynamic problem is modeled slightly differently
than for the static problem. Because impact forces can cause the sea floor to exert a
reaction force greater than the weight of the cable, the dynamic vertical reaction force of
the elastic foundation is modeled as a simple linear spring/ dashpot combination,

Fs = k izi (2.27)

for nodes with z -(O. If the bottom is suffciently stiff (k large) or z is suffciently negative
than the force per unit length can easily exceed woo Bottom damping is simulated by adding
a velocity proportional damping term,

Fd = bz. (2.28)

b is the dimensional damping coeffcient as calculated from

b = 2((m + ma) Wn, (2.29)

where (is the damping ratio (¡ll, 91) of the bottom, m + ma is the mass plus added
mass per unit length of the cable segment, and Wn is the natural frequency of the elastic
foundation/ cable segment system

Wn = J m:ma' (2.30)

2.3.4 Dynamic pay-in and pay-out of cable

Changes in the length of the top cable segment during the course of a dynamic simulation
are handled through the addition or deletion of nodes. Given a pay-rate, P(t), the current
time step, Llt, and an initial node spacing at the top of the system, Lls, the amount of cable
being added or removed from the system at the current time step, ti, is

La = P (ë) Llt. (2.31)

If ¡Lal)- Lls then the number of nodes to add or subtract, na, is simply the integer portion
of the quotient

na = integer (ILal /Lls). (2.32)

The initial node spacing at the top of the system is thus preserved for all added nodes. Any
fractional remainder from the quotient of equation 2.32 is carried over into the amount of
cable added at the next time step.

21

2.4 Equations of motion

Detailed derivations of the continuous forms of the equations of motion used in cable are
provided in ¡12J. They are presented below for reference. Common to all problem types
is the notation for current, Ue, Ve, We (corresponding to global z, x, and y, directions) and
Ue, Ve, We (corresponding to local tangential, normal, and bi-normal directions), material

properties EA (axial stiffness), EI (bending stiffness), GJ (torsional stiffness), Wo (wet
weight per length), m (mass per unit length), and Cdn, Cdt (normal and tangential drag

coeffcients). T (E) is the tension as a function of strain.

2.4.1 Two-dimensional problems

Two-dimensional problems represent a significant simplification over three-dimensional prob-
lems because we only need to make one rotation to transform between local and global co-
ordinate systems. This rotation is represented in the equations of motion by the inclination
angle, qi.

2.4.1.1 Static equations

In the two-dimensional static problem we can drop time dependent terms. The problem
reduces to a system in four equations and four unknowns: E (strain), Sn (shear force), qi

(angle of inclination), and 03 (curvature). We must explicitly include curvature,

aqi
03 = as' (2.33)

in order to maintain the system as first-order. Thus, the four equations for two-dimensional
statics are

aE Sn03 Wo 1 . . vr
as - T'(E) - T'(E) cosqi + 2PwdnCdt (cosqiUe + sinqi Ve) .Icosqi Ue + sinqi Vel T'(E) = 0

(2.34)

aaSn + T(E)03 + Wo sinqi - ~PwdCdn (sinqi Ue - cosqi 11) Isinqi Ue - cosqi Vel Vi = 0s 2
(2.35)

a03 1 3
& + EiSn(1 + E) o (2.36)

aqi--03
as

o (2.37)

22

2.4.1.2 Dynamic equations

For the dynamic problem we must keep time dependent terms. The velocity variables, u

(tangential velocity) and v (normal velocity), enter the problem and we have a system in
six equations and six unknowns:

8E m au m alP Sn03 Wo
as - T'(E) at + T'(E) v 7f - T'(E) - T'(t) cOSlP

- ~pwdnCdt (u - coslP Ue - sinlp Ve) . lu - coslP Ue - sinlP Vel ~ o (2.38)

a~n _ (m + ma) ~~ - (mu + (pw n:2 + ma) (sinlp Ve + coslP Ue) J ~~ + T(E)03

+ Wo sinØ - ~PwdCdn (v + sinlp Ue - coslP Ve) Iv + sinlp Ue - coslP Vel JI = 0 (2.39)

a03 1 3
& + EiSn(1 + E) o (2.40)

au
as

8E
- - 03V
at o (2.41)

av alP
- - (1 + E) - + 03Uas at o (2.42)

alP--03
as

o (2.43)

2.4.2 Three-dimensional problems

For three-dimensional problems, the transformation from local to global coordinate systems
is written in terms of four Euler parameters (this contrasts to 3D formulations written in
terms of three Euler angles, see ¡5, 12J for details).

~
t
Æ\

2.4.2.1 Static equations

The three-dimensional static equations are written in terms of ten variables: E, Sn, Sb (shear
force in the hi-normal direction), the Euler parameters (ßo, ßi, ß2, ß3), and curvatures Oi

(torsion), O2 (curvature about the normal axis), and 03. The ten equations for three-
dimensional statics are

8E Sb02 Sn03 Wo (2 2 2 2) 1 vI
as + T'(E) - T'(E) - T'(E) ßo + ßi - ß2 - ß3 + 2PwdnCdtUe luel T'(E)

o (2.44)

23

a~n + T(E)n3 - Sbni - 2wo (ßiß2 - ßOß3) + ~PwdCdnVcJV~ + w~~ = 0

aSb 1. ~
-a + Snni - T(E)n2 - 2wo (ßiß3 + ßOß2) + -PwdCdnWcJV~ + W~y 1 + E = 0s 2
ani = 0

as

an2 (GIp) 1 3
- + - - 1 nin3 - -Sb(1 + E) = 0as EI EI
an.:3 + (1 _ GIp) nin2 + ~s (1 + E)3 = 0
as EI EI n
aßo 1
a.~ + 2" (ßini + ß2n2 + ß3n3) = 0

0/)1 1

Os - 2" (ßoni - ß3n2 + ß2n3) = 0

0/)1. 1

O.~ - 2" Uhni + ßOn2 - ßi n3) = 0

0/);1 1

Os + 2" (ß2ni - ßin2 - ßOn3) = 0

2.4.2.2 Dynamic equations

(2.45)

(2.46)

(2.47)

(2.48)

(2.49)

(2.50)

(2.51)

(2.52)

(2.53)

Three-dimensional dynamic problems restore the time-dependent terms and contain three
velocit.y components, u, v, and w (w is the velocity in the bi-normal direction) giving 13
equat.ions in all:

OE m au n2 Wo (2 2 2 2)
Os - T'(E) at + T'(E) (Sb - Sn) - T'(c) ßO + ßi - ß2 - ß3

2m (aßo aßi aß2 aß3)
- T'(E) (Vß3 - Wß2) at - (Wß3 + Vß2) at + (wßo + vßi) at + (wßi - vßo) at1 Ji
- 2"Pwd7fCdt (u - uc) lu - ucl T'(E) = 0(2.54)
a Sn av
- - (m+ma)-as at

24

((7fd2) J aßo-2 Pw4+ma (ß3Ue-ßoVe-ßiWe)+m(Wßi-Uß3) 7i

((7fd2) J aßi+2 Pw4+ma (ß2Ue-ßiVe+ßOWe)-m(uß2-wßo) at

((7fd2) J aß2+2 Pw4+ma (ßiUe+ß211+ß3We)+m(Ußi+Wß3) at

((7fd2) J aß3- 2 PW4 + ma (ßoUe + ß3Ve - ß2We) + m (ußo + wß2) at

+ T(E)03 - SbOi - 2wo (ßiß2 - ßOß3)

- ~PwdCdn (v - Ve) V(v - ve)2 + (w - We)2vI = 0 (2.55)

aSb aw
as -(m+ma)a¡

((7fd2) J aßo+2 Pw4+ma (ß2Ue-ßiVe+ßoWe)+m(Vßi-Uß2) at

((7fd2) J aßi+2 Pw4+ma (ß3Ue-ßoVe-ßiWe)-m(vßO+uß3) at

((7fd2) J aß2+2 Pw4+ma (ßOUe+ß3Ve-ß2We)+m(ußO-vß3) at

((7fd2) J aß3+ 2 PW4 + ma (ßiUe + ß2 Ve + ß3 We) + m (Vß2 + ußi) at

+ SnOi - T(E)02 - 2wo (ßiß3 + ßOß2)

- ~PwdCdn (w - we) V(v - ve)2 + (W - we)2vI = 0 (2.56)

aOi = 0

as (2.57)

a02 (GIp) 1 3
- + - - 1 Oi03 - -Sb(l + E) = 0as EI EI (2.58)

a03 (G Ip) 1 3
& + 1 - EI Oi02 + EiSn(1 + E) = 0 (2.59)

au ac
- - - + 02W - 03V = 0as at (2.60)

25

tangential
(tension) z

x

Figure 2.1: Local and global two-dimensional coordinate systems.

åv (åßO åßi åß2 å(3)
- + 2(1 + E) ß3 - - ß2 - + ßi - - ßO - + n3U - niW = 0ås åt åt åt åt (2.61)

åw (å~ å~ å~ å~)
-, - 2(1 + E) ß2 - + ß3 - - ßO - - ßi - + niV - n2U = 0as åt åt åt åt (2.62)

å (Jo 1

as +"2 ((Ji ni + ß2n2 + ß3n3) = 0 (2.63)

a(Ji 1

a:- -"2 ((Joni - ß3n2 + ß2n3) = 0 (2.64)

aß'2 1
-- - - (ß3ni + ßOn2 - ßin3) = 0as 2 (2.65)

å(J.i 1

a.~ +"2 (ß2ni - ßin2 - ßOn3) = 0 (2.66)

2.5 Coordinate transformations

2.5.1 Two-dimensional

The relationship between local and global coordinates in two dimensions is shown in fig-
ure 2.1. The transformation of a vector (ft, in) from local coordinates to a vector (Fz, Fx)
in global coordinates is expressed in terms of a transformation matrix that is only a function
of cp, the local inclination angle

¡ ;: J = ¡ ::: ~~~n11 J ¡ ~: J .
(2.67)

26

Using the principle that the inverse of a transformation matrix is the transpose of the
transformation, the reverse transform, from global to local coordinates, is

r it J = r co~ ij sin ij J r Fz J .
L f n L - sin ij cos ij L Fx

(2.68)

2.5.2 Three-dimensional

In three dimensions the transformation matrix that takes a vector in local coordinates
(fi, in, fb) to global coordinates (Fz, Fx, Fy) is expressed in terms of the four Euler param-
et.ers, ßo, ßi, ß2, ß3,

r F~ j r ß~+ß¡-~-ß¡

2 (ßiß2 - ßOß3) 2 (ßiß3 + ßoßi) j

r~J
F.T = 2 (ßiß2 + ßOß3) ß'5 - ßî + ß'i - ßl 2 (ß2ß3 - ßoßi)

Fy 2 (ßiß3 - ßOß2) 2 (ß2ß3 + ßoßi) ß'5 - ßî - ß'i + ßl

(2.69)

Tlw reverse transformation is

r ¡, j r ß~+ß¡-~-ß¡

2 (ßiß2 + ßOß3) 2 (ßiß3 - ßoßi) j

r~: j
In = 2 (ßiß2 - ßOß3) ß'5 - ßî + ß'i - ßl 2 (ß2ß3 + ßoßi)

.h 2 (ßiß3 + ßOß2) 2 (ß2ß3 - ßoßi) ß'5 - ßî - ß'i + ßl

(2.70)

27

28

Chapter 3

Structure of a cable Problem

3.1 Notation and coordinate systems

The basic coordinate system for cable is shown in figure 3.1. Note that the origin of the
coordinate system is always located at the anchor and that the global z direction is positive

upwards, global x is positive to the right, and global y is positive into the pagel. Current
can be defined as a function of depth and can flow in both the x and y directions. Currents
with vertical components (along the z axis) are not allowed. Depending on the problem
type under consideration the depth mayor may not be required in the problem definition.

3.2 Basic language features

The input language for cable is meant to be as flexible and as forgiving as possible in terms

of the detailed structure of an input file. The file is broken into sections, with each section
containing definition statements for a particular aspect of the problem. In general, sections

can be specified in any order, as can definitions within a section. Multiple sections of the
same type can be included in a single input file:

White space (blank lines, spaces, tabs) does not affect the interpretaion of the problem
and can be used arbitrarily to suit individual tastes. Comments are denoted as in the
C programming language; anything between /* and */ wil be ignored as a comment no

matter where it appears in the file.

¡Note that cable uses a rotated internal coordinate system for calculations and results storage in which x
is up, y is right, and z is into the page. Both user and internal coordinate systems have their origin at the
anchor.

29

x
'"

x curent

Figure 3.1: Geometric definitions for cable.

Object names (i.e., the names you assign to specific buoy or material definitions) can-
not be keywords. They must begin with an alphabetic character and should contain only
alphabetic characters, numbers, and underscores. If a name has spaces in it then it must
be contained in double quotes The case of keywords (either upper, lower, or mixed) does
not matter. The capitalization of object names, however, is relevant.

3.2.1 Expressions

3.2.1.1 Continuous functions

As a convenience, wherever a floating point numeric value is required for a parameter you
can specify an arbitrary mathematical expression, including the operators +, -, *, /, %

(modulo) and the standard mathematical library functions sin, cos, tan, sqrt, hypot, pow,
exp, log, log10, floor, ceil, jabs and jmod. Note that arguments to the trigonometric functions

should be given in terms of radians just as if you were callng them from a C program using
the standard math library. Other than this diflerence, these functions should be used and
should behave as they are described in the manual pages for your local mathematics library.
Expressions can also contain the ternary conditional operator as in the C programming
language: "if a then b else c" is symbolized in a cable input file as a? b: c where a,
b, and c are all valid expressions. The logical operators to use in constructing a are the

same as those in C (==, && (and), II (or), (=, (,),)=, != (not equal)). Current

specifications are a special case of the use of expressions; the current can be defined as
a function of depth using expressions containing the variable H. These expressions wil be
dynamically evaluated throughout the course of the simulation. Expressions for tow speed

30

and apy-out rate may contain the variable t to denote them as a function of time.

3.2.1.2 Discrete functions

Because some current functions are easier to express in a discretized (as opposed to continu-
ous) form, the cable syntax also includes a mechanism for specifying a discrete representation

of a current. The basic specification consists of a series of pairs of the form (H, U) where
U is the value of the function at depth H. In evaluating the function, cable wil linearly
interpolate between adjacent pairs for positions that fall between two pairs. The following
ilustrates this idea for the case of a current defined piecewise linear

x-current = (0, 0.4) (100, 0.4) (500, 0.2) (1000, 0.0)

From the surface (depth = 0.0) to a depth of 100, the current is constant at 0.4. Over
the interval from 100 to 500, the current decreases linearly from 0.4 to 0.2. From a depth
of 500 to 1000 the current decreases linearly from 0.2 to 0.0. Points below 1000 would be
extrapolated based on the last two pairs (in our example, extrapolation would result in

negative values for current at depths greater than 1000). Note that the pairs must be given
in order of increasing depth coordinate. You can express a periodic discrete function simply
by defining one period and then entering a + symbol at the end of the expression.

3.2.2 Units

There are no set units for the dimensional quantities that you specify in defining a problem
for cable. The important thing is to remain consistent in the units that you use; numerical
results wil then be consistent with the input dimensions. Some examples of consistent

units would be lengths in meters, weights in Newtons, elastic moduli in Pascals (N m-2);
moments of inertia would be in m-4. Convenient English units are often pounds, feet, and
psf (pounds per square foot) or kips (kilopounds), feet, and ksf.

3.3 Components of an input file

A cable input file consists of a series of definition statements contained within eight distinct
sections. There are three sections which define the basic numerical and environment set-up

for the model (problem description, environment, analysis parameters), four sections
for defining the system components (materials, connectors, buoys, anchors) and a single
section to define how the system gets put together (layout). The appendices to this man-
ual provide several complete example input files for a variety of problem types. Detailed

31

definitions for all elements of the input syntax are provided below. Section 3.4 oflers some
suggestions about how the various input elements can be manipulated to get fast, robust,
and accurate solutions for models that may initially prove diffcult to converge.

3.3.1 Problem description

The problem description section contains the most basic description of the system: a
descriptive title string and the definition of the problem type. It must be the first section
within the input file and cannot be repeated.

ti tIe = string
A character string containing the problem title to be used in the display of
results.

type problem type

problem type can currently be one of general, surface, subsurface,

horizontal, towing, drifter. For general problems, the second termi-

nal end in the layout section must have a static force x-force=, y-force=,
etc. defined. In surface problems, the second terminal end must have a

completely defined buoy attached. cable wil perform outer loop iterations
to solve for the static draft of the buoy. In sub surf ace problems the second

terminal end must also be a completely defined buoy but cable can calculate
the forces on that buoy without outer loop iterations. In horizontal prob-
lems, the second terminal end must be an anchor and must have a position
associated with it x=, y=, z=. cable wil perform outer loop iterations to

calculate the appropriate reaction force at the second anchor that brings the
anchor to the required position. towing problems must have buoys defined
at both terminals. The buoy description at the first terminal defines the tow-
body and must be complete. The buoy at the second terminal does not need
to be completely defined. Tow speeds (x-speed=, etc) must be specified for
the second terminal of a towing problem. drifter problems are terminated
with buoys at both ends; both buoy definitions must be complete.

3.3.2 Analysis parameters

The analysis parameters section contains definitions that control the numerical algo-
rithms which are used in the static and dynamic solutions of cable problems.

32

duration

time-step

tolerance

constant expression

The total length of the dynamic simulation. Must be given if a dynamic
solution is going to be performed.

constant expression

The time step of the dynamic simulation. Decreasing the time step is some-
times a good way to get around a singularity that may be occuring. Must
be given if a dynamic solution is going to be computed. cable does have

an adaptive time stepping algorithm that allows it to dynamically decrease

the time step if it encounters a singularity or a time step which exceeds the
dynamic iteration limit. The time step wil be reduced by successive fac-

tors of ten up to a maxium of 5 times. If after the fifth nested reduction a
singularity is encountered the program wil halt.

constant expression

The global convergence tolerance of the relaxation iterations to be used if
specific tolerances are not given for the separate phases of the problem. The

tolerance dictates the minimum acceptable relative error between iterations
for a solution phase to be considered converged.

dynamic-tolerance = constant expression

The convergence tolerance for dynamic iterations. In some problems, it may
be desirable to have diflerent tolerances for static and dynamic solutions. If
not given it wil default to the value given by tolerance=. At least one or
the other must be given.

static-tolerance = constant expression

The convergence tolerance for static iterations. In some problems, it may
be desirable to have diflerent tolerances for static and dynamic solutions. If
not given then it wil default to the value given by tolerance=. At least
one or the other must be given.

static-outer-tolerance = constant expression

The convergence tolerance for the outer loop of static iterations. This wil
control the relative error in the iterations used to determine surface draft or
placement of the second anchor for example. If not given then it wil default
to the value given by tolerance= then to static-tolerance. At least one

of these must be given.

relaxation = constant expression

The global relaxation factor to use in the iterative update scheme. Typi-

33

cally it can be most safely and reliably set to 1.0, but there are exceptions,
particularly in static solutions of systems with complex geometry or cable
lying on the bottom, where it may need to be quite small (0.01 - 0.1) to get
a solution to converge.

dynamic-relaxation = constant expression

The relaxation factor to be used in the dynamic solution. In some problems,
it may be necessary to have diflerent factors for static and dynamic solutions

(see relaxation= above). If not given then it wil default to the value given

by relaxation=. At least one or the other must be given.

static-relaxation = constant expression

The relaxation factor to be used in the static solution. In some problems, it
may be necessary to have diflerent factors for static and dynamic solutions

(see relaxation= above). If not given then it wil default to the value given
by relaxation=. At least one or the other must be given.

static-outer-relaxation = constant expression

The "relaxation" or "stiflness" factor to be used in static outer iterations.
This is the factor ß in equations 2.11 and 2.13. For surface problems it
defaults to 0.95. For horizontal problems it defaults to 5.0.

max-i terations = integer

The global maximum number of iterations in all convergence loops. It pro-
vides a single default for the other iteration controls.

static-i terations = integer
The maximum permitted number of relaxation iterations in the static so-
lution. This number may need to be quite high for problems with small
static-relaxation factors. It wil default to max-iterations if not given
explicitly. At least one or the other must be given.

dynamic-iterations = integer

The maximum permitted number of relaxation iterations at each time step.
Generally, static solutions can take more iterations than th-e dynamic solu-
tion at a single time step so this number can be set lower. It wil default to
max-i terations if not given explicitly. At least one or the other must be
given.

static-outer-iterations = integer

The maximum permitted number of iterations to take in resolving the anchor
or buoy position in the static solution. Because the algorithms for finding

34

the position of the second anchor in a horizontal mooring problem or the
surface buoy in a surface mooring problem are quite conservative, they can
often take many hundreds of iterations to converge. This parameter gives
you the capability to allow for large numbers of iterations in these outer
convergence loops, but not in the general relaxation iteration. It wil default
to max-iterations or static-iterations in that order of preference.

ramp-time constant expression

The time period over which the excitation amplitudes wil be linearly ramped
up to their full values. A non-zero ramp time is often used to minimize
numerical transients. If not specified or if given as 0.0 then the excitation
amplitudes wil simply be at their full value right from the start of the
simulation.

current-steps = integer

The number of steps to take in bringing the current up to its full value
in the static solution. For some problems with high currents it can help
convergence if the current is brought up to speed slowly.

3.3.3 Environmental parameters

The environment section is used to define the external parameters in which the simulation
is rull. Density, gravity, depth, waves, current, and bottom parameters are all defined here

gravity = constant expression

The acceleration of gravity expressed in appropriate units. Must always be
specified.

rho constant expression

The density of the fluid medium. Must always be specified.

depth = constant expression

The depth of the water. Required for all problems except towing and

drifter.

input-type = string

Specifies the nature of the dynamic inputs, either regular (harmonic) or
random. regular type inputs treat the excitation as harmonic functions
with the given amplitude, period and phase. random inputs build a random
profile using the given amplitude as the significant amplitude and the given
period as the peak period. Input phase information is ignored in random

35

type inputs because the phase of each component is assigned randomly.

forcing-method = string

This must be specified for dynamic problems. The only currently accept-
able values are: wave-follower, morison, froude-krylov, and velocity.
morison forcing is really only appropriate for subsurface moorings where
free surface eflects are negligible. froude-krylov forcing is appropriate for
surface buoys which are not wave followers. Note that buoys must be defined
as axisymetric type with a diameter of 0.0 at the lower end of the buoy if
froude-krylov forcing is used. velocity forcing simply imposes a specified

motion on the topmost node of the system.

x-wave (constant expression, constant expression, constant expression)
The amplitude, period, and relative phase of the surface wave travellng in
the global x direction.

y-wave (constant expression, constant expression, constant expression)
The amplitude, period, and relative phase of the surface wave travellng in
the global y direction.

x-input (constant expression, constant expression, constant expression)

The amplitude, period, and relative phase of the dynamic input in the global
x direction. Only useful when forcing-method is velocity.

y-input = (constant expression, constant expression, constant expression)

The amplitude, period, and relative phase of the dynamic input in the global
y direction. Only useful when forcing-method is velocity.

z-input (constant expression, constant expression, constant expression)

The amplitude, period, and relative phase of the dynamic input in the global
z direction. Only useful when forcing-method is velocity.

x-current = variable expression

The current in the global z-direction, possibly as a function of depth (using
either a discrete expression or a continuous expression with the symbolic
variable H).

y-current = variable expression

The current in the global y-direction, possibly as a function of depth (using
either a discrete expression or a continuous expression with the symbolic
variable H).

36

bottom-stiffness = constant expression

The spring stiflness of the bottom per unit length.

bottom-damping = constant expression

The damping ratio of the bottom. The dashpot coeffcient for the bottom
is calculated from this ratio using a natural frequency based on bottom
stiflness and cable mass. Setting this parameter too high can sometimes
lead to instabilties in the dynamic solution of a problem.

3.3.4 Cable, chain and rope materials

The materials section defines the cable materials that make-up the system. Each material
definition consists of a unique name followed by a series of material property definitions,
such as

wire EA 4.4e6
m = 0.160

d 0.0063

EI = 500

am = O. 05

Cdt = 0.01

GJ 25
wet 1. 15
Cdn 1. 5

Remember that white space and ordering does not matter so these properties could be
arranged in many other ways.

EA = constant expression

The axial stiflness of the materiaL. Must be non-zero. For ropes and cables
this value should typically be slightly less than the straight product of E

(elastic modulus) times A (cross-sectional area). It is best determined from
the slope of an experimentally derived load-elongation curve.

EI constant expression

The bending stiflness of the materiaL. Must be non-zero. For chains it should

be very smalL. For ropes and cables the value should probably be something
less than the the theoretical value for a solid rod given by

f:
Jt
L~

-f:;
"E ;

7rR4E-4 . (3.1)

GJ constant expression
The torsional stiflness of the materiaL. Must be non-zero, but is ignored in
2D problems and could thus be arbitrary in those cases. For ropes and cables
the value should probably be something less than the theoretical value for a

37

solid rod given by

nR4G-.
2 (3.2)

m constant expression
The mass per unit length of the materiaL. Must be non-zero.

am constant expression
The transverse added mass per unit length of the materiaL. If the added
mass for a material is not specified (or is specified to be zero) then the
added mass wil be calculated as am = Ap where A is the cross-sectional
area of the material based on the specified material diameter and p is the
density of the fluid medium defined in the environment section.

wet constant expression
The wet weight (weight in the fluid characterized by the density defined in
the environment section) per unit length. If the wet weight for a material
is not specified (or is specified to be zero) then it wil be calculated as wet
= mg - Apg where A is the cross-sectional area of the material based on
the specified material diameter, m is the specified material mass per unit
length, and 9 and p are the gravitational acceleration and density of the
fluid medium defined in the environment section.

d constant expression

The diameter of the materiaL. This value is used in drag calculations for
projected area and to calculate wet weight and added mass when these values
are not explicitly given. For chains, this diameter is typically taken as the
outside width of a single link.

Cdn constant expression
The drag coeffcient in the normal (transverse) direction. Typically between
1.5 and 2.0 for standard circular oceanographic cables.

Cdt constant expression
The drag coeffcient in the tangential (longitudinal) direction. Typical values
for oceanographic cables range between 0.01 and 0.1.

3.3.5 Connectors

The connectors section is used to define the shackles, float, and instruments that are placed

between cable segments. A connector is defined by a unique name followed by a series of

38

property definitions.

wet = constant expression

The wet weight of the connector.

m constant expression
The mass of the connector.

Cdn constant expression
The drag coeffcient of the connector. The drag is currently assumed to be
equal in both the normal and tangential directions.

d constant expression

The characteristic diameter used to calculate a drag area.

All connectors are currently moment releasing - that is they cannot transmit a moment
between the segments which they are placed between. For shackle and pin-type connectors
t.his is a reasonable assumption.

3.3.6 Buoys

The buoys section defines the buoy or ship that is used at the top of the mooring. If part of
t.lll' solution involves calculating the static forces at the top of the mooring due to buoyancy

and drag, or ifmorison or froude-kry1ov forcing was specified in the environment section
tlipii huoy definitions must be complete. Buoys are also used to represent the towed vehicle
elHI of a towing problem or the sinker weight in a drifter problem. In this case they should
1)(defiiied as an equivalent sphere with the diameter and an explicitly specified buoyancy

(rat.her than an automatically calculated buoyancy based on the diameter of the sphere)
manipulated to simulate the proper drag area and wet weight (see example, Appendix E.

type = string
The basic buoy type. Currently recognized values are sphere, cylinder,

capsule, axisymetric.

d = constant expression

The diameter of the buoy for buoy shapes with pre-defined geometry (cylinder,
sphere, capsule).

h constant expression

The total height of a cylinder buoy or the total length of a capsule buoy.

39

diameters (xi, di) ... (Xn, dn)
The description of the geometry of an axisymetric buoy from the bottom
up. Each pair of numbers represents a level and a diameter. The buoy
geometry is defined as an axisymmetric body of revolution formed by the
lines connecting these points.

buoyancy constant expression
If given this wil be used as the total available buoyancy of the buoy. If not

given it wil be computed based on buoy type and specified geometry.

m constant expression
The mass of the buoy.

Cdn = constant expression

The drag coeffcient of the buoy.

3.3.7 Anchors

The anchors section defines the anchors that are used at one or both ends of the system.
None of the parameters are currently used in any of the analyses but you do need to at least
create a valid anchor name to be used in the terminal definitions of the layout section.

3.3.8 System layout

The geometry of the model system is built from the bottom up as a series of segments with
optional connectors between segments and terminal points at the ends. Terminal points

can consist either of buoys or anchors. The layout section for a single point mooring with
just one shot of material looks like the following

Layout
terminal = i anchor = clump l

segment = i

length
material

= 200

wire
nodes (100, 1. 0)

l
terminal = i buoy = snubber l

If there was a shot of nylon above the wire connected by a shackle then we simply add a
connector = statement and a second segment = statement

40

Layout
terminal = -(

anchor = clump

)-

segment = -(
length
material
node s

)-

connector
segment = -(

length
material
node s

200
wire
(100, 1. 0)

shackle

= 50

= nylon
(100, 1. 0)

)-

terminal = -(
buoy = snubber

)-

In both of these examples all of the named objects clump, wire, shackle, snubber need
to be defined somewhere in the input file.

If we wanted to define a problem with both ends anchored to the bottom then we simply
specify a diflerent terminal at the second end of the system

Layout
terminal = -(

anchor = clump

)-

segment = -(
length
material
node s

)-

connector
segment = -(

length
material
node s

)-

20

wire
= (40, 1. 0)

glas s _ sphere

= 100

nylon
(50, 1.0)

41

connector glass_sphere

segment = -(
length 20
material wire

)-

node s (40, 1. 0)

terminal = -(
anchor = clump

z = 0.0

x = 100.0

)-

This would define a three segment system with both ends anchored; the second anchor is
located 100 units to the right of the first anchor.

terminal ~ terminal definition J

A terminal definition must come both at the beginning and end of the list of
segments and connectors and it cannot occur anywhere else. It can consist
of statements of the form anchor=, buoy=, x=, y=, z=, x-force=, y-force=,

z-force=, x-speed=, y-speed=, z-speed=, and pay-rate=. It must contain
at least an anchor or buoy definition.

z = constant expression

The z location of an anchor in the global coordinate space.

x = constant expression

The x location of an anchor in the global coordinate space.

y constant expression

The y location of an anchor in the global coordinate space.

z-force

x-force

constant expression

Optionally user provided static force on a buoy. If specified it is important
that it be large enough to support the weight of the mooring. If it is not large
enough the solution wil either be upside down or the problem wil not be
solvable. User specified static forces are only used for general problems. In
all other cases, cable automatically calculates end-point static forcing based
on currents and drag properties and weights and buoyancies.

constant expression

Optionally user provided static force on a buoy.

42

y-force constant expression

Optionally user provided static force on a buoy.

x-speed variable expression
Optionally user specified speed of the terminal in the global x direction. The
expression can be a function of t (time) or a discrete step-wise expression.

This is most commonly used to specify a tow speed or the speed of a sur-
face drifter. As functions of time, the x-speed and y-speed can be used to
specify complex motions of a surface tow ship (for example, two sinusoidal
functions out of phase with one one another could be used to specify circu-
lar or ellptical tow patterns). In order to get a valid static (steady-state)

solution, some components of the speed should evaluate to non-zero values
at time t = 0.0.

y-speed variable expression
Optionally user specified speed of the terminal in the global y direction.

z-speed variable expression
Optionally user specified speed of the terminal in the global z direction.

pay-rate variable expression

The pay-out (or pay-in) rate of material off of the terminaL. This is typically
most useful for towing problems. The expression can be a function of time
or a discrete expression. Positive rates indicate material being added to
the system; negative rates indicate material being taken out of the system.
Rates should be specified in units of length per time. See section 2.3.4 for
additional details. Remember that for problems with positive pay-rates the
total number of nodes in the problem wil be greater than the total number
defined by the sum of all nodes over all segments defined in the layout

section.

anchor string
Specifies the anchor type to use at this termination.

buoy string
For traditional single point moorings this defines the name of the buoy to be
used at the top terminal of the system. For drifter and towing problems, a
buoy = statement is used in the first terminal definition to define the mass
at the subsurface free end of the system (usually a depressor weight or a
vehicle) .

43

release-time = constant expre.ssion

The time point during the simulation at which the the buoy or anchor should

be released from the system. This can be used to simulate anchor release for
mooring retrieval problems and cable breaking for towing problems.

segment t segment definition J

A segment definition consists of three required statements: length = ,
material = , and nodes = . The statement attachments = is optionaL.

length constant expression

The length of the segment.

material string
The material type to be used for this segment.

nodes (integer, constant expression) (integer, constant expression) ...
The number and distribution of nodes to be used in discretizing the seg-
ment. In general a discretization wil consist of a series of pairs of the form

(number of nodes, fraction of length) where the total number of nodes for
the segment is derived from the number of nodes listed in each pair and
the length fractions of all pairs must add to 1.0. The construct allows for
increasing node density over portions of a segment where high spatial gra-
dients are expected (oftentimes the endpoints of a segment). For instance
a specification of the form nodes = (100, 0.1) (100, 0.8) (100, 0.1)

wil place 100 nodes in both the first and last 10% of the segment and 100
nodes in the middle 80% of the segment.

attachments = string: (ni, nl, ...), string: (ni, n§, ...), ...

Specifies an optional list of attached objects on this segment. Attachments
add mass, weight, and drag at a node. Each attachment consists of an object

defined in the connectors section and a list oflocal node numbers (i.e., node
numbers referenced to the segment that is being defined) at which that type
of object should be placed. Multiple types of attachments can be defined as
shown. Any given node can only have one type of object attached, however.

connector string
Specifies the optional connector that can be placed between segments. If
no connector is specified between segments then the joined ends of the two
segments simply overlap and the results for the two nodes located at that
point wil always be identicaL. Omitting a connector between segments is

one way to model a connection that does not transmit moments.

44

3.3.9 The end statement

The final statement in any input file must be an end statement.

3.4 Tips and tricks

The following sections separate the common causes of convergence failures, singularities, and
instabilities into problems arising in the static and dynamic solutions. For each solution
type, the common problems are bulleted and a brief description of possible ways to get
around that problem is given.

3.4.1 Static problems

. Bad initial guess

For any problem in which the initial guess based on the catenary solution for a homo-
geneous, inextensible material with drag forcing only at the two ends is a very poor

guess, consider using a small static-relaxation (maybe 0.1 - 0.2).

. Strong currents cause solution instabilities

If the current is suffciently large to render the initial catenary guess a very poor
solution, or if there is current in both horizontal directions and the static solution
wil have a complex non-planar shape, consider using current-steps to ramp the

current slowly to its full value. 5 or 10 steps usually does the trick. At each step the
initial guess is the solution from the previous step; a greater number of steps means a
smoother transition from the catenary solution with no current to the actual solution
with the full current.

. Cable on the bottom causes singularity or convergence failure

Problems with cable lying on the bottom wil almost certainly require that static-relaxation

be set to something on the order of 0~1 or possibly even smaller. Remember to allow
for lots of static-iterations with small static relaxation factors.

. Surface buoy draft is diffcult to converge

If the outer-iteration loop to find the draft of a surface buoy seems to be oscilating
but never converging or if it goes down to very small guessed drafts which cause
instabilities or singularities, use a larger static-outer-relaxation (but keep it less
than 1.0, consider going to something like 0.98 or 0.99). You may need to raise the
static-outer-i terations limit as welL.

45

. Outer-iterations convergence is slow

You can usually speed up outer-iterations by raismg the static-outer-tolerance to
something on the order of 0.01. This tolerance translates directly to a percentage error
in the guessed draft or position of the second anchor and so usually means an answer
that is good to a couple of centimeters. A second option is to raise static-tolerance

to speed the inner-iterations at every outer-iteration.

3.4.2 Dynamic problems

. Tiiie step is always adapting

If cable is constantly adapting the time step downward (but always makes progress
at the siialler time step) then it is best to simply set the base step (time-step=) to
something smaller.

. The adaptation limit is exceeded

Exceeding the adaptation limit can be a sign of an unstable problem. Sometimes
you wil find that setting a base time-step that is 10% of the original base re-

sults iii 1I0 adaptive reductions and reliable results. In other cases try lowering
dynamic-relaxation to give cable more ability to work through a problem spot at the
larp;er time steps. Going too low can dramatically slow the solution down, however;
O.G is a reasonable lower limit. If cable is adapting because it is hitting the iteration

limit. raise dynamic-iterations (particularly if you lowered dynamic-relaxation).

. There is a DC drift in solution variables

If t.he t.ime histories of the result variables seem to have a large DC drift component,
('ollsider adding nodes to the problem (throughout the system, not just at spots of
Iiip;li gradient) and using ramp-time to slowly bring the excitation level to its full
val ue.

. Cable impacting the bottom causes singularities

A damping ratio that is too high can cause dramatic convergence problems. If the
system has cable which is being lifted and lowered from the bottom and the problem
is not converging well, use a smaller bottom-damping value.

. 2D solut.ion is fine, but 3D solution is diffcult

If a problem solves with the 2D algorithm, but runs into singularities or exceeds the
adaptation limit with the 3D algorithm, use a smaller dynamic-relaxation and a
smaller base value for time-step when using the 3D algorithm.

46

Chapter 4

The cable Application

4. i Basic operation

The basic way to solve a static problem with cable is simply to type

% cable -in foo. in -out foo .res -static

on the command line, where foo. in is the name of a cable input file and the output file wil
he named foo.res1. For a dynamic problem, a typical command line might look like

% cable -in foo. in -out foo. res -nodes 50 100 -sample 0.1 -snap_dt 1.0

Like the static problem, the input and output files are required parameters on the command
line. The contents of the results file are determined by the remaining parameters; it wil
contain information at nodes 50 and 100 at every 0.1 seconds and information at all nodes (a
"i"napshot") at every 1.0 seconds. Exactly what information gets saved at those time points

(and the information written for a static result) is controlled by additional parameters. By
default, as many variables as are applicable wil be output for a given problem - you can
change this behavior by turning unnecessary variables off. In static solutions, available
information includes motion (position), forces, moments and Euler parameters; in dynamic
solutions, velocity is added to the list of available information.

For example, a static problem solved with the command

% cable -in foo. in -out foo. res -static +motion +moment +euler

lThere are no enforced naming conventions for input or output files (i.e., there is no requirement that

input files have the extension. in or that output files have the extension. res).

47

wil contain only force (tension and shear forces) information because all other applicable

variables have been turned off (with the +motion, +moment, and +euler switches). If we
remove the static solution switch and add sampling information

% cable -in foo. in -out foo. res -snap_dt 1.0 +motion +moment +euler

then cable wil follow the static solution with a dynamic solution and the results file wil
contain both force and velocity information, but only in snapshot form at 1.0 second inter-
vals. If we also wanted a detailed time history of the position of node 100 then the above
command line would become

% cable -in foo. in -out foo. res -snap_dt 1.0 -sample 0.1 -nodes 100

+moment +euler

4.2 Using the run-time solution controls

By default, cable provides run-time feedback in the form of ASCII text output to the ter-

minaL. This information consists of the current iteration number, time step, error tolerance
and any diagnostic messages. This information can be logged by redirecting the stdout
output stream to a file.

An alternative to this form of feedback is the graphical information and control dialog
pictured in figure 4.1. This control can be enabled by specifying -x on the cable command-
line. If this dialog is enabled then the textual output to the stdout stream of the terminal
wil be suppressed and all diagnostic information is sent to the appropriate fields of the
control dialog. Note that with the information and control dialog enabled, cable does

not automatically exit after the solution is complete. The status message wil change to
indicate a complete problem, and the dialog wil remain on the screen until the quit button

is pressed.

The information and control dialog also allows certain aspects of the analysis param-
eters to be adjusted during the solution of the problem. The relaxation factor, tolerance
and iteration limit for all three iteration loops (static, static outer, and dynamic) can be
adjusted. A typical need for such an adjustment might be to allow for more iterations if
a problem is observed to be converging but not fast enough that it wil reach the desired

tolerance by the iteration limit pre-set within the input file. Relaxation factors can also
sometimes be adjusted advantageously to speed-up convergence or to stabilize an iteration.

To adjust a parameter, the problem must be paused. With the problem paused, changes
can be made within the grid of nine adjustable parameters. In order for these changes to

48

Figure 4.1: cable's graphical information and control dialog.

take affect, the update button must be pushed and the problem unpaused. The problem
can be paused and parameters adjusted any number of times. The restore button wil

reset all fields to their original values.

4.3 Using the C pre-processor

Every input file that is run through cable is pre-processed by the C preprocessor. This allows
for the use of macro definitions and include files within an input file. This is a particularly
powerful feature for users doing parametric design studies of a given system or for users
who have built up large databases of cable, buoy, and connector properties.

For the parametric design study, consider the case where we have written an input file
for a mooring system and we want to generate time series of the results at node 100 for a
variety of system inputs - say for sinusoidal vertical excitation at 3.0 m amplitude and 4.0,
6.0, 8.0, 10.0, and 12.0 second period. In our input file then we might have an environmental
description line (see chapter 3) that looks like

z-input = (3.0, PERIOD, 0.0)

When we run cable we just need to supply a C pre-processor macro to replace the PERIOD

variable with the actual period that we want to run

% cable -in foo. in -out foo. res -nodes 100 -sample 0.1 -DPERIOD=4. 0

49

Running the full series of excitation periods is very simple with shell constructs such as
csh's foreach command

% foreach T (4, 6, 8, 10, 12)

? cable -in foo. in -out foo_$T .res -nodes 100 -sample 0.1 -DPERIOD=$T

? end

This wil run, one right after another, the model for each of the five periods and store the
results in files named foo-4. res, foo_6. res, etc.

To create a material database, simply create a fie with just a materials section (the

same concepts apply to other objects as well: anchors, buoys, connectors) and definition
information for all of the material types that you regularly use. If you called that fie
ropes. db then all you need to do to use the database information in any input file is to
include the line

include "ropes.db"

in your input file (it must come after the problem description section, but other than
that it can be anywhere in the input file). Because sections can be repeated in an input file
you can include as many such databases as necessary and also have "local" sections defined
right in the file.

4.4 Summary of command line parameters

The following are all of the available command line switches and parameter controls for
cable.

-in filename

the name of the cable input file.

-out filename

the name to use in creating the output results file.

- load filename
if given, indicates that the static solution should be read from the results file
given by filename (as opposed to the static solution being generated during
the current run). filename must contain a complete (all variables present)
static solution for the exact problem geometry defined by the current input
file. This option is most useful for problems which require time consum-
ing static solutions (surface problems, bottom interaction problems) and for

50

which numerous different dynamic inputs are being investigated. The output

filename and the load filename cannot be the same.

-twoD boolean option to use the two-dimensional algorithm for static and dynamic
solutions of this problem. This is currently the default. To get the 3D solver
specify +twoD.

-static stops the solution process after the static solution is calculated, I.e., no

dynamic solution wil be generated.

-nodes nl n2 n3 ...
specifies a list of node numbers at which temporal results wil be written
to the output file. Remember that for problems with positive pay-rates the
total number of nodes in the problem wil be greater than the total number
defined by the sum of all nodes over all segments defined in the layout
section of the input file.

-first boolean option that adds the first node to the list of output nodes at which

temporal results wil be written to the output file.

- last boolean option that adds the last node to the list of output nodes at which

temporal results wil be written to the output file. This can be useful for
problems for which it may be diffcult to manually determine what the total
number of nodes wil be in the problem (such as problems with positive
pay- rates).

-connectors boolean option that adds the top node of every segment with a connector

defined to the list of output nodes at which temporal results wil be written
to the output fie. This is typically the node below the connector. If you

want output at the node above the connector you must explicitly specify
that node number using the -nodes option.

-sample dt specifies the time increment for writing temporal results to the output file. If
no value is given the sample rate wil be set to the time step of the dynamic
analysis; this can result in the output file becoming much larger than is
necessary.

-snap_dt dt specifies the time increment at which spatial distributions of the output
variables wil be written to the results file. These distributions are snapshots
of the output variables at all of the nodes in the problem and are generally
most useful for animations. If no value is given then no snapshots wil be
recorded in the output.

51

-motion

-vel

-force

-moment

-euler

-version

-help

-de bug

boolean option to include motion (x, y, z coordinate information) results in
the output file. The default is for this option to be on; to turn it off use
+motion.

boolean option to include velocity (u, v, w in local coordinates) results in
the output file. The default is for this option to be on; to turn it off use
+vel.

boolean option to include force (tension and shear forces) results in the
output file. The default is for this option to be on; to turn it off use +force.

boolean option to include moment (torsion and normal and bi-normal bend-
ing moments) results in the output file. The default is for this option to be
on; to turn it off use +moment.

boolean option to include Euler angle (2D problems) or Euler parameters

(3D problems) results in the output file. The default is for this option to
be on; to turn it off use +euler. Euler information must be included in the
results file if you want to do any rotations into global coordinates during
post- processing (see chapter 5).

display the current version number of cable and exit.

display a brief help message which lists all of the available command line
options.

wil generate a cable file, that if all is working well, should look exactly like
the original input file. The generated file represents what the application
thinks it was given.

-cpp filename

substitute filename for the pre-processor to run on the input file.

-nocpp do not run the input file through the pre-processor.

- Idirectory add directory to the standard search path for include files in the pre-

processor.

-Uname undefine the macro name in the pre-processor.

-Dname=va1ue

define name to be the macro value in the pre-processor.

52

4.5 Interpreting the output from cable

The output files that come out of cable are written in a custom binary format outlined in
figure 4.5. The basic layout of the file is a static solution with the user specified result
variables at every node followed by an optional dynamic results section with node-time
histories interleaved with full system snapshots, again only for the user specified result
variables. Variables from the dynamic solution (except for absolute position: x, y, z) are
always stored as dynamic quantities. That is they represent the dynamic deviation from

the static value given by the static solution. Because the static solution is always present

in an output file the total quantity of any variable can always be reconstructed. Remember
that non-linearities in the equations of motion or boundary conditions can mean that the
static solution may not always represent the true DC value of the dynamic solution.

Note that the format was designed to be a complete and compact single file container for
the output from cable. Readability and ease of interpretation were not the primary design
goals. Auxiliary tools do exist which can either interpret this format directly or convert
this format into more user friendly form (see chapter 5).

53

'c' 'a' 'b' 'r' 'e' 's' six character unique magic number

problem type indicator
8 bits used to indicate the way that the results should be interpreted. First. bit is always i as a redundant
validity check. Second bit indicates whether or not the problem is depth referenced (and thus if a depth is stored
in the output). Third bit indicates a horizontal problem, i.e., that both ends are anchored. Fourth bit indicates

a towing problem, i,e., t.hat the first end is not fixed on the bottom and that the top end is a ship. Fifth bit
indicates that the solution is from a 2D algorithm. The last three bits are currently unused.

dynamic byt.e used as Boolean indicator for t.he presence of the dynamic solut.on in the file.

t.he number of nodes in the problem as a 4-byte integer

lengt.h the number of characters in the t.itle string as a 4-byte integer

t.it.le st.ring the problem title string stored as an array of characters

i dept.h ¡ water depth for this system as an 8-byte double. This is an optional entry - its presence is dependent on the
depth reference bit of the problem type indicator byte.

output inap a length 10 array of bytes, each byte being a Boolean flag indicating the presence of a single variable type in the
file. The ordering is motion, velocity, force, moment, euler. The last five bytes are currently unused. Example:
(1 0 1 0 1) indicates that only motion, force, and Euler parameters are contained in this file.

sill i.1.(1) y(i) o(in iT(I) Sn(l) Sb(IH rMdl) Mn(l) Mb(IH rBo(1) Bi(l) B2(1) B3(1H

s',,1 1.'.1"1 yl"l o(nn iT(n) Sn(n) Sb(nH iM,(n) Mn(n) Mb(nH rBo(n) Bi(n) B2(n) B3(nH
array of 8-byte doubles containing the static solution. The only variable guaranteed to be present is s, the
Lagrangian coordinate of the node. The curly braces indicate variable groupings which mayor may not be
present depending on the information in the output map. This is the end of the file if the dynamic solution is
not present.

dii!'a! ioii the t.otal time length of the simulation as an 8-byte double

eli the time step of the simulation as an 8- byte double

~¡llIlPI(' ell the sampling time step for the node-time histories as an 8-byte double

sl1apshot di t.he time increment between system snapshots as an 8-byte double. If it is zero, then no snapshots are present

II" a 4-byte integer giving the total number of output nodes for which node-time histories are stored. If the number
is zero then no node-time histories are present.

OIL! pill Ilodps a length no array of 4-byte integers giving the node numbers for which node-time histories are stored

1."IH,,1 y(u,,1 o(na)) iu.(na) vena) w(naH iT(na) Sn(na) Sb(naH rMtCna) Mn(na) Mb(naH rBo(na) Bi(na) B2(na) B3(naH

Viii YIII oll)J i"(I) 1'(1) w(l)) iT(I) Sn(l) Sb(l)) iM,(I) Mn(l) Mb(IH iBo(l) B¡(I) B2(1) B3(IH

f
~
;~

f

l(' i i ."1 I I 0 (1)J i "(I) v(l) w(IH rT(l) Sn(l) Sb(1H iM, (I) Mn (I) Mb(IH rBO(I) Bi (I) B2(1) B3(ln

1.,.1,,) YIHI o(n)J iv.(n) v(n) w(nH rT(n) Sn(n) Sb(nH rMtCn) Mn(n) Mb(n)) iBo(n) Bi(n) B2(n) B3(nH
Dumps of type stamped result dumps. A dump of node-time histories will start with a single 't' bytej a snapshot
dump will start with a single 's' byte. There is no time stamping of either dump - they should simply be written
at the appropriate time increment. The time stamp, if needed during post-processing, can be backed out from

the position of a given dump in the output and the known increment between dumps.

Figure 4.2: The binary file format for cable results files.

54

Chapter 5

Post-processing cable Results

5.1 Using cable results with Matlab

The binary results files that cable produces can easily be converted into Matlab format using
the res2mat application. res2mat reads the available results information in the cable output

file and writes a Matlab (.mat) file containing symbolically named variables for all of the
results. The results can be written to Matlab format either in local (tangential, normal,
bi-normal) or global (x, y, z) coordinate system. res2mat can only do the transformation
to global coordinates if the Euler information was written into the results file.

5.1.1 Format of the Matlab file

res2mat wil convert all of the appropriate information in the cable results file into the
Matlab file according to a few simple rules. Static information is written to variables with
no subscript (x, T, Mn, etc.). Node-time histories are written to variables with names
subscripted by t (x-t, Lt, Mn_t, etc.). Snapshots are given names subscripted with s (x-s,

Ls, Mn_s, etc.). The basic variable names that are used depend on whether or not the
results are written to Matlab format in local or global coordinates. The range of names is
detailed in table 5.1. Also included in the Matlab file are variables with the sample rate

(dt), snapshot rate (snap_dt), Lagrangian coordinate of each node (s), a list of output node
numbers (nodes) and a time vector appropriate for the node-time histories (t). The water
depth is stored in depth if it is available within the results file.

55

2-D Results 3- D Results

information local names global names local names global names

position x, z x, z x, y, z x, y, z

velocity u, v U, W u, v, w U, V, W

force T, Sn Fx, Fz T, Sn, Sb Fx, Fy, Fz

moment Mb My Mt, Mn, Mb Mx, My, Mz

Euler phi phi BO, Bl, B2, B3 BO, Bl, B2, B3

Table 5.1: The names that res2mat assigns to Matlab variables.

5.1.2 Example Matlab manipulations

The node-time history result for each variable is an nt x no matrix, where nt is the number
of samples and no is the number of output nodes. Thus? each column of the variable contains
the full time series of that variable for one node, so

)) plot(t, T_t(:, 3));

plots the tension at the third output node as a function of time.

The snapshot results for each variable are stored in an n x ns matrix, where n is the

number of nodes in the system and ns is the total number of snapshots that were written.
The tenth snapshot (at time t = (10 - l)snap_dt) can be plotted simply as

)) plot(s, T_s(:, 10));

The geometric configuration of the system at every snapshot can be plotted as a "spaghetti"
plot of lines on a single graph with a command like

)) plot (x_s, z_s)

If we wanted to plot the dynamic component of the horizontal position of one of our
output nodes we would need to do the following

)) plot(t, x_t(:, 3) - x(nodes(3)));

The coordinate positions are always stored in absolute form so we need to explicitly subtract
off the static position. Because the static variables contain information at every node (they
are simply an n x 1 vector) we need to use the nodes vector to figure out what the actual
node number of the third output node was.

56

5.1.3 res2mat command line parameters

res2mat accepts the following command line switches to control its behavior.

-in results file
the name of the file containing the cable results.

-out matlab file

the name to use in creating the Matlab output file. The suggested extension
is .mat simply because this is what Matlab wil look for. res2mat does not

enforce any naming convention.

-twoD specify that the results file came from the 2D solution algorithm. The op-
tion is not strictly necessary for 2D results but it wil result in a smaller
Matlab file because the all zero 3D information from the results file wil
not be written to the Matlab file. It is required if transformation to global
coordinates is requested because it affects the interpretation of the Euler
information used in the transformation. This is currently the default. If the
solution is from the 3D algorithm specify +twoD. This option is provided for
backward compatibility with older format result files which do not have this
information stored in the problem type indicator bit. Any specification of
this option wil override the information stored in that bit.

-global Boolean option to write results to the Matlab file in global coordinates rather
than the default tangential, normal, bi- normal local coordinate system that
they are stored in within the results file. The transformation cannot be
performed if the results file does not contain the Euler information.

5.2 The animate post-processing application

Oii XII based workstations, a second post-processing option exists in the form of the
animate application. animate reads cable results files directly and can produce animations
showing system spatial configuration in conjunction with the spatial distribution of force,
moment and velocity quantities along the cable and/or the temporal distribution of these
quantities at the specifically requested output nodes. Spectra of the time series quantities
can also be plotted.

57

Figure 5.1: The main window of animate.

5.2.1 The main animation window

On start-up the animate main window (figure 5.1) pops up with the static configuration of
the system drawn in the viewing area. Across the bottom of the window are controls for
creating plots and controllng the time rate of the animation. Along the right side are four
toggle button/slider pairs which control the placement of marker nodes. The marker nodes
are used to indicate which of the output nodes you want to view the results for. The toggle
button under each slider activates one of the markers; you can then use the slider to move
the marker between output nodes by clicking and dragging on the slider thumb with the
middle mouse buttonl. Each marker is identified with a unique color - this is the color with
which the time series or spectral results for that node wil be drawn.

Which variables get plotted is controlled by the five buttons D (displacements), V

(velocities), F (forces), M (moments), E (Euler information). If any of these buttons is
engaged, a plot of the spatial distributions of those variables at the current time step wil
be generated. These plots show the value of a given variable as a function of Lagrangian
coordinate; this is the coordinate which measures distance along the system from the first
node. The first node always has Lagrangian coordinate 0 and the last node always has
Lagrangian coordinate L, where L is the total length of the system. If any of the marker
nodes are activated, then temporal distributions of those variables at the marked nodes

lMost X-server software can be configured such that for two button mice, clicking both buttons at the

same time emulates the middle button of a three buttton mouse

58

6000

A
l\ 1\

,~ LIU L
1\1 1'\ f\ t\ 1\
\ ¡ i l i'i I (
L________.__ L..___...JU \..i ,__,

r~

f i 1\i i "
,.1 "
, ¡~"-'

4000

-2000

time

60
Normal Shear Force40 i I ;.,,:1 ~ ; 120 ;1 ¡;. .." .:' ::. "

', .~~ Li '" i¡ ~.. ..., \.. ~ .. . \.o -!jr'l"'--i '~'--1\' ~~ ."'..~ :-'-,-~-lw!o. '~J~- .'
-20 ,/ l ~i' \.,' . .) i .

time
100

-400

Bi-normal Shear Force

0.5

-0.5

-1
o

Figure 5.2: A time plot of the forces at two marked nodes.

wil also be generated. A temporal plot of the forces for the animation shown in figure 5.1
is shown in figure 5.2. There are two curves on each graph because we currently have

two marked nodes. The vertical black bars on each graph indicate the current time point.
Spatial distribution plots are updated at the same rate as the main animation. Plots can
be popped down simply by disengaging the appropriate button.

Spectra for time series results can be generated by clicking on the spectrum button at
the bottom of the plot window. A graph window with the frequency domain analog of the
time domain results plotted in that window wil be automatically generated. The result for
each graph in a window is based only on the results currently viewed on that graph. For
zoomed graphs then, the spectra are computed using only that portion of the time series
which is currently showing. Spectrum plots can be dismissed by clicking on the dismiss

59

button at the bottom of the window. The length of the FFTs used in computing the spectra
is determined by fitting four windows over the data, with the data length padded to the
nearest power of 2. Thus, a 500 point time series wil have a spectrum computed using four
128 point windows. The spectra are plotted semi-log so the values on the y axis represent
logio(S).

The rate of the animation is controlled by the tape player-type buttons on the bottom-
left of the main window (figure 5.1). From left to right they are: slow down (increase

the time delay between frames), play the animation in reverse, back up one frame, pause
the aiiimation, go forward one frame, play the animation forward, and speed up (decrease
the time delay between frames). The animation can be sped up or slowed down while it
is playing. It must be paused' before you can use the single frame forward and backward
controls

5.2.2 Coordinates and zooming

Tiii, coordinate pairs above the exit button give the x, y location of the cursor when it
is iiowd around the main viewing area. Note that in 3D perspective view the reported

l'oldinates are meaningless. The current time is always displayed on the right side of the
window just iiider the marker node toggle buttons.

Zoo1ling iii the main animation window is accomplished simply by clicking with the left
iioiisi' liiit.on and dragging out a window which you want to zoom in on. Scrollbars wil
appl'l Oil tlw bottom and right side of the viewing area so that you can scroll around over

I II(wliok viewing area. The full view can be restored by clicking the right mouse button.

With tlie mouse in a graph window, you can click with the right mouse button to have
I II(ordinate aiid abscissa value of that point reported at the bottom of the plot window.
Zooiiing on plots is achieved by clicking the left mouse button and dragging out a rectangle
t lial I'ii'oiipasses the area that you want to zoom in on. The full scale of a graph can be
lI'slolnl by clicking on the middle mouse button within the graph area or by pressing 0
wiili tlie focus on the graph area and the mouse point on the appropriate graph (you may
li'l'd to iise I tab I to get the focus on the graph area).

5.2.3 Animate command line parameters

mlÙua.le accepts the following command line options to control both how results are pre-
sentl'd and some of the basic appearance parameters.

60

-in filename

the results file to interpret.

-global

-totals

-twoD

-real time

-delay n

-thick

-box

-drifter

- shi P

boolean option to draw plotted results in global coordinates rather than the
default tangential, normal, bi-normal local coordinate system that they are
stored in within the results file. The transformation cannot be performed if
the results file does not contain the Euler information.

boolean option to plot quantities as static + dynamic result. In normal
operation only the dynamic portion is plotted for node-time histories.

boolean option to treat the Euler information as the angle ø rather than
the four Euler parameters - if results were written from the 2D solution
algorithm then this option must be specified if rotations to global coordi-
nates are to be performed correctly. This is currently the default. If the
solution is from the 3D algorithm specify +twoD. This option is provided for
backward compatibility with older format result files which do not have this
information stored in the problem type indicator bit. Any specification of
this option wil override the information stored in that bit.

specifies that the initial frame rate of the animation should match the snap-
shot increment. The default for this parameter is off.

specify that the initial frame rate should be based on a delay of n microsec-
onds. If no -delay option is specified and -realtime is off then the initial
delay is 60000 microseconds.

specifies that all line drawing should be done with a thick line.

specifies that a reference box (in 3D) or surface and bottom (2D) should be
drawn as visual aids in interpreting the problem. The default is on; to turn
off box drawing use +box.

specifies that the problem should be interpreted as a drifter or towing prob-
lem. A free surface, but no bottom, wil be drawn if reference box drawing

is enabled. Any depth specification wil be ignored; the free surface wil be
drawn at the static position of the last node in the system. This option is
automatically activated if the appropriate bit in the problem type indicator
byte of the results file indicates that this is a towing problem.

boolean flag to enable tow ship drawing for drifter problems. This wil place
a ship graphic at the last node in the problem. This option is automatically

61

activated if the appropriate bit in the problem type indicator byte of the
results file indicates that this is a towing problem.

-color boolean flag to indicate that contrasting colors should be used to draw the
backgrounds in the main animation window. The default is for this flag to
be on and sky to be white, water to be cyan and bottom to be brown (or
wheat). For problems where you know that you do not want print-outs in
color (or shades of grey when colors get translated by b/w laser printers)
you can turn colors off using +colors.

-threeD specifies that the animation should be done in 3D .perspective view. The
default is off even if the solution is from the 3D solution algorithm. When
this parameter is on, an auxiliary control window with sliders for rotations
and scaling wil pop-up along with the main window.

-control specifies that the 3D rotation and scaling controls should be activated for
problems drawn in 3D perspective view (-threeD). The default is on. .-

.-.

-depth H activates the drawing of a free surface at a depth H. This parameter over-
rides the information that may have been stored in the results file. If no
depth is specified and the results file does not contain a depth reference then

no free surface wil be drawn. This option is provided for backward com-
patibility with older format result files which do not have this information
stored in the problem type indicator information.

-magnify M multiply the dynamic displacements from the static configuration by a fac-
tor of M. This is often the only way to tell that system components are
moving during the animation of a system with large length scales and small
excitation.

-anchors nl n2 ...

draw anchor symbols at the nodes given by nl, n2, etc. The anchor symbol
is currently a black rectangle. If no buoys or anchors are specified then
anchors wil be drawn at nodes appropriate to the information stored in the
problem type indicator of the results file.

-buoys nl n2 ...

draw buoy symbols at the nodes given by nl, n2, etc. The buoy symbol is

currently a filled black sphere slightly larger than the circles used for node
markers. If no buoys or anchors are specified then anchors wil be drawn at
nodes appropriate to the information stored in the problem type indicator
of the results file.

62

-lbs boolean flag to provide the very common conversion of force units from
Newtons to pounds. When this flag is activated all of the force quanti-
ties (tension, shear, global horizontal and vertical forces) wil be scaled by

4.44i2216' The default is off.

-yz draw the 2D Y-Z plane of a 3D problem.

-xrot x the initial x-axis rotation for 3D perspective view. The default is -20°.

-yrot y the initial y-axis rotation for 3D perspective view. The default is 40°.

-zrot z the initial z-axis rotation for 3D perspective view. The default is 0°.

-zscale s the initial z-axis scaling ("eye distance") for 3D perspective view. The de-
fault is 0.4.

5.3 ASCII output

The post-processing application res2asc can be used to convert the static parts of the cable
binary output file format into tabular ASCII data. No capability currently exists within
res2asc to tabulate dynamic results (either node time histories or snapshots).

5.3.1 res2asc command line parameters

res2asc accepts the following command line switches to control its behavior.

-in results file
the name of the file containing the cable results.

-out ASCII output file

the name to use in creating the ASCII output file.

-twoD specify that the results file came from the 2D solution algorithm. Unlike
res2mat this option must be on if you want to refer to variables by their 2D
names (i.e., phi rather than BO). This is currently the default. If you want
to refer to variables by their 3D names specify +twoD.

-variables vi v2 v3 ...
list of variable names that you want output into the table. Acceptable names

are s, x, y, z, T, Sn, Sb, Mt, Mn, Mh, BO, Bi, B2, B3, phi.

63

64

Chapter 6

cable's Windows Interface

6. i Introd uction

The Windows version of WHOI Cable includes an an encapsulator application for all of the
component programs discussed thus far. The encapsulator combines an editor for building
problem description files with facilities for executing cable, animate, and res2mat to solve
the problem and post-process the results, all from within a single Windows 95 or Windows
NT based application. Figure 6.1 ilustrates this interaction between the various component
programs.

The main editor window, with one of the example problems loaded, is shown in figure 6.2.
Across the top of the window is the main menu bar, with the usual menu entries for file
and edit control and some special entries for solving problems and viewing results. There
is also a toolbar below the main menubar which contains shortcut buttons for the items on
the Insert menu and for invoking the various component programs.

6.2 Building an input file

There are several ways to go about constructing an input file for a new modeL. Starting with
a blank editor (either at start-up or by selecting New from the File menu) you can write
the file from scratch, open an existing problem and modify it to match the new problem,
or you can build the file up from the template blocks that the encapsulator provides.

Templates are available either from the Insert menu or from the toolbar. When selected,
a template is placed at the current insertion (cursor) point of the editor. Once placed, the
entries in the template must be edited to match the problem that you are describing. Tem-
plates are available for the basic sectional layout of a problem (complete problem de scrip-

65

X-Server Software

results Animate

I

Application

WHOI Cable
for Windows

t results

editor contents
Cable
Application

Figure 6.1: The relationships between the WHOI Cable component programs.

Problem Description
title "Towing the Biomapper Vehicle"
type = towing

Analysis Parameters
duration
time- step
d ynamic- r el axa ti on
dynamic-i terations

lSOO
0.5
i. 0

20

static- relaxation
static-i terations

0.3
400

tolerance 1e-12

Envi r onient
rho
gravity
x-current

/ * no waves - .j ust study tow dynamics * /1025
9. S1
-0.5 / * about a 1 knot current against us * /

Buoys
towship
sled

type = ship
type = sphere
d = 0.736

Figure 6.2: The main window of the WHOI Cable Windows interface.

66

tion and analysis parameters sections and section headers for buoys, anchors, connectors,

materials, and layout), object definitions (buoys, anchors, materials, connectors), and the
components of a layout (segments, connectors, terminals). Once inserted, templates can be

deleted, edited, and moved just like any other text in the editor.

Each assignment in a template that requires a value is marked with xxx for values that
require real numbers, nn for values that require integer numbers, or x-.ameJ: for cases
where you must specify or assign a symbolic name (remember that names with spaces in
them must be enclosed in double quotation marks). In the analysis parameters and

environment sections that are placed by the sections template, several typical values have
already been set with actual numbers. These values should be acceptable for most cases,
but you should feel free to change them to better suit your exact problem.

You can get help on a keyword in a template by highlighting the word or words in the
main editor and selecting Keyword from the Help menu (or by pressing (i). This wil

display the WHOI Cable syntax and keyword ht:lp dialog with a paragraph or two describing
the highlighted keyword. If there are multiple ways in which the same keyword can be used,
press the Next button on the help dialog to move through them.

6.3 Solving a problem

In the command-line version of cable, described in chapter 4, the details of the solution are

controlled by command-line switches. In the Windows interface those switches are replaced
by the checkboxes and text fields of the solution control dialog pictured in figure 6.3. You
can view this dialog by selecting Controls from the Solutions menu.

The controls in the upper left frame determine the basic solution type - 2D or 3D,
static or dynamic. If you have a results file that already contains a valid static solution for
the current problem, then you can specify that cable should use that solution rather than
generating a new static solution to use as the initialization for the dynamic solution. The
bottom left frame provides control over which variables are included in the output file.

The controls in the Dynamic Results frame are only enabled when a dynamic solution
is requested and define the sampling rates and nodes for the dynamic output. The list of
output nodes is constructed by typing node numbers in the box at the top of the list and
pressing Add (or pressing 1 return I). Nodes can be deleted by highlighting them within the
list and clicking Remove. Clear deletes all entries in a list. The first node, last node,
and nodes associated with a connector between segments can be automatically included
in the output list (without explicitly specifying their node numbers) by clicking the check
boxes below the list of output nodes. At least one form of dynamic output control must
be specified for any dynamic solution of a problem. If a time series time step is given then

67

Figure 6.3: The solution control dialog available by selecting Controls from the Solutions
ii e II i.

a list of output nodes must also be specified. If no time series time step is given then a
snapshot time step must be specified.

The Solve button on the dialog is a shortcut to the Solve selection on the Solutions
llH'lll. See sections 4.1 and 4.4 for additional information on what the various options
control.

Once a problem description is constructed, and the appropriate control options have
lwen selected, you can solve the problem simply by selecting Solve from the Solutions
iieiii (also by pressing the Solve button on the control dialog, using the keyboard shortcut

I ctrl-L I, or using the menu shortcut I alt-S I followed by I alt-S I, see section 6.6 for a complete
list of the different ways to accomplish most tasks). This saves the current editor to a
temporary file and invokes cable on that file. cable's output is directed to a second temporary

file. When the solution is complete, the temporary input file is deleted and program control
returns to the main editor. See section 6.5 for details on how and when you should save
files and how temporary files are used within the encapsulator.

68

Figure 6.4: The results control dialog available by selecting Controls from the Results
menu.

6.4 Viewing and converting results

Post.-processing the results of a solved problem is as easy as selecting Animate from the
Results menu. This wil invoke the animate program with the current output file as input.
Dd.ails of using animate are provided in section 5.2. The dialog to control how animate is
Iiivoked is shown in figure 6.4 and is raised by selecting Controls from the Results menu.

The controls in the upper left frame of figure 6.4 dictate the drawing and animation
paramd.ers that animate wil use to present the results. The 3D Drawing options control
whd.her a 3D problem gets drawn in 3D perspective view or is simply projected onto the

x-z plane. The controls in the Results Transformations frame govern how the result
variable!; should be plotted - local or global coordinate system, total (static + dynamic) or
just dynamic values, and whether force units should be converted from Newtons to pounds

(t.his only makes sense if the original force units are in Newtons of course). animate wil
draw additional anchor and buoy symbols at the nodes indicated in the lists at the bottom
right. of the dialog. The Add, Remove, and Clear buttons apply to both anchor and buoy
list!;, but only to one list at a time. The active list is controlled by the Anchors and Buoys
toggle buttons over the lists. To add a node number to a list simply type the number into
the box at the top of the list and click Add (or press I return I). Nodes can be deleted by
highlighting them within the list and clicking Remove. Clear deletes all entries in a list.

Two of the switches on this control (transformations for global coordinates and total

69

results) are also used when invoking res2mat. Conversion from cable results format to
Matlab .mat format is done by selecting Matlab conversion from the Results menu. A
file selection dialog wil appear asking you to specify the name of the Matlab file to create.

6.5 Working with files

When working with the encapsulator it is important to keep track of two files. The first
is the current input file that is contained in the main editor. The contents of the editor
are saved to a temporary file during each solve procedure, but this temporary file should
never be used as your own record of the problem (it is deleted as soon as the solution is
completed). To assign a name to it and save it, select Save As from the File menu. If you
have already assigned a name and simply want to save (the current name is shown in the
titlebar of the main window, as in figure 6.2), then select Save from the File menu.

The second file type is the current output file. When a problem is solved the output is
directed to a temporary file. That file then defines the current result. If you want to assign
a name to the file and save it then select Save Result As from the File menu. If you have
already defined a current output name then you can simply select Save Result. If you do
not explicitly save an output file before you execute another solve process then that output
file wil be deleted and the result of the latest solve wil become the current output. Note
that you do not need to assign a name to an output file to view or convert the results; you
only need to assign a name if you want to preserve results before doing additional solutions
or exiting the program.

You can define an existing file as the current result (i.e., without doing a solve) by
selecting Load Result from the File menu. Any post-processing selections wil then refer
to this already existing file. Note that this name becomes the current output name for the
Save Result action so that any subsequent solves and solution saves wil overwrite that
pre-existing result.

6.6 Command reference

Between the main menu, keyboard shortcuts, and the toolbar, there are generally several
ways to accomplish anyone task from within WHOI Cable's Windows interface. Table 6.1
details this complete command structure.

70

Menu Item Menu key Keyboard shortcut Toolbar icon Other
File New Alt-f, Alt-n

Open Alt-f, Alt-o Ctrl-o
Save Alt-f, Alt-s Ctrl-s
Save As Alt-f, Alt.-a Ctrl-a
Load Result Alt-f, Alt.-l Ct.rl-d
Save Result Alt.-f, Alt.-r
Save Result As Alt.-f, Alt-v
Print Setup Alt.-f, Alt-u
Print Alt.-f, Alt-p Ctrl-p
Exit Alt-f, Alt-x

Edit. Undo Alt-e, Alt-u Ctrl-u
Cut Alt-e, Alt-t Ctrl-x
Copy Alt.-e, Alt-o Ctrl-c
Paste Alt-e, Alt-p Ctrl-v
Find Alt-e, Alt-f

Find Next Alt-e, Alt-n F3
Insert Section Template Alt-i, Alt.-t chain + b uoy+anchor+shackle

Buoy Alt.-i, Alt-b buoy
Anchor Alt-i, Alt-a anchor
Material Alt-i, Alt-m chain
Connector Alt-i, Alt-c shackle
Layout segment Alt.-i, Alt-s cable shot
Layout connector Alt-i, Alt-o shackle+shackle
Layout terminal Alt-i, Alt-l buoy+anchor

Sol utions Controls Alt-s, Alt-c Ctrl-l
Solve Alt-s, Alt-s Ctrl-r go light button on control box

Results Animate Alt-r, Alt-a Ctrl-n movie button on results box
Matlab conversion Alt-r, Alt-m Ctrl-m matlab button on results box

Controls Alt.-r, Alt-c Ctrl-t.
Setup Files Alt-u, Alt-f

Fonts Alt-u, Alt-n
Help Keyword Alt-h, Alt-k Fl

About Alt-h, Alt-a

Table 6.1: Complete command structure for the WHOI Cable for Windows encapsulator.

6.7 Installing WHOI Cable for Windows

6.7.1 System requirements

WHOI Cable for Windows is only available for 32-bit Windows (95 or NT), Intel-based plat-
forms. Most static problems can be solved in a reasonable amount of time on any Pentium
or even a fast 486 processor. Dynamic problems and some static problems (notably those
that use small static relaxation factors or require significant numbers of outer iterations)
are best solved on faster Pentium or Pentium Pro architectures.

As ilustrated in figure 6.1, PC X-server software must be installed if you want to take
full advantage of all of the component programs. Without an X-server, cable's graphical
control and information dialog (figure 4.1) and animate's post-processing capabilties are
not available. Numerous companies market inexpensive PC X-server softwarel.

lThere is a free, albeit somewhat limited, server available at http://www/microimages.com/freestuff.

There is a reasonably complete list of commercial vendors, along with a review of four of them at

http://ww.sun.com/sunworldonline/ swol-11-1995 /swol-ll-pcx.html

71

6.7.2 Installation instructions

Because the main Windows interface to WHOI Cable is simply an encapsulator for the
rest of the component programs, it requires that standard versions of the cable component
programs, compiled for 32-bit Windows, be installed on your computer. These programs
and the supporting DLLs are provided as part of the standard distribution of WHOI Cable
for Windows. They, along with the actual encapsulator application, examples, and support
files are installed using the provided setup utility. If you received the distribution on disks,
insert disk 1 into your floppy drive, select Run from the Windows Start menu and enter
a: \setup. exe when prompted for the application name. If you received the distribution in
a single ZIP file, copy the ZIP file to a temporary directory, unpack it using a utility such
as Info-Zip's unzip2, and execute setup. exe. After installation you can safely remove the
ZIP file and its contents.

Your PC X-server software should generally be running before you run WHOI Cable (at
t.l)(very least it needs to be running before you try to solve a problem or view any results).
hi order for the encapsulator to interact with the X-server, you should also insure that your

DISPLAY eivironinent variable is set. You can do this using the System icon followed by

t 1)(Environment tab available under the Control Panel of Windows NT or by adding the
lii)(set DISPLAY=foo: 0.0 (where foo is the name of your machine) to your autoexec. bat
lik iiiider Windows 95.

6.7.3 Printing from animate under Windows

Priiit.iiip; directly to a printer from animate running under Windows requires that you specify
a valid priiit device (lpt1, Ipt2, com1, etc.) and that this device name be mapped to a
Piistsnipt printer. If you use a network printer rather than a printer connected directly to
~'iiur (')\iipiitcr then you must map the network printer name to one of the standard MS-
D()S priiit.r device names. To do this under Windows NT you use the net use command
froiii a command prompt. For example,

net use 1pt1 \ \server\ps_printer /persistent :yes

iiaps the Ipt1 device to a printer named ps_printer that is connected to the computer

Ilitiiipd server.

If yon do not have a Postscript printer available to you then we recommend that you
iis(' the print to file option in animate and install the freely available3 ghost script package
feil' printing and viewing Postscript files on non-Postscript devices.

~freely available from ftp:j jftp.cdrom.comjpubjsimtelnetjmsdosj00--tartjunz531x.exe
:¡from ftp.cdrom.com in pubjsimtelnetjwin95jprint for example

72

Figure 6.5: Configuring the pathnames for the WHOI Cable component programs. The File
Setup dialog is raised by selecting Files from the Setup menu

6.7.4 Modifying the installation

6.7.4.1 File and pathnames

After installation, you can change the paths to any of the component programs or specify
replacement programs for those components by selecting Files under the Setup menu. The
dialog shown in figure 6.5 allows you to specify locations for the cable, res2mat, animate
and cpp programs. You can also set the directory for database template (*. ctm) and object

(* . db) files (this is the directory that wil be used as the C pre-processor search directory).
The directory for temporary files created during the solution of a problem can also be set.
Directory names should end with a trailng \ as shown in figure 6.5.

6.7.4.2 Templates

The template blocks inserted by the selections on the Insert menu are contained in a series
of files located in the WHOI Cable database directory. These files can be customized with
any text editor as long as their filenames are not changed.

73

74

Appendix A

Subsurface Mooring Example

The following is an example cable input file for a simple, single segment system. The problem

is a buoyant sphere attached to 20 m of rope in 25 m of water. We want to explore the
motions of the sphere and the tensions in the rope as a regular wave with 0.8 m amplitude
and 8.0 second period passes over. We wil use Morison's equation to calculate the wave-

induced forcing on the sphere. Because we are expecting lots of curvature as the rope
buckles, we have used a relatively high node density (120 nodes over 20 m of rope). The
current specification ilustrates the use of a continuous expression to model an exponentially
decaying current profile.

Problem Description

ti tle = "Tethered Mine Example Problem"

type = subsurface

Analysis Parameters

duration 60.0
time-step 0.1
relaxation 1.0
max-iterations = 20

tolerance le-6

Environment
forcing-method = morison

input-type = regular
x-wave (0.8, 8.0, 0.0)
x-current 0 . 2*exp (-0. 055*H)

rho 1027
gravity 9.81
depth 25

75

Buoys
mine type = sphere

d = 1.5

Cdn = O. 5
m = 1611

Cdt = 0.5

Anchors
cl ump

Materials
rope EA = 5.0e4

m 0.09
d = 0.01

EI = 0.4

am = 0.08

Cdt = 0.01

GJ = 0.04

wet 0.087
Cdn = 1. 5

Layout
terminal = -t

anchor clump

J-

segment -t
length = 20. 0

material = rope

nodes = (120, 1.0)
J-

terminal -t
buoy mine

J-

End

Example results from this model are shown in figures A.l and A.2. The command-lines
that were used in generating these results were

% cable -in examplel. in -out examplel. res -nodes 120 -sample 0.1 -snap_dt

2.0
% animate -in examplel.res -thick

76

Figure A.l: The configuration of the system at t = 26 seconds in the simulation. This
output was created using the Print button on the main animate window.

T ansion

\j\ fi\ U
f\ l\ r\ l\
ijULJ

time

.L~o 00 ~ 00
time

~i,'T"'.'~o ~ ~
time

I
Ol

Figure A.2: The time history of forces for node 120 (the only node recorded in the results
file) as printed by animate.

77

78

Appendix B

Shallow Water Surface Mooring

This example ilustrates a typical shallow water surface mooring. It consists of an anchor,
6 feet of chain, 490 ft of wire rope, 6 feet of chain and a simple cylindrical surface buoy. We
are careful to include bottom-stiffness and bottom-damping terms in the environment
section to accomodate the chain and rope that wil be on the bottom.

Problem Description

title "Shallow Water Surface Mooring"

type = surface

Analysis Parameters

duration
time-step
dynamic-relaxation
static-relaxation
static-outer-i terations =

static-outer-relaxation =

static-i terations
dynamic-iterations
tolerance
ramp-t ime

Environment
rho
gravi ty
x-current

1025

9.81
0.5*0.514
100depth

input-type
forcing-method =

x-wave

120.0
0.01
1.0
0.01
25

0.8
800
50

0.01
16.0 /* minimize transients */

/* use random input spectrum */random
wave-follower
(48*0.0254, 8.0, 0.0) /* 8 ft sig height, 8 sec period */

79

bottom-stiffness = 100.0

bottom-damping 1.0

Buoys
float type = cylinder

m = 23

h = 8*0.0254

d = 36*0.0254

Cdn = 1. 0

Anchors
c1 ump

Connectors
shackle d = 0.375*0.0254

wet = 4.0
Cdn = O. 0
m = 0.5

Materials
chain

wire

EA = 5.5e7 EI = 0.01 GJ = O. 1
m = 4.4 am 0.584 wet 38.1
d o . 0265 Cdt 0.01 Cdn 1.0

EA 4.7e6 EI 20 GJ 5

m = 0.320 am 0.08 wet 2.64
d 0.01 Cdt 0.01 Cdn 1.5

Layout
terminal = .¡

anchor clump

)-

segment .¡
length = 72*0.0254

material = chain

nodes = (25, 1.0)
)-

connector = shackle

segment = .¡
length = 150

material = wire

nodes = (150, 1.0)

80

Figure B.l: The static configuration of the system as printed by animate.

:r

connector = shackle

segment = 1:
length = 72*0.0254

material = chain

nodes = (25,1.0)

:r

terminal = 1:
buoy = float

:r

End

Example results from this model are shown in figures B.l and B.2. The command-lines
that were used in generating these results were

% cable -in example2. in -out example2. res -nodes 1 200 -sample 0.1

% animate -in example2. res -thick

% res2mat -in example2. res -out example2. mat

81

Shallow Water Surface Mooring Tensions
1000

g 500

c:o.¡¡
c:
$

I
I
"
"
"
"
"
"

" \ '\ ii ': ,1';. II I III r'i / I I I j II I l~\ i I r \ r , i II ,Ill ,I
:1 ¡lri" ~1 l 1 1;~ ~p~ ~jl II i 'I II' I: :1'\ ;~¿~ ~J: ri;li 1.1 I: ,1

~/~:~,/: ~~;v~:I~~ ~ r~~\I~'V:~i\/~~\r 1~:"~U' l-:~~\r::~~ i :,/~ii~ ~)~I¡i\:II:::/\I'li:i~1 K
, ,1'1 \1 ' , r '1 i~...~ ~l f Ii 1,~, :f- ', , I 1 I 'iI ~ I ~ Ii~\j~~ I' l r ~ ~ ~ ii'

o 20 40 60
time(s)

80 100 120

Figure B.2: The time history of total tension at the buoy and the anchor. This plot was gen-
erated from within matlab, plot (t, l-t (: ,1) + TO), t, l-t (: ,2) + T(200), '--').

82

Appendix C

Deep Water S-tether Mooring

This is an example of a complex oceanographic mooring in deep water. The current spec-
ification exemplifies the use of a discrete expression to model a linearly varying current
profile.

Problem Description

title = "AOSN Labrador Sea Mooring"

type = surface

Analysis Parameters

static-outer-i terations =

static-i terations
stat ic-relaxat ion
static-tolerance
stat ic-outer-tolerance

duration
time-step
dynamic-tolerance
dynamic-relaxation
dynamic-i terations

ramp-time

Environment
rho
gravi ty
x-current

1000

5000
0.1
0.001
0.01

400.0
0.1
le-6
1.0
20

50.0

L
;:~

~.l;\

1025
9.81
(0.0,0.1) (100,0.1) (1000,0.05) (3500,0.05)

3500depth
input-type
forcing-method =

random
wave-follower

83

x-wave = (2.3, 10.5, 0.0)
bottom-stiffness = 0.0

bottom-damping = 0.0

1* sea state 6 *1

Buoys
float type = sphere

m = 65

d = 1. 22

Cdn = 1.0

Anchors
clump color = red

Connectors
shackle

ssf

d = 0.375*0.0254

wet = 8.0
Cdn = O. 1
m = 1.0
d = 1. 628

m = 931.3

wet -13350
Cdn = 2.068

Materials
wire EA = 4.4e6 EI = 500 GJ = 25

m = 0.160 am = 0.05 wet = 1.15
d o . 0063 Cdt = 0.01 Cdn = 1.5

array EA = 4.4e6 EI = 500 GJ = 25
m = 1.484 am = 0.631 wet = 8.514
d = 0.028 Cdt = 0.01 Cdn = 2. 0

chain EA = 5.5e7 EI = 0.01 GJ = O. 1
m = 4.4 am = 0.584 wet = 38.1
d = 0.0265 Cdt 0.01 Cdn = 1.0

pole EA = 5.5e7 EI = 0.01 GJ = O. 1
m = 4.4 am = 0.584 wet = 38.1
d o . 0265 Cdt 0.01 Cdn = 1.0

b_ tether EA = 1. Oe7 EI = 800 GJ = 40

m = 4.160 am = 2.08 wet = -4.45
d = 0.05 Cdt = 0.01 Cdn = 1.5

84

w tether

snubber

EA 1. Oe7 EI = 800 GJ 40
m = 4.160 am = 2.08 wet 2.67
d 0.05 Cdt = 0.01 Cdn 1.5

EA 3. 13e4 EI = 1000 GJ = 500

m = 14.07 am = 9.74 wet 42.46
d 0.11 Cdt = 0.01 Cdn 1.5

Layout
terminal -(

anchor clump

)-

segment -(
length = 2900

material = wire

nodes = (200, 1.0)
)-

connector = shackle

segment = -(
length = 4

material = pole

nodes = (5, 1.0)

/* this is the pinger cage/spare pole */

)-

connector = shackle

segment = -(
length = 100

material = wire

nodes = (20, 1.0)
)-

connector = shackle

segment = -(
length = 6.5

material = pole

nodes (5, 1.0)

/* this is the docking station plus some */

/* stuff fudged above and below it */

)-

connector = shackle
segment = -(

length = 400

material = array

nodes = (50, 1.0)

/* this is the EM cable - what is it? */

)-

connector = shackle

segment = -(/* 3 m of potted chain below SSF */

85

length = 3

material = chain
nodes = (5, 1.0)

J-

connector ssf
segment = -(

length = 3

material chain
nodes = (5, 1.0)

J-

/* 3 m of potted chain above SSF */

connector shackle
segment = -(

length = 75

material b_tether
nodes = (75, 1.0)

J-

connector shackle
segment = -(

length = 75

material = w_tether

nodes = (75, 1.0)
J-

connector shackle

segment = -(
length 15
material = snubber

nodes (30, 1.0)
J-

terminal -(

buoy float
J-

End

Example results from this model are shown in figures C.1. The command-lines that
were used in generating these results were

% cable -in example3. in -out example3. res -nodes 230 470 -sample 0.1

% res2mat -in example3. res -out example3.mat -global

86

3600

-
E
-; 3100
o
0.

2600
-500 0 500

pas (m)

2-
C/-
E 0-
Q):;

-2

0 200 400
time (s)

Figure C.l: The static configuration of the system and a comparison of motion at the
surface buoy (dashed line) and docking station (solid line) to ilustrate the effectiveness of
the S-tether section at reducing vertical motions of the subsurface components. This plot
was created within Matlab.

87

88

Appendix D

Horizontal Array Mooring

This is an example of a system with both ends anchored on the bottom. To define the
geometry of the second anchor we simply need to give an anchor name in the last terminal
definition along with the geometric location of the second anchor. This problem ilustrates
the use of both connectors and attachments in the geometry description. The temperature
pods are located along the segments through the use of attachment statements and local

(referenced to individual segments) node numbers.

\ .
\

Problem Description

title "Horizontal Array"

type = horizontal

Analysis Parameters

duration 50.
time-step 0.1
static-relaxation 1.0
static-iterations 2000
static-outer-iterations = 1000

dynamic-iterations 20
dynamic-relaxation 1.0tolerance le-6

Environment
forcing-method
input-type
x-wave
rho
gravity
x-current

morison
random

(1.,8.0,0.0)
1025

9.81
0.5

/* random waves with 1 m ampl */

/* and 8 second period */

/* about 1 knot of uniform current */

89

depth 100

Anchors
cl ump

Connectors
sphere_ 48in d = 1.2307

wet = -1590*4.448 + 4.45*4.448*.8667

Cdn = 0.7944

m = 312.9 + 2*4.45/2.205

tp_pod m = 4.91
wet = 5.3*4.448

Cdn = 1. 0
d = O. 30

termination_B m = 4.45/2.205

wet = 4.45*4.448*.8667

Cdn = O. 5
d = 0.168

acm_3d m = 20.65 + 2.31*2 + 6.88 + 3.18*2
wet = 94.34 - 39.60*2

Cdn = 1. 0
d = 0.585 + .041*2

Materials
wire 10in EA 4.7e6 EI 20 GJ 5

m = 0.320 am 0.08 wet 2.64
d 0.01 Cdt 0.01 Cdn 1.5

chain EA 5.5e7 EI 0.01 GJ 0.1
m = 4.4 am 0.584 wet 38.1
d o . 0265 Cdt O. 01 Cdn 1.0

acoustic release EA 1.0e8 EI 1000 GJ 100
m 44/2.5 am 18/2.5 wet = 187/2.5
d 0.218 Cdt = O. 18 Cdn = 1.2

Layout
terminal = -(

anchor clump

ì

segment -(
length = 5

material chain

nodes = (5, 1.0).
ì

90

connector terminat ion_B

segment = -(

length = 108.1
material = wire_l0=
nodes = (50, 1.0)

1-

connector sphere_ 48in
segment = -(

length = 22.
material = wire 10=
attachments = tp_pod (11)
nodes = (22, 1.0)

1-

connector acm_3d
segment = -(

length = 22.

material = wire 10=
attachments = tp_pod (11)
nodes = (22, 1.0)

1-

connector acm_3d
segment = -(

length = 22.

material = wire 10=
attachments = tp_pod (11)
nodes = (22, 1.0)

1-

connector acm_3d
segment = -(

length = 34.

material = wire 10=
attachments = tp_pod

nodes = (34, 1.0)
(11 22)

1-

connector sphere_ 48in
segment = -(

length = 103.2

material = wire 10=
nodes = (50, 1.0)

1-

connector termination_B
segment = -(

length 2.5
material = chain

91

nodes = (5, 1.0)

)-

connector = termination_B
segment = 1:

length = 2.5

material = acoustic release

nodes = (5, 1.0)

)-

connector = termination B

segment = 1:

length = 5.0

material = chain

nodes (5, 1.0)

)-

terminal 1:
anchor = clump

x = 260.0 z = 0.0

)-

End

Example results from this model are shown in figures D.l and D.2. The command-lines
that were used in generating these results were

% cable -in example4. in -out example4. res -nodes 55 100 155 -sample 0.1 -snap_dt
0.5
% animate -in example4.res -thick -buoys 55 155

92

Horiontal Array

180

150

1211...

Figure D.l: The configuration of the system at t = 36 seconds in the simulation. This
output was created using the Print button on the main animate window.

Vertical Position~~41 .V
-0.2

-.,o 10 20 30 40 60
time

X Position

~~~o 10 20 30 40 50
time

t
o

Y Position

I .
"

I i I . I .20 30
time

I"
I .
..

Figure D.2: The displacement history of the two corner buoys and a node along the middle
of the horizontal array section as printed by animate.

93



94



Appendix E

Towed Vehicle Example

This example ilustrates a typical towing problem. The system consists of the biomapper
t.owed vehicle, 1000 m of tow cable and a tow ship. The model simulates a tow-yow type
profile by varying both the speed of the tow ship and the pay-rate of the cable in a sinusoidal
fashion. The forcing on the vehicle is a combination of both the tow-speed effects and the
C1llent. which we are towing against.

Problem Description

title "Towing the

type = towing

Biomapper Vehicle"

Analysis Parameters

duration
time-step
dynamic-relaxation =

dynamic-iterations =

1800
0.5
1.0
20

static-relaxation
static-i terations

0.3
400

tolerance le-12

Environment
rho
gravi ty
x-current

= 1025 /* no waves - just study tow dynamics */
= 9.81

-0.5 1* about a 1 knot current against us . */

Buoys
towship
sled

: type
type

ship
sphere

95



d = 0.736

m = 1135

buoyancy = 4448

Cdn = O. 77

Materials
cable d 0.0173

m = 1. 12
wet = 8.89

am = O. 24

Cdn = 1.5

Cdt = 0.01

EA 1. 2717e7
EI 237.88
GJ 10.0

Layout
terminal = .¡

buoy sled
J-

segment = .¡
length
nodes
material

1000

(400, 1.0)

cable
J-

terminal = .¡
buoy
pay-rate
x-speed

towship
-0. 5*sin(0. 0105*t)
0.514*(5.0 + 3.0*sin(0.0105*t))

/* come to steady state of 5 knots, then tow-yow for

/* 30 minutes, using both ship and winch to get yo-yo

*/
*/

J-

End

The steady state configuration of the system is shown in figure E.1. The command-lines
that were used in generating these results were

% cable -in example5. in -out example5. res -nodes 1 -sample 0.5 -snap_dt 5.0

% animate -in example5.res -thick

% res2mat -in example5. res -out example5. mat -global

Figure E.2 shows the speed of the tow ship and the depth of the towed-body as a function

of time. The plot of body depth also includes traces for a run in which the winch was not

96



Towing the Biomapper Vehicle

Figure E.l: The static configuration of the system as printed by animate.

97



"
ils
iF
~ 4

3

2
0 200 40 60 60 100 1200 140 160 180

tlme(s)

ship speed + winch

-200 winch only
ship speed only

I -250"
g. -30",."
B -350
i

~- -4
-40

0 200 80 100 1200 140 1600 180
t1me(s)

FigllC E.2: The speed of the tow ship and the resulting depth profile of the tow sled. This
plot was generated using matlab.

activdy paying-in and paying-out and a run in which the speed does not vary but the winch
is paying-in and out.

98



References

¡lj Odd M. Faltinsen. Sea Loads on Ships and Offshore Structures. Cambridge University
Press, Cambridge, England, 1990.

¡2j Curtis F. Gerald and Patrick O. Wheatley. Applied Numerical Analysis. Addison-
Wesley Publishing, Reading, MA, fourth edition edition, 1989.

¡3j Jason i. Gobat. Reducing mechanical and flow-induced noise in the Surface Suspended
Acoustic Receiver. Master's thesis, Massachusetts Institute of Technology and Woods

Hole Oceanographic Institution Joint Program, Woods Hole, MA, June 1997.

¡4j Christopher T. Howell. Investigation of the dynamics of low-tension cables. PhD thesis,
Massachusetts Institute of Technology and Woods Hole Oceanographic Institution Joint
Program, Woods Hole, MA, June 1992.

¡5j John L. Junkins and James D. Turner. Optimal spacecraft rotational maneuvers. El-
sevier Science Publishers, Amsterdam, 1986.

¡6j James Lighthil. Fundamentals concerning wave loading on offshore structures. Journal
of Fluid Mechanics, 173:667-681, 1986.

¡7j J.N. Newman. The motions of a spar buoy in regular waves. Technical Report 1499,
David Taylor Model Basin, May 1963.

¡8j Wiliam H. Press, Brian P. Flannery, Saul A. Teukolsky, and Wiliam T. Vetterling.
Numerical Recipes in C: The art of scientific computing. Cambridge University Press,
Cambridge, England, second edition edition, 1989.

¡9j Singiresu S. Rao. Mechanical vibrations. Addison-Wesley Publishing, Reading, MA,
third edition edition, 1995.

¡10j Andrew H. Sherman. Algorithms for sparse Gaussian elimination with partial pivoting.
ACM Transactions on Mathematical Software, 4:330-338, 1978.

99



¡11J Willam T. Thomson. Theory of vibrations with applications. Prentice Hall, Englewood
Cliffs, N J, third edition edition, 1988.

¡12J Athanassios A. Tjavaras. Dynamics of highly extensible cables. PhD thesis, Mas-
sachusetts Institute of Technology, Cambridge, MA, June 1996.

¡13J Burton Wendroff. On centered finite difference equations for hyperbolic systems. Jour-
nal of the Society of Industrial and Applied Mathematics, 8:549-555, 1960.

.~

t
J\

100



DOCUMNT LmRAY
Distruton List for Technical Report Exchange - September 1997

University of California, San Diego
SIO Library 0175C
9500 Gilman Drive
LaJolla, CA 92093-0175

Hancock Library of Biology & Oceanography
Alan Hancock Laboratory
University of Southern California
University Park
Los Angeles, CA 90089-0371

Gifts & Exchangés
Library
Bedford Institute of Oceanography
P.O. Box 1006
Dartmouth, NS, B2Y 4A2, CANADA

NOAA/EDIS Miami Library Center
4301 Rickenbacker Causeway
Miami, FL 33149

Research Library
U.S. Army Corps of Engineers
Waterways Experiment Station
3909 Halls Ferr Road
Vicksburg, MS 39180-6199

Institute of Geophysics
University of Hawaii
Library Room 252
2525 Correa Road
Honolulu, HI 96822

Marine Resources Information Center

Building E38-320
MIT
Cambridge, MA 02139

Library
Laont-Dohert Geological Observatory
Columbia University
Palisades, NY z10964

Library
Serials Department
Oregon State University
Corvallis, OR 97331

Pell Marine Science Library
University of Rhode Island
Narragansett Bay Campus
Narragansett, RI 02882.

Working Collection
Texas A&M University
Dept. of Oceanography
College Station, TX 77843

Fisheries-Oceanography Library
151 Oceanography Teaching Bldg.
University of Washington
Seattle, WA 98195

Library
R.S.M.A.S.
University of Miami
4600 Rickenbacker Causeway
Miami, FL 33149

Maury Oceanographic Librar
Naval Oceanographic Office
Building 1003 South
1002 Balch Blvd.
Stennis Space Center, MS, 39522-5001

Library
Institute of Ocean Sciences
P.O. Box 6000
Sidney, B.c. V8L 4B2
CANADA

National Oceanographic Library
Southampton Oceanography Centre
European Way
Southampton S014 3ZH
UK

The Librarian
CSIRO Marine Laboratories
G.P.O. Box 1538
Hobar, Tasmania
AUSTRIA 7001

Library
Proudman Oceanographic Laboratory
Bidston Observatory
Birkenhead
Merseyside L43 7 RA
UNTED KINGDOM

IFREMER
Centre de Brest
Servce Documentation - Publications
BP 70 29280 PLOUZANE
FRANCE





0272-101

REPORT DOCUMENTATION 11. REPORT NO.PAGE WHOI-97-15
4. Title and Subtitle

WHOI Cable: Time Domain Numerical Simulation of Moored and Towed
Oceanographic Systems

12.

3. Recipient's Accession No.

5. Repon Date
November 1997

6.

7. Author(s) Jason i. Gobat, Mark A. Grosenbaugh, and Michael S. Triantafyllou 8. Performing Organization Rept. No.
WHOI-97-15

9. Performing Organization Name and Address 10. Projectfask/ork Unit No.

Woods Hole Oceanographic Institution
Woods Hole, Massachusetts 02543

11. Contract(C) or Grant(G) No.

(C) NOOI4-92-J-1269

(G) NOOI4-95-1-0106

12. Sponsoring Organization Name and Addres

Office of Naval Research

13. Typ of Report & Period Covered

Technical Report

14.

15. Supplementary Note

This report should be cited as: Woods Hole Oceanog. Inst. Tech. Rept., WHOI-97-15.

16. Abstrct (Limit: 200 words)

This report presents a numerical framework for analyzing the statics and dynamics of cable strctures commonly
encountered in oceanographic engineering practice. The numerical program, WHOI Cable, features a nonlinear solver that
includes the effects of geometrc and material nonlinearties, bending stiffness for seamless modeling of slack cables, and a
model for the interaction of cable segments with the seafoor. The program solves both surface and subsurface single-point
mooring problems, systems with both ends anchored on the bottom, and towing and drifter problems. Forcing includes
waves, current, ship speed, and pay-out of cable. The programs that make-up WHOI Cable run under Unix, DOS, and
Windows. There is a familiar Windows-style interface available for Windows 95 and Windows Nf platforms. In the report,
the mathematical and numerical framework for WHOI Cable is described, followed by detailed instrctions for formulating
problem input files and running the codes. Examples are included in an appendix to highlight the range of problems that
WHOI Cable can solve.

17. Document Analysis a. Desriptors

mooring dynamics

cable dynamics
towed systems

b. IdentifiersOpen-Ended Terms

c. COSATI Field/Group

18. Availabilty Statement 19. Security Class (This Repon)

UNCLASSIFIED
21. No. of Pages

103
Copyright (£1997 by Woods Hole Oceanographic Institution.
All Rights reserved.

20. Security Class (This Page) 22. Price

(Se ANSI-Z39.18) See Instrctions on Reverse OPTIONAL FORM 272 (4-77

(Formerly NTIS-35)
Department of Commerce


