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Abstract

The role of mesoscale oceanic eddies in driving the large-scale currents is studied in an

eddy-resolving, double-gyre ocean model. The new diagnostic method is proposed, which is

based on dynamical decomposition of the flow into the large-scale and eddy components. The

method yields the time history of the eddy forcing, which can be used as additional, external

forcing in the corresponding non-eddy-resolving model of the gyres. The main strength of this

approach is in its dynamical consistency: the non-eddy-resolving solution driven by the eddy

forcing history correctly approximates the original large-scale flow component. It is shown that

statistical decompositions, which are based on space-time filtering diagnostics, are dynamically

inconsistent. The diagnostics algorithm is formulated and tested, and the diagnosed eddies

are analysed, both statistically and dynamically. It is argued that the main dynamic role

of the eddies is to maintain the eastward-jet extension of the subtropical western boundary

current. This is done largely by both the time-mean isopycnal-thickness flux and the relative-

vorticity eddy flux fluctuations. The fluctuations drive large-scale flow through the nonlinear

rectification mechanism. The relative-vorticity flux contributes mostly to the eastward jet

meandering. Finally, eddy fluxes driven by both the eddies and the large-scale flow are found

to be important. The latter is typically neglected in the analysis, but here it corresponds to

important large-scale feedback on the eddies.
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1. Introduction

The need to understand the large-scale/eddy interactions and to account for them in

Oceanic General Circulation Models (OGCMs) is one of the fundamental challenges in physical

oceanography. It is widely recognised that, along with surface forcing, the mesoscale eddy

fluxes of momentum and potential vorticity (PV) are capable of driving the large-scale currents.

In the OGCMs, the eddy fluxes are partially resolved but mostly parameterised in terms of

simple mathematical models. It is difficult to test these simple models, because it is difficult

to observe the real eddy fluxes. At this point, a promising strategy is to study eddy fluxes in

idealised, eddy-resolving ocean models, as it is done in this paper.

In the introduction, the background literature is discussed, the problem is posed, and

the ocean models and the eddy-resolving solution are described. The new method of flow

decomposition into the large-scale and eddy components is given in section 2. Analysis and

interpretation of the corresponding eddy fluxes is in section 3, which is followed by the sum-

mary.

1.1 Background

The role of eddies in the midlatitude ocean gyres remains poorly understood. Early theo-

retical works on the gyres consider simple and steady, linear (Stommel 1948; Munk 1950) and

nonlinear (Fofonoff 1954; Moore 1963) analytic solutions of the barotropic vorticity equation.

Most of the recent theoretical advances, which focus on more realistic circulation regimes,

are made with the help of numerical models. In particular, it is shown that the gyres have

multiple steady states (e.g., Cessi and Ierley 1995; Speich et al. 1995; Sheremet et al. 1997;

Berloff and Meacham 1998), all of which are unstable for Reynolds number (Re) larger than

its critical value. At supercritical, but still significantly smaller than the oceanic, Re, the
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gyres operate in dynamically complex turbulent regimes, which are, generally, even more re-

alistic. The main aspects of the wind-driven midlatitude ocean gyres are the broad and slow

currents in the interior of the basin, the narrow and swift western boundary currents (WBCs)

with their eastward jet (EJ) extensions and adjacent recirculation zones, and the mesoscale

eddies generated by flow instabilities and nonlinear dynamics. The eddies are typically defined

as fluctuations around the time-mean background flow. Nonlinear interactions between the

eddies and the background flow are complex (e.g., Bryan 1963; Veronis 1966; Holland 1978;

Haidvogel et al. 1992; Berloff and McWilliams 1999a,b), and the role of eddies increases with

Re (e.g., Siegel et al. 2001). Importance of the large-scale advection in driving the recircula-

tions surrounding the main EJ by supplying PV anomalies is argued in Cessi et al. (1987),

and the role of the time-mean eddy/eddy PV flux is studied in Jayne et al. (1996).

Modelling eddy effects by simple mathematical models is a classical turbulence problem,

which is particularly difficult in the ocean, where spatially dense and temporally long obser-

vations of the eddy field are problematic. The most common model of this kind is turbulent

diffusion, which represents unresolved eddies in virtually all OGCMs. The basic assumption of

the diffusion model is that the large-scale currents are smoothed out rather than enhanced by

the eddies, but there are examples of the anti-diffusion phenomenon (Starr 1968). It is argued,

that this phenomenon — impossible in the classical turbulence scenario — can be understood

in terms of the long-range transport of momentum or vorticity, that is associated with their

generation in one place but dissipation in another one (McIntyre 2000). In the ocean this

transport is done by the eddy fluxes, and the necessary condition for them to be approximated

by the diffusion is their down-gradient orientation with respect to the background gradient

of the fluxed quantity. Different orientations of the eddy fluxes are found in idealised eddy-
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resolving models (e.g., Treguier 1999; Jayne et al. 1996; Jayne and Hogg 1999; Drijfhout and

Hazeleger 2001; Roberts and Marshall 2000), therefore, relevance of the diffusion approach is

uncertain, and alternative approaches have to be looked for (e.g., Berloff 2004).

1.2 Statement of the Problem

Solving for the ocean mesoscale-turbulence problem requires: (i) efficient diagnostics of

the eddies, (ii) suitable mathematical model for the eddy effects, and (iii) relationship between

parameters of this model and the large-scale flow. This paper deals with the eddy diagnostics

and its interpretation; the mathematical model based on these results is in Berloff (2004); and

the search for parameter relationships is a matter of the future. The problem is addressed in

the context of the idealised ocean circulation, but the method and the ideas can be applied to

other geophysical and turbulent flows.

The starting question is: What is a meaningful decomposition of the flow solution into the

large-scale and eddy components? Obviously, the flow decomposition is not unique, and in

physical oceanography the most common approach is to decompose any flow into the infinite-

time average, representing the large-scale component, and fluctuations around this average,

representing the eddies. Alternatively, large-scale flow can be filtered out by a more general

space-time filter. Here, a new idea of flow decomposition, and, therefore, a new definition of

the eddy fluxes is proposed and implemented. According to this idea, the large-scale flow is

filtered out of the original data interactively, as the solution of a non-eddy-resolving model

integrated in time and corrected by the interactively calculated eddy forcing. Thus, the non-

eddy-resolving model acts as the dynamical filter. The main strength of this approach is in

its dynamical consistency: the non-eddy-resolving solution driven by the eddy forcing history

correctly approximates the original flow. The practical significance of the approach is in the
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idea that the dynamically consistent eddy forcing can be modelled as a random process (Berloff

2004). Once the flow is decomposed, the following questions are asked. What is the large-

scale dynamical effect of the eddies? What are the principal mechanisms involved? What are

relative contributions of different eddy flux components? Can the eddy effects be represented

as a diffusion process?

Although the dynamical decomposition method is essentially a diagnostic tool that requires

detailed knowledge of the flow, it prepares solid ground for advance toward ”parameterisation”

of the eddy effects. After mathematical model of the eddy effects is developed and its param-

eters are related to the large-scale flow, eddy-resolving simulations will not be required for

predicting the large-scale flow statistics. An important step toward this goal is to study sensi-

tivity of the large-scale response to different simplifications of the eddy effects obtained in the

dynamically consistent way (Berloff 2004).

1.3 Ocean Models

Here, the Eddy-Resolving (ER) model is used to obtain the reference solution, which

contains both the large-scale and eddy components. The model represents midlatitude ocean,

with a prescribed density stratification, and in in a flat-bottom square basin with north-south

and east-west boundaries. The QG PV equations (Pedlosky 1987) for N dynamically active

isopycnal layers are:

∂qi
∂t

+ J(ψi, qi) + β
∂ψi

∂x
=

δi,1
ρ1 H1

∇×τ + ν∇4ψi , (1)

where δi,j = 1 if i = j, and δi,j = 0 if i 6= j, and i is the layer index starting from the top.

The meridional planetary vorticity gradient is β, the surface wind stress is τ , and J(, ) is the

Jacobian operator. The PV anomalies, qi, are connected with the velocity streamfunctions,
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ψi, through the coupled elliptic equations:

∇2ψi − (1 − δi,1)Si,1 (ψi − ψi−1) − (1 − δi,N)Si,2 (ψi − ψi+1) = qi , (2)

with the stratification parameters Si,1 and Si,2. The horizontal velocity components are found

as

ui = −
∂ψi

∂y
, vi =

∂ψi

∂x
, (3)

and on the lateral boundaries velocity is zero. Also, there is the mass conservation constraint

for each layer:

∂

∂t

∫∫
ψi(x, y) dx dy = 0 . (4)

Parameters of the model and basic features of the flow solution (Fig. 1) are discussed in ap-

pendix A. After the initial spin-up from the state of rest, the solution equilibrates statistically.

Then, it is computed for 104 days and stored in terms of ψ for the analysis on the coarsened,

129×129 grid, with 1-day time intervals. This data set is referred to as the coarse-grained (or,

projected on the coarse grid), reference ER solution. In general, the coarse-graining method

can be altered by using a coarse-gridscale filter, but here the simplest option is used, which

is equivalent to the common observational practice of estimating point-wise quantities. Also,

the filtering would result in underestimating the variance of the flow fluctuations. The coarse-

graining projection can be more formally expressed as

ψ̃(T,X) ≡ Proj[ψ(t,x)] ≡
∫ X+∆X/2

X−∆X/2

∫ Y +∆Y/2

Y −∆Y/2

∫ T+∆T/2

T−∆T/2

K(t,x;T,X)ψ(t,x) dx dy dt . (5)

In this paper, the projection kernel is chosen to be a simple Dirac delta function,

K(t,x;T,X)ψ(t,x) = δ(X − x) δ(Y − y) δ(T − t) , (6)
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for each isopycnal layer. A more general form of the kernel allows for heterogeneous averaging

near boundaries and nested grids. Further below, tilde over ψ is omitted for simplicity, unless

otherwise stated.

How crucial is the use of the ER model for the dynamically consistent eddy flux analysis?

First, this analysis can be viewed as a purely diagnostic tool for solutions of any comprehensive

ER model. Second, there is a hope that the diagnosed eddy effects will be ”parameterised”,

hence resolving the eddies will not be required for modelling the large-scale flow. However,

before this is achieved, (a) generic properties of the eddy fluxes have to be sorted out and

understood, (b) a model of the eddy effects has to be put forward, and (c) relationships between

the model parameters and the large-scale flow patterns have to be established. Finally, the ER

solution can be, potentially, replaced with interactive ocean observations, and the associated

coarse-grid model can be used for the analysis of the observations.

The large-scale and eddy components of the flow, arbitrary so far, are denoted with overbar

and prime, respectively, and the full flow is:

u(t,x) = u + u′ , q(t,x) = q + q′ . (7)

The eddy forcing is defined as

f = J(ψ, q) − J(ψ, q) = ∇·u q −∇·u q = −∇·F′ , (8)

where F′ is the eddy flux of the PV. In the simple form, the eddy forcing incorporates eddy

effects, which are otherwise missing from the non-ER dynamics. Note, that the eddy forcing

can be defined for any decomposition (7), but in the dynamical decomposition method the

large-scale flow component is unambiguously defined as the solution of the non-ER model

interactively corrected by the corresponding eddy forcing (8).
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The ER and non-ER models have the same general set-up, but the former has far fewer

degrees of freedom and solves only for the large-scale flow evolution. The governing non-ER

PV equations are:

∂qi
∂T

+ ui
∂qi
∂X

+ vi
∂qi
∂Y

+ β
∂ψi

∂X
=

δi,1
ρ1H1

∇×τ + ν∇4ψi + fi , (9)

where (X, Y ) are the coarse-grid space coordinates, qi and ψi are the non-ER (i.e., large-scale)

PV anomaly and velocity streamfunction, and all of the derivatives are calculated on the coarse

grid. Using different time scale, T , indicates that the non-ER model allows for the larger time

steps due to the relaxed Courant condition (2.4 hours time step is used). The elliptic equation

(2) is similarly modified. In (9) fi is the eddy forcing, and the eddy diffusivity enhancement,

ν − ν, parameterises the sub-mesoscale eddy forcing wiped out as a result of the coarse-grid

projection of the ER solution (appendix A). Here, ν = 10 ν = 103m2s−1, and sensitivity study

with the values of ν, which are 10 times smaller or larger than that, confirms all of the basic

conclusions of this paper. This is so, because most of the dissipation occurs near the western

boundary and the dynamically important eddy fluxes in the eastward-jet region are not very

sensitive to the diffusivity enhancement. Given that the coarse grid has 4 times less points in

each direction, the grid-scale Reynolds number, U∆/ν, where U is some typical velocity and

∆ is the grid scale, is reduced by a factor of 0.4. This is done in order to be able to resolve

marginally, by just one point, the Munk scale, [ν/β]1/3. In a more advanced application of the

ideas developed in this paper, either ∆ or ν can be spatially inhomogeneous, so that both the

grid-scale Reynolds number is kept fixed and the Munk scale is well resolved.

2. Flow Decomposition into the Large-Scale and Eddy Components
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2.1 Dynamical Decomposition Method

This section explains how a non-ER model can be used to decompose the flow. The idea is

to introduce the dynamical constraint: Given a non-ER model, the flow decomposition has to

be such that the resulting eddy force yields the non-ER solution which correctly approximates the

large-scale structure of the original flow. The eddy flux and force based on the decomposition

satisfying this constraint are referred to as the dynamically consistent ones. There are three

important consequences of the constraint: (i) the eddy forcing becomes a part of the prognostic,

dynamic model for the large-scale flow; (ii) the flow decomposition, the eddy flux, and the

non-ER model are always defined together; and (iii) the non-ER model equations have to be

solved explicitly as a part of the decomposition process. Another, less obvious consequence

is that dynamically consistent eddy forcing can be replaced by a random process, and the

corresponding non-ER solution will correctly approximate the original flow (Berloff 2004).

The dynamical decomposition algorithm is based on integrating and interactively correct-

ing the non-ER model solution with the information supplied by the structure of the full flow.

This information enters the non-ER model in terms of the interactively calculated eddy force,

and the eddies are continuously and interactively defined in terms of the structural differences

between the full and non-ER flows. More specifically, a non-ER model is initialised with the

initial conditions for the ER flow and integrated in time. At each moment of time, the large-

scale component of the flow, ψ, is defined as the non-ER solution; and the eddy component,

ψ′, is found as the difference between the full flow and the non-ER solution. In each isopycnal

layer, at each grid point, and on each time step, the instantaneous eddy forcing, f(t,x, is found

according to (8), where J(, ) and ∇ are the coarse-grid operators. Thus, f(t,x incorporates

information from both the non-ER and ER solutions. Next, the non-ER model is stepped
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forward with this eddy forcing term and the process is repeated for the next time step. In the

end, the non-ER solution is obtained over the same time interval as the ER reference solution.

To summarize, the eddies are literally the unresolved fluctuations of the non-ER dynamics,

but, nevertheless, they are accounted for in terms of the (residual) eddy forcing.

Decomposing turbulence by dynamic models is not common. An alternative method,

applied to the large-eddy simulation of the isotropic turbulence, calculates the eddy forcing

by making use of the truncated approximation of the Navier-Stokes equation solved on a finer

grid (Domaradzki et al. 2002). This method has no enhanced eddy diffusivity, therefore the

energy gradually piles up at small scales, and to avoid problem the fine-grid flow has to be

periodically reinitialised with the parallel coarse-grid solution. The dynamical decomposition

method is more simple and straightforward, but it is expected to work only when the eddy

forcing is a leading-order term. Fortunately, this is the case in the oceanic gyres. Although

the method proposed here also involves corrections given by differences between the modelled

and reference flows, it is different from the method based on calculating residual force from

the tendency term (D’Andrea and Vautard 2000) and from the approach in which the residual

force is used to correct the eddy diffusivity coefficient (Kaas et al. 1999). It is also different

from the approach in which solution is corrected by the time-mean component rather than

the full history of the eddy forcing (Marshall and Molteni 1993). In the present study, an

attempt to account for other eddy effects by correcting the diffusion operator and the β-term

destroys the leading-order linear balance in the western-boundary viscous layer and corrupts

the integral PV balance (section 2.3). In turn, this induces solution runaway characterised by

exaggerated gyres.

Generally speaking, decomposition (7) and the corresponding eddy flux history are not
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unique. For example, ψ (or, q) can be statistically filtered out as

ψ(t,x) =
∫ ∫

G(t− t′,x − x′)ψ(t′,x′) dt′ dx′ , (10)

where G(t,x) is a prescribed filtering kernel with unit norm. The main problem with this

statistical approach is that the choice of G(t,x) is not unique and physically not constrained.

The particular case of (10) that involves averaging in time only is the most common basis for

defining the eddy fluxes. Appendix B illustrates dynamical inconsistency of this definition.

Thus, it is argued here that the traditional approach should be abandoned or at the very least

strongly informed by modelling efforts that focus on parameterising dynamically consistent

eddy forcing.

2.2 Dynamical Decomposition of the Ocean Gyres

In this section, the dynamical decomposition method is applied to the ER solution.

How well can the non-ER model work without the eddy forcing? In this case, the non-ER

model is the coarse-grid model in which truncated dynamic degrees of freedom are simply not

accounted for. It is found that the coarse-grid model is not capable of approximating the ER

flow, no matter how large or small is the value of ν, because the diffusion model simply can not

simulate anti-frictional action of the mesoscale eddies (compare Figs. 2 and 1a,c). With small

ν, the subtropical WBC generates intense anticyclonic eddies that propagate all the way to

the north-western corner of the basin and drive there the time-mean anticyclonic recirculation

(Fig. 2a,c). Location of the instantaneous WBC separation point fluctuates strongly, and

the time-mean EJ has unrealistically large meridional excursion. This flow regime is formed

because the resolved eddies are not efficient in delivering PV from the western boundary into

the basin interior. As a result, the PV budget (17) is satisfied by relatively large exchange of
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PV (and mass) between the northern and southern parts of the basin and by the invasion of

the subtropical gyre to the cyclonically forced region. Overall, this regime is similar to the

free-slip one (Cessi 1991), largely due to the poor resolution of the viscous western boundary

layer. The large-ν regime is qualitatively incorrect because it does not have the right EJs: the

time-mean eastward flow is broad, slow, and excessively meandering and the WBC eddies are

exaggerated. Overall, this flow regime is qualitatively similar to OGCM solutions at moderate

Re (e.g., Bryan 1987).

In the ocean gyres, the dynamical decomposition method based on the non-ER model (9)

works well (Fig. 3). This is so because the eddy forcing is strong. The time-mean non-ER

flow is characterised by the EJs with qualitatively correct shapes, and separating from the

boundary in right locations. On the other hand, the non-ER WBCs are broader due to the

enhanced diffusivity. In the western part of the basin, which generally is the most vulnerable

to under-resolving the eddies, instantaneous non-ER flow smoothly approximates the reference

solution (compare Figs. 1c and 3b). In the eastern basin, the eddies are dominated by large-

scale, small-variance, and relatively fast, westward propagating signal, which is likely generated

by instabilities of the subtropical WBC and its EJ extension (Berloff and McWilliams 1999a).

The non-ER model overestimates these instabilities, therefore it exaggerates these fluctuations.

Success of the non-ER solution in approximating the ER flow is further quantified by significant

correlations between the non-ER and ER time series. The basin-integrated potential energy

time series have remarkably large correlation coefficient of 0.98. The time-mean kinetic energies

differ by factor of 2.5, suggesting that the eddy forcing accounts for most of the eddy activity.

On the other hand, the kinetic energy correlation, which is a poorer indicator of the large-scale

coherence, is 0.53.
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2.3 PV Fluxes and Flux Components

Given that the ER solution is dynamically decomposed into the large-scale, u, and eddy,

u′ components, different components of PV fluxes can be studied statistically. Each flux

component is sum of the time-mean pattern and history of the fluctuations:

u = 〈u〉 + {u} , u′ = 〈u′〉 + {u′} , (11)

denoted by the angular and curly brackets, respectively. In each isopycnal fluid layer, the

horizontal PV flux,

F = u q + u q′ + u′ q + u′ q′ = FLL + F′

LE + F′

EL + F′

EE , (12)

is the sum of the four scale interaction components, where each term on the left-hand side is

denoted by the corresponding term on the right-hand side. Here, the large-scale/large-scale

component can be written as

FLL = 〈u〉 〈q〉 + F′

LL , (13)

where the first term is PV flux driven by the large-scale climatology, and the second term is

the resolved, large-eddy flux. The unresolved flux,

F′ = F′

LE + F′

EL + F′

EE , (14)

is in the main focus of this study. Also, the fluxes are decomposed into the vorticity-type com-

ponents that represent individual fluxes of relative vorticity (i.e., Reynolds stress divergence):

Ri = ui ∇
2ψi , (15)

and buoyancy (i.e., the isopycnal-thickness flux):

Bi = ui

[
− (1 − δi,1)Si,1 (ψi − ψi−1) − (1 − δi,N)Si,2 (ψi − ψi+1)

]
, (16)
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where subscript indicates the isopycnal layer. Here, the fluxes are not decomposed into ro-

tational and divergent components, because this decomposition is not unique in a bounded

domain (Fox-Kemper et al. 2003). To summarise, each of the eddy fluxes in (14) can be

decomposed into two vorticity-type components and into the time average and fluctuations,

thus, there are 12 eddy flux components in total. In contrast, traditional analysis, based on the

flow decomposition into the time-mean component and fluctuations, focuses only on 2 fluxes:

〈R′

EE〉 and 〈B′

EE〉.

In each isopycnal layer, basin integral of each flux component is zero due to the no-slip

boundary condition. Also, due to the mass conservation constraint (4), Stokes theorem, and

the no-slip boundary condition:

∂

∂t

∫∫
q dx dy =

∂

∂t

∫∫
∇2ψ dx dy =

∂

∂t

∮

Γ

ul dl = 0 , (17)

where ul is the velocity component along the basin boundary, Γ. Since
∫∫
β y dx dy = 0, (17)

implies that the basin-integrated absolute PV, Q, is constant, and the rate of PV generation

by the wind is exactly balanced by the diffusive flux of PV through the lateral boundaries:

∫∫
∇×τ dx dy = −ν

∫∫
∇2∇2ψ dx dy = −

∮

Γ

Dn dl , (18)

where Dn is the diffusive flux component normal to Γ. In particular, since the deep-ocean

isopycnal layers are not exposed to the wind, they have zero integral diffusive fluxes through

the boundaries. In section 3, it is shown that the boundary-generated PV fluxes are essential

for eddy effects on the large-scale flow.

3. Analysis of the Eddy Fluxes
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This section analyses and interprets the dynamically consistent eddy flux and its compo-

nents, as given by the eddy-resolving model. What flux components (section 2.3) are important

and in what way?

Capability of the eddy flux to drive a large-scale flow is easily illustrated for a zonal-jet

configuration (Pedlosky 1987). In this case, both positive flux of relative vorticity and positive

ageostrophic velocity yield eastward acceleration, and, therefore, drive the eastward jet; and

positive divergence of the buoyancy flux yields positive change of depth deviation. In the purely

adiabatic and stationary situation, the eddy fluxes produce time-mean meridional circulation

with the ageostrophic component that precisely cancels the tendency of the fluxes to alter the

time-mean state. This is the wave-mean flow non-acceleration theorem. In the double gyres,

the conditions of the theorem are not valid, because there is no zonal symmetry, and the fluid-

dynamic model is forced (by the wind and through the boundaries) and dissipative. The PV

equation allows one to get rid of the ageostrophic velocity component and to formulate the

eddy forcing in terms of the flux divergences. Here, since the QG model is determined in terms

of the PV, the PV fluxes and their effects on the large-scale flow are considered. As well as the

time-mean eddy forcing, purely fluctuating eddy forcing are also capable of driving time-mean

large-scale flows through the rectification phenomenon (Haidvogel and Rhines 1983).

3.1 Full Time-Mean Eddy Fluxes

The time-mean eddy flux, 〈F′〉, is relatively large in the western part of the basin, in the

upper ocean, and, particularly, around the subtropical WBC and its EJ. The flux maintains

the global PV budget (17) by transporting PV from the boundaries into the basin interior

and from one gyre to the other. In the first mechanism, PV generated on the boundary is

fluxed through the viscous boundary layer by the diffusion, then it is picked up and fluxed
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farther away by the eddies (Fox-Kemper and Pedlosky 2004). The boundary source of PV

is large when the relative vorticity has large horizontal gradient in the off-boundary direc-

tion, as it occurs here in the western basin. Eddy fluxes drive large-scale flows by diverging:

positive/negative divergence decreases/increases local PV anomaly and, therefore, drives an

anticyclonic/cyclonic recirculation. Here, 〈F′〉 is strongly divergent around the WBCs and

EJs in a similar way to its isopycnal-thickness flux component (Fig. 4f). In the upper ocean,

the main positive divergence is to the east of the subtropical WBC and to the south of its

EJ extension, and the main negative divergence is to the north of the subtropical EJ — this

pattern tends to enhance the EJ. In the deep ocean, the flux is weaker, and around the EJ

its divergence pattern is largely opposite to the upper-ocean one. Some characteristics of the

cross-EJ eddy flux and its components are summarised in Tables 1 and 2, and discussed further

below in terms of their relationship to the time-mean flow gradient (appendix C). Here, some

effort is made to simply relate the eddy fluxes and the large-scale flow, or the eddy forcing and

its variance, but the results are discouraging. It is obvious that search for such relationships

should be based on more suitable mathematical models for the eddy effects (e.g., Berloff 2004).

3.2 Vorticity-Type Components

Physical insight into the eddy effects is gained by decomposing the eddy fluxes into the

vorticity-type components (section 2.3), 〈R′〉 and 〈B′〉. Away from the WBCs, the B ′-flux

dominates in terms of magnitude and divergence (Fig. 4), which is consistent with some ob-

servations 1. The boundary-generated PV, which is in the relative-vorticity form, is diffusively

1Below the thermocline, PV eddy flux is dominated by the thickness flux component with divergence that

drives cyclonic/anticyclonic recirculation to the north/south of the Gulfstream EJ (Hogg 1993), but there are

no conclusive observations in the upper ocean.
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fluxed across the viscous sublayer, until it is picked up by the off-shore component of the

R′-flux. In the WBC outside the sublayer, there is a region of intense baroclinic instability

(Berloff and McWilliams 1999a). The mesoscale eddies generated over there are characterised

by large deviations of the isopycnal surfaces, therefore, they strongly contribute to the thick-

ness flux. Along the EJ, the R′-flux divergence consists of the sequence of positive and negative

anomalies, and the B′-flux divergence is organised in the well-defined dipole pattern (Fig. 5).

The fluxes substantially force and alter the subtropical WBC: the B ′-divergence slows it

down, which is consistent with the local baroclinic instability process, and the R′-divergence

substantially reshapes it. There, the negative R′-divergence amplifies positive near-boundary

vorticity, and, thus, shifts the current axis toward the boundary. Farther away from the bound-

ary, the positive R′-divergence generates negative PV — this process represents stirring by the

eddies that homogenises PV to the east of the jet axis. In more idealised set-up, the mechanism

of reorganization of the WBC by the eddies is studied in Berloff and McWilliams 1999b. To the

large extent, the WBC separation is controlled by the absolute maximum of the R′-divergence

in the most western, upper-ocean meander of the EJ.

Around the EJ, the R′-flux does not have simple pattern, unlike its divergence. This is

consistent with the barotropic single-gyre solutions (Fox-Kemper and Pedlosky 2004), which

have no thickness fluxes. The thickness flux recirculates in the form of the large-scale, cyclonic

gyre that covers the WBC/EJ region. This eddy flux recirculation gyre is a part of the global PV

exchange between the gyre interiors and the western (and, partially, the southern) boundary,

rather than it is a part of the PV (and mass) exchange between the oceanic gyres. The primary

dynamic mechanism driving the eddy flux recirculation gyre is baroclinic instability of the

WBC that converts boundary-generated relative vorticity into the eddy thickness flux, which
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connects the boundary and the EJ. In sharp contrast with intensive cross-EJ fluxes, the fluxes

connecting the subtropical and subpolar gyre are weak (Fig. 4), which is consistent with the

inhibited inter-gyre mass exchange (Berloff et al. 2002). This situation is rather different from

the one considered in Harrison (1981) and Marshall (1984), because of the no-slip boundary

condition and asymmetry of the wind forcing. The B ′-flux crosses the EJ in the form of

well-defined, broad, and approximately meridional flow, which is northward in the upper and

southward in the deep ocean. The cross-EJ structure of the vorticity-type flux components

is summarised in Tables 1 and 2. Overall, across the EJ, the thickness flux works against

the time-mean absolute PV gradient (appendix C), therefore it can not be approximated in

terms of the diffusion process (e.g., as in Gent and McWilliams (1990)). Finally, with the

sign reversal, the eddy flux patterns are qualitatively similar in the subtropical and subpolar

gyres. This suggests that the results are robust with respect to Re, because the subpolar gyre

is locally characterised by lower Re.

3.3 Scale Interaction Components

The pattern of the resolved eddy flux, 〈F′

LL〉, is similar to that of 〈F′〉, but its divergence

is different: it does not have the upper-ocean dipole pattern supporting the EJ (Fig. 6a). In

the deep ocean it is largely opposite to the F ′-divergence, hence, it enhances the EJ — this

is a result of the baroclinic instability that makes the jet more barotropic. Fluxes that are

nonlocal in terms of the large-scale feedback on the eddies, 〈F′

LE〉 and 〈F′

EL〉, tend to have

opposite signs, but do not cancel each other completely, and their divergences have qualitative

differences (Fig. 6b,c). The opposite sign is a result of mutual advection of the eddies and

large-scale fluctuations. Around the EJ, the upper-ocean nonlocal fluxes are dominated by

the stretching term: 〈B′

LE〉 is meridionally down-gradient, and 〈B′

EL〉 is up-gradient. The
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EJ enhancement is due to the divergence of the zonal component of 〈B′

LE〉, which connects

the western-boundary and EJ regions (Fig. 5). Here, the large-scale flow underestimates the

transport of positive, boundary-generated PV to the north of the EJ, and it overestimates

this transport to the south of it. The nonlocal eddy fluxes simply compensate for that. The

〈F′

EE〉 pattern that enhances the EJ is due to the sub-mesoscale eddy force variance, which

is lost as a result of projecting the ER solution on the coarse grid. By the same mechanism,

the F ′-variance drives the large-scale rectification (Berloff 2004).

3.4 Dynamic Response to the Eddy Forcing

What are dynamical contributions of different eddy forcing components? This question is

answered by calculating the corresponding non-ER solutions. The wind forcing is neglected,

and the solutions are obtained by running the eddy forcing history twice: for the spin-up

and for the actual solution. It is found that both the time-mean, 〈f〉, and fluctuation, {f},

parts of the eddy forcing drive large-scale time-mean flows (Fig. 7a, b). The upper-ocean

{f}-flow is characterised by the pair of broad and counter-rotating recirculations enhancing

the EJ, and the shape of this pattern is strongly influenced by the spatial inhomogeneity of the

eddy forcing variance (Berloff 2004). When the flow is decomposed into the time mean and

fluctuations, it is found that the the large-scale flow pattern is due to the divergence of the

resolved, up-gradient eddy PV flux around the EJ extension. This behaviour is consistent with

the flow rectification mechanism studied in Haidvogel and Rhines (1983). The upper-ocean,

time-mean 〈f〉-flow is characterised by both large-scale recirculations around the EJ and strong

standing eddies that force the jet to meander. The standing eddies are largely driven by the

relative vorticity fluxes (section 3.2). Also, 〈f〉-flow is characterised by cyclonic cells in the

south-western corner of the basin. The EJ axes of the {f}- and 〈f〉-solutions are substantially
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shifted to the south and north, respectively, of the full-force solution EJ. This is because the

latitude of the maximum eddy forcing variance and the average latitude over which 〈f〉 changes

sign do not coincide. The full-force solution incorporates all of the qualitative features of the

{f}- and 〈f〉-solutions (Fig. 7c), but it is not equal to their sum because of the nonlinear

interactions. Also, this solution indicates that the time-mean and fluctuation eddy forcing

partially compensate for each other. These results can be interpreted in a different way: the

difference between the f - and 〈f〉-solutions is the error associated with the absence of the eddy

forcing fluctuations (Fig. 8a); and the difference between the f - and {f}-solutions is the error

due to the absence of the time-mean eddy forcing (Fig. 8b). These figures more explicitly

show that both components enhance the EJ and the eddy forcing fluctuations are responsible

for wiping out EJ recirculations induced by the time-mean eddy forcing.

Dynamical meaning of the eddy forcing is further investigated by calculating non-ER solu-

tions driven by the vorticity-type eddy flux components: {B}, 〈B〉, {R}, and 〈R〉 (Fig. 7d-i).

The EJ is enhanced by all of the components except for the last one. The {R}-flow is stronger

and its southern recirculation extends all the way to the southern boundary. The shape of the

flow is largely set by the distribution of the {R}-variance, which has sharp maximum along the

EJ. The variance is due to the relative vorticity supplied by the western boundary that is not

converted into the stretching vorticity but is advected into the EJ region. The {B}-solution

is characterised by weak anticyclonic recirculation. This asymmetry is due to the broad and

relatively flat distribution of the {B}-variance, which facilitates partial compensation of the

induced flow disturbances. (Some weakening can be also related to the details of the space-

time correlations of the {B}-force.) In the deep ocean, pattern of the {R}-solution is largely

opposite to the upper-ocean one, because the deep-ocean boundary sources of relative vorticity
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are weak, and the dynamics is dominated by homogenisation of the absolute PV rather than

by eddy forcing. The deep-ocean {B}-solution is characterised by several mesoscale recircu-

lations, with the strongest cyclonic/anticyclonic pair that enhances the EJ. This behaviour

occurs, perhaps, because thickness fluxes involve substantial vertical interactions, hence the

deep ocean is more influenced by the strong, upper-ocean boundary source of PV.

The 〈B〉- and 〈R〉-solutions indicate, in the agreement with results in section 3.1, that

the EJ is largely maintained by the thickness flux. On the other hand, the standing-eddy

pattern is due to the combined action of the 〈B〉- and 〈R〉-fluxes. Finally, solutions driven

by the combined vorticity-type eddy forcing are characterised by the same degree of mutual

compensation as the full-force solution driven by the time-mean and fluctuation components.

4. Summary

The large-scale effects of the mesoscale eddies are studied in an eddy-resolving model of the

midlatitude oceanic gyres. The new diagnostic method is proposed, which is based on dynam-

ical decomposition of the flow into the large-scale and eddy components. The method yields

the time history of the eddy forcing, which can be used as additional, external forcing in the

corresponding non-eddy-resolving model of the gyres. The main strength of this approach is in

its dynamical consistency: the non-eddy-resolving solution driven by the eddy forcing history

correctly approximates the original large-scale flow component. It is shown that statistical

decompositions, which are based on space-time filtering diagnostics, are dynamically inconsis-

tent. The practical significance of the approach is in the idea that the dynamically consistent

eddy forcing can be modelled as a random process (Berloff 2004). The new diagnostic-method

algorithm is formulated and tested, and the diagnosed eddies, eddy fluxes, and eddy forcing
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are statistically and dynamically analysed.

It is argued that the main dynamic role of the eddies is to maintain the eastward-jet (EJ)

extension of the subtropical western boundary current (WBC). This is done largely by the

time-mean isopycnal-thickness flux and the relative-vorticity eddy flux fluctuations. Across

the EJ, the thickness flux works against the time-mean absolute PV gradient, therefore it can

not be approximated as the diffusion process, as suggested by Gent and McWilliams (1990).

The time-mean meanders of the EJ and the structure of the WBC are maintained by the

non-trivial, combined action of the relative-vorticity and thickness fluxes, however, there is

a great deal of mutual compensation. The primary mechanism driving the thickness flux is

baroclinic instability of the WBC that converts the boundary-generated relative vorticity into

the stretching term. This flux connects the western-boundary and EJ regions and forms the

large-scale gyre, which is the main instrument of the PV exchange between the subtropical

gyre and the western boundary. The spatial nonlocality of this mechanism argues against

local parameter closures that could relate the eddy forcing to the large-scale flow. Eddy fluxes

driven by both the eddies and the large-scale flow are found to be important. The latter is

typically neglected in the analysis, but here it corresponds to important large-scale feedback

on the eddies. It is found that eddy flux fluctuations, which are also routinely neglected, drive

very substantial large-scale response due to the nonlinear rectification process. Finally, two

common theoretical relationships between the eddy effects and the large-scale flow are tested

and are not confirmed.

The following developments of the results of this paper are anticipated. The dynamical

decomposition method has to be extended for more realistic flows, and the low-frequency

aspects and sub-mesoscale components of the eddy fluxes have to be studied as well. More
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optimal ways of coarse gridding and dynamic reduction as well as nonlocal parameter closures

have to be looked for. Finally, based on the eddy flux diagnostics from the models, efficient

strategies can be formulated for observations of the mesoscale eddies.
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Appendix A

Parameters and Solution of the ER Model

Parameters of the ER model are the following. The flow is driven at the surface by the

asymmetric, double-gyre, zonal wind stress:

τx(y) = τ0
[
cos

(2 π (y − L/2)

L

)
+ 2 sin

(π (y − L/2)

L

)]
, (A1)

where τ0 = 0.04 Nm−2 and L = 3840 km is the size of the square basin (with 0 ≤ y ≤ L,

0 ≤ x ≤ L). The lateral viscosity, that is, the eddy diffusivity, is ν = 100m2s−1. The ocean is

discretized vertically in 3 isopycnal layers with depths H1=200 m, H2=1200 m, and H3=2600

m. The ratio of the density jumps across the layer interfaces is γ = (ρ2 − ρ1)/(ρ3 − ρ2) = 2,

which yields the first, Rd1, and second, Rd2, Rossby deformation radii of 52 and 30 km. The

stratification parameters in (2) are:

Si,1 = f 2
0

(
Hi g

(ρi − ρi−1)

ρ1

)
−1

, 1 < i ≤ N ,

Si,2 = f 2
0

(
Hi g

(ρi+1 − ρi)

ρ1

)
−1

, 1 ≤ i < N , (A2)

where f0 = 0.83 × 10−4s−1 is the mid-basin Coriolis parameter.

The ER model operates at large Reynolds number,

Re =
U L

ν
=

τ0
ρ1H1 β ν

≈ 1000 , (A3)

where U = τ0 (ρ1 H1 Lβ)−1 is the upper-ocean Sverdrup velocity scale (≈ 2.5 cm s−1), and

β = 2 × 10−11m−1s−1. The horizontal grid resolution is uniform, with 513 × 513 grid points

and 7.5-km intervals between them, so that the Munk length scale, δM = (ν/β)1/3, and the

inertial length scale, δI = (U/β)1/2, are resolved by more than 2 grid points. The first and

second Rossby radii are resolved by 7 and 4 grid points, respectively. This grid size is close to
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the 1/12-degree resolution, at which, it is argued, the mesoscale eddies are marginally resolved

(e.g., Bleck et al. 1995). The QG equations (1) and (2) are discretized with the second-order

finite differences, including Arakawa scheme, and time stepped with the leapfrog scheme and

0.6 hours time step.

The upper-ocean time-mean circulation (Fig. 1a) consists of the southern (subtropical)

and northern (subpolar) gyres that fill about 2/3 and 1/3 of the basin, respectively, which is

consistent with the wind stress pattern. The time-mean flow is characterised by the Sverdrup

balance in the eastern part of the basin, and by the pair of the WBCs and their EJ extensions in

the western part of the basin — this is a robust regime that appears with the no-slip boundary

condition and at large Re (Haidvogel et al. 1992). In terms of the fluctuations, the basin can

be partitioned into more energetic ”western” part, characterised by strong vortices, and less

energetic ”eastern” part, dominated by the planetary waves (see Berloff et al. 2002 for the

details). In the deep ocean, the eddies are generally weaker, but they drive time-mean flow in

the western basin (Fig. 1c,d).
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Appendix B

Statistical Decomposition of the Flow: Examples

Statistical decomposition of turbulent flows into the large-scale and eddy components is

a common approach, and in the ocean dynamics, the most common choice of a statistical

filter (10) is the infinite-time averaging. For each choice of the filter, which is not obviously

constrained by physical arguments, there is unique eddy flux history. However, dynamical

meaning of such eddy flux is unclear: when its history is used as the external forcing for

an arbitrary non-ER model, there is no guarantee that the resulting non-ER solution will

approximate the original flow, as it has to. Dynamically consistent eddy fluxes has no such

problem. Below, the failure with dynamical interpretation of the common statistical approach

is illustrated with two cases, both of which yield non-ER solutions of poor quality: the case

A involves heavy filtering in time only; and B involves moderate filtering in space only. A

similar approach, which is based on calculating the eddy forcing with respect to the flow that

is moderately filtered in time, is considered by Marshall and Molteni (1993), however they

correct the dynamic model by the time-mean component rather than the full history of the

eddy forcing.

In A, the symmetric, 100-day moving-window averaging is used — this decomposition is

qualitatively similar to the common infinite-time averaging. The non-ER solution forced by

the A-decomposed eddy forcing has largely incorrect time-mean and instantaneous flows, and

the time-mean eddy flux divergence (Fig. 9a,c). The global potential and kinetic energy time

series of the non-ER circulation have no significant correlation with the ER time series, and

the time-mean kinetic and potential energies are 5 and 1.5 times larger than the corresponding

ER energies. In B, 7 iterations of the gridscale, 9-point Gaussian filter are used, so that
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the resulting large-scale streamfunction resembles the dynamically filtered one. The non-ER

solution forced by the corresponding eddy forcing history is more accurate (compare Fig. 9b,d

with Figs. 1c and 4f), but there are still significant errors. In particular, recirculations around

the EJ are overestimated and the potential and kinetic energy time series have rather poor

correlations with the ER values: 0.42 and 0.25, respectively. Overall, the relative success of

the solution B suggests that the optimal, spatially inhomogeneous and stationary, statistical

filter (10) may exist, but it is not clear how to find it.
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Appendix C

Relationships Between the Eddy Fluxes and the Background Flow

Here, two parameter closures for the eddies are tested, and none of them is confirmed.

Hypothetically, the time-mean eddy flux of absolute PV (or, PV anomaly) can be linearly

related to the local gradient of the time-mean absolute PV:

〈F′〉 = −K∇
〈
Q

〉
, (C1)

where K is the corresponding eddy diffusivity (tensor) coefficient. With (C1), the eddy forcing

can be related to the large-scale flow:

f ′ = −∇ · 〈F′〉 = ∇ · K∇
〈
Q

〉
. (C2)

This relationship can be put into practice if K is positive definite, and, therefore, the eddy flux

is down-gradient, but this is not always the case in the geophysical turbulence (e.g., Starr 1968).

Even in the down-gradient case, finding relationships between K and the large-scale flow is

problematic.

Relationships between the dynamically consistent eddy flux and the time-mean, large-scale

flow are summarised in Tables 1 and 2. At all depths, 〈q〉 is positive in the near-shore side of the

subtropical WBC, because of the relative vorticity component, but elsewhere it is dominated

by the stretching term, therefore, it changes sign from the upper to middle layers. In the EJ

region, the change of sign results in: ∂〈q〉/∂y > 0 in the upper, and ∂〈q〉/∂y < 0 in the deep

ocean. The cross-EJ gradient of
〈
Q

〉
is positive at all depths, but it is larger in the upper

ocean. Given that, the upper-ocean cross-EJ flux of
〈
Q

〉
is up-gradient. (Here, the planetary

vorticity contribution to the eddy flux is negligible, because 〈v ′〉 ≈ 0.) On the other hand,

the deep-ocean cross-EJ flux is down-gradient, which is consistent with the idea of local PV
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homogenisation by the eddies. Thus, both the up- and down-gradient eddy fluxes are found,

and the most important dynamically, upper-ocean, cross-EJ flux is up-gradient, which is a

strong argument against the diffusion hypothesis. Finally, the up-gradient eddy fluxes in the

EJ region are not found in the single-gyre barotropic solutions at similar Re (Fox-Kemper and

Pedlosky 2004), which is consistent with the crucial role of the thickness fluxes.

Is it possible to relate the eddy forcing to the intensity of the eddies? The statistical

similarity hypothesis (DelSole 2001) states that local rate of the eddy enstrophy production

by the eddy forcing is linearly proportional to local enstrophy:

〈
q′i fi

〉
(x) = CSIM

〈
q′i

2
〉
(x) , (C3)

where CSIM is the timescale parameter. The enstrophy distribution is a large-scale quantity,

which can be potentially related to the large-scale flow. Here, (C3) is tested directly from

the eddy diagnostics, by plotting scatterplot of both sides of the relationship against each

other. The resulting broad scatter disproves the hypothesis. The approximate linear fit yields

CSIM of about 115 and 193 days in the upper and deep ocean, respectively, which indicates

that the upper-ocean eddy forcing is more efficient in generating enstrophy. Overall, the

statistical similarity hypothesis is unlikely to work in situations when strong eddies yield

mutually compensated nonlinear interactions, which is the case here, with coherent circular

vortices and finite-amplitude Rossby waves.
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Figure Captions

Fig. 1. ER (a, b) time-mean and (c, d) instantaneous, total velocity streamfunctions in the

(a, c) upper and (b, d) deep ocean. Contour intervals (CI): (a, c) 104m2s−1, (b) 0.25×104m2s−1,

and (d) 0.5×104m2s−1.

Fig. 2. The CG, upper-ocean velocity streamfunction: (a, b) time-mean, and (c, d)

instantaneous. The eddy viscosity, ν is (a, c) 110 and (b, d) 1000 m2s−1. CI=104m2s−1.

Fig. 3. Streamfunction of the upper-ocean non-ER solution: (a) 〈ψi(x, y)〉, (b) ψi(x, y),

and (c) ψ′

i(x, y) (CI=104m2s−1).

[Note to the technical editor: Please, put Figs. 1 and 3 on opposing pages for ready

comparison.]

Fig. 4. The upper-ocean relative vorticity, 〈R′〉, (upper) and isopycnal thickness anomaly,

〈B′〉, (lower row of panels) components of the time-mean eddy flux and their horizontal diver-

gences. The (a, d) zonal and (b, e) meridional flux components, and (c, f) the flux divergences.

The corresponding upper-ocean velocity streamfunction, ψ, is shown with CI=104m2s−1. Small

rectangular shown in panels (c) and (d) outlines the basin subdomain used in Fig. 5. The

positive (negative) fluxes and divergences are nondimensionalised by their corresponding max-

imum (minimum) values, so that the color scale changes from -1 to 1. This is routinely done

in all the other color figures. Here, the minimum and maximum values of the color-plotted

quantities (units for fluxes: 10−3m s−2; for divergences: 10−8s−2) are: (a, d) -39 and 51, (b, e)

-120 and 53, (c, f) -42 and 15.6.

Fig. 5. Streamlines of the upper-ocean eddy fluxes of (a) relative vorticity, 〈R′〉, and (b)

isopycnal thickness anomaly, 〈B′〉, are shown with black lines and arrows. The color shading
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indicates the flux divergences. The basin subdomain is outlined in Fig. 4, and one of the cor-

responding velocity streamfunction levels (thick green line) indicates, for convenience, location

of the EJ. The minimum and maximum values of the divergence are -39 and 15.6×10−8s−2.

Fig. 6. Upper-ocean divergences of the time-mean scale interaction components: (a) 〈FLL〉,

(b) F′

LE , (c) 〈F′

EL〉, and (d) F′

EE. The upper-ocean, time-mean velocity streamfunction,

〈ψ〉, is shown with CI=104m2s−1. The minimum and maximum values of the color-plotted

divergences (units: 10−8s−2): (a) -25.0 and 79.9, (b) -61.9 and 19.7, (c) -25.4 and 33.7, and (d)

-33.7 and 34.4.

Fig. 7. The time-mean, upper-ocean velocity streamfunction of the non-ER solutions

forced by the different components of the eddy forcing, and with no wind forcing. (a) f = {f},

(b) f = 〈f〉, (c) f = 〈f〉 + {f}, (d) {B}, (e) 〈B〉, (f) {B} + 〈B〉, (g) {R}, (h) 〈R〉, and (i)

{R} + 〈R〉. CI=0.25 × 104m2s−1 in (a, d, g), and CI=0.5 × 104m2s−1 otherwise.

Fig. 8. Error due to the absence of the (a) fluctuation and (b) time-mean components of

the eddy forcing (CI=0.5 × 104m2s−1).

Fig. 9. The upper-ocean, time-mean velocity streamfunctions, 〈ψ〉, (CI=104m2s−1) and

the corresponding divergences of the time-mean eddy flux, 〈F′〉, (color) that are obtained

with the statistical decompositions (a) A and (b) B (see appendix B). The corresponding

streamfunction snapshots, which are analogous to those in Figs. 1c and 3b, are shown in

panels (c) and (d), respectively. The minimum and maximum values of the color plotted

quantities are: (a) -25.3 and 18.4×10−8s−2, (b) -23.5 and 8.7×10−8s−2.
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Figure 1: ER (a, b) time-mean and (c, d) instantaneous, total velocity streamfunctions in the

(a, c) upper and (b, d) deep ocean. Contour intervals (CI): (a, c) 104m2s−1, (b) 0.25×104m2s−1,

and (d) 0.5×104m2s−1.
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Figure 2: The CG, upper-ocean velocity streamfunction: (a, b) time-mean, and (c, d) instan-

taneous. The eddy viscosity, ν is (a, c) 110 and (b, d) 1000 m2s−1. CI=104m2s−1.
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Figure 3: Streamfunction of the upper-ocean non-ER solution: (a) 〈ψi(x, y)〉, (b) ψi(x, y), and

(c) ψ′

i(x, y) (CI=104m2s−1).
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Figure 4: The upper-ocean relative vorticity, 〈R′〉, (upper) and isopycnal thickness anomaly,

〈B′〉, (lower row of panels) components of the time-mean eddy flux and their horizontal diver-

gences. The (a, d) zonal and (b, e) meridional flux components, and (c, f) the flux divergences.

The corresponding upper-ocean velocity streamfunction, ψ, is shown with CI=104m2s−1. Small

rectangular shown in panels (c) and (d) outlines the basin subdomain used in Fig. 5. The

positive (negative) fluxes and divergences are nondimensionalised by their corresponding max-

imum (minimum) values, so that the color scale changes from -1 to 1. This is routinely done

in all the other color figures. Here, the minimum and maximum values of the color-plotted

quantities (units for fluxes: 10−3m s−2; for divergences: 10−8s−2) are: (a, d) -39 and 51, (b, e)

-120 and 53, (c, f) -42 and 15.6.
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Figure 5: Streamlines of the upper-ocean eddy fluxes of (a) relative vorticity, 〈R′〉, and (b)

isopycnal thickness anomaly, 〈B′〉, are shown with black lines and arrows. The color shading

indicates the flux divergences. The basin subdomain is outlined in Fig. 4, and one of the cor-

responding velocity streamfunction levels (thick green line) indicates, for convenience, location

of the EJ. The minimum and maximum values of the divergence are -39 and 15.6×10−8s−2.
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Figure 6: Upper-ocean divergences of the time-mean scale interaction components: (a) 〈FLL〉,

(b) F′

LE , (c) 〈F′

EL〉, and (d) F′

EE. The upper-ocean, time-mean velocity streamfunction,

〈ψ〉, is shown with CI=104m2s−1. The minimum and maximum values of the color-plotted

divergences (units: 10−8s−2): (a) -25.0 and 79.9, (b) -61.9 and 19.7, (c) -25.4 and 33.7, and (d)

-33.7 and 34.4.
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Figure 7: The time-mean, upper-ocean velocity streamfunction of the non-ER solutions forced

by the different components of the eddy forcing, and with no wind forcing. (a) f = {f},

(b) f = 〈f〉, (c) f = 〈f〉 + {f}, (d) {B}, (e) 〈B〉, (f) {B} + 〈B〉, (g) {R}, (h) 〈R〉, and (i)

{R} + 〈R〉. CI=0.25 × 104m2s−1 in (a, d, g), and CI=0.5 × 104m2s−1 otherwise.
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Figure 8: Error due to the absence of the (a) fluctuation and (b) time-mean components of

the eddy forcing (CI=0.5 × 104m2s−1).
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Figure 9: The upper-ocean, time-mean velocity streamfunctions, 〈ψ〉, (CI=104m2s−1) and the

corresponding divergences of the time-mean eddy flux, 〈F′〉, (color) that are obtained with the

statistical decompositions (a) A and (b) B (see appendix B). The corresponding streamfunction

snapshots, which are analogous to those in Figs. 1c and 3b, are shown in panels (c) and (d),

respectively. The minimum and maximum values of the color plotted quantities are: (a) -25.3

and 18.4×10−8s−2, (b) -23.5 and 8.7×10−8s−2.
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Full PV flux Thickness flux Reynolds stress

〈F ′

LE〉 : ⇓, down, ∓ 〈B′

LE〉 : ⇓, down, ∓ 〈R′

LE〉 : ⇓, down, ±

〈F ′

EL〉 : ⇑, up, .... 〈B′

EL〉 : ⇑, up, ± 〈R′

EL〉 : ⇑, up, ∓

〈F ′

EE〉 : ⇑, up, ∓ 〈B′

EE〉 : ⇑, up, ∓ 〈R′

EE〉 : ...., ...., ....

〈F ′〉 : ⇑, up, ∓ 〈B′〉 : ⇑, up, ∓ 〈R′〉 : ...., ...., ....

Table 1: Meridional patterns of the upper-ocean eddy fluxes and their components across

the subtropical EJ. Symbols ⇑ and ⇓ indicate northward and southward directions of the flux,

respectively; symbols up and down indicate whether the fluxes are locally up- or down-gradient

with respect to the time-mean absolute PV,
〈
Q

〉
; symbols ± and ∓ indicate the alternating-

sign eddy flux divergence pattern that enhances (i.e., positive to the north of and negative to

the south of the EJ axis) or weakens (i.e., the opposite configuration) the eastward flow in

the jet. The multiple-dot symbol, ...., is applied when the corresponding pattern can not be

described in terms of a simple meridional structure.
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Full PV flux Thickness flux Reynolds stress

〈F ′

LE〉 : ⇓, down, ∓ 〈B′

LE〉 : ...., ...., ∓ 〈R′

LE〉 : ⇓, down, ±

〈F ′

EL〉 : ⇑, up, ± 〈B′

EL〉 : ⇓, down, ± 〈R′

EL〉 : ⇑, up, ∓

〈F ′

EE〉 : ⇓, down, .... 〈B′

EE〉 : ⇓, down, ± 〈R′

EE〉 : ⇑, up, ∓

〈F ′〉 : ⇓, down, ± 〈B′〉 : ⇓, down, ± 〈R′〉 : ⇑, up, ∓

Table 2: The same as in Table 1, but for the deep ocean.
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