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[1] Binary mixing is one of the most common models used to explain variations in geochemical data.
When the data being modeled are ratios of elements or isotopes, the mixtures follow hyperbolic trends with
curvatures that depend on a cross-term representing the relative concentrations of the elements or isotopes
under consideration in the mixing components. The inverse problem of estimating mixing components is
difficult because of the cross-term in the hyperbolic equation, which requires the use of nonlinear methods
to estimate the mixing parameters, and because the end-member ratio values are intrinsically
underdetermined unless the mixing proportions of the samples are known a priori, which is not
generally the case. I use maximum likelihood methods to address these issues and derive a general
inversion for binary mixing model (Pararneters from ratio-ratio data. I apply the method to synthetic test
data and a global compilation of »*°Th/***Th versus *’St/*°Sr data from oceanic basalts and find that the
concentration ratio parameter is well-constrained by the inversion while the end-member ratio estimates are
strongly dependent on the initial guesses used to start the iterative solver, reflecting the underdetermined
nature of the end-member positions on the mixing hyperbola. Monte Carlo methods that randomly perturb
the initial guesses can be used to improve error estimates, and goodness-of-fit statistics can be used to
assess the performance of the mixing model for explaining data variance.
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mixing hyperbola are intrinsically underdeter-
mined.

1. Introduction

[2] Ratio-ratio data (isotope or element) in binary

mixing systems form hyperbolas that can be de-
scribed as a function of five model parameters (two
sets of x and y axis ratio values and a concentration
ratio) that characterize the end-members in the
mixing model [Langmuir et al., 1978; Vollmer,
1976]. In principle, mixture data can be used to
constrain the end-members. In practice, however,
difficulties arise owing to the cross-term in the
hyperbolic equation, which precludes formal line-
arization of the full inverse problem, and the fact
that the positions of the end-members on the

Copyright 2005 by the American Geophysical Union

[3] Albarede [1995, p. 262] addressed these prob-
lems by parameterizing the mixing hyperbola in
terms of its curvature and asymptotes. This param-
eterization reduces the number of model parame-
ters from five to three (the end-members are
constrained by asymptotes rather than a complete
set of x and y axis ratio values), and it allows for
the application of linear least squares methods to
estimate the model parameters. In many cases,
however, it is not possible to address the scientific
question(s) of interest with asymptotic limits, par-
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ticularly if the curvature of the mixing trend is
weak, in which case asymptotic constraints have
little physical meaning.

[4] Forward methods are commonly used to cir-
cumvent the mathematical barriers to the inversion
of ratio-ratio data. Mixing components can be
inferred by fitting ratio-ratio data “by eye.” This
approach allows for the identification of plausible
mixing models, but it does not provide an objective
means to optimize the model fit to the data, nor
does it provide a means to quantify the uncertainty
of the model parameters. These considerations
motivate the development of a general method
for inverting mixture data to find “best-fitting”
models and obtaining formal parameter uncertainty
estimates.

[s] In this paper I present a method for inverting
ratio-ratio data to generate estimates of the five
general mixing parameters (two sets of x and y axis
ratio values and concentration ratio). I derive the
gradient matrix relating the data to the mixing
model parameters, and use a nonlinear, maximum
likelihood method to minimize the misfit from a
starting model. | agply the method to synthetic test
data and to ***Th/***Th versus *’Sr/*°Sr data from
oceanic basalts to demonstrate practical aspects of
implementation.

2. Method

[¢] The general equation for the binary (i.e., two-
component) mixing hyperbola in ratio-ratio coor-
dinates as derived by Vollmer [1976] is

Ax+ Bxy+ Cy+ D =0, (1)
where
A= a2b1Y2 — a1b2Y1
B= a1b2 — a2b1
)
C= a2b1X1 - a1b2X2
d= a1b2X2Y1 — a2b1X1 Yz
and

X, x axis ratio of component i (e.g., ®’St/**Sr);

Y, y axis ratio of component i (e.g., '**Nd/'**Nd);

a; concentration of denominator of Y; (e.g.,
144 d);

b; concentration of denominator of X; (e.g., 86Sr)).

[11] The curvature of the hyperbola is controlled
by the concentration ratio

¢= <al/bl>/(az/b2)7 (3)
which can be seen by making the substitution
a1b2 = ca2b1

into equations (1) and (2) and dividing by the
common term a,b;, resulting in

f=Ax+Bxy+Cy+D =0, (4)
where
A=Y —Yec
B =c—-1
C' =X — Xoc
D =Y Xe — X

The mixing hyperbola is now an explicit function
of five unknown parameters, X;, X,, Y, Y5, and c,
which define the isotope ratios and the concentra-
tion ratio of the end-members.

[12] To formulate the inverse problem I define the
data and model row vectors, d and m, respectively,
as

d= [x17x23" -JN]T (6)

XN V1, V2,5 -

and
m:[AX17X27Y11Y27C]T7 (7)

where the data consist of N pairs of x-y ratio-ratio
data (i.e., x; is the x axis ratio of the ith
observation). The relationship between d and m
is nonlinear because of the cross term in equation

(4).

[13] T group the data and model vectors into a
single vector z = [d, m], which has 2N + 5 rows
and is defined as

7)/N7X1»X27Y17Y275]T~ (8)

7= [x17x27~~~»XN»J’17y27~~

The initial value of z is determined by the N ratio-
ratio data pairs and initial guesses for the model
parameters. Thus

) = [d>m0}
T
=[x, %0, .. XN, V1 Y2, - 0N Xot, Xo2, Yo, Yoo, ol

©)
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where the subscript “0” indicates an initial guess.
Assuming that the data and model have Gaussian
distributions, the prior distribution of z is

Py(z) exp[(’1/2>(z —120) " [cov zo] ' (z — z())}7 (10)

where cov z, is the prior covariance matrix. The
objective of the minimization problem is to
maximize (10) constraint to the mixing hyperbola
equation (4). This is accomplished using Lagrange
multipliers [Menke, 1989; Tarantola and Valette,
1982], leading to the iterative formula

2,01 = 29 + [cov 2F} (F,[cov zo}FZYl

- (Falzy — 20] — £(21)), (11)

where Z, and f(z,) are the values of z and equation
(4) evaluated for the nth iteration, and F,, = V1(Z,) is
a gradient matrix (a complete description of the
nonlinear minimization technique is provided by
Sohn and Menke [2002]).

[14] The gradient matrix has one row for each
observation (data pair) and one column for each
element of z. F'is thus N x (2N + 5), and has
elements defined by

OF; OF;
s =2y Ve (e — )l
A (Y2 = Yie+ (¢ — 1)y;)8(i. /)
for1 <j<N (12)
OF; OF;
s = SO0 (e )+ X — Xac)S(ij — N
i o2, ~ o, ((c W+ Xi 5¢)0(i, ) )
for N+ 1</ <2N
OF; OF; .
F”:EZBXlzyi_Yz for j=2N +1
d
OF;  OF;
= = =c(Y, —y; for j =2N +2
Y 0z, ORY chi =) o -
OF; OF;
Fl.j:az:aY:c(Xz—x,-) forj=2N+3
; 1
OF;  OF;
Fij:aiz:W:xi—Xl for j=2N +4
7 2
OF; OF;
=5 = 0 = xyi — Yixi — Xoyi + Y1.X5
forj=2N+5

where 0(i, ) is the Kronecker delta function with
the property
6(i,j) =1

8(i,j) =0 fori#j

[15] The initial values are adjusted until conver-
gence is achieved, at which point the parameter

fori=j

estimates, m = [X 1 X P f’l, Y », €], are generated.
The inversion is considered to have converged
once the difference between successive iterations,
dz,1 = |2,41 — 2,,|, is below a specified threshold
for all elements of dz.

[16] Estimation of confidence intervals for the
mixing model parameters is a difficult problem.
Analytical expressions for model parameter uncer-
tainty do not exist for nonlinear inverse problems,
even if a Gaussian sampling distribution is as-
sumed. Linear approximations, which multiply
the prior covariance matrix by an operator formed
with the last iteration of the gradient matrix, might
be used if the problem is not too nonlinear [e.g.,
Menke, 1989], but nonparametric methods such as
the bootstrap and jackknife, are preferred because
they are insensitive to the linearity of the problem
and the parameter sampling distributions.

[17] The problem of estimating uncertainties for
the mixing model parameters is further complicat-
ed by the ill-posed nature of the inverse with
respect to the end-member isotope ratio estimates.
Conceptually, the problem arises from the fact that
the position of the end-members on the mixing
hyperbola is unconstrained by the data. In the
absence of additional information there is no way
of knowing how close the end-members sit with
respect to the data field. This issue is discussed in
some detail in section 3.1.

[18] A natural way to investigate the influence of
the initial guesses on the parameter estimates is to
repeat the inversion with a variety of initial values
and examine the outcomes. This is conceptually
similar to bootstrapping [Efron, 1987] except that it
is the initial values, rather than the data, that are
randomized for each repeat inversion. If a feasible
range of isotope ratios for a given problem can be
identified, then initial values can be drawn at
random from within these intervals and bootstrap
methods can be used to generate uncertainty esti-
mates. | demonstrate this technique of bootstrap-
ping on initial values in section 3.2.2.

3. Application to Test Cases

[19] T apply the mixing inversion method to both
synthetic and real test data to demonstrate practical
aspects of implementation. I first apply the method
to synthetic data so that its performance can be
evaluated for a well-defined problem, with partic-
ular emphasis on the impact of initial values on the
parameter estimates. I then appl;/ the method to a
global compilation of oceanic >*°Th/***Th versus

3 0f 10
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Table 1. Synthetic Test Inversion Results for Uniform Mixing Proportion Data (Figure 1a)®
Depleted Enriched Concentration
Component (#1) Component (#2) Ratio
Xl O'le Y] O'ylb X2 O'Xzb Y2 O'yzb C Gcb
True values  0.7036 0.513000 0.7370 0.512100 0.292
Prior 0.7040  3.34e-04  0.512900  9.00e-06  0.7360  3.34e-04  0.512080  9.00e-06 0.4 0.1
Posterior 0.7044  2.30e-04  0.512900  2.15¢-06  0.7362  4.30e-05  0.512100  4.23e-06  0.346  0.018

4 Goodness-of-fit statistics: rms = 0.002, MSWD = 2.09; rms = normalized residual mean square (residual sum of squares divided by degrees of
freedom) and MSWD = mean square of weighted deviates as defined by McIntyre et al. [1966].
Standard error. Prior value defined by amplitude of Gaussian noise added to synthetic mixture data. Posterior value estimated with 1000

bootstrap replicates.

87Sr/*°Sr data (compilation from K. W. W. Sims
and S. R. Hart (Comparison of Th, Sr, Nd, and Pb
isotopes in oceanic basalts: Implications for mantle
heterogeneity and magma genesis, submitted to
Earth and Planetary Science Letters, 2005; here-
inafter referred to as Sims and Hart, submitted
manuscript, 2005)), and discuss some scaling
issues along with the use of goodness-of-fit statis-
tics to formulate hypothesis tests.

3.1. Synthetic Data

[20] I generate two sets of synthetic mixture data
from hypothetical end-members as described in
Appendix A. The first set of mixtures are formed
by drawing mass fractions at random from the
uniform interval [0, 1], and the second set of
mixtures are formed by drawing random mass
fractions from a Gaussian distribution centered on
a mixing proportion of 0.5. Scatter about the
mixing trend is introduced by adding Gaussian
noise to both the x and y axis isotope ratios of
each synthetic sample. For illustrative purposes I
specify hypothetical depleted and enriched mantle
sources in '**Nd/"*Nd versus ®’Sr/*°Sr sample
space. The end-members are meant to be sugges-
tive of depleted and enriched components, but |
purposefully avoid using published values to make
clear I am not attempting to constrain the isotopic
composition of mantle components. The synthetic
mixture data are tabulated in the Appendix A.

[21] Initial guesses for the end-member ratios (in-
cluding concentration ratio, or curvature) are re-
quired to start the inversion. From a practical
standpoint, the guesses are used to start the itera-
tive solver. Conceptually, the guesses represent the
prior values, z,, that, along with prior covariance,
cov zo, define the probability distribution (equation
(10)) being maximized.

[22] T first apply the method to the synthetic data
generated with a uniform distribution of mixing

proportions. The inversion is started with initial
guesses that are close to the true values, and it is
able to “tune” the model to fit the data (Table 1,
Figure 1la). In general, however, it may not be
possible to choose initial end-member ratio values
that are close to the true values. The critical issue is
identifying the range of mixing proportions repre-
sented in the sample space. To illustrate the prob-
lem, I apply the method to the synthetic data set
generated with a Gaussian distribution of mixing
proportions. These data are clustered about a com-
mon mass fraction (Figure 1b). Initial values are
chosen under the mistaken assumption that the
samples span the entire range of mixing propor-
tions, and the inversion is repeated (Table 2). As
before, the inversion tunes the model to the data,
but there are no gradients in the solution space to
move the end-member isotope ratio estimates along
the mixing hyperbola. This is a natural conse-
quence of the fact that any set of end-members
on the mixing hyperbola fit the data equally well. If
it were somehow possible to know that the samples
represent only a limited range of mass fractions,
then the initial guesses could be chosen accord-
ingly, and satisfactory results could be obtained
(Table 3, Figure 1c).

[23] Prior knowledge regarding the range of mass
fractions represented in a given data set is thus a
crucial aspect for obtaining accurate end-member
ratio value estimates. The inversion has the effect
of moving initial ratio estimates to the “‘nearest”
point on the mixing hyperbola, where length is
measured in probability terms (see section 3.2), but
the inversion cannot correct for erroneous starting
assumptions regarding sample mixing proportions.

3.2. Real Data

£24] I apply the method to a global, oceanic
3OTh/>**Th versus ¥'Sr/*°Sr data set (compilation
from Sims and Hart (submitted manuscript, 2005))
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Table 2. Synthetic Test Inversion Results for Clustered (Gaussian) Mixing Proportion Data With Errant Initial

Guesses for End-Member Ratio Values (Figure 1b)*

Depleted Enriched Concentration
Component (#1) Component (#2) Ratio
X] O')(I Y] ()'y1 Xz O'X2 Y2 ()'y2 C O
True values  0.7036 0.513000 0.7370 0.512100 0.292
Prior 0.7130  3.34e-04  0.512480  9.00e-06  0.7320  3.34e-04  0.512176  9.00e-06 0.4 0.1
Posterior 0.7132  1.50e-04  0.512484  2.55e-06  0.7319  3.85e-05  0.512166  3.54e-06 0.45 0.027

% Goodness-of-fit statistics: rms = 0.021, MSWD = 1.59.

for oceanic basalts (Figure 2) to demonstrate some
considerations that arise in analysis of real data,
including specification of the prior covariance
matrix, estimation of parameter uncertainty, and
the use of goodness-of-fit statistics for hypothesis
testing.

3.2.1. Scaling of the Prior Covariance
Matrix

[2s] As described previously, the probability dis-
tribution being numerically optimized (equation
(10)) is a function of the prior covariance matrix,
cov zy. This matrix, which is effectively a
weighting matrix for the model misfit penalty
function, includes not only data measurement
uncertainties, which are usually small, but also
model parameter uncertainties, which may be
poorly known and arbitrarily large.

[26] The mismatch between measurement error and
model parameter uncertainty presents a scaling
issue because large differences in the order-of-
magnitude of the covariance matrix elements will
degrade the numerical stability of the inversion.
The elements of the covariance matrix (assumed
diagonal) corresponding to the data uncertainties
can be scaled by normalizing the data to zero mean
and unit variance, and the element corresponding
to the concentration ratio can be scaled by ordering
the end-member components (i.e., X; versus X3)
such that any curvature is modeled with ¢ < 1. But
how should the prior covariance matrix elements
corresponding to the end-member ratio uncertain-
ties be scaled when the true uncertainties in real

applications may be arbitrarily large? A simple
solution that guarantees the numerical stability of
the inversion is to set the prior end-member ratio
uncertainties to the sample measurement uncer-
tainties. Remembering that the prior covariance
matrix is effectively a matrix of misfit penalty
weights, this approach is equivalent to treating
the initial values as additional data points when
the misfit for a given iteration is calculated. In
other words, the penalty for a mixing trend that
does not pass through the initial values is the
same as the penalty for missing an individual
data point.

[27] For the **°Th/***Th versus *’St/*°Sr global
oceanic data compilation I make initial guesses
assuming the samples represent nearly a complete
range of mixture proportions, form a prior covari-
ance matrix as described above, and generate
parameter estimates (Figure 2, Table 4). I note that
the gradient following solution moves the depleted
(high **°Th/***Th) end-member onto the mixing
trend at a position that is inside the data field. This
is allowed because the inversion is based on the
general equation of the mixing hyperbola, which is
not limited to the chord between the end-members.
The initial values can be selected so as to force the
parameter estimates outside the data field (e.g.,
Figure 1c), if necessary.

3.2.2. Model Parameter Uncertainty

[28] T estimate the standard error of the model
parameters using both traditional bootstrapping
and a Monte Carlo method for randomizing the

Figure 1.

Synthetic test results. The true mixing trend through the synthetic samples (black dots) is shown by the

solid black curve, with end-member component ratios shown as black stars at the endpoints. Initial guesses for the
mixing model parameters are shown in blue, and the parameter estimates from the inversion are shown in red.
The importance of prior knowledge regarding the range of mixing proportions represented in the sample set is shown
via the progression of figures. The synthetic samples in Figure la have mixing proportions that are uniformly
distributed over the entire possible range. The synthetic samples in Figure 1b are clustered about a mixing proportion
of 0.5 (equal proportions of each end-member), but initial guesses are chosen under the errant assumption that the
end-members lie just outside the data field. Synthetic samples in Figure 1c are identical to Figure 1b, but the initial
guesses are the same as in Figure la. The inverse results and goodness-of-fit statistics are shown in Tables 1-3.
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Table 3. Synthetic Test Inversion Results for Clustered (Gaussian) Mixing Proportion Data With Accurate Initial

Guesses for End-Member Ratio Values (Figure 1¢)?

Depleted Enriched Concentration
Component (#1) Component (#2) Ratio
X] O')(] Y] ()'y1 X2 O'/\/2 Y2 ()'y2 C O
True values  0.7036 0.513000 0.7370 0.512100 0.292
Prior 0.7040  3.34e-04  0.512900  9.00e-06  0.7360  3.34e-04  0.512080  9.00e-06  0.400  0.100
Posterior 0.7039  7.37¢-05  0.512900  7.88e-07  0.7362  6.81e-05  0.512090  5.79¢-06  0.365 0.012

% Goodness-of-fit statistics: rms = 0.023, MSWD = 1.76.

initial values (Table 4). The bootstrap estimates of
standard error underpredict the uncertainty of the
end-member ratios because they do not account for
the influence of the initial values on the parameter
estimates. The situation is improved when I use
Monte Carlo methods to draw initial values at
random from within specified intervals, and then
use bootstrap methods to perform repeat inversions
and generate estimates of standard error (Table 4).
The concentration ratio error estimate is similar
to the traditional bootstrap estimate, but, as
expected, the end-member error estimates are much
larger when the initial values are randomized.

[20] Standard error estimates formed by randomiz-
ing initial values have the desirable property that
they respond to the hyperbolic curvature of the
mixing trend. For example, the ¥’Sr/*°Sr of the

enriched component (X5) is intrinsically more un-
certain than that of the depleted component (X7)
because of the asymptotic nature of the mixing
hyperbola. This effect is captured by the random-
ized initial value standard errors, but not by the
traditional jackknife or bootstrap methods (com-
pare values in Table 2). Randomizing initial values
thus provides an effective means to incorporate
realistic assessments of end-member uncertainty
without compromising the scaling of the prior
covariance matrix.

3.2.3. Goodness-of-Fit Statistics

[30] The quality of the model fit to the data can be
assessed by forming goodness-of-fit statistics with
the residuals. The residual mean square (rms)
provides a quantitative measure of the “average”

B0T/2B2Th

0.8

0.6

0.4
0.701 0.702 0.703 0.704 0.705

0.706 0.707 0.708 0.709

87Sr/86Sr

Figure 2. Inversion results for a global oceanic data compilation of 2°Th/***Th versus *’St/*°Sr (Sims and Hart,
submitted manuscript, 2005). Initial model parameter guesses are shown in blue, and parameter estimates from the
inversion are shown in red. The inverse results and goodness-of-fit statistics are shown in Table 04.
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Table 4. Inversion Results for Global Oceanic **°Th/***Th Versus *’St/**Sr Compilation (Sims and Hart, submitted

manuscript, 2005)*

Depleted Enriched Concentration
Component (#1) Component (#2) Ratio
X] OXI Y] O'yI Xz UXZ Y2 O-y2 C O,
Prior 0.70220 1.00e-05 1.600 1.00e-02 0.7090 1.00e-05 0.600 1.00e-02 0.150 0.100
Posterior ~ 0.70215 4.51e-06 1.485 2.11e-02 0.7090 8.75¢-07 0.603 2.38e-02 0.301 0.034
2.51e-06° 9.28e-02" 3.20e-04° 2.39e-02° 0.024°

% Goodness-of-fit statistics: rms = 0.182, MSWD = 60.66.

Standard error estimate generated by perturbing initial guesses, as described in section 3.2.2.

squared residual, and when the data have been
normalized to unit variance the RMS value repre-
sents the fraction of original variance about the
mean that is not explained by the model. The RMS
value of 0.182 for the ***Th/***Th versus *’Sr/*°Sr
data compilation (see Table 4) can therefore be
interpreted to mean that 18.2% of the original data
variance remains unexplained by the binary mixing
model, or, conversely, that the model explains
71.8% of the original variance.

[31] The mean square of weighted deviates
(MSWD) is another misfit statistic commonly
employed in geochemical data analysis [e.g.,
Brooks et al., 1972; Mcintyre et al., 1966]. The
MSWD statistic quantifies the ratio of model misfit
to measurement uncertainty along each coordinate
axis. The MSWD value of 60.7 obtained for the
230Th/22Th versus ¥’ St/*°Sr data compilation dem-
onstrates that the model misfit is significantly
larger than the measurement error, indicating that
processes other than binary mixing of two pure
end-members are contributing variability to the
sample isotope ratios. Possible sources of un-
modeled variability are discussed by Sims and Hart
(submitted manuscript, 2005) and include the con-
tribution of additional components to the sample
mixtures, as well as processes such as fraction-
ation, in-growth, and weathering.

[32] Goodness-of-fit measures can be used to as-
sess the statistical validity of binary mixing as
a model for the variations observed in the
2BO0Th/23Th versus %’Sr/*°Sr data. The simplest
test is against the null hypothesis that the observed
variations are random. To do this, the F statistic is
first quantified, which measures the variance re-
duction achieved by the model (72%) compared to
the number of model parameters (5) and the
degrees of freedom of the inverse problem (N —
6 = 204), yielding a value of 418 [e.g., Weisberg,
1985]. This quantity is then compared to a critical
value by evaluating the F distribution for the

appropriate degrees of freedom at a specified
confidence level. To test against the null hypothesis
at the 95% confidence level, for example, the
critical value is p = F'(0.95]5,204) = 2.26. The
F statistic for the model fit (418) is significantly
greater than the critical value, providing strong
evidence in support of binary mixing as a better
statistical model for the data than random variation
about the mean. More powerful statistical tests
could be formulated by specifying stronger alter-
native hypotheses (e.g., in-growth and time effects,
multicomponent mixing), but this is beyond the
scope of this paper.

4. Conclusions

[33] I have derived a general method for fitting
binary mixing models to ratio-ratio data. The
method provides well-constrained estimates of the
concentration ratio parameter, which controls
the hyperbolic curvature of the mixing trend, and
is able to move initial guesses for the end-member
ratios onto the best-fit hyperbola. The positions of
the end-members on the best-fit hyperbola, how-
ever, are underdetermined unless the mixing pro-
portions of the samples are known a priori, which
is not generally possible. The method should
therefore be viewed as providing a means of tuning
the initial end-member ratio guesses to the data.

[34] Nonparametric methods are best suited to
estimating model parameter uncertainties, but un-
certainty estimates for the end-member ratios must
be treated with caution. Traditional implementa-
tions of the jackknife and bootstrap may severely
underestimate the uncertainty of the end-member
ratios because they fail to account for the influence
of the initial guesses on the parameter estimates.
Monte Carlo methods can be used to improve the
situation by randomizing the initial guesses and
generating repeat estimates. This can be thought of
as a nonparametric implementation of Bayesian
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methods where the distribution used to draw
random values for the initial guesses is the prior,
and the empirical distribution of repeat parameter
estimates is the posterior. A more restrictive prior
will result in a more restrictive posterior, and so
forth, such that the size of the posterior uncer-
tainties scale directly with the size of the prior
uncertainties.

[35] Goodness-of-fit statistics can be used to assess
the model fit to the data, and to form hypothesis
tests to compare the fit of the binary mixing model
against other models for the observed variations.
The simplest test is against random variation, but
the methods are general such that the variance
reduction of any two models can be compared with
their degrees of freedom via the F test to identify
the best statistical fit.

[36] Matlab software to implement the inversion
methods described in this paper can be downloaded
as described in Appendix B.

Appendix A: Synthetic Test Data

[37] Synthetic data were generated b;/ drawing
random samples from a hypothetical "**Nd/***/Nd
versus °'Sr/%6Sr mixing trend. The hypothetical
end-members have values of; (1) “depleted”
$7Sr/%°Sr = 0.703600, '**Nd/'"**/Nd = 0.513000,
(2) “enriched” ¥’Sr/*°Sr = 0.737000, '"**Nd/'*/
Nd =0.512100, and a concentration ratio of 0.292.
The synthetic mixtures were generated by first

Table Al. Synthetic Samples Generated From a
Uniform Distribution of Mixing Proportions

Synthetic Sample 87Sr/80Sr IBNJ*Nd
1 0.715320 0.512396
2 0.730543 0.512185
3 0.731711 0.512132
4 0.706240 0.512838
5 0.735044 0.512126
6 0.720084 0.512313
7 0.724002 0.512249
8 0.714307 0.512444
9 0.709652 0.512635
10 0.707595 0.512714
11 0.728858 0.512176
12 0.724149 0.512251
13 0.733841 0.512114
14 0.729080 0.512171
15 0.709474 0.512586
16 0.730106 0.512159
17 0.713025 0.512493
18 0.733479 0.512129
19 0.705876 0.512794
20 0.708566 0.512652

Table A2. Synthetic Samples Generated From a
Gaussian Distribution of Mixing Proportions

Synthetic Sample 87gr/86sr 19NA 4 Nd
1 0.717760 0.512365
2 0.718389 0.512353
3 0.715292 0.512430
4 0.719178 0.512317
5 0.727236 0.512197
6 0.718439 0.512314
7 0.723245 0.512267
8 0.720360 0.512292
9 0.721081 0.512300
10 0.729280 0.512182
11 0.718778 0.512340
12 0.714367 0.512423
13 0.717161 0.512364
14 0.724478 0.512230
15 0.716137 0.512410
16 0.715896 0.512397
17 0.722222 0.512283
18 0.718556 0.512319
19 0.720605 0.512293
20 0.722096 0.512261

drawing a mass fraction (mixing proportion) value
at random from a specified distribution, calculating
the mixture isotope ratios, and then adding random
noise to simulate the variations observed in real
data. Two different distributions were used to
randomize the mass fractions: a Uniform distribu-
tion on the interval [0 1], and a Gaussian distribu-
tion with a mean value of 0.5 and a standard
deviation of 0.12. The standard deviation of the
Gaussian noise was set to 1/100 the total variation
between the end-members for each ratio. The
synthetic data values are provided in Tables Al
and A2.

Appendix B: Software

[38] Matlab scripts to perform the mixing inversion
described in this paper can be downloaded from
ftp://obslab.whoi.edu/pub/ras/Software. Digital
files with the synthetic test data sets are also
available to benchmark results.
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