1 Characterization of EST derived SSRs from the bay scallop, Argopecten irradians

- 2 Steven Roberts, Christina Romano, and Gabriele Gerlach
- 3 Marine Biological Laboratory, Woods Hole, MA 02543
- 4
- 5 Abstract

6 Interest in bay scallop conservation has resulted in organized stock enhancement 7 efforts and increased attention to fisheries management issues. Genetic markers can 8 facilitate the monitoring of enhancement efforts, characterization of wild populations, and 9 optimize hatchery practices. We have identified eight polymorphic simple sequence 10 repeat markers including one dinucleotide repeat, six trinucleotide repeats and one 11 compound dinucleotide repeat, in expressed sequence tags generated from multiple bay 12 scallop cDNA libraries. The numbers of alleles range from 2-5. The expected and 13 observed heterozygosities range from 0.093-0.720 and 0.095-0.600, respectively.

14

15 The bay scallop (Argopecten irradians) is found in the western North Atlantic 16 along the majority of the United States coast. The bay scallop is a hermaphroditic bivalve 17 mollusk with an enlarged, single adductor muscle that is able to quickly clasp both valves 18 together for propulsion. Commercial landings of bay scallops in the United States peaked 19 at over 1200 metric tons in 1982, corresponding to more than 11 million dollars (US) of 20 revenue (NMFS 2004). Over the past twenty years populations have experienced 21 significant declines that have been attributed to several factors including habitat loss and 22 pressure from commercial and recreational fisheries. One approach to enhance bay 23 scallop populations involves spawning wild broodstock in a hatchery and releasing

24	offspring into the wild (Arnold 2001). The aim of this work was to identify genetic						
25	markers that could be used in evaluating stock enhancement efforts. These same markers						
26	will also aid in characterizing population dynamics of native populations and assist						
27	aquaculture operations efficiently manage stocks.						
28	In order to identify genetic markers, bay scallop expressed sequence tags (ESTs)						
29	were screened for simple sequence repeats (SSRs). This approach has been used						
30	successfully across several taxa, and is prevalent in the field of plant genomics (i.e.						
31	Kantety et al 2002). To date, we have generated and submitted 2089 cDNAs to NCBI's						
32	EST database from the bay scallop (Roberts et al. unpublished, Roberts and Goetz 2003)						
33	These ESTs are from developing larvae as well as from adductor muscle and gonad						
34	tissue. Simple sequence repeats were identified using the Simple Sequence Identification						
35	Tool (http://www.gramene.org/db/searches/ssrtool) (Temnykh et al. 2001). Primers						
36	flanking SSRs with a minimum of 5 tandem repeats and 14 bps were designed using						
37	Macvector 7.2 (Accelrys) or by visual inspection.						
38	DNA was isolated from mantle tissue of bay scallops collected from Cape Cod,						
39	MA utilizing a Chelex (BioRad) extraction technique (Walsh et al, 1991). The PCR was						
40	carried out under the following conditions: initial denaturation for 3 min at 94°C followed						
41	by 30-40 cycles of 1 min at 94°C, 1 min at 52-58 °C according to the specific primer set						
42	used (Table 1) and 1 min at 72°C with a final extension step of 7 min at 72°C. PCRs						
43	were carried out in a total volume of 18 μl containing 0.2 μM each of forward and						
44	reverse primers, 0.2 µM dNTPs (Invitrogen), 1.8 µl 10X AmpliTaq Buffer containing 15						
45	mM MgCl ₂ (Applied Biosystems), 0.36 U AmpliTaq DNA Polymerase (Applied						
46	Biosystems), and 0.8 µl DNA template.						

47	Electrophoresis of the PCR fragments was performed using the SEA 2000TM
48	advanced submerged gel electrophoresis apparatus (Elchrom Scientific AG, Switzerland).
49	Products and a 10 bp DNA Ladder (Invitrogen) were separated on Spreadex EL-400 or
50	EL-600 S-100 gels (Elchrom Scientific AG, Switzerland) at 95-150 V and 998 mA for
51	30-45 minutes at 55°C; and visualized by staining with SYBR Gold. Alleles were scored
52	manually by visual inspection. The data were first analyzed using Micro-checker (van
53	Oosterhout, et al. 2004) for the presence of genotyping errors. Expected and observed
54	heterozygosities, and Fis values were calculated using FSTAT version 2.93 (Goudet
55	1995) (Table 1). Pairwise tests for linkage disequilibrium were also performed using
56	FSTAT. Sequencial Bonferroni corrections were applied for all multiple tests.
57	Primers were designed for 29 SSRs, of which 8 were not easily amplified, 13
58	were monomorphic, and 8 were polymorphic. The eight polymorphic SSRs identified
59	include one dinucleotide repeat, six trinucleotide repeats and one compound dinucleotide
60	repeat. The numbers of alleles range from $2 - 5$. The expected and observed
61	heterozygosities range from 0.093-0.720 and 0.095-0.600, respectively. The reduced
62	heterozygosity and departure from Hardy-Weinberg equilibrium at locus GL23, suggests
63	the presence of null alleles. Further, tests for null alleles using Micro-checker were only
64	significant at GL23. There is no linkage disequilibrium between any loci, including two
65	pairs of loci located within single ESTs (GP340:GP63 and C1831:C1832). The p-values
66	resulting from tests of linkage disequilibrium for G340-GP63 and C1831-C1832 are
67	0.21071 and 0.42857 respectively; the adjusted p-value is 0.001786. Using NCBI
68	BLASTn analysis, two sequences were identified in GenBank (accession numbers
69	AY485259 and AY496639) having homology with loci G340 and GP63.

7	Δ
/	υ

71	Acknowledgements
72	This project was supported by National Research Initiative Competitive Grant no. 2003-
73	35206-12834 from the USDA Cooperative State Research, Education, and Extension
74	Service and by a grant from the County of Barnstable Massachusetts, USA (both to
75	SBR).
76	
77	References
78	Arnold, WS. 2001 Bivalve enhancement and restoration strategies in Florida, U.S.A.
79	Hydrobiologia, 465(1-3): 7-19
80	
81	Goudet J (1995) FSTAT version1.2: a computer program to calculate Fstatistics. Journal
82	of Heredity, 86: 485-486. Version 2.9.3 available from
83	http://www.unil.ch/izea/softwares/fstat.html.
84	
85	Kantety RV, La Rota M, Matthews DE, Sorrells ME. (2002) Data mining for simple
86	sequence repeats in expressed sequence tags from barley, maize, rice, sorghum and
87	wheat. Plant Molecular Biology. 48(5-6):501-510
88	
89	National Marine Fisheries Service 2004 Annual Commercial Landing Statistics
00	[Online] http://www.st.pmfs.gov/st1/sommorois1/landings/annual_landings.html
50	
91	

92	Roberts SB. and Goetz, F.W. 2003. Expressed sequence tags analysis of genes expressed						
93	in the bay scallop, Argopecten irradians. (Short Report) Biological Bulletin, 205: 227-						
94	228.						
95							
96	Temnykh S, DeClerck G, Lukashova A, Lipovich L, Cartinhour S, McCouch S (2001)						
97	Computational and experimental analysis of microsatellites in rice (Oryza sativa L):						
98	frequency, length variation, transposon associations, and genetic marker potential.						
99	Genome Research, 11: 1441-1452.						
100							
101	van Oosterhout C, Hutchinson WF, Wills DPM, Shipley P (2004) Micro-checker:						
102	software for identifying and correcting genotyping errors in mirosatellite data. Molecular						
103	Ecology Notes, 4: 535-538.						
104							
105	Walsh PS, Metzger DA, and Higuchi R. 1991. Chelex 100 as a medium for simple						
106	extraction of DNA for PCR-based typing from forensic material. Biotechniques, 10: 506-						

107 513.

Locus (Accession #)	Primers	T _{an}	SSR	Size (bp)	Na	Ni	H。	He	P _{HW}
M26	F: CACTTTCAGCAGATATTCTTGAGG	55	(GAT) ₁₀	120	5	44	0.591	0.656	0.1938
(CV660848)	R: TCCCATCCTCTCCTTCACAG								
GL23	F: ATAAAACAGGCAAAGAGGCAC	55	(CA) ₁₁	132	5	20	0.25	0.649	0.0063
(CV828452)	R: TGCTTGGTGAATGGGGC								
S336	F: GCGGAGGCAGATTCTTTCTTTC	54	(CAG) ₅	128	4	23	0.478	0.608	0.1375
(CN783139)	R: GGTCGTGGATTGTAAGCATTGTC								
G340	F: CGCTTGTGTTTTACGAGGAGAAGG	53	(GAT)₅	114	5	47	0.575	0.642	0.1625
(CN783297*)	R: TGACGGGGTGTGATGTCTGACC								
GP63	F: AACTTTTCCCTCATCGTGTCACC	54	(CAG) ₅	223	4	20	0.600	0.522	0.2250
(CK484125*)	R: CAGTCACAACTATCAACCTGCCC								
N391	F: TCATCGCCTCCACCTTCAG	58	(AG) ₁₄ A(AG) ₅	243	4	22	0.591	0.720	0.0938
(CN782436)	R: GATCACACTTTGATTTGTCCTACG								
C1831	F: CGAGTATCAATAGCCGAATCTAAGC	52	(GGC) ₅	122	2	21	0.095	0.093	0.9625
(CK484157)	R: CCGTAGTTAGATCTCTGTTGGTAG								
C1832	F: CAGTTATGGATCAGGCGGTAGAAG	55	(GTG) ₆	122	2	23	0.217	0.198	0.7813
(CK484157)	R: GCGAGCGAGTACAACCTTAAAACAC								

 Table 1: EST-SSRs in the bay scallop (Argopecten irradians)

 T_{an} , annealing temperature; N_a , number of alleles; N_i , number of individuals assayed; H_o , observed heterozygosity; H_e , unbiased expected heterozygosity; P_{HW} , probability that genotype proportions conform to Hardy-Weinberg equilibrium. The adjusted value for significance (5%) following Bonferroni corrections is 0.00625. Asterisk indicates that multiple bay scallop ESTs contain given loci. The accession number for the sequences each loci was originally characterized is listed.