Woods Hole Oceanographic Institution

Ultimate Ocean Depth Packaging for a Digital Ring Laser Gyroscope

by
M. F. Bowen

July 30, 1998

Technical Report

Funding was provided by the National Science Foundation under Grant No. OCE-9710512
Approved for public release; distribution unlimited.

WHOI-98-15

Ultimate Ocean Depth Packaging for a Digital Ring Laser Gyroscope

> by

M. F. Bowen

Woods Hole Oceanographic Institution Woods Hole, Massachusetts 02543

July 30, 1998

Technical Report

Funding was provided by the National Science Foundation under Grant No. OCE-9710512

Reproduction in whole or in part is permitted for any purpose of the United States Government. This report should be cited as Woods Hole Oceanog. Inst. Tech. Rept., WHOI-98-15

Approved for public release; distribution unlimited.

Approved for Distribution:

Dr. Timothy Stanton
Department of Applied Ocean Physics and Engineering

Ultimate Ocean Depth Packaging For a Digital Ring Laser Gyroscope

Prepared By:
M.F. Bowen

Version 1.0
30 July 1998

Figure [1] Fighting Falcon RLG Platform

Ultimate Ocean Depth Packaging for a Digital Ring Laser Gyroscope

Contents

Abstract 3
1.0 Introduction 4
1.1 Package Design 4
1.2 Operational Advantages 4
2.0 RLG Deep Sea Platforms _5
2.1 Deep Submergence Vehicle (DSV) ALVIN 5
2.2 Remotely Operated Vehicle (ROV) JASON 5
2.3 Autonomous Underwater Vehicle (AUV) ABE 6
3.0 Instrument Housing 6
3.1 Seamless Housing Bell 6
3.2 Endcap and Accessories -7
3.2.1 Axial Registration Bracketry 7
3.2.2 Feedthrough Connectors 8
3.2.3 Operational Modes 8
3.3 Pressure Rating 8
4.0 Instrument Chassis 9
4.1 Components 9
4.1.1 Honeywell RLG and Anti-Vibration Mount 10
4.1.1.1 Power and Data 10
4.1.1.2 Connections 10
4.1.1.3 Mechanicals 10
4.1.1.4 Reliability 10
4.1.2 Crossbow DMU-VG 11
4.1.3 Axiom HC11 Single-Board Computer 11
4.1.4 WHOI UART PCBs 11
4.1.5 WHOI Power Supply Interface 11
4.1.6 WHOI Battery Backup 12
4.2 Chassis Wiring Diagram 13
4.3 Power Supply Interface Circuit Diagram 14
5.0 References 12
6.0 Mechanical Drawings 15-25

Figures

Figure [1] Fighting Falcon RLG Platform and RLG Outline Drawing ___ 1
Figure [2] Launching the ALVIN DSV
Figure [3] Launching the JASON ROV
Figure [4] Launching the ABE AUV 6
Figure [5] Seamless Titanium Housing Bell
Figure [6] Endcap and Axial Registering Connector Guard
Figure [7] Bracketry Drawings RLG-98-011, RLG-98-012___ 7
Figure [8] Endcap Detail, Drawing RLG-98-017___ 8
Figure [9] Pressure Statistics _ 9
Figure [10] RLG above DMU in Anti-Vibration Mount $\quad 9$
Figure [11] Crossbow 6-Axis DMU__ 10
Figure [12] Axiom Single-Board Computer Dimensions___ 11
Figure [13] 24 C-Cell Alkaline Battery Pack__ 12
Figure [14] Chassis Wiring Block Diagram___ 13
Figure [15] Power Supply Interface Circuit Diagram______14

Abstract

A Honeywell GG1320AN Digital Ring Laser Gyroscope (RLG), typically an aviation sensor, has been adapted for use as part of a navigation package rated to ocean depths of 6,000 meters. Researchers and engineers at the Deep Submergence Laboratory (DSL) of the Woods Hole Oceanographic Institution (WHOI) designed a high-density instrument package around the basic RLG. The integrated instrument is modular and field serviceable. It includes a chassis, housing, a Crossbow 6 -axis dynamic measurement unit (DMU), battery backup, power regulation, support circuitry and robust interfaces. A pressure-proof titanium case and non-corroding accessories ensure that the RLG will remain unaffected by prolonged immersion in seawater. Associated mounting bracketry allow the housing to be axially registered alongside the navigation suites of various deep diving WHOI assets, or with any host platform capable of carrying a 25 pound payload. Primary RLG platforms will be the manned deep submergence vehicle ALVIN, the unmanned remotely operated vehicle JASON, and the unmanned autonomous vehicle ABE. As an extremely accurate yaw rate measuring device, the RLG will provide navigation data far more reliable and precise than has been available to scientists in the past. The WHOI RLG has been used successfully on one JASON cruise. (197) Keywords: submersible, navigation, gyroscope.

1.0 Introduction

A Honeywell Model GG1320AN Digital Ring Laser Gyroscope (RLG) was obtained by the Deep Submergence Operations Group (DSOG) of the Woods Hole Oceanographic Institution (WHOI) through a grant from the National Science Foundation (NSF). The RLG arrived in-house as a stand-alone unit (Figure [1]) with a military specification, software guidelines and mounting documentation. In order to use this precision navigation sensor effectively with various deep submergence assets of the National Deep Submergence Facility, a project was undertaken to design and build an "ultimate-ocean-depth" ($6,000 \mathrm{~m}$) instrumentation package, which would highlight the RLG as its primary sensor.

1.1 Package Design

The new RLG package had a number of assumed requirements. The design had to withstand prolonged operations at extreme ocean depths. It would experience equally stressful terrestrial environments, regularly transferred from one DSOG asset to another, shipped long distances, and handied by various operations groups around the world. A dense packing factor was desirable due to the limited payload capabilities of most unmanned underwater vehicles (ROVs and AUVs) such as JASON and ABE. The packaging challenge was undertaken by researchers and engineers at the Deep Submergence Laboratory and was completed in less than six weeks.

1.2 Operational Advantages

Engineers of the DSOG hope that the RLG will solve a long-standing problem with the measurement of heading on deep-diving vehicles of all kinds. True heading is essential for a variety of geophysical measurements as well as for ocean floor map-making. For example, when a sonar map is to be produced, true heading must be registered within the long-baseline navigation net, otherwise specific stations and samples will not be properly located.

Currently, a mechanical free gyro is used to measure vehicle heading (yaw rate) changes and a flux gate compass is used to measure absolute heading. (ROVs and AUVs cannot normally carry true northseeking gyroscopes because of their large size.) The smaller free gyro has good dynamic properties and performs adequately in a vehicle's servo-loop (or auto-heading) software, but a flux gate compass is too heavily filtered for servo purposes.

To date vehicle navigators have been limited to the blending of heading information from these two sensors and they have been faced with two significant problems. First, the free gyro must be initialized to acquire a "true" heading reference and the flux gate compass must be relied upon to provide that reference. However, the compass can be corrupted by local magnetic anomaiies, particularly those that are found in deep volcanic terrain where heading deflections of several tens of degrees are not uncommon. Second, the mechanical gyro can drift up to several degrees per hour so it must be regularly reset. The strong possibility of resetting the gyro to a corrupted compass reference can produce incorrect heading values for the remainder of a dive.

The RLG solves both of these problems. Because the RLG drift rate is extremely low (a fraction of a degree per day), it can be initialized in concert with a support ship's true north-seeking gyro prior to vehicle deployments. Since the unit is battery-backed and has very low drift, it maintains the north heading reference and does not have to be reset throughout a typical ROV or AUV dive, which may last several days. Use of an RLG brings vehicle heading information to new levels of reliability and accuracy.

2.0 RLG Deep Sea Platforms

Figure [2]: Launching the ALVIN DSV

2.1 Deep Submergence Vehicle (DSV) ALVIN

The ALVIN will not use the pressure-proof housing provided with the package. Instead the RLG chassis and its integral titanium endcap will be mounted inside the one-atmosphere personnel sphere. A lightweight plastic housing tube and plastic endcap will replace the heavier, titanium housing bell. Auxiliary connections on the plastic endcap that do not ordinarily penetrate the housing will be made available to ALVIN operators.

Figure [3]: Launching the JASON ROV

2.2 Remotely Operated Vehicle (ROV) JASON

The JASON vehicle (Figure [3]) has an existing 6-axis attitude package on board. In preliminary field operations the RLG will be registered to the planes of the JASON sensors so that complementary data may be examined. In this application the RLG in its housing will be mounted to the side of the main ROV body.

Figure [4]: Launching the ABE AUV

2.3 Autonomous Underwater Vehicle (AUV) ABE

The scheme for mounting the RLG onto the ABE vehicle (Figure [4]) has not yet been specified. The RLG and its housing will most probably reside on the lower of the three main pods (white).

3.0 Instrument Housing

Figure [5]: Seamless Bell Housing

3.1 Bell

The RLG bell housing (Figure [5] and Drawing RLG-98-016) is unconventional for a grade 5 (6AL4 V alloy) titanium housing that is longer than most 8 inch lathe cutting bars and that has a outside diameter greater than 4 inches. In this case the housing had to be 5.75 inches $O D, 14$ inches long, with a 0.5 -inch thick wall and a 0.75 -inch thick flat endplate to meet or exceed the depth specification.

A conventional housing would consist of two endcaps and a tube; a process involving trepanning a solid rod to produce a tube and an internal slug. However, if the package in this project were to be especially reliable, the elimination of one endcap was deemed essential. A boring process performed by a specialty machine shop was arranged rather than employing the usual trepanning. Although the slug nomally left over from the trepanning process is somewhat valuable in that it can be used to make another smaller
housing, it was decided that the loss of the slug into shavings from the boring process was a cost-effective tradeoff.

A tube with one welded endcap was also considered, but producing a seamless bell (as shown above) in a single $\$ 600$ boring operation was logistically sound and efficiently eliminated additional \#2 endcap design time, fixturing, machining and welding.

Figure [6]: Endcap and Axial Registering Connector Guard

3.2 Endcap and Accessories

The endcap (Figure [6] and Drawing RLG-98-017) was designed with both face and radial 0-ring seals. The radial groove is beveled on the inner surface to capture and hold the seal. The endcap is secured to the bell by four 316 stainless screws. When the endcap is separated from the housing bell the entire chassis and battery pack are removed with it. This design allows the bell to be safely set-aside during trouble-shooting sessions.

Figure [7]: Bracketry Drawings RLG-98-011, RLG-98-012

3.2.1 Axial Registration Bracketry

The RLG and the DMU are stacked and solidly affixed to the endcap tongitudinal centerline. Both sensors are rotationally registered within half a degree of each other, and of the outboard threaded bolt patterns of both the housing bell and endcap.

The bolt patterns accept the axial registration bracketry (Figures [6] [7]), which is made of oneinch thick, white polyethylene. The bracketry transfers the planar alignment of the RLG and DMU to the host vehicle. The bracketry contains three finger holes to aid in separating the endcap from the bell. The endcap bracket surrounds the 7-pin bulkhead connector and protects it from rotational stresses.

Figure [8]: Endcap Detail, Drawing RLG-98-017

3.2.2 Feedthrough Connectors

Two Impulse bulkhead feedthroughs were added to the endcap (Figure [8]): LPBH-7-FSISS and BH-4-MPISS. The 7-conductor, low-profile bulkhead provides external power from the platform and outputs serial information. The 4 -conductor bulkhead accepted both a shorting plug and a standard dummy plug depending on the operational mode.

3.2.3 Operational Modes

When a standard dummy 4-pin plug is in place the unit is fully enabled (ON) using either external (vehicle) or internal (battery) power supplies. When a 4-pin shorting dummy is in place the power supplies would be interrupted. This mode is necessary to preserve battery power during long OFF periods such as during shipping or during tong transit when the host vehicle may be powered down.

3.3 Pressure Rating

The assembled housing will fail at 19,055 psi or 12,929 meters or 42,417 feet (Figure [9]). It has been pressure tested to a working depth equivalent to 10,000 psi or 6,600 meters or 21,650 feet. The design allows for a 1.94 X safety margin in pressure tolerance.

Figure [9]: PRESSURE STATISTICS

```
TITANIUM ALLOY GAL-4V, GRADES
Yield Stress: 120.0000 Ksi
Poisson's ratio: 0.3250
Density: 0.1610 lb/cu in
Elastic Modulus: 17.0000 Mpsi
TUBE CONFIGURATION ALONE (External Pressure)
Inner Diameter: 4.7500 inches
Outer Diameter: 5.7500 inches
Wall Thickness: 0.5000 inches
Tube Length: }14.0000\mathrm{ inches
Weight in air: }18.59\textrm{lbs
Weight in water: 5.12 fbs
Failure mode:Thick wall crush
Collapse pressure: 19.0548 Ksi (42417.0ft underwater)
Thin wall collapse mode: 2 nodes
                            Thin Wall Collapse at: 43,604 psi (97,064 ft underwater)
ENDCAP CONFIGURATION ALONE (Extemal Pressure)
Endcap Circular, Fixed
Free Diameter: }4.7500\mathrm{ inches
Outer Diameter: 5.7500 inches
Endcap Thickness: 0.7500 inches
Weight in air: 3.14 lbs
Weight in water: 2.41 lbs
    Endcap Failure at: 24,084 psi (53,612 ft underwater)
TUBE PLUS ENDCAP CONFIGURATION
Tube Inner Diameter: 4.7500 inches
Tube Outer Diameter: 5.7500 inches
Tube Wall Thickness: 0.5000 inches
Tube Length: }14.0000\mathrm{ inches (Endcap Circular, Fixed)
Free Diameter: 4.7500 inches
Outer Diameter: 5.7500 inches
Endcap Thickness: 0.7500 inches
Combined Weight In Air: 24.86 lbs;
in Water: }9.95\textrm{lbs
Initial failure caused by:
    Tube Thick Wall Crush at: 19,055 psi (42,417 ft underwater)
```


4.0 Instrument Chassis

4.1 Components

Figure [10]: RLG above DMU in Anti-Vibration Mount

4.1.1 Honeywell RLG and Anti-Vibration Mount

The Honeywell Dig-Gyro RLG (Figure [8]) provides rapid angular rate measurements in a multiplexed system. Compared to other rate sensors used by the DSOG the RLG has an extremely low drift rate over time. This capability is important for navigating unmanned deep-diving platforms that may be deployed for days at a time.

4.1.1.1 Power and Data

All data from the gyro is obtained in digital form. The unit requires +15 and +5 V power inputs and is mechanically self-contained. The output provides tri-stated bi-directional asynchronous serial communications at 1 MegaBaud with an $8-\mathrm{N}-1$ data byte format.

4.1.1.2 Connections

The connection for the power and signal interface to the RLG is made through a 25 pin micro D pair. The RLG will mate with a MIL-C-83513/1 or a MIL-C-83513/3 connector, and the internal contacts are compatible with a 10147476-101 Honeywell bulkhead connector. Interconnect cable lengths are no longer than 3 feet per specifications.

4.1.1.3 Mechanicals

The RLG includes a laser block assembly based on an equilateral triangular 2.0 inch per leg pathlength glass-ceramic block. On the block are mounted two path-length control transducers, a readout mirror and a mirror-mounted package, which supports readout electronics and photodiodes. The block cavity is filled with a mixture of helium and neon gases. The laser block assembly is mounted within a housing that consists of an aluminum base and cover.

In order to facilitate gyro dither, the laser block mechanical interface to the housing is accomplished by means of a Super invar dither spring. Semi-rigid upper and lower chassis plate assemblies actively dampen the dither vibration that is translated to the outer case during RLG operation. Surrounding the unit with four circular open-cell foam cushions and ultra-stiff aluminum chassis rods provides additional dampening and audible noise reduction.

Also mounted within the aluminum housing is a set of electronic components, which provide the electrical interface to the gyro. The internal electronics provide the high voltage required for laser operation, control of gyro functions and readout of gyro information upon system request. This approach reduces system-level complexity and reduces requirements for electrical interface with the host WHO system, which includes low voltage power inputs and a standard digital bus.

4.1.1.4 Reliability

The gyro case is environmentally sealed, is filled with dry nitrogen gas with a five-percent helium-4 tracer, and enclosed within a two-piece formed nickel-iron magnetic shield. The RLG can withstand impacts of 30 g 's applied in any axis. It has a depth rating of 2,000 feet and an altitude rating of 70,000 feet. Its mean operating life is 100,000 hours with a mean time between failure (MTBF) of 150,000 hours or greater. The mature field random MTBF is 300,000 hours or greater. This military grade sensor should provide DSOG with years of significani service.

4.1.2 Crossbow DMU

The Crossbow DMU-VG (Figure [11]) is an intelligent six-axis measurement system designed for accurate X, \underline{Y}, Z acceleration and angle measurements in dynamic environments. The DMU outputs inertial acceleration and angular rate measurements formatted for integration with the WHOI RLG system. The unit allows for data to be requested via serial command or to be transferred continuously. The DMU outputs stabilized pitch and roll calculations for platform stabilization. Measurements taken by the DMU are complementary to data from the RLG and other navigation systems on the host platform such as the bottomlock Doppler. Other common DMU applications include GPS navigation, dynamic positioning, antennae pointing and flight data testing (Figure [1]).

Figure [12]: Single-Board Computer Dimensions

4.1.3 Axiom HC11 Single-Board Computer

The Axiom HC11 single-board computer (Figure [12]) is a functional development system which requires a low voltage $D C$ input and outputs to a standard serial cable. The HC11 will process the serial data from the two sensors and will compute heading and attitude information, which is then is passed on to the host vehicle over a serial interface. The Axiom is mounted in front of the RLG's backup battery pack and behind two UART and one power supply printed circuit boards. It is the largest circuit board in the package.

4.1.4 WHOI UART PCBs

Two universal asynchronous receiver-transmitter (UART) printed circuit boards are mounted in the RLG chassis. Each UART board contains a 16-byte FIFO buffer. The RLG UART provides an asynchronous serial interface between the RLG and the HC11. The Crossbow UART provides a similar interface to the Crossbow sensor. The RLG interface operates at 1 MegaBaud. The Crossbow interface operates at 38.4 KiloBaud. The serial interface to the host system is provided by the Axiom HC11.

4.1.5 WHOI Power Supply Interface

This circuit card provides an isolated 15 VDC along with an isolated 5 VDC to power the RLG. A separate isolated 15 VDC is also generated to power the Crossbow DMU-VG and the Axiom HC11 development board. The Datel switching converters employed by this circuit are exceptionally quiet and exceed the RLG's strict power supply noise specification. The power interface board has over-voltage and over-current protection on all inputs and outputs.

Detail of the WHOI circuit is shown in Figure [15]. Q1, Q2 and Q3 and their associated components provide 18 to 72 volts and the internal battery pack consisting of 24 alkaline c-cells. Q3 is the
main power switch and it is normally biased ON via Q2, which supplies a constant gate-to-source voltage of approximately 12.7 volts. When an external supply (host vehicle) is connected between pins 2 and 3 of $\mathrm{J1}$, Q1 is biased ON which shunts the base drive of Q2, thus turning it OFF. With Q2 off, the gate of Q3 is held via the 220 K resistor at the same voltage as its source, thus turning Q3 OFF. The IN4002 blocking diode is now forward biased and routes power directly to the input of the $D C$ to $D C$ converters. The transition is nearly instantaneous and the $D C$ to $D C$ converter input filter capacitors are more than adequate to hold the load while the power switches. Shorting pins 1 and 3 of $J 1$ will also turn Q3 OFF. This provides a means of preserving the battery pack during long periods of shipping or storage.

Figure [131: 24 C-Cell Akalne Pack

4.1.6 WHOI Eattery Backup

The 24-cell akaine batery pack (Figure I 131) occupies the lower at guarter of the housing volume. The pack wraps around fout printed circut boards. Three isolating Phenoic rods penetrate the pack to provide stifness and alignment, The bateres are wired in paraliel and produce a nominal 40 -vol supply, which is employed when the RLG is not powered by the host vehicle during shon maintenance periods or beween deployments. When the host vehicle applles extemal power to the RLG system, the power and regulation PCB automatically disables the intemal batery pack. Using a shoring pig, the operator can disable the pack manualy for long peroos such as during shipping and shorage. Whenever power is Interupted to the RLG, crical calbration cata is also lost which is why the backup pack is important to the system. Pack He is estmated at about 22 hours. If can be repiaced with a spare pack in less than one hour.

5.0 References

今. Dexter, S.C., Handbook Of Oceanographic Engineering Materals, Rober E. Krieger Publishing Company, Malabar, Florica, 1985.
2. Detall Specifcation Documen, GCtB2OAN Dio-Gyro Ring Laser Gyro, Specifoation Number DS34te7. Of, Honewwell Avionics Division, Minneapolis, MN, 1997.
3. Harcware Manual, CMDIAABHCHIS Sinle Board Computer, Axiom Manutaduring, Richardson, TX, 1995
4. Impulse Enterprises, Technical Manuland Connecior Seiection Guide, rev 0192, San Diego, CA, 1997.
5. Parker Seal Group, O-Ring Seas Handook, U.S, Govemment Manutacuning Code Identifation Number 02697, Lexingion, KY:, 1992.
6. Pressure Housing Analysis, Under Pressure, Sotware Program, Deep Sea Power and Light, hnc., San Dego, CA, 1991.
7. Shigey, IE, Mischke, CR. Mechanical Engineering Design, 5^{*} Editon, $188 \mathrm{~N} 0-07-056895$, Mocraw-Hin, Inc, New York, MY, 1989.
8. User Intertace Documenk, GG1320AN Diq-Gvro Ring Laser Gyo, Honeywell Avionics Dvision, Spectication Number E07165-0t, Cage Code 94580, Minneapolis, MN, 1997.

4.2 Chassis Wiring Elock Diagram: Figure [12]

6.0 Mechanical Drawings

RLG-98-010	Endcap and Connector Guard	16
RLG-98-011	Connector Guard Detail	17
RLG-98-012	Housing Bell Mount	18
RLG-98-016	Housing Bell	19
RLG-98-017	Endcap	20
RLG-98-018	Crossbow Mounting Plate	21
RLG-98-020	PCB Spreader	22
RLG-98-021	Transfer Plate	23
RLG-98-022	Sensor Stack Spacer	24
RLG-98-025	Battery Pack Plate	25

Acknowledgements

My special thanks to Tim Thiel, Steve Liberatore, Bob McCabe, Barrie Walden, Don Peters, Glenn McDonaid, Albert Bradley, Jia Qin Zhang, Hanumant Singh and Dana Yoerger for their help during the performance of this project.

DOCUMENT LIBRARY

University of California, San Diego
SIO Library 0175C
9500 Gilman Drive
La Jolla, CA 92093-0175
Hancock Library of Biology \& Oceanography
Alan Hancock Laboratory
University of Southern California
University Park
Los Angeles, CA 90089-0371
Gifts \& Exchanges
Library
Bedford Institute of Oceanography
P.O. Box 1006

Dartmouth, NS, B2Y 4A2, CANADA
NOAA/EDIS Miami Library Center
4301 Rickenbacker Causeway
Miami, FL 33149
Research Library
U.S. Army Corps of Engineers

Waterways Experiment Station
3909 Halls Ferry Road
Vicksburg, MS 39180-6199
Marine Resources Information Center
Building E38-320
MIT
Cambridge, MA 02139
Library
Lamont-Doherty Geological Observatory
Columbia University
Palisades, NY 10964
Library
Serials Department
Oregon State University
Corvallis, OR 97331
Pell Marine Science Library
University of Rhode Island
Narragansett Bay Campus
Narragansett, RI 02882
Working Collection
Texas A\&M University
Dept. of Oceanography
College Station, TX 77843

Fisheries-Oceanography Library
151 Oceanography Teaching Bldg.
University of Washington
Seattle, WA 98195
Library
R.S.M.A.S.

University of Miami
4600 Rickenbacker Causeway
Miami, FL 33149
Maury Oceanographic Library
Naval Oceanographic Office
Building 1003 South
1002 Balch Blvd.
Stennis Space Center, MS, 39522-5001
Library
Institute of Ocean Sciences
P.O. Box 6000

Sidney, B.C. V8L 4B2
CANADA
National Oceanographic Library
Southampton Oceanography Centre
European Way
Southampton SO14 3ZH
UK

The Librarian
CSIRO Marine Laboratories
G.P.O. Box 1538

Hobart, Tasmania
AUSTRALIA 7001
Library
Proudman Oceanographic Laboratory
Bidston Observatory
Birkenhead
Merseyside L43 7 RA
UNITED KINGDOM

IFREMER

Centre de Brest
Service Documentation - Publications
BP 7029280 PLOUZANE
FRANCE

REPORT DOCUMENTATION PAGE	1. REPORT NO	WHOI-98-15	2.	3. Recipient's Accession No.
4. Title and Subtitle Ultimate Ocean Depth Packaging for a Digital Ring Laser Gyroscope				5. Report Date July 30, 1998
				6.
7. Author(s) M. F. Bowen				8. Performing Organization Rept. No. WHOI-98-15
9. Performing Organization Name and Address Woods Hole Oceanographic Institution Woods Hole, Massachusetts 02543				10. Project/TaskWork Unit No.
				11. Contract(C) or Grant(G) No. (C) OCE-9710512 (G)
12. Sponsoring Organization Name and Address National Science Foundation				13. Type of Report \& Period Covered Technical Report
				14.

15. Supplementary Notes

This report should be cited as: Woods Hole Oceanog. Inst. Tech. Rept., WHOI-98-15

16. Abstract (Limit: 200 words)

A Honeywell GG1320AN Digital Ring Laser Gyroscope (RLG), typically an aviation sensor, has been adapted for use as part of a navigation package rated to ocean depths of 6,000 meters. Researchers and engineers at the Deep Submergence Laboratory (DSL) of the Woods Hole Oceanographic Institution (WHOI) designed a high-density instrument package around the basic RLG. The integrated instrument is modular and field serviceable. It includes a chassis, housing, a Crossbow 6-axis dynamic measurement unit (DMU), battery backup, power regulation, support circuitry and robust interfaces. A pressure-proof titanium case and non-corroding accessories ensure that the RLG will remain unaffected by prolonged immersion in seawater. Associated mounting bracketry allow the housing to be axially registered alongside the navigation suites of various deep diving WHOI assets, or with any host platform capable of carrying a 25 pound payload. Primary RLG platforms will be the manned deep submergence vehicle ALVIN, the unmanned remotely operated vehicle JASON, and the unmanned autonomous vehicle $A B E$. As an extremely accurate yaw rate measuring device, the RLG will provide navigation data far more reliable and precise that has been available to scientists in the past. The WHOI RLG has been used successfully on one JASON cruise.

17. Document Analysis a. Descriptors
 UUV
 DSV
 Gyro

b. Identifiers/Open-Ended Terms

c. COSATI Field/Group

18. Availability Statement

Approved for public release; distribution unlimited.

