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During foraging dives, sperm whales (Physeter macrocephalus) produce long series of regular clicks at 0.5–2 s

intervals interspersed with rapid-click buzzes called ‘creaks’. Sound, depth and orientation recording Dtags

were attached to 23 whales in the Ligurian Sea and Gulf of Mexico to test whether the behaviour of diving

sperm whales supports the hypothesis that creaks are produced during prey capture. Sperm whales spent

most of their bottom time within one or two depth bands, apparently feeding in vertically stratified prey

layers. Creak rates were highest during the bottom phase: 99.8% of creaks were produced in the deepest

50% of dives, 57% in the deepest 15% of dives. Whales swam actively during the bottom phase, producing a

mean of 12.5 depth inflections per dive. A mean of 32% of creaks produced during the bottom phase

occurred within 10 s of an inflection (13� more than chance). Sperm whales actively altered their body

orientation throughout the bottom phase with significantly increased rates of change during creaks, reflect-

ing increased manoeuvring. Sperm whales increased their bottom foraging time when creak rates were

higher. These results all strongly support the hypothesis that creaks are an echolocation signal adapted for

foraging, analogous to terminal buzzes in taxonomically diverse echolocating species.
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1. INTRODUCTION
The sperm whale (Physeter macrocephalus) is a successful

deep-sea predator with a cosmopolitan distribution (Rice

1989). Sperm whales consume a wide diversity of prey:

squids appear to be their primary food source, with fishes

also important in certain locations (Clarke 1980; Martin &

Clarke 1986; Rice 1989; Santos et al. 1999; Simon et al.

2003; Whitehead 2003; Whitehead et al. 2003). Even after

depletion from whaling, the current world population of

sperm whales is estimated to consume a biomass on a par

with all human fisheries combined (Whitehead 2002,

2003).

It is widely accepted that sperm whales forage during

deep dives that routinely exceed a depth of 400m and

30min duration (Watkins et al. 2002), but many different

hypotheses exist concerning the precise mechanisms by

which sperm whales locate and capture prey (Fristrup &

Harbison 2002; Whitehead 2003). Early hypotheses sug-

gested that sperm whales employ a sit-and-wait foraging

strategy, thought to be more energetically efficient than

active pursuit of relatively small prey (Beale 1839; Clarke

1970). Persistent movements of sperm whales followed

from the surface or tagged during diving, however, counter

this passive foraging hypothesis (Watkins et al. 1993;

Amano & Yoshioka 2003; Whitehead 2003; Miller et al.

2004a).

Following the discovery that sperm whales produce

intense broadband clicks during dives (Worthington &

Schevill 1957), most researchers have argued that sperm

whales forage using echolocation (Norris & Harvey 1972;
Whitehead &Weilgart 1991; Goold & Jones 1995; Jaquet et

al. 2001; Whitehead 2003). Sperm whales produce regular

clicks (called ‘usual’ clicks by Whitehead & Weilgart

(1990)) at inter-click intervals of 0.5–2.0 s during descent

from the surface (Jaquet et al. 2001; Zimmer et al. 2003),

until the whale begins its ascent to the surface (Madsen et

al. 2002a). There is growing evidence that regular clicks

produced during foraging dives are directional, with an

intense, forward-directed beam (Møhl et al. 2000; Madsen

et al. 2002a,b). Source levels within the beam are estimated

to be as high as 236dB re 1lPa at 1 m. (Møhl et al. 2003).

Although some earlier analyses of sperm whale clicks con-

sidered that they were unlikely to provide useful echoes

from weak targets such as squid (Watkins 1980; Fristrup &

Harbison 2002), these more recent data on sperm whale

clicks suggest that they are appropriate for echolocation on

squid (Madsen et al. 2002b). Echoes from both the surface

and the seafloor are regularly detected on tags attached to a

whale producing regular clicks, suggesting that the whale

may use such echoes for orientation and navigation

(Johnson &Tyack 2003; Zimmer et al. 2003).

Though the evidence that sperm whales use clicks for

echolocation is increasingly strong, a variety of other

hypotheses have continued to be suggested for spermwhale

foraging. Gaskin (1967) repeated the suggestion of Beale

(1839) that sperm whales could passively attract squid with

the white markings or bioluminescence around their

mouths. Fristrup & Harbison (2002) have suggested that a

steadily swimming whale may also create a visible biolumi-

nescent field in the water near its open mouth that might

attract prey. In addition to these visual ‘luring’ hypotheses,

Fristrup & Harbison (2002) suggest that sperm whales

might use vision to detect the silhouette of prey against a
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background of down-welling light or the bioluminescence

stimulated by the movement of prey. As noted by Fristrup

& Harbison (2002), sperm whales are likely to use any

mechanisms available to them, so these hypotheses are not

mutually exclusive.

This study aims to relate the diving and movement

behaviour of sperm whales to the rapid-click buzzes

(named ‘creaks’ by Gordon (1987)) that are interspersed

throughout the period of regular clicking. Clicks during

creaks have an initial inter-click interval of ca. 0.2 s, which

decreases to 0.02 s (Goold & Jones 1995). The amplitude

of these clicks also appears to decline rapidly, with clicks at

the end of the creak more than 20dB lower in level than the

regular clicks (see figure 2; Madsen et al. 2002b). A clicking

whale often pauses for several seconds following a creak

before resuming regular clicking. Based upon the acoustic

features of these click sequences, creaks appear to be

analogous to the terminal buzzes produced by echolocating

bats as they close on targets (Goold & Jones 1995; see fig. 8

in Griffin 1958). Similar high-rate buzz sequences have

been described in echolocating dolphins and other odonto-

cetes (Au 1993; Miller et al. 1995; Kastelein et al. 1995;

Johnson et al. 2004).

Little information is available on the behaviour of sperm

whales while they produce clicks at depth (Jaquet et al.

2001). Gordon (1987) noted that whales being tracked by

a ship’s depth sounder often appeared to modulate their

depth profile during creaks. Across a small sample of 12

dives, Jaquet et al. (2001) found a positive correlation

between creak rates and total dive duration.When amarine

mammal is feeding during a dive, it needs to decide when to

break off from foraging and return to the surface. If return-

ing to the surface represents leaving a patch, optimal forag-

ing theory suggests that divers should remain in the patch

at depth longer when prey density is high (Charnov 1976;

Stephens & Krebs 1986). Aerobic divers that abandon

poor patches by returning to the surface are predicted to

benefit from spending more time in higher-quality patches

(Thompson & Fedak 2001). The cost of remaining at

depth increases in a nonlinear fashion when dive duration

exceeds the aerobic dive limit because energy reserves are

used less efficiently in anaerobic respiration and more time

is therefore required away from foraging areas subse-

quently for recovery from lactate build-up (Kooyman

1989). The long and deep dives of sperm whales increase

the chance that aerobic limits are approached and that

moving to the surface to breathe reduces the ability of a

whale to relocate the same patch (Ydenberg & Clark 1989;

Kooyman & Ponganis 1998). Within this context, it is pre-

dicted that sperm whales should extend the foraging phase

of dives with high prey capture rates.

The development of a high-resolution archival tag

that can be attached to sperm whales using suction cups

(Johnson & Tyack 2003) has enabled the recording of each

whale’s depth, three-dimensional orientation and sound

production during deep foraging dives. To critically test the

idea that creaks function in prey capture, similar to

‘terminal buzzes’, we detail the depth and behaviour of

sperm whales during creaks. Presumably, sperm whales

dive to depth to access prey resources not available near the

surface. Given the cost of diving, we would expect foraging

whales to spend most of their bottom time at the depth of

good prey layers. This suggests that foraging activity would
Proc. R. Soc. Lond.B (2004)
be most intense during the bottom phase of deep dives

(LeBoeuf et al. 1988). If creaks are used in prey capture,

they should reflect a similar pattern.

Data collected using tags strongly support the summary

of Whitehead (2003) that sperm whales move consistently

throughout deep dives. Sperm whales spend most of their

bottom time within one or two depth bands apparently

feeding in vertically stratified prey layers, though consider-

able depth excursions occur during the bottom phase of the

dive (see fig. 5.14 in Whitehead (2003)). While it seems

unlikely, on energetic grounds, that a sperm whale weigh-

ing tens of metric tons will engage in prolonged high-speed

chases of typically small prey items, we expect that a mov-

ing sperm whale will need to manoeuvre to some extent to

capture prey in its mouth. This leads us to predict higher

rates of changes in body orientation during creaks. If the

whale is outside or in the top or bottom of its preferred

layer while approaching a prey item, then we predict that it

may manoeuvre during prey capture to reorient back to the

preferred layer. This leads us to predict that if creaks are

synchronized with manoeuvring for prey capture, they may

also be associated with dive-inflection points, especially

when the whale is on the top or bottom of its preferred

layer. We test whether the behaviour of sperm whales

matches our predictions of what is expected if creaks are

produced during prey capture, and whether sperm whales

increase foraging time during dives with higher creak rates.
2. MATERIAL ANDMETHODS
Groups of sperm whales were followed at sea from a research ves-

sel (R/V Alliance in the Mediterranean, R/Vs Gordon Gunter and

Gyre in the Gulf of Mexico). We attached archival tags (called

‘Dtags’) to the backs of surfacing sperm whales with suction cups

using a 12m cantilevered pole (Moore et al. 2001; Johnson &

Tyack 2003). The sensors in the Dtag include sound, depth, a

3-axis accelerometer, and a 3-axis magnetometer (Johnson &

Tyack 2003). Sound was sampled at 16 or 32 kHz rate, while the

other sensors were filtered and down-sampled to obtain a com-

mon effective sampling rate of 5.88Hz. Pressure readings were

converted to depth using calibrated values. Magnitude readings

on 3-axis accelerometers and magnetometers were converted to

pitch, roll and heading of the whale following published techni-

ques (Johnson &Tyack 2003;Miller et al. 2004a).

The acoustic record of the tag was analysed to determine the

start and end time of each creak. All deep dives (greater than

350m) were broken into descent, bottom and ascent phases. The

beginning of descent was the time that a whale left the surface on a

deep dive, while the end was the time when the pitch of the diving

whale first exceeded 0� (when it was no longer oriented down-

ward). The start of the ascent was defined as the last point in time

when an animal’s pitch was downward (when it first pointed

upward) and ended when the whale reached the surface (Miller et

al. 2004a). The bottom phase was defined from the end of the

descent until the start of the ascent.

Dive inflections were identified as points where the vertical

velocity of the whale changed sign, with an ensuing net vertical

change of at least 10m (approximately one body length) before

the next inflection. The 10m criterion removes minor inflections

that could result from thrusting oscillations or other minor chan-

ges in body orientation. We determined the number of creaks that

each whale produced within 10 s of an inflection. To compare the

observed value to that expected by chance, we randomized
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the alignment of the dive profile and acoustic records by joining

the start and end of the creak time-series and rotating it a random

amount of time while holding the dive profile time series

constant (Miller et al. 2004b). For each random rotation, the

number of creaks within 10 s of a give inflection was re-calculated.

By performing this rotation 10 000 times for each dive record

(Adams & Anthony 1996), we generated an expected distribution

of the number of creaks that would occur within 10 s of a dive-

inflection point under the null hypothesis that the timing of the

two sequences was independent.

We analysed each whale’s rate of orientation change to assess

whether sperm whales manoeuvre more during creaks (see elec-

tronic Appendix A). The absolute value of the change in each

whale’s roll, pitch and heading was calculated at three-second

intervals (figures 1 and 2b). Pitch and heading give a three-dimen-

sional description of the angle of the whale’s axis, so changes in

these two values were combined into ‘pointing angle’. Changes in

whale pointing angle and roll were calculated for 3 s intervals

centred on the beginning of each creak, the end of each creak and

a control period halfway between each creak. The control interval

for the first creak of each dive was set at 30 s before the creak. Data

distributions were checked for normality using the one-sample

Kolmogorov–Smirnov test, and non-parametric statistics were

employed if the assumptions of ANOVAwere not met (Zar 1984).

3. RESULTS
Between 2000 and 2002, at least one entire deep dive was

recorded from each of 23 sperm whales (5 in the Ligurian

Sea in the Mediterranean and 18 in the Gulf of Mexico),

and three or more deep dives from 15 whales (four from the

Ligurian Sea; see table 1 in Miller et al. (2004a)). Typical

surface reactions to approach and tagging were minor and

of short duration, such as a brief startle response followed

by an arch-out dive. The first dive made by a tagged sperm

whale tends to be shorter than subsequent dives (P.J.O.

Miller, unpublished data). This is probably caused by the

whale diving earlier during the surfacing sequence than

normal, in reaction to the approach and tagging operation.

This effect does not extend beyond the first dive. We there-

fore excluded the first dive after tag attachment from dur-

ation and creak-rate analyses.

From inspection of dive records, these sperm whales

appeared to dive to preferred depth layers (figure 2a). Reg-

ular clicks start fairly early in descent and cease once the
Proc. R. Soc. Lond.B (2004)
whale begins to ascend, in close agreement with Madsen

et al. (2002a). Creaks were produced within sequences of

regular clicks during deep dives only, and generally during

the deepest part of dives. Fast series of clicks were recorded

only four times when the tagged whale was near the sur-

face. These fast series had longer durations than typical

creaks, and did not have the same click timing or amplitude

pattern that were common to creaks (Whitehead 2003).

We therefore did not include in our analyses these relatively

uncommon fast series recorded while the whale was at the

surface, though they might represent the use of echoloca-

tion in a non-foraging context.

During 129h of tag recordings, these 23 animals pro-

duced a total of 1670 creaks, out of which 1589 were pro-

duced during the 103 complete dives recorded. The

deepest and shallowest creaks were recorded at 1169m

and 288m, respectively. Tallied by individual whale,

creaks had a mean duration of 8.7 s (^7.6 s.d.), and 88.9%

(^13.5%) of creaks were followed by a pause in clicking of

4.8 s (^2.4 s). Creaks were produced at a mean depth of

616m (^126m).
(a) Depth of creak production

All 23 whales produced most of their creaks during the

bottom phase of their dives (figure 2a). Creak rates were

significantly higher during the bottom phase (27:7^

12:7 creaks h�1) than during descent (3:7^4:1 creaks h�1)

or ascent (6:3^3:7 creaks h�1; F2, 66 ¼ 62:1, p < 0:0001).

To test the depth distribution of creaks, we calculated

the creak rate in four depth bins (<50%; 50 70%; 70 85%,

and > 85% of maximum dive depth) in which sperm

whales spent roughly equivalent amounts of time during

deep dives. Tallying by individual whale, mean (^ s.d.)

creak rates within these depth bins were 0.02 (^0.05), 3.76

(^6.12), 9.91 (^8.18) and 17.97 (^11:46) per hour

(Kruskal–Wallis H3 ¼ 62:9, p < 0:0001). Non-parametric

Tukey post hoc contrasts showed that creak rates differed at

p < 0:05 between all bins except for the 70–85% versus

more than 85% contrast. Out of the 1589 creaks observed

during full dives, 0.25% were produced in the shallowest

50% of dive depths. By contrast, 57% of all creaks were

produced in the deepest 15% of dives.
 
 

starting orientation
heading = 0˚
pitch = 0˚
roll = 0˚

final orientation
     heading = 30˚
          pitch = 30˚
             roll = 30˚heading

30˚ right
pitch

up 30˚
roll 30˚

clockwise

‘pointing angle’ changed 41̊
heading and pitch combined
Figure 1. Orientation changes in a spermwhale model broken into separate components. The three-dimensional orientation of
the whale is described fully by three variables: heading (0: due north,þ90: due east), pitch (0 when body is flat,þ90 when rostrum
pointed up), and roll (0 when back is up,þ90 when rotated clockwise). Heading and pitch both reflect changes in the orientation
of the whale axis itself, whereas roll reflects rotational movements around the axis of the whale.We combined changes in pitch and
heading as changes to the ‘pointing angle’ of the whale axis.



2242 P. J. O.Miller and others Creak use in prey capture
(b) Association of creaks and dive-inflection points

Numerous inflection points, and the close association of

many creaks to these inflections, can be seen on the dive

profiles (figure 2). We excluded one dive record in which a

large male (sw208b) foraged along the seafloor with no dive

inflections during the bottom phase. The remaining 22

sperm whales made primarily bathypelagic dives, although

several whales made benthic excursions for portions of

dives. Tallying by individual, these 22 whales made a mean

(^ s.d.) of 12.5 (^4.0) depth inflections, and 13.1 (^6.1)

creaks during the bottom phase of their dives.

A mean of 4.2 (^2.6) creaks per dive, or 32.1% of all

creaks, were produced within 10 s of an inflection point

during the bottom phase. There was no difference in the

mean number of creaks within 10 s of up-to-down

(2:11^1:2) versus down-to-up (2:07^1:9) inflections

(paired t21 ¼ 0:13, p¼ 0:90). Creaks were equally likely to

be produced 10 s before (51:2%^23:5%) as 10 s after an

inflection point. Based on 10 000 random rotations of the

creak time-series (holding the inflections constant), the

mean expected number of creaks within 10 s of a dive
Proc. R. Soc. Lond.B (2004)
inflection was 0.32 (^0.22) creaks per dive. The observed

value exceeded the mean expected value for all 22 whales

(binomial p < 0:001). Averaging by whale, we observed

13.3 (^8.9) times more creaks within 10 s of a dive inflec-

tion point than would be expected by chance if the two

sequences were independent of each other.

For each dive, we scored the depth of inflection points as

the percentage depth between theminimum andmaximum

obtained by each whale during the bottom phase of that

dive. Dive-inflection points were quite evenly spread

throughout the depth range covered in the bottom phase of

dives. A statistically equal number (47:8^13:0%) of all

dive inflections occurred in the central 50% depth band as

in the two extreme 25% bands. While, in some cases,

sperm whales moved to shallow or deep extremes and then

inflected back to the preferred depth layer (figure 2), just as

many dive inflections were produced within the central

depth band of the bottom phase. Though inflection points

were equally distributed across the depth range of the

bottom phase, creaks were roughly twice as likely to occur

within 10 s of a dive inflection in the outer 25% depth
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Figure 2. Sample data analysis of spermwhale sw265 tagged on 22 September 2001 in the Ligurian Sea. (a) Time–depth profile
of four recorded dives with the end times of creaks marked with a circle. Note that the whale spent time and produced creaks
primarily within a preferred depth range. (b) Detailed time–depth profile of the second dive with the animal’s roll throughout the
dive, the change in roll (Droll) and change in pointing angle (DPA)measured over 3 s intervals and with creaks marked as circles.
Note that creaks are often associated with inflections in the dive profile, as well as with peaks in Droll and DPA. (c)Waveform and
spectrogram of the eighth creak produced during the second dive. Note that the level of the creak clicks as recorded by the tag on
the animal’s back is�10 (or 20 dB) lower than the regular clicks. The 5.9 s creak is followed by a 2.3 s pause before the resumption
of regular clicking. The three-dimensional movement of the whale is linked to the sounds it produced during this creak in an
animation presented as electronic Appendix A. In this animation, the increasedmanoeuvring by the whale during the creak is
clear.
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bands of the bottom phase. Tallying by individual whale,

23.8% (^12.4%) of 753 total creaks in the central 50%

depth band of the bottom phase were within 10 s of an

inflection point, versus 43.6% (^22.4%) of 659 total

creaks in the extreme depth bands (arcsine-transformed

paired t21 ¼ �4:24, p < 0:001).

(c) Manoeuvring by thewhales in relation to creaks

Diving sperm whales made steady changes in both their

roll and pointing angle throughout dives, with occasional

spikes that were often associated with creaks (figure 2b).

Overall, the 23 sperm whales in our sample changed both

their roll (F2, 66 ¼ 23:5, p < 0:0001) and pointing angle

(F2, 66 ¼ 21:8, p < 0:0001) significantly more during

creaks than during control periods halfway between creaks

(figure 3a). Roll movements over the 3 s centred on the

start and end of creaks were 28% and 70% greater than

during control periods, respectively (Tukey p < 0:001 for

end of creak versus control and start of creak, p < 0:05
for control versus start of creak). Similarly, change in

pointing angle increased by 29% and 93% at the start and

end of creaks, respectively (Tukey p < 0:001 end of creak

versus control and start of creak, p¼ 0:13 for control versus

start of creak).

Because increased changes in roll and pointing angle

were also observed in association with dive inflections, we

tested whether association with a dive inflection influenced

the change in roll and pointing angle. Excluding whale

sw208b, which made no dive inflections at the bottom,

two-way ANOVA models showed no interaction between

condition and association with a dive inflection point for

changes in roll (interaction F2, 126 ¼ 0:38, p¼ 0:68) or
Proc. R. Soc. Lond.B (2004)
pointing angle (interaction F2, 126 ¼ 0:88, p¼ 0:42). This

reflects the gradual change in orientation during most dive

inflections, so the whale’s orientation did not change sig-

nificantly more during a creak when a dive inflection was

present.

To assess the timing of manoeuvring by the whale in

relation to creaks graphically, changes in roll and pointing

angle over 3 s were averaged for each whale from 30 s

before to 30 s after the end of each creak. Thus, the move-

ments of each of the 23 whales in the study were weighted

equally. The result shows a clear peak in roll and pointing

angle change over the 3 s centred on the end of creaks (fig-

ure 3b). The primary interval of increased manoeuvring

activity occurs between ca. 12 s before and after the end of

creaks, suggesting a fairly brief period of increased activity.

(d) Creak rates and duration of bottomphase

of dives

After eliminating the first dive made by each whale after

tagging, we had two or more dives from 15 whales, for a

total of 79 complete dives. Over these 79 dives, creak rates

averaged (^ s.d.) 32.3 (^15.6) creaks h�1 during the bot-

tom phases of 27:2^6:7min duration. If there were no link

between creak rate and bottom time, we would expect

each whale to have a positive or negative correlation of

creak rate versus bottom time with equal probability.

Instead, creak rate and bottom time were positively corre-

lated for 12 out of the 15 whales, which strongly deviates

from an equal probability binomial distribution

(p¼ 0:014). Pooling the data for all individuals after sub-

tracting their mean creak rate and bottom time duration,

regression showed that creak rate during the bottom phase
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Figure 3. (a)Mean (^ s.e.) change per second in roll and three-dimensional pointing angle measured over a 3 s interval centred
on a control period halfway between creaks (open bars), the start of creaks (hatched bars) and the end of creaks (black bars). Roll
and pointing angle change increased during the start of creaks and again at the end of creaks. (b)Mean (^ s.e.) change in roll (solid
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within 12 s of the end of the creak; n¼ 23 whales (1670 creaks).
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of dives was positively correlated with bottom time dur-

ation (figure 4; F1, 63 ¼ 9:14, p < 0:01).
4. DISCUSSION
Visual and acoustic observations of sperm whales from the

surface have demonstrated a strong correlation between

surface behaviour and the types and rates of various click

sounds heard (Whitehead & Weilgart 1990, 1991). As

Whitehead (2003, p. 156) states: ‘We think we have a

reasonable understanding of their behaviour during surface

periods, but what happens at depth is probably more

significant and certainly more mysterious’. Though we

understand the general behavioural context within which

various click sounds are produced, their possible functions

remain untested because it has been difficult to ascribe

sounds to a specific individual or link them to a particular

part of the dive cycle (Jaquet et al. 2001). Our study over-

comes this limitation through the use of short-term archival

tag attachment, allowing us to describe in detail the behav-

iour of sperm whales in relation to the sounds they produce

throughout the dive cycle. Our results show that several key

aspects of the behaviour of sperm whales are consistent

with the hypothesis that creaks are produced during prey

capture.

First, we show that creaks are predominantly produced

during the bottom phase of dives where feeding is expected

to occur (figure 2), with almost no creaks occurring in the

top 50% of each dive. That these long and deep dives are

foraging behaviour is supported by an analysis of stomach

contents that largely consist of bathypelagic or benthic prey

(Clarke 1980; see Whitehead (2003) for review). Observa-

tions of defecation by fluking whales followed for several

days confirm that those whales were feeding during
Proc. R. Soc. Lond.B (2004)
observation periods when deep diving dominated their

behaviour (Whitehead et al. 1989). Click sounds produced

near the surface include codas and slow click series, prob-

ably produced for communication (Watkins & Schevill

1977; Weilgart & Whitehead 1993). Regular clicks are

heard during the bottom phase of dives, but also during

descent, probably as part of a search behaviour (Thode

et al. 2002; Zimmer et al. 2003). Creaks were heard only

after the onset of regular clicking.

The association of creaks with increased movement of

sperm whales is the second line of evidence demonstrated

in this study. Sperm whales increased the manoeuvring of

their body orientation during creaks, with the strongest

activity occurring at the end of the creak (see figures 3 and

4 and electronic Appendix A). This finding was equally

strong for creaks that were and were not within 10 s of a

dive inflection, showing that more rapid changes in body

orientation during creaks was not a by-product of the whale

making a dive inflection. Given the diverse diet of sperm

whales, the 23 whales in our study undoubtedly fed on

multiple prey types, with varying degrees of mobility and

escape behaviour (Whitehead 2003). However, sperm

whales are likely to need to manoeuvre to capture even the

most quiescent prey (Simon et al. 2003) as final adjust-

ments are made during the final approach phase. The time-

sequence of changes in orientation during creaks shows a

clear peak at the end of creaks, with higher activity ca. 12 s

before and after the end of the creak. This timing of man-

oeuvring seems consistent with the final stages of prey loca-

lization and capture.

Almost a third of all creaks (32.1%) ended within 10 s of

an inflection point during the bottom phase of dives, which

is far more than predicted by chance alignment of these

behavioural sequences. Although dive inflections were just

as likely to occur in the central 50% depth band as in the

two extreme 25% bands of the bottom phase of a dive,

creaks were twice as likely to occur within 10 s of an inflec-

tion point when the whale was in the extreme depth bands.

Although dive inflections may have multiple functions,

these findings suggest that creaks often mark the end of a

period of directed movement, expected during the

approach or pursuit of prey (Whitehead 2003). We restric-

ted our analysis to vertical as opposed to horizontal excur-

sions by the whale during the bottom phase, because the

tag records depth with great precision. It is possible that the

whale also made horizontal excursions during the bottom

phase of dives that were not considered in this analysis.

Creaks were equally likely to be associated with up versus

down inflections, suggesting that the whale foraged in both

directions in the water column.

As it moves toward a detected prey item, a sperm whale

will move vertically to some extent depending on its

approach angle. At the end of one or more approaches, the

whale may end up outside its preferred depth layer and turn

back, creating a dive inflection. This interpretation is sup-

ported by the result that creaks are twice as likely to be

associated with dive-inflection points when they occur in

the outer 50% depth range covered during the bottom

phase of the dive. The whale could either turn and redirect

its tens of tons of mass back to the layer independent of the

movements required to capture prey, or it may save energy

if it can orient its feeding manoeuvres during the creak in

order to head back towards the middle of the layer (an
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Figure 4. Deviation in the duration of the bottom phase
versus deviation in creak rate during the bottom phase. The
mean rate and duration for each whale were subtracted from
its dives. The first dive after tag attachment was eliminated
from this analysis, so we included only 79 dives from 15
whales from each of which we recorded three or more dives.
The positive slope of the regression line (0.18, F1, 63 ¼ 9:14,
p < 0:01) demonstrates that spermwhales remained in the
bottom phase of dives for longer when their creak rates were
higher.
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equal proportion of creaks occurred in the 10 s before and

after an inflection point). Approximately one-third of

creaks associated with inflection points occur within the

central 50% depth range. In this case, the depth inflection

point may reflect the whale turning to remain in the highest

density of prey or turning toward a detected prey target.

After the whale manoeuvres to capture a prey item, it may

save energy by simply continuing along the resulting trajec-

tory when it is within its preferred layer. Our understanding

of the function of sperm whale movements during foraging

will remain uncertain until more information on the distri-

bution and behaviour of their prey is available.

The third line of evidence associating creaks with forag-

ing is that the sperm whales in our study increased the

duration of time spent at the foraging depth of dives when

creak rates were higher. The 15 whales that made three or

more dives increased the duration of the bottom phase of

dives by 1.8min for an increase in creak rate of

10 creaks h�1. This result confirms and extends those of

Jaquet et al. (2001) with a larger dataset, and we were also

able to subtract descent and ascent time from dive dur-

ation. This is important to control for the possibility that

creaks are simply produced at a constant rate during the

bottom phase of dives for some function other than prey

capture. If this were the case, creak rate would not be corre-

lated with bottom-phase duration, but longer dives could

have a higher creak rate simply owing to a greater pro-

portion of dive time spent in the bottom phase. Instead, we

demonstrate that sperm whales modulate the duration of

the bottom phase itself with creak rate.

Though statistically significant, the effect of creak rate

on bottom time was small: a 31% increase above the aver-

age bottom phase creak rate increased bottom time by only

7%. Thompson & Fedak (2001) suggested that patch qual-

ity might have a reduced influence on deep-diving foragers

as the benefit of spending more time in a high-quality patch

is offset by longer travel times to depth. Alternatively, if the

whales have used their oxygen store and begun anaerobic

metabolism, the benefit of remaining in a high-quality

patch may be rapidly exceeded by the cost of remaining at

depth. A final consideration is that the dive duration of

females may be modulated by social demands such as the

care of young (e.g.Whitehead 1996).

One objection to the hypothesis that creaks are used in

prey capture is that the number of creaks detected from the

surface seems too low to provide adequate food resources

for sperm whales (Madsen et al. 2002b). Based on the heart

weight of sperm whales and the food value of cephalopod

prey, Lockyer (1981) estimated that sperm whales should

consume ca. 3% of their body weight in squid per day. The

Gulf ofMexico whales were typically estimated to weigh ca.

10MT, while the larger males in the Mediterranean were

ca. 25MT (Miller et al. 2004a). Over our entire sample,

sperm whales were engaged in a deep dive for a total of 86 h

out of 129 h when a tag was attached (66% of time). This is

similar to the summary of Whitehead (2003) in which

sperm whales in most locations forage for ca. 75% of the

time, of which less than 20% is spent at the surface.

Though there was variability across dives and individuals,

the average creak rate per dive was 20.1 and 22.4

creaks h�1 in the Mediterranean and Gulf of Mexico,

respectively, after eliminating the first dive after tagging.
Proc. R. Soc. Lond.B (2004)
Thus, the number of creaks produced daily can be esti-

mated at ca. 320 in the Mediterranean and ca. 360 in the

Gulf of Mexico. To match the 3% prediction, average prey

size in the Gulf of Mexico should be ca. 0.8 kg, whereas

those in the Mediterranean should be 2.3 kg assuming that

each creak led to a successful prey capture. These size esti-

mates are within the range of sizes of typical squid prey

consumed by sperm whales worldwide, but the predicted

prey size for the Mediterranean is somewhat large com-

pared with that in most studies (see table 2.2 in Whitehead

(2003)). Given the inherent inaccuracy of estimated feed-

ing requirements of a species for which metabolic rates

have never been measured (Lavigne et al. 1986), the daily

creak rates are not inconsistent with the probable feeding

requirements of sperm whales, even if not every creak leads

to successful prey capture.

This study describes the best current information on the

behaviour of only half of the predator–prey interaction in

relation to creak production. Ideally, we would directly

observe both predator and prey to demonstrate a foraging

event and show how the behaviour of the predator relates

to prey capture (e.g. Nowacek 2002). Though echoes from

prey targets have been detected on tags attached to beaked

whales, none are apparent on sperm whales (Johnson et al.

2004). This is probably owing to the relatively large head of

the sperm whale, which blocks the sound path from a prey

target near the mouth to the tag on the whale’s back. Direct

detection of sperm whale prey during feeding is ultimately

necessary to estimate the percentage of creaks that result in

successful prey capture, and also to identify whether prey is

taken without the whale producing a creak sound. More

information on the diet of sperm whales in these oceans is

also needed to more accurately estimate the ecological role

of sperm whales in those ecosystems (Gannier et al. 2002;

Roberts 2003).

It would be a useful research tool to be able to identify

feeding events based on an acoustic cue provided by forag-

ing sperm whales. Other possible methods to observe prey

capture would be difficult at best, and expensive to carry

out in any routine fashion. By tracking the number of feed-

ing events that occur, we can extrapolate an animal’s

feeding rates, which could be used to test whether def-

ecation rates accurately reflect feeding success (Whitehead

et al. 1989). Overall feeding rates measured by defecation

are linked to oceanographic conditions (reviewed inWhite-

head (2003)), but use of creaks would allow individual

variation in feeding success to be measured and related to

animal condition or the presence of sources of behavioural

disturbance. Food intake per creak produced is likely to

vary by prey type owing to variation in prey size, success

rate of creaks and the proportion of prey taken in the

absence of creaks. Nonetheless, our results suggest that

overall creak rates are an indicator of feeding success across

a series of successive dives, during which prey type should

be fairly stable. Unfortunately, it appears to be difficult to

detect creaks from the surface. Jaquet et al. (2001) reported

that it was often difficult to distinguish creaks from pauses

when recording isolated diving males from the surface.

Madsen et al. (2002b) found that creaks could often be

identified from single animals in apparent pauses through

careful acoustic filtering and amplification. Acoustic tags

clearly provide a means to detect creaks along with concur-

rent feeding behaviour. With careful ground-truthing,
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remote observation of creaks may prove to be a fruitful

means tomonitor the feeding success of spermwhales.

This study provides strong support for the hypothesis

that sperm whales use echolocation to capture prey, and

that creaks function in a manner analogous to terminal

buzzes during echolocation by foraging bats and other

odontocete cetaceans. The increase in the click repetition

rate probably reflects the need for more rapid updating on

the position of prey during the final capture phase than is

obtained with the 0.5–2 s�1 rate of regular clicks. Of

course, creaks may have other functions in addition to

strictly echolocation. Sounds produced by an approaching

sperm whale might stimulate prey to move, which might

make them visible via stimulated bioluminescence

(Fristrup & Harbison 2002). Creaks may also play a role in

communication between spermwhales since they represent

a cue of feeding to conspecifics in the area (Barclay 1982;

Gordon &Tyack 2002).
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