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Mixing and entrainment in hydraulically driven
stratified sill flows
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(Received 6 March 2003 and in revised form 21 May 2004)

The investigation involves the hydraulic behaviour of a dense layer of fluid flowing
over an obstacle and subject to entrainment of mass and momentum from a
dynamically inactive (but possibly moving) overlying fluid. An approach based on
the use of reduced gravity, shallow-water theory with a cross-interface entrainment
velocity is compared with numerical simulations based on a model with continuously
varying stratification and velocity. The locations of critical flow (hydraulic control)
in the continuous model are estimated by observing the direction of propagation of
small-amplitude long-wave disturbances introduced into the flow field. Although some
of the trends predicted by the shallow-water model are observed in the continuous
model, the agreement between the interface profiles and the position of critical flow
is quantitatively poor. A reformulation of the equations governing the continuous
flow suggests that the reduced gravity model systematically underestimates inertia
and overestimates buoyancy. These differences are quantified by shape coefficients
that measure the vertical non-uniformities of the density and horizontal velocity that
arise, in part, by incomplete mixing of entrained mass and momentum over the lower-
layer depth. Under conditions of self-similarity (as in Wood’s similarity solution) the
shape coefficients are constant and the formulation determines a new criterion for
and location of critical flow. This location generally lies upstream of the critical
section predicted by the reduced-gravity model. Self-similarity is not observed in the
numerically generated flow, but the observed critical section continues to lie upstream
of the location predicted by the reduced gravity model. The factors influencing this
result are explored.

1. Introduction
The concept of hydraulic control plays an enormous role in understanding flow

through a constriction and the influence it has on the basin circulation at both
ends. Hydraulic theory was originally developed for engineering purposes, but with
Stommel & Farmer’s (1953) study of estuary flow and Long’s (1954) towing experi-
ments, this phenomenon gained the attention of oceanographers and meteorologists.
An appealing thought in current geophysical research is that hydraulic control may
exist on the boundaries between the deep basins and marginal seas of the world’s
oceans and so be applied in the study of global thermohaline circulation and climate
variability. Thus, from measurements of stratification in the Norwegian Sea, Hansen,
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Turrell & Østerhus (2001) have made suggestions about long-term changes of the
dense flow of Arctic water into the North Atlantic.

Assumptions often made in hydraulic theories include the neglect of friction and
mixing and that the water column consists of a number of layers, each having uniform
density and velocity. Important results have been obtained in this way, including the
significance of the composite Froude number and the concept of multiple controls
(e.g. Farmer & Armi 1986). Some elementary effects of friction have been discussed by
Pratt (1986) who showed that simple quadratic bottom drag forces the flow towards
criticality and displaces the control section downstream of its usual location (such
as a sill or narrows). In naturally occurring flows, mixing can also play an important
role. Prominent examples are the exchange flow through the Strait of Gibraltar, in
which an intermediate layer is formed by mixing between the inflow and outflow
(Bray, Ochoa & Kinder 1995), and the Denmark Strait overflow, which is diluted as it
descends into the North Atlantic (e.g. Käse & Oschlies 2000; Girton, Sanford & Käse
2001).

These examples show how mixing works to alter vertical gradients and induce
changes in the flow properties in the along-channel direction. In an attempt to
capture the essence of these effects while retaining the simplicity of layer models,
some investigators introduce a cross-interface entrainment velocity that carries mass
and momentum from one layer to the next. While quite common in studies of general
circulation (e.g. Pedlosky 1996, chap. 3), this formulation has not been widely used in
hydraulic theory. Gerdes, Garrett & Farmer (2002) have discussed the consequences
of an entrainment velocity for a single active layer. Fluid is allowed to enter the
layer across its upper interface and it is assumed that the anomalous density and
momentum are instantly mixed over the thickness of the layer. The active layer thus
remains vertically homogeneous in density and horizontal velocity, although both
quantities are allowed to vary in the along-channel direction. For the case in which
the upper layer is motionless, it is shown that entrainment acts in a similar way
to bottom friction, forcing the flow toward criticality and shifting the control point
downstream from a sill or narrows. (These tendencies may change, however, if the
upper layer is in motion.)

In reality, the mixing process associated with entrainment may not be complete.
Fluid may be mixed over part of the water column, but not necessarily all the way to
the bottom or instantaneously. In the Bab al Mandab, which is thought to contain
significant mixing over its length, there exists smoothly varying density and velocity
over the water column and no distinct interface (Murray & Johns 1997; Pratt et al.
1999, 2000). Such observations call into question the use of layer models. The purpose
of this work is to evaluate the performance of a layer (slab) model in the presence of
entrainment and incomplete vertical mixing. We will concentrate on hydraulically
driven flows, which differ from those broader flows normally associated with
general ocean circulation in having much stronger inertial effects and more intense
mixing.

Some insight into the questions raised above is provided by Garrett & Gerdes
(2003) who looked into the hydraulics of a homogeneous two-dimensional flow with
vertical shear (and no entrainment). In the absence of friction, it is shown that critical
flow occurs at the sill of an obstacle, as with a slab model. The critical condition itself
can be expressed as an integral over the layer depth d:∫ h+d

h

g

u2
dz = 1.
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It can be shown from this formula that the depth average velocity ū is � (gd)1/2, so
that the flow at the control section appears by traditional measure to be supercritical.
The effects of bottom drag and internal friction are discussed by Garrett (2004) who
argues that the critical condition is unchanged, but that the position of the control
section is shifted to a point downstream of the sill. Bottom drag forces the control
section downstream whereas internal friction does the opposite. In the limit of large
viscosity, the internal flow is rendered slab-like and the control-section position is
completely determined by bottom drag. In this case, the control section is predicted to
lie where the bottom slope equals the negative of the quadratic drag coefficient, also
the result obtained from a pure slab model (Pratt 1986). For weak internal friction the
flow becomes strongly sheared and the effect of internal dissipation on the position
of the control section becomes as strong as that of bottom drag. In this case, the
control section is forced back upstream to near the sill. We will revisit this last effect
in the discussion of our results.

To gain insight into the utility of the layer model with entrainment, we compare
predictions based on this approach to numerical simulations based on a model with
continuous stratification. We first review (§ § 2 and 3) the results of Gerdes et al. (2002)
and show some examples constructed by applying their theory with the entrainment
parameterization of Ellison & Turner (1959). We next present a series of numerical
results from the continuous model showing non-hydrostatic continuously stratified
exchange flow over an obstacle (§ 4). These flows are set up through a ‘lock-exchange’
experiment, configured to produce an overflow across the sill with a relatively inactive
reverse flow above. (An independent barotropic flow can be added to increase the
strength of the upper-layer flow.) Non-hydrostatic effects are allowed in order to
study variations in the aspect ratio of the model, but most runs involve small ratios
and are nearly hydrostatic. The critical section for the overflow is estimated (following
Hogg, Ivey & Winters 2001a) by introducing small-amplitude waves into the fluid
at different locations and determining the point at which upstream propagation is
cut off. We then attempt to fit the overflow to a layer representation by defining an
upper interface that bounds the overflowing fluid. The shape of this interface and the
location of the critical section are compared to the results obtained by integrating
the equations of Gerdes et al. (2002) beginning with common upstream conditions.
Although predicted trends are found in the continuous model, substantial quantitative
disagreement is found (§ 5) between the two solutions in terms of the shape of the
interface and the position of the control section.

We attempt to isolate the source of the disagreement between the continuous and
layer model by reformulating the shallow-water equations, taking into account vertical
variations of velocity and density within the active layer (§ 6). The departure from
the ordinary shallow-water equations is contained in three ‘shape’ parameters α, β

and γ that depend on the vertical profiles of horizontal velocity and density and that
vary with the along-channel coordinate. These parameters appear as coefficients in
the shallow-water equations for the vertically averaged properties of the active layer.
It can be proved that α � 1 and (for hydrostatically stable stratification) that β � 1,
and these in turn imply that the flow tends to be more inertial than what would be
indicated by the vertical mean velocity and density. Shallow-water theory is recovered
when α = β = γ =1, but it is shown that significant departures from this condition
occur in the numerical simulations and in some geophysical applications (§ 7). In
other words, the effects of vertically varying density and horizontal velocity lead to
important changes in the budgets for momentum and mass that make the flow more
inertial than would be expected from ordinary shallow-water theory. In addition,
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Figure 1. Definition sketch showing a deep homogeneous layer flowing beneath an
inactive upper layer.

it is shown that under conditions of constant α, β and γ , the critical condition is
F̄ 2 = β/α � 1, where F̄ is the Froude number based on the depth-averaged flow. The
section where this condition occurs lies upstream of the location at which F̄ 2 = 1.
Constant α, β and γ occur under conditions of self-similarity, which is not found
in the simulations, but can occur under the conditions described by Wood (1968).
As it turns out, the location predicted by this criterion lies quite close to the critical
section identified in the full numerical simulations (§ 6). The findings of Garrett (2004)
suggest that agreement could be fortuitous, a consequence of internal frictional effects
not present in the slab model.

2. Governing equations for the layer system
The Gerdes et al. (2002) formulation applies to a hydrostatic Boussinesq flow in a

deep layer that is fed by entrainment from an overlying dynamically inactive upper
layer (figure 1). The flow is confined to a channel with bottom elevation z = h(x)
and width that is assumed here to be constant. The upper layer (layer 1) may
have a non-zero velocity u1, but this velocity is spatially uniform and unaffected by
changes in the lower layer. The entrainment process is represented by an (positive
downwards) entrainment velocity we that carries mass and momentum across the
interface separating the layers. We consider cases of entrainment into the lower layer
(we > 0), but not detrainment from the lower layer (we < 0). Momentum and mass
carried across the interface are assumed to mix instantaneously over the depth of
the lower layer, so that the lower-layer density ρ2 and horizontal velocity u2 remain
vertically uniform. The lower-layer density will, however, vary horizontally, as will
the value of reduced gravity g′(x) = g(ρ2(x) − ρ1)/ρ1.

Under these conditions, the evolution of the lower-layer velocity, thickness (d), and
Froude number (F = u2/

√
g′d) are given by (Gerdes et al. 2002)

du2

dx
=

F 2

(1 − F 2)d

{
we

(
1 +

1

2F 2
− u1

u2

)
+

u2

F 2

dh

dx

}
, (2.1)

d(d)

dx
=

F 2

(1 − F 2)

{
2
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u2

(
1

4F 2
+

u1

2u2

− 1

)
− 1

F 2

dh

dx

}
, (2.2)
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Figure 2. Solutions to (2.1)–(2.3) in terms of interface elevation for flow with u1 = 0, we = 0,
u2d = 1 and with various upstream depths. Subcritical (supercritical) solutions are indicated by
solid (dashed) curves. The topography consists of the single Gaussian shaped obstacle shown
as the lowest curve. All quantities are non-dimensional.

and

dF 2

dx
=

3F 2

(1 − F 2)d

{
we

u2

(
F 2 +

1

2
− u1

u2

F 2

)
+

dh

dx

}
. (2.3)

Let hs represent the obstacle height, L the obstacle length, and g′
0 the value of g′

at some upstream section x = x0. Then the above set of dimensional equations may
be considered non-dimensional if the following replacements are made:

x → x/L, g′ → g′
0, (d, h) → (d, h)/hs,

(u1, u2) → (u1, u2)/(g
′
0hs)

1/2; we → weL/(g′
0h

3
s )

1/2.

The non-dimensional version will be adopted hereinafter and therefore the obstacle
height and length and the upstream value of g′ will all be considered unity.

To illustrate some of the properties of solutions to the above, we will consider the
flow over a simple obstacle (figure 1). The values u2(x0) = u0, d(x0) = d0, and F (x0) = F0

are specified at an upstream location x = x0 and (2.1)–(2.3) are integrated to find the
downstream solution. If this is done for the case we = 0, a set of standard hydraulic
solutions are obtained (figure 2). The values of u2d, g′( = 1) and the Bernoulli function
u2

2/2+g′d +g′h are conserved for each solution. For the particular family of solutions
shown, the volume flow rate per unit width u0d0 has been set to unity and d0 is
varied. For d0 > 2.41, the solutions are completely subcritical, meaning that u2 is
everywhere less than the speed (

√
g′d) of long gravity waves. As shown in figure 2,

the interface elevation dips down and then rises as the fluid passes the obstacle. A
family of supercritical solutions (u2 >

√
g′d) exists for d0 < 0.5 and these experience a

rise in interface elevation as the obstacle is passed. Also present are the hydraulically
controlled solution (d0 = 2.41 . . .), which is subcritical upstream and supercritical
downstream of the obstacle, and its (unstable) mirror image for d0 = 0.5. A more
complete review of the properties of these solutions appears in Baines (1995).

When entrainment or bottom drag is present in the slab model, it is natural to ask
whether u2−(g′d)1/2 remains the wave speed for which hydraulic properties are judged.
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Although u = (g′d)1/2 would appear, on the basis of (2.1)–(2.3), to be the correct
critical condition, it has not yet been shown that this corresponds to the presence of
stationary waves. Moreover, Garrett & Gerdes (2003) argue that the introduction
of non-conservative processes in a shallow-water slab model gives rise to a family
of dispersive long waves, some of which have upstream group velocity exceeding
u − (g′d)1/2. This result would appear to cloud the traditional idea that upstream
propagation cannot occur at a control section. Although their result is based on a
model with quadratic bottom drag, the same issues are raised when entrainment is
present.

These issues can be laid to rest by considering the full time-dependent equations
for a shallow-layer subject to quadratic bottom drag and entrainment (Appendix A).
Their characteristic form is[

∂

∂t
+

(
u2 ± (g′d)1/2

) ∂

∂x

](
u2 ± 2(g′d)1/2

)
∓

(
d

g′

)1/2[
∂

∂t
+

(
u2 ± (g′d)1/2

) ∂

∂x

]
g′

= −g′ dh

dx
− Cd

u2|u2|
d

+ we

[
u1 − u2

d
+

g′

2u2

±
(

g′

d

)1/2
]

(2.4)

and [
∂

∂t
+ u2

∂

∂x

]
g′ = −g′we

d
, (2.5)

where Cd is the bottom drag coefficient. There are three characteristic speeds:
u2 ± (g′d)1/2 and u2, and a sketch of the corresponding characteristic curves for a
hypothetical steady flow over an obstacle appears in figure 3. These curves represent
the paths that small-amplitude perturbations of the steady flow would take in the
(x, t)-plane. The dark solid curves correspond to signals with speed u2 − (g′d)1/2,
while the dashed and faint solid curves correspond to speeds u2 +(g′d)1/2, and u2. The
latter two have positive tilt everywhere, corresponding to downstream propagation
of information. It is assumed that u2 = (g′d)1/2 at a location slightly downstream of
the sill and this is represented by a vertical solid curve in the (x, t)-plane. Upstream
propagation is possible only to the left of this line.

The above formulation is made possible because bottom drag and entrainment do
not involve x- or t-derivatives of the dependent variables. Under these conditions,
information propagates along characteristic curves that are defined in the same way
as if the flow were conservative. The effect of non-conservation is that the signals
themselves are modified as they propagate. Even so, the solution at any location
upstream of the sill is influenced only by information that exists upstream of the
sill. For example, the solution at location B (figure 3) is influenced only by initial
conditions lying along AC. It would appear then that u2 ± (g′d)1/2 and u2 are the only
signals speeds relevant to the hydraulics of the flow and that apparent dispersive
behaviour as identified by Garrett & Gerdes (2003) is really a manifestation of the
alteration of information along the signal paths by entrainment, bottom topography
or, in their case, bottom friction.

A related principle that can guide the selection of wavelength relevant to hydraulic
criticality is that of non-dispersion. When forced locally, a stationary non-dispersive
wave is unable to transport energy away from the site of forcing, resulting in resonance.
This process is evident in the right-hand sides of (2.1)–(2.3), which indicate resonant
excitation when the speed u2 − (g′d)1/2 of a non-dispersive wave becomes zero.
Resonant growth is avoided only when the sum of the forcing terms (the numerators)
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Figure 3. The lower frame shows a hydraulically controlled flow in which entrainment and/or
bottom drag have caused the critical section to be located downstream of the sill. The upper
frame shows the characteristic curves for the steady flow, also the paths in the (x, t)-plane
along which small amplitude disturbances to the steady flow would travel. The characteristic
speeds are given by u2 − (g′d)1/2 (thick, solid curves) u2 + (g′d)1/2 (dashed) and u2 (thin, solid).

add up to zero:

we

u2

(
3

2
− u1

u2

)
= −dh

dx
(F 2 = 1), (2.6)

which follows from any of (2.1)–(2.3). If we = 0, then the only momentum source is
the horizontal component of the bottom pressure, here dh/dx. Critical flow must
occur where this slope is zero, at the sill in figure 1. Entrainment provides a source
of mass and of momentum (if u1 �= u2) to the lower layer. If u1 is non-positive,
critical flow must occur on the downslope dh/dx < 0 of the obstacle. Critical flow
can occur on the upslope dh/dx > 0 of the obstacle if the upper-layer velocity is
positive and sufficiently strong (u1 > 3u2/2). If the magnitude of the left-hand side
of (2.6) is everywhere larger than the maximum bottom slope, then critical flow will
be completely expunged from the problem and no hydraulic transitions will occur.
(Hogg et al. (2001a) have shown that hydraulic behaviour is expunged from a viscous,
stratified, exchange flow for sufficiently small values of the parameter g′h5

s /ν
2L2 where
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ν is the vertical eddy vicosity. If we interpret
√

g′hs as a scale for velocity an ν/hs as
a scale for we then the condition (2.6) leads to a similar conclusion.)

3. Examples of solutions with Ellison & Turner entrainment
A standard parameterization for the entrainment velocity is that due to Ellison &

Turner (1959, hereinafter referred to as ET). In the present non-dimensional units, we

is given by

we =


|u1 − u2| L

hs

(
0.08 − 0.1Ri

1 + 5Ri

)
(Ri < 0.8),

0 (Ri � 0.8),

(3.1)

where

Ri = F −2

(
u1

u2

− 1

)−2

. (3.2)

If the upper layer is motionless (u1 = 0) then F =R−2
i and the requirement Ri < 0.8

means that entrainment only occurs for supercritical flows.
Use of the ET expression for we in (2.6) leads to a more specific constraint on the

position of a critical section:

dh

dx
=


−

∣∣∣u1

u2

− 1
∣∣∣(3

2
− u1

u2

)
L

hs

[
0.08(u1/u2 − 1)2 − 0.1

(u1/u2 − 1)2 + 5.0

]
(Ri < 0.8),

0 (Ri � 0.8).

(3.3)

According to (3.2) (with F = 1), the condition Ri � 0.8 is satisfied if u1/u2 > 2.12 or
if u1/u2 < −0.12. In the first case, the upper layer flows in the same direction and at
a greater speed than the lower-layer critical flow, and the critical section lies on the
upslope of the obstacle. In the second case, the upper-layer velocity is negative and
the critical section lies on the downslope of the obstacle.

It is interesting to observe how the conservative solutions of figure 2 are altered
when ET entrainment is introduced. To this end we have calculated a family of
solutions by fixing the upstream (x0 = −3) values of u2d and of g′ at unity and
varying the upstream value of d , as before. The value of L/hs is fixed at 5 and
solutions are obtained by integrating the dimensionless versions of (2.1)–(2.3) from
x = −3 in the direction of positive x. When the upper layer is motionless (u1 = 0) the
subcritical (solid curves) solutions remain unchanged from the previous case, as shown
by the curves of interface elevation (figure 4a) and Froude number (figure 4b). On
the other hand, the supercritical (dashed) solutions such as the one with d(−3) = 0.05
experience rapid increases in depth owing to entrainment.

Critical flow at the sill is obtained when the upstream flow is subcritical and
has value d(−3) ∼= 2.41 or when the upstream flow is supercritical and has value
d(−3) ∼= 0.26. In each case, the subcritical and supercritical branches of the solution
that occur downstream of the critical section are shown. The appropriate choice of
downstream solution is the one that allows the fluid to pass smoothly through the
critical section. For example, we would follow the subcritical (solid) curve beginning at
d(−3) ∼= 2.41 and continue on to the supercritical (dashed) branch downstream of the
sill. The subcritical downstream branch has an upstream continuation with values u2d

and g′ different from those used to generate the family of curves in figure 3(a). This
solution is unstable, as is the supercritical-to-subcritical solution with d(−3) ∼= 0.26.
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Figure 4. (a) Same as figure 2 except that we is given by (3.1) with L/hs = 5. (b) The
Froude numbers F = (g′d)1/2 corresponding to the solutions shown in (a).

Intersections between different solution curves in figure 4(a) do not carry the
same significance as would be the case in a conservative system. In the latter,
intersections imply the existence of two solutions with the same depth and fluxes,
but different interface slopes. Such behaviour is indicative of critical flow since it
implies that stationary disturbances can exist at the section in question. An example
is the intersection point corresponding to critical sill flow in figure 2. For the (non-
conservative) solutions shown in figure 4(a), an intersection implies only that the
depths of the two solutions are equal, not necessarily the fluxes or values of g′.
For example, the intersection between the dashed curves near x = −1.9 involves
two solutions with identical depths but different Froude numbers (as shown in the
figure 4b).

As pointed out by Gerdes et al. (2002), entrainment that occurs in the presence
of non-positive u1 tends to push the flows towards criticality. This property can be
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Figure 5. As figure 4 except that u1 = −1.

seen by inspection of (2.3), which shows that ∂F 2/∂x < 0 (>0) when F 2 > 1(<1), not
accounting for the influence of topography and provided u1/u2 � 0. This behaviour is
confirmed by the Froude number behaviour of the solutions (figure 4b).

The previous case has u1 = 0, so entrainment occurs only when the flow is
supercritical. An important consequence is that critical flow can occur only at the sill.
We now consider two cases with finite upper velocity, u1 = −1 (figure 5) and u1 = 3
(figure 6). Inspection of figure 5(a) shows that critical transitions occur downstream
of the sill as predicted by (3.3). As in the previous case, entrainment tends to push the
solutions towards a critical state (figure 5b) and, in the case of some of the supercritical
curves, this results in the formation of an infinite interface slope corresponding to a
hydraulic jump. Jumps are represented in the figure by vertical terminations of the
dashed curves.

The case of u1 > 0 (figure 6) is less straightforward because it is more difficult
to generalize the tendency for entrainment to push the flow towards or away from
criticality. According to (2.3), the tendency is to force the flow away from the critical
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Figure 6. As figure 4 except that u1 = 3.

state if u1 is sufficiently large that

(1 − u1/u2)F
2 < − 1

2
.

Also, (2.6) shows that displacement of the critical section upstream requires
u1/u2 > 3/2. The solutions shown in figure 6 were computed with a strong upper
layer velocity (u2 = 3) resulting in satisfaction of both conditions. The traditional,
hydraulically controlled solution begins with upstream depth ∼= 1.5 and remains
subcritical until x ∼= −0.2 where a transition to supercritical flow occurs (figure 6a).
As it turns out, there is another control section right at the upstream boundary
x = −3 where the depth is ∼= 1. Sub- and supercritical solution curves branch from
this point, but only the supercritical branch is continuous across the entire obstacle.
The Froude number curves of figure 6(b) show a tendency for solutions to move away
from criticality, except where topography may reverse this trend.
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4. Solutions based on a numerical model with continuous stratification
To what extent do the solutions of the previous section reproduce the characteristics

of continuously stratified deep overflows when the vertical mixing of entrained fluid
is incomplete? We seek a limited answer to this question by performing a set of
numerical experiments based on the incompressible Boussinesq equations in two
dimensions:

∂U
∂t

+ (U · ∇)U = − 1

ρ0

∇p′ − g′ +
1

ρ0

∇ · (Km∇U), (4.1)

∂g′

∂t
+ U · ∇g′ = ∇ · (Ks∇g′), (4.2)

and

∇ · U = 0, (4.3)

in which U is the velocity vector, ρ0 is the reference density, and g′ and p′ are
the perturbation quantities of the density and the pressure, respectively, all variables
according to the non-dimensionalization introduced in § 2. Km and Ks are the diffusion
coefficients for momentum and density, respectively. The numerical scheme used to
solve these equations is the second-order projection method described by Bell et al.
(1989a, b) and Bell & Marcus (1992). Essentially, the projection is to estimate U at
the new time step n+ 1 using the pressure gradient calculated from the preceding
half time step n − 1/2, i.e. the pressure gradient is taken as a source term in (4.1).
This estimate for U will be divergent, and so the non-divergent part, obtained as
the curl of U , is removed. This part is then used to find the perturbation pressure
gradient at the new half time step n+ 1/2. The diffusion coefficients Km and Ks are
calculated according to Smagorinsky (1963). The Smagorinsky constant, which is used
to calculate Km from the computed velocity and density gradients, is taken to be 0.17
(Winters & Seim 2000). Also following Winters & Seim, the turbulent Prandtl number
is taken as unity, and so Km = Ks .

The model domain is bounded by rigid impermeable walls at the top and bottom
and has open boundaries at the ends. The top is horizontal, and the bottom includes
a topographic obstacle described by

h = exp

(
−

(
L

hs

x

)2
)

, (4.4)

in which h is scaled by hs, x by L, and where hs/L is the obstacle aspect ratio.
At the top and the bottom we operate with a slip velocity, in accordance with
the neglect of surface drag in (2.1)–(2.3). The computational domain consists of an
orthogonal curvilinear grid following the topography. It is created from the model
domain by the method described by Ives & Zacharias (1987). This method conformally
maps grid points designated on the boundaries of the model domain (in Cartesian
coordinates) onto a rectangle. Then, the interior points of the grid are calculated using
a Poisson solver technique. For the present purpose, the grid points on the vertical
boundaries are distributed so that a high density of grid points is obtained in the
lower part of the physical domain, which is where the active layer of fluid is found.
Along the top and bottom boundary, the grid points are distributed with constant
spacing.

We have used different computational domains, all with 50 grid points in the
vertical and 1000 grid points in the horizontal, but with different lengths and heights
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of the obstacle. In every case, the total length of the domain was 10 times or
more the length of the obstacle. The height of the obstacle was either 0.05 or
0.1 of the total height of the domain. With lower-layer depths up to twice the
obstacle height, we have kept the lower layer approximately decoupled from the upper
layer.

The initial conditions for all our model runs consist of a two-layer stratification
throughout the model domain. To the left of the obstacle, the lower-layer depth is
set to twice the obstacle height, and to the right the lower layer is kept slightly
below the crest of the obstacle. Further, both fluids are stagnant initially, and so
these experiments resemble a dam-break problem. In case of inflow through the open
boundaries (resulting from adjustments within the model domain or a barotropic flow
through it), the densities assigned initially at these places are used. Sponge layers are
also applied at both ends in order to damp reflections from the open boundaries.
Finally, we control the barotropic flow component by prescribing the value of the
streamfunction on the upper boundary.

All model results presented are of flows that have developed to steady state
and are smooth with no turbulence. In times immediately after initiation of the
flow, however, overturning Kelvin–Helmholtz billows are present and resolved.
These billows are subsequently dissipated by the mixing scheme, leaving the
smooth steady flow. The choice of the non-hydrostatic model and the mixing
scheme was made partly for convenience, but also to maintain a connection
with the modelling of Hogg, Winters & Ivey (2001b). However, the choice of
model is not crucial. Any model that produces incomplete mixing of density and
momentum through the lower layer and from which the vertical entrainment can
be determined is adequate to test the central ideas. Whether the model produces
more (or less) mixing than would occur in a laboratory or oceanographic flow
is of secondary importance. As it turns out, the redistribution of momentum and
velocity as a result of mixing produced in the model is qualitatively similar to the
distributions observed in the Romanche fracture zone overflow (§ 7), but this is not by
design.

The model is allowed to run roughly until the disturbances from the initial
dam break have reached the ends of the domain. At this time, the flow becomes
nearly steady in the vicinity of the obstacle. Three different obstacle aspect ratios
are used (hs/L = 1.41 × 10−1, 3.54 × 10−2 and 1.77 × 10−2) and the upper-layer
velocity is varied within each case by prescribing the barotropic flow. The main
restriction on the barotropic component is that it should not be so large as to
make the upper layer dynamically active. We impose this restriction by requiring
that the upper-layer Froude number must remain much smaller than the lower-
layer Froude number. By performing a suite of experiments for each hs/L, we
map out a parameter space in which the general character of the final flow can
be categorized. One quantity of particular interest is the location of a critical
section.

Consider an example of the model output for a run with an aspect ratio
hs/L = 1.41 × 10−1, a domain height of 20 hs and with zero barotropic flow (figure 7).
The overall pattern consists of a positive lower level flow that spills over the obstacle.
The overflow underlies a reverse flow with a velocity u1 that is everywhere much less
in magnitude than u2. Entrainment occurs where the lower layer accelerates and flows
over the obstacle, as shown in the pattern of subducted streamlines (figure 7c). The
effect of the entrainment on the distributions of density and velocity can be seen in
figures 7(a) and 7(b), respectively. For the density, the interfacial area between the
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Figure 7. Output of the non-hydrostatic model run for an obstacle aspect ratio at 1.41 × 10−1

and an upper-layer flow at almost zero. (a) Contours of density anomaly between the upper
and the lower layer; (b) contours of speed; (c) the streamlines. All units are non-dimensional
according to § 2.

two homogeneous layers increases gradually and ends up extending all the way to the
bottom. For the velocity, as the flow approaches the obstacle, slightly higher values
are found in the upper part of the lower layer. This seems to change as entrainment
increases; the highest velocities gradually being found near the bottom. Note that the
lower layer is not at all homogeneous in density and velocity as entrainment takes
place.

In order to diagnose the model output in the frame of reference provided by (2.1)–
(2.3), a layered structure is defined. The interface is defined as the location of the
isopycnal g′ = 0.01 (in the non-dimensional formulation), which is close to the density
of the upper layer, and so practically all parts of the fluid that have undergone mixing
will be considered as belonging to the lower layer. We also attempted to define an
interface based on the level of zero horizontal velocity, but the resulting contour
was quite irregular. Having defined the interface, the mean velocity ū2, the mean
reduced gravity ḡ′, and the Froude number F̄ for the lower layer are calculated as
follows:

ū2 =
1

d

∫ h+d

h

u2 dz, (4.5)

ḡ′ =
1

d

∫ h+d

h

g′ dz, (4.6)
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Figure 8. A layered interpretation of the model output shown in figure 7. (a) The height of
the obstacle (thick line) and the interface elevation (thin line); (b) mean velocity, ū2 (solid line),
the mean density anomaly, ρ̄ ′ (long dashes), and the entrainment velocity, we (short dashes –
use axis on the right); (c) the Froude number, F̄ 2 = ū2

2/(ḡ
′d) (thick line), and β/α (solid line),

defined in § 6.

and

F̄ 2 =
ū2

2

ḡ′d
. (4.7)

The entrainment velocity (we) is calculated using conservation of volume for the lower
layer and it is verified that the result closely approximates to the vertical velocity across
the interface produced by the model. When determining the location of the interface,
noise arises in the along-channel direction owing to the discrete representation of the
density field. This noise is removed by applying a moving average to the variables
pertaining to the layered description.

The interface elevation and mean velocity and density obtained using the above
procedure with the figure 7 model run are shown in figure 8. A good measure for
the degree of mixing that is taking place is the mean density, non-dimensionalized
by its value at x = −2.0 and shown in the middle panel in the form ḡ′. The latter is
seen to decrease by more than 50% over the region where we is largest (also shown
figure 8b), implying a decrease by more than a factor of 2 in the mean layer density.
The Froude number F̄ based on the mean flow (figure 8c) reaches the value unity at
x = 0.56.

To estimate the location of the actual control point for each model run, a number
of wave excitation experiments were carried out. A small-amplitude approximately
hydrostatic disturbance was introduced in different locations near the crest of the
obstacle by raising the isopycnals a small amount. The disturbance had the shape of
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one sine wave and was fitted smoothly to the steady solution. The bottom and rigid lid
pressures were adjusted to eliminate any barotropic component (which would travel
upstream at an infinite speed). Then, the model was run forward and the resulting
wave-propagation pattern was found by subtracting the undisturbed flow field. The
purpose of the experiments is to determine the section at which small-amplitude long
waves remain stationary. The procedure is similar to that used by Hogg et al. (2001b)
who calculated the evolution of a free disturbance using linearized versions of the
governing equations.

Interpretation of the results of this approach is subject to several sources of
uncertainty. As noted by Hogg et al. (2001b), the gravest wave modes of the flow
can generally be classified as internal or ‘vortical’. The former have the strongest
effect on stratification and are therefore of primary interest here. Vortical modes
can, in principle, propagate upstream through a critical section for internal waves,
these waves apparently cause no alteration of the upstream stratification. The waves
we introduce involve disturbances of the stratification, but not the vorticity, thereby
minimizing the generation of vortical modes. A second complication is the presence
of friction and buoyancy diffusion, which can lead to dispersion and strong damping
as the wavelength goes to infinity. Our guiding principle is that the waves associated
with hydraulic control should be non-dispersive, and we therefore select wavelengths
sufficiently long to be hydrostatic, but shorter than the characteristic scale for which
damping becomes important. It is difficult to determine the precise time or space
scale for any damping of the disturbance. However, following Hogg et al. (2001b), the
relative effects of advection versus diffusion can be estimated by comparing the ratio
of the time for the wave to propagate one wavelength to the time for momentum to
diffuse vertically over the depth of the active layer

ta/tb = Km/k,

where the turbulent diffusion coefficient Km has been normalized by (g′h3
s )

1/2 and
the disturbance wavelength k by hs . They found that their results were not sensitive
to the viscosity for ta/td < 10−2. For the calculations presented below (figure 10),
Km = 1.5 × 10−3 in the neighbourhood of the sill crest and the primary wavelength of
the truncated sine wave disturbance k =1.77, giving ta/td = 8 × 10−4, suggesting that
damping of the disturbance is probably insignificant.

Figure 9 shows the temporal evolution of the bottom velocity u(x, h) resulting
from disturbances introduced at x =0 (at the crest of the obstacle), 0.14, 0.28, 0.42
and 0.56. In each case, the disturbance develops into two parts, one of negative
velocities (relative to the steady solution) on the upstream side and one of positive
velocities on the downstream side. When the wave is excited at x = 0, it appears
to be able to propagate in both the upstream and the downstream direction. This
suggests that the flow is subcritical at x = 0. When excited at x = 0.28, or downstream,
propagation takes place in the downstream direction only, indicating that the flow
regime is supercritical in this area. At x = 0.14, the phase speed of the part of the
wave to the upstream side seems close to zero, showing that the control point is close
to this location. Evidently, the place of control is much farther upstream than where
F̄ 2 = 1(x = 0.56, as shown in figure 8).

5. Comparison between the continuous and shallow-water models
How well does the layer model capture the dynamics of the deep overflows seen in

the numerical simulations? We now investigate this issue in the context of the steady
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Figure 9. The temporal development of the horizontal velocity field resulting from wave
excitation experiments, waves being excited in a narrow vicinity around x = 0, 0.14, 0.28, 0.42
and 0.56 (upper to lower panel). The contours are of constant u at intervals of 2.5 × 10−3, the
thick line being zero, and velocities below and above zero are to the left and to the right of
the thick line, respectively.

flow shown in figure 7. Beginning at an upstream section x = x0, equations (2.1)–(2.3)
are integrated downstream using d(x0), u(x0) and g′(x0) equal to the vertically averaged
values computed from the numerical model. The procedure also uses we(x) and u1

as computed in the numerical simulation, although the latter is so small as to have
negligible effect on the outcome. As shown in the depictions of interface elevation
(figure 10), the solution from the slab model (upper curve) remains subcritical, whereas
the flow in the continuous model (middle curve) spills over the obstacle and becomes
hydraulically supercritical. An arrow indicates the approximate point of criticality for
the continuous flow based on the wave speed calculations of the previous section.

It is natural to ask whether the upstream conditions could be adjusted slightly
in order to produce a solution to (2.1)–(2.3) that more closely resembles the
continuous model. We fixed the values of d(x0) and g′(x0), and increased the flow
rate q(x0) = d(x0)u(x0) until the resulting solution underwent a critical transition over
the obstacle. It was necessary to increase q(x0) by 51% to achieve this end and the
resulting solution (lower curve with the dashed extension in figure 10) is therefore
quite different from what is observed in the model.

6. Incorporating vertically varying velocity and density into the layer
formulation

In order to identify the sources of the inconsistency between the layer and
continuous models, it is helpful to reconsider the development of the layer formulation
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Figure 10. Comparison of the interface heights for the layer model and continuous model
with identical upstream conditions (upper two curves). The common upstream conditions are
imposed at x0 = −1.69 and here d = 1.947, u2 = 0.185, F 2 = 0.018, u2d = 0.361 and g′ = 1. Also
shown is a layer model solution in which the upstream layer depth and reduced gravity is the
same as for the upper curve, but where the upstream value of ud has been increased by 51%.
The dashed portion of this curve indicates F > 1.

in the presence of density and velocity fields that vary continuously in the vertical.
Consider a steady continuously stratified and sheared Boussinesq hydrostatic flow
that takes place beneath an inactive and homogeneous upper fluid (figure 11). The
upper fluid may have a uniform velocity u1, but is otherwise inactive. We further
partition the (dimensional) velocity and density in the overflowing layer into vertical
averages and departures from the average:

u2(x, z) = ū2(x) + u′(x, z), ρ2(x, z) = ρ̄2(x) + ρ ′(x, z).

If the budgets of momentum, volume and mass are considered for a lower-layer
control volume of length dx, and dx is taken to zero, the following conservation laws
result:

d

dx

[
dū2

2 +

∫ h+d

h

u′2 dz + 1
2
ḡ′d2 +

g

ρ0

∫ h+d

h

∫ h+d

z

ρ ′(x, z′) dz′ dz

]
= −ḡ′d

dh

dx
+ weu1,

(6.1)

d

dx
[dū2] = we, (6.2)

d

dx

[
ρ̄2dū2 +

∫ h+d

h

ρ ′u′ dz

]
= ρ1we,
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Figure 11. Definition sketch showing control volume extending from the bottom of the
channel (heavy line) to a bounding isopycnal, across which there is a positive downwards
entrainment velocity we . The width of the control volume is dx. The overlying fluid is assumed
to have constant density ρ1 and velocity u1.

where ḡ′(x) = g(ρ̄2(x) − ρ1)/ρ1. If the product of ρ1 and (6.2) is subtracted from the
last equation, the result is a statement of conservation of buoyancy flux:

d

dx

[
(ρ̄2 − ρ1) dū2 +

∫ h+d

h

ρ ′u′ dz

]
= 0. (6.3)

Equations (6.1)–(6.3) differ from those in the continuous model only in the neglect
of effects resulting from the non-uniformity of the overlying fluid, non-hydrostatic
pressure and internal friction. For each run, it has been verified that each equation
is generally valid to a high degree of accuracy, implying that these effects are quite
weak in our simulations.

In the absence of the primed quantities, (6.1)–(6.3) form the standard shallow-
water equations for the depth-averaged velocity and density (the basis of (2.1)–(2.3)).
Departures from the slab model result from vertical non-uniformities in the density
and horizontal velocity. In engineering applications (e.g. Chow 1959), the departure
of the momentum flux from dū2 in (6.1) is sometimes regarded as a correction to the
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momentum flux of the mean flow, as measured by the ‘Coriolis’ coefficient α:

dū2
2 +

∫ h+d

h

u′2 dz = α dū2
2, (6.4)

where

α =

dū2
2 +

∫ h+d

h

u′2 dz

dū2
2

=

∫ h+d

h

u2
2 dz

dū2
2

. (6.5)

Coefficients measuring the departures from the shallow-water approximations of
the horizontal pressure force and the density flux can be introduced in a similar way:

1
2
ḡ′d2 +

g

ρ0

∫ h+d

h

∫ h+d

z

ρ ′(x, z′) dz′ dz = β 1
2
ḡ′d2, (6.6)

where

β(x) =

2

∫ h+d

h

∫ h+d

z

(ρ2(x, z′) − ρ1) dz′ dz

d2(ρ̄2(x) − ρ1)
, (6.7)

and

(ρ̄2 − ρ1) dū2 +

∫ h+d

h

ρ ′u′ dz = γ (ρ̄2 − ρ1) dū2, (6.8)

where

γ (x) =

∫ h+d

h

(ρ2(x, z) − ρ1)u(x, z) dz

(ρ̄2(x) − ρ1)d(x)ū2(x)
. (6.9)

The coefficients α, β and γ can be regarded as shape functions for the vertical profiles
of lower-layer velocity, pressure anomaly and flux of density anomaly. (Note that our
α is Chow’s β .)

The equations for conservation of momentum and buoyancy flux anomaly can now
be written as

d

dx

[
α dū2 + 1

2
βḡ′d2

]
= −ḡ′d

dh

dy
+ weu1 (6.10)

and

d

dx
[γ ḡ′dū2] = 0, (6.11)

and these along with (6.2) have a superficial resemblance to the flux form of the
shallow-water equations. The latter are recovered when α = β = γ = 1 and departures
therefore give an indication of the error incurred by treating the lower layer as
a slab. From the final expression in (6.5), it is easily seen that α � 1, and it can
also be shown (Appendix B) that β � 1, provided the stratification is stable. Vertical
variations of velocity and density therefore have the effect of enhancing the inertia
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Figure 12. The shape functions α, β and γ as defined by (6.5), (6.7) and (6.9), for the
model output shown in figure 7.

and decreasing the buoyancy, relative to the mean flow, of the lower layer. The
underestimation of the inertia term (α � 1) is discussed by Chow (1959) and is
familiar to investigators of homogeneous open-channel flows. The new and more
subtle result is the overestimation of the buoyancy term (β � 1) by the slab model.
The range of the correction γ to the buoyancy flux is less restricted; however, it can
be shown that, when the stratification is stable and the horizontal velocity decreases
monotonically downward (upward) through the lower layer, γ < 1 (>1). This result
is also derived in Appendix B. As shown in figure 12, the values of α(x), β(x), and
γ (x) for the numerical run of figure 7 conform to these ranges and suggest significant
departures from shallow-water theory. For example, the value of α(x) becomes as high
as 1.99 in the supercritical part of the flow, whereas β(x) becomes as low as 0.55. The
underestimation of the inertia-to-buoyancy ratio is the primary reason that the layer
model solution (top curve in figure 10) is more subcritical than the full model solution.

In order to solve (6.2), (6.10) and (6.11), under general circumstances, a closure
scheme would be required to relate the shape coefficients to the mean quantities. This
difficulty is avoided if the density and horizontal velocity are self-similar [ρ2 and u2

are functions of (z − h(x))/d(x) only], in which case α, β and γ are constant. If this
be the case, or if α, β and γ vary gradually on the scale of the other forcing, (6.2),
(6.10) and (6.11) can be used to show that

dū2

dx
=

F̄ 2

(β − αF̄ 2)d

{
we

(
α +

β

2F̄ 2
− u1

ū2

)
+

ū2

F̄ 2

dh

dx

}
, (6.12)

d(d)

dx
=

F̄ 2

(β − αF̄ 2)

{
2
we

ū2

(
β

4F̄ 2
+

u1

2ū2

− α

)
− 1

F̄ 2

dh

dx

}
(6.13)

and

dF̄ 2

dx
=

3F̄ 2

(β − αF̄ 2)d

{
we

ū2

(
αF̄ 2 +

β

2
− u1

ū2

F̄ 2

)
+

dh

dx

}
, (6.14)

where F̄ 2 = ū2/(ḡ
′d). Note that these relations are independent of γ and that they

reduce to (2.1)–(2.3) when α = β = 1. It is apparent that hydraulic criticality under the
assumed conditions corresponds to

F̄ 2 =
β

α
� 1. (6.15)

Under conditions of self-similarity, critical flow occurs where the ordinary Froude
number indicates subcriticality.
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In general, self-similarity is not a property of the flow field and (6.15) is invalid. For
the special case of uniform density (β = 1), Garrett & Gerdes (2003) have shown that
the vertical velocity profile cannot be self-similar without a special unrealistic form
for the internal dissipation. However, Wood (1968) has shown that self-similarity
can occur in the presence of stratification, provided the channel bottom remains
horizontal and the flow is forced entirely by sidewall contractions. Wood’s solution
takes the form ρ2 = ρ2(z/d2(y)) and u2 = u2(z/d2(y)), and examples of corresponding
flows have been reproduced in the laboratory (Armi & Williams 1993). The precise
forms of these functions and the corresponding constant values of α, β and γ depend
on the upstream conditions.

In the numerical solution under discussion, which is not self-similar, F̄ 2 = 1 at
x = 0.56, whereas F̄ 2 = β/α at x = 0.12 (see figure 8c). The direct calculation of wave
speed (figure 9) indicates the actual section of criticality near x = 0.14, where F̄ 2 < 1.
Positions of predicted and measured critical sections for all the numerical experiments
are summarized in figure 13. There are three series of runs, each with a particular
value of hs/L, and the corresponding results are displayed in different frames. Within
each series, the upper-layer velocity u1 is varied. The position of the control section in
each case, as determined by the introduction of free waves, is indicated by a horizontal
line that reflects the uncertainty in visually isolating the exact location. The position
at which F̄ 2 = 1 (filled circle) lies well downstream of this position in each case. We
have also indicated the position at which F̄ 2 = β/α (crosses), and this lies within the
range of uncertainty of the direct measurement in each case.

F̄ 2 did not reach unity at any section in some of the experiments, and these
are indicated by the absence of a filled circle in figure 13. This result has
implications for certain ocean overflows that appear to be hydraulically controlled,
but lack observations indicating F̄ 2 � 1. One example is the Bab al Mandab, where
measurements of the composite Froude number (the two- or three-layer extension of
F̄ 2) at the main sill and narrowest section give values <1 (Pratt et al. 1999).

As u1 decreases, the control section moves in the downstream direction, as expected
from (2.6). Note that for an upper-layer velocity u1 < −0.15, the experiments with
the least steep topography (lower frame) did not become critical at any point. For
the steepest topography (upper frame) the influence of the upper-layer velocity is
less clear; in fact, the control point appears to move slightly upstream as u1 is
decreased below −0.4. The control is located downstream of the sill (x =0) in nearly
all cases. Although (2.6) predicts an upstream location for sufficiently large positive
u1, we did not check this. The required upper-layer velocity would imply a significant
contribution to the composite Froude number, and so the upper layer would no
longer be inactive.

Our finding that critical flow occurs near the location where F̄ 2 = β/α seems
consistent with the fact that vertical variations of u and ρ in the lower layer enhance
the inertial character of the flow relative to that deduced from the vertical mean.
However, the work of Garrett & Gerdes (2003) suggests that the actual situation may
be more subtle. Their study of a homogeneous free-surface shear flow, essentially the
case β = γ = 1 and α > 1, shows that the critical section indicated by direct calculation
of the long-wave speed lies where F̄ 2 > 1, as opposed to the position of F̄ 2 = 1/α < 1
predicted for a self-similar flow. The real critical section therefore lies downstream
of the location suggested by (6.15). Garrett (2004) further argues that the presence
of bottom drag pushes the critical section downstream, whereas internal friction
displaces it back upstream. In the present experiments, which contain internal friction
but no bottom drag, it is possible that the critical section lies upstream of where it
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Figure 13. Location of the control point as a function of the upper-layer velocity.
Three different aspect ratios have been used: (a) hs/L = 1.41 × 10−1, (b) 3.54 × 10−2, and
(c) 1.77 × 10−2. The crosses indicate the location of F̄ 2 = β/α and the filled circles show where
F̄ 2 = 1. The horizontal bars show the results of the wave excitation experiments, indicating the
range within which the control is located.
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would otherwise occur and that this upstream displacement brings it into proximity
of the location where F̄ 2 =β/α.

7. Discussion
We have investigated the hydraulic behaviour of a dense layer of fluid flowing over

an obstacle and subject to entrainment of mass and momentum from a dynamically
inactive overlying fluid. If the overflow is hydrostatic and vertically homogeneous in
density and horizontal velocity, the shallow-water equations can be used along with
an interfacial entrainment velocity to predict the hydraulic behaviour of the flow
(Gerdes et al. 2002). For example, it can be shown that hydraulic control occurs
where F 2 = 1 and that the location of the control section may be shifted upstream or
downstream from its usual position at an obstacle crest, depending on the direction
and strength of the upper-layer flow. These properties have been illustrated here
using an entrainment velocity based on the parameterization of Ellison & Turner
(1959). This shallow-water (slab) formulation assumes that mass and momentum
are completely and instantaneously mixed downwards over the whole depth of the
lower layer. We have also performed a series of numerical experiments with a
non-hydrostatic model of a continuously stratified exchange flow. An overflowing
lower layer has been identified and its bounding interface has been defined in order
to make comparisons with the slab model. The approximate locations of critical
sections have been determined by introducing small-amplitude waves into the steady
states.

Some of the trends predicted by the shallow-water theory are observed in the
continuous model. One is the downstream movement of the control section in response
to increasing reverse velocities in the overlying fluid. On the other hand, we find
poor quantitative agreement when the slab model is integrated using the upstream
conditions and we distribution based on a hydraulically controlled solution to the
continuous model. The slab model predicts solutions substantially more subcritical
than the continuous model. In fact, it was necessary to increase the upstream volume
flux of the former by over 50% in order to force the shallow-water solution into a
controlled state. Also, the control point in the continuous model is consistently found
to lie a significant distance upstream of the point at which F 2 = 1.

The discrepancy between the slab and continuous models is primarily due to
the strong vertical variation in density and horizontal velocity that occurs in the
latter. This vertical non-homogeniety is due, in part, to the incomplete mixing of
mass and momentum over the depth of the lower layer. The effects of vertically
non-homogeneous g′ and u can be quantified by recasting the equations governing
hydrostatic continuously stratified shear flow using shape functions α, β and γ for
the vertical distributions of u, g′ and g′u. It can be shown that α � 1 and that
(for stable stratification) β � 1, implying that inertia is underestimated and buoyancy
overestimated by shallow-water theory based on the layer average u and g′. If
the flow is self-similar, α, β and γ are constants and it can be shown that the
control point lies where F̄ 2 =β/α < 1, which can be significantly less than unity in
our simulated flow. For a range of upper-layer velocity and obstacle aspect ratio,
we found good agreement between the locations of F̄ 2 =β/α and where the wave
excitation experiments showed that the controls were located. The agreement occurs
despite the fact that α and β vary as rapidly as the topography.

These findings are quite the reverse of what Garrett & Gerdes (2003) find for
homogeneous shear flow with a free surface (β = 1). For inviscid flow, they show that
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Figure 14. (a) The shape coefficients α, β and γ , calculated at nine locations along the axis
of the Romanche fracture zone. (b) Four of the velocity profiles used in the calculation. The
outflowing layer is generally defined to extend from the bottom up to the first zero crossing of
the velocity. Data provided by K. Polzin.

the control section lies where F̄ 2 � 1, whereas the prediction based on the assumption
of self-similarity would yield F̄ 2 = 1/α � 1. The apparent paradox can be removed by
demonstrating that self-similarity cannot occur without the addition of an unrealistic
viscous term. When the latter is included in the long-wave speed calculation, the
control condition F̄ 2 = 1/α is recovered. Garrett (2004) further shows that internal
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friction parameterized by a vertical eddy viscosity tends to move the critical point
upstream from where it would otherwise be. Our case differs somewhat in that an
inviscid similarity solution does exist (though only in the presence of a pure width
contraction) and thus there are examples where F̄ 2 = β/α gives the correct critical
condition without the aid of internal dissipation. In our numerical solutions, which
are not self-similar, F̄ 2 = β/α also appears to give a good approximation of the
observed critical section. This agreement could be because variations in α, β , and γ

are unimportant or could be a fortuitous consequence of internal dissipation, acting
in the way described by Garrett (2004).

For the extended model (6.2), (6.10) and (6.11) to be used in a prognostic way,
α, β and γ would have to be parameterized in terms of the average flow properties.
It is probably just as easy to run a model with full stratification and mixing. The
primary value of the model is diagnostic: the departures of α, β and γ from unity
provide a measure of departure from a slab model. An example from the Bab al
Mandab can be calculated by treating the outflow as a single layer. Using the direct
measurements of velocity and density shown in figures 6 and 10 of Pratt et al. (1999),
we find α =1.12, β = 0.77 and γ = 1.11 at the sill and α = 1.11, β = 0.64 and γ = 1.15
at the narrowest section. Data downstream of either section, where the flow may
become supercritical, is unavailable. A more complete example can be calculated
using data from the Romanche fracture zone (Polzin et al. 1996; Ferron et al. 1998),
a deep strait that lies close to the equator and is aligned more or less east–west.
The shape coefficients (figure 14a) are computed at nine stations beginning at the
main sill (x = 0 in figure 14b) and proceeding eastward (to the right). The velocity
profiles at four of the stations are shown and these reveal the overflow as a layer of
intensified eastward (left-to-right) velocity extending 500–800 m off the bottom. Some
of the velocity profiles are quite wiggly and this contributes to values of α and γ

that differ considerably from unity and that vary rapidly as the flow descends over
the irregular bottom. The stratification (not shown) is smoother and contributes to
a relatively consistent value 0.55 <β < 0.7. The departures of the shape coefficients
from unity are not significantly different from what is observed in the numerical model
(figure 12) over the range 0.5 <x < 2, with α as large as 2.0, β as small as 0.55 and
γ as large as 1.75 in both cases. A slab model would clearly not be suitable for this
application.

This work is far from being the final word on the problem of ascertaining the
position of a critical section of stratified shear flow. The most efficient and consistent
method for doing so is still unclear, whether it be with a numerical model or field
data.
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Appendix A
Characteristic form of shallow-water equations with entrainment and bottom

drag.
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The equations for momentum, volume and mass conservation, allowing for
entrainment and quadratic bottom drag, are given by

∂u2

∂t
+ u2

∂u2

∂x
+ g′ ∂d

∂x
= −g′ ∂h

∂x
− Cd

u2|u2|
d

+ we

u1 − u2

d
+ g′ we

2u2

, (A 1)

∂d

∂t
+

∂(u2d)

∂x
= we, (A 2)

and

∂ρ2

∂t
+

∂(u2ρ2)

∂x
= weρ1, (A 3)

where Cd is a dimensionless drag coefficient and g′(x, t) = g(ρ2(x, t)−ρ1)/ρ1.
Subtracting ρ1×(A 2) from (A 3) leads to (2.5), the first characteristic equation for
the third-order system. The remaining two equations are obtained by taking (A 1) ±
(g′/d)1/2 × (A 2) and these lead, after some manipulation, to (2.4).

Appendix B. Restrictions on the ranges of β and γ

From the definition (6.7),

β(x) = 1 +

2

∫ h+d

h

∫ h+d

z

ρ ′ dz′ dz

d2(ρ̄2(x) − ρ1)
,

so the value of β relative to unity depends on the sign of the double integral. If the
stratification is stable, ρ ′ must decrease monotonically from a positive value at z = h

to a negative value at z = h + d . Since ρ ′ has no mean over this range it follows that

∫ h+d

z

ρ ′ dz′ =

{
0 (z = h),

<0 (h < z < h + d),

and therefore ∫ h+d

h

∫ h+d

z

ρ ′ dz′ dz < 0.

By similar reasoning, the value of γ relative to unity depends on the sign of

∫ h+d

h

ρ ′u′(x, z′) dz, (B 1)

where ρ ′ again decreases monotonically, positive and then negative values as z

increases from h to d + h. Let

r(z, h) =

∫ z

h

ρ ′(x, z′) dz′ > 0 (h < z < h + d),

and note that r(h + d, h) = r(h, h) = 0. Then integration by parts of (B 1) leads to

∫ h+d

h

ρ ′u′(x, z′) dz = −
∫ h+d

h

r(x, z)
∂u′

∂z
dz.
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If the total velocity u increases monotonically with increasing z over the lower layer,
then ∂u′/∂z > 0, the integral defined by (A 1) is negative, and γ < 1. If u decreases
monotonically then γ < 1.
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