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This study tested for horizontal transfer of plasmids among Buchnera aphidicola strains associated with
ecologically and phylogenetically related aphid hosts (Uroleucon species). Phylogenetic congruence of Buchnera
plasmid (trpEG and leuABC) and chromosomal (dnaN and trpB) genes supports strictly vertical long-term trans-
mission of plasmids, which persist due to their contributions to host nutrition rather than capacity for infec-
tious transfer. Synonymous divergences indicate elevated mutation on plasmids relative to chromosomal genes.

Bacterial genomes are characterized by remarkable plas-
ticity that allows rapid genetic adaptations to environmental
changes (reviewed in references 3, 33, 46). Plasmids, extrachro-
mosomal DNA molecules that replicate autonomously, con-
tribute to this plasticity by mediating lateral gene transfer
among bacterial species and genera (15, 17, 21, 40, 57, 59, 65)
and even between kingdoms (19, 24). In addition to their role
in lateral gene transfer, plasmids also function in gene ampli-
fication and overexpression (46, 47). Just as chromosomal du-
plications are a common mechanism for increasing gene dos-
age in response to fluctuations in the environment (47, 54),
amplification of loci on plasmids may be adaptive when selec-
tion favors increased gene dosages (12, 20).

In Buchnera aphidicola, the primary endosymbiont of aphids,
genes for the biosynthesis of tryptophan (trpEG) and leucine
(leuABCD) often occur on multicopy plasmids (pTrpEG and
pLeu, respectively) (5, 6, 10, 31, 48, 49, 52, 63, 64). Compara-
tive sequence analysis indicates that the ancestral location for
both trpEG and leuABCD genes was the Buchnera chromo-
some, not an exogenous plasmid (7, 49, 63). This movement of
chromosomal loci onto plasmids is considered a host-beneficial
adaptation of Buchnera to overproduce these essential amino
acids that are lacking in the hosts’ diet of plant sap.

The role of horizontal transfer in the evolution of Buchnera
biosynthetic plasmids remains unclear. In contrast to faculta-
tive symbionts such as Rhizobium and Vibrio, lateral gene
transfer in Buchnera may be highly constrained since this ob-
ligate symbiont spends its entire life cycle within specialized
host cells (bacteriocytes) (11, 43). In accordance with this hy-
pothesis, several previous studies show phylogenetic congru-
ence among chromosomal (trpB and 16S rRNA) and plasmid
(trpEG and leuABCD) genes of Buchnera associated with the
family Aphididae and suggest a lack of plasmid transfer in this
symbiont group (5, 6, 10, 22, 48, 49, 51, 63, 64). However,
recent work suggests horizontal transfer of the plasmid-en-
coded repA1 gene in Buchnera of Pemphigus spyrothecae (62).

Most previous studies were based on sampling Buchnera
associated with different aphid genera and cannot address the

issue of plasmid transfer among closely related strains, which
may occur via biological vectors or acquisition of DNA from
the environment (60). In order to maximize the chance of
detecting gene transfer among related Buchnera lineages, we
sampled Buchnera of Uroleucon, a recent radiation of aphids
that specialize on Asteraceae and often share host plants, hab-
itats, secondary endosymbionts, and parasitoids (42, 50). We
compare phylogenies of chromosomal genes (dnaN and trpB)
and plasmid-encoded genes (trpEG and leuABC) to test for
plasmid transfer in this symbiont group.

Phylogeny reconstruction. Collection data, aphid DNA ex-
tractions, and standard PCR conditions were described previ-
ously (42). The PCR was used to amplify three gene regions
of Buchnera: dnaN (1,107 bp), leuABC (3,919 bp), and trpEG
(1,767 bp) (primer sequences available upon request). DNA
sequences were obtained as described previously (42) directly
from PCR products or TA clones of PCR fragments. GenBank
numbers for sequences obtained here and for previously pub-
lished sequences are given in Table 1. Translated DNA se-
quences were aligned by using Megalign (DNAstar).

Genealogies of each of the four gene regions and for com-
bined data were estimated by using maximum parsimony (MP)
and maximum likelihood (ML) (Paup* 4 [56]). MP trees were
estimated by heuristic searching, and confidence in nodes was
assessed by bootstrapping (100 replications). MP trees esti-
mated for the subset of taxa available for each locus (Fig. 1,
taxa in bold) agree with relationships shown in the larger
bootstrap trees for all available taxa (Fig. 1). These MP trees
were generally very similar across genes. ML phylogenies were
estimated for the subset of Buchnera lineages sequenced for
each gene region after excluding third codon positions. ML
parameters and topologies were alternatively estimated until
there was no improvement in the likelihood score, according to
the successive approximation method suggested by Swofford
(55). The proportion of invariant sites and base frequencies
were set to empirical levels, and substitution rates were al-
lowed to vary among sites according to a gamma distribution
(four site categories) under the Hasegawa-Kishino-Yano mod-
el of substitution. Phylogenies and the ML parameters alpha
(the gamma shape parameter) and transition/transversion ratio
were estimated separately for each region. Only two ML to-
pologies were found: (i) that of leuABC and dnaN and (ii) that
of trpB, trpEG, and combined data (Fig. 2).
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MP and ML estimates give similar phylogenies for all gene
regions. Notably, the MP and ML trees for combined data are
identical. Slight discrepancies between MP and ML estima-
tions result primarily from the placement of two taxa, Buchnera
of Uroleucon erigeronense and Uroleucon caligatum. These dis-
crepancies are only weakly supported, as seen in the low MP
bootstrap values (Fig. 1) and short internal branches on ML
trees (Fig. 2). The relationships at each gene generally agree
with relationships among the Uroleucon hosts (14).

Phylogenetic congruence among loci. Outgroup species
(Rhopalosiphum padi and Schizaphis graminum) were excluded
from tests of phylogenetic congruence to avoid biasing the
outcome towards congruence. First, we tested the null hypoth-
esis, using TREEMAP (44), that MP trees for each data set are
no more congruent than expected by chance (i.e., randomly
related). All pairs of MP trees were more similar than expected
by chance (P , 0.001 for each comparison). However, disprov-
ing the null hypothesis of random relatedness provides only
weak evidence for congruence, since gene transfer may not
erase all traces of historical associations (see reference 14). We
therefore tested the null hypothesis that different gene regions

support the same topology. The Kishino-Hasegawa test evalu-
ates whether a data set has a significantly better likelihood
score across its own ML tree than across the alternative ML
topology (28) (using Paup*4). Similarity in likelihood scores
for both ML trees indicates that discrepancies between the two
Buchnera ML phylogenies are not statistically significant for
any gene region (Table 2).

This phylogenetic congruence of plasmid and chromosomal
genes strongly supports a lack of plasmid transfer among Buch-
nera strains associated with aphid hosts that share habitats,
host plants, and parasitoids and secondary endosymbionts (50).
A recent study found congruence of gene genealogies in Buch-
nera of Uroleucon ambrosiae, suggesting strictly vertical trans-
fer even within the same host species (22). These results sup-
port previous conclusions of congruence among Buchnera
genealogies and contribute to the larger picture of vertical
plasmid transmission across millions of years (5, 6, 10, 48, 49,
52, 63, 64). Our data suggest that the single proposed instance
of plasmid transfer in Buchnera may represent a very rare
event that occurred early in the evolution of the Pemphigidae
(62). This plasmid stability in Buchnera contrasts with genome

FIG. 1. Maximum parsimony-based phylogeny of four Buchnera gene regions: the chromosomal genes dnaN (a) and trpB (b), the plasmid gene
regions trpEG (c) and leuABC (d), and combined data for the subset of taxa sequenced at each locus (e). Bootstrap values (100 replications) are
given at nodes. Taxa common to each data set are given in bold. See Table 1 for abbreviations.

TABLE 1. Aphid hosts of Buchnera lineages included in this study and GenBank accession numbers for
gene regions sequences here (bold) and previously

Aphid host Abbreviation
GenBank accession no.

dnaN trpB leuABC trpEG

Uroleucon rudbeckiaea Urud AF197882 AF058439 AF200469 AF197464
Uroleucon astronomus Uast AF197883 AF058433 AF197461
Uroleucon ambrosiaea Uamb AF197884 AF058431 AF197454 AF197460
Uroleucon aeneuma Uaen AF197885 AF058432 AF197455 AF197459
Uroleucon jaceae Ujac AF197886 AF058440 AF197463
Uroleucon solidaginis Usol AF197887 AF058435 AF197449
Uroleucon sonchia Uson AF197888 AD001676 AF197448 AD001677
Uroleucon obscurum Uobs AF197889 AF058437 AF197450
Uroleucon helianthicolaa Uhel AF197890 AF058434 AF197451 AF197462
Uroleucon ruralea Urur AF197891 L81149 AF200468, AF201382-3 L81122
Uroleucon caligatuma Ucal AF197892 L81150 AF197453 L81124
Uroleucon erigeronensea Ue AF197893 L81151 AF197452 L81123
Miscrosiphoniella ludovicianaea Ml AF197894 AF058428 AF197456 AF197458
Acryrthosiphon pisuma Ap AF197895 L46355 AF197457 L43555
Diuraphis noxia Dn AF041837 L46769
Schizaphis graminuma Sg AF008210 Z19055 AF041836 Z21938
Rhopalosiphum padia Rp AF197896 L46358 X71612 L43551

a Subset of taxa used for ML phylogeny estimations. Tests of phylogenetic congruence were performed with this subset of taxa, after pruning the outgroup taxa
S. graminum and R. padi.
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fluidity in most bacterial species, where plasmids mobilize eco-
logically important features such as pathogenic and symbiotic
capacities (69) and antibiotic resistance (4, 37) and contribute
to the mosaic-like genome structure of some bacterial genomes
(26, 32, 34, 41). For example, in Escherichia coli, the close
free-living relative of Buchnera, incongruence among geneal-
ogies of chromosomal and plasmid-encoded genes indicates
several recombination and horizontal transfer events (35).

Selection for plasmid maintenance. The maintenance of
bacterial plasmids has been attributed to a combination of
infectious transfer and selection for plasmid-encoded traits
(38). Since the two biosynthetic plasmids of Buchnera experi-
ence little if any lateral transfer, they must be maintained
solely by selection for plasmid-encoded traits. In endosymbi-
onts, selection may occur within hosts (resulting from differ-
ential replication of different endosymbiont genotypes within
an individual host) and between hosts (resulting from differ-
ential reproductive rates of hosts that contain different symbi-
ont genotypes) (1, 45). At the level of within-host selection,
plasmid amplification of biosynthetic genes in Buchnera is
probably neutral or deleterious, since the overproduction of
tryptophan and leucine and the replication of plasmids may be
costly to individual Buchnera cells (36, 53). Any selection fa-
voring plasmid maintenance in Buchnera must occur between
aphids, which require symbiont biosynthetic functions for ad-
equate nutrition. This impact of host-level selection may ex-
plain the prevalence of these two plasmids in Buchnera of the
Aphididae, in which relatively rapid growth and high fecundity
may increase physiological demands for amino acids (7). Host-
level selection may also explain the parallel changes in level of
amplification of trpEG and leuABCD in particular aphid spe-
cies (58).

With the above reasoning, selection on bacterial cells will
tend to favor plasmid loss while selection on aphid hosts will
favor plasmid maintenance. Such conflict may be partially re-
solved by an attenuation of negative effects of plasmids on
bacterial fitness (e.g., see reference 9). Based on the diver-
gence times of aphids with plasmid-bearing Buchnera (about
50 to 70 million years for the family Aphididae) and the esti-
mated generation time of Buchnera (about 50 doublings per
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TABLE 2. Results of the Kishino-Hasegawa (KH) test, comparing
the likelihood score of four datasets and combined data

across the two alternative ML phylogenies

Data seta ML treeb 2Ln L 2Ln L
difference

SD
(difference) Pc

Combined A 18,319.854 (best)
B 18,322.090 2.236 10.324 0.829

dnaA A 3,096.556 1.696 6.463 0.793
B 3,094.859 (best)

trpB A 1,351.312 (best)
B 1,355.496 4.185 3.256 0.199

trpEG A 5,164.011 (best)
B 5,166.557 2.546 5.867 0.664

leuABC A 8,554.481 6.104 6.316 0.334
B 8,548.376 (best)

a Data set mapped across ML trees.
b ML tree across which data sets were mapped (A, ML tree for trpB, trpEG,

and combined data; B, ML tree for dnaN and leuABC).
c Probability that likelihood scores of a given data set are different across

alternative ML trees.
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year [13]), pTrpEG and pLeu have been vertically transmitted
with the Buchnera chromosome for approximately 2.5 to 3.5
billion bacterial generations, over which time selection may
have minimized deleterious effects of plasmids on bacterial
fitness. One possible mechanism by which individual Buch-
nera cells may benefit from (or be “addicted” to) pTrpEG is
through selection to preserve dnaA boxes borne by this plasmid

(30). These sites may titrate DnaA, a protein that is also in-
volved in initiation of chromosomal replication.

Elevated divergence at plasmid-borne genes. Some plasmids
may experience elevated rates of sequence evolution compared
to chromosomal genes due to higher rates of adaptive fixation
or higher mutation rates (18, 61). The latter might arise from
more frequent recombination (27), greater densities of trans-
posons (2), dependence on different, more error-prone poly-
merases (25, 29), or higher rates of transcription (16). The
vertical transmission of Buchnera plasmids provides a rare op-
portunity to contrast rates of sequence divergence among com-
pletely linked, autonomously replicating DNA molecules. In
many bacterial species, selection for codon usage at particular
loci (adaptive codon bias) may lead to differences in rates of
synonymous divergence among genes (50). However, since
Buchnera lacks adaptive codon bias (66), synonymous substi-
tution rates are expected to approximate neutral mutation
rates. Under the hypothesis that different replicons have equal
mutation rates, divergence at synonymous sites is expected to
be similar for plasmid and chromosomal genes.

Synonymous divergences were estimated for each gene re-
gion across phylogenetically independent pairs of Buchnera.
Synonymous divergences were estimated using the method of
Li (39), adjusting for moderate levels of sequence divergence
(using the program Molecular Evolutionary Analysis [E.
Moriyama, Yale University]) and the maximum-likelihood-
based method of Goldman and Yang (23) (codeML package of
PAML [67]). Compared to other methods, this likelihood ap-
proach accounts for unequal base (codon) frequencies and
biased transition/transversion ratios and provides a more real-
istic evolutionary model for DNA sequences with extreme

FIG. 3. Phylogenetically independent pairwise estimates of synonymous divergence at Buchnera dnaN, trpB, leuABC, and trpEG genes, using
a maximum likelihood-based estimation (67, 68). Error bars indicate the standard errors of individual pairwise estimates. See Table 1 for
abbreviations.

TABLE 3. Pairwise estimates of synonymous divergences at
chromosomal (dnaN and trpB) and plasmid (leuABC and trpEg)

genes for six phylogenetically independent pairs of Buchnera
isolates, showing generally higher divergences at the

plasmid-encoded loci for any given
pairwise comparison

Method and
comparisona

Divergence (SE)

dnaN trpB leuABC trpEG

dS
Uamb vs Urud 0.201 (0.042) 0.333 (0.081) 0.360 (0.045) 0.314 (0.040)
Uson vs Uaen 0.393 (0.070) 0.857 (0.199) 1.063 (0.117) 0.910 (0.099)
Urur vs Uhel 0.499 (0.095) 0.815 (0.171) 0.897 (0.097) 0.799 (0.082)
Ue vs Ucal 0.878 (0.154) 1.269 (0.277) 1.350 (0.138) 2.688 (0.444)
Ap vs Ml 1.909 (0.358) 1.735 (0.394) 2.426 (0.336) 2.153 (0.299)
Rp vs Sg 0.710 (0.148) 0.851 (0.211) 1.012 (0.102) 1.368 (0.283)

Ks
Uamb vs Urud 0.116 (0.029) 0.137 (0.033) 0.134 (0.014) 0.190 (0.025)
Uson vs Uaen 0.197 (0.038) 0.301 (0.058) 0.340 (0.027) 0.561 (0.059)
Urur vs Uhel 0.201 (0.034) 0.356 (0.064) 0.312 (0.028) 0.512 (0.049)
Ue vs Ucal 0.389 (0.065) 0.442 (0.076) 0.502 (0.038) 1.202 (0.135)
Ap vs Ml 0.679 (0.108) 0.623 (0.110) 0.663 (0.056) 1.447 (0.271)
Rp vs Sg 0.242 (0.042) 0.295 (0.057) 0.343 (0.027) 0.604 (0.063)

a Divergences were estimated by Goldman and Yang’s dS (23) and Li’s Ks
(39), adjusting for moderate sequence divergences. Buchnera taxa are listed by
the abbreviation of their aphid host names (see Table 1).
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base compositions (reviewed in reference 68). Assumptions
of the likelihood method as implemented here include a
constant base composition and a uniform rate of substitution
across codons of a particular gene (the shape parameter al-
pha 5 infinity).

Discrepancies between Goldman and Yang’s (23) and Li’s
(39) methods illustrate the effects of accounting for base com-
position when calculating sequence divergences (Table 3).
However, both methods show higher divergences at trpEG and
leuABC compared to those at dnaN and trpB for four of the six
pairwise comparisons (Fig. 3; Table 3). Higher synonymous
divergence at trpEG than at chromosomal genes agrees with
previous studies based on smaller, more divergent data sets
(13, 48) and suggests elevated neutral mutation rates on
pTrpEG. In contrast with the elevated synonymous divergence
at leuABC in our data set, previous studies based on fewer and
more divergent taxa did not find elevated rates at leucine
biosynthesis genes (5, 13). The Uroleucon sample used here
consists of numerous recently diverged isolates, provides low
standard errors for divergence estimates, and offers improved
ability to compare divergence levels among loci. Overall, our
analysis suggests that the mutation rates for both pTrpEG and
pLeu may show a moderate increase over that of the chromo-
some, at least in Buchnera of Uroleucon. Mechanisms for
higher mutation rates at plasmid loci may include the use of
different DNA polymerases that vary in error rate (29) or
higher levels of transcription, which may elevate mutation
rates (8, 16).

Nucleotide sequence accession numbers. GenBank numbers
for sequences obtained in this study and for previously pub-
lished sequences are given in Table 1.
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