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PREFACE

Mixing and Stirng took place at the 1999 Geophysical Fluid Dynamcs Sumer Study
Program. William R. Young (Scripps histitution of Oceanography) gave the principal lectues,
with Ray Pierre-Humbert (the University of Chicago) adding two special lectues (only one was
scheduled; the second was given at the request of the audience). These lectues served us an

introduction to the general physical priciples of the subject and its many applications in a large
number of fields, and provided us with essential mathematical technology.

As usual, we had a varety of seminars throughout the weeks following the lectues, covering the

many subjects in which miing and stirg plays a role. Week 4, organzed by Jim Ledwell

(Woods Hole Oceanographic Institution) with great success, focussed the attention ofthe
paricipants on the oceanc pr~blem. Several visitors came to paricipate solely in this week, and
we saw many famliar faces from past sumers.

This year was also tle $40th birday of the Program. hi celebration, the Oceanographic
Institution graciously held a picnic for all the parcipants, for the people at Woods Hole
connected to the Program, and for any fellows from previous sumers that were able to visit for
an afternoon. George Veronis gave a memorable speech with a historical perspective. The
picnic ended with a customar sight - a GFD softball game - and the afternoon, thans to
W.H.O.I., was a very pleasant experience.

This year's fellows proved to be a group that meshed together especially well (including group
trathlons each mornng for the hardier fellows). Their academic accomplishments can be
viewed elsewhere in this volume. One notable featue of their efforts is that they are all, prett
unformly, commendable projects; sometimes, it has to be admtted that the program doesn't
work for everyone, but this year, I thnk it worked as well as it could. Consequently, I think ths
sumer was notably successfuL.

Special thans go to Bil Young for his tireless efforts in preparng and giving the principal
lectues, and for advising so many of the fellows. Ths sumer could not have been so
successful without BilL. Also, Eric Chassignet and Glenn Flied spent many selfless hours with
the computers, and Jack Whtehead dealt magnficently with many administrative matters
throughout the whole year preceding the Program. Jean-Luc Thiffeault and Claudia Pasquero
must be thaned for their important contrbutions to creating this volume.

And last, but by no means least, I than W.H.O.I. Education, who continue to provide a perfect
atmosphere in which to ru the program. I specially than Marcey Simon for all her efforts to
organze the program, and our two staff assistants, Veta Green and Janet Fields, who stepped in
to replace the veteran, Lee Campbell, when she moved off to other enterprises.

N. J. Balmforth
Director
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Lecture i: Overview

1 Diffusion by discontinous movements

In 1827 Robert Brown, observed that suspended pollen grains are in an uninterrupted and irregular
"swarming" motion. Brown was a botanist and at first he believed that only organic materials
exhibited this agitation. But very soon he extended his observations to particles of inorganic material,
such as a ground-up fragment of the Sphin. Through the nineteenth century there was a intermittent
discussion concerning the cause of this Brownian motion, and in 1877 DelsailX suggested that the
impact of molecules on a macroscopic particle produces observable displacements. In 1905, after
nearly a century of debate, Einstein definitively explained this phenomenon (6,7).

1.1 Einstein's derivation of the diffusion equation

Our interest here is in Einstein's derivation of the dision equation, which is very different from that
of Fourier. We consider one-dimensional Brownian motion by projecting the location of the particle
onto a straight line which we call the x-axs.

Einstein's assumptions are the following: (i) the particles move independently of one another;
(ii) we observe particle positions at time intervals 7 which are much greater than the time intervals
between molecular collsions. As a result, the motion in one interval is independent of what happened
in the previous interval.

In the interval 7 each paricle has a random displacement ß along the x-axs. The probability
density function (PDF) of ß is ø(ß). This means that if we observe N ).). 1 paricles for a time 7 then
the number of particles which are displaced through a distance which lies between ß and ß + dß is

dN = N ø(ß) dß. (1)

The PDF ø(ß) does not change from interval to interval, and ø is symmetric and normalised:

ø(ß) = ø( -ß) ,
i!(ß) dß = 1.

(2)

The symmetry of ø implies that the displacements are unbiased. The average of any function of ß,
j(ß), is

J == i!(ß)ø(ß) dß. (3)

In particular, ß2 is the mean square displacement in a single step.
If the concentration of paricles at time t is denoted by c(x, t), then the evolution of c is determined

from the master equation:

c(x, t + 7) = i~(x - ß, t)ø(ß) dß. (4)
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A random walk with 200 steps

Figure 1: Simulated Brownian motion using MATLABj the routine rand is used to generate a sequence of
200 random displacements.

The integral over ~ is a sum over the prior locations at time t of the particles that are at x at time
t + T. Thus, the number of particles in the interval (x - ~, x - ~ + d~) is c(x - ~, t)d~ and Ø(~)

is the fraction of these particles which jump from x - ~ onto x.
If the concentration e(x, t) changes on a length scale which "is much greater than the root mean

square displacement, then we can approximate the integral equation (4) by the diffsion equation.
This assumption that e is slowly varying means that it it is sensible to use a Taylor series expansion

c(x, t) + tet (x, t) ~ L!(~) (C(X, t) - ~e:z (x, t) + ~2 e:z:z (x, t) J d~. (5)

Next, using (2), we reduce (5) to

Ct(x, t) ~ De:z:z(x, t),

~2D=-
- 27'

(6)
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This is the diffsion equation, and D is the diffsivity.
The greatness of Einstein's contribution to this subject is not the derivation above but rather his

formula for the diffsivity of a macroscopic particle

D- RT
- 67rNava'

(7)

where R is the gas constant, T the absolute temperature, Na the Avogadro number, v the coeffcient
of viscosity mid a the radius of the paricle. Coincidentally, (7) was also discovered in 1905 by Willam
Sutherland in Australia. This relation enabled Perrin to determine Avogadro's number by observing
Brownian displacements (7).

The diffusion equation is an approximation of the more exact master equation. As we try to design
parameterizations of nonlocal mixing processes, in which scale separation assumptions are shaky, we
should pay more attention to this history and consider the possibilty of using integral equations such
as (4). Notice also that if the Taylor expansion in (5) is continued to higher order then one wil usually
(i.e. for most kernels cp) obtain a hyperdiffusive term such as Cxxxx'

1.2 The method of moments

As a check on the derivation of (6), we take a different approach using the method of moments. A
moment of the concentration is an integral of the form

i:nc(X, t) dx. (8)

The zeroth moment, n = 0 in (8), is the total number of particles:

N = i~(X, t) dx. (9)

The first and second moments can be interpreted as the center of mass and moment of inertia of the
concentration profile.

We expect that N is constant, and it is educational to verify this conservation law for both the
master equation and the diffusion equation by "takg the zeroth moment". Integrating (4) from
x = -00 to x = +00, and changing the order of the integrals on the right-hand side gives

N(t + r) = i: dti cp(ti) i: dx c(x - D., t). (10)

Changing variables to Xl = X - ti in the inner integral, and using (2), gives the particle conservation
law N(t+r) = N(t). The diffsive analog of particle conservation is easily obtained by integrating the
diffusion equation (6) from x = -00 to x = +00. Provided that Dcx vanishes at x = :100 (physically,
there is no flux of particles from infinity), one immediately finds that Nt = O.

Extending the procedure above to higher moments, we can make a comparison between the exact
results for Jxncdx and the diffusive approximation of these same integrals. To take the first moment
of the diffusion equation, multiply (6) by x and integrate from x = -00 to x = +00. Once again, we
use integration by parts and assume that terms such as xCx and c vanish as x -+ :100. Thus we find
that the center of mass is stationary

~
'"OF
¡:~
""

J\

d 100

-d xc(x, t) dx = O.t -00
(11)

The same result can be obtained by taking the first moment of the master equation. The center of
mass is stationary because in (2) we assume that the PDF of displacements is symmetric.
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Continuing, we come to the second moment. For the difsion equation we obtain

d 100 100
dt _oox2cdx = 2D _~dx = 2DN,

where, as before, the terms which fall outside the integration by parts are zero because of the rapid .
decay of c as x -- ::oo. The student should show that from the master equation

(12)

. i:2c(x, t + T) dx - i:2C(x, t) dx = i:fl2cp(fl) dfl.
(13)

Recallng the definition of the diffsivity in (6), we see that in the limit T ~ 0 the difference equation
in (13) can be approximated by the differential equation in (12).

The law in (12), that the mean square displacement of a cloud of particles grows linearly with time,
is often taken to be the defining characteristic of diffusion. As we wil see later, there are dispersive
processes which have other power-laws, such as Jx2cdx oc t1j2. These processes are referred to as
"anomalous diffsion" .

2 Diffusion by continuous movements

2.1 Lagrangian time series

In 1922 Taylor (11) analyzed the diffsing power of a velocity field. The basic concept here is that of
a Lagrangian time series, such as the x-velocity of a tagged fluid particle, u(t), as a function of time.
This data is Lagrangian (Le., following a "float"), not Eulerian (Le, obtained from a "current meter"
fixed in space). The velocity time series might look like figure 2. Clearly there is some reguarity:
evenly spaced maxma and minima are obvious, and we might guess that there is a wave which is
producing oscilatory displacements. At the same time, the velocity is not completely predictable,
and there is no obvious law by which we can anticipate all details of the future using observations of
the past.

The simplest assumption we can make to analyze the process in figure 2 is that the velocity is
statistically stationary. This means that average properties of the velocity, such as the mean square
velocity, are not changing with time. In operational terms, the assumption of stationarity means
that if we take nonoverlapping and well-separated subsamples of the time series in figue 2 then the

statistical properties of the subsamples are identical.
If the time series is long enough we can chop it into N chunk, each of length T. We define an

ensemble average by considering each of the N chunks as a single realization of a random process.
This procedure introduces the additional assumptions that there is a decorrelation time T -(-( T, and
that time averages are equivalent to ensemble averages. Thinking of dispersion, Taylor imagined that
each chunk was an independent particle, labeled n = i, 2, ...,N, executing continuous movements.
"Continuous" in this context means that the velocity of particle n, un(t), is a relatively smooth
function of time, at least in comparison with the jittery motion in figue i.

We denote the position of particle n by xn(t), so that if all the particles begin at x = 0 then

dXn ( )
il = Un t ,

== xn(t) = !u~n(n dt'. (14)

We use angular brackets 0 to denote the ensemble average. As an example of this notation, the
average velocity of the N particles is

1 N
(u) == N L un(t).

n=l
(15)
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A time series of Lagrangian velocity

2
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Figure 2: A time series with a spectral peak.

Because of the stationarity assumption, (u) is independent of time, and we can refer all displacements
relative to the position of the center of mass by writing Xl = X - (u)t and u~ = Un - (u). To save
decorating all our subsequent x's and u's with primes we now assume that (u) = O.

2.2 Taylor's formula

The simplest measure of dispersion about the center of mass is the mean square displacement, (x2).
We can calculate the rate of change of this quantity by first noting that:

dx2n - 2
il - xnun'

and (14) ~ d:t~ = 21~n(t)un(n dtl.
(16)

We now ensemble average (16). Because of stationarity, (u(t)u(t)) dep"ends only on the time difference
t - e. Thus, we introduce the correlation function

C(t - n == (u(t)u(tl)), (17)

and, after a change of variables, write the ensemble average of (16) as

d(x2) = 2 r~(tl) de .
dt 10 (18)

Equation (18) is Taylor's formula, which relates the variance in paricle displacement (x2) to an
integral of the Lagrangian velocity autocorrelation function C(t).

In the simplest situations the correlation function C(t) decreases rapidly to zero as t ~ 00 so

that the integral in (18) converges. In this case, the dispersion of the ensemble at large times is
characterized by a diffusivity (x2) "" 2Dt, where the diffsivity D is related to the correlation function
by:

D = l°OC(t) dt. (19)

In statistical physics, (19) is known as the Green-Kubo formula.
Taylor did not claim that turbulent dispersion was governed by the diffsion equation, (6). We

wil return to this point later. For the moment notice that (6) is an approximation valid only for

suffcently long times that the integral in (18) has converged to the constant D. This restriction is
related to Einstein's assumption that particle positions are observed at time intervals T which are
much greater than the decorrelation time.
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3 Diffusion and anomalous diffusion

In the previous sections we emphasized that the difsion equation (6) is only valid on times long
compared to the decorrelation time T, and only if the concentration c(x, t) varies on length scales
greater than the width of the density Ø(ß). These assumptions of scale separation in both time and
space are often not satisfied in real flows. Thus, dispersion experiments over the last ten years have
revealed behaviours which are much richer than those suggested by the arguments of Einstein and
Taylor. Experiment~ often show that the growth of variance is described by a power law

(x2) ex t€.. (20)

In some cases ç = 1 (diffsion), but sometimes ç -l 1, in which case the process is referred to as
anomalous diffusion.

3.1 Rayleigh-Bénard convection

As an example of hydrodynamic diffusion (ç = 1) and transient sub difsion (ç = 2/3) we mention the

experiments of Solomon and Gollub (9,8) on the dispersion of passive scalar (either methylene blue or
uranine dye, or small latex spheres) along a chain of Rayleigh-Bénard convection cells (see figure 3).
We refer to the passive scalar generically as "tracer".

Following the experimental procedure in figure 3, suppose that all of the tracer is initially released
in a single celL. The main question is: how many cells, N(t), have been invaded by tracer at time
t? If this dispersive process is described by diffsion then we expect that N(t) ex t1/2. With certain
interesting restrictions, this t1/2-law is the experimental result.

The Rayleigh-Bénard flow can be approximately described using a two-dimensional and incom-
pressible velocity field, (u, v), obtained from the streamfunction

il = k-1 A sin (k (x + B sinwt)) W(z), (u, v) = (-ily, ilx) . (21)

The parameter A controls the amplitude of the flow, k = 21f/). is the wavenumber, and W(z) is a
function which satisfies the no-slip boundary conditions at z = 0 and z = H. The term B sin wt is a
simple model of the lateral oscilation of the roll pattern which results from an instabilty which occurs
when the convection is driven suffciently strongly. Because the flow in (21) is simple, highly structured
and deterministic, this is not an example of turbulent dispersion. Nonetheless, the experimental results

can be summarized using the notion of an effective diffusivity.
The Péclet number is

A
p == kI¡,' (22)

where K, is the molecular diffusivity of the tracer, is a nondimensional parameter which measures the
importance of molecular diffsivity to advection. The Péclet number can be considered as the ratio
of the time it takes a molecule to orbit around a convection cell to the diffsion time across a celL. In
the experiments described here, P is large and molecules make many circuits around a convection cell
before Brownian motion jostles them through a distance as large as k-1.

There are two cases which must be carefully distinguished:

Steady TOlls The rolls are steady if either w = 0 or B = 0 in (21). In either case, tracer can pass
from one roll to a neighbour only via molecular diffsion. But, because molecules are advected
through a distance k-1, the dye is transported along the array of cells with an effective diffusivity
Deff ex V AK,/k // K,. Because Deff -7 0 if K, -70, the transport is limited by molecular diffsion.

Unsteady rolls If B and ware both nonzero then advection (rather than molecular diffsion) can
take particles through the time-averaged position of the cell boundaries. In this case, there is
the possibilty of transport unlimited by weak molecular difsion.
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Figure 3: Transport of uranine dye along an array of convection cells with kB = 0.12; time (from the top):
1, 2, 4 and 10 periods of oscillation. (Figure courtesy of Tom Solomon (10).)

In the unsteady case, Solomon and Gollub show that trajectories of particles computed with the
model streamfunction (21) are similar to the patterns observed experimentally. In both the numerics
and the experiments, provided that wB =1 0, the transport of particles along the array of cells (in the
x-direction) is due to chaotic advection in the neighbourhood of the roll boundaries. This process is
strikingly shown in figure 3.

A rough summary of the results is that in both the steady and the unsteady cases the dye spreads
via a one-dimensional diffusive process, ç = 1 in (20), with a local effective diffusivity Deff. The
number of invaded cells is N(t) oc ýDefft. In the unsteady case Deff is independent of the molecular
diffusivity K" while in the steady case Deff oc... The effective diffusivity in the unsteady case is
enhanced by 1 to 3 orders of magnitude over the effective diffusivity of the steady case (which in turn
is much greater than the molecular diffsivity, K,).

The summary in the previous paragraph omits many interesting details. One of the more important
caveats is that the effective diffsivity in the steady case only describes the dispersion process at very
long times:

N(t) oc tl/2 when
i

t?? k2 K, . (23)

The time i / k2 K, is an estimate of the time taken for molecular diffsion to transport tracer through
a distance of order k-l, from the edge of a cell to the centerl. In this long time limit, the evolution

1 We assume that the aspect ratio of the cells is of order unity, kH = 0(1).
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of the tracer is slower than the intracellular diffsion time 1/ k2 '" and consequently the concentration
is uniform within each roll. The concentration changes rapidly at difsive boundary layers (with
thickness proportional to ",1/2) which are located at the roll boundaries. The intercellular flux across
these boundary layers is responsible for the spread of the tracer from one roll to the next.

The scenario described above does not have time to become established until t :::: 1/ k2 "'. When
t ~ 1/k2", there is stil a significant dispersion of tracer through many cells which is described by the
anomalous difsion law

1
N(t) ex t1/3 when t -(-( k2", .

The anomalous process above relies on molecular diffsion passing tracer quickly across the cell bound-
aries before there has been time to reach the center of newly invaded cells (3,4, 13j. Thus there is a
transient regime of sub dision which preceeds the final asymptotic diffsive law in (23).

(24)

3.2 Anomalous diffusion in two-dimensional turbulence
Cardoso et al. (2j conducted an experimental study of dispersion in a quasi-two-dimensional turbulent
flow. The experimental apparatus is a shallow pan of fluid, 30cm by 30cm, and 3mm deep. The
pan is filled with salty water and flow is driven electromagnetically (E x B forcing). The forcing is
arranged so that the basic flow is a square lattice of 30 x 30 counter-rotating vortices. This flow is
alost two-dimensional because of the large disparity between the horizontal dimensions (30 cm) and

the vertical dimension (3 mm).
Although the forcing produces a regular array of vortices, this simple pattern is unstable and a

two-dimensional turbulent flow emerges. Visualization of the turbulence, using tracer particles, shows
that in the statistically equilibrated state theIe is a population of vortices whose size is two or three
times the injection scale of the forcing. Each vortex emerges, moves, merges with other vortices, and
eventualy disappears.

Cardoso et al. (2j injected dye into this vortex mess and observed the two-dimensional dispersion
of the dye in the horizontal plane. To measure the growth of the dye blob, they defied

Rm == f V x2 + y2C(X, y, t) dx dy / !c(x, y, t) dxdy , (25)

and

Rg == ! (x2 + y2) c(x, y, t) dx dy / !c(x, y, t) dxdy. (26)

The experimental scaling law is

(Rg,Rm) '" to.32::0.04. (27)

The exponent 0.32 l 1/2 indicates anomalous diffsion - specifically subdiffsion, because the dis-
persion is slower than dision.

By examining typical particle trajectories, such as the one in figure 4, Cardoso et al.explained the
sub diffsive growth in terms of an interrpted random walk. Consider a random waler who pauses
between steps. The length of the pause, T, is a random variable; in the experiment of Cardoso et
al.the pause is a trapping event in which a molecule is sequestered in the core of a stationary vortex.
If the average duration of a pause is well defined then one can simply use Einstein's formula (6)
with T replaced by the average time between steps. However, if the pausing times are very broadly
distributed then the average duration of a pause may be inte and consequently the dispersion is
sub diffsive. We explore this in more details in the next section.
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Figure 4: The trajectory of a single paricle shows a sequence of long flghts interrupted by trapping events
in which the particle circles around a vortex. The vortex trapping events are indicated by the arrows. (From.
Cardoso et al. (2))

3.3 Radom walk with pauses
Consider a random walk in which the walker pauses for a random time T between steps. The various
T'S have a probability density fuction W(7) (the waiting time PDF). This PDF is normalised,

l°OW(T) d7 = i,
(28)

and the average waiting time spent between steps is

T = l°07W(7) d7. (29)

Motivated by the experiments of Cardoso et aL., we entertain the notion that T is infinite because the
integral in (29) diverges. For example, suppose that for large T, W(7) '" 7-¡i. Then T = 00 if J. ~ 2.

However, if we only observe a finite number of steps, then we do not sample the entire density
W (7). Specifically, suppose that afer N steps, we have experienced pauses of duration T1, 72, . .. , 7N.
We want to estimate the likely value of 7max(N) == max-(T1, 72,... , 7N). The quantity 7max(N) is
useful because we can argue that the structure of W(7) for 7 )- Tmax(N) cannot be signficant for the
displacement after N steps.
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To determine 7max(N), we turn to probabilty theory. Consider a random vaiable 0 uniformly

distributed in the interval (0,1). That is, the PDF of 0 is P(O) = 1 if 0 .( 0 .( 1 and P(O) = 0
otherwise. Suppose we take N samples, 01,'" ,ON and defie Omin(N) == min.¡ßi,'" ,ON1. In this

simple case it is plausible that Omin '" N-l as N -t 00.

Now the trick is to use 0 to represent 7: we write 0 = 7P, and adjust p so that the power-law tail
of W(7) '" 7-¡. corresponds to the simple structure of P(O) = 1. In fact,

P(O) = W(7) I ~; I ' ~ 1 '" 7l-¡.-P , (30)

or p = 1 - f.. Because the minium value of 0 maps to the maxmum value of 7, it follows that

7max(N) '" N1/(¡.-l) . (31)

Now we return to (29) to estimate the effective average pause time afer N pauses:

LTmax
Teff = 0 7W(7) d7 '" 7;';';: . (32)

It is also plausible that the total time t spent on this random walk is given by

t '" NTeff . (33)

Combining (31), (32) and (33) yields the followig scaling relationships:

N '" t¡.-l , Teff '" t2-¡. , 7max '" t. (34)

The final relation is worthy of comment: it implies a form of self-sinlarity of the random walk.
To conclude, the total displacement of our random wal is proportional to VN. But, with the

random pauses, the scalig agaist time has been altered to

RMS displacement ex .. '" t(¡.-l)/2 . (35)

This theory can be used to interpret the experiment of Cardoso et al.: because the RMS displacement
grows as tl/3 it follows that f. ~ 5/3. Cardoso et al.successfuy tested this prediction by measuring
the PDF of trapping times inside vortices.

4 Stirring and mixing

4.1 Coffee and creai

Appealing to the everyday experience of mixg cream into coffee, Eckat (5) argued that the homog-
enization of two fluids occurs in three stages. The distinction between the stages is the value of the
concentration gradient averaged over the domai.

Initial: there are distinct interfaces separating globules of cream and coffee. Within each globule, the

concentration of cream is nearly constant and the concentration gradient is close to zero. There
is a very large concentration gradient between regions of coffee and cream. But the interfaces
between coffee and cream are small in number and not of great area, so the average gradient in
the coffee mug is smalL.

Stirrng: the cream is mechanically swirled and folded, and molecular difsion is unimportant.

During this second stage the concentration gradients increase.
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t=32

Figure 5: Solution of Ct + (1 - r2)ce = (8 x 10-4)V2C. The initial condition is c(x, y, 0) = x.

Mixing: the gradients suddenly disappear and the fluid becomes homogeneous; molecular difsion
is responsible for the sudden miing.

In a chemical reaction, molecules of different species must come into contact for the reaction to occur.
Thus, when the species are initially separated, the reaction wil not begi until the fial mixng stage

is reached. In this sense there is an important distinction between coarse-graied homogeiuzation,
occuring solely as a result of stirring, and mixng at the molecular scale.

To ilustrate these concepts figure 5 shows a solution of the advection diffsion equation

Ct + (1 - r2)c/I = IiV2c, c(r,B,O) = rsinB (36)

where II = 8 x 10-4. A particle at a distance r from the origin completes a rotation in a time
27f 1(1 - r2). Thus particles at smaller values of r wil overtake paricles at larger values of r and so

the concentration is twisted into spirals by differential advection (stirring).
The increase in gradient during the stirring phase is evident in the figue. But at approximately

t = 16, miing starts to dominate, and diffsion rapidly reduces the average gradient. From the

initial condition, an estimate of the time it would take unassisted difsion to homogenize the fluid is
TD '" II II = 1250. It is only through the initial process of stirring that the concentration gradient is
amplified or, alternatively, that the spirals are stretched out so that small difsion homogenizes the
tracer at t = 32 -(-( TD.
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Figure 6: The straining flow described by the streamfunction 'i = -axy. The figue shows how a circular
patch of tracer is stretched out along the x-ax by the hyperbolic strain. If K, = 0 the major axs of the ellpse
grows as exp( at) and the minor axs reduces as exp( -at) so that the area remains constant.

4.2 A straining flow
A simple example of a two-dimensional flow which amplifies concentration gradients is the hyperbolic
strain shown in figure 6. The streamfunction is 'i = -axy and so the advection dision equation is

Ct + axc:¡ - ayCy = KV2C. (37)

Notice the dimensions here: a-I has dimensions "time" and K has dimensions (length) 
2 /(time). From

these two quantities we can build a combination with the dimensions of (length):

t=~. (38)

The length t wil appear prominently in the sequel.
We begin our discussion of hyperbolic strain by obtaining a solution in which c is independent of

both x and t. In this special case the solution of (37) is

cy = Aexp (- ::2 J, c(x, :100, t) = :1v'At. (39)

The concentration profile is the error function shown in figure 7. The solution shows the steady state
balance between advection and diffsion: with .JAt = 1, the concentration c changes smoothly

between c = + 1 as y ~ +00 to c = - 1 as y ~ -00. The transition occurs in a front of width t.
We can give an intuitive discussion of how the steady state profile in figure 7 is established as

the solution of an initial value problem. Suppose we had started with the initial condition such as
c(x, y, 0) = sgn(y) in which the transition between c = -1 and c = +1 occurs in a distance much less
than t. Then the discontinuity in c initially diffses freely, growing like VK. Once the width of the
front becomes comparable to t, that is when

Vi '" t, ~ t -1'" a , (40)
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Figure 7: The time independent error fuction solution to equation (37).

the spread is arrested and the steady state in figure 7 is established.
On the other hand, we can also consider an initial condition in which the transition between c = 1

and c = - i occurs on a scale Lo ?? t. il this case the front is initially compressed by the hyperbolic
strain so that the width is reduced exponentially, L = Lo exp( -o:t). Because Lo ~ t the diffsion is

unimportant until the exponential reduction in scale reaches t. That is,

Loe-Clt '" t , ~ t", 0:-1 In(Lo/t). (41)

These considerations ilustrate the fundamental importance of t as the scale on which advection and
diffusion come into balance.

4.3 Lagrangian coordinates: a simple example

The hyperbolic strain also provides a painless ilustration of some mathematical techniques which can
be used in more complicated problems. We begin by considering the solution of (37) with K, = O.
With no diffsion c is tied to fluid paricles. The position of a fluid paricle is related to its initial
position (a, b), by solving the differential equations

(x,y) = o:(x,-y), ~ (x,y) = (eClta,e-Cltb). (42)

The solution of (37) can now be obtained by arguing that the particle which is at the point (x, y) at time
t began at (a, b) = (exp( -o:t)x, exp(o:t)y) at t = O. Because the a particle carries the concentration it
follows that the solution of (37) as an initial value problem is

c(x, y, t) = Co ¡exp(-o:t)x, exp(o:t)yJ , (43)

where Co (x, y) is the initial condition. The philosophy of this method is that we care where fluid
particles come from, but not where they are going to.

The solution above seems to rely crucially on the restriction that K, = O. But now look what
happens if we use the Lagrangian coordiates (a, b) in (42) as new independent variables in (37). As
an accounting device, it is comforting to define 7 = t and consider that aT as the time derivative with
(a, b) fixed. Thus the transformation rules are

(a a) - (aa aa) a (ab .ab) a _ (-ClTa ClTa)x, y - ax' ay a + ax' ay b - e a, e b. (44)

and

a7 aa âb
Ôt = at aT + at aa + ât ab = aT - o:aaa + o:bab. (45)

The punchline is that

Ôt + o:xax - o:yay = aT , (46)
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which shows that the change to a Lagrangian description makes the convective derivative trivial.
Substituting the transformations above into (37) gives:

Co = /'e-2atcaa + /'e2atcbb. (47)

Naturally, if /' = 0, we recover our earlier solution in (43). But even if /' i= 0 it is often easier to solve
(47) than the Eulerian form in (37). For example, Fourier transforming (47), with (aa,ab) -7 i(p,q),
gives a simple ordinary differential equation in time.

It is instructive to use the method above to solve (37) with the initial condition

c(x,y,O) = 8(x)8(y). (48)

Physically, this is a spot of dye released in a straining flow. When at -(-( 1 the spot spreads diffsively,
with a diameter which grows as... However when at '" 1 the diameter of the spot becomes

comparable to f. == .. /'/ a, and then the spot stops expanding agaist the compressive direction of the
strain. However the spot continues to stretch along the extensive direction. Thus, when at :; 1, the
spot becomes a filament with an equilbrium width of order f. and an exponentially growing length.
These intuitive arguments are supported by the exact solution:

1 (x2 y2 Jc(x, y, t) = 41ljg exp - 4j2 - 4g2 ' (49)

where j(t) and g(t) are

j2 == 2: (e2at - 1) ,
l == 2: (1 - e-2at) . (50)

Notice that the peak concentration ultimately decreases like e-2at.

4.4 An example of sudden mixing
As a final look at the hyperbolic straining flow, we note that a solution of (37) is

c(x, y, t) = A(t) cos(ke-atx) cos(keaty), (51)

where

A(t) =exp (-f.2k2sinh2at) . (52)

One route to this exact solution is to look for separable solutions of (47), and then transform back to
the Eulerian coordinates (e.g., Young, Rhnes & Garrett,1982).

The mean value of the square of the concentration gradient varies with time as:

k2
fVc.Vc) = 2 cosh(2at) exp (_2f.2k2 sinh(2at)) , (53)

where n denotes an average over a large area. fVc. Vc) is plotted in figure 8 for various values of
kf.. Recallng Eckart's description of stirring as increasing the concentration gradient, and mixng as
decreasing the concentration gradient, we can see the transition between the two phases occurs at the
peaks of the various curves. If kf. -(-( 1, then the time it takes to reach this peak is given by t*, where

at* '" -In(kf.). (54)

Once again, this is the time taken for the exponential factor e-at to reduce initial length of the tracer
field, k-1, down to the length f. on which strain and diffsion balance.
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Figure 8: The mean square of the concentration gradient. If kt 0(0( 1 then the concentration gradient grows
until t = t. in (54) and then decreases precipitiously. If kt ~ 1/2 then diion always overpowers strain and
the mean square gradient decreases monotonically to zero.

4.5 A Welander scrapbook

Stirring was beautifully ilustrated in a 1955 paper of Welander's (12). This paper is notable also
because of its discussion of the importance of coarse-grained averages. Figues 9, 10 and 11 reproduced
from Welander (1955) show that simple velocity fields produce spectacular distortion of passive scalars.

In figures 9,10 and 11, some dimensions of the scalar blob are stretched out wlule other dimensions
are contracted. Batchelor (1952) (1) argued that in turbulent flows random stretching results in an
exponential growth of the separation between two initially adjacent fluid elements. That is, if we
consider two material elements separated by a distance So which is much less than the scale of the
velocity field, then Batchelor argues that the separation grows as

s '" soe'Yt (55)

The time-scale 1-1 is analogous to a-I in (37), though in figures 10 and 11 the exponential straining

is driven by a random and unsteady velocity, rather than the simple hyperbolic field in figure 6. Note
particularly that the exponential law in (55) is valid until the separation s(t) becomes comparable to
the length scale over which the velocity varies.
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Figure 9: Welander's numerical solution ilustrating dierential advection by a simple velocity field. A
checkerboard pattern is deformed by a quasigeostrophic barotropic solution which models atmospheric flow
at the 500mb leveL. The initial streamline pattern is shown at the top and the subsequent figues are at 6
hours, 12 hours, 24 hours and 36 hOllS, respectively. Notice that each square of the checkerboard maitains
constant ¡iea as it deforms.
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Lecture 2: Diffsion

i Introd uction

Perhaps you have heard that turbulence is the most diffcult problem in fluid mechanics and, according
to some, the greatest unsolved problem in physics. One indication of the diffculty is that it is
impossible to give a satisfactory defiition of a "turbulent flow". But everyone agrees that one property
of turbulence is greatly enhanced transport of passive contaminants. For example, relying only on
molecular agitation, a dissolved sugar molecule takes years to diffse across a coffee cup, and on that
time-scale the coffee wil surely evaporate. With a spoon the coffee drinker can create eddies that
transport dissolved sugar throughout the cup in less than one second. Tms is an example of eddy
diffusivity.

Fluid mechanics textbooks often often justif eddy diffsivity by appealing to an analogy between

turbulent eddies and molecular diffsion - perhaps this notion origiates with G.!. Taylor's 1905 paper

entitled "Eddy motion in the atmosphere" (4). In any event, the molecular analogy, supplemented

with some hand-waving, leads to the notion of an eddy difsivity and for many scientists this is the
end of the turbulence problem. .

Our goal in this lecture is to explain very explicitly the assumptions behid Taylor's "proof by
analogy" and to illustrate the interesting points at which the analogy fais. We wil pursue this
program by working with some very simple model flows for which analytic results, such as expressions
for the eddy difsivity, are available. As you wil soon see, these model flows do not greatly resemble

turbulence, but then neither does molecular motion! Our excuse is that soluble examples are always

diverting and educational.

2 The renovating wave model

2.1 A recipe for constructing soluble models
The main problem in analyzing transport is solving the differential equations which describe the
motion of particles in even very simple flows. However there is a class of flows for which this task is
trivial. These are steady and unidirectional flows, such as u = siny. A particle which starts at (a, b) at
t = 0 finds itself at (a + 7 sin b, b) at t = 7. This is dul, but it becomes more interesting if at intervals
of 7 we "renovate" the flow by randomly pickng a new direction along wmch the velocity acts. In
this way we can construct a sequence of iterated random maps and calculate diffsivities, and other
statistical properties, by averaging the exact solution. I learned of this trick from the literature on
dynamo theory. The book Stretch, Twist, Fold: the Fast Dynamo is highly recommended for students
interested in all aspects of stirring and mig (1).

2.2 The renovating wave (RW) model

As a particular example we now formulate the renovating wave (RW) modeL. We divide the time axs
into intervals

In == t t : (n - 1)7 .. t .. n7 ì , (1)
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and in each interval we apply a velocity, u = (-'ly, 'l:rJ, derived from the streamfunction

'ln(x,y, t) = k-1U cos(kcosOnx + ksinOn Y + CPn), (2)

where On and CPn are independent random variables uniformly distributed in the interval (-71,71). Thus
in each In there is a steady, unidirectional velocity with sinusoidal profile (a single wave). There is
sudden and complete loss of all information about the past velocity at t = nT because at these instants
we "renovate" the velocity by picking new random angles 0 and cpo (This means that the velocity
correlation function, C(t), is zero if t ;: T.)

The renovating wave model can be nondimensionalied by using k-1 as a unit of length and and
1/(Uk) as a unit of time. With this choice, the model contains a single dimensionless parameter,

T* == TkU, which is a measure of the persistence of the motion. Much of the literature on random
advection-diffusion uses model velocity fields which are 8-correlated in time. We can recover this limit
as a special case by takng T* ~ O.

Using dimensionless variables, a particle which is at Xn = (xn, Yn) at tn = nT* moves to Xn+l at
t = (n + 1)T*, where

(XnH, YnH) = (xn, Yn) + T* sin (cnx + SnY + CPn) (sn, -Cn) . (3)

with Sn == sinOn and en == cosOn. Thus motion in the renovating wave problem is equivalent to an
iterated sequence of random maps.

2.3 The single-particle diffusivity
It is very easy to calculate the diffivity in the RW model (and much more diffcult to interpret the
answer). The average of a function of the two random angles 0 and cP (suppress the subscript n) is
defined by

(I) = f dcp f dO 1(0, cp).271 271
(4)

Therefore, using (3),

2

((Xn+l - xn)2) = T~ . (5)

The computation is trivial if the integral over cP is evauated first.
In (5), following our previous discussion based on Einstein's derivation of the difsion equation,

we are computing the statistics of dispersion along the x-axs. Because the renovating wave model is
isotropic, dispersion in the y-direction is identical to that in the x-direction.

Because all of the waves are independent and identically distributed it follows that afer n reno-
vation cycles

2

((Xn - XO)2) = n T~ .

But t = nT*, and ((xn - XO)2) = 2Dt, so that using diensionless vaiables the disivity is

D = T*. (7)
8

Sometimes D is referred to as the single-paricle diffusivity. "Single-particle" emphasizes that D
strictly applies only to the RMS displacement of a paricle from its initial position; D contains no
information concerning the deformation of a patch of tracer, nor of any other quantity involving
correlated motion. Thus, using dimensional vaiables, the difsivity in (7) is D = U2T 18, which is

independent of k. Because D is independent of the scale of the wave, even a spatialy uniorm, but
random-in-time velocity (the case k = 0), has a single-particle diffsivity.

(6)
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Figure 1: Stretchng of a small spot, ro(o( 1 where r is the initial radius of the spot, by a succession of random
sinusoidal flows. The dotted circle is the intial spot.

t= 1 't t=2't t=3't

Figure 2: Stretching of a blob with r = 1, where r is the initial radius. The dotted circle is the initial patch.
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Figure 3: Stretching of a big blob r :;:; 1, where r is the initial radius of the blob. The dotted circle representing
the initial patch may not be visible beneath the wiggly boundary of the blob.

2.4 Deformation of vaiously sized blobs
To emphasize the importance of understanding more than single-particle difsivities we take a digres-
sion and ilustrate how the deformation of an initialy circular blob of fluid depends on the blob radius
r. (Recall that we have used k-1 as unit of length; in terms of dimensional vaiables the relevant

nondimensional parameter is kr.)
If the initial blob is much smaler than the wavelength of the velocity then on the scale of the

blob the velocity profile is a linear function of the coordinates. Because of this simplicity, the first
few iterations deform the circular blob into an ellpse which must have the same area as the initial
circle. We wil see in the next lecture that the major axs of the ellpse grows exponentially while the
minor axs shrinks so that the area is fied. Once the dimensions of the ellpse are comparable to the

wavenumber of the flow, more complicated deformations occur. Ultimately the blob will be stretched
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into a folded filament as in figure 1.
The blob has the same scale as the velocity field if r '" 1. Because there is no scale separation

there is no easy description of the action of the flow on the blob, see figue 2.
If r ?? 1 then we are in the "eddy diffsivity" liit in which the scale of the velocity field is much

smaller than the scale of the tracer. This case is shown in figure 3. The action of the waves perturbs
the edge of the blob, makig it look "fuzzy". In fact, the area is preserved, but the circumference
of the blob grows exponentially. We wil be discussing this type of problem for the remainder of the
lecture.

2.5 The Lagrangian correlation function
In (7) we gave the diffsivity of particles moving in an ensemble of renovating waves. How do we.
obtain the Lagrangian velocity autocorrelation function and verify Taylor's formula that

D = icoC(t)dt? (8)

Considering this question, we encounter an annoying technical diffculty: our derivation of (8) assumes
that the velocity statistics are stationary. But the renovating wave ensemble, as we defied it back
in (1) and (2), is not a stationary stochastic process. This is because with our original defition all
members of the ensemble renovate at the same instants t = 7, t = 27 etcetera. In order to obtain

a stationary process we should initiate diferent realizations at uniformly distributed points during
the renovation cycle. Thus, for realization number j, we pick a random time 7ei which is uniormly
distributed in the interval ¡0,7) and renovate first at t = 7ei and then subsequently at t = 7(j + 7,
t = 7(j) + 27 etcetera. With this new and improved formulation of the RW model the Lagrangian
correlation function of u(t) is a "trianguar" function:

u2 ( t)
C(t) = 4 1 -:; H(7 - t), (9)

where H is the step function and U is the velocity in (2). The area under this correlation function is
D = U27/8.

3 The eddy diffusion equation
3.1 The ensemble averaged Green's function

Now that we have obtained the RW disivity in (7) we turn to the derivation of the eddy difusion
equation. For each realization we introduce the Green's function which is

Gt+u.VG=O, with G(x,XQ,O)=ó(x-xo). (10)

The solution of the problem above is

G(x,xo, t) = ó(Xt - xo), (11)

where Xt is the position at time t (in a particular realization of u) of the particle which started at xo.
The ensemble averaged Green's function is

g(r, t) = (G(x, xo, t)) , r == Ix - XQ I , (12)

where we have assumed that the random velocity is isotropic, homogeneous and stationary so that 9
can depend only on the distance r and the elapsed time t.
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Possessing g(r, t), we can then represent the ensemble-averaged solution of the initial value problem

Ct+u.Vc=O, c(x,O) = eo (x) , (13)

as the convolution

(c) (x, t) = f eo(x - x/)g(lx/l, t) dxl . (14)

(We are assuming that the initial condition eo is the same for al realizations.)
At this point, the analogy between (14) and the master equation of lecture 1 is obvious. With

the master equation in mind, we can anticipate that a variant of Einstein's derivation of the diffsion
equation can be applied to (14). Rather than develop a general derivation we prefer to use the
renovating wave model as a concrete ilustration of how one can obtain g, and then pass from the
integral equation in (14) to an approximate diffsion equation.

3.2 The averaged Green's function of the RW model

There are at least two ways of obtaining g(r) in (12) for the RW model: the hard, straightforward
way (see the appendix) and the easy, devious way. Let us be devious.

We begin by calculating the probabilty density function (PDF) of displacements in a single pulse
of the RW modeL. Because the ensemble of velocities is isotropic and homogeneous there is no harm in
supposing that the paricle is at the origin and the x-axs is aligned with the direction of the velocity.
That is, put (Xn,Yn) = (0,0) and On = -rj2 in (3). Thus, the displacement r produced by a single

pulse is

Xn+l - Xn = 7"* sincpn, and r = IXn+l - xnl. (15)

The PDF of the random variable r can be obtained from the PDF of cP, that is P(cp) = Ij2-r, using
the rule for transforming probabilties:

P(r) = LP(cp)I~~I, == P(r) = 2 H(7"* - r) .
-r V 7": - r2 (16)

In (16) H(7"* - r) is a Heaviside step function which ensures that there are no displacements greater
than 7"*. (The sum in (16) is because there are four values of cp corresponding to a single value of r.)

The averaged Green's function is now given by

( ) _ P(r)gr --,
2-rr

== g(r) = 1 H(7"* - r) .-r2 rV7": - r2 (17)

The geometric factor 2-rr is included because g(r) is a concentration. That is, P(r)dr the expected

number of particles which fall into the dierential annulus between r and r + dr and g(r) is the

expected number of particles per area in this same annulus; see figure 4.
Now that we have the averaged Green's function of a single pulse we can obtain the evolution the

ensemble averaged concentration, (c), over many pulses. Because each pulse is independent of the
preceeding pulses we have

(c) (x, (n + 1) 7"*) = f(c) (x - x', n7"*)g(lxll) dxl . (18)

The master equation above, with g(r) in (17), is an exact description of the evolution of (c) under
advection by the RW modeL.
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Figure 4: Displacements of 40, 000 particles in independent realizations of the the RW modeL. The left panel
shows the fial position of particles which all start at the center of the the circle afer one pulse of the wave.
The density of points corresponds to g(r) in (17). The histogram on the right shows the number of particles
at a distance r from the center; this is the fuction P(r) in (16).

3.3 The diffusion equation
With the master equation (18) in hand, we can use Einstein's approxiations to obtain the diffsion

equation. Using the dimensionless varables of the renovating wave model, we have

(c)t ~ ~ \72 (c) . (19)

We leave this as a homework exercise and instead we take a different route to (19).
Because the Fourier transform of a convolution is the product of the Fourier transforms, we can

simplify (18) by transforming. The Fourier transform of j(x) is defined herel as

f(k) = le-ik'X j(x) dx, j(x) = 2~ leik'X J(k) dk . (20)

Applying the transform to (18) we obtain

(c)(k, nr*) = g(k)nëo(k) , k= Ikl. (21)

With a good table of integrals one can discover that the Fourier transform of the averaged Green's
function, g(r) in (17), is

g(k) = J~(kr*/2) , (22)

where Jo is the Bessel function.
The diffsion equation describes the evolution of large spatial scales, which is the same as small

wavenumbers. This means that we simplify (21) by takng kr*/2 ~ 1 and using the approxiation

Jo(kr*/2) ~ 1 - (k2r; 116) to write

(c)(k, nr*) ~ exp f n In (1 - (k2r; 18)) J ëo(k) . (23)

1 By denoting the wavenumber with k we are recycing notation used in (2)..
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But now, since n = t/7* and In(l - (k27; /8)) ~ -k27; /8, we have- 2
(c)(k, t) = e-Dk tCo(k) (24)

where, as in (19), D = 7*/8. Equation (24) is the equivaent to the decay of Fourier components given
by (19).

This derivation based on Fourier analysis explicitly recognizes that the diffsion approximation is

valid only for wavenumbers which satisfy kT* /2 -(-( 1. This is a precise statement of the scale separation
assumption which underlies Einstein's approach.

4 Ensemble averages and single realizations
In hydrodynamic dispersion, particles which begin at neighbouring points have similar histories in
any single realization. Marbled endpapers in old books were produced by floating coloured inks on
water, stirring the surface, and then capturing the swils by carefuly lowering a sheet of paper onto
the inky film (3). This technique, probably originating in Persia in the 1400s, presses hydrodynamc
correlations into the service of art. Fortunately for printers, and distressingly for statisticians, a single
realization does not resemble the blurry diffsion equation.

4.1 Eddy diffusion of a front
Figure 5 shows a single realization of the evolution of a "front" under the RW advection process. The
front is the sharp border which separates white from dark; initially this line coincides with the y-axs.
We suppose that the concentration is c = -1 for x -( 0 and c = +1 for x:; O. Successive pulses of the
renovating wave produce an increasingly folded front and the c = - 1 fluid invades the region x :; 0
in long thin tendrils. The central question is:

How well is the process in figure 5 described by the diffusion equation?

We know that given many realizations of this process, the long-time ensemble average of these
realizations wil follow the diffusion equation (c)t = D(c)xx' with the initial conditions c(x,O) = :f:.

The solution of this problem is

(c) = erf 17 , where
x

17 = 2.JI5t (25)

Figure 6 shows this smooth erf solution which, of course, looks nothing like figure 5. If the dark fluid
in figure 5 contained radioactive contamnant, and we wanted to estimate the maximum exposure of
at some value of x :; 0, then the erf solution in (25) is not usefu.

On the other hand, diffsivities are usefu if we want to know how many particles are at such-and-
such a distance from their initial location. Thus, figure 7 shows a histogram of the positions of 10,000
particles which all start on the line x = 0 (the initial front). The Gaussian curve in figure 7 is the
corresponding prediction for the PDF of positions which is obtained by solving (19) with the initial
condition (c) = ó(x):

1 (x2 Jc(x, t) = .J exp - 4Dt ' D = 7*
8 .

(26)

The histograms converge slowly to this Gaussian prediction. This asymptotic success shows that the
diffsion equations correctly predicts the dispersion of particles when t ).). 7*.

An amusing aspect of the simple problem in figure 5 is that we can easily calculate the RMS
fluctuations of c around the ensemble average concentration in (25). Because c= :11 we have (c2) = 1.
Therefore, defining the fluctuation as

c' = c - (c) , (27)
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Figure 5: Evolution of a front under the advection by the RW modeL. The front initially coincides with the
y-axis.
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Figure 6: Evolution of the ensenble-averaged concentration c and its vaiance during the evolution of the

front underthe RRW modeL. Note how most of the variance is localised around x = O.
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Figure 7: At t = 0 the front in figure 5 is tagged by placing 10000 particles along the y-axis. The historgram

above shows the subsequent x-locations of these marker particles as the front is distorted by the RW model
with T. = 1. The Gaussian curve is given by (26).

we have

(C/2) = (c2) _ (C)2 = i - erf2(ry). (28)

The variance (C/2) is also indicated in figure 6.

4.2 Coarse grained averages and spatial filters
The process in figure 5 is translationally invarant in the y-direction and so using only a single real-
ization we can calculate a spatially averaged concentration

i 1L
ë(x, t) == Hm 2£ c(x, y, t)dy .

L--oo -L (29)

The evolution of ë wil be asymptotically described by the diffsion equation.
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In a general case, in which there is no statistical symmetry along a paricular direction, one can
take a single realization and define a coarse-grained or low-pass filtered concentration by:

ê(x, t) == ! K(x - x')e(x', t) d2x' ; . K(lxl)is a filter. (30)

The hope is that scale separation between the width of the erf and the swirls wil ensure that ê ~ (c). .
Thus the kernel of the filter, K in (30), might be a Gaussian with a width which is at once much
smaller than the thickness of the erf transition zone and much greater than an individual swirl in
figure 5.

Scale separation is essential here because the filtering operation defied by the convolution in (30)
is not strictly an "average". Some of the properties we take for granted when we use averages are

(e') = 0, ((e)) = (e), ((a) (b)) = (a) (b) . (31)

For the ensemble average, as indicated in (31), everything works.
For a filter, such as ~ in (30), we can defie the fluctuation concentration e" in analogy with (27):

c"=:e-ê. (32)

But then 2' l 0 and none of the other desiderata in (31) follow. In other words, spatial filtering
instead of the ensemble averagig introduces a host of extra assumptions which should be carefully
assessed (but almost never are).

4.3 A digression: Brownian bugs

I have hinted darkly at problems associated with spatial fiters. These issues are largely ignored by
optimistic scientists. The hope is that scale separation justifies the application of disive closures to
the coarse-grained version of a single realization. Perhaps a justifcation of this optimistic approach
is that the alternative seems so repellent. Nonetheless, it is important to realize that interpreting

coarse-grained distributions as ensemble averages involves a nontrivial assumption. The best way of
exposing this assumption is to exhbit a problem in which spatial fiters and ensemble averages are

very different. Accordingly, as a model of biological processes, we consider random walkers which
both die and reproduce. We refer to these biological walers as Brownian bugs.

The model is formulated by first placing N ).). 1 Brownian bugs randomly in the unit square;
the boundary conditions are periodic in both directions. Each cycle of the simulation begins with a
random walk step in which bug k, located at Xk = (Xk, Yk), is displaced to a new position

(X~, yD = mod ((Xk, Yk) + (8Xk, 8Yk); 1) . (33)

In (33), 8Xk and 8Yk are Gaussian random variables and the "mod" is to enforce the periodic boundary
conditions and keep each bug in the unit square. After this random walk step, the second part of the
cycle is a "coin toss" which results in either death (heads) or division (tails). When a lucky bug divides,
the offspring is placed at the same position as the parent. This cycle of random displacement and
random birth/death is repeated many times in order to simulate many generations of reproduction,
death and dispersion.

The simulation shown in figure 8 was implemented in MATLAB using these rules. The strikig

result is that the density of bugs spontaneously develops large-scale clumps and voids. Figue 8 seems
to show an inverse cascade of patch sizes: patches emerge on small scales in panel (b) and then,
after more cycles, panels (c) and (d) show that the patches have expanded in scale. To quantify this
impression, we have computed one-dimensional concentration spectra which show that an increasingly
red spectrum develops.

A seemingly innocuous ingredient of the brownian-bug model is that deaths can occur anywhere,
but births are always adjacent to a living bug. This asymmetry between birth and death is crucial for
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(a) Initial condition, N=20,000 (b) 10 cycles, N=19,692
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Figure 8: (a) The initial condition is N = 20,000 randomly located bugs in the unit square. Panels (b), (c)
and (d) then show the development of patches afer 10, 100 and 1000 cycles of random diplacement followed
by random birth/death. As the panel titles indicate, there are random fluctuations in the total size, N, of the
population. The RMS step length of the underlying random walk is (ÓX%)1/2 = (óy¡)1/2 = 0.005.

the spontaneous development of the voids and patches evident in figure 8: if one simulates birth by
randomly placing the new bugs in the unit square then no patches form. This subtle point shows that
making the births coincide with living bugs - surely a realstic feature of the model - introduces
pair correlations. From another perspective, one can view the voids in figure 8 as the result of random
extinctions which create voids. The step length of the random walk in figue 8 is such that diffsion

is not strong enough to fill in the voids created by extinction.
The ensemble average of the Brownian bug process is described by

(C)t = D"V2(c) + (À - ¡.)(c). (34)

where À is the birthrate and ¡. the deathrate. However if the coin-toss is fair then births and deaths
are equiprobable and consequently À = ¡.. In this case the solution of (34) which satisfies the initial
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condition is

À = tL, == (e) = l/N. (35)

The uniform density above is the correct answer for the ensemble average concentration: the location
of the voids and patches in figure 8 are accidently determined by the MATLAB random number generator.
If we ensemble average many such patterns then the patches and voids must disappear because the
process is spatially homogeneous. .

On the other hand, the spatial average of a single realization, such as that in figue 8, will stil
show concentration patches2. Thus, in this Brownian bug example, ê l "(e). Indeed, the patches
are surely an important feature of the "real" answer. The correct but useless result in (35) exposes
a failure of ensemble averaging. What do we make of this example? Are biological problems, with
reproduction and death, so fundamentally different from the advection-diffsion of chemical tracers?
I am not prepared to answer that question in these lectures and I leave futher development of this
example to the students.

5 Variance budgets

In this section we return to basics and present an alternative view of eddy-diffusivity. The following
arguements emphasize the importance of the concentration variance equation.

5.1 The Reynolds' decomposition

Our point of deparure is the advection-diffs~on equation

Ct +u.Ve= K;V'2e+s, (36)

where K; is the molecular diffsivity of e and u is an incompressible (V.u = 0) velocity field. In (36)
we have included a source term, sex, t), which forces the system.

The velocity u in (36) is a single realization selected from an ensemble of velocity fields. Then we
can introduce the "Reynolds' decomposition":

e = (e) + e' , (37)

where () is the ensemble average and e' is the fluctuation from (e) which arises in a single realization.
Takng the ensemble average of (36) gives

(e)t + (u).V(e) + V.(u'e') = K;V'2(e) + s. (38)

(The source s is taken to be deterministic, (s) = s.)
Subtracting the ensemble average in (38) from (36) gives the fluctuation equation

c; + (u). Ve' + V.(u'e' - (u'e')) - K;V'2e' = -u'. V(e). (39)

Equation (39) has been organized by takng the source term to the right hand side. Thus we see that
advective distortion of the mean gradient, V (e), generates the fluctuation e'.

2If the width of the kernel, K in (30), is larger than the dimension of the patches then filtering will remove the

patches. However, since the patches expand in scale, eventually they will become so large that they survve the blurring

power of the filter.
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5.2 Consequences of linearity
If c' = 0 at t = 0 then, because (39) is linear, e' and V (e) wil be linearly related. It follows that the
eddy flux (u'e') wil also be linearly related to the mean gradient V(e). These simple observations,
in alliance with the scale separation assumption, can be used to extract a surprising amount of
information (2).

Because of the scale separation, it is plausible that this linear relation between eddy flux and mean
gradient can be developed in a series of the form

(u'.e') = -Ð(~) * (e) . - Ð~~k) * (e) 'k +...i i3 ,J i3 ,3 (40)

The comma subscripts denote parial derivatives, a,j == aal aXj. We are also using the Einstein sum
convention, where repeated indices are summed. The * in (40) indicates that the product also involves
convolutions in time, such as

Ð~~)*(e) . = ltÐ~~)(t')(e) .(t-t')dt'.i3 ,3 i3 ,3
o

(41)

If the mean field is varying slowly over an eddy decorrelation time then the convolution above ap-
proximates to

(u~e') ~ -Ð\~)*(e) . ~ -l°oÐ~~)(t')dt' (e) .(t).i i3 ,3 0 i3 ,3 (42)

In the simplest cases3

l°oÐ~J)(t')dt' = De8ij,

where De is the eddy diffsivity. Using (43) the flux gradient relation is

(43)

(u'e') - liV(e) = -DV(e), D == De + ii, (44)

and the evolution of the average concentration is determned by

(C)t ~ D\!2(e) + s. (45)

This is a general version of the specifc diffsion equation derived in Section 3.3 for the renovating

wave modeL.

5.3 The G . x-trick
The tensors Ð(n) (t) are determined by the linear operator on the left-hand side of (39). Thus, these
tensors depend on (i) the statistical properties of u'; (ii) the mean advection (u); (iii) the molecular
diffusion Ii. The essential point is that these tensors do not depend on (e). At least for the fist term
in the series, Ð~P, we can exemplify this by noting that there is a special solution of (36) in which
(u) = s = 0 and concentration has the form

c=G.x+e'. (46)

3 "Simple" means that the velocity ensemble is isotropic, homogeneous and reflexionally invariant. The last re-

quirement means that the mirror image of a paricular realization of u' is just as probable as u'. If the ensemble is
reflexiona1ly invaiant then vg) is a symmetric tensor. This subtle point wil be ilustrated later in this lecture series.
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In (46) the mean concentration is simply (e) = G . x and the fluctuation e' is determed from a
reduced version of (39):

e~ + u' . Ve' - K, \72 e' = - G . u' . (47)

As emphasized above, the advection of the mean gradient appears as a source term for e' on the right
hand side of (47). Because (47) is linear, and G is constant, the solution e' wil be proportional to
the large-scale gradient G and otherwise independent of G.

This G . x-trick enforces the platonic ideal of scale separation between the eddies and the mean
field. If the concept of an eddy diffsivity is to have any valdity, then it must work in the simplified
context of (47). In fact, the G . x-trick is used in doubly-periodic turbulence simulation to calculate
eddy diffusivities. In that context, u' = (u, v) and e' are effcjently represented by Fourier series. Then
( 4 7) is solved using a spectral code and the eddy flux is estimated by computing the integral

(u'e') = A-l j jU'e' dxdy,

over the computational domain. (In (48) A is the total area of the domain so (1) = 1). Notice that in
(48) the ensemble average is identified with an integral over the domain. Later in these lectures we
wil use this same procedure to analytically calculate the eddy diffsivities of some spatialy periodic
velocity fields.

(48)

5.4 The concentration variance equation
An equation for the concentration variance,

Z = !(e,2)- 2 ' (49)

is obtained by multiplying (39) bye' and ensemble averaging. The result is

Zt + (u).VZ + V. (~u'e'2) - K,\72Z = -K,(Ve'.Ve') - (u'e').V(e). (50)

The terms on the left-hand side of (50) can be interpreted as fluxes of Z. The two terms on the right
hand side of (50) are respectively dissipation of vaiance by molecular difsion, K" and a source of
variance due to advective distortion of the mean gradient.

5.5 Heuristic closure arguments

In (50) there are three terms which we would like to relate to the mean quantities (e) and Z. First,
there is -(u'e'). V(e) = De V(e).V(e). The remaining two terms are (u'e,2/2) and K,(Ve'. Ve').

The correlation (u' e,2 /2) in (50) is an eddy-flux of e,2, just as (ue') is an eddy flux of e'. Thus,
by analogy with (44), we can argue that

1 ( , ,2)

'2 ue = -DeVZ. (51)

This heuristic argument is discussed furher in appendix B.
The final term in (50) is the dissipation of variance by molecular difsivity, K,(Ve'. Ve'). The

simplest closure assumption we can make about this term is that

K,(Ve'.Ve'):: ßZ, (52)
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where ß has the dimensions of time. The closure above relies on dimensional analysis and the linearity
of (36). However, in anticipation of a later discussion of the Batchelor spectrum, we now make some
heuristic arguments in support of (52) which suggest that ß is independent of the molecular difsivity.

Suppose that the mean field (e) has a length scale L and that the velocity field ul has a length
scale Lu (in the RW example Lu = k-1). The scale separation assumption is that

L:;:;Lu' (53)

The inequality in (53) is exemplifed in idealized case of (46) in which L is infnite. If follows that
advective distortion of V (e) generates el first on the scale Lu. Then, following our arguments in lecture
i, the scale of d wil be exponentially reduced, like exp( -,t), where, is roughly proportional to the

RMS strain of u'. This exponential contraction continues until the cascade is halted by molecular
diffsion at the scale

t==fr. (54)

U sing arguments from lecture i, we can estimate that the time taken for this arrest at t is

tt ~ ,-1 In (Lu/t) . (55)

Then the smallest length scale in the c'-field is t and, plausibly, the gradient is Ve' ,. eRMs/t where
cRM s == .J. We now have a simple estimate K,(Ve' . Vel) ,. ,Z. This rough argument leads to the
closure in (52), with ß ex " and the caveat that t ;: tt.

We can summarize the arguents above by rewriting the variance equation (50) as

.Zt + (u).VZ - D\12Z = DeV(e).V(e) - ßZ, (if t ~ tt) . (56)

The most dubious approximation is probably (52). To conclude this discussion we wil interpret the
variance equation in two specific examples.

5.6 Example 1: the dispersing front
First consider the dispersing front in figure 5. In this example s = K, = (u) = 0 and we have already
know from (28) that

i
Z = "2 (i - erf2 (17)) ,

x
17 = 2.II5t (57)

On the other hand, since K, = 0, it follows that D = De and ß = O. With these simplifications the
variance equation (50) reduces to

Zt - DZxx = DV(e)'V(c), (58)

where (c) is the erf-solution in (25). As a consistency check, one can show that (57) is the solution of
the variance equation in (58).

This example shows that the destruction of variance by molecular diffsivity is not required in
order to prevent an accumulation of variance: the source on the right-hand side of (58) is balanced
by eddy diffsion.

5.7 Example 2: a large-scale source
In this second example the tracer is injected by a source s = cosqx in (36). We also take (u) = 0 so
that the mean concentration field is obtaied by solving

(c)t - D\12 (e) = cos qx , =? (e) = D~2 (i - e-Dq2t) cos qx . (59)
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Figure 9: A simulation of the source problem, with s = cos(xj6), using the RW model to generate u in (36).
There is no molecular diusivity (l£ = 0). The left-hand panel shows the whole domain (the length of the side
is 127r) while the right hand panel shows a smaller sub domain (the length of the side is 27r). The concentration
fields were generated by 10 pulses of the renovating wave using 7. = 3 (that is, t = 30).

(To apply the diffsion equation the scale of the source, q-l, must be much larger than the scale of
the velocity field.) A steady mean concentration pattern is established when Dq2t ?? i.

The concentration variance is determined by solving the variance equation (56)

2 1 De ( -D 2t) 2 ( ) ( I ') ( )Zt - D\l Z = '2 D2q2 1 - e q 1 - cos 2qx - K, V c . V c . 60

In (60), the solution in (59) has been used to evaluate the source term on the right hand side and we
have left the diffusive sink in its exact form.

It is clear from (60) that the molecular diffsion, K" plays an important role. If K, = 0 then the
long time solution of (60) has a component which eventually grows linearly with time:

K, = 0, ~ Z ex t/2Dq2. (61)
Thus, without molecular diffusion, there is "runaway variance". Ultimately, in a single realization,
the mean field in (59) wil be buried under enormous fluctuations.

To give an intuitive derivation of (61) we argue that with K, = 0 the concentration on each fluid
element is determined by solving the Lagrangian equation

Dc
Dt = cos qx(t) , (62)

where x(t) is t,he randomly changing x-position of the particle. Thus, the concentration on each
particle is undergoing a random walk along the c-axis, which is induced by the random motion of the
particle through the cos qx source function. The de correlation time of this walk is the time it takes a

particle to diffse through a distance of order q-l, which is II Dq2. Thus, in a time t, there are roughly

N(t) ~ Dq2t independent steps along the c-axs. But because the source acts coherently for a time
II Dq2 with a strength of order unity, the step length of this random walk is roughly Llc ,. II Dq2.
Thus, the mean square displacement of cis:

(CI2) ~ (Llc)2 N(t) ,. D:2 ' (63)
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Figure 10: This figue compares analytic results with a numerical solution of (62), taking q = 1/10, and
using the RW model to generate u. The persistence parameter is T. = 2 and the results are at t = 400 (that
is, 200 renovation cycles). The concentration c(x,400) is calculated on a 400 x 400 grid using the method in
appendix B. In the top panel there are three curves: the concentration as a function of 0 -( x -( 207r along the
line y = 0 (the jagged dotted curve); the y-averaged concentration defied in (64); the analytic result in (59)
(the smooth sinusoid). The bottom panel compares the CRMS = -I obtained by solvig (60) analytically
with CRMS estimated using (64).

which is the final result in (61).
It is interesting to compare the analytic results in (59) and (60) with a numerical solution of (62).

Thus we must compute the spatial averages

1 rL
ë(x, t) == L 10 c(x, y, t) dy, 2 _ 1 rL _ 2

CRMS(X, t) = L 10 (c(x,y, t) - c) dy, (64)

using the numerical solution, and compare these with the analytic results for (c) and Z = 4MS/2.
The best way to make this comparison is to obtain c(x, y, t) on a regular grid in the (x, y)-plane. As
a bonus, one can then also use contouring routines to make pretty pictures of the concentration field
(see figure 9).

The concentration field is calculated on a regular grid using the procedure described in Appendix C
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(essentialy the method of characteristics). Figure 10 shows good agreement between this simulation
and analytic results. Notice that in figure 10 the vaiance Z peaks where V(c) is greatest. This
ilustrates that concentration fluctuations are produced by advective distortion of the mean gradient:

where the mean gradient is large there is lots of variance. But.z =l 0 even where V (c) = 0 (for
example, at x = 0 and x = 1071 in figure 10). Thus, where the source term on the right hand side of
(60) vanishes, the diffsive term D"V2 Z supplies varance.

5.8 Cautionary remarks

In the both examples above there is no molecular diffsion (~ = 0) and consequently there is no

destruction of variance by the term ~(Vc'. Vc') in (50). As a project for a student, include molecular
diffusion in the RW model (perhaps by pulsing difsion in alternation with advection) and assess the
effcacy of this process. In particular, can the closure in (52) be justified?
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A Calculation of the RW Green's function
In this appendix we present an alternative calculation of the RW ensemble averaged Green's function,
g(r), in (17). The unaveraged Green's fuction, G(x, xo, t), is the solution of (10). Because the process
is spatially homogeneous it is harmless to take Xo = 0 so that .

G(x,O,r*) = 8 (x - r*ssinc,) 8 (y + r*csinc,) , (65)

wJ;ere (s, c) == (sin e, cos e). The ensemble average of (65) is computed by integration over c, and e,
as in (4). It is very pleasant that there are two integrals and two 8-functions. Thus, we first do the
c,-integral by noting that 8 (x - r*s sin c,) is nonzero at the two values of c, where sin c, = x /r*s, and
at those positions:

d~ (x - r*ssinc,) = r.Vr;S2 - x2. (66)
Using the standard rule for changing variables in a 8-function, we fid that the average of (65) over

c, alone is

(G)cp = ~ 8(y + cot 

ex) 
.

71 vr; sin2 e - x2
(67)

The second integral over e is performed by noting that 8 (y + cot ex) is nonzero at the two values of e
where cote = -y/x, and at those positions

. 2 x2sine= 2 2'X +y
d x2 + y2
de (y + x cot e) = - x (68)

After changing variables in the 8-function we recover g(r) in (17).
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B Eddy diffusion of variance
Ignoring small molecular diffsion (I\ = 0), if c satisfies the advection equation then any fuction of c
satisfies the same equation. That is to say

Dc =0
Dt ' == Dj =0Dt ' (69) .

where j(c) = c2, or exp(c), etcetera. Taking an ensemble average, and makng the same arguments
for j(c) as for c, we have that

(f)t = D\l2(f). (70)

In the particular case j = ¿i /2, (f) = (C)2/2 + Z and (70) reduces to

Zt = D\l2 Z + DV(c).V(c). (71)

Matching the terms in (71) with those in (50) we conclude that (U'C,2/2) = -DVZ.

C Numerical simulation of the RW process
Drawing figures 9 and 10 requires that we obtain the solution of (62) on a regular grid in the (x, y)-
plane. This is an opportunity to use the method of characteristics and learn some MATLAB programming
techniques.

Equation (3) shows how the movement of a paricle in the RW velocity field is equivaent to a
random map which determines the position at (n + 1)7"* in terms of the previous position at n7"*. If
this particle carries a concentration, c(x, t), which changes because of the cos qx source in (62), then
the concentration changes can also be calculated and expressed as a map in discrete time.

Thus, suppose that the concentration on a paricle at time t = n7"* is Cn' Then the change in

concentration during n7"* .. t .. (n + 1)7"* is obtained by integrating

Dc
Dt = cos (qxn + qun(t - n7"*)) , (72)

where the constant x-velocity of the particle is Un = Sn sin(cnxn + SnYn + tPn), with (Sn, cn) =

(sinen,cosen). The integral of (72) can be written as

sin(qxn+i) - sin(qxn)Cn+l = Cn + .
qUn

(73)

With equations (73) and (3) we can advance forward in time and so determine the concentration on
a particle at t = n7"*.

However we need to determine the concentration at t = n7"* at a specified grid point x. The trick
is ilustrated in the Matlab program below.

%% Solution of

%%

%% Dc/Dt=cos (qx) ;
%%

%% cos (q x) is a large-scale source and u is the RW velocity.

%% The RW streamfunction is psi=cos(cos(theta) x+ sin(theta)y + phiJ

clc
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N=400;
q=1/6 ;
LL=2*pi/q;
npulse=10
tau=3 ;

%% Use an N*N grid in the plotting window

%% The wavenumber of the cos q x source

%% LL is the domain size

%% The number of renovation cycles

%% The pulse duration of the wave

%% Lwin is the side of the square plotting window.

%% Set Lwin=LL to see the big picture. To see small scale details,

%% try Lwin = 2*pi. We draw two subplots with different Lwin' s

nloop=O;
for Lwin= (LL 2*piJ

nloop=nloop+ 1

x=linspace(O,Lwin,N) ;
h=x (2) ;

%%. x is the coordinate in the plotting window.

%% The grid spacing in the plotting window

for j=l:N

jj=(((j-1)*N+1): (j*N)J;

pos (j j , l)=zeros (N, 1)+(j-1)*h;
pos(jj ,2)=x';

end

conc=zeros (N*N, 1) ;

%% The position of the N-2 particles are stored in pos with

%% N-2 rows and 2 colums. Each vertical segment of

%% length N in pos contains particles with the same initial x-position.

%% the colum vector cone contains the concentration on the

%% N*N particles in pos. Initially, conc=O at the N*N

%% grid points. Then we integrate
%% backwards in time to find the concentration change.

for k=l:l:npulse

theta=rand*2*pi;
wavevec=(cos(theta) , sin (theta) J ';

phase=rand*2*pi;
vel=sin (pos*wavevec+phase) * (wavevec (2) , -wavevec (1) J ;
conc=conc-sin(q*pos(: ,1)) ./(q*vel(: ,1));
pos=pos+tau*vel;
conc=conc +sin(q*pos(:, 1)) . / (q*vel(: ,1)) ;

end

%% Emerging from this loop, we have the the new positions

%% and the new concentration

conc=reshape (cone, N , N); %% cone is reshaped into an N*N matrix

hh=subplot (1,2, nloop)
colormap ( , gray' )
imagesc (x, x, cone)
axis equal

xlabel ( , x ' )
ylabel( 'y' )
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axis ((0 Lwin 0 Lwin))
set(hh, 'ydir', 'norm')

end
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Lecture 3: Stretching

1 Line stretching

In the previous lecture we emphasized that the destruction of tracer variance by molecular disivity

relies on the increase of Ve by stirring. Thus the term K(Ve'. Ve') in the variance budget eventually
becomes important, even though the molecular diffsivity K is very smal. One goal of this lecture is to
understand in more detail how tracer gradients in a moving fluid are amplified by simple velocity fields.
We wil assume that K = 0 so that there is stirring without mixng. This is a good approximation
provided that the smallest scale in the tracer field is much greater than the length t = Ý K / 01 that we

identified in lecture i.
Gradient amplification is closely related to the stretching of material lines, a subject that was

opened by Batchelor in 1952. A material line is a curve that consists always of the same fluid
particles. Batchelor's main conclusion is that there is a timescale governing the ultimate growth of an
infinitesimal line element, but no length scale other than that of the element itself. These dimensional
considerations force the conclusion that the element grows exponentially,

t = toe'Yt , (1)

where'l is a constant with dimensions of inverse time, related to the timescale that Batchelor had in
mind.

Just as some close particle pairs separate exponentially, other pais starting at distant points are

brought close together. This might seem paradoxical until one recals the folded tracer patterns evident
in Welander's 1955 experiments (see the fial figures in lecture 1). If two closely approachig paricles
are carrying different values of e then the gradient Ve wil be amplied. Thus, as a corollary of (1)
we expect that ¡Vel'" IVeo\ expht). It is through this exponential amplification of the concentration
gradients that the small molecular difsivity K is able eventually to destroy tracer vaiance.

1.1 Material line elements and tracer gradients
Using a geometric arguent (see figure 1) we can give a proof-by-intimidation that a material line
element, ~(x, t), attached to a fluid element evolves according to

D~
Dt =(~.V)u. (2)

Here the "convective derivative" is D / Dt = â / ât + u . \7. The field of line elements can be visualized
a collection of tiny straight arrows attached to each moving paricle of fluid. Then (2) describes the
evolution of this collection of arrows. Notice that (2) refers to an infinitesimal line element ~. If the
length of a material line is comparable to the scale of u there is no longer a simple relation between
the stretching of the material line and local properties of u, such as Vu.

Taking the gradient of the tracer equation

Dc =0Dt ' (3)
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x + ç + u (x + ç, t) Òt

ç
ç + òç

x x + u (x, t) Òt

Figure 1: The line element e is short enough to remain straight and to experience a strain that is uniform
over its length during the time ót. Proof by intimidation of (2) : óe = (u(x + e, t) - u(x, t))ót, and take
(ót, e, óe) -+ O.

gives

DVc
- = -(Vc.V)u.Dt ( 4)

Despite the difference in the sign of the right hand sides of (2) and (4) there is a close connection

between the solutions of the two equations.
To emphasize the connection between V c and ~, we mention the conservation law

D
-(Vc'~) = O.Dt (5)

(Meteorologists and oceanographers might recognze (5) as a relative of potential vorticity conserva-
tion.) Later in this lecture (5) is used to deduce Vc from~.

The easy way to prove (5) is to consider a pai of particles separated by a small displacement ~.
If the concentration carried by the first particle is Ci, and that of the second particle is C2 = Ci + dc,
then dc = ~. V c. Thus (5) is equivalent to the "obvious" fact that dc is conserved as the two paricles
move.

The diffcult way to prove (5) is to take the dot product of V c with (2) and add this to the dot
product of ~ with (4). Performing some nonobvious algebra, perhaps with Mathematica or Maple,
one can eventually simplif the mess to (5). Suffering through this tedious exercise will convince the
student that the earlier, easy proof is worthy of serious attention.

1.2 Eulerian versus Lagrangian: the golden rule

Particle trajectories, x = x(xo, t), are determined by solving the differential equations

Dx
Dt = u(x,t), x(O) = Xo . (6)

The solution of the differential equation above defines the particle position, x, as a function of the

two independent variables, Xo and t. Using this time-dependent mapping between x and xo, we can
take a problem posed in terms of x and t (the Eulerian formulation) and change variables to obtain

an equivalent formulation in terms of Xo and t (the Lagrangian formulation).
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In the Eulerian view, the independent variables are x = (x, y, z) and t. The convective derivative,

D a a a a
Dt = at + u ax + v ay + W az ' (7)

is a diferential operator involving al of the independent variables.

In the Lagrangian view, the independent variables are Xo and t' and x(xo, t') is a dependent
variable. As an accounting device, the time variable is decorated with a prime to emphasize that
a t-derivative means that the independent variables are xo. To move between the Eulerian and
Lagrangian representations notice thatat a

at,=I, and at'(x,y,z) 

= (u,v,w). (8)
The second equation above is the definition of velocity, u = (u, v, w).

Using (8), the rule for converting partial derivatives is

a a ax a ay a az a D
at' = at + at' ax + at' ay + at' az = Dt'

Equation (9) is the golden rule that enables us to interpret expressions such as

D
Dt (unkown) = RHS

(9)

(10)

in either Eulerian or Lagrangian terms. Using the golden rule we can dispense with the prime that
decorates the Lagrangian time variable.

In the Eulerian interpretation we must express the RHS in (10) as a function of x, y, z and t
and use the Eulerian definition of the convective derivative in (7). Then (10) is a partial differential
equation for the unkown.

In the Lagrangian interpretation D / Dt is the same as a simple time derivative and we must express
the RHS of (10) as a function of xo, Yo, Zo and t. Then (10) is a ordinary differential equation for the
unknown.

As an ilustration of the transformation between Eulerian and Lagrangian variables, consider the
steady, unidirectional velocity field u = (u(y),OJ. The solution of (6) is

x = Xo + u(y)t, Y = Yo. (11)
In this example it is a simple matter to express (x, y) in terms of (xo, Yo) and vice versa.

The line-stretching equation, (2), has the same form as (10). For the same unidirectional velocity
field, using components, ~ = (~, TJ), we have in Lagrangian variables

D~, DTJ
Dt = TJU (Yo) , Dt = O. (12)

(We have used the golden rule (9) above.) Equation (12) is an ordinary differential equation and the
solution is

~ = ~o(xo, Yo) + tTJo(xQ, yo)ul (Yo) , TJ = TJ(xo, Yo) . (13)

Using (11), we can write (13) in terms of Eulerian variables as

~ = ~o(x - u(y)t, yJ + tTJo(x - u(y)t, yJu'(y), TJ = TJo(x - u(y)t, yJ. (14)

We can alternatively view (12) in terms of Eulerian variables and in this case we are confronted with
the partial differential equations

a~ a~, aTJ aTJ
at + u(y) ax = TJU (y) , at + u(y) ax = 0 .

It is easy to check by substitution that (14) is the solution of (15).

(15)
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1.3 Motion is equivalent to mapping
We obtained (2) using the geometric argument in figure 1. Now we admire some different scenery by
takng an algebraic path to (2). Our itinerary emphasizes that the solutions of (6) define a mapping

of the space Xo of initial coordinates onto the space x, and hence the title of this section.
Using indicial notation (summation implied over repeated indices), it follows from the chain rule

that
8XidXi = -8 dXOj. (16)
XOj

Taking the time derivative of (16), and keeping in mind that XOj is independent of t, gives

D 8Ui 8Ui 8xOj 8Ui
-D (dxi) = -8 dXOj = -8 -8. dXk = -8 dXj. (17)t XOj XOj Xk Xj

(We have used the golden rule.) Makng the identification dx -+ e we obtain (2).
The motion of a fluid defines a family of mappings from the space of initial coordinates, Xo, onto

the space of coordinates x. At t = 0 this is just the identity map but as t increases the map from Xo
to x can become very complicated. Equation (16) defines the Jacobian matrix,

_ 8Xi:rij = -8 ' (18)
XOj

of the map.
With these algebraic formalities we have given an alternative derivation of (2) and, as a bonus, we

have also found a representation of the solution:

e = :reo. (19)

The solution above is known as Cauchy's solution.
In (19) there is no assumption that the flow is incompressible. IT the flow is incompressible (i.e.,

if V.u = 0) then mapping from Xo to x conserves volume. In this case, det:r = 1.

2 Two-dimensional incompressible flow
In the case of a two-dimensional incompressible flow there is a streamfunction 'i = 'i(x, t) such that
U = (u, v)=( -'iy, 'ix)' In terms of 'i, (2) can be written as:

De = we, where W == (-'ixy -'iyy). (20)Dt 'ixx 'ixy
The trace of W is zero and the determinant is det(W) = 'ixx'iyy - 'i~y' The solution of (20) can be
written as

;

~,~
~

e = exp (ltW(tl) dtl) eo.

Thus, using (19), we obtain a fundamental connection between :r(t) and Wet):

:r(t) = exp (ltW(tl) dt') .

Because tr W = 0 it follows! that det:r = 1. This is, of course, just another way of saying that if the
flow is incompressible then the map from Xo to x is area preserving.

(21) P,

(22)

i For a square matrix M
deteM = érM.

45



det W~O det W-:O det W=O

~
Figure 2: The sign of det(W) = 'I,,'lyy - 'I;y determines the streamine pattern.

2.1 The steady case

Because (20) is linear the solution is straightforward if the velocity field in the Lagrangian frame is
steady. Thus

where

e(t) = e'Ytê, ì = ::v' - det W , (23)=?

det W = 'lxx'lyy - 'l;y. (24)

There are three cases, which correspond to the three panels in figue 2:

Elliptic: If det W ~ 0, then ì is imaginary and the local streamfunction has ellptic streamlnes; e

changes periodically in time and there is no exponential stretching.

Hyperbolic: If det W .: 0 then ì is real and the streamfunction is locally hyperbolic. Then, as in
lecture 1, material line elements wil be stretched exponentially in one direction and compressed
in the other.

Transitional: If det W = 0 then iei grows liearly with time.

Following Okubo (1970) and Weiss (1991), the sign of det W has been used to diagnose two-
dimensional turbulence simulations (e.g., McWiliams 1984). Assuming that det W is changing slowly
in the Lagrangian frame, one argues that the result in (23) applies "quasistatically". For instance,
using simulations of two-dimensional turbulence, McWiliams shows that in the core of a strong vortex
'lxx'lyy - 'l;y ~ O. The interpretation is that there is no exponential stretching of line elements in

vortex cores, which indicates that these regions are isolated patches of laminar flow. This so-called
Okubo-Weiss criterion is only a rough guide to the stretching properties of complicated flows; for a
critique and more refied results see Hua and Klein (1999).

One pleasant aspect of the steady two-dimensional case is that it is possible to explicitly calculate
the matrix exponential .:(t) = exp(tW). (This is not the case in three dimensions.) Begin by noting

that

W2 + (det W)I = 0, (25)

where I is the 2 x 2 identity matrix. The result above is easily checked by direct evaluation, but (25)
is also a consequence of tr W = 0 and the Cayley-Hamilton theorem. When (25) is substituted into
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the definition of the matrix exponential:

t2 t3
3 = exp (tW) = I + tW + - w2 + - w3 + . ..2 6 (26)

the sum collapses to

sin (Vdet Wt)
3 = cos (Vdet Wt) I + v' W.detW (27)

We now use the result above to formulate a renovation modeL.

2.2 The a-( model

We construct the "a-(" model using the matrix equation in (20). The idea is to define an ensemble of
stretching flows in which the 2 x 2 matrix W is piecewise constant in the intervals In = f t : (n - 1) r -:
t -: nrl; r is the "decorrelation time". We use the following representation of W in the interval In:

W = (n (0 -1) + an (-cos2en Sin2en)n 2 1 0 2 sin2en cos2en . (28)

(n is the vorticity and an the strai. Isotropy is ensured by pickig the random angle 0 -: On -: 27l

from a uniform density. (We use 20n because the principal strai axes are.at angle On to the coordinate
axes, and tbey specify a orientation but not an direction. That is, the strain axes are like vectors
without an arrow.)

Because W n is constant in In the calculation of stretching rates can be reduced to a product
of random matrices. The terms in the product are exp(rW n) and, using (27), one can obtai this

matrix exponential analytically. There is an extensive and diffcult literature devoted to calculating
the statistical properties of products of random matrices (e.g., Crisanti, Paladin & Vulpiani, 1993).
It is fortunate that we can avoid these complications by using the isotropy of the a-( model to reduce
averages of matrix products to averages of scalar products.

Two important properties of W n are easily related to the vorticity and the strain:

1 (2 2)
det W n ="4 (n - an' tr (W;Wn) = ~ ((~ +a~) . (29)

In the examples that follow we wil use a-( ensembles which model spatially homogeneous flows, for

which (a2) = ((2) (by the way: this is not obvious). In this case (detW n) = 0 and "on average" the
Okubo-Weiss criterion is zero.

We employ (27) to obtain an explicit expression for the matrix 3 n = exp(rW n)' It turns out
that we do not need the full details: all that is required is

~tr (3;3 n) = 1 + 3(an,rn,r), (30)

where

3( a, (, r) == (2 ~ a2 (1 - cos ( .¡ (2 - a2 r)) . (31)

The "trace formula" above should be known to experts on two-dimensional stretching problems, but
I have not found (30) in the literature.
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2.2.1 Stretching of squared length

Consider the first interval Ii, and suppose that at t = 0, ~ = to (cos X, sin X). At t = T we have

tî = ~J:ri T :ri~o' (32)

Now we use isotropy to average (32) over the random direction X of the element ~o' A trivial calculation
gives

((ti/tO)2)'X = ~tr (:riT:ri) . (33)

The RHS of (33) is given explicitly in (30). We must stil average over the random variables (7 and (
This gives

((ti/tO)2) = i + f fP((7,()3((7,(,T)d(7d(, (34)

where P((7, () is the joint PDF of (7 and ( 2.
We are now well on our way to computing the rate at which t2 grows with the number of renovation

cycles, n. The average stretching of t2 in each In is independent of the previous I's. Thus, to compute
the growth of t2 over n renovation cycles, we can simply raise the average t2-stretcmng factor in a
single I to the n'th power:

((tn/tO)2) = i i + f fp((7, ()'2((7, (, T) d(7d( J n (35)

The stretching rate ,2 is defied by

,2 == lim ~ln (((tn/to)2)i/2)t-+oo t (36)

The notation ,2 anticipates section 4 in wmch we wil define a stretching rate ,p which measures the
growth of ((tn/to)P).

Using n = tIT, we have from (35)

,2 = 2~ In i i + f fp((7, ()3((7, (, T) d(7d( J . (37)

To further simplify the integral above we must specify the probabilty density function P((7, () (ex-
amples follow).

2.2.2 Randomly oriented Couette flows

As a first example, suppose that in each In the random variables (n and (7n are independently and
identically distributed, each equal to x.ß with equal probability. In this case

i
P((7, () = ¡l8((7 + ß) + 8((7 - ß)) l8(( + ß) + 8(( - ß)) . (38)

This ensemble is a set of randomly oriented Couette flow, such as the tmrd case in figure 2. According
to the Okubo-Weiss criterion there should be no stretcmng because det W is identically zero. However,
this is wrong.

21f a and ( are independent and identically distributed random vaaibles then 1'(17, () = P(a)P(().
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Figure 3: A comparison of the exponent 'Y2 in (40) with a simulation (the dotted curves) of the random
Couette flow. The simulation is conducted by creating random matrices according to the recipe in (28) and
(38), and then computing the matrix product. The iteration number is the number of matrices in the product.
To get reasonable agreement between the simulation and the analytic result in (40) one must ensemble average
over a large number of realizations (4000 in the figue above). The discrepancies evident at large iteration
number can be reduced by using more realizations. The figue also shows a comparison of the exponent 'Yo in
(73) with simulation.

The recipe in (38) leads to trivial calculations because (; = 0';' and := = ß272/2. Thus, even
without averaging over 0' and (,

l(T) 122
2tr :J n:J n = 1 + 2ß 7 '. (39)

and it follows that

1 ( ß272)
12 = 27 In 1 + ~ . (40)

(See Figure 3.) The nonzero exponential stretching, which occurs even though det W = 0, is due to
the realignment of a material element with respect to the direction of extension of the velocity field
which occurs at t = n7. In the limit of a very slowly changing velocity field, 7 -+ 00, the stretching
rate vanishes because there are fewer realignment events. This is the revenge of the Okubo- Weiss

criterion.
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Figure 4: The nondimensional stretchig exponents "(21ß in (41) as a function of ßr for vaious values of q. If
q = 1/2, then det W is zero identically and "( -+ 0 as r -+ 00. When slightly less than 1/2, and r is suffciently
large, the occasional hyperbolic points can make a large contribution to the stretching exponent "(2.

2.2.3 An example with det W =l 0

A more interesting stretching ensemble is defined by takg an and (n to be identical and independently
distributed random variables equal to ß with probability q, -ß with probabilty q, or zero with

probabilty 1 - 2q. With this prescription there is a hyperbolic point in In, as in the middle panel of
figure 2, with probabilty 2q(1 - 2q).

One can calculate "(2 in (37) by enumeration and averaging over the nine possible pairs (an, (n).
Calculation gives

1
"(2 = 2r In t1 + 2q2ß2r2 + 2q(1 - 2q) (coshßr - 1) r . (41)

Figure 4 shows the nondiensional "(2/ ß as a function of ßr for various values of q. From figure 4 we
conclude that while instantaneous hyperbolic points are not essential for exponential stretching, they
do help, especially if the correlation time r is long.
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2.2.4 The Batchelor and Kraichnan limits

The calculation of stretching exponents in this section does not follow the historical path. The
pioneering papers by Batchelor (1959) and Kraichnan (1974) considered limiting cases - slowly

decorrelating in the case of Batchelor and rapidly decorrelating in the case of Kraichnan - in which
stretching rates can be calculated approximately. A major advantage of these approximations is that.
they work equally well in two and three dimensional space. On the other hand, by considering exactly
soluble two-dimensional models we can extract the Batchelor and Kraichnan limits as special cases.

Batchelor (1959) considered stretching by slowly decorrelating velocity fields. This is the limit
in which (7 and U7 are large. Batchelor's main conclusion is that in this quasisteady limit the net
stretching is dominated by hyperbolic straining events. Indeed, this conclusion is ilustrated by the

exact result for ')2 which is plotted in figure 4.
Kraichnan (1974) considered the opposite limit in which (7 and U7 are small. In this rapidly

decorrelating limit we can simplify the exact expression in (37) by noting that :: ~ (U7)2/2 .:.: i.
Thus, simplifying (37), we find that the stretching rate is

1 2
')2 ~ 4(U )7, (42)

independent of the vorticity.

2.3 The renovating wave model

In this section we calculate the average growth of t2 using the renovating wave (RW) modeL. It is
interesting to see how this .calculation can be done without using matrix identities such as (27).

Begi by recalling the definition of the RW modeL. TheRW streamction is

In = (n - 1)7* .: t .: n7* : 'Øn == cos ¡cos en x + sin en Y + ¡PnJ. (43)

In (43), en and ¡Pn are random phases. and 7* is the decorrelation time. The random phases are
reinitialized at t = n7* so there is the complete and sudden loss of memory at these instants. (In this
section we use the dimensionless version of the RW model; the parameter 7* == 7kU is the ratio of the
correlation time 7 to the maximum shear of the sinusoidal wave kU.)

The renovating wave model is equivalent to the random map

(Xn+1, Yn+1) = (xn, Yn) + (Sn, -cn) sin¡cnxn + SnYn + ¡PnJ7* , (44)

where (cn, Sn) _ (cos en, sin en). The Jacobian matri can easily be obtained by differentiation of
(44):

:T(n) - (W(n)) - ( 1 + CnSn7*'Øn S;7*'Øn J- exp 7* - _2 .
-Cf 7* 'Øn 1 - CnSn7*'Øn

(45)

Notice that det :T(n) = 1: the map is area preserving.
Using :T(n) we can track the stretching of an infiitesimal material element as

~n+1 = :T(n)~n' ~ t~+1 = ~~+l~n+1 = ~~K(n)~n' (46)

where K(n) = :T(n)T :T(n). Explicitly:

ic(n) _ ( (1 + CnSn'Øn7*)2 + C~'Ø;7;
- (s; - c;)'Øn7* + CnSn'Ø;7;

((Sl; - C;)~~7*)~ CnS~~~7~ J .
- CnSn'ln7* + Sn'ln7*

(47)
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To compute the stretching rate we consider an element which has length to at t = O. Because the
problem is isotropic, it is harmless to choose the coordinate system so that this element lies along the
x-axs: ~o = to(l, 0). After the first iteration of the map:

02 _ 1((1) 02 _ ((1 ./.)2 4./.2 2) 02(.1- 11(.0- +CiSl'f17* +C1'f17* (.0' (48)

Averaging (48) over the phases ()1 and ¡Pi gives

((t¡ftO)2) = (1 + 71) (49)

If you are suspicious of the argument above, then you might prefer to align the initial material
element at an arbitrary angle, say ~o = to(COSX,sinX). Repeating the calculation, we now find that

ti = (1(W cos2 X + icW sin2 X) t~, (50)

Averaging (50) over (J¡ and ¡PI, we recover (49).
Because each .:(n) is independent of the earlier .:'s the average growth of t2 is

((tn/tO)2) = (1 + 71) n (51)

Using t = n7*, (51) can be written as

((tn/tO?)1/2 = e'Y2t,
1 ( 72)

"12 == - In 1 + -. .27* 4 (52)

Aside from notational differences, the expression above for "12 is identical to (40).

3 Amplification of concentration gradients

In this section we discuss the amplification of V C which occurs when a passive scalar is advected by
a random flow in two dimensions.

Back in (4) we noted that the quantity ~. V c satisfies the conservation equation

D
Dt(~'Vc) = O. (53)

Equation (53) enables us to use our earlier results concerning the stretching of material elements to
analyze gradient amplifcation. In fact, using (53), we can obtain Vc from~. The first step is to
construct a basis by considering the following initial value problem:

D~k
Dt = (~k'V)U,

with initial conditions ~1 (x, 0) = X, ~2(x, 0) = y, (54)

where the unit vectors of the coordinate system are X, '0, z. As the fluid moves, the parallelogram
spanned by ~1 and ~2 will deform. But because U is incompressible, the area of the parallelogram is
constant and so

~1 X ~2 = z, (for all t). (55)

If we can solve (54) for ~ l' then we can use (53) and (55) to calculate ~ 2 and V c.
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Figure 5: Numerical solution of the renovating wave model with 7 = 2. The initial condition is c(x, y, 0) = y,
Already, at t = 67, IVel is greatly amplified in some regions.
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Figure 6: A numerical solution of the renovating wave model with r = 1. The intial condition is c(x, y, 0) =
y. The plots show the values of c and iV cl along the slice x = O. After 20 iterations, IV cl has developed
strong spatial intermittency_
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As an example of this procedure, suppose that the initial condition is e(æ, 0) = y. Then it follows
from (53) that:

~i.Ve=O

Using (55) and (56) we see that

and ~2.Ve=1 (for all t). (56)

Ve=zx~i' (57)

Thus, in this example, once we calculate ~l we obtai Ve as a bonus.
Figure 5 displays the numerical solution for e and IVel afer 6 iterations of the renovating wave

modeL. The initial condition is c(æ,O) = y, so that Ve(æ,O) = y; the decorrelation time is T = 2.
The field in figure 5 is obtained using a 256 x 256 grid. To find e at the grd point æ at time t = nT,
one iterates the renovating wave model backwards in time til the initial location (a, b) is determined,
and then e(æ, t) = b. In parallel with this backwards iteration, ~(æ, nT) is computed by matrix

multiplication of the .:(n) defined in (45), and then Ve is given by (57).
An important feature of stirring is the development of intermittency in the concentration gradient,

¡Vel. In figure 6 the development of intermittency is ilustrated, again using the renovating wave

modeL. After 20 iterations there are "hotspots" in which large values of IVel are concentrated.
Without diffsion, the gradient of e condenses onto a fractal set as the number of iterations increases
(Városi, Antonsen & Ott 1991).

4 Multiplicative random variables

In our solution of the a-( model in section 2 we used isotropy to reduce a product of random matrices
to a product of random scalars e.g., see equations (33), (34) and the following discussion. The mai
point of this section is that the statistical properties of isotropic line-element stretching are bedeviled
by the large fluctuations which are characteristic of products of random varables. Indeed, figure 6
shows that there are large fluctuations in t2 = 1~12 = IVeI2. If one is attempting to measure the
variance dissipation, K.(Ve. V c), then the intermittent structure of V c in figue 5 might pose a
sampling problem. Imagine steering a ship through the field in figure 5 and making occasional point
measurements of V c. If the density of measurements is too low then one might easily miss the gradient
hot-spots and so grossly underestimate K.(V c. V c).

4.1 Most probable values versus mean values
We begin by stepping back from the stirring problem, and making some general remarks about mul-
tiplicative random processes. Suppose that a random quantity, X, is formed by takig the product of
N independent and identically distributed random variables

X = Xi X2 . . . X N. (58)

What can we say about the statistical properties of X?
The most nonintuitive aspect of X in (58) is the crucial distinction which must be made between

the mean value of X and the most probable value of X. As an ilustration, it is useful to consider an
extreme case in which each Xk in (58) is either Xk = 0 or Xk = 2 with equal probabilty. Then the
sample space consists of 2N sequences of zeros and two's. For all but one those sequences, X = 0; in

the remaining single case X = 2N. Thus, the most probable (that is, most frequently occuring) value
of X is

Xmp = O. (59)
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On the other hand, the mean of X is

(X) == sum all the X's from different realizations = 1number of realizations (60)

Notice that one can also calculate (X) by arguing that (Xk) = 1 and, since the Xk'S are independent,

(X) = (Xk)N = 1
The example above is representative of multiplicative processes in that extreme events, although

exponentially rare if N ?? 1, are exponentially diferent from typical or most probable events. Thus,
for the product of N random variables the ratio (X) 1 Xmp diverges exponentialy as N ~ 00. On the
other hand, for the sum of N random vaiables the most probable outcome is a good approximation
of the mean outcome. Perhaps this is why people have an intuitive appreciation of sums, but find
products confusing.

Now let us consider a more realistic example in which each Xk is either a or 1/a with probabilty

1/2. In this case the p'th moment of X is

1
(xD = - (aP+a-P),2

=?
( P + -P ) N

(XP) = a 2 a (61)

Before continuing, the student wil profit from showing that the most probable value of X is Xmp = 1
(for N even). For example, if a = 2 then (X) = (5/4)N, while Xmp = 1. Again, the most probable
value differs exponentially from the mean value as N ~ 00.

4.2 The log-normal distribution
Because Xmp is so different from the (X) the problem of determining (X) via Monte Carlo simulation
is diffcult: one may have to exhaust nearly all of the 2N cases in òrder to obtai a reliable estimate
of (X). This exhaustion is necessary for the first example, in which Xk = 0 or 2. In the example of
equation (61), provided that a ~ 1, we can get a pretty good estimate of (X) with less than exhaustive
enumeration of all sequences of the xn's.

Begin by noting that

lnX = lnXl + Inx2 +... + lnxN, (62)

and so if In Xk has finite variance then it follows from the Central Limit Theorem (CLT) that A == In X
becomes normally distributed as N ~ 00.

The pitfall is in concluding that all the important statistical properties of A, and therefore of
X = exp(A), can be calculated using the asymptotic log-normal distribution ,of X. This not the case
because the PDF of A, peA), is approxiated by a Gaussian only in a central scaling region in which
IAI -t cN1/2, where c is some constant which depends on the PDF of Xk. On the other hand, a reliable
calculation of (XP) = (exp(pA)) may require knowledge of the tail-structure of peA). _

To ilustrate these diffculties, we use the example in which In Xk = :: In a and (In2 Xk) = ln2 a.
Invoking the Central Limit Theorem, the asymptotic PDF of A is therefore

1PCLT(A) = exp (_A2 12Nln2 a) .
V27rNln2 a

In the central scaling region, peA) ~ PCLT(A).
To determine Xmp we can consider A = In X, which is an additive process for which the mean and

most probable coincide, so that

(63)

(InX) = lnXmp, =? X - e(lnX)mp - . (64)
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Figure 7: The function r(a,p) defied in (67). In order to accurately estimate (XP) using the CLT one must

have r ~ 1.

In our example with In Xk = :f In a, (In X) = 0 and therefore Xmp = 1. (This is one way of solving
the problem posed in the previous section; another is to obtain the exact peA) using the binomial
density. )

With hope in our hearts, we now attempt to recover the exact result in (61) by substituting (63)
into

(XP) == iiAp (A) dA. (65)

After the integration, one finds that

(XP)CLT = exp (Np21n2 aj2) . (66)

To assess the error we form the ratio of the exact result to the approximation:

(XP)j(XP)CLT = rN,
1

where r == "2 exp (_p2in2 aj2) (aP + a-P) . (67)
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When r(o:,p) is close to 1, the error is tolerable in the sense that In (XP)CLT is close to In (XP).
For example, with 0: = 2, the exact result is (X) = (5j4)N while (X)CLT = (1.27)N. However

the second moment p = 2, is seriously in error. As a general rule, (XP)CLT is a reliable estimate of
(XP) provided that p2(ln2 Xk) .: c, where c is the constant which determines the width of central
scaling region, IAI .: cN1/2, in which P(A) :: PCLT(A). We conclude that the complete analysis of a
random multiplicative quantity cannot be reduced to the Central Limit Theorem merely by taking a
logarithm.

4.3 Stretching exponents

Equation (64) is a very important result for multiplicative random variables: to obtain the most
probable value of X, one can exponentiate (In X). This explains why there is so much attention

paid to (In(£(t) j £0)) in the literature on random line element stretching: knowing the average of the
logarithm enables one to estimate the stretching of a typical line element. Of course, the typical line
element may not make a large contribution to the dissipation K,(V c' . V c'). Thus our earlier focus on
£2 was not wasted, but it was not complete either.

A good characterization of random stretching is provided by the complete set of stretching expo-
nents. Following Drummond & Münch, we define the stretching exponents, ìp, as

= lim ~ d(£P)ìp - Hoo p(£p) dt ' p). 0, (68)

and

ìo = lim TP = lim dd (In£).p-tO t-too t (69)

Knowing all these ì'S, the asymptotic growth of line elements is characterized by

(fi)1/P ,. £oe'Ypt . (70)

Back in section 2 we calculated only ì2 (e.g., see (33) and the subsequent discussion). To conclude
this section I wil discuss the calculation of the other stretching exponents, particularly ìo.

4.4 The stretching exponent 1'0 of the a-( model
As an example of the difference between ìo and ì2 we return to the a-( modeL. In section 2 we
obtained a general expression for ì2 in (37). Now consider the problem of determinig ìo. Takng the
log of (32), writing eo = to(COSX,sinX), and then integrating3 over X, we have afer some travai,

1 ( =)
(In(t1jto))x = 21n 1 + ~ ' (71)

where 3(a, (, r) is given in (31). Averaging over a and (, and using ìo = r-1 (In (£d£o) ), gives

ìo = 2~ f f P(a,()In (1 + ~3(a,(,r)J dad(. (72)

The expression above should be compared with that for ì2 in (37).
3The integral

17' In(a:lbcosx)dx = 7lln ((a+ va2 -b2) /2) ,
is usefuL.
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With the ensemble of random Couette flows in section 2.2.2 we can evaluate the integrals in (37)
and (72). Thus, we find that

1 ( ß272)
'Yo = 27 In 1 + 4 '

1 ( ß272 )
'Y2 = 27 In 1 + 2 . (73)

Notice that 'Y2 :; 'Yo. This is a ilustration of the general result that 'Yp is an increasing function of p

(Childress & Gilbert 1995). Figure 3 compares the expressions for 'Yo and 'Y2 in (73) with simulation.

4.5 Stretching in one-dimension

One-dimensional compressible velocity fields provide striking examples of the nontrivial dependence
of 'Yp on p. We conclude this lecture with a model of random one-dimensional stretching for which
the 'Yp's can be obtained analytically.

4.5.1 A sinusoidal velocity

With the one-dimensional velocity u = sinx, the equation governing line element stretching, (2), is

€t + sinx€", = €cosx, €(x,O) = 1. (74)

The initial condition above is that the line elements attached to diferent fluid particles all have the
same initial length. Because the fluid is compressible, the fluid density p(x, t) satisfies

Pt + (sin x p)", = 0 p(x,O) = 1. (75)

It is easy to show by substitution that the solutions of (74) and (75) are related p(x, t) = 1/€(x, t).
The physical interpretation of this result should be obvious...

To solve (74), we follow the route outlned in section 1.3 by determining the mapping from the
initial space, xo, to the space x(xo, t). This means we solve

Dx
Dt = sinx,

x(O, xo) = Xo . (76)

U sing separation of variables we find that

tan(x/2) = é tan(xo/2) , (77)

which enables us to determine x given xo, or vice versa. Figure 8 shows how the mapping from Xo to
x evolves as t increases.

In this one-dimensional example, the Jacobian of the mapping is simply

dx
dxo

= 1 .
h . h =cosht+cosxsmht.cos t - cosXo sm t

(78)

It is easy to check by substitution that € = dx/dxo is the solution of (74).

4.5.2 A one-dimensional renovating model

U sing the previous one-dimensional ilustration of the Cauchy solution, we can formulate a renovating
model that ilustrates some of the subtleties involved in random stretching problems. Consider an
ensemble of random renovating one-dimensional velocity fields in which

u = sin(x + Ctn) if (n - 1)7 0( t 0( n7. (79)
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Figure 8: The left panel shows the mapping from Xo to x at the indicated times. The interval 0 .( Xo .( 1r is
compressed into the neighbourhood of x = 71. The right panel shows J(xo, t) at the same times. Notice that
an element that stars at say, Xo = 1/2, is fist stretched (J ~ 1) but then ultimately compressed (J .( 1) as
the particle approaches x = 1r.

The random phase, 0 .( 'Pn .( 2n, is reset at t = nT. Notice that there is no preferred location on the
x-axs; that is, the statistical properties of the process are spatially homogeneous.

Now, suppose we follow the stretching of a line element attached to a particle that moves in a
particular realization of this velocity field. We denote location of this particle at t = nT by an, and
the length of the attached line element at this time by t-n. Then, using the solution from the previous
section, the stretclug of the line element is given by the random product

t-n = J(an-i)J(an-2) ... J(ao)to , (80)

where the Jacobian is

1
J(a) ==

cosh T - cos a sinh T
(81)

Because the phase is reset at t = nT, each J(an) in (80) is independent of the others. Moreover,

because of spatial homogeneity, each an is uniformly distributed with 0 .( an .( 2n.
Equation (80) expresses the length of a material line element at t = nT as a product of n random

numbers. Following our earlier discussion of multiplicative random variables, we first calculate 1'0 by
taking the logarithm of (80):

n-l
In(t-njt-o) = 2:)nJ(ak)'

k=O
(82)

Thus, the mean of In(t-njt-o) is

(In(t-njt-o)) = n(lnJ), (83)

where

f da(InJ) = In(J(a)J 2n = -In(cosh(Tj2)J . (84)

Because ((In J)2) is finite, the central limit theorem applies and we conclude that as n -t 00, In(t-njt-o)
is approximately normally distributed with the mean value n( In J).
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Figure 9: The stretching exponents ipeT), with p = 0, 1,... , 8 calculated using (89) .

Moreover, we can conclude from the central limit theorem that the most probable value of f.n/f.o is

(f.n/ f.O)mp ~ e( In(£n/£O)) = e'Yot , (85)

where, since n = tIT,

10 = -In(cosh(T/2)J/T -( O. (86)

The result in (85) is remarkable because it implies that most of the -line elements in this compressible
flow exponentially contract (rather than stretch) as t -+ oo!

Exponential contraction of most material lines is incomplete disagreement with the spirit of Batch-
elor's result in (1), where 1 :; O. The result above, that 10 -( 0, is a special consequence of the
compressible velocity field used in (79). (For a discussion of compressible velocities in a space of

arbitrary dimension, see Chertkov et al. (1998).) In any event, this example shows that one cannot
take exponential stretching for granted, no matter how intuitive it seems on the basis of experiments,
such as those of Welander (1955).

How is contraction in the length of most material elements compatible with conservation of the
total length of the x-axs? The answer is that even though most elements become exponentially

small as t -+ 00, a few elements become exponentially large. Thus most of the length accumulates in
exponentially rare, but exponentially long, line elements. This is an elementary example of an inverse
cascade i.e., the spontaneous appearence of large-scale structures (big line elements).

To demonstrate length conservation, we can compute the mean (as opposed the most probable)
length of an element. The mean length is

(f.n) = (Jtf.o , (87)

where J(a) is defined in (81) and

f da(J) = J(a)- = i.27l
(88)

Thus, the mean length of an element is constant, even though most elements exponentially contract.
As an exercise, I suggest showing that for integer values of p the stretching exponents of this

one-dimensional model are given by

iP = In (Pp-i (cosh T)J /¡r , (89)

where Pm is the m'th Legendre polynomial. Thus, in this particular example, there is a nice analytic
characterization of the rate at which different moments stretch (see figure 9).
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Lecture 4: Anomalous diffusion

In this lecture we discuss stochastic models of correlated random walks. By "corre-
lated" we mean that that if a particle is headed in one direction then there is nonzero
probability that it continues in that same direction for some time and this probability
fades to zero as the time interval increases. This is, of course, the situation envisaged
by Taylor (1921).

The distinction between normal and anomalous diffusion made in lecture 1 can
be understood by examining the rate at which velocity correlation decrease to zero.
Normal diffusion occurs if the velocity correlation decrease rapidly while anomalous
diffusion results from processes in which particles move coherently for long times with
infrequent changes of direction. Roughly speaking, this distinction is quantified by the
tail behaviour of the velocity autocorrelation function. For example, if the correlation
function decays exponentially then there is normal diffusion, whereas if the correlation
function decays algebraically then there is the possibilty of anomalous diffusion.

The definition of anomalous diffusion is based only on the behaviour of the second
moment, (x2). But we usually want to know more about the distribution of a tracer
than simply the second moment. In the case of normal diffusion, detailed information
concerning the tracer distribution is obtained by solving the diffusion equation

Ct = Dcxx . (1)

Can we obtain continuum models, analogous to (1), which provide the same detailed
information for anomalously diffusing tracer? The main goal of this lecture is to develop
partial differential equation models which can be used for this purpose.

i Superdiffusion and sub diffusion

1.1 Taylor's formula and long tails

Yet again we recall Taylor's formula which relates the growth of position variance to
an integral of the Lagrangian velocity autocorrelation function, corr(t),

d(x2) it- = 2 corr(t) dt .dt 0 (2)
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In order to obtain (x2) we must integrate (2). Standard manipulations turn the result-
ing double integral of corr(t) into a single integral

(x2) = 21t (t - t')corr(t') dt' . (3)

The result (3), which is not in. Taylor's original paper, wil prove to be very usefuL.

We usually have in mind situations in which corr(t) decreases to zero as t ~ 00 so
that the integrals in (2) and (3) converge to nonzero values. An example is the reno-
vating wave model, with its "triangular" correlation function, from lectu.re 2. Later in
this lecture I wil introduce the telegraph model which has an exponentially decaying
correlation function, corr(t) = U2 exp( -2at). These are both examples in which cor-
relations decrease very rapidly so that normal diffusion occurs. But now consider the
possibilty that corr(t) decreases so slowly that the integrals in (3) diverge.

Suppose, for instance, that as t ~ 00, corr(t) rv rr¡ with 0 -c 17 -c 1. Even though
the diffusivity no longer exists, it stil follows from (3) that

(x2) rv e-r¡ . (4)

In this case there is superdiffusion: the variance of the particle displacement grows
faster than linearly with time because 2 - 17 ~ 1.

Taylor's formula also contains the possibility of subdiffusion. This case is subtle
because, like the example of the sea-surface mentioned in lecture 1, it requires that the
integral defining D is zero. But suppose additionally that the remaining integral in (3)
diverges. This can happen if corr(t) rv ct-r¡ with 1 -c 17 -c 2. The condition that 1 -c 17
ensures that Iooo corr(t') dt' converges (to zero). The second inequality, 17 -c 2, ensures
that I; t'corr(t') dt' diverges. Using (3), we again find the scaling law in (4). However
this time, because 2 - 17 -c 1, there is subdiffusion.

At first glance two possibilities above appear as unlikely exceptions to the more nat-
ural cases in which both integrals in (3) converge. However there are examples in fluid
mechanics in which either sub diffsion or superdiffusion is observed experimentally or
computationally. Thus (4) cannot be dismissed as an unlikely pathology.

1.2 The Texas experiments

An experiment ilustrating anomalous diffusion has been conducted in Swinney's lab-
oratory at University of Texas; see Solomon, Weeks & Swinney (1994) and Weeks,
Urbach & Swinney (1996). These investigators study the dispersion of particles in an
almost two-dimensional flow in annular tank (see figure 1). The tank is rotating at

about 1 or 2 Hertz and the bottom is sloped to simulate the ß-effect. Because of the
rapid rotation the flow is quasi two-dimensionaL.

The flow is forced by pumping fluid through the tank. If the pumping rate is
suffciently large then this azimuthal flow is unstable to a vortex-forming instabilty.
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Figure i: A sketch of the rotating annulus; the rotation rate is about 1Hz. Flow is forced by

pumping water in through the ring of holes marked by I and withdrawing the same volume
through the other ring marked O. As a consequence of the strong Coriolis forced acting on
the radial flow between these concentric rings there is an azimuthal flow around the annulus.
The experiment is viewed from above using a video camera. Figure courtesy of Eric Weeks.

A typical flow pattern in the rotating frame is shown in figure 2. Evident also in this
figure is the azimuthal jet which runs all the way around the tank. The vortex pattern
can be perturbed experimentally by making the strength of the pumping depend on
azimuth. In this fashion, one can drive an unsteady flow and observe chaotic particle

trajectories.
Automated image processing te'chniques are used to follow nearly neutrally buoyant

tracer particles suspended in such flow. Typical particle trajectories are shown in figure
3. Particles within a vortex remain trapped for very long time (stick). Particles in
the azimuthal jet experience prolonged flights around the circumference of the tank.

Because the vortex pattern is not perfectly stationary particles alternate, apparently
randomly, between flying in jets and sticking in vortices.

One can change the pattern of jets and vortices by altering the diameters of the
circular barriers which confine the flow. Thus it is possible to create a flow with two
oppositely directed jets separated by a vortex chain. In this case the dispersion process

is more symmetric than in figure 4 because the flights go in both directions around the
tank.

During a flight the angular displacement is proportional to the time elapsed since

65



./.,...:::;:~~~~:~=::;~~:.~:..,. .
/.., ..-r. ..,:?' ...... ~.' '\"'~~, ....._, ......,....._. ....

:..../l' ,:/ It' / ) ) -~~sij,::,./j t 'i.~ /":. J -l r ~ ......:.::.::.::::.::.. I" n :i....__ _,,~._" 'f~~~ '. '. ..... .':'
.../::,/ /)'\ -'-~--.. \-- t L ,"7~i~~~~\~~~.~." ~I ;a ß : I ~:::.. oo" ..

...:/' .' iR f r/-'..... tt-~, ":';Y",. . . ,,"" r '\ t". .' r...... ~.' . _ .
: : : ,.. / /' .. t: i ::; 4~ ,; ... ~ -.. .. .:.:: :.. .=".''',./ J \..~ i \;. .).~ :,.~ :..~... .. .. " I .' '._ t... .. .. t \.i .:-l... .... .... :l .:1.",..'.- :\-\1 i;~~.::.,..~... '. :.! "( : \ "'I i ~~.. '. .J i/ z.'t~.. ~~ : i:.. \. \ "$... ~ it: t ~ ':~:.. .. ! ..,¡lI -.~ .. \ .. .... ~ .$. ...... ....

t ~ /:t ¡J;;l' \-;; \ ;, \ ~\_ : __!.~¡ f i;: j~ ~.. .:.:/: \:.' \=.\' '~,;Jl::.J"..; f:' U// !~'" .~ \ ; ::"i \,..:,.'/:; /Ii t:. .' . ,. ~ '" . i '\. ~. . :.. ". .: í :.::, ::: f).. ;:. ,. ::.:;: :;::: ~ :1'J'; ::\ ~ \ i i~ ,,--.... ./ A;' ¿'f.:.. .. "\. ( ..:t : " .. i: ' .~., ..:.-..:
\ \. (;l\~ ('\\ :'~¡ ~ .~:'0' .::;-"./~.;.:/.. .. .. ~....\\.. .,\ i' I i. .~, ..- ..".... .. .... ", ..1" ...-.' ~ '.. t, ),~'" / ~. ..,.::. ..... ....":.....,~ iit ~ ' ,I~.'~' .:/.:....:-. ..\. i.. JII.!!" ..:..' '. . ., ". il. j : J ".~. ..;.... ~.:.~'P ,: . // ! :-='. .:.:.. .... ...~ ~,:,.-........_ j J f r., ......... ...:. .. ....-:."S .......... , J.... l" .'.- ....... /- ...... ",\'. I i ., ..'

~::i:..::.:..:.,,:.'....... I ,.I~~ ..~ l' L(" .~J;" .,/...l..... .."-,.. .... "". ,. ur ,.....- . .., :- r, :".. .-
'",- .....':'.. ........ ...~--\...:X t" \ \.t f!., i',' ..-
"~~~~::~:~:::~:;,;;.~~.,".." \ '-~. ~/ . .,..fl.:~~:~j:~~::~:..::~.../....:: .~~~-"'.."-~"l-" ~~~~.-::.....l .t.. .....:-. .:..' .."~~~._~~-~~~;:.;~,/.

........-..- _....... ... ................

;
:'

Figure 2: Streaks formed by 100s trajectories of 12 particles reveal four vortices. Weeks et
aL. show that the motion of these coherent vortices is chaotic. That is, a velocity spectrum,
obtained by measuring velocity with a hot film probe, is broad band. Figure courtesy of Eric
Weeks.
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Figure 3: Trajectories of three tracer particles in the flow shown in figure 2. The beginning
of each trajectory is indicated by a triangle and the end by with a circle. In (b) the particle
spends most of its life trapped in a single vortex. However, this vortex wobbles erratically
because the flow is chaotic. In parts (a) and (c) the particles experience several episodes of

trapping within a vortex and flight around the tank in the jet. Figure courtesy of Eric Weeks.
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Figure 4: Angular displacement, e(t) for the trajectories in figure 3. There is an obvious
distinction between the flights and the sticking events. The small oscilations during the
sticking events correspond to particle motion within a vortex. Figure courtesy of Eric Weeks.
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the flight began:

!:O :: Ut. (5)

The displacement, !:O, is essentially zero during a sticking event (see figure 4).
The experiments show that the dispersion of an ensemble of particles is superdiffu-

sive. That is

((0 - (0))2) rv tY (6)

where 'l ? 1; typical values are 'Y :: 1.4 to 1.7 depending on the experimental configu-
ration. (It is also possible to observe normal diffusion, 'l = 1, by strongly forcing the
flow and breaking the azimuthal symmetry of the forcing.)

To characterize the motion Solomon et al. used sticking and flying PDFs:

PF(a)da = Probabilty that a flight has a duration E (a, a + da) . (7)

Later in this lecture we wil refer to a as the "lifetime" of a particle in the flying or
sticking state. We figuratively speak of a particle being born into the flying state and
moving coherently for a lifetime a so that the total angular displacement during the
flight is !:O = U a.

The PDF PF is normalized by It' PF(a)da = 1 and

TF = l°OaPF(a) da = average duration of a flight. (8)

The PDF of sticking times, Ps(a), and the average sticking time, TS, are defined
analogously.

Experiments show that as a -+ 00, PF and Ps have algebraically decaying tails:

PF(a) rv a-¡iF, Ps(a) rv a-¡i, (9)

with

2 -c (J-F, J-s) -c 3. (10)

Because of this slow algebraic decay the variance of the lifetimes, defined by

(a2)F,S = l°Oa2PF,s(a) da, (11)

diverges.
The divergence of (a2) F is significant because invoking Einstein's formula for the

diffusivity

D = ((!:O)2) ,
T (12)
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and using lj() = Ua, we conclude that D ex ((lj())2) = U2(a2)F = 00. The divergence
of D is symptomatic of superdiffusion.

Notice that the denominator 'T in (12) is related to the average flying and sticking
times, 'TF and 'Ts, which are both finite. Thus, in the Texas experiments, we can say
that anomalous diffusion occurs because the numerator of (12) is divergent. In other
cases it is the denominator which causes trouble.

The Texas experiments show that anomalous diffusion occurs in realistic and geo-
physically relevant systems. Several theoretical questions suggest themselves. How do
the algebraic tails of Ps and PF arise, and can we make a microscopic models which
exhibits this phenomenon? Can we relate the exponents 'l, ¡JF and ¡Js? (From section
4, the answer to the last question is 'l = 4 - ¡JF.)

2 The telegraph model

The key issue raised by anomalous diffusion is decay of velocity correlations. Thus
our goal is to formulate models for which we can explicitly calculate velocity statistics
and understand the decay of correlations. Our first attempt is not very ambitious: we
begin with the telegraph model, which is the simplest example of a continuous-time

correlated random walk.

2.1 The Lagrangian formulation of the telegraph model
In a telegraph process the velocity of particle n, denoted by un(t), can have only one of
two possible values, +U and -U. The velocity of each particle, un(t), flips randomly
back and forth between ~U with a transition probability a per time. This means that
in a time dt a fraction adt of the ensemble switches velocity. Because the transition

rate, a, is constant we can say that a particle has no "memory" of when it first arrived
in its present state. Thus this telegraph model is Markovian.

We refer to the prescription for constructing a telegraph process as model A. There
is a variant, model B, discussed below.

With the prescription above, the velocity of a particle is a discontinuous function
of time as shown in figure 5. The correlation function and the diffusivity are

100 U2D= corr(t)dt=-,o 2acorr(t) = U2e-2a\tl , (model A). (13)

Notice that the corrtt is infinite at t = 0; this is because the acceleration is infinite at
the discontinuities in figure 5.

To obtain (13), return to the definition of the correlation function

1 N
corr(t) = N L un(O)un(t),

n=l
(14)
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A random telegraph process C(t)=U2exp( -2 altl)
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Figure 5: An example of a telegraph time series, and the telegraph correlation function.

where N is the total number of particles in the ensemble. Suppose that at t the sum
on the right hand side has P(t) positive terms, all equal to U2, and N - P(t) negative
terms, all equal to -U2. Thus

u2
corr(t) = N (2P(t) - NJ . (15)

In a time dt, Padt of the positive terms become negative and (N - P)adt of the

negative terms become positive. Thus, at t + dt,

P(t + dt) = P(t)(1 - 2adt) + Nadt,

and the analog of (15) is:

U2
corr(t + dt) = N (2P(t)(1 - 2adt) + 2Nadt - NJ.

(16)

(17)

Taking the limit dt -- 0 in (17) gives corrt = -2acorrj the solution of this differential
equation is (13).

An alternative telegraph process (model B) is constructed by imagining that at
random instants each particle flips at coin. The flipping rate is a so that in a time dt,
there are N adt coin flips. After each flip, the velocity is +U if there is a head and -U
if a taiL. With this prescription, a particle wil change direction on average once out of
every two tosses. On the other tosses the particle continues in the same direction and
the result is as if nothing happened. Thus with model B we simply replace a by a/2
in our earlier calculations and consequently the correlation function and diffusivity are

-Gorr(t) = U2e-altl, 100 U2D = corr(t) dt = -,o a (model B). (18)
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The difference between model A and model B is triviaL. However the distinction be-
tween the two cases wil plague us later.

If we are searching for a model of anomalous diffusion then the telegraph model is
a disappointment: the exponentially decaying correlation function ensures that D is
finite and that the displacement variance ultimately grows diffusively. We continue our
investigation of the telegraph model in order to better understand "ultimately" and
because in section 4 the telegraph model is used as the foundation of more elaborate'
models which do show anomalous diffusion.

2.2 The Eulerian formulation of the telegraph model
N ow we ignore the Lagrangian information contained in the correlation function (14)
and instead we give an Eulerian formulation of the telegraph process. Let R(x, t)
denote the density (particles/length) of particles moving to the right with velocity +U
and L(x, t) denote the density of left-moving particles with velocity -U. The coupled
conservations laws are

Rt + URx = a(L - R), Lt-ULx=a(R-L). (19)

These equations should be self-evident...
We can put (19) into a revealing alternative form by defining the total concentration,

C(x, t), and the flux, F(x, t), as

C=R+L, F = U(R - L). (20)

In terms of these new variables the model is

Ct + Fx = 0 , Ft + 2aF = -U2Cx . (21)

The first equation is conservation of particles and the second equation is the flux-
gradient relation.

Notice that in (21) Fick's law does not apply - the flux F is not instantaneously

related to the gradient Cx. Equation (21b), which might be called Cattaneo's law

(see the 1989 review by Joseph and Preziosi), can be solved as a first-order differential
equation for F(x, t). Thus, the flux at x is expressed as weighted integral over the past

history of the gradient at x:

F(x, t) = -u21too e-2a(t-t')Cx(x, t') dt' . (22)

The flux has a "fading memory" of the gradient and the exponential in (22) is the
fading factor which strongly weights the most recent values of the gradient.

Next, if we eliminate F from (21), we obtain

Ctt + 2aCt - U2Cxx = 0 . (23)
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Figure 6: Solution of the telegraph equation. at is in the top corner of the paneL. At t = 0,
R = L = exp( -x2 /50). The solid curve is C = R + L, and Rand L are shown as dotted and
dashed curves.
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This is the telegraph equation; the diffusion equation is obtained only as an approx-
imation which applies to the low frequency and wavenumber components of C(x, t).
On these large and slowly evolving scales one can neglect the term Ctt in (23) and so

obtain the approximation

Ct ~ DCxx,
u2D--

- 2a'
(24)

The diffusivity D in (24) was anticipated in (13).
Figure 6 shows a numerical solution of (23) starting with an initial condition of

the form
2 2

R(x,O) = L(x, 0) = e-tL x . (25)

At small times the density C develops a double peaked structure as the left and right
going populations separate. This behaviour is transient, and at longer times the central
part of the concentration relaxes to the well-known Gaussian solution of the diffusion
equation.

According to (23) the disturbance travels at a finite speed: these are the "heat
waves" discussed by Joseph and Preziosi (1989), and also evident in figure 6. The

approximate diffusion equation (24) makes the unrealistic prediction that disturbances
are propagated at infinite speed. This unphysical consequence of the diffusion equation
motivated Cattaneo to propose (21b) as an alternative to Fick's law.

These considerations shows that one cannot blithely assert the validity of the diffu-
sion equation (24) as an exact description of dispersion. The diffusion equation applies
only as an approximatè description of low frequencies and long wavelengths.

2.3 Discretization of the telegraph model

This section is a digression. Read on if you want to learn how to solve the telegraph
equation using a simple numerical scheme. (This is how I drew figure 6.)

We reformulate the telegraph model in terms of discrete variables: divide the x-axis
is divided into segments of length 8x separated by "scattering sites" at Xn = n8x. Time
is also discretized in units of 8t so that t = T8t where T is an integer T = 0,1,2. . .
The walkers move along the x-axis with a velocity that is either +8xj8t or -8xj8t. In

terms of the continuous model in (19)

U= 8x
8t . (26)

When a walker reaches the scattering site at Xn = n8x he is "backwards scattered" or
reflected with probability b and "forward scattered" or transmitted with probability
1 - b. Because the probability of a change in direction, b, is the same for left as for
right moving walkers there is no mean velocity along the line.
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Figure 7: A steady state with constant flux, f = U(1 - b)(R - L), passing through site n.

Let Rn(T)8x be the number of right walkers in the segment n, n8x -c x -c (n+1)8x.
The number ofleft walkers, Ln(T)8x, is defined analogously. Rn and Ln are the discrete
analogs of the continuous densities used in (19).

With these rules and definitions, the discrete evolution equations for the ensemble
are

Rn(T) = (1 - b)Rn-i(T - 1) + bLn(T - 1) ,
Ln(T) = (1 - b)Ln+1(T - 1) + bRn(T - 1).

(27)

(28)

For instance, in the first equation above, the number of right movers in segment n is
equal to the number in segment n - 1 at the previous time that successfully passed
through scattering site n, plus the number of left movers previously in segment n that
were reflected at this same site. Figure 6 shows the result of iterating the discrete
system above.

One exact solution of the difference equations above is

Rn = Ln = Ln+1 = Rn+1 = . . . (29)

This solution is steady: Rn(T) = Rn(T - 1). In fact, (29) is the discrete analog of the
equilibrium solution of the diffusion equation. The distribution of walkers is spatially
uniform with equal numbers going left and right in each interval and there are no
concentration gradients. An individual walker is moving to and fro, but the ensemble
is in steady state.

Next, we consider the constant-flux solution. In figure 7, R right walkers impinge
on site n from the left and L left walkers impinge on n from the right. In steady state
it must be that on the left of n there are bR+ (1 - b)L left walkers moving away, while
to the right there are bL + (1 - b)R right walkers moving away. Thus the flux to the
right of the site is

8x
f = U ((1 - b) R+ bL) - UL = 8t (1 - b)(R - L), (30)
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where we have used U = ox/ot. Because there is a steady state, calculating the flux to
the left of the site gives exactly the same result and so there is a nondivergent flux of
walkers along the line.

Next, we can calculate the concentration difference across the site in figure 7. To
the right of the site the total density of walkers is

c+ = L + bL + (1 - b)R, (31)

while on the left the density is

c- = R+bR+ (1 - b)L. (32)

Combining (31) and (32) we have for the concentration jump across the site

Oc = c+ - c- = 2b(L - R) (33)

Thus, using (30), the flux-gradient relation in steady state is

f = - D ocox'
D = (1 - b) (ox?

2b Ot (34)

Does it seem obvious to you that the diffusivity should diverge as b -- O? If you think
of the diffusivity as the area under the correlation functions then this divergence should
be intuitive. It is an instructive exercise to obtain D in (34b) using Taylor's formula.
(Hint: consider N ~ 1 right walkers which initially set out together. At t = Tot, after
T encounters with scattering sites, how many of these walkers have changed direction
an even number of times, and how many odd?)

Comparing the equation above with our earlier expression for the diffusivity, D in
(13) and (24), we conclude that

b
o'Ot = -b .

1 -
(35)

Thus, with (26) and (35), we can express the parameters'ofthe discrete model, (ox, Ot, b),
in terms of the parameters characterizing the continuous model, U and 0'.

3 Age-stratified populations

The telegraph model from section 2 is Markovian. This means that each particle has a
constant probability per unit time, a, of switching direction. Thus, no matter how long
a particle has been moving to the right (say), its probability of switching direction in the
next dt is always adt. Consequently an exponentially decreasing number of particles

move coherently for long intervals and the telegraph model in (19) does not exhibit
anomalous diffusion.
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A satisfactory description of anomalous diffusion demands a non-Markovian model
in which particles have some memory of their past motion. To obtain superdiffusion it
is necessary that a right-moving particle is less and less likely to change direction as it
spends more and more time moving right1.

Such memory effects are implicit in the models discussed by Weeks et al (1996), and
in several of the articles in the conference proceedings edited by Schlesinger, Zaslavsky
& Frisch (1994). The stochastic models discussed in Schlesinger et aL. draw heavily
on statistical physics. In this lecture we are going to develop the theory from scratch
using a formalism which is accessible to people whose background is in fluid mechanics.
The climb begins with an excursion into the theory of age-stratified populations.

Consider a population of items with a finite lifetimes and a death rate which depends
on age, a. For example, light bulbs in a large building, or the population of the United
States. At time t the age structure of the population is characterized by a density

function for which f(a, t)da is the number of items whose age is between a and a+ da.
In terms of f, the total number of items in the population, N(t), and the average age,
ã(t), are given by

N(t) = l°Of(a, t) da, ã(t) = N-1 l':f(a, t) da. (36)

The density function evolves according to

ft + fa + af = 0, (37)

where a(a) is the death-rate. The term fa in (37) says that the population translates
along the age-axis at a rate one year every year. To completely specify the problem
we must supply an initial condition, and also a boundary condition at a = O. The
boundary condition at a = 0 has an obvious interpretation:

f(O, t) = the birth (or replacement) rate. (38)

In the case of a population of people, the boundary condition above is a flux of babies
into the system.

The Markovian limit is the special case in which a is independent of a. This model
of a is unrealistic for both light-bulbs and people, though it might apply to a population
of radioactive molecules. The Markovian case is very simple because one can integrate
(37) over a and obtain a closed equation for N(t):

Nt + aN = f(O, t) . (39)
Thus if a is constant and we need only the total number of functional items at t then
we do not need to solve partial differential equations and deal with the age structure
of the population.

1 A popular metaphor for the Markovian case is radioactive decay: a molecule has a constant
probabilty per unit time of decaying. As a metaphor for the non-Markovian case, imagine entering

an enormous maze and then trying to find your way back to the entrance. The longer one has
wandered, the less the chance of stumbling on the exit in the next dt.
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3.1 The steady-state solution
As a first ilustrative example, suppose that the replacement rate is adjusted so that
N is constant. (Janitors replace light bulbs as soon as they burn-out.) In this case the
equilbrium solution of (37) is

j(a) = NT-1w(a), (40)

where

w(a) = exp ( -l:(a') da') , T = l°Ow(a) da. (41)

The function W, and its integral T, wil occur frequently in the sequel. Notice that the
replacement rate is j (0) = N / T and this suggests that T should be the average lifetime
of an item. On the other hand, T wil not usually be equal to a in (36). I suggest
brooding on this "paradox" and, as an exercise, see if you can resolve this confusion to
your satisfaction by the end of this section.

In (41) we assume that the death rate a(a) is such that as a -+ 00, W(a) -+ 0 fast
enough to ensure that T is finite. For instance, if a is constant (this is the Markovian
case) then W(a) = exp(-aa) and T= a = 1/a.

If the death rate a decreases with age then the average liftetime T might not be

finite. For example, consider the specific model

v
a = e + a' =? w(a) = (e:a)V (42)

Provided that v :: 1 then the integral of W ( a) converges and T = e / (v - 1).

If v .. 1 then T = 00 and there is no steady solution. To understand this curious
result we must solve an initial value problem (see appendix A). Here we just remark
that if v .. 1 then the average lifetime of a bulb is infinite. Detailed solution of the

initial value problem in appendix A shows that in this case the replacement rate is
j(O, t) ex tv-I. That is, the total number of new bulbs which have been installed
at time t grows like tV ~ t. The hypothetical manufacturer of lightbulbs with v ..
1 is threatened with bankruptcy: sales decrease with time, even though every bulb
eventually fails.

3.2 A cohort of babies
Imagine a cohort of babies leaving the maternity ward together, or a box of new
lightbulbs shipped fresh from the factory. These items wil function for varying amounts
of time, and so we can speak of the PDF of lifetimes. We denote this PDF by P(a),
and our goal is to relate P(a) to the death rate a(a).
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Consider a group of N items which all start with a = 0 at t = O. What fraction of
this cohort survives at t ? O? The surviving fraction is also the fraction of lifetimes
longer than t and so

surviving fraction at t = w(t) = l°Op(a) da.

To calculate the surviving fraction, we solve (37) with the initial and boundary condi-
tions

(43)

f(a,O) = N8(a), f(O, t) = O. (44)

The solution of (37) and (44) is

f(a, t) = N\I(t)8(a - t) , (45)

where W is defined in (41). Thus w(t) is the fraction of the cohort which is stil alive
at time t; we refer to W as the survival function.

It now follows from (43) that the PDF oflifetimes of new items is

P(a) = -wa = aW. (46)

The average lifetime, 7, is given by the equivalent expressions:

7 = l:p(a) da = -l:Wa da = l°Ow(a) da. (47)

Thus, as was suggested in the discussion following (41), to keep a population in equi-
librium the replacement rate is equal to the size of the population, N, divided by the
average lifetime of new items, 7.

3.3 Extinction of a population

As a final example, suppose that at t = 0 we have the steady-state light bulb population
in (40). If the janitors then go on strike, so that bulbs burn out without replacement,
then how many bulbs are stil operating at t ? O? In this example we must solve (37)
with the initial and boundary conditions that

f(a,O) = N7-iw(a), f(O, t) = O. (48)

The solution is

f(a, t) = H(a - t)N7-iw(a) , (49)
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where H(a - t) is the step function. Thus the fraction of surviving bulbs at t is

8(t) = 7-1 l'OO'I(a) da = 7-1 l(a - t)P(a) da.

U sing the specific model of a in (42), the surviving fraction is

(50)

8(t) = (1 + ()-1t)1-V. (51)
8(t) is the most slowly decaying function we have seen so far: as t -+ 00, 8(t) ??

w (t) ~ P (t) . This model may be relevant to the very slow extinction of professors

once the supply of graduate students is cut-off.
Comparing the results in sections 3.1 and 3.2, we see that the steady state popu-

lation in section 3.1 contains more long-lived items than are in a cohort of new items
section 3.2. This means that the average lifetime of the light bulbs currently operating
in the Empire State building is longer than the average lifetime of bulbs shipped from
the factory. The reason is obvious: items with brief lifetimes fail quickly, and wil likely
be replaced with items whose lifetime. is closer to the mean. Thus, fragile individuals

'-are underrepresented in an operational population.

4 The generalized telegraph model
4.1 Formulation

Using the machinery from the previous section we now construct a generalization of the
telegraph model which exhibits anomalous diffusion. In this generalization particles
switch randomly between moving with u(t) = +U, u(t) = 0 and u(t) = -U. The

transition probabilities between these states are functions of the time since the last
transition. In other words, each particle carries an "age", a, which is the time elapsed
since the particle transitioned into its present state. We denote the density of right
moving particles at (x, t), with age a, by R(a, x, t). For left-moving particles the density
is L(a, t, x), and for the stationary particles the density is S(a, x, t). We refer to the
left and right-movers collectively as "flying particles" while the stationary particles are
"stickers" .

The flying particles satisfy the conservational laws

Rt + Ra + URx + aFR = 0, Lt + La - U Lx + aFL = 0, (52)

while the sticking particles have

St + Sa + asS = 0 . (53)

The death, .rates of flying and sticking particles, aF and as respectively, are functions
of age a; it is through this device that particles have a memory of their previous
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history. The price we pay for this nonMarkovian memory is that there are now three
independent variables, (a, t, x).

Stationary particles are born when left and right-moving particles die. And, con-
versely, when a stationary particle dies it is reborn as either a left moving particle or
a right moving particle with equal probability. Notice that in order for a right-moving
particle to become a left-moving particle it must pass through the intermediate state
with u = O. These karmic rules are enforced by boundary conditions at a = 0:

1100
£(0, t, x) = n(o, t, x) = 2 0 as(a)5(a, t, x) da, (54)

and

5(0, t, x) = l°Oap(a)¡£(a, t, x) + n(a, t, x)) da. (55)

Trajectories of particles moving with this generalized telegraph process are shown in
figure 8.

The model we have formulated here is a generalization of the telegraph model in two
ways. First, there are three states: left, right and stationary. This minor embellshment
is motivated by the Texas experiments in which trapping in a vortex corresponds to
the stationary particles. The nontrivial generalization is the introduction of the age

variable used to capture memory effects. As an exercise, the student can show that if
ap and as are independent of a then one can easily integrate over a and reduce (52)
through (55) to a three-state telegraph modeL. (This exercise shows how the boundary
condition at a = 0 works.) As a sequel to this exercise, discuss as -+ 00 and show that
in this limit one obtains effectively a two-state telegraph modeL. Are you surprised
that the diffusivity is given by (18)? That is, why do we recover model B, rather than
model A, when the sojourns in the intermediate state u = 0 are very brief?

In order to model slowly fading velocity correlations and anomalous diffusion we
use

lip
ap(a) = (j ,p+a

liS
as(a) = (j .s+a (56)

With the form above, the transition rates decrease as particles age. Numerical sim-
ulations of the three-state model using the transition rates in (56) show that many
particles move in the same direction for a long time (see figure 9).

The main point of (56) is that if a ?? 1 then the transition rates ap and as
are proportional to a-i. This inverse dependence on age ensures that the flying and

sticking PDFs, Pp and Ps in (7), decay algebraically. Thus (56) incorporates important
experimental information into the mode12. One can make a dimensional argument in

2 As far as scaling exponents are concerned, only the a :;:; i structure of aF and as matter. We
use the specific functional form in (56) for simplicity.
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Figure 8: Trajectories of particles in the generalized telegraph random process. All
particles are released from x = o.

support of (56): O!F and o!s have the dimensions of inverse time. If the only time-scale

relevant for long-lived particles is the particle age, a, then it follows that O!F and o!s

are inversely proportional to a. We now show that the parameters VF and Vs are easily
related to the experimentally measured exponents J.F and J.s in (9).

4.2 The equilibrium solution
The system (52) through (55) has a solution which is homogeneous (ax = 0) and steady
(at = 0). This equilbrium solution is

R(a, x, t) = £(a, t, x) = rW F(a), S(a, t, x) = 2rW s(a) (57)
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Figure 9: A simulation with N = 104 particles; aF(a) = as(a) l- 1.35/a. Upper panels:
PDFs as a function of age and position show that there are many particles that either stick
or move at a constant velocity for nearly the whole simualtion. Center panels: PDFs of the
position of particles develop tails larger than Gaussians as time goes on. Lower panels: PDFs
of the age of particles have a spike at large times, because there is a fraction of particles that

never die.
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where WF,s(a) is

WF,s(a) = exp ( -l~F,s(a') da') . (58)

The constant r in (57) is the transition rate between the different states; r is determined
by the normalization condition:

N = 2r (7S + 7F) , 7F,S = l°OWF,s(a) da. (59)

We can use the results from section 3 to interpret 7F and 7S as the average lifetimes
in the flying and sticking states respectively. Using (46), the PDF of lifetimes in those
states is given by

PF,S = ClF,SWF,S' (60)

Using the expression in (56) for ClF,S, we see that as a -- 00, the survival functions

decay algebraically with W F,S f' a-VF,s, and so PF,s f' a-VF,s-l. It follows that the

exponents f-F and f-s defined in (9) are related to VF and Vs by

lip S = VF S + 1 .r' , , (61)

We can summarize our arguments to this point by observing that the experiments
provide the flying velocity, U; the average lifetime in the flying and sticking states, 7F,S,
and the exponents f-F,S. These five experimental data determine the five parameters
in the generalized telegraph model, namely (U, VF,S, OF,S).

4.3 Formulation of the initial value problem
Now that we have determined the model parameters using experimental constraints it
is time to do some mathematics and use the model to predict the exponent 'l in (6).
The simplest intial value problem we can consider is (52) through (55) with

(R(a, 0, x), S(a, 0, x), £(a, 0, x)) = r (w F(a), 2w s(a), wF(a)) c5(x). (62)

The constant r is given in (57). Thus, the initial population has an equilbrium dis-
tribution of ages and is released at x = O. Because of the symmetry between left and
right moving particles

R(a, t, x) = £(a, t, -x), S(a, t, x) = S(a, t, -x). (63)

Equation (63) greatly simplifies subsequent algebra.
One technical point (which I confess confuses me) is using the equilbrium age

distribution as the initial condition in (62). This choice leads to simple calculations
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below. And perhaps the gross details of the dispersion process, such the exponent 'Y,
are independent of the initial distribution of ages? As an excercise I suggest solving the
initial value problem using other initial conditions e.g., n(a, 0, x) = Ó(a)Ó(t) etcetera.
Are there any significant differences in the t -t 00 structure of the solution?

Our strategy wil be to obtain a closed hierarchy of spatial moments by multiplying
the conservation laws (52) and (53) by xn and integrating over x. It is possible to solve
the first few members of the hierarchy and show that if aF,S and has the form in (56)
with 1 .. v .. 2 then as t -t 00

(x2) = 100 1:2 (n(a, t, x) + S(a, t, x) + £(a, t, x)J dxda ex t3-VF . (64)

Before entering this calculation, we give a simple argument which suggests how the
anomalous exponent 3 - VF :; 1 arises in (64).

The variance (x2) in (64) can alternatively be written as

N

(x2) = ~ Lx~.
n=l

(65)

At time t :; 0 some of the N particles wil have moved coherently with unchanging

velocity (either +U or -U) ever since t = 0; half of these particles wil be at x = Ut
and the other half at x = -Ut. These "coherent particles" each contribute a term U2t2

to the sum on the right hand side of (65). The number of coherent flying particles is
just 8(t)N where 8(t) is given by (51) with v replaced by VF. Thus, because every

term in the sum in (65) is positive, one has

(x2) :; 8(t)U2t2 rv U2()~-lt3-VF (66)

The inequality (66) has teeth only if 3 - VF :; 1: then we learn that the coherent

particles alone produce a superdiffusive contribution to the variance.
The argument above may suggest to you that superdiffusion is due solely to the few

extreme particles which move without changes in direction. This is an overstatement:
the lower bound in (66) is generously less than the exact result for (x2) which we
obtain in the next section. Thus "nearly-coherent" particles, meaning particles which

change direction only once or twice, also make a large contribution to the sum in (65).
This is an essential point, because in their analysis of the experiments Solomon et aL.
discarded all coherent particles from the data set3. Thus the exponent measured by
Solomon et al reflects only the contribution of nearly coherent particles.

3This drastic procedure is necessary because some fraction of the experime nta! paricles are in
integrable regions and will fly forever. Retaining all these paricles wil ultimately lead to the trival

ballstic exponent 'Y = 2.
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4.4 Solution of the initial value problem

This is a dry section which contains the details of the analytic calculation of (x2). The
main point of interest here is that a lot of the algebra can be avoided by proving (75)
below. (I suggest this as an exercise.)

The spatial moments are defined by

(Rn (a, t) , 5n(a, t), £n (a, t)J = l:n (R(a, t, x), S(a, t, x)£(a, t, x)J dx, (67)

Because of the symmetry in (63)

Rn(a, t) = (-it£n(a, t), Sn(a, t) = 0 if n is odd. (68)

The result above allows us to work exclusively with Rn and Sn while retaining full
information about the distribution. Using the symmetry, the variance can be written

as

(x2) = 1r;R2 + 52 da. (69)

The zeroth moment of (52) through (55), with the initial condition in (62) is

(Ro(a, t), So (a, t), £o(a, t)J = r (w F(a), 2w s(a), W F(a)J . (70)

That is, the zeroth moment is just the equilibrium solution. (This is why using the
equilibrium age distribution as the initial condition is so convenient.)

Using (68), the first spatial moment is Si = 0, £i(a, t) = -Ri(a, t) and

RIt + Ria + O:FRi = UrWF, Ri(O, t) = 0, Ri(a,O) = o. (71)

The solution of the initial value problem (71) is

Ri(a, t) = UrWF(a) min(a, t). (72)

The second moment equations are £2 = R2 and

R2t + R2a + O:FR2 = 2URi, S2t + S2a + O:SS2 = 0, (73)

with the a = 0 boundary condition that

2R2(0, t) = lOOo:s (a)S2 (a, t) da, S2(0, t) = 21°OO:F(a)R2(a, t) da. (74)

To obtain the variance in (69) we do not need the complete solution of (73) and (74).
Instead, after some judicious integration over a, one finds that

d 100
dt (x2) = 4U 0 Ri(a, t) da. (75)
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Substituting (72) into the result above we obtain

:t (x2) = 4U2r ¡l~WF(a) da + t l°OWF(a) daJ . (76)

If the right hand side of (76) approaches a constant as t -+ 00 then the variance grows
diffusively. Otherwise there is anomalous diffusion.

With (76) in hand, one can easily determine if particular models of O!F and W F lead

to anomalous diffusion. For example, with the model in (56), evaluating the integrals
in (42) gives a pleasant exact solution

~ (x2) = 4U2r8~ r (1 + l)2-vF + 1 J 'dt L (2 - lIF )(lIF - 1) (lIF - 1)(lIF - 2)
where l- t18.

The asymptotic behaviour at large time depends crucially on lIF. If lIF ). 2 then
there is normal diffusion:

(77)

d ( 2) 4U2rO~ O( 2-vF)-x ~ + t .dt (lIF - 1)(lIF - 2) (78)

If 1 ~ lIF ~ 2, there is superdiffusion

d 4U2r82l2-VF
dt (x2) ~ (2 _ lIF )(lIF _ 1) + 0(1) . (79)

(At lIF = 2 there is a logarithmic term.)
Notice the minor role of O!s(a) in the solution above: if liS ). 1, so that the mean

sticking time is finite, then the parameters liS and Os occur only in r.

4.5 An exercise for the diligent student
Consider an asymmetric two-state model

Lt + La + ULLx + O!L(a)L = 0, 'Rt + 'Rx + UR'Rx + O!R(a)'R = 0, (80)

with the boundary conditions

L(O, t, x) = l°OO!R(a)'R(a, t, x) da, 'R(O, t, x) = l°OO!da)L(a, t, x) da. (81)

Show that the average velocity is

u= TLUL+TRUR,
T£ + TR

TL,R = l°OWL,R(a) da, (82)
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where WL and WR are defined by analogy with (41). Show that the Laplace transform
of the velocity autocorrelation function is given by

A ( ) _ U2 ¡! _ 7"£ + TR (1 - ?,L)(1 - ?,R)Jcorr s - RMS A A ,S TLTR s2(1 - 'ØL'ØR) (83)

where

2 _ TL + TRURMS = ~ URUL.
V TL TR

(84)

(If you use the moment method, you wil need Laplace transforms to solve the integral
equation which arises at n = 1.) Using the model

1/RL
aR,da) = () , ,

R,L+a

perform an asymptotic analysis of (83) to identify the anomalous diffusion exponents
which occur if either or both of 1/L and 1/R are less than 2.

(85)
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A Solution of an initial value problem
In this appendix we discuss the issue raised at the end of section 3.1 and analyze a
problem in which the death rate of old items is so small that the average lifetime T is
infinite. For example, this is the case 1/ .: 1 in (42). Specifically, consider the initial
value problem posed by (37) with the initial and boundary conditions

j(a,O) = Nó(a), j(O, t) = r(t) . (86)
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In (86) the replacement rate r(t) is determined by requiring that

N = l°Oj(a, t) da. (87)

The solution of (37) and (86) is

j = Nw(t)8(a - t) + w(a)r(t - a). (88)

The first term on the right hand side of the equation above is the cohort of initial items
aging and dying. The second term is influx of new items. Imposing (87) on (88), we
obtain an integral equation for r:

N = Nw(t) + l~(a)r(t - a) da. (89)

The integral relation above is known as the renewal equation
Because of the convolution in (89), the Laplace transform

(\Î(s), f(s)) = l°Oe-sa(w(a), r(a)) da,

is gratifying. In this way we find from (89) that

f = N 1 - ASW .
S W

(90)

(91)

The large-time behaviour of r(t) can be obtained from (91) using standard asymptotic
methods.

If a(a) ex 1/a as a -+ 00, then the rightmost singularity of ~(s)in the complex

s-plane is th~ branch-point at s = O. We show below in (94) through (97) that the
. structure of W at this branch-point is

w(s) = wsv-1 + T + ... (92)

If ZI .. 1 then the singular term involving sv-l dominates the constant T as s -+ O. In
this case, from(91),

f(s) r- ~,
wsV

=:
Ntv-1

r(t) r- wr(zi)' as t-+oo (93)

Because ZI .. 1 the replacement rate vanishes as t -+ 00.
To explain the small-s expansion in (92), we use the model death-rate in (42), which

produces the survival function

w(a) = (8~a)V (94)
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The Laplace transform in (90) is then

~(s) = 0IlSIi-1ellsl(1 -Zl,OS), (95)

where l(a, x) is the incomplete l-function defined by Abramowitz & Stegun in their
article 6.5.3. This Laplace transform can be rewritten as

~(S) = Oil SIi-1ellsl(1 - ZI) - Ol(l - ZI) f (Os)n .
n=O l (2 - ZI + n)

(96)

The form above is convenient because the singular terms containing SIi-1 are localized
in the first function on the right hand side. When s -(-( 1 the expansion of (96) is~ 0

w(s) = Olll(l - ZI)SIi-1 + -- + O(s, Sll) ,
ZI - 1 (97)

which is the form assumed in (92).
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Lecture 6:
The Batchelor spectrum and tracer cascade

R. T. Pierrehumbert

1 The advection-diffusion equation
In this lecture we consider the problem of determining the spectrum of a passive tracer advected by
a velocity field. The evolution of the tracer is described by the equation

Ôt8 + u . \78 = 1\\728, (1)

where I\ is the molecular diffsivity, u the advection velocity field and a denotes a parial derivative
with respect to time. Depending on the paricular experimental situation, the tracer 8 could be
temperature or density of a passive contamnant such as ink. By 8 being passive, we mean that
the dynamics of the velocity does not couple with 8. Thus equation (1) is truly linear in 8. We

confne our attention to the case where u is non-divergent. Most of the mathematical detais will be
carried out in the two dimensional case, though many of the technques and arguents admit ready
generalizations to any number of dimensions. Throughout, we employ caresian coordinates (x, y).

Batchelor (11 realzed that the general increase of gradients of 8 accompanying the stirring action
of the velocity field, which is a consequence of the quadratic term of (1), can also be thought of as
a transfer between different Fourier components of the spectrum of 8. IT both u and 8 are wrtten

in the form of Fourier integrals, the term u. \78 leads to the generation of new harmonics of 8 and
the growth of ever-increasing wavenumbers. The transfer of tracer variance from low wavenumbers
to high wavenumbers is mathematically simiar to that hypothetised by Kolomogorov for the velocity
variance in a turbulent field.

The Fourier components of the tracer 8, if the flow is spatially unbounded, are defied by

1 1+00 1+00
8(x, y) = (27r)2 -00 -00 dk dl ê(k, l)eikx+ily. (2)

In the present context, it is convenient to define a spectrum fuction for 8 as

1 1 (21 A
C(K) = V (27r)2 10 dØKI8(K,ØW, (3)

where ê(K, Ø) are the Fourier components of 8 in polar coordinates K = ýk2 + z2 and ø =
arctan(ljk). If the tracer field is isotropic the integral is trivial and C(K) = Klê(K))12 j 27rV. The
normalization factor V = J f v dx dy ensures that the spectrum has units of variance of 8 per unit

wavenumber. In fact it follows from Parseval's equality that the variance of 8 is the integral of C(K)
in wavenumber space

(82)= Hm VI f ( dxdy82(x,y)= (+00 dKC(K).v~oo 1v 10 (4)
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Following the line of arguent of Kolmogorov and Batchelor, we suppose that the diffsivity ¡;
is so small as to make the effect of diffsion appreciable only at the large wavenumber end of the
spectrum. The part of the equilbrium range of wavenumbers for which the Fourier components of

u are independent of viscosity is usually termed the "inertial subrange" and an appropriate term
for the part of the equilbrium range for which the Fourier components of 6 are independent of
molecular diffsion is the "advection subrange". No actual destruction of tracer variance takes place
at wavenumbers in, or smaller than those in the advection subrange. All the destruction takes place
at high wavenumbers as a result of the action of molecular diffsion. The total rate of destruction of
variance per unit volume is calculated by integrating the advection-diffsion equation over the whole
domain

Ôt(62) = -2¡; (1\7612) = -X. (5)

This relation shows that the quadratic terms in (1) makes no contribution to ôt(62). Thus when
one Fourier component of the spectrum of 6 is changed by the interaction between 6 and u, other
Fourier components are changed simultaneously in such a way that the sum of the contributions to

(62) from all Fourier components remains the same. This shows that 6 variance is simply transferred
from small to large wavenumbers in the advection subrange and X is a given constant quantity.

IT the velocity field u is characterized by a single time scale T, it is possible to predict the spectru
of 6 on dimensional grounds. In fact the spectrum C(K) at a wavenumber K is determied by X,
the mean rate at which variance is cascaded, the time scale T, and the local wavenumber K. There
is only one combination of these three parameters with dimensions of (62) per unit wavenumer and
this combination gives the fuctional form of the spectrum,

C(K) '" XT K-1. (6)

Batchelor noticed that this result is of physical interest for tracers whose difsivity is much smaler
than the viscosity of the advecting fluid. In this case the velocity field at scales shorter than the
viscous cutoff is extremely smooth and the primary effect of the advection on variations of 6 is a
uniform straining rate of strength T-1.

A characterization of the spectrum of 6 can be obtained also at scales larger than the viscous
cutoff, if the velocity spectrum has a power law dependence on the wavenumber. The spectrum of
velocity £(K) is the variance of velocity as a function of wavenumber and is defined in a way analogous
to the spectrum of 6 such that

~(U-' u) = (+00 dK £(K).2 10
If £ (K) '" K-a, a time-scale T for the velocity field is given by the turnover time at scale K,

(7)

T '" '" K-(3-a)/2..K £(K) .K-1
(8)

The eddy turnover time decreases with scale for a -( 3 and the picture of larger eddies feeding smaller
eddies is appropriate. For a :; 3 the cascade of energy through different scales canot be considered
local in wavenumber space and the estimate of T must be corrected to include the presence of non local
effects, but this is beyond the scope of this lecture. Given an estimate for T, the same dimensional
argument used for the case of a velocity field characterized by only one time scale implies

C(K) '" XK-(5-a)/2. (9)

According to Kolmogorov's arguments on isotropic and homogeneous turbulence, the spectrum of
velocity in the inertial subrange scales as £(K) '" K-5/3. In this case the tracer spectrum scales as
C(K) '" K-5/3 as well and is known as the Obukhov-Corrsin spectrum (2, 3).

91



10.

'"
(¡t.
ig
Õ 10-4
E
;:Õ
Q)c.
(J

10-6

k -513

10-8
10-2 10-1 10.

Wavenumber
10' 102

Figure 1: Spectrum of a passive tracer advected by a 3D turbulent field. Wavenumbers are normaled
by the cutoff viscous scale (the scale at which momentum is dissipated).

For tracers advected by a turbulent, three-dimensional velocity field, with diffsivity K much
smaller than the viscosity of the fluid v, we expect to see a spectru C(K) "" K-5/3 at scales larger
than the viscous cutoff, and a spectrum C(K) "" K-l at smaler scales, as shown in Figure 1. The
scaling breaks off at large wavenumbers.at the dissipation cutoff (the scale at which the tracer is
dissipated, here assumed smaler than the scale at which momentum is dissipated) and at smal
wavenumbers at the scale of the domain, if the domain is finite, or at the scale of forcing if there is
some forcing feeding variance in 0.

2 The 2-point correlation function: what can it tell us about
the properties of the flow.

2.0.1 Definition and uses of the 2-point correlation function

The aim of the two point correlation function Z2(r) of a concentration field is to yield information
about the typical variation of the concentration over a distance r. Let's therefore define it as

Z2(rj ...) = (I0(x + rn) - 0(xW) (10)

where n is a unit vector in the chosen direction, and the average can be a time, spatial, or ensemble
average. Depending on the average chosen, Z2(r; ...) may also depend on the time t (for spatial or
ensemble average), or the starting position x (for the time average if the fluid is not homogeneous).
If the flow is anisotropic, the correlation function depends on n as welL.

The 2-point correlation function can also be rewritten as

Z2(r, n) (0(X)2) + (0(x + rn)2) - 2(0(x)0(x + rn))

= 2(02) - 2(0(x)0(x + rn)) (11)

if the flow is spatially homogeneous. More generally, one could define correlation functions of any
order:

Zq(r) = (10(x + rn) - 0(xW). (12)
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As q becomes larger, Zq is increasingly dominated by the most extreme fluctuations (i.e. e(x + riì) -
e(x) locally very large).

The 2-point correlation function yields precious information about the global spatial structure of
the flow. For instance,

. if the flow is smooth at all points, then the concentration gradient exists everywhere and

i\lei.. +00. As a result, for small enough r, we get Z2(r) ~ (l\leI2)r2;

. for a flow containing well separated jumps/steps in the concentration field, then Z2(r) ex r;

. for a non-singular fractal flow, with a possible local accumulation of steps, the correlation ninc-

tion becomes Z2 (r) ex rV; where 1 .. 1/ .. 2. Smaller vaues of 1/ arise form singuarities in the
tracer field-places where the tracer value becomes infnite;

. if the flow contains integrable singularities, then Z2(r) ex rV with 0 .. 1/ .. 1, whereas non-
integrable singularities have v .. 0;

. for a flow with a white noise spectrum, there is no correlation between any two points, so that

the correlation function is constant Z2(r) ex rO.

To summarize, non-singular flows have 2-point correlation functions given by Z2(r) ex rV where
0.. 1/ .. 2. There exists no interesting flows with 1/ :; 2 since this would require the gradient of
the velocity to be 0 everywhere. .

2.1 Relation between the 2-point correlation function and the power spec-
trum

We saw that the flow variance can be decomposed onto the spectral modes as

(e2) = 100 C(K)dK (13)

where, say, C(K) ex K-O:. In the specifc case of I-D, one can show that the correlation function can

also be rewritten as (4, p. 95)

Z2(r) = 2100 C(K)(1 - cos(Kr))dK (14)

so that

Z2(r) = 2 rllT C(K)K2r2dK + 2 roo C(K)(1 - cos(KR))dK10 lllT
~ 2 rllT C(K)K2r2dK + 2 roo C(K)dK~ lllT

2 (K3-O: J liT (Kl-O: J 00~ 2r - +2-3 - a 0 1 - a liT (15)

Note that only the tail of C(K) varies like K-O:, so that the 0 bound of the integral does not actually
pose any problems, and is a given constant, say (0. Various cases can occur.

. in the case where a :; 3 then the integral is dominated by the fist term, and so Z2(r) ~

(3-O:;(O:~¡) rO:-l + 2r2(0. For small r the domiant term is therefore Z2(r) ex r2.
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. in the case 1 0( a 0( 3 then the integral is

2 r",-3 2 r",-1 ",-1 4 2Z2(r) ~2r -3 +2r (0+2-1 =r (3 )( ) +2r (0 (16)-a a- -a a-I
For very small r, the dominant term is Z2(r) oc r"'-1.

· in the case where a 0( 1 the second integral is not convergent; Z2(r) is not defined in that case.
However, in the limit a -+ 1 and a ). 1, the dominant terms are

Z2(r) ~ (3 _ a~a -1) + (3 ~ a) lnr oc In (:*) (17)

so that the length-scale r * appears as a cutoff below which the flow is smooth on all scales. The
limit a -+ 1 corresponds to the Batchelor spectrum, and r * is the dissipation scale.

Note that in the case where a is greater than 3, the correlation fuction increases faster than r2,
which cannot correspond to any physical flow. We also see that provided 1 0( a 0( 3 the following
simple scaling argument applies: Z2(r) is related to the variance on a scale of r, so

Z2(r) ~ C(K)8K ~ K-'" K where K = 1/r

oc r"'-1. (18)

3 Determination of Z2 (r) from the mixing properties of the
flow

3.1 The non-diffusive case
In the case where the equation governing the spread of concentration contains no source terms, or

diffsive terms, we have

D6 -0
Dt -

so in order to know 6(x, t) we only need to track the trajectories back in time to the initial conditions.
The correlàtion between the concentrations of 2 points x and x' in the fluid is equal to the correlation
of the concentration of Xo and x~ in the initial conditions, where Xo and x~ are the initial positions
of x and x'. However, we also know from the stretching properties of the fluid that any 2 points grow
exponentially further apart as time evolves (either forwards or backwards). IT x and x' are separated
by r at a time t, Xo and x~ were separated, on average, by ro = r exp(At) at to = 0, where A is

the finite time Lyapunov exponent of the flow. IT the initial conditions of the flow have a typical
correlation length-scale L (for instance, the length-scale of the initial forcing in a decaying turbulence
experiment), then there wil be 2 regimes:

. either r exp(At) 0( L, then the particles have remained in the same "eddy", within the same
correlation length-scale, so that we simply have

(19)

D.r6 ~ 1\7610r exp(At) (20)
where 1\7610 is the typical gradient of the eddy at t = O.

. on the other hand, if rexp(At) ). L the points are uncorrelated and so (lD.r612) = 2(62)10,

where (62)10 is the variance of the initial flow.

The resulting profile is shown in in Fig. 2; as one can see, there seems to be no logarithmic profile
appearing, which would have been the sign of the Batchelor regime. This is typical of the initial
value problem, where the flow keeps a memory of the initial condition for some period of time before
reaching a random flow.
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Figure 2: two-point correlation function in the unforced, non-difsive case.

3.2 The forced case

This time we have

De
- = Iiv2e + S(x t)Dt ' . (21)

where S(x, t) is a source term, with a fite correlation length-scale, but no time correlation, i.e.

(S(x, t)S(x', t)) = S5(lx - x'1)8(t - t) (22)

where So (Ix - x'l) decays on a lengthscale L. One can distinguish 2 regimes. In the initial phase the
flow is mixed without dissipation; .since the forcing is uncorrelated in time, the system behaves like a
random walk process, so that

(e2) ex S5t (23)

Later on, the flow reaches a steady state with a balance between the forcing and the mixg/dissipation
terms. The dissipation scale l* for which the strain balances the dissipation is l* = .¡ 11/ A (d. Bil's
lecture). The time t* needed for the flow to create structures on the dissipation scale is t* = * In(L/l*).
The time-scale t* can be seen as the memory of the system. Trajectories with small Lyapunov exponent
have a large memory, the flow remais correlated for longer times. The 2-point correlation fuction
wil mostly depend on scales of order of L. Indeed, if 2 points are separated by r 0: L, they must
come from regions which have the same source term, so that the quantity Z2(r) is liely to be smalL.
On the other hand, if r :; L then the correlation function of the concentration field wil be similar to
that of the source terms. As before, let's consider 2 points at x and x' at a time t and trace their
trajectories backward in time. Assuming that the statistics of the forced flow are stationary, the flow
builds up correlation when the separation of the 2 points is larger than L, but loses correlation for
times larger than the dissipation time-scale. The 2-point correlation function wil therefore depend
on the difference tL - t*, where tL is the amount of time necessary to reach scales of order L starting
from and initial separation r: tL = * InL/r. This is ilustrated in Fig. 2.

Hence

1
Z2(r) ex tL - t* ex -A In (r/l*) (24)

This logarithmic dependence in r of the correlation function shows that the forced case is consistent
with a Batchelor regime. For more details on this subject, see Refs. (5) and (6).
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Figure 3: Evolution of the separation of 2 points, and relevant time-scales.
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On Stratified Kolmogorov Flow

Yuan-nan Young

Abstract

In this study we investigate the stability of the weakly stratified Kolmogorov shear
flow. We derive the amplitude equations for this system and solve them numerically to
explore the effect of weak stabilzing stratifcation. We then explore the non-diffsive
limit of this system and derive amplitude equations in this limit.

i Introduction

The Kolmogorovflow - a two-dimensional viscous sinusoidal flow induced by a unidirectional
external force field - has been studied in the context of generation of large scale turbulence in
two-dimension. Various aspects of the Kolmogorov flow, such as the generation of 2D turbu-
lence ¡Il, vortex merging ¡2J, and the negative viscosity in the role oflarge scale formation in

2D turbulence ¡3J, have been widely applied to geophysical ¡41 and laboratory systems ¡5, 61.
In this study we impose a weak, stabilzing temperature gradient and investigate the tem-

perature evolution associated with the flow instabilty. We first adopt Sivashinsky's approach
and derive the finite-amplitude equation for the case of infnite domain (periodic boundary
conditions) and finite Peclet numbers. We then solve the amplitude equations (both ID and
2D) numerically and investigate the buoyancy effect on the structure formation of the flow.
We also investigate large Peclet number cases, where the critical layers in the scalar field
plays a key role for the flow instabilty and dynamics. We also make comparison between
fuly numerical simulations and results from the weakly nonlinear analyses.

2 Formulation and linear analysis

2.1 Formulation

The Kolmogorov shear flow is more generally defined as a sinusoidal shear flow, whether the
fluid is viscous or inviscid. In our 2-D formulation of the problem, where the incompressible
flow can be written as a stream function, we couple this background shear flow to a stabilzing
temperature. Without loss of generality, we write the total background state as a sinusoidal
stream function and a linear temperature profile:

LT
\lo = Uol cos(zjl), To = -iz, (1)

where Uo is the amplitude of the background shear flow, L is the periodicity of the shear flow,
and LT is the temperature difference across distance l. Denoting 'l as the stream function
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disturbance and e as the temperature disturbance, we first write the momentum equation
and the advection diffusion equation as follows:

ßt'V2'l + Öx(åzWoV2'l - å~Wo'l) - J('l, V2'l) = 1/V4'l - gaex, (2)

åte + åz woåxe - Öx'låzTo - J( 'l, e) = r;v2e. (3)

We nondimensionalize the above equations such that the background shear flow Uo = - sin z
and the background stabilizing thermal gradient is equal to 1 (Re == Uol j 1/ is the Reynolds
number, Pe == Uoljr; is the Peclet number, and Ri = ga6Ti2 jUd is the Richardson number),
and equations 2 and 3 thus read:

åtV2'l - sinz(V2'l + 'l)x - J('l, V2'l) = ~e V4'l - Riex, (4)

Öte - (sinze + 'l)x - J('l, e) = ;e v2e. (5)

In the following subsections we first present results from the usual linear analysis on cases
where the periodicity of the shear flow is the same as the domain considered (integer pe-
riodicity). We then consider cases where the perturbations are products of periodic and
exponential functions (Floquet system) and may exhibit parametric resonance.

2.2 Linear analysis on the stratified Kolmogorov flow

In this section we present results of linear analysis on equations 4 and 5 for shear flow of
periodicity the same as the domain size. The linearized version of equations 4 and 5 read

åtV2'l - sinzåx(V2'l + 'l) - ~e V4'l - Riex,

Öte - (sinze + 'l)x - ;e v2e.

(6)

(7)

Without the stabilizing temperature, the non-stratified Kolmogorov shear flow is known to be

unstable to long wave length perturbation for Reynolds numbers Re ). V2: the critical wave
number kc = 0 and the critical Reynolds number Rec = V2. Also for small horizontal wave
numbers (k ~ 1) the growth rate À can be obtained via the following dispersion relation:

À = (1 - a;2 )k2 + Re2(1 + R:2 )k4 + O(k6). (8)

We numerically solve the above linearized equations with periodic boundary conditions
(in both the horizontal and the vertical directions). Figue 1 shows marginal curves for weak
stratification (see caption for the corresponding stratification strength for each curve) and
figue 2 shows the critical Reynolds numbers and wave numbers as functions of Richardson
numbers for Prandtl number Pr == 1/ j r; = 10. As shown in the figures, the critical wave
number kc increases rapidly as we increase the Richardson number above. As the Richardson
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Figure 1: Marginal curves for the unbounded stratified Kolmogorov flow for weak stratifica-
tion and Prandtl number (Y = 1. Curves are labeled by their Richardson numbers. In Panel
(a), from curve 1 to curve 6, the Richardson number is, respectively, 10-7, 10-6, 10-5, 10-4,
10-3, and 10-2. In Panel (b), the Richardson number is 0.01,0.05,0.1 and 0.15 for curve 1
to curve 4, respectively.
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Figure 2: Critical Reynolds number (a) and critical wave number (b) as fuctions of Richard-
son number for Pr = 10 for the periodic case.

number increases above 10-5, the critical wave number kc increases signicantly from 0
towards some finite value (,, 0.1). This also implies that the inverse cascade observed in the
nonstratified Kolmogorov shear flow is at risk, namely, the large scale perturbation now has
been stabilzed by the existence of the stably stratifed temperature. As wil be shown in the
numerical results, the inverse cascade is indeed prevented by the stabilzing temperature and
we wil discuss this in detail via the tool of Lyapunov fuctionaL.

2.3 Linear analysis on the stratified Kolmogorov flow:

Floquet calculation

We now show results from the Floquet calculation for the stratifed Kolmogorov shear flow.
We perturb the system with perturbation of the form: eiqz+ikx'l(z, t), where 0 ~ q ~ 0.5
is the Floquet multiplier (Bloch number) and k is the horizontal wave number. With the
definition of \1/2 in equation 9,

\l/2'l == _(k2 + q2)'l + 2iqôz'l + ô;'l, (9)

equations 6 and 7 then take the following form:

= 2- \1'4'l - ikRiORe '
= .! \1/20.

Pe

Solving equations 10 and 11 numerically with periodic boundary conditions, we obtain the
parametric marginal curves for various values of q. Figure 3 shows the critical Reynolds
number as a function of q for the non-stratified (Ri = 0) case. We first note that Rec(q) ~

Ôt \1/2'l - sin z ik(\l/2'l + 'l) (10)

ÔtO - ik(sinz 0 + 'l) (11)
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Rec(q = 0), and at around q = 0.35 the minimum moves from one branch to the other, thus
a cuspy transition at q = 0.35. From figure 3 we alo note that the most unstable mode has.
the same periodicity as the background shear flow. Therefore, we do not need to perform
the same Floquet calculation for the stratifed case. Having shown that perturbations of

.',
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Figure 3: Critical Reynolds number (a) and critical wave number (b) as functions of the
Floquet multiplier q for the non-stratified Kolmogorov shear flow.

the same periodicity are the most unstable, we then proceed to uncover the effect of weak
stratification on the nonlinear behavior of the flow. By this we in particular mean that we
are going to perform amplitude expansion around the k = 0 mode for small Ri. From the

linear analysis, we have observed that the critical wave number kc increase from zero (for no
stratification, Ri = 0) to finite value (for strong stratification). As kc transitions from 0 to
finite values, the amplitude equation changes from a Cahn-Hiliard like equation (4) for long
wavelength instability to a Ginzburg-Landau equation for finite wavelength instabilty. In

our weakly nonlinear analysis, we focus on the weak stratification limit where the system stil

inherits the instabilty to long wavelength perturbation. To have buoyancy (0) appear at the
desired order in the amplitude equation, we rescale 0 and put Ri to small numbers such that
Ri = E6 F6 and b = RiO / E5 = EF60. Equations 4 and 5, in the new scaling, take the following

form:

éa V2'l - EJE,('l, V2'l) - E sinz(V2'l + 'l)E, = ~e (1 - E2)V4'l - E6bE" (12)

48 () 2 . 1 2
E rb - tJE, 'l, b - E F6'lE, - E sinzbE, = Pe V b,

where JE, is the usual Jacobian with respect to ç and z.

(13)

3 Weakly nonlinear analysis: Pe rv 0(1)

In this section we first construct the amplitude equations for the stratified shear flow with
Pe rv 0(1). We remark here that we are mostly interested in two ranges of Pe: Pe rv 0(1)
and Pe ~ 1. The range Pe ~ 1 is where molecular diffusivity dominates the dynamics, and
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to first few orders in the expansion, there appears to be no coupling between the temperature
and the flow, and thus is of no interests in our analysis. In real physical systems (salty water,
for example), the Pelect number for a small Reynold number of .J is already on the order
of a thousand, and thus cases where Pe ?? 1 are of more physical relevance. In subsection
3.3 we present numerical solutions to the amplitude equations for the Pe '" 0(1) case. In the

following section, we derive the amplitude equation for the nondiffusive case (Pe ?? 1).

3.1 Construction of the amplitude equations:

Pe rv 0(1)

Adopting the scaling discussed in section 2.2, and expanding wand 0 as follows

W = Wo + EWi + E2W2 + éW3 +... ,
o = 00 + EOi + E202 + E303 + - _. ,

(14)

(15)

we substitute the above expansions into equations 12 and 13. Collecting terms order by order,
( Wi, OÚ that satisfy the periodic boundary conditions (for the "fast variable" z) are obtained,
and the solvabilty condition at each order gives rise to relationships between Wi and Oi- At
the zeroth order O(EO), the equations are:

WOzzzz = 0,
1

Pe bozz = 0,
(16)

and the periodic solutions are

WO = A(ç, T), bo = B(ç, T). (17)

At the first order O(é), we obtain the following equations

1

Re Wlzzzz
-Aç sinz,

1

= Pe bizz,

(18)

(19)WozBç - WoçBz

and the periodic solutions

Wi = -ReAçsinz+Ai(ç,T), bi = PeBçsinz+Bi(ç,T).
At the second order 0(E2), the equations are as follows:

~e W2zzzz = - A lç sin z - ReA~ cos z,

(20)

(21)1 Pe 1 Pe
Pe b2zz = -Blç sinz - (Re + Pe)AçBçcosz - (T + Pe)Bçç - F6Aç + TBççcos2z. (22)

At this order 0(E2), the solvability condition for W2 gives rise to the critical Reynolds number
Re = Ro ==.J. The solvability condition for 02 gives us the following relationship between
B(== (0) and A(== WO):

Pe 1
(2" + Pe)Bçç + F6Aç = O. (23)
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The solutions at this order are:

'l2 -RoAi~ sinz - Ro2A~ cos z + A2(ç, T),

Pe2
PeBi~sinz+Pe(Ro +Pe)A~B~cosz - -cos2zB~~.

8

(24)

(25)b2

Going on to the 3rd order in €, we have the following equations for 'l3:

~o 'l3zzzz = ¡R02 A~ - 3A~~~ - A~ - A~J sinz - 2Ro2 Ai~A~ cos z, (26)

and the solution 'l3 is easily obtained as follows:

'l3 = RdRo2 A~ - 3A~~~ - A~ - A2~J sinz - 2Ro3 Ai~A~ cos z + A3(ç, r). (27)

The solvabilty condition at this order gives us the amplitude equation:

3Ro Ro3 2 F6
(A~~)T + 2A~~~~~~ + HRo - 3A~JAd~~~ - Pej2 + ljPe A = O. (28)

Following Sivashinsky, if we write a = âz + €3âr¡, we obtain identical solutions til the second
order and obtain the following amplitude equation at third order:

3Ro Ro3 2
-2A~~~~~~ - HRo - 3A~JAd~~~

Ro2 2 F6
-Ar¡A~~~ + A~A~~r¡ + T(A~)~r¡ + Pej2 + ljPe A.

(A~~)T =

(29)

We note that the buoyancy amplitude B is completely slaved to the stream function amplitude
A as the effect of the stabilizing temperature gradient is put to higher order (é). Writing
p = ç + cr¡, we can turn equation 29 into a uni-directional amplitude equation ¡l J in terms of
p and T as follows:

3Ro Ro3 2 cRo2 2 F6
(App)T = -TApppppp - HRo - TApJApJppp + T(Ap)pp + Pej2 + ljPe A, (30)

where c is the aspect ratio of the characteristics of the uni-directional flow.

3.2 Lyapunov functional
In this subsection we derive a Lyapunov functional for the in amplitude equation (equation
28). Following ¡7J we try to find an energetic functional of amplitude A such that the
evolution of the amplitude can be described by the functionaL. To be more specifc, we seek
a Lyapunov functional V¡AJ such that

a A = _ 8V¡AJT 8A ' aV = - !(A(Ç,T)T)2dç, (31)
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which then implies that the system cannot sustain oscilatory motion and has to settle down
to a stationary equilbrium. For the ID amplitude equation for the weakly stratified case,
it is straightforward to find a functional for the amplitude equation 28 if we rewrite it as
follows:

28F F6
(AEE)T = -8E 8A + Pe/2 + I/Pe A, (32)

where

1/ 2 4 2
F(AJ == -4 4AE - AE - 2AEEdç. (33)

Putting CEE == A, we write down the evolution equation for F as:

dF / 2 F6 / Cl
dr = - ATdç - Pe/2 + I/Pe a Tdç.

Th' . d' h h f' i G F FePecl. d . .. d h .is in icates t at t e new unctiona == + P 2 is ecaying in time an t ere is a. e +2
stationary solution for arbitrary initial conditions. In the absence of the stabilizing stratifi-
cation, random perturbation of small scales wil reach a stationary solution with minimum
number of nodes within the domain, Le., the scale of the stationary solution is the size of the
domain. This is the essence of inverse cascade: the evolution of the amplitude is such that
the spatial scale increases unti it reaches the scale comparable to the size of the computation
domain. In the nonstratified case, since the functional is expressed in the gradient of A, an
the fact that A is periodic in ç, we conclude that the stationary solution A(ç) should have
only one bump inside the domain. However, this inverse cascade is arrested by the presence
of stabilizing stratification, as the additional term CE included in the functional prevents the
inverse cascade process. This wil be demonstrated in the following subsection.

(34)

3.3 Numerical solution

In this section we present numerical results from solving the amplitude equations using a
pseudo-spectral code. First we show results for the ID version of the amplitude equation
(equation 28). Figure 4 demonstrates the stabilizing effect of the temperature: the ampli-
tude decreases and the structure tends to be of smaller scale as we increase the strength of
stratification. As shown in the previous subsection, we can find a Lyapunov functional for
this equation in terms of the gradient of the amplitude, therefore, we display the temporal
evolution of the amplitude gradient (figue 5). Figures 5 show the time-space plots for the

gradients of the amplitudes without any stratification in (a) and with an F6 = 0.1 in (b). We
note that the inverse cascade manifested in panel (a) is arrested by the presence of stabilizing
stratification in panel (b), in agreement with the conclusion we draw from the Lyapunov
functionaL. The numerical solutions to the uni-directional amplitude equation (equation 30)
are displayed in figures 6, where the time evolution is for the amplitudes, not the amplitude
gradients. In panel (a) of figures 6, where there is no stratification, we see the chaotic behav-
ior of the flow due to the extra nonlinear term. Yet in panel (b) where F6 = 0.1, we see the
stratification diminishes the chaotic behavior and reduces the flow to spatially periodic.
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Figure 4: Numerical solutions at t = 300 for various strengths of weak stratifcation.

100

300 300

250 250

'50 150

15 25 30205 10 '5 20 25 30 10

(a) (b)

Figure 5: Time-space plots of the amplitude gradient with F6 o (a) and F6 0.1 (b).
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Figure 6: Time-space plots of the amplitude for the uni-directional flow with F6 = 0 (a) and
F6 = 0.1 (b).

In figures 7 we show the solutions ('10 +A(Ç', 'l, r)) to the 2-D amplitude equation, where the
computation domain has been scaled by an aspect ratio c = 20 as suggested in ¡3). The only
difference between these two snapshots of the stream functions is the stratification strength.
We note that the effect of stratification is manifested not only by the change in the amplitude
of the flow but also the flow patterns: the stronger the stratification, the smaller the scales
are for the flow patterns.

(a)

~

(b)

Figure 7: Stream function (zeroth order) from the 2D amplitude equation for (a) F6 = 0.01
at t = 15 and (b) F6 = 0.1.

In figures 8 and 9 we show the horizontal average of the temperature to demonstrate the
potential of layer formation in the temperature. Figure 8 is a snapshot of the horizontal
average temperature: To(z) + B(E" 'l, t). We note that in Panel (a) of figure 9, layers disappear
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Figure 8: Snapshot of the horizontal average of the total temperature profile for F6 = 0.01.

and re-appear randomly, while in Panel (b) layer structures eventually disappear due to the
stabilizing stratification which diminishes the flow.

(a) (b)

Figure 9: Horizontal average of the total temperature profile at various times for (a) F6 = 0.01
and (b) F6 = 0.1.

4 Internal Boundary Layer for large Pee let numbers: Pe ~ 00

In this section we focus on the instability of the stratified shear flow in the large Peclet
number limit. Figure 10 displays characteristics of the eigenfunctions of the stratified shear
flow: the stream function disturbance reaches local minima while the temperature peaks at
the infection point of the background shear flow.

The above structure reminds one of the no-slip, no-flux boundary layer: velocities vanish
at the walls and so does the density flux. This is similar to what we observe from the eigen
function (for the unbounded case) except that there is a constant background vertical velocity
if the horizontal wave number k is not zero. Figures 11 show the internal boundary layer
structure as we vary the Prandtl number. We observe the decrease of the internal boundary
layer thickness as we decrease the molecular diffusivity. By balancing the advective term
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Figure 10: Eigenfunctions for stratifed shear flow. The Prandtl number Pr = 104 and sinz
is the background shear flow. The solid lhie is for the stream function disturbance 'i and the
dashed line is the temperature disturbance e.

! ,
, ,

,
o. \ \

, ,

0.2 \ \

~ 0.10

0.01
,

(a) (b)

Figure 11: (a) Internal boundar layer structure as the Prandtl number Pr increases. The
Prandtl numbers for the solid, dashed, and dash-dotted lines are, respectively, 10, 103, and
105. (b) The boundary layer thickness as a function of Pr (note that since the Reynolds
nUlIiber is fied, the Peclet number is proportional to the Prandtl number). The solidli;ne is
the best fit for the last five points, which indicate that the thickness scales to Pe-O.326. The
Richardson number Ri is fied at 0.01 and the Reynolds number is Re = 1.92.
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(associated with the background shear flow) and the difusive term, we obtain a naive scaling
of the boundary layer thickness (l) with the Peclet number Pe:

l '" Pe-l/3 , (35)

which is in fair agreement with the empirical fit obtained from the numerical solutions to the
linearized equations. Also in this limit of large (or infnite) Peclet number, the scaling and.
expansion used in previous section to derive the amplitude equations no longer work inside
the "internal boundary layer" as terms of different orders are mied up. Thus we need to find
a new scaling inside the internal boundary layer and perform asymptotic matching across the
internal boundary layer. We fist perform asymptotic matching for infnite Peclet number
cases, and then relax the infnite Peclet number limit to large Peclet number limit (ElO) and

derive the dispersion relations and general linear solutions in subsection 4.2.

4.1 Scaling and asymptotic matching for the internal boundary layer

We first focus on the linearized version of equation 13 and put right hand side to zero:

E2a(J + sinz(J~ - 'i~ = o. (36)

The zeroth order solution is (A is the amplitude for the stream fuction disturbance as defined
in 3.1)

(JO = ~o =~.
sinz sinz

(37)

The solutions for the first and the second order are:

'il(Ji = ~,
sinz

'i2(J2 = ~.
sinz (38)

The third order solution takes the following form:

(J3 = 'i3~ _ 'iOT .
~ sinz sin2 z (39)

As the background shear flow goes to zero at z = 0, the "outer" solutions shown above are
no longer regular. We therefore need to find diferent scaling around z = 0 to avoid this
embarrassment by matching the above "outer" solution to the "inner" solution, to be derived
in the following with the new scaling. The new scaling we adopt is as follows: around z = 0
we scale z = E3 Z and (J = E-3e. The resealed, linearized equation takes the following form:

aTe + ze~ - 'i~ = 0, (40)

where we have replaced sin z with E3 Z. To perform the matching between inner and outer
solutions, we first write the inner solution e as

A Be=-+-+...Z Z2 (41)

109



where A is the stream function amplitude and B is to be determined by matching the inner
solution to the outer solution. We then express the outer solution (full solution to the third
order) in terms of the resealed coordinate Z inside the internal boundary layer:

() =
A RoAç sinz 2 RoA1ç sinz + Ro2 A~ cosz + A2 3 'l3 C-+€ +€ +€ (---) (42)sinz sinz sinz sinz sin2 z '
A 2 R02 A~(1 - €6) + A2 3 'l3 C
€3Z + €RoAç + € (RoA1ç + €3Z J + € (€3Z - éZ2)' (43)

where Cç = AT" The leading order term in equation 43 (order c3)

1 A C 1() '" -(- - -) + O(€- )€3 Z Z2 (44)

gives us the undetermined B as follows:

Bç + AT = O. (45)

Having shown how the asymptotic matching works in the internal boundary layer, we press
on to find the consistent scaling for the Peclet number. Adopting the same scaling for the
inner solution above, we have to put Pe to order c10 to have the diffusive term appeared at
the first order in the equation for e inside the internal boundary layer:

1
ae + (Ze - 'I)ç = -p ezz.

10

We first note that the boundary conditions for the above linear equation have to be found
by matching the inner solution to the outer solution. Secondly, we note that the zeroth
order term eo has non trivial Z and e dependence, in contrary to what we have found for

Pe'" 0(1) cases.

(46)

4.2 Amplitude equation and the dispersion relation
The previous analysis shows that, in the limit of large Peclet number, e depends on Z as
well as e and T . With this in mind, we proceed from equations 12 and 13 to write down
the amplitude equation for the internal boundary layer. First we note that as the strength
of stratification is put to €6, the solutions for the stream fuction obtained in section 3.1
are stil valid in" the internal boundary layer. We then only need to concentrate on the heat
equation for ():

atO - J('I,O) + sinzax() - ax'I = ;e n2() (47)

Adopting the scaling at = éa, ax = €aç, az = €-3aZ and 0 = c3e the above equation takes
the following form:

€
€ae - €-5 J('I, e) + €(zeç - 'lç) = -p ezz.

10
(48)
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Resealing e' = ée, 'l' = €6'l and dropping the primes, we arrive at the following equation

for the temperature disturbance inside the internal boundar layer:

1
ae - J('l, e) + zeÇ - 'lç = -p ezz.

10
(49)

The stream function amplitude A satisfies the same equation 28 except that inside the internal
boundary layer, the average of ex over Z is not simply ex as e depends on Z as welL. Also,
we have to rescale A accordingly inside the internal boundary layer, so all the nonlinear terms
in equation 28 drop out and we obtain the following equation:

3 "00"
aAçç = -Ro(2Açç + A)çççç - F6 !-oo" eçdZ, (50)

where the integral range (" - 00", "00") is referred to the scaled internal boundary layer. To
zeroth order in €, we obtain the following equation:

1
ae - Açez + zeÇ - Aç = -p ezz,

10
(51)

where A = A(~, T) is the amplitude for the stream function. Equations 50 and 51 are the
amplitude equations for the iIiternal boundary layer. The linear equations for the internal
boundary layer are

aAçç
3 roo

- -Ro(2Açç + A)çççç - F6 1-00 eçdZ,

1
= -zeÇ + Aç + PI0 ezz.

(52)

åTe (53)

We first derive the dispersion relation for the infnite Peclet number case. Replacing 8ç with
ik and åT with s, we obtain the following equations:

-k2¡s + 3~0 k4 - Rok2)A = -F61: ikedZ,

(s + iZk)e = ikA.

(54)

(55)

Substituting equation 55 into 54, we obtain the dispersion relation for the infnite Peclet
number case:

F6 3Ro 4 2
s = --sgn(s)7r - -k + Rok .Ikl 2 (56)

In the case of finite, large Peclet numbers, we expand e in both eikx and eiqz and obtain the
following equations

-(s + ka2)8 + 8q = -27riÃ8(a), (57)
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where 8 and A are Fourier components in the k - q spectral space. The solution to equation
57 is

8 e(sq+kq3/3)/k ioo 27riÃ8(q')e-(sq'+kq'3/3)/kdq'

= e(sq+kq3 /3)/k27riÃH( _q),

(58)

(59)

where H is the Heaviside function. Substituting the above normal mode solution for e into
52, we get the dispersion relation for the large, finite Peclet number case:

F6 3Ro 4 2s = -ïk7r - Tk + Rok . (60)

We note the difference between equation 56 and 60 is the existence of sgn(s), and we display
the two dispersion relations in figue 12.
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Figure 12: Dispersion relation for the internal boundary layer (Ro = .;). Curves are labeled
by the scaled Richardson number F6: From curve 1 to curve 4, F6 are, respectively, 0, 0.005,
0.02, 0.045. The solid lines are for the infnite Peclet number cases, and the dotted lines are
for large Peclet number cases.

We also note that for any given Reynolds number, the value of F6 such that the maximum
growth rate s is zero is proportional to the Reynolds number and the ratio is 0.0322. We
are now ready to find the general solution to 8 for large Peclet number cases. We rewrite
equation 53 as follows:

l-8ZZ - (s + ikZ)8 = ikA, (61)

where l- = 1jPio. Dividing the above equation by ikA and denote f = 8jikA, we obtain the
following equation which allows us to find a closed-form solution:

l-fzz - ik(Z - isjk)f = 1. (62)

The solution is the Yi function:

8 = i::Yi(k(Z - isjk)). (63)
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Figure 13: Dispersion relation for the internal boundary layer (Ro = V2). Dashed lines are
for order 0(1) Peclet numbers and solid lines are for large Peclet numers. Curve '1' is for
F6 = 0, curves '2' and 'a' are for F6 = 0.001, curves '3' and 'b' are for F6 = 0.01, curves '4'
and 'c' are for F6 = 0.03, and curves '5' and 'd are for F6 = 0.045.

5 Inviscid limit of the stratified, Kolmogorov shear flow
In this section we conclude the report by presenting a brief study on the inviscid limit of the
stratified Kolmogorov shear flow. A general review on linear analysis of the inviscid shear flow
can be found in (8). Here we provide a way to find neutral states for the unbounded, stratified
Kolmogorov shear flow. We have numerically verified the marginal boundary presented in
the following analyses, and it would be an interesting direction to provide analytic proofs
that this is indeed the case. We should also point out that there may be hope to couple the
critical layers (CL) associated with each infection point in the background shear flow, and
hence the interaction between CLs can be investigated.

5.1 Linear analysis: analytical and numerical

The inviscid, nondiffusive system (l/Pe = 0) is described as follows (where the shear flow is
a sinusoidal sinz in a periodic domain):

a\12'l - J('l, V2'l) + sin zax (V2'l + 'l) - -Faxe,

ate - J('l, e) + sinzaxe - ax'l = o.
(64)

(65)

The linearized equations can be put into the following equation with the diffusivity being
zero:

(sinz - c)(D2 - k2)'l + sinz'l =
F'l

(66). ,
sinz - c

where D == az and c is growth rate divided by the wave number. In this notation, the
imaginary part of c indicates instabilty: positive imaginary part means growing mode and
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negative imaginary part means decaying mode. We reorganize the above equation into a
more familar form usually found in the past literature:

'l" _ k2'l + sin z'l = _ F'l .
sinz - c (sinz - c)2

First we put c = 0, though in general only the imaginar part is required to be zero on the
neutral curve. Equation 67 now takes the following form:

(67)

2 2 FD 'l + (1 - k + --)'l = O.
sm z (68)

The above equation can be solved as follows: first we put the left hand side of equation 68
as the product of two differential operators as defined as follows:

(D2 + 1 - k2 + L)'l = £J:,t'l = 0,sm z (69)

where £, and £,t are defined as

a£'=:D+-,
cotz

£,t =: D - ~,
cotz (70)

and a is to be determined (in terms of k and F). We note that £,£,t = D2 - (I' + 1) where
f = cot z, and relationships between a, k, and F are obtained as follows:

a = 1 - k2, F = a - a2 = ~ - (1 - k2). (71)

The first solution 'li is obtained by demanding £''li = 0 and takes the following form:

'li = (sinz)ýi-k2, z ~ o. (72)

The second solution 'l2 satisfies the following equation

£,t'l2 = (sinz)-~,
(73)

and is obtained as follows:

'l2 = (sinz)Vi jZ (sinz')-2~ dz'. (74)

For some value of k, the second solution is not periodic in z and therefore is not of particular
interest. F, as a function of k, is shown in figure 14. First we note that the maximum value
of F is 1/4 when k = V3. We also note that k goes from 0 to 1 as we are only interested
in positive F.
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Figue 14: Stabilty boundary for the inviscid, non-difusive limit.

6 Conclusion

We have investigated the effect of stabilizing stratifcation on the Kolmogorov shear flow in the
weak limit where the long wavelength instability inherits from the non-stratifed shear flow.
Concentrating on cases where Pe '" 0(1), we first derived amplitude equations for the weakly
stratified Kolmogorov shear flow and demonstrated the stabilzing effects by numerically
solving the amplitude equations. For the 1-D amplitude equation, the stabiliing gradient
arrests the inverse cascade and weaken the flow. For the un-directional amplitude equation,
the gradient not only lessens the flow, but also diminishes the chaotic behavior of the uni-

directional solution. The same phenomena have been observed for the ,large aspect ratio 2-d
solutions to the full amplitude equation. For the nondiffusive limit (Pe '" cia), the dynamics
are dominated by the internal boundary layer. From the linear eigenfunctions, we are able
to estimate an empirical scaling of boundary layer thickness with the Pec1et number. We
choose boundary layer scaling accordingly and derive amplitude equations for the internal
boundary layer. Dispersion relations are derived and utilized for some preliminary analysis.
The linear stabilty of the stratifed, inviscid Kolmogorov shear flow has been investigated as

a preliminary step to the weakly nonlnear analysis which is now under investigation.
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What Comes Around Goes Around:
A Bug's Life

Jennifer Curtis

i Introduction

Many biological phenomena such as the spread of a favored gene, the population growth
of species, ecological competition, and others are described by equations that contain the
dominant physical processes of difusion, convection, and a background reaction (6). The
model studied in this paper describes the limited universe of these forces and its infuence
on the lives and deaths one colony of photosynthetic bacteria living on an inhomogenous
substrate.

Interestingly, the model reaches beyond the scope of biology to touch upon unexpected
research areas in condensed matter physics, including vortices in superconductors (7) and
semiconductor physics (5). The bacteria and vortex systems are mathematically analogous,
non-Hermitian models which have drawn a great deal of interest (1),3) due to their ability to
undergo a delocalization transition in their eigenfunctions. Previously such transitions were
believed to be impossible in one or two dimensional systems (5).

The goal of this paper is to continue the analysis of Dahmen, Nelson, and Shnerb (DNS)

(4),2), by studying the delocalization transition in the presence of a weakly non-linear satu-
ration term. This term represents the crowding of the bacteria due to competition or deadly

concentrations of toxins from their waste.
The model is new territory for the mathematical analysis of pattern formation and pop-

ulation dynamics in biology. With the exception of DNS, very little work has been done on
this type of inhomogenous system. Our analysis leads to the very interesting result that the
dynamics of the model is governed by a diferential-delay equation. This delay equation is
explored with the hopes that oscillations, quasi-periodicity or chaos might arise within the
physical regime of the modeL. A little familiarity with delay-equations and a comparison with
another familar delay-equation of mathematical biology, the Glass-Mackey delay-equation (6)
, suggests a structural method to quickly predict the dynamic behavior of a subset of such
equations.

Finally, several efforts are made to reasonably modify the physical system to achieve
interesting dynamics. These attempts include changing the form of the non-linear saturation
and the increasing the spatial complexity of the system. The former is proved to be stable,
while the latter remains an open-ended question.
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2 The Modified Fisher Equation

Imagine one species of bacteria living in a periodic, one-dimensional ring with coordinates in
x, 0 0: x 0: L. Located at at the origin is an "oasis" where plentiful supplies of food and light

support life. The rest of the ring is deadly to the bacteria. DNS call this region a "desert".
The bacteria experience diffusion, as well as a convective drift due to a background current.
They also compete with their fellow neighbors as mentioned above. This is the source of the
non-linear term neglected by DNS. The equation governing this model is the Fisher equation
with an extra term included to account for convection. Originally, the Fisher equation was
proposed as a model for the spread of a favored gene. The modified Fisher equation is then

Ct(x, t) + uCx(x, t) = Dcxx(x, t) + (ß8(x) - a)c(x, t) - bc2(x, t) , (1)

where c(x,t) is the concentration of the bacteria. A delta function of strength ß represents the
oasis and the -a term represents the death rate of the desert. The combination of ß8(x) - a
is the spatial inhomogeniety of this particular system.

DS's biological motivation for suggesting this model was to study the effect of spatial
inhomogenieties in the underlying medium. Disorder in the medium may be due to many
things, including random diffusion constants, stochastic growth and death rates, or a random
concentration of environimental factors such as food, toxins or ilumnation. Here we use the
simplest choice, a random concentration of food and/or ilumination.

A possible experiment suggested by DNS is to place the bacteria in a thin annular ring
covered by a dark mask with a small slot cut to let light pass through. Tuning the mask at
a slow speed while the ring remains fied would simulate the convection current. Currently
DNS are talking with experimental biologists to do this experiment. Another practical sys-
tem where this model may be applied is the circumpolar current around Anartica. It has
been shown to carry photosynthetic plankton completely around the continent, with various
patches of nutrient-rich upswellngs supporting the plankton.

3 Linear Stability Analysis

The following section reviews the analysis of the linearized modified-Fisher equation. Here
we become familiar with the delocalization transition that occurs in this biological model and
with the associated behavior of the eigenspectrum. Linearizing about the fied point c = 0

leads to

Ct(x, t) + uCx(x, t) = Dcxx(x, t) + (ß8(x) - a)c(x, t) . (2)

3.1 Without the oasis:
An example of delocalized modes

Delocalized eigenfunctions are those solutions which have a form like eikx, where k is complex
and the real part is non-zero. The simplest example of a delocalization occurs if ß = O.
Solutions are of the form c(x, t) = esteikx. Periodicity requires that k be quantized as k =
27rm/ L, where m is an integer.
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Figure 1: Regime diagram for an infnite ring

The associated dispersion relation is

s=-Dk2+a-iuk. (3)

The growth rate, s, is a discrete set of complex numbers. The plot of Re(s) versus Im(s) is a
parabola symmetric to the real axis. Increasing the velocity u broadens the parabola. When
u = 0, the growth rate is reaL. The value of a determines the stability of the eigenfunctions.
The growth rate of the m th eigenfunction wil be positive if

(27rm) 2
a-;D L . (4)

The eigenfunction with the largest positive growth rate (k = 0) wil dominate the system
at large times.

3.2 An infinite ring
We begin the linear analysis of our system for the case of an infinite ring because it has
simple analytical results which clearly demonstrate the signature of delocalization. Assume
c(x, t) = estc(x) to eliminate the time dependence in (1),

sc(x) + ucx(x) = Dcxx(x) + ¡ß8(x) - a)c(x) . (5)

It may also be written as

Ct=£c, (6)

where the linear operator,

£c = Dcxx - uCx + ¡ß8(x) - a)c , (7)
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generates the time-evolution of the system. When u = 0, the operator is Hermitian with real
eigenvalues, and for strong enough disorder, all of its eigenfunctions are real and localized
¡2).

Using c(x) = e-kx, a dispersion relation is found to have two roots for the wavenumber
k,

Dk2 + uk - s - a = 0 ,

k _ -u::Vu2+4D(s+a):: - 2D . (8)

Periodicity is satisfied only if the eigenfunction c(x) = e-kx decays as x ~ ::00. Thus we
use k+ when x? 0 and k_ when x, O. This restriction is the equivalent of solving for only
the localized eigenfunctions of this physical system, i.e. we are working in the regime where
k:: is reaL.

Using the appropriate eigenfunction to the left and right of the origin, we integrate (patch)
across the delta function to acquire a value for the growth rate s:

p~cd + ß = 0 ,
D¡-k+ - (-k_)) = -ß ,

ß2 - u2

~ s= 4D -ao

The expression for k:: (8) can now be simplified using the growth rate (9),

(9)

~ ß?U
ß? -u

-u::ß
k-i -:i - 2D '
when u? 0 ,
when u, 0 .

(10)

The requirements on k:: restrict the range of u, according to the given strength of the oasis
ß. We have one localized solution, although if the oasis were wider than a delta function, say
a box, there would be many localized solutions.

A regime diagram (figure 1) maps the properties of this system as ß and u vary. The
two straight lines, ß = u and ß = -u, are the boundaries which restrict k::o If crossed, the
eigenfunctions wil be in the delocalized regime.

The marginal stabilty curve is the hyperbola labeled s = O. As the parameters u and
ß tend to infnity, the marginal stabilty curve coincides with the delocalization transition.

Inside of the hyperbola, s is positive, and thus the eigenfunctions are unstable and grow in
time. Outside of the hyperbola, s is negative, and the eigenfunctions are stable and decay
with time.

Larger values of a and lul shift the marginal stability curve upwards, increasing the regime
of stability. This is because a is the size of the death rate; while in an infnite ring, larger
velocities carry more bacteria and being carried away from the oasis is a sure death sentence
in an infinite ring.

"
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Figue 2: e(x) for positive velocities

The behavior of the concentation c(x) when there is positive background velocity is ex-
amined in figure (2). The plots are asymmetric due to the eigenfunction dependence on the
sign of u:

( -,d:ß )e(x:i) = e 2D X. (11)

The velocity blows bacteria away from the orgin to the right, increasing their concentration
in this region. To the left of the origin, the competing mechanisms of diffusion away from
the oasis, and advection back into the oasis result in a thin boundary layer. If no wind or
current were present, the distribution would be symmetric, decaying exponentially away from
the orgin.

As the value of the velocity increases, the concentration becomes nearly constant across x
because more bacteria is being blown out of the origin. For this particular example, choices
for the velocity u are limited by the choice of ß = 1. At u = .99 for instance, the eigenfunction
is nearly delocalized. If we surpassed u = 1 we would be examing the delocalized spectrum.

The one localized mode, is unstable if
ß2:; 4Da+u2.

(12)

This section has been included to introduce the problem and gain some intuition for the
delocalization transition, and its dependence on the physics (D, ß, u) of the system. Note
that for this infinite ring case, the velocity carries the bacteria away from their haven, never
returning them in time before they die. The velocity has a purely deadly effect. Thus, the
inequality above, a requirement for instabilty, makes sense. Only if the life production in
the oasis, ß, is large enough to overcome the deadly effects of diffusion and convection, wil
the system grow in time.

3.3 A finite ring with no convective drift
We now study the linearized problem in a finite ring with no wind. When u = 0, (5) becomes

se = Dexx + (ßó(x) - a)c . (13)
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x(1 - cos(x)) +

We arrange that the unknown concentration c(x) wil be equal to 1 at x = O. The eigenfunc-
tions wil then be of the form,

c(x) = (1 - A)e-kx + Aéx . (14)

Using periodicity, c(O) = c(L), we find an expression for A

1 - e-kLA= .
2 sinh kL

Combining this result with (14), gives the expression for c(x):

(15)

(1 -kL)c(x) = e-kx + - e sinhkx.
sinh kL (16)

Patching across the delta function gives a transcendental relation for the wavenumber k:

2k(1 - coshkL) = - ~ sinhkL . (17)

This is the same expression found for k by DNS (41, if one sets their velocity, v, equal to
zero. Their result was found by solving the problem for a periodic domain with an oasis that
is a finite square well, and then taking the area of the well to zero.

To study the delocalized spectrum, this expression can be neatly rewritten by letting
k = i/' and a = ßLj(2D):

/'L(1 - cos(/'L)) + a sin(/'L) = 0 . (IS)

In this form, we assume that the wavenumber k is purely imaginary. The spectrum may
be studied graphically by plotting a as a function of kL (see figure 3(a)). The wavenumbers
k for fied a are found by drawing a line at one value of a and intersecting the curves. The

numerical results are plotted in 3(b) for various values of a.
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A double degeneracy exists in the solutions of the finite ring without a delta function
(0'=0). This degeneracy is not reflected in 3(a) because the dispersion relation was obtained
after dividing out one extra factor of cosh(kL). The degeneracy of the eigenvalues is broken
by turning on the delta function strength so that a .¡ O. As a is increased, one of the two sets

of eigenvalues moves away from the general oscilatory solutions k = 27rm of section (3.1). As
the strength ofthe delta function increases, the moving eigenvalues asympotote to (2m+ 1)7r.

The other eigenvalue remains fied at these values.
N one of these delocalized modes are unstable in time, although we wil see in the next

section, that they can be unstable when there is a strong enough wind to help blow the
bacteria around the ring before they die.

One localized mode exists. The solution can be found analytically if one assumes that a
is very large so that cosh a ~ sinh a. In this limit, we find that kL -+ a. The localied mode
can be unstable depending on the values of the parameters k and a. The dispersion relation
for this system is

s = Dk2 - a . (19)

3.4 Finite length and a constant wind:

Traveling around the ring

We now explore the full linearized problem in a finite ring. The relevant partial differential
equation is

SC(X) + uC:i(x) = DC:i:i(x) + (ß8(x) - aJc(x) . (20)

We begin with the assumption of the form of the concentration c(x), so that C = 1 at the
origin,

C(x) = ((1 - A)e-k:i + Aek:i)e- ;~ . (21)

Applying periodicity gives an expression for the constant A

e~~ - e-kLA=
2 sinh kL

(22)

Now, to obtain an expression for k similar to (17), we repeat patching. The uc:i(x) term
adds nothing new since it is zero when integrating over x; however the derivative of c(x) is
now more complicated due to the addition of ul2D in the exponentiaL. Using the definition,

r¡ = uL/2D where r¡ is the Peclet number of fluid mechanics, we find

2k(coshr¡ - coshkL) = - ~ sinhkL. (23)

Note that if U = 0, it is identical to (17) as it should be. Also, if Re(k) :; U and L -+ 00 the
dispersion relation reduces to (9).

Given the concentration in (21), the dispersion relation is

2 u2S = Dk - 4D - a . (24)
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Figure 4: The movement of the localized mode into the delocalized mode with increasing
velocity. Complex s is a signature of delocalization

To learn more about this new dispersion relation for k, let k = i/' and use the definition for
a:

/'L (cosh1J - cos(/'L)) + a sin/'L = 0 . (25)

When k is complex, the system is best studied using a numerical algorithim to solve for
the growth rate s. The results are very interesting. We find that the eigenspectrum is a
parabola on the complex plane as it was in section (3.1), but now we alo have one real
eigenvalue which varies in its distance to the parabola depending on the velocity u. This is
the one localized mode that accompanies the delta function. As the velocity is increased,
the eigenvalue moves towards and finally onto the apex of the parabola which remains fied.
This represents the same delocalization transition we experienced in section (3.2) when we
crossed the boundaries ß = ::u. Figue 4(b) shows a series of spectra with increasing velocity.
Here the critical delocalization velocity, the velocity at which the real eigenvalue moves onto
the parabola, is determined by a more complicated relationship between ß and u which we
examine in the next section.

3.5 An important limit for the finite ring with wind
Here we present a nice way to represent the delocalization transiton for a large but finite
ring. This is a new additiol\,to the analysis done by DNS.

In the limit that L is large, (23) reduces to the dispersion relation

-L(k-..) 1 ße 2D=--.
2kD (26)

We define a parameter P, which in the limit that L -+ 00, is a measure of our closeness to
the delocalization threshold

ßP=--l.
u (27)
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In order to examine the complex eigenvalue spectrum, we rewrite k in terms of a complex

parameter (,

k == 17(1 + P() , (28)

where for eventual simplicity, ( is

/' _ 1 x + iy.., +-
- P17' (29)

Then k becomes

k = 17(1 + P) + x + iy . (30)

Putting k (28) into the dispersion relation (26) and simplifying gives the expression,

-Pr¡ _ 1 _ P + 1e - 1 + P( . (31)

Making the assumption that P( -: -: 1, we have a final expression for (

e - Pr¡((=1+--' (32)

Using the definitions for ( (29, 32) and plugging it into k (28), gives a nice expression for the
wavenumber

k = 17(1 + P + e-r¡P e-x-iy) . (33)

Another useful relation is obtained by combining (30, 33),

x + iy = pe-x-iy , (34)

where we have used the definition of p

p == 17e-Pr¡ . (35)

Setting real and imaginary parts equal, we have two expressions for x and y,

x - pe-x cosy,

y = _pe-x siny .

(36)

(37)

A little maninpulation of these expressions gives the final form that we use to explore the
delocalization transition,

x2 + y2 = p2e-2X ,
y
- = - tan y .
x

(38)

(39)
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Figure 5: (a) A graphical solution of (37). The solid curve is r¡e1J and the dashed curves show

p cos (V p2e-21J _r¡2J for two values of p = ¡2, 6) * exp( - 1). (b) Eigenvalue loci obtained from

(39) for various values of p. The dotted curve is p = lie and the multi-branched dashed
curves are loci with p .. lie. The solutions obtained from the intersections of figure 5 (a) can
be placed on the appropriate curves above.

Figure (5)(b) plots contours of p in the x-y plane. The pair of values (x,y) for each
wavenumber k is found by solving

x = pe-x cos V p2e-2x - x2 , (40)

for a given p. The most untable mode (the largest solution) is xo, which is determined by
xoexo = p. The cooresponding Yo is always zero, so that the most unstable model has a real
eignevalue. The higher modes occur in complex conjugate pairs.

For a given value of p, one can draw the eigenvalue locii in the x+iy plane. It is found

that when p .. exp( -1), two contour curves exist in the x-y plane, while if p ? exp( -1),
only one curve exists. The associated wavenumbers k are represented as points (x, y) on
the curves, corresponding to the intersections in figure 5(a). If we are in the region where
p ? exp( - l), the contour of p wil be to the right of the set of half circles near the origin. An
infinite set of discrete pairs of (x,y) (and thus wavenumbers k) are found along each contour
in that set. If p ..exp(-l), two curves exist, a half circle and a line somewhere to the left

of the half circle. Only one pair (xo,Yo) exists on the associated half circle, representing the
one localized mode. The second curve wil have an infnite but discrete set of (x,y) pairs
along it, representing the the delocalized spectrum. When p = exp( - 1), we are right at the
delocalization transition. This corresponds to the eigenvalue s moving onto the apex of the
parabola in figure 4(b). Thus, the value of the non-dimensional parameter p determines at
what velocity the delocalization transiton occurs, for a given ß, D, L.

A similar condition restraint of the velocity like lul .. ß of the infnite ring, comes in the
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form of the transcendental equation

p = uL e(ß-u)(/n) -: exp(-1)- 2D . (41)

4 Weakly non-linear anaylsis near
the delocalization transition

The goal of this work is to study the effect of the non-linear saturation term on the delocal-
ization transition that we observed in the linear analysis. In the following sections we explore

this effect in infinite and finite diameter rings.
The previous section reviewed the results of DNS and carefully studied the existance of

the delocalization transition in our one-dimensional modeL. While DNS quickly discuss the
effects of the non-linear term which represents the competition between the bacteria, they do
not study it in depth. They suggest that the non-linear term is irrevelant, especially in the
limit that the ring has an infnite diameter.

Here we consider the effect of the non-linear saturation term, -bc2, on the delocalization

transition and discuss its effects on the dynamics of our bacteria colony. The modified-Fisher
equation is now examined in its entirity:

Ct + UCx = Dcxx + ¡ß8(x) - a)c - bc2 . (42)

4.1 Infinite ring on a windy day

We start by studying the infnite ring. We remain near to the delocalization transition
represented by the lines in figure (1), by keeping ßc nearly equal to the critical beta, ß = u,

ß = ßc(l + €) , (43)

where E is a small parameter. We also define a slow time T and express the concentration as:

T = Et, c= Ef.

EfT + ufx = D fxx + ßc(1 + €)8(x)f - af - b€f2 . (44)

L.;"

~
h

Rewritten with these scalings, the adjusted equation is

Expanding the eigenfunction c = Ef:

f = fo + €fi + €212 + . . .

Substituting in the expansion of f gives:

E(fOT + €fiT) + u(fox + Efix) = D(foxx + €fixx) +

ßc(1 + €)8(x)(fo + Efr) - a(f + €fi) - b€(fo + €f1)2 .

(45)

(46)

The zeroth order equation in € is:

D foxx - ufox + ßc8(x)fo - afo = 0 . (47)
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It is useful to write (47) in terms of the linear operator £, (7) defined previously in section.
3.2, so that

£'fo = O. (48)

The solution fo for this zeroth order homogeneous equation is

(~ )fo = A(T)e 2D x (49)

where A(T) is the time-dependent constant of the solution. This is the result we expect,
since the zeroth order solution represents the eigenfunction at the delocalization transition.
The constant concentration along x is what would see when ßc = u in figure (1). For now,
we imagine that ß is not quite equal to u. The first-order equation in € is

fOT + Ufix = Dfixx + ßc8(x)fi + ßc8(x)fo - afi - bf~ . (50)

Rewriting (50) in terms of the linear operator, £',

£'fi = fOT - ßc8(x)fo + bf~ . (51)

The first order eigenfuctions may be solved for from (51), using the definition of fo found
in (49).

To find the time-dependence of fa = A(T), we derive an amplitude equation. Using the
adjoint of fo, fj, and integration by parts, it is easy to show that

uj£,fi) = Ui£,t fj) = 0 . (52)

We may take advantage of this fact if we multiply (51) by fj and integrate over x. The left
hand side dissapears and the right hand side reduces to the amplitude equation

uj£,fi) = Ui£,t fj) == 0 = UjfOT) + bUjf~) - (ßcfjfo8(x)) . (53)

Using our solution for the zeroth-order amplitude fo and performing the integrals results in
the amplitude equation:

( ß~ ) 6bß~A2
AT = 2D A + u2 - 9ß~ . (54)

This result is not unusual for a perturbative analyis of a non-linear problem, and is not

of much interest except for comparison with the unique results of the next section. It is
reassuring to note that if ßc = u, this amplitude equation blows up, as it should since none of
the integrals we performed would have converged. The solution to (54) is found easily using
the Bernoull trick which transforms non-linear equations to solvable linear equations. As a
check on this result, one may show that the analytical and perturbative energies agree at the
zeroth and first orders.
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4.2 Finite ring on a windy day: Part I

The solution

In this section we work with the entire physical modeL. At the origin there is an oasis where
the bacteria grows; away from the origin the bacteria struggles for life, dying at a rate a.
The bacteria diffuses along concentration gradients and is advected by a constant background
flow at speed u. Throughout the ring, the bacteria competes, dying if conditions become too
crowded, thus adding to the the resultant death rate of the desert. Finally, the bacteria live
in a finite domain with periodic boundary conditions, e.g. a ring.

The strategy here, is to expand near the delocalization threshold, as we have done for the
infinite domain. It is also assumed that the ring is large, but finite. Obviously, this is not the
most general consideration of the problem that can be made, but it allows one to proceed
analytically. The meaning of a large domain wil be discussed below.

We begin by non-dimensionalizing the modified-Fisher equation with the intention of
having a firm grasp of the size of each term. Non-dimensionalizing may obscure the physics,
but it clarifies the relative magnitudes of terms. It is natural to scale distance with the length
of the ring and to scale time with the transit time:

x = ~, i = ti, 8(x) = 8(Lx) = ~8(x) .

The resulting equation is:

L (i A ) D Lb 2
Ci + Cx = u Lß8(X) - a c + Lu Cxx - -:c .

Several more useful non-dimensionalizations are:

â = ~ a, ß = ~ß, D = ~, e = Aê . (57)

These non-dimensionalized constants contain the physical meaning of competing effects. â
is the ratio of the decay rate a to the advective transit time Lju. D is the inverse Peclet

number, or a measure of the strength of diffusion versus advection. Finally, ß is a measure
to the nearness of the delocalization transition. If IßI = i, we are at the transition.

(55)

(56)

The fully non-dimensionalized equation is
_ _ A _ rßA (A ) A) - A -2
Ct + Cx = DCXi + l 8 x - a c - ac . (58)

We are interested in the non-linearity near the delocalization transition, and so we expand ß
around 1. Using the non-dimensionalized diffusion coeffcient D as the small parameter with
which we expand, we have

ß = i + Dßi . (59)

When ß 0( i there is a localized mode and this mode becomes delocalized if ß ? 1. Thus,
condition (59), in which ßi is held fied as D -+ 0, ensures that the system is operating

close to this delocalization threshold. ßi may be positive or negative, putting us in either
the localized. or delocalized regime, as long as D is smalL. Small D is the equivalent to large
L or large u since D = D j Lu (57).
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Figure 6: The outer and inner eigenfctions. E == ÎJ

4.2.1 The outer solution

Dropping the tildes and hats for notational simplicity, and making an expansion in the small
parameter D, C ~ Co + DCi, (58) becomes:

(COt + EClt) + (cox + ECix) (ßõ(x) - a)(co + ECi)

+ D(coxx + ECixx) - a(c5 + 2ECoci) .
(60)

(61)

The zeroth order equation is then:

_ 2
COt + COx - -aco - aco . (62)

A series of tricks and substitutions ar~ used to solve for the zeroth order concentration co(x, t).
The result is

f(t - x)
C (x t) -o , - (eax _ 1)f(t - x) + eax (63)

Checking this expression at x = 0, reveals c(O, t) = f(t). This implies that all higher-order

terms must be zero at the origin. Meanwhile attempting to demonstrate the periodicity of
the system at x = 1,

f(t - 1)
f(t) = (ea _ 1)f(t - 1) + ea ' (64)

requires a stringent restriction of f(t - x), suggesting that there is a problem at x = i.
In fact, this solution is an "outer approximation" , which is valid provided that 0 ~ x ~

1 - O(Ð). The failure of the outer solution at the boundary becomes apparent, if we define
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the restricted parameter ).,

). == e;Ct, or, a = log (~).) , (65)

where). is fied as D ~ O. This means that a is large, but not very large. The parameter ).
is necessary for a satisfactory asymptotic development.

In the sequel we wil treat a as O(DO), except when it appears in exponentials, where it
is O(DI). This condition means that the population which is swept away from the oasis wil

decay to O(D) on its passage through the desert before revisiting the oasis.
In the limit D ~ 0, with ßi and ). fied, all details of the solution can be expressed in

terms of f(t - x) and simple functions of x. The form of the solution is indicated in figure
0: there is a boundary layer of thickness D immediately to the left of x = i.

Rewriting the zeroth order concentration Co in terms of ). and expanding in terms of
the small parameter D, we see why the outer approximation does not satisfy the periodicity
requirement. At x = 1, co(x = 1, t) is:

D).f(t - 1)
CO(x = 1, t) = 1 + f(t _ 1) - D).f(t - 1) . (66)

Expanding gives,

D).f(t - 1) D2).2 f(t - 1)2
co(x=1,t)~ 1+f(t-1) - 1+f(t-1) +...=lf(t). (67)

Near x = 1, this outer solution ofthe concentration of bacteria, Co has decayed to O(D) and
thus is inappropriate to describe this region of the ring. The role of the boundary layer at
x = 1 is to repair this failure, and so to determine the evolution of f(t). This insight is the
most diffcult part of this asympototic expansion.

4.2.2 The boundary layer

We now turn to the "inner region", and introduce the stretched coordinate, e = x / D. In
terms of e, equation (58) becomes

DCt + c~ = c~~ + D(ß8(De) - a)c - Dac2 . (68)

Making an expansion in D of the concentration: c(e, t) ~ Co + DCI, we arrive at an equation
to solve for the zeroth order, boundary layer concentration, CO(e, t):

co~~ - co~ = 0 . (69)

The solution is

Co = fe~ . (70)

This solution satisfies the requirement that at e = 0 we have c(O, t) = f(t), implying that all

higher order terms are zero at the origin.
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The first order boundary equation is:

2 2
CiÇ - uiÇÇ = -acO - a Co - COt . (71)

Solving this inhomogeneous, partial differential equation with the help of the solution Co (Ç', t)
in (70), gives the expression for the first order boundary layer ci(Ç', t):

1
ci(Ç', t) = (It + af)Ç'eç + r(t)(1 - eÇ) + '2(e2ç - eç)af2 , (72)

where r( t) is the constant of integration.
The constant r(t) is found by matching the outer concentration with the boundary layer

in the limit that Ç' -7 -00, which is equivalent to taking the limit where the boundary layer
dissapears, D -7 O. The zeroth order boundary solution Co is zero, and all the terms but r(t)
are zero in the first order boundary layer in this limit. For the matching, the outer solution is
evaluated at x = 1, which is appropriate in this limit, since there is no boundary current for
an infnite domain. This is an example of a "switchback" - the O(Di) inner solution matches
the leading order outer solution.

The resultant expression for r(t) is:

co(Ç' = -00, t) + Dci(Ç' = -00, t) = co(x = 1, t)
=?

r(t)
).f(t -1)

1 + f(t - 1) . (73)

The first order expression for the boundary layer concentration is then:

).f(t - 1) ( ) 1ci(Ç' t) = (It + af)Ç'eç + 1 - eÇ + -af2(e2ç - eÇ) ., 1+f(t-1) 2 (74)

Thus r(t) represents a time-delay of t - 1. The origin of this term is interesting to note, as
it wil be the origin of the rest of our discussion.

As usual, an element of information has been neglected by excluding evaluation of the
modified- Fisher equation at the origin. The patching condition contains this information,

and can now be evaluated since we have expressions for the outer and inner solutions. This
condition, obtained by integrating (68) about the orgin, is

cç( -) - cç( +) = (1 + Dß)c(O), (75)

where the pluses and minuses indicate evaluation to the left and right of the orgin, and thus
imply whether to use the outer or inner solution. For instance, cç( +) is actually the outer
solution to the right of the origin, Dc(x = 0, t). Expanding in D gives

cOç + DCiÇ - Dcox - D2cix = (1 + Dßi)(co(x = 0) + Dci(x = 0)) . (76)

It is interesting to note that the zeroth order outer solution is related non-trivially to the first
order boundåry solution because of the role of the diffusion coeffcient D as a small parameter.
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The zeroth order equation is trivially satisfied due to our choice of the constant in the
solution (70). The non-trivial first order expression is:

cx(x = 0, t) - CE(ç = 0, t) + (1 + ßi)c(X = 0, t) = 0 . (77)

Differentiating the appropriate expressions of the concentration and evaluating them at x = 0
(ç = 0) in (77) leads to a very interesting amplitude equation for f(t),

ßi 3 2 P,I (t - 1)
it = (2: - a)I - -¡aI + 1 + I(t -1) (78)

This amplitude equation is a differential-delay equation. The rate of change of I at any
time depends not only on the value of f at that particular moment, but also on the particular
value of f at a specific earlier time, t - 1. Not suprisingly, the time-delay is 1 time-unit, or
the time required for transit around the ring. Comparison to the amplitude equation for
the infnite ring reveals that we have the same Ginzburg-Landau type terms, while the time-
delay piece is a result of the finite-size of the ring. We note that À is the only parameter that
depends on the length of the ring L. As the ring becomes infnite in size, À ~ 0, so that the

differential-delay equation reduces to the Ginzburg-Landau equation of the previous section
with redimensionalization.

A good check is to verify that the fist order energy obtained from (78) agrees with the
analytic expression for the energy of the linear solution. The linearized version of (78) is:

(ßi ) (e-a)it = 2: - a I + 20" I (t - 1) (79)

Consistent with linearization, we assume this is an eigenvalue problem and let I = est. The

expression for the first order energy is then:

ßi e-a-ss=2:-a+--' (80)

Remembering that we have non-dimensionalized our results, we work the analytic result, (23,
24), into the same form. Non-dimensionalization leads to,

2Dk (COShk - cosh 2~) = (1 + Dß) sinhk ,

1
k == -VI + 4D(a + s) .

2D

(81)

(82)

To show the equivalence, we expand k in D and drop any terms which have e-(i/(2D)) since
they are very smalL.

1k~~+a+s.
2D

(83)

Using this in the transcendental relation for k (81), leaves us with the expression:

-~ + (aD + sD)(ea+s - 1) = Dßi ea+s2 2 (84)
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Figure 7: Periodic and chaotic behavior of the Glass-Mackey equation in various regimes (a)

quasi-periodic state when m=8 (b) phase diagram, m=8 (c) chaotic state when m=lO (d)
phase diagram, m=lü

Again, we consider which terms are very smalL. Much smaller than any of the exponential
terms, sD is dropped, as is aD, since a '" tJ( -Ln(D)). Thus, we are left with an expression
identical to the first order energy, if we rearrange the following1 + ßi

-2" + (a + s)DeCi S = D2eCi+S . (85)

4.3 Finite Ring on a Windy Day: Part II
The Dynamics

The next step of this analysis is obvious: we should study the stability of the steady state
solutions of our amplitude equation. Before beginning this analysis, we set the tone of the
rest of this project by suggesting the results that were expected.

4.3.1 Interesting Zoology of Differential-Delay Equations

Differential-delay equations are well know for their periodic, quasi-periodic, or chaotic be-
haviour, with examples often arising in biology. .One such system is the model suggested by
Glass and Mackey ¡6J to describe the regulation of white blood cells. The structure of the
Glass-Mackey equation is similar to our differential delay equation,

Àc(t - T)
Ct = 1 + cm(t _ T) - ¡C , (86)

and is nearly identical to ours, if m = i.
This differential-delay equation describes the change in time of the concentration of the

white blood cells Ct. The rate at which cells die is proportional to c, e.g., -¡C. Meanwhile, the
flux, À of new cells produced by bone marrow, is dependent on the concentration of the blood
cells at some previous set time, t - T due to a delay time T in the production of white blood
cells. This time delay exists because of the time costs of communciation and production. All
the parameters, À, g, m, T are greater than zero. m is a parameter determined experimentally,
and if large enough, gives rise to limit cycles or chaos. See figure (7).
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In our system, we deal with our first exposure to a delay-equation and thus, a potentially
chaotic system. The possiblility of chaotic dynamics of the concentration of bacteria seems
like a fascinating result. We examine this possibilty below.

4.3.2 What about us? A stabilty analysis

Thus, one might begin the stabilty analysis of the bacteria-ring system. Perhaps the three
free parameters of our system, .À, ß, and a, can have both reasonable physical values and
interesting dynamics. Simplifying the differential-delay equation (78) with the definitions

- ßi
ß=2-a,

3ä= ¡a, - 1
.À = -.À ,

2
(87)

the equation becomes

- _ 2 ).f(t - 1)
it = ßf - af + 1 + f(t - 1)

The steady-states of (88) are found by letting it = 0 where f(t - 1) == f(t). This leads

to a cubic equation for the roots, one of which is zero, and the other two roots are obtained
from

(88)

äf2 + (ä - ß)f - (). + ß) = 0 . (89)

The roots are

f = (ß-ä)::y'(ä+ß)2+4ä.À~ 2ä . (90)

Discarding the non-physical negative amplitude, we are left with two steady-states which
the system may tend towards, f = 0 and fo. A study of the stabilty is necessary to un-
derstand the dynamics. Expanding around the steady-state solutions, we use f = fo + Efi.
The delay term in (88) must also be expanded in terms of E. We find that the zeroth or-
der equation for fo is just the cubic equation obtained earlier. The fist order differential
delay-equation defining fi is:

f = ß-f - 2äf f + ).fi(t - 1) _ fofi(t - 1)It I a i 1 + fa (1 + fO)2

It is useful to define a function N,

(91)

N=~
1 + fo ', 1

N = - (1 + fO)2 '

(92)

(93)

to rewrite (91), where N' = dNjdfo. Since this is a linear stability analysis, f = eSt, which
gives

s = ß - 2äfa + ).e-S(N + foN') . (94)

135



Reslt lrom difeiinti delay eqtin by ARCHI
Compañson of Modified Fisher wtth Glas-Mackey stabilit
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Figure 8: (a) Various steady-state solutions found numerically using ARCH!. Parameters are
given with each curve. (b) Plot of N fo vs fo of the modified-Fisher equation and the Glass-
Mackey equation. The leveling off of the modified-Fisher equation prevents any instability.
The negative slope in the Glass-Mackey equation is what gives it the abilty to be unstable.
The higher the value of the Hil coeffent, m, the steeper the slope.

To study the growth rate s, let s = t. + iw. (94) becomes,

t. + iw - ß + 2ãfo = ~e-IL-iW(N + faN') . (95)

Direct instabilties occur when t., the real part of s, is greater than zero. For simplicity,
let w = 0 and examine if it is possible for t. :; O. We can show that ß = ãfo - ~N, using the
zeroth order equation, (89), so that

ß - 2ãfo = -ãfo - ~N . (96)

Using (96) we arrive at:

t. - ãfo + ~N(i - e-IL) + ~e-IL N' . (97)

Assuming u :; 0, we find the expression on the right hand side to be negative for all param-
eters. This disproves our assumption. There can be no direct instability.

Hopf instabilities are the second possible type of linear instabilty. Breaking (95) up into
its real and imaginary parts, squaring and combining them gives

(t. - ß + 2ãfo)2 + w2 = ~2e-2IL(N + foN')2 (98)

For simplicity, assume t. = 0, and subtract w2 from each side. Using (96), we have the
inequality

(ãlO + Nl .( (N + foN')2 .À (99)
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If (99) is true, an instabilty exists. Further simplification leads to

IfoN'1 ? 2N + ii!OÀ (100)

=?

-~(2 + fo) iifo(1 + fO)2 ? 0 .

This condition is obviously impossible since fo, ii, ~ are all positive. Thus, there are no Hopf
instabilities. This system is stable- an acceptable but dissapointing result for situation

represented by an equation filled with such apparent possiblity. We check these results with
a numerical results, exploring some of the 3-dimensional parameter space. The two agree,
as shown in figure (8(a)), which plots several numerical results. One may note that the
bumpiness in the amplitude corresponds with the time delay, so that at each time unit, the
slope increases until the steady-state value is reached.

4.3.3 Key to Instabilty: A comparison

In hindsight, it is easy to predict that our system wil be stable for all parameter space,
despite the freedom of three independent parameters, À, ß,and a. The hint is contained

in the Glass-Mackey equation (86). Rewriting it in terms of a similar N, the NGM of the
Glass-Mackey equation is,

1NGM(fO) = 1 + fom , (101)
, -mfom-iNGM(fo) = (1 + fom)2 . (102)

A similar stabilty analysis shows that direct instabilties are always impossible, while Hopf

instabilities may exist if

IfoN'1 ? 2N . (103)

For G lass- Mackey,

X2 = NGM + foNGM .: 0 . (105)
We see from (101) that for a Hopf instabilty to exist,

iifoo ? Xi + N + ~ . (106)
This is impossible unless the slope, Xi .: 0, since the other two terms are positive. And so
we see that the structure of N is crucial to the stability of these types of systems.
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4.4 Other possiblilties for instabilty
With the initial goals of this work accomplished, it is fun to continue along further lines of
investigation. For instance, is it possible to modify the non-linear saturation term so that
we may find a non-steady-state solution? Or what about increasing the spatial complexity?
Or perhaps adding another delta function to the ring or many more, wil lead to chaotic
dynamics. What ifthe strength of the delta function(s) varies with time? The fist two ideas
are explored in the rest of this paper.

4.4.1 Adjusting the non-linearity

We begin with the simplest adjustment. What happens if we increase the non-linearity in
the modified-Fisher equation from -bc2 to -bcn? Perhaps this wil do something. However,

it was shown that if we change the power of c to any value n, that the structure of N wil be

1N= 1 .
(1 + fon)7i

(107)

Direct instabilties remain impossible, while this N stil does not yield the negative slope N'
necessary for a Hopf instabilty.

In fact, it appears that we must tailor a function which has a similar behavior to the
Glass-Mackey type N, so that it levels off at some lower value than it's maximum. For our
system, this seems physically unreasonable.

4.5 Two delta functions and more...
Does spatial complexity breed instability?

The second physically motivated suggestion, is to increase the complexity of the oasis and
desert zones to acheive interesting dynamics. If one additional delta function is added to the
ring, located at position a', possesing a strength ß~, while the first delta function is located
at a with strength ßi, a similar analysis to section (4) leads to two coupled differential-delay

equations:

it = (ßi _ a)f _ ~af2 + l).g(t - a) ,2 4 l+g(t-a)
_ ß~ 3 2 l).f(t - a')

gt - (2 - a)g - ¡ag + 1 + f(t _ a') ,

(108)

( 109 )

where). = e-aa /2D and ).' = Caa' /2D In general, for independent parameters, these equa-
tions yield 8 steady-state solutions (fo, go), if we count fo, go = O. A study of the stabilty is
quite complex. A few things, however can be said:

1. No direct instabilties exist, for any set parameters.

2. Equal parameters, ßi = ß~, a = a', results in the amplitudes fo and go always being
equal. (fa = go). This case reduces to the I-delta function case, so there is no interesting
zoology here.
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3. When the parameters are not equal, fo never equals 90. Stabilty has not been proven
for this case, although numerical tests suggest that the system is stable.

The first two results are also true a system composed of n delta functions. The coupled
delay-equations are straightforward to derive:

- 2 ).nfn
flt = ßif - iif 1 + 1 + fn '

- 2 ~ifiht = ß2f - iif 2 + 1 + fi '

f - ß- f - -f2 ~n-ifn-lnt - n a n + 1 + fn-l . (110)

It would be nice to develop a technique to study the stability of all the steady-state solu-
tions for 2-delta functions (and then n-delta's) which is more straightforward than the usual
algebraically complex method. Perhaps this wil be accomplished as our familiarity with
delay-equations grow, just as the simple discovery of N made the analysis of the simplest
case swifter and less convoluted.

5 Conclusion

In conclusion, the modified-Fisher equation and the delocalization transition has been studied
in detail for a large ring and in the distinguished limit that). is 0(1). While the differential-
delay equation was an unexpected result, it is an interesting property of the system which
deserves more study in complex inhomogenous backgrounds. It is also suggested that a time-
dependent delta function could model oscilations of ilumination due to cloud cover, or the
day /night cycle, as well as lead to an interesting problem with a new delay-equation. Other
work may also be done in different parameter regimes, especially in the small diameter limit.
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Coupled Nonlinear Oscillators

Roberto Sassi

i Introduction

Mutual synchronization is a common phenomenon in biology. It occurs at different levels,
ranging from the small scale of the cardiac pace-maker cells of the SA (Sino-Atrial) and AV
(Atrium-Ventricular) nodes in the human hearh that synchronously fire and give the pace
to the whole muscle, to the coordinated behaviours of crickets that chip in unson and of
fireflies that flash together in some parts of southeast Asia.

The dynamics of coupled oscilators is a very broad field of research; the approach we
have chosen is only one of the many that are possible. The question we would like to answer
is something like: "What special phenomena can we expect to arise from the rhythmical
interaction of whole populations of periodic processes?" !1j.

Winfree (1) was the first to underline the generality of the problem, fing the fist as-

sumptions for a mathematical modeL. In his work each oscillating species (cell, or cricket,
or firefly) is modeled as a nonlnear oscillator with a globally attracting limit cycle; The
oscilators were assumed to be weakly coupled and their natural frequencies to be randomly
distributed across the population.

Kuramoto (2) proposed the fist model (called for this reason the Kuramoto model). His
assumptions were that each oscilator is equal to the others, upto the frequency and phase,
that the system has a mean field coupling and that the amplitudes of the oscilations are all
the same (phase-only model). The equation of the model for the n oscilator is:

NdOn . K "" .
dt = Wn + N ~ sin(Oj - On) + ~n,

1=1

(1)

where K is the coupling strength, Wn is a random variable with probabilty density function
g(w) and ~n is white noise.

Defining as order parameter the complex number,
"N ie,

'.1. L.j=1 e Jrei'l = N ' (2)

it's possible to measure the synchronization among the oscilators phases: r = 0 corresponds
to the completely incoherent state, finite r to synchronization.

Kuramoto determined that r = 0 is always a steady solution; but there exists, in the
case of no added random noise, a critical value of the coupling parameter Kc = 719(0) below

which only incoherent populations exist (r = 0). For K ? Kc a population of synchronized
oscilators can exist (r ? 0).
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Time evolution of the distnbutíon of oscilators
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Figure 1: Numerical simulations on the discrete Kuramoto model with N = 256, D = 0.01, K = 0.65;
(upper) time evolution of the probabilty density function computed on the trajectories of the system
splitting up the e axe in sub-intervals; (lower) time evolution of the absolute value of the order

parameter
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Figure 2: Numerical simulations on the discrete Kuramoto model with N = 256, D = 0.01, K = 0.8;
(upper) time evolution of the probability density function computed on the trajectories of the system
splitting up the e axe in sub-intervals; (lower) time evolution of the absolute value of the order

parameter
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The results of the numerical simulations, performed solving equation (1) with N = 256
and two different values of the coupling parameter K, are shown in figues (1) and (2); in the
upper panels the time evolution of the discrete probability density function 1 is plotted; in
the lower panels, the time evolution of the order parameter is displayed. The initial condition
is, in both cases, a population of oscilators with phases unformly distributed in (0, 27f).

When K = 0.8 :; Kc, in a very short time, the phases of the oscilators gather together in
a small range of angles and then begin drifting coherently. The order parameter grows quickly
and exhibits small oscilations due to the random noise added to the system (figue (2)).

A different situation arises with K = 0.65 .( Kc; a coherent behaviour never starts, even
if small structures can be noticed: small population of oscillators synchronize and drift for
short periods of time. This is reflected in the order parameter that oscilates between 0 and
0.3 and decreases only slowly (figure (1)).

i. i A continuous model

Using the approach sketched in the previous paragraph, it's diffcult to go much farther; it's
not easy, for example, to answer questions such as "Is the coherent state (K :; Kc) stable?"

Strogatz & Mirollo (3) introduced a p~tial differential equation that describes the be-
haviour of the Kuramoto model in the limit N -+ 00.

The idea is that, in the continuous limit, the state is described by a probability density
function: p(O, w, t). The Kuramoto equation (1) becomes:

roo r27rv = w + K 1-00 10 sin(cP -9)p(cP,w, t)g(w)dcPdw, (3)

where v is the velocity at the point (0, w, t). Moreover, the density function p has to satisfy,
for each given w, a normaliation law

127r pdO = Ii

and a Fokker-Plank-type conservation law 2ß ß &
atp(O,w,t) + ßO(p(O,w,t)v(O,wt)) = D ß02P(O,w,t),

(4)

(5)

i The () axis is divided into 64 interva and, at each instant of time, the normalized histogram of the phases

of the oscilators is computed.
2The derivation of the two equations has the flavor of the BBGKY hierarchy in plasma physics and can be

found in (4). Some rationalization of equation (5) can be given on recollecting that because the probability is
conserved,

.£182 p(B)d() = P(()i)V(()i) - p(()2)V(()2)ôt 81

_182 ~ (pv)d()81 ô()
ÔPt = - ô()(pv),

and on remembering Einstein's derivation of the dision equation in his work on the explanation of the
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where 0 E (0; 211) and w E (-00; 00).
The order parameter (2), in the continuous limit, becomes:

¡OO 127r
rei7l = ei8 p(O, w, t)g(w)dOdw.

-00 0
(6)

2 Linear Stability Theory

Strogatz & Mirollo (3) worked on the linear stability of the continuous Kuramoto equation.
We will try to sketch the main results, useful for the discussion that follows.

With direct substitution into the equations (3) and (5), it can be seen that Po = 2~ is a
steady state solution for the system; it corresponds to the incoherent state with r = O.

By linearizing p around the steady state solution, that is

p = Po + €(c(w, t)ei8 + c*(w, t)e-i8) + h.h.,

where € is a small parameter and c* is the complex conjugate of c, then substituting into (3)
and introducing the notation

roo r27rG(w, t) = 1-00 10 sin(cp - O)p(cp, w, t)g(w)dcpdw,

it can be seen that G is different from zero only for functions that have a component on
the bases ei8 and e-i8. That is, the higher harmonics do not give any contribution and the
linearized equation (5) becomes

. K¡ooCt = -(D + iw)c + - c(v, t)g(v)dv.
2 -00 (7)

The discrete spectrum can be computed by seeking solutions of the form c(w, t) = b(w )eÀt.
By substituting into equation (7), multiplying by g(w) and integrating over w, one finds the

dispersion relation,

1 = K roo g(v) dv.
2 1 -00 À + D + iv

When À is negative, the order parameter decays and the system reverts to the incoherent
state; vice versa for lambda positive, the order parameter exponentially grows and this is, in
the coupled oscilators system, the onset of synchronization.

(8)

The system has, also, a continuous spectrum at w = -iD (see (3)). As the dissipation is
always positive, the modes in the continuous spectrum are either all decaying or, at most,
neutrally stable when D = O.

Brownian motion (5), which indicates that

Pt = 2(ç2)p88

= DP88
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Figure 3: Continuous spectrum for the dispersion relation (8) either for the case D -l 0 (left) and
for the noise-free case with D = 0 (right). The discrete spectrum is composed of only one mode that
exists for K ). Kc and lies to the right of the continuous spectrum (inside the grey region in the

picture); in the noise-free case the discrete mode either is unstable or doesn't exist.

2.1 An example

Choosing as probability density function a lorentzian, that is
1 1

g(w)=;w2+1'

the dispersion relation can be solved analytically; the computed growing rate À is
K

sgn(À + D)À = "2 - 1 + D

and the critical coupling (that is the value of K at which the system is neutrally stable) is

Kc = 2(1 +D).

If D = 0, then Kc = 1lg~O); this is the same result that Kuramoto found working on the
discrete system, as described in the introduction.

Summarizing, for K :: 2, the system does not have any discrete mode; for 2 -: K -: Kc
the system is stable and exponentially decaying; if K = Kc it has a neutral mode and with
K ). Kc an unstable growing mode (figure (3(lejt))).

It's interesting to notice that, if the dissipation is zero, the system can only be either
unstable, with a growing mode (K ). Kc), or neutrally stable, with no mode (K :s Kc)
(figure (3(right))). But, looking at figure (4(right)), it can be seen that the order parameter
is, however, decaying exponentially.

How can we explained this apparent contradiction? Let's look at the solution ofthe initial
value problem with K -: Kc and the initial condition

2 1c(w,O)=- 2 4'
7rW +
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Figure 4: Time evolution of the order parameter for the Kuramoto continuous model; compact

support within ¡-lj 1J for g(w) = 11:'2 i+~~ j initial condition Po = 2~ and Pi = ç~ 4';w2; (left)
D = 0.01, Kc = 0.739, ç = 0.001 and K = 0.8: over-critical couplig, the order parameter grows
linearly and then, when the nonlinearity becomes strong enough, saturates; (right) D = 0, Kc = 2 - ~

, ç = 0.1 and K = 0.5: under-critical coupling, the order parameter grows, initially, and then decays.
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Figure 5: (a): real part of the fist Fourier component of p(B,w, t) at two different times, obtaied with
the numerical simulation described in figure (4 (right)). (b): real par of the first Fourier component
of p(B, w, t) at time t = 60 analytically computed. In both case is possible to observe the increasing
number of oscilations.

Integrating equation (7) via Laplace's transform, we find that

() t 2 1 1 5 1 1 )- iwtC w, t = ;: w2 + 4 - 31f 2iw _ 1 - 31f 2 _ iw e

5 1 K 1 1+ e-(i-1)t + __e-2t
31f 2iw - 1 31f 2 - iw .

Evidently, the function c(w, t) is proportional to the non-decaying and non-separable term
eiwt. As time goes on, this term becomes increasingly crenellated.

What we are seeing here is equivalent to the Landau damping in plasma physics; the
order parameter is proportional to the integral of the function c(w, t); even if the latter
doesn't decay, as soon as it starts crenellating, the positive and negative part cancel and the
integral decreases.

In fact, computing the absolute value of the order parameter, we have
10 _(K-l)t 4 -2tr = -e 2 - -e3 3

which decays exponentially as t -+ 00.

3 Numerical Integration

The integration of the discrete model (equation (1)) has been performed with a fied step
(.6t = 0.1), fully-implicit predictor-corrector scheme. The fied time step is forced by the
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noise added to the derivatives that avoids the convergence of most adaptative methods.
In the continuous model (equations (5) and (3)) the density function p is periodic with

period 2n, so the latter can be expanded in the Fourier series:
00

p(Ø,w,t)= L p(O,t)eimO
m=-oo

Substituting into the equations (5) and (3), we obtain the system of nonlinear ordinary

differential equations for the Fourier coeffcients Pm:

POt - 0,
Pmt - -Knm(P-i)PmH - (imw + Dm2)Pm + Knm(Pi)Pm-i

for m:lO

where

(J(w)) = 1: f(w)g(w)dw (9)

For each value of w, truncating the Fourier series at m = L, the system can be effciently
integrated (a semi-implicit Adams-Bashfort-Moulton predictor-corrector scheme leads to the
inversion of a tri-diagonal matrix). We used L = 16,32,64,128 in the computations; the
smaller the dissipation or the longer time windows considered, the bigger the number of
Fourier components necessary to approximate properly the Kuramoto system. We found
L = 32 a good compromise in many situations.

A little more attention is needed for the evaluation of the integral (9). We found that
the most effcient way of computing it is via Gauss-Legendre quadrature formulae, setting
compact support for g(w), and using the solution for p, produced at the previous available
time step.

In figures (6) and (7) the solutions computed for p(O, w, t) are shown; in the sub-critical
case, when the coupling parameter K is smaller than Ke, stripes of probabilty can be noticed,
which increase in number and, slightly tilting, start shrinking. At fied ø, this is the same
crenellation as described above and seen in figue (5).

When K ? Ke, in the super-critical case, the probability gathers, initially, in a stripe-
like area, but immediately also starts to deplete from the" central region. Unlike before, the
number of stripes doesn't increase (in this case there's no Landau damping); two areas collect
the whole probabilty. The process is reminiscent of the formation of a shock layer in the
white regions in figure (7), but a truely weak solution does not form due to the dissipation
introduced by the noise.

4 A symmetry property

Looking at the numerical results of the previous section, it can be observed that, starting
from p(Ø, w, 0) and g(w) which are even functions in w, a symmetry is preserved during the
evolution of the dynamics; that is p(O, w, t) = p( -ø, -w, t). This behaviour can be explained
in a general way.
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Figure 6: p(8, w, t) at six successive instant of time obtained via numerical integration of the Ku-
ramoto continuous model with D = 0 and K = 0.5 (see figure (4)(right) for further details). The
coupling K is sub-critical.
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coupling K is super-criticaL.
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Let's start stating that the probabilty density function is so that, for each integer n,

p(e, w, t) = p(e + 21rn, w, t) = p(21rn - e, -w, t) = p( -e, -w, t). (10)

The symmetry property wil be proved by construction.
Let's expand sin(ø - e) in equation (3); the first integral can be rewritten

i: i: sin(ø)p(ø, w, t)g(w)dødw

- i:i: sin(ø)p(ø,w,t)g(w)dødw +

100 rr sin(ø)p(ø, w, t)g(w)dødw;-00 10

(11)

If we make the change of variables ø' = -ø and w' = -wand we use equation (10), expres-
sion (11) becomes

(11) _ - roo r sin(ø')p(ø',w', t)g(w')dø'dw' +
1-00 10

i: l7r sin(ø)p(ø,w, t)g(w)dødw

- o.

At the end,

G(e, t) - - sin(e) i: i: cos(ø)p(ø, w, t)g(w)dødw

- -Q(t)sin(e). (12)

Substituting (12) into equation (5), it can be noticed that p( -e, -w, t) is a solution of the
Kurámoto modeL.

5 Weakly Nonlinear Theory

When K = Kc, the system is, by definition, linearly neutrally stable. In this situation and
for D .¡ 0, Bonila & al. (6) and Crawford (7) developed an asymptotic expansion around
the equilibrium solution and derived a Landau-type ordinary diferential equation for the
amplitude of the perturbation.

Defining € ~ 1, they chose the scalngs,

€2t = T
at år€2,

where T is the slow time (when t is very big, T is small),

K = Kc + €2 K2 + . . .
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and expanded the function P such that

p(O, w, T)
i= -+

21T

= €(pi(w)ai(T)eiB + pi(w)ai(T)e-iB) +
= €2 

(p2(w)a2 (T)eiB + P2(w)a2(T)e-iB) +
= €3(p3(w)a3(T)eiB + p3(w)a3(T)e-iB) +

= o(é).

From equations (5) and (3) it follows that

2 ap ap a roo r27l . a2p
€ aT = -w ao - aoPK 1-00 10 sin(q, - O)pg(w)dq,dw + D a02

and

G = €Gi + €2G2 . . .

At the fist order (O(€)) :

K J~oo pi(v)g(v)dv

Pi = 2(w - iD)

Continuing to 0 ( (3), eventually, one derives the amplitude equation,

K2 2 2
aiT = Tai + (Kc1T) Ilail ai

where

I = roo P:l~~bdw = constant
1 -00 w i

We can see from the expression for Pi that this kind of approach is not satisfactory when
D = 0; p diverges at w = 0, but as long as it's a probabilty density, this can not have any
physical meaning and has to be avoided.

5.1 Weakly Nonlinear Theory: D =1 0, but small

In this section we try to sketch how it's possible to develop an asymptotic expansion for the
case i ~ D # O. Let's choose the vaiables to scale as in the previous case (Hopf scaling)

but let's say that D = €2 D2. The motivation for this scaling can be found in the numerical

experiments we performed and in the analysis by Daido and Crawford (4).
Substituting, as in the previous paragraph, into the equations (5) and (3) we have

€2 PT + (~; + (pG)B )(Kc + €2 K2) = €2 D2PIJIJ
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and at the first and second order we can derive the following expressions for Pi and P2 :

GioKe
wpio + 27r = 0,

KeGi
Pi = --

27rW

G20Ke
WP20 + 27r = -Ke(piGi)o,

K~Gl KeG2P2=---.27rw2 27rW

O(€) :

0(€2)

Here is the problem we have to overcome; to treat properly the case D .... i we need a

critical layer around W = 0; in fact, at this point, the asymptotic expansion breaks down and
P2 is bigger than Pi .

Inside the critical layer, we set the new independent and dependent variables

W = €y

P = Z(e,y,T) = Zo + €Zi.

The equation in the inner region becomes

€2ZT + EYZo + (~; + (ZG)o)(Ke + E2K2) = E2 D2Zoo

and at the first two orders

O(E) :
GioKe

yZOO + 27r + Ke(ZoGi)o = 0,

Zo = _~ KeGi
27r y + KeGi
G20Ke

yZio + 27r + (ZiGi)oKe =

-ZOT - (ZoG2)oKe + D2Zooo,

( ) KeG2 )( y + KeGi Zi + ~ 0 =

F GiT Gio D2Gio((y + KeGi)2' (y + KeGi)2' (y + KeGi)3)

O( E2)

where F is a function, that for our purpose we not need derive.
Even in the inner region we stil have trouble: when y + KeGi = 0, Zo diverges and Zi

diverges even more; the asymptotic expansion breaks down another time.
This is very peculiar; the first inner layer is not sufcient at all and it's necessary for

another critical layer, a second, inside the first. Moreover the shape of this inner layer is
peculiar: it develops around the curve y + KeGi = O. The whole situation is sketched in
figure (8).

In this second inner layer we define the new independent variable

y + KeGi = EQ ç
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Figure 8: Weaky Nonlinear Theory. (A): When the dissipation is small (O(E2)) a critical layer
becomes necessary around the frequency w = 0 (light gray region); the width of this layer is of order E.
(B): The sketched-box in (A) is enlarged: inside is possible to notice the second "snake-like" critical
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The sketched-box in (B) is enlarged agai: the width of the inner-inner layer is of order é!t (0: = 1 if
D2 = 0; 0: = 1/2 if D2 #- 0).
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and the new dependent variable

Z = r(o, y+KcGi ,T).
Ell

Deriving a new equation, in this second inner layer, is very technical and we wil not
develop it. The reason lies in the strange relation between T, 0 and ~, imposed by the shape
of the layer. On the change of variable to ~, the 0 and T derivatives pick up additional
~ -derivatives,

(ZØ)y,T (rØ)ç,T + K;:ø (rdØ,T

(ZT)y,Ø = (rT)ç,Ø + K;:ø (rdT,Ø

and this makes it much more complex to derive useful analytical expressions.
We conclude this section sketching an argument for determining the scaling parameter a.

We can deduce from the relations (13) the scalng for Zo and Zi,

O(E) Zo rv O(E-ll)
O(E2) : Zi rv O(E-211 OR D2E-3(1).

Hence Zi scales in different way depending on the value of D2.
We now apply the condition that Zo and EZi have to scale at the same order, which is

where the expansion formally breaks down and we enter the innermost region. There are
two different situations, depending upon the value of D2: if D2 = 0, then a = 1, and when
D2 #- 0, then a = 1/2. The reason ofthe scaling we chose for D becomes, now, more clear and

we would have lost this double behaviour with a higher scaling of the noise term (D -7 Eß D
with ß ). 2).

Summarizing the results in this section, when D is finite but small, the derived asymptotic
expansion reveals that we need, at least, two critical layers, one inside the other. The first,
around w = 0, is of order E; the second, snake-shaped, is inside the first and has a characteristic
width that depends upon the value of D2.

6 Steadily propagating solutions

In this section we look for steadily propagating solutions for p, that is

p(O,w, t) = p(O - nt,w),

where n is the propagation velocity.
Substituting this expression into equation (3) and making the change of variable tl =

q; - nt, we find

G(O, t) - 1: l27r sin(q; - O)p(q; - nt, w)g(w)dq;dw

- 1: l27r sin(tl - (0 - nt))p(tl, w)g(w)dtldw

- G(8 - nt, w).
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From this, we can observe that G preserves the dependence on (0 - nt) that P is supposed

to have.

Equation (5), in the situation D = 0, becomes

(w - n)pe + k(Gp)e = 0; (13)

integrating over 0

.J(w)
P= w-n+kG(O-nt) (14)

where .J(w) is a generic function of w.
As N.J.B. says in these situations, we are in bad shape; as long as P is a probabilty

distribution function, it can not have singularity; as long as w is a real variable that spans
the entire real axis, the pole from the denominator of P is hard to avoid.

This is an interesting point; if the dissipation is zero the system does not admit steadily
propagating solutions. But what happens when the dissipation is small?

If D i= 0, equation (13) has an additional term, and after the integration over 0, we have

(w - n)p + kGp = .J(w) + Dpe. (15)

For the sake of simplicity, let's say that we have fixed w to a certain value; then there's a
value of 8 = 0 - nt at which the denominator of equation (14) vanishes; we call this value

.6.
As D -+ 0, p scales as 1/(8 - .6); hence we need an inner layer in the proximity of

8 - .6 = 0 in which the dissipative term becomes important. For this reason we choose the

following scaling and variables,

8-.6 = f,8

P = ~R
f,

D f,2

Substituting in equation (15) and noting that 8e = 8e = f,-28ö we have

kGe(.6)óR = .J(w) + Rö

Integrating over 8, we can fid the expression of the probabilty distribution function in the
inner layer and check the condition for the matching with the outer:

Rö
-kGA(LI)Ó2

(Re 2 )ö

kGe(.6)8R - .J(w)
-kG¡:(LI)ó2

= -.J(w)e 2
kG¡:(LI)ó2 kGA(LI)Ó2 ¡ö -kGA(LI)5'2_

R = Roe 2 - .J(w)e 2 e 2 d8.
-00

The value of Ro can be computed with the normalization condition (4).
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Figure 9: Steadily propagating solution with n = 0: a sketch of p((),w). Near the phase e (where

w + KG(e) = 0 and G'(e) .. 0) a critical layer (light gray region) is necessary. In the outer layer p is
zero everywhere.

This solution is potentially dangerous; it has to be bounded, otherwise it again diverges;
moreover in the limit of 8 going to infnity (that is, going out of the inner layer) R has stil
to be limited, for a proper matching with p. Using these two conditions, we fi the value of
.J(w) and Ro

.J(w) = 0 for Ge(b.) 0: 0,

.J(w) = 0, Ro = 0 for Ge(b.)). 0, (16)

The matching with the outer layer is straightforward; as 8 goes to infnity, R it's zero and
p is zero everywhere. In figure (9) is shown a sketch of the situation for n = o.

Summarizing this result, steadily propagating solution can not develop for D = 0; with D
finite, but small, they exist only in a small layer, that follows the line (w-n+kG(O-nt)) = 0
where Ge(b.) 0: O.

The probability density p is exponentially small everyhere in the outer layer; for this
reason the integral for G is limited to the inner, and

G(e, t) = 100 r27r sin(tI- e, t))p(tI,w)g(w)dtPdw
-00 10

100 100 kG (LI)å2= -00 -00 sin(b.(w) - e, t))Roe e 2 g(w)d8dw

6.1 An example: n = a

Let's say that n = 0, so that we look for a steady solution of the kind p(O, w). In this case,

steadily propagating solutions can develop only along the line w + KG(O) = O.
Choosing a symmetric initial condition and applying relation (12), the curve becomes

w = KQ(t) sin(O).
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Moreover, along the line, solutions can form only where Go -( 0, that is

-get) dS~~(O)

dsin(O)
dO

-( 0

? 0,

as K and g are both positive. In figure (10) this prediction is compared to the actual solution,
obtained with the numerical simulations. As it can be seen, the agreement is evident and
this explains the depletion of probabilty noticed in the middle of the plane O-w, in figure (7).

7 The case g(w) = 5(w)

In the previous two sections we appreciate that, if we set D smal, but different from zero, it's
possible to perform an asymptotic expanion and steadily propagating solutions can develop.
But what happens when D = O? The described approach only underlined that this is a critical
situation. In this section, with D = 0, we wil show how is possible to solve analytically the
Kuramoto equations in the case that yew) is a Dirac's delta fuction.

In this case all the oscilators share the same frequency w = 0 and have different phases.
Starting from a symmetric initial condition, that is p(O,O) = p( -0,0), and using prop-
erty (12), equations (5) and (3) become

Pt(O, 0, t) - k8o(p(0, 0, t) sin(O) i27T i: cos(Ø)p(Ø, 0, t)8(w)dwdØ) 0

Pt(O, t) - k8o(p(0, t) sin(O) i27T cos(Ø)p(Ø, t)dØ - 0;

Setting

r27TF(t) = 10 cos(Ø)p(Ø, t)dØ,

the last relation becomes

Pt - ksin(O)F(t)po = kcos(O)F(t)p. (17)

We solve this equation by the method of characteristics; for equation (17) the character-
istic equation is

dt _ dO _ dp
1 - -ksin(O)F(t) - kcos(O)F(t)p'

Hence,

dO

dt
dp
dt

-ksin(O)F(t)

k cos(O)F(t)p.
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Figure 10: pee, w, t) at t = 180 obtained via numerical integration of the Kuramoto continuous model
with D = 0.01 and K = 0.8 (see figure (4)(lejt) for further details). UPPER: contour plot of p; the
super-imposed sketched line is w = KQ(t) sinCe). The steadily propagating solution (with n = 0) can

develop only where Gi(e) .: 0, as expected. LOWER: plot of p. Looking back to figure (7) is now
possible to understand why the probability is zero in the middle of the pictures.
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Solving the first, we obtain

tan(~) = tan(~ )e-kj; .r(t')dt';

dividing the first with the second

(18)

dp
de

p sin( e) =

- -pcot(e)

cOnstant = po(eo(e, t)) sin(eo(e, t)).

The derivation here becomes a little technical:
2tan~80/2) 2tanJ8/2)£(t)

1+tan (80/2) 1+tan (8/2)£2(t)
p = Po 

2 sin(ej2) cos(ej2) = Po 2 sin(ej2) cos(ej2)
e-kq

= Po e-2kq cos2(ej2) + sin2(ej2)

where q = J~ F(t')dt and ê = ekq.

As time goes on, we expect the order parameter to saturate to a certain constant value;
this is what we saw in the numerical simulations. The order parameter is, by definition,
proportional to G by a factor 27r. Callng F the saturation vaue of G then q, the integral of
F, becomes

q '" Ft as t -+ 00.

Choosing, now, the initial condition Po = cos(eo), and recallng relation (18), we find

1- tan2(eoj2) _ 1- tan2(ej2)ê2

1 + tan2(eoj2) - 1 + tan2(ej2)ê2

e-2kq cos2(ej2) - sin2(ej2)

e-2kq cos2(ej2) + sin2(ej2)

Po =

Finally, substituting Po into the expressions for p and q we have

-kq e-2kq cos2(ej2) - sin2(ej2)p=e
(e-2kq cos2(ej2) + sin2(ej2))2

and

dq 127l e-2kq cos2(ej2) - sin2(ej2)- = e-kq cos(e) de
dt 0 (e-2kqcos2(ej2) +sin2(ej2))2

The integral in (19) can be evaluated in the limit that q goes to infnity. Making the
change of variable e = 2xe-kq and expanding in Taylor's series the trigonometric functions,
it becomes:

(19)

dq rX) - 2x2
dt = 1-00 (1 + x2)2dx = -27r

q = -27rt
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Summarizing, as the time goes on, q grows linearly; p becomes small everywhere except
near (J = 0 where p I' ekq, so that it grows exponentially. The dynamics brings probability
toward a singular phase (the point (J = 0 here); this is exactly what we saw in the numerical
simulation, although with diferent g( w), and along a curve on the ((J, w) plane.

Concluding, the solution is a spike-shaped shock-like object. This is also consistent with
another fact, which is namely that, with g(w) = 8(w) and the alternative coupling, sin(cp-
e) -+ 8(cp - e), the Kuramoto model reduces to the Burger's equation,

Pt(e,O,t) + ¡Kp2(e,0, t))e.

8 Discrete vs. Continuous

An important question is whether the continuous approximation, made in the limit N -+ 00,
remains valid with a relatively small number of oscillators. That is, if the results, obtained
in the previous sections, are applicable to equation (1).

We don't have a final answer to such a question, but, comparing figures (11) and (12),
obtained from the discrete model with N = 256, with (6) and (7), can be seen that the main
behaviours are the same. In particular, in figure (12), we see the probabilty gathering in two
symmetric areas of the plane, as in the continuous case of figure (7).

A peculiarity of the discrete case is that the concentration of probabilty drifts in the
e direction; we suppose this to be related to the fact that, although the probability den-

sity function, from which the initial condition is extracted, is symmetric, the actual initial
condition is not.

9 Conclusions and other remarks

The Kuramoto model generates many interesting results; many more than what we were
expecting. So, in this report, for brevity reasons, we have omitted several of the analyses we
made. We mention two particular ones here:

First, we studied the issue of transient amplication: starting from a situation of equi-
librium with a sub-critical coupling, and imposing perturbations of different intensities, one
can find solutions to the linear initial-value problem that grow to arbitrarily large amplitude
before decaying. One important question is whether this transient growth induces nonlnear
behaviour in the full system before the disturbance can decay. But, from the numerical sim-
ulations, the system appears to be very robust, with a decay that is very much similar to
what predicted by the linear theory no matter how big the transient growth. In other words,
the nonlinearity of the system doesn't provide any new, unexpected behaviours.

Second, we also applied Nyquist methods to the linear stabilty problem: in the linear
analysis section we computed analytically the value of the growth rate and the critical value
of the coupling parameter for the Lorentzian. For general g(w), the integral in (8) can be
solved numerically to funish similar results, but in many situations it is helpful to have a
quick, general understanding. We used the Nyquist criteria to derive the following result
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that, here, we only state: the maximum number of unstable growing rates, for the linearized
Kuramoto system, is the number of monotonic pieces of g(w) divided by two. '

On the other hand, there is further work to be done in at least two different directions:

. the comparison of the discrete and continuous model is only sketched and needs more

numerical explorations. Moreover, do traveling solutions, as we saw in figure (12), exist
in the continuous case? In figure (1) structures can be noticed, even if the coupling is
sub-critical and we are expecting incoherence. What is the origin of these structures?
Do they only depend on the initial condition?

. The change in the form of the coupling seems to be critical (see ad example ¡4) and ¡SD.

What happen if the coupling is different than sin( cP - fJ)? Why?
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Effect of a Simple Storm on a Simple Ocean

Jeff Moehlis

1 Introduction: Near-Inertial Oscillations and Storms

Horizontal motion of a free particle on the Earth's surface subject only to the Coriolis force
is governed by the equations

dup

dt - fvp = 0,

dvp

dt + fup = 0,

where up and vp are respectively the eastward and northward components of the particle's
velocity in the frame rotating with the Earth, f == 2SlE sinlP is the Coriolis parameter, SlE is

the frequency of the Earth's rotation, and lP is the latitude (see, e.g., (4)). This has solution
up + ivp = e-ift(uo + ivo), where Uo and Vo are the initial components of the velocity. This

corresponds to the particle's velocity describing a circle ofradius"(u~+vÕ)i/2 / f with frequency
f. In the northern hemisphere, - f )0 0 and the particle rotates in a clockwise direction when

viewed from above. The inertial frequency f is the low-frequency cutoff for internal waves in
the ocean. An internal wave with frequency near f is called a near-inertial oscillation (NIO).
About half of the total kinetic energy associated with internal waves in the ocean is contained
in NIOs (5).

There is much observational evidence, starting with (17, 14), that wind from storms
can excite near-inertial currents in the mied layer of the ocean; recent observations include

(8,13,15). Simple models which treat the mied layer as a solid slab have been quite successful
at explaining the process by which wind generates such currents (see, e.g., (14, 5)). These
currents decay away after the storm passes, with possible mechanisms for the decay including
nonlinear interactions which transfer energy to other frequencies (12), turbulent dissipation
¡ii), and the radiation of downward propagating NIOs excited by inertial pumping into the
interior of the ocean (10). The last mechanism wil be the focus ofthis paper. Such downward
propagation of NIOs is believed to be a signicant mechanism for miing in the upper ocean.

Observations give a time scale for the decay of the energy deposited by the passing storm
on the order of ten to twenty days (8, 13, 15). This time scale is in contrast with estimates
such as that by (10) that near-inertial currents decaying through the downward propagation
of NIOs and with a horizontal length scale typical of the atmospheric forcing mechanism
can" remain in the mixed layer for longer than a year. To account for this diference, several
mechanisms for the enhancement of vertical propagation of NIOs have been suggested (these
are nicely summarized in (16)), including smaller-scale fluctuations within the storms, the
ß effect (6), and interaction with background geostrophic or quasigeostrophic flow (see, e.g.,
¡2, 3, 16)). '.

J~$
¡:~

J
'"
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This paper considers the vertical propagation of near-inertial energy and shear deposited
into the mied layer by a storm in the presence of the ß effect. The analysis uses the formalism
of ¡IS) which is briefly discussed in Section 2. In Section 3, a simplified model with three main
assumptions is outlined. First, the background flow is assumed to be independent of longitude
and the associated vorticity is assumed to be zero. Second, the buoyancy frequency is taken to
be approximately zero in the mied layer, and constant in the interior (Le., beneath the mixed
layer). Third, it is assumed that the storm has moved very rapidly across the ocean and has
created a horizontally uniform near-inertial current to the east concentrated within the mixed
layer. Section 4 uses the fact that the depth of the ocean is very much larger than the mixed
layer depth to formulate and solve the model for an ocean which is (effectively) infnitely
deep. Section 5 discusses the results and suggests directions for futher investigation.

2 Formalism

Consider the ocean to be infnite in horizontal extent and of depth D, with the mixed layer
being the portion of the ocean with - Hmix -( z -( 0, and the interior the portion with

- D .: z .: - Hmix' The x and y axes are taken to point to the east and north, respectively.

The buoyancy frequency N = N(z) is an arbitrary piecewise continuous fuction of depth z.

2.1 Evolution Equation

Young and Ben Jelloul ¡IS) derive an evolution equation for a complex field A(x, y, z, t) from
which leading-order NIO motion in the presence of a steady barotropic background flow and
the ß effect can be deduced:

å('l, LA) i 2 . ( 1 )LAt+ å(x,y) +210'1 A+i ßY+2( LA=O, (1)

where

LA= ~ (16 åA)åz N2 åz ' (2)

'l is the streamfunction for the background flow, ( = '12'l is the associated vorticity, and
the Coriolis parameter 1 = 10 + ßy. Here "V is the horizontal gradient, and \72 = å; + å;.
Subscripts denote partial differentiation. The asymptotic expansion used in the derivation
of equation (1) relies upon the frequency of near-inertial waves being close to the inertial
frequency 10' The NIO velocity field (u, v, w), buoyancy b, and pressure p are given by

u+iv = e -ifot LA (3)

w = 11,2 N-2(A 'A) -ifot +
- 2 0 xz - i yz e c.c.

b = i j, (A 'A) -ifot
2 0 xz - i yz e + c.c.

p = i (A 'A ) -ifot
2 x - i y e + C.c.
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Here b is related to the density P by

( 1 r 2(') , b)
P = Po 1 - 9 10 N z dz - 9 ,

where Po is the reference density at the top of the ocean. Note that p has been normalized
by Po.

The boundary conditions are that w vanishes at the top and bottom of the ocean; this
corresponds to the boundary condition Az = 0 at z = 0 and z = -D. This boundary

condition along with equation (3) implies that

fo (u+iv) 

=0.
-D

(4)

Thus, the barotropic motion is not included in the analysis; note that (10) shows that the
barotropic response to a storm is instantaneous and the associated currents are weak.

2.2 Jump Conditions

Suppose that the buoyancy frequency is discontinuous at z = Zd. Integrating equations (2)
and (3) from z = Zd - 8 to Z = Zd + 8, the following jump condition is obtained:

( ¡,2 åA) Zd+" . ¡Zd+"
-%- = eifot (u + iv)dz.
N åz Zd-" Zd-"

The left hand side tends to zero as 8 -+ 0 provided u and v remain finite (which must be
true on physical grounds). Thus, b~¿ is continuous, even when N2 is discontinuous. Now

assuming that 'l and ( have no 8-function behavior in the z direction, integrating equation
(1) over the same interval in z implies that

¡Zd+"
lim \72 A dz = O.
,,-+0 Zd-"

Thus \72 A = Axx + Ayy is continuous across z = Zd.

2.3 Energy and Shear

The quantities

u2 + v2 = ILAI2, 2 2 I å ( 12Uz + Vz = åz LA) (5)

give local measures of the horizontal kinetic energy per unit mass (hereafter HKE) contained
in near-inertial motion and the associated vertical shear, respectively. Using equation (1)
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and its complex conjugate,

alLAI2
at

- LA; LA + LAt LA*

_ ifo (\7. (LA \7 A* - LA* \7 A)J _ a('l,ILAI2)2 a(x, y)
+ ifo f ~ (f6 (\7 A* . \7 A - \7 A . \7 A*)J 1.2 1. az N2 Z Z f ' (6)

where the star denotes complex conjugation. In the following, it wil be useful to integrate
this over a volume in order to determine how the energy contained in horizontal near-inertial
motion in the volume depends on the value of derivatives of A evaluated on the surface of
the volume. A general equation for the evolution of the shear is not given here, but wil be
for the simplified model considered next.

3 A Simplified Model

To simplify the analysis, it is assumed that A and 'l do not vary in the x direction, and that
( = O. The analysis thus keeps the ß effect but neglects the effect of background barotropic
vorticity. The buoyancy frequency profile is taken to be

N2 = €2N~
N2 _ N~

- Hmix .: z .: 0
-D.: z': -Hmix,

where € ~ 1. Finally, the storm is assumed to produce the initial condition of a horizontally
uniform near-inertial current to the east concentrated within the mied layer.

Instead of approaching this problem by projecting onto normal modes (see, e.g., (2, lOn,
the problem wil be formulated as an initial value problem on a semi-infnite domain corre-
sponding to an effectively infnitely deep ocean. In order to formulate the problem properly
for this limit, this section considers an ocean of finite depth. In Section 4 the solution in the
limit that the depth of the interior is much greater than the mixed layer depth wil be found.

3. i N ondimensionalization

Quantities are nondimensionalized according to

~ yy= y'
~ z 1z=-H' + ,

mix
i = nt, ~ NN= No'

where

(H2. N.2) 1/3
Y = mix 0- ßfo ' (ß2 H2. N,2) 1/3

ri = mix 0H - fo

Typical values ß ~ 1O-llm-1s-1, Hmix ~ 100m, fo ~ 1O-4s-1, No ~ 1O-2s-1 give Y ~ 105m
and n ~ 1O-6s-1. The relevant time scale is thus iln ~ 11.5 days. Also, with a view to

170



specifying the initial velocity profile according to equation (3), the velocity and the field A
are nondimensionalized as

( n n) (U, v)U, v =--'
n 16
A = UN.2H2. A,

o mix

where U is a characteristic value of the velocity. The hats wil be dropped for ease of notation.
With this nondimensionalzation, the buoyancy frequency profile is

N2 = €2

N2 = 1

O':z.:1
D- H == -- + 1.: z': 0,

Hmix

and equation (1), the boundary conditions, and initial condition becomei 2 .
Azzt + 2N Ayy + iyAzz = 0

Az - 0 z = -H, z = 1
Azz = N2u t = O.

(7)

(8)

(9)

The jump conditions in nondimensional form are

Azlz=o+ = €2 Azlz=o-, Ayylz=o+ = Ayylz=o-, (10)

where z = 0+ and z = 0- are the limits as z -+ 0 from positive and negative z values,
respectively.

This nondimensionalization allows some immediate conclusions to be drawn about the
propagation of NIO energy and shear downwards. Most importantly, if Hmix increases then
the timescale 1/0. decreases. Thus, assuming that the storm causes a uniform near-inertial
current throughout the whole mied layer, energy and shear transfer wil be faster for a
deeper mixed layer. This confms the results of (10), which associated the more effcient
transfer with a larger projection of the initial velocity profile on the first vertical mode.

3.2 Integral Energy Relations and Energy Flux

The nondimensional local kinetic energy per unit mass is u2 + v2 = IAzz/N212. The nondi-
mensional form of equation (6), with the assumptions of the simplified model, is

a I Azz 12 i a (A A* A* A ) i a (A* A A A*)
at N2 = 2N2 ay zz y - zz y + 2N2 az yz y - yz Y' (11)

Let

( dV == 10 dz 100 dx 100 dy,lINT -H -00 -00 ( dV == (1 dzjOO dxjOO dylML 10 -00 -00
be the integrals over the interior of the ocean and the mixed layer, respectively. Assuming
AzzA; - A;zAy vanishes for iyl -+ 00 and using equation (8) gives the following results:

: ( IAzzi2dV = ~ 100 100 (A~zAy - AyzA~)lz=o"'dxdy,
t lINT -00 -00 (12)
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dd r I A~z 12 dV = - 2\ ¡OO ¡(X (AZzAy - AyzAZ)lz=o+dxdy.t lML I: I: -00-00 (13)

Equations (10),(12) and (13) may be combined to give

I 12

d 2 d Azz
-d r IAzzl dV + -d r -T dV = O.t lINT t lML I: (14)

This is a statement of conservation of HKE in nondimensional form.
The quantity FE(y, t) == ~(A;zAy - AyzA;)lz=o- is the flux of HKE from the mixed layer

to the interior of the ocean. Letting

r dV == ¡-d dz ¡OO dx ¡OO dy,

l~ -H -00 -00
similar arguments show that

: r IAzzi2dV = ¡OO ¡OO FE(y, t; d)dxdy,
t lVd -00 -00 (15)

where

FE(y,t;d) == ~(AZzAy - AyzAZ)lz=-d

gives the flux of HKE from the region z :; -d to the region z .: -d. Equation (12) is a

special case of equation (15) with FE(y, t) == FE(y, t; 0-).

(16)

3.3 Integral Shear Relations and Shear Flux

In Section 3.4, it wil shown that, to leading order in 1:, A is independent of z in the mixed
layer, and thus there is no shear in the mied layer. For z .: 0 the nondimensionalized

buoyancy frequency is N = 1, so the vertical shear from equation (5) may be written in
nondimensional form as u; + v; = IAzzzl2. Similar arguments to those leading to equations
(6) and (11) give the evolution equation

~ IAzzzi2 = ~ :y (AzzzAZz - A;zzAyz) + ~ :z (AZzzAyz - AyzzAZz)'

Assuming AzzzA;z - A;zzAyz vanishes for lyl -- 00,

: r IAzzzi2dV = ¡(X ¡OO Fs(y, t; d)dxdy,
t l~ -00 -00

where

Fs(y, t; d) == ~(AZzzAyz - AyzzA;z)lz=-d (17)

is the flux of vertical shear from the region z :; -d to the region z .: -d.
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3.4 Boundary Condition at Base of Mixed Layer

For 0 -: z -: 1, equation (7) becomes

A i 2 .zzt + 2E Ayy + iyAzz = O.

Expanding A(y, z, t) = Ao(y, z, t) + E2 A2(y, z, t) + O(é),

AÒzzt + iyAozz = O.

Integrating this subject to the boundary condition that Az and thus Aoz vanishes at z = 1
gives

Ao = e-iyt It g(y, t/)eiyt' dt'

for some function g. In particular, Ao is independent of z. At O(E2)

A2zzt + iyA2zz + ~AOYy = 0, (IS)

which may be integrated subject to the boundary condition that A2z vanishes at z = 1 to
give

A2zt + iyA2z + ~Aoyy(z - 1) = O.

Evaluating at z = 0+ and using

Ayy = Aoyy + O(E2),

implies that

Az = E2 A2z + O(é), Azt = E2 A2zt + O(é)

. 2

Azt + iyAz - i~ Ayy = O(é)

Finally, applying (10) gives the boundary condition

Azt + iyAz - ~Ayy = 0

z=o+

z= 0- (19)

to leading order in E.

3.5 Initial Condition

Suppose that in a short time compared with the NIO wave propagation time the passing storm
causes near-inertial currents in the mixed layer with no horizontal structure. For simplicity,
the initial velocity is assumed to be piecewise constant with depth. Thus the initial velocity
profile (consistent with equation (4)) is taken to be

u = 1 0-: z -: 1,
1 -H -: z -: 0,u = --
H

v = 0 -H-:z-:1.
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Integrating equation (9) with respect to z and using the boundary conditions (8) then gives
at t = 0

Az = €2(z - 1)
z+HAz = ---

0-(z-(1
- H -( z -( O.

(20)

(21)

4 Solution for an Infinitely Deep Ocean

The total depth of the ocean is typically on the order of a hundred times the depth of the
mixed layer; thus, the limit of infnite depth is considered. The initial condition is taken to
be equation (21) with H -+ 00. The boundary condition for z -+ -00 is taken to be Azz -+ 0,
corresponding to the near-inertial velocities vanishing at infnite depth (see equation (3)).

This limit does not invalidate the use of equation (1) which assumed hydrostatic balance and
thus holds for the ocean having depth much smaller than the horizontal scales. The ocean
stil in reality has finite depth, but for depths just below the mied layer it is effectively
infinitely deep. Of course, this limit excludes the possibility of reflections off the bottom of
the ocean which may be important (see, e.g., (9)); thus, the results should be viewed as what
would happen in the absence of such reflections. Finally, the boundary condition for z = 0-
given by equation (19) is used. For convenience, the problem to be solved for the semi-infnite
domain z -( 0 is sumarized:

Azzt + ~ Ayy + iyAzz = 0. i
Azt + iyAz - 2Ayy = 0

Azz -+ 0

Az = - i

4.1 Solution by Laplace 'Iansforms

Making the ansatz and definitions

A(y, z, t) = e-iyt B(z, t),
t3T::-,
3

implies that

- i -
BzzT - 2B = 0

- i -
BzT + 2B = 0

Bzz -+ 0

Bz = -1
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z -( 0

z=O-
z -+ -00
t=O.

E(z, T) :: B(z, t), (22)

z -( 0 (23)

z =0- (24)

z -+ -00 (25)
T=O. (26)



Laplace transforming equations (23)-(25) in time gives

b(z,p) == .c¡B(z, t)) = loo B(z, T)e-pT dT- i
pbzz - Bzz(z,O) -"2b = 0 z.. 0

bzz -7 0 Z -7 -00

(27)

- i
pbz - Bz(z,O) +"2b = 0 z = 0-.

(28)

(29)

(30)

Bzz(z,O) = 0 from equation (26); thus the solution to equation (28) satisfying the boundary
condition (29) is

b(z,p) = f(P) exp (;) ,

a _ ~ ei7r/4 = ~(1 + i).

Using boundary condition (30) with Bz(z,O) = -1 from (26) determines f(P), giving

1 1 ( az )
b(z,p) = --.. exp ¡; .. a p + a yP (31)

In principle, the problem is solved at this stage; inverting this Laplace transform gives B(z, T),
then A(y, z, t) is obtained from equation (22). This can then be differentiated in order to
determine various quantities of interest. In practice, it is more convenient to first differentiate
with respect to z as appropriate, and then to invert the transform. This inversion may be
done in three different ways: first, for z = 0- analytical expressions can be found, and these
can be used to find analytical expressions for 0 .. z .. 1; second, for other z values the

inversion may be done numerically; and third, the asymptotic behavior can be determined
by the method of steepest descents. But first, expressions for the flux of energy and shear in
terms of the field B(z, t) are given.

4.2 Flux of Energy and Shear

The energy and shear fluxes given in equations (16) and (17) may be related to the field B
using equation (22), giving

FE(t; d) = ~t2(B;B - BzB*)lz=-d

= t2¡Im(Bz)Re(B) - Re(Bz)Im(B))lz=~d

(32)

(33)

Fs(t; d) ~t2(B;zBz - BzzB;)lz=-d

= t2¡Im(Bzz)Re(Bz) - Re(Bzz)Im(Bz))Iz=-d.

(34)

(35)
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These fluxes are independent of y so the dependence on this variable is suppressed. Also,
initially Azz = 0 for z 0: O. Integrating equation (15) with respect to time then gives

( IAzzi2dV = (00 dx ¡eX) dy (t FE(t; d)dt.
1Vd 1-00 1-00 10

Thus

E(t; d) == lot FE(t; d)dt (36)

is the total amount of HKE which has penetrated into the region Z 0: -d. Galculating the
initial amount ofHKE in the mixed layer for the initial velocity profile shows that E(t; d) -+ 1
corresponds to all energy originally in the mixed layer having reached depths below z = -d.
The quantity

S(t; d) == lot Fs(t; d)dt (37)

is the integrated shear flux which has penetrated into the region z 0: -d. Note that the initial

value of the shear for zo:O and z )- 0 is zero, but the total initial shear is infnite because of
the discontinuity in the initial velocity profile at z = o.

4.3 Analytical Solution for z = 0-

For z = 0-, inverse Laplace transforms are found in or deduced from a table in ¡i J. From

equation (31),

1 1
b(O- ,p) = -- y' ,a p+a

and one obtains

E(O-, T) = £-1¡b(0- ,p)J = - Jr + eo2T erfc(avT).
a 1rT

This is converted to the original time t using equation (22):

B(O-, t) = _.! (~) 1/2 + eo2t3 /3erfc( ~ t3/2).a 1rt3 v'
Differentiating equation (31) with respect to z and evaluating at z = 0- gives

(38)

b (0- p) = - i ~ B (0- t) = _eo2t3 /3erfc(~ t3/2)z, p + ay' z, v''
_ _ a _ _ o2t3/3 a 3/2

bzz(O , t) - - (y' ) ~ Bzz(O , t) - e erfc( r; t ) - 1,p p + a y3
a2

(39)

bzzz(O- ,p) =
p(p + ay')

( t3 ) 1/2

Bzzz(O-, t) = 1 - eo2t3 /3 erfc ( ~ t3/2) - 2a 31r (40)~
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The solid lines (labelled d = 0) in Figure 1 show the quantities FE, Fs, E, and S calculated
using the results of this section. FE peaks at the nondimensionalized time t ~ 0.62; for the
typical values quoted in Section 3.1, this corresponds to about a week after the storm. From
Figure 1(b) and using the fact that whatever energy flows through z = 0- must have initally
been in the mixed layer, we see that by t = 1 (approximately 11.5 days after the storm)

nearly half of the energy associated with horizontal NIO currents caused by the storm has
left the mixed layer. By t = 2 (approximately 23 days after the storm) 82% has left, while

by t = 3 (just over a month after the storm) 93% has left. Although this simplified model

cannot be expected to capture the full complexity of a real storm over the ocean, it does give
reasonable estimates for the time scale for which the decay of NIO energy occurs: (8) found
that the mixed layer inertial energy was reduced to background levels by 21 days after the
storm. Both the shear flux Fs and the integrated shear S increase monotonically with time,

an artifact of the initial velocity profile being discontinuous at z = O.
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Figure 1: (a) FE(t; d), (b) E(t; d), (c) Fs(t; d), and (d) S(t; d) for different distances d below

the base of the mixed layer. These show instantaneous and integrated fluxes of energy and
shear; see the text for precise definitions. The solid lines (labelled d = 0) give results at
z = 0-.

4.4 Analytical Solution for the Mixed Layer

Expanding B(z, t) = Bo(z, t) + €2 B2(Z, t) + O(ë) for the interval 0 .( z .( 1,

Ao(y, z, t) = e-iyt Bo(z, t) == e-iyt iJo(z, T),
A2(y, z, t) = e-iyt B2(z, t) == e-iyt iJ2(z, T),
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where" T = t3/3 as before. Equation (18) then implies that

- i -
B2zzT - -Bo = 0

2
o .. z .. 1.

This is Laplace transformed to give - i
pb2zz - B2zz(Z, 0) - 2'bo = 0,

where b2 = £(.82) and bo = £(.801- The initial condition within the mixed layer is Azz = E2,
so A2zz = 1 at t = 0; thus .82zAz,0) = 1. Now, A is continuous across z = 0, and A = AD
to leading order in E. This implies that .80(0+, T) = .8(0-, T) to leading order in E. Also, AD

and hence .80 are independent of z. Laplace transforming, we conclude that the value of bo
for 0 .. z .. 1 is equal to b(O- ,p). Using all ofthis and equation (31) evaluated at z = 0- in
equation (41),

(41)

1 i 1 2t3/3 a 3/2
b2 = - - - :: B2 = eCi erfc(-t )zz p 2a vI + a zz .J

Thus,

A2zz(Y, t)= e-iyteCl2t3/3erfc(~ t3/2).

The local HKE is, to leading order, IA2zz12 = IAzz/E212; the total HKE contained within the
mixed layer is

(42)

liAzzl2 1 2~ dV = IA2zzi dV.MLE ML
Using a2 = i/2, the amount of HKE per unit volume within the mixed layer is

EML == lerfc( ~ t3/2) 12 (43)

From (1),

:: EML

(3 1
'" Y -; at3/2

6

1lt3

t-tOOeCl2t3 /3erfc( ~ t3/2).J
t -t 00.

This asymptotic relationship is confmed in Figure 2. Since A2zz is independent of z, to
leading order in E the shear within the mixed layer is zero.
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Figure 2: €ML gives the HKE per unit volume in the mixed layer. The solid line shows
the exact result and the dashed line shows the asymptotic result, shown both for linear and
logarithmic axes.

4.5 Solution for Other Depths

A tractable analytical form for the inverse Laplace transform of equation (31) for z #- 0 could
not be found; however, it may be inverted numerically as described in this section. The
inverse Laplace transform is given by

- 1 ieXP(~+PT)B(z,T) = --2' .. dp,7rai 8 p + a .
where B is the Bromwich contour. Here the branch cut for the square root is taken to be
along the negative real axis, and the principal branch is chosen. The integrand does not have
any poles on this sheet of the Riemann surface. Such a pole would satisfy .. + a = 0, and

would be given by Pp = a2 = é1l/2/2; however, .¡ + a = V2ei1l/4 #- 0 and thus there is no
pole. It is useful to make the change of variables (valid for z #- 0 and T #- 0)

p = (-; r/3 w, ç == (z2T)1/3, 17 == ( -; r/3 . (44)

Then,

B(z, T) 172 h exp(ç( - Jw + w))-- dw
27rai 8 17-V + a

_ _2172. r g(W;Ç,17)dw.7rai 18

(45)

(46)

Defining the contour C as in Figue 3 and using the facts that the contributions from C1 and
C2 vanish and that there are no poles,

r g(W;Ç,17)dw = J r + r + r + r 1. g(W;Ç,17)dw = O.
lc 1.18 lAB lBc lcnJ

For the path AB, w = rei1l and

1 loo e-rçeiOiç/..hB == g(w; ç, 17) = 'vf dr.AB 1 17i r+a
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Figure 3: Contour used to determine inverse Laplace transformations. Here A=( -00,0+),
B=( -1,0+), C=( -1,0-), and D=( -00,0-).

For the path BC, w = ei9 and

= 1 . - - . /7r exp(ç( _ae-i9/2 + ei9))ei9
IBC - g(w,ç,r¡) - i '9/2 dO.BC -7r r¡é + a

Finally, for the path CD, w = re-i7r and

1 ¡OO e-rf,e-iOtf,/..lCD == g(w; ç, r¡) = - 'Vr dr.CD 1 -r¡i r + a
Specifying z and T fies ç and r¡. The integrals lAB, IBC, and ¡CD are well-behaved and can
be calculated numerically. Then

- r¡2
B(z, T) = -2 . (1AB + IBC + lCD).

7fai

Differentiating (31) with respect to z,

bz(z,p) - -p+~vPexp(;),

bzz(z,p) - -p(;+a) exp(;),

bzzz(z,p) = p(p ::vP) exp (;) .

Using the contour in Figue 3, we find

Ez(z, T)
2

= .!(l(1) + 1(1) + 1(1))
27fi AB BC CD'

2ar¡ (1(2) + 1(2) + 1(2) )
- 27ri AB Be CD'

2 2= a r¡ (1(3) + 1(3) + 1(3) )
27fi AB BC CD'

Ezz(z, T)

Ezzz(z, T)
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where

(1) ¡OO e-rf,eia.f,/..lAB = 2 'yrdr,
1 -r¡ r + r¡ai r

(1) _ _ . ¡7r exp(e( _ae-iO/2 + eiO))lBC - i 2 "0/2 dO,
-7r r¡ + r¡ae-i

(1) 100 e-rf, e-ia.f,/..i = drCD 1 r¡2r + r¡aiyr , (2) fOO e-rf,eia.f,/..i = - drAB 1 r¡3ir3/2 + r¡2ar '

(2) _ _ . ¡7r exp(e( _ae-iO/2 + eiO))lBC - i 3 iO/2 2 dO,
-7r r¡ e + r¡ a

(2) fOO e-rE,e-ia.f,/..I = drCD 1 -r¡3ir3/2 + rpar '

(3) fOO e-rf,eia.f,/..i = drAB 1 r¡4r2 - r¡3air3/2 ' (3) _ _' r exp(e( _ae-iO/2 + eiO))i BC - i J -7r r¡4 eiO + ar¡3 eiO /2 dO,

(3) fOO e-rf,e-ia.f,/..I = - dr.CD 1 r¡4r2 + ar¡3ir3/2

All of these integrals are well-behaved and can be calculated numerically.

4.6 Results

4.6.1 Fluxes and Integrated Fluxes

The quantities FE(t; d), Fs(t; d), E(t; d), and S(t; d) may now be calculated and results are
shown in Figure 1. From Figue 1 (b), as noted in Section 4.3, by t = 1 nearly half of the total
horizontal near inertial energy has left the mixed layer; 9nly about 38% of the total energy
has penetrated below z = -1. By t = 2, 82% of the total energy has left the mied layer,
but only 58% of the total energy has penetrated below z = - 1. Thus, at t = 2 (using the

typical values quoted in Section 3.1, about 23 days after the storm) nearly a quarter of the
total energy is contained in the distance Hmix immediately beneath the mixed layer. Figure
1(d) demonstrates that the shear tends to be localized just below the base of the mixed
layer. For example, by t = 5 the integrated shear flux which has entered the mixed layer is,
in nondimensional units, about 5.5. The integrated shear flux which has penetrated below
z = -0.05 is 4.6, and the integrated shear flux which has penetrated below z = -1 is 1.35.

4.6.2 Vertical Profiles

Using the expressions from Section 4.5 and equation (22) it is now also possible to calculate
vertical profiles of physically relevant quantities. Figue 4(a,b) shows the vertical dependence
of the HKE, u2 + v2 = IAzz12, and the vertical shear, u~ + v~ = IAzzzl2, at different times
for y = O. For both quantities, as time increases the instantaneous distribution becomes

more sharply peaked near the base of the mixed layer. The maximum value of u~ + v~
increases without bound as time increases, but the maximum value of u2 +v2 remains bounded
(asymptotically approaching unity) because of energy conservation. Figue 4(c,d) shows the
vertical dependence of the fluxes FE and Fs.
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Figure 4: Vertical profiles of (a) u2 + v2 and (b) u; + v; at y =.0 for different times showing
the decay of energy from the mied layer (0 -: z -: 1) and resultant behavior in the interior
(z -: 0). Note that u; +v; = 0 in the mied layer to leading order in E. Also, vertical profiles

of (c) FE(t, IZL), and (d) Fs(t, izl) for different times. Note the diferent vertical scales.

4.6.3 Back-Rotated Velocity and Shear

Finally, consider the back-rotated velocity Azz = éfot(u + iv). This filters out the purely

intertial motion at frequency fo. Similarly, the back-rotated shear is defined to be Azzz =
eifot(uz + ivz). The amplitudes of the back-rotated velocity and shear at different depths
are shown as time series in Figue 5. At a given depth, the magnitude of the back-rotated

velocity reaches a peak value shortly afer the storm, then decays away, while the magnitude
of the back-rotated shear increases monotonically with time. Note that Figure 4, may also
be interpreted in terms of the back-rotated velocity and shear.

Back-rotated velocity and shear may be represented by hodographs which respectively
show the vectors (Re(Azz),Im(Azz)) and (Re(Azzz),Im(Azzz)) as curves parametrized by

time. For fo ? 0, if these curves are traced out in a clockwise (counterclockwise) fashion,

the corresponding motion has frequency larger (smaller) than fo. Figue 6 shows the back-
rotated velocity and shear at y = 0, z = - 1. The hodographs for both quantities start at
the. origin and are traced out in a clockwise fashion. The back-rotated velocity starts out
in the third quadrant, reaches a peak in magnitude in the second quadrant, then decays

in magnitude spirallng back to the origin. The back-rotated shear also starts out in the
third quadrant, and monotonically increases in magnitude while spirallng outward. Note
that the lines labelled z = - 1 in Figure 5 give the radii of these hodographs as functions

of time. Thè depth dependence of the back-rotated velocity is seen by comparing Figue 6
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with Figure 7(a), where both have y = 0 and thus the same value of the CoriolIs parameter.
Qualitatively the results are the same, but closer to the mixed layer the direction change of
the back-rotated velocity becomes slower, meaning that the frequency is closer to fa. An idea
of the latitudinal dependence is seen by comparing Figure 6 with Figue 7(b,c). At y = i the

hodograph is traced out in a clockwise fashion as for y = 0, but at y = -2 it is traced out in
a counterclockwise fashion.
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z=-0.5 n...,"__". z=-1 ........

.. z=-2 _'0'-, '"",,_ z=-5 _'_n
..........-.._----.._-------

0.: :.~~.:,:::.::~~~~i~~:~.~~:':::=:=,~~~~~::C~j:_:=rC~;:=:-=, t

o 5 10 15 20

IAzzzl = (u; + V;)1/2
6

5

0.6
4

3

2

z=o- - ( )z=-o.2 m__ bz=-o.5 nn.' _--------1 ......
/;;~----_/-

" ..- - _... .,. ......._.~.~_......_......_..............__._---

l¿~~:-::~:.::~_.-.-.---._.-.-.-

0,8

0.4

o
o 5 10 15

t
20

Figure 5: Time series for IAzzl and IAzzzl at different fied z values.

4.7 Asymptotic Behavior

Making the change of variables (44), the inverse Laplace transforms of b, bz, bzz, and bzzz can
be written in the form

- l f(w, r¡)eÇh(w)dw,
a

- -.¡ + w.

The asymptotic behavior of this in the limit of large ~ with r¡ fied can be determined by the
method of steepest descents. This involves determining the saddle points of h(w) (i.e., points
satisfying h'(w) = 0) and deforming the contour B so as to pass through each saddle point
along a path of constant Im(h(w)) such that Re(h(w)) has a local maxmum at each saddle
point. Supposing that there is a simple saddle (h"(wa) =/ 0) at w = Wa,

1(~)

h(w)

.. f (wa )eçh( wo) ei'Y
1(Ç) rv l~h"(wa)l/2 (47)

Here 'Y is the angle relative to the positive real axis at which the path satisfying the above
conditions passes through the saddle. Letting h"(wa) = aé', 'Y = -a/2 + 1r/2 or 'Y =

-a /2 + 31r /2; the appropriate choice is determined by making sure that h( w) only has local
maxima at the saddle points and no where else along the deformed contour.

Taking the branch cut for the square root along the negative real axs, for this problem,
there are saddles at

w = ~e-i7r/21 2 ' W2 = ~ei7l5/6
2
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Figure 6: Back-rotated velocity and shear at z = -l,y = O. In these and the time series

in Figure 7, the solid and dashed lines show real and imaginary parts, respectively. The
diamonds are drawn at t = 0, 5, 10, 15,20.

with

h(wi)

hlf ( Wi )

3.= --i
2 '

= 3i,

3V3 3 .
h(W2) = -- +-i4 4

h"(W2) = 3e-i1r5/6.

Figure 8 shows the contours of constant real and imaginary parts of h(w). The deformed
contour is taken to pass through both of these saddles, and passes to the right of the origin
in order to avoid the branch cut. Since h(wi) is purely imaginary and h(W2) has negative
real part, it is immediately seen that the contribution from W2 wil be exponentially small
compared with the contribution from Wi in the limit ç -+ 00. Using'Y = 7r/4 for the passage
through Wi, in the limit ç -+ 00 with r¡ fied

I(ç) '" Æ- ç-i/2 j(wi) ei(-3f,/2+7l/4). (48)
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This implies that

B '" 172(1 + i17) l2 ~-1/2 ei(-3f,/2+1l/4)7r(1 + 172) V 3" '

B 17(i -17) l2 ~-1/2 ei(-3f,/2+1l/4)z 7r(1 + 172) V 3" '

Bzz '" _ i + i17 l2 ~-1/2 ei(-3f,/2+1l/4)7r(1 + 172) V 3" '

B 17 - i ff7r (:-1/2 ei(-3f,/2+1l/4)zzz '" 2 I" .
177r(1 + 17) 3

Now, using ~ = 172T = 172t3/3 and taking the constant 17 to be 170, along the "rays" z =
-178t3/3,

FE

2 2 2
= IAzzl = IBzzl '" (1 + 17Õ)7r17Õt3'

2 2 2
= IAzzzl = IBzzzl '" 7r176(1 + 17Õ)t3'2 2170t (Im(Bz)Re(B) - Re(Bz)Im(B))lz=_1)3t3/3 '" ( 2) ,

o 7r 1 + 170 t2 2t (Im(Bzz)Re(Bz) - Re(Bzz)Im(Bz))lz=_1)3t3/3 '" ( 2) .
o 7r170 1 + 170 t

u2 + v2

u2 + v2z z

Fs =

These asymptotic relationships are confrmed in Figure 9. A more useful way to represent
the asymptotic results is to write 170 in terms of z and t and then draw contour plots of
quantities of physical interest in the (z, t) plane; this is shown in Figure 10. Note that ~ is
large for sufciently large z and/or t. For example, this shows that in the asymptotic limit

for constant z, as time increases, u2 + v2 and FE decrease, while u; + v; and Fs increase.

5 Conclusion
~
:1
¡,

r1

In this paper,. a simplified model has been developed and studied for the decay of near- inertial
currents excited in the mixed layer by a passing storm. This decay occurs due to the radiation
of downward propagating NIOs into the interior of the ocean. The main assumptions of the
model are that the background flow does not vary in the longitudinal direction and has no
associated vorticity, the ocean has a simple (piecewise constant) buoyancy frequency profile,
and the storm has moved very quickly over the ocean causing a horizontally uniform near-
inertial current concentrated in the mixed layer. The ß effect is included in the analysis.
Because the depth of the mied layer is much smaler than the total depth of the ocean, the
problem is formulated in the limit of an effectively infnitely deep ocean; the resultant initial
value problem is solved by Laplace transforms. Analytical and numerical results are given for
quantities of physical interest including horizontal kinetic energy, vertical shear, energy and
shear flux, and back-rotated velocity and shear. Also, asymptotic behavior is determined by
the method of steepest descents.
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Figure 9: Comparison of numerically calculated (solid lines) and asymptotic (dashed lines)
results along the ray z = -t3j3, Le., fJo = 1. (a) u2 +v2, (b) u; +v;, (c) FE, (d) Fs.

Although this simplified model cannot be expected to capture the ful complexity of the

aftermath of a storm passing the ocean, it does capture much of the observed behavior. Most
importantly, the decay of mied layer energy is found to occur on the appropriate timescale
(approximately twenty days). It would be interesting to compare the results obtained for this
simplified model with observations and numerical simulations. Also, from both a computa-
tional and a more philosophical perspective, it would be interesting to compare this method
of solution with the standard approach of projecting onto normal modes (e.g., (2, 3)). In
the latter, the decay must be viewed as a complicated interference between normal modes,
while in the method presented in this paper it is more naturally viewed as a radiation prob-
lem. Extensions to a more realistic ocean and storm would involve including a more realistic
buoyancy frequency profile (for example, the profile used by (10)), considering the effect of
diferent initial velocities (including both horizontal and vertical structure), and considering
the effect of background flow. The study of all of these could use the same formalism of (IS)
and an approach similar to that presented here.
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Stirring and Mixing by Vortical Modes

Jennifer MacKinnon

Abstract

Tracer release experiments in coastal and open ocean settings have revealed unex-
pectedly large isopycnal difsivities. The stirring and ming effects of smal scale eddies

(vortical modes) are discussed as a possible candidate for enhancing diffsivity. A simple
analytical model of vortical modes is used to evaluate their ming potentiaL.

1 Introduction

Recent oceanic dye release experiments have provided a venue for evaluating existing models
of passive tracer horizontal dispersion. In the Coastal Mixng and Optics (CMO) experiment
and the North Atlantic Tracer Release Experiment (NATRE), anthropogenic dye was injected
along constant density surfaces (isopycnals) in streaks a few kin long. Subsequent surveys
through the evolving dye patches with towed instruments were used to look at the qualitative
nature of dye patch evolution and calculate quantitative measures of isopycnal diffusion (1, 2J. .

In the CMO experiment, several mid-water-column dye releases were conducted between
1995 and 1997 in "- 80 m deep water on the continental shelf south of New England. Post
release surveys were conducted over the several days following each release. By assuming
that dye streak evolution was governed by a balance between horizontal diffusion and strain
induced stretching (3J, Sundermeyer 98 calculates an observed horizontal diffusivity of .3-5
m 2/ s (1 J. A traditional way of estimating horizontal difusivity in the ocean is by looking
at the enhanced diffusivity that comes from combining vertical difusion with shear from the
internal wave field (4J. Applying this method to the measured CMO velocities gives diffusion
estimates that are a factor of 1-10 below observed values(IJ.

The NATRE experiment was conducted in open ocean 1200 km west of the Canary Islands
during May 1992 (2J. The dye was sampled five times during several subsequent years. Over
this extended period, the qualitative evolution of the dye agrees reasonably well with the
model of horizontal diffusion presented by Garrett 83 (1 J. He proposes that a dye patch wil
initially be stretched into long twisted streaks, the width of which is governed by a balance
between an effective isopycnal diffusivity and exponential stretching. The observed dye at
6 months is indeed streaky in nature and calculations give an estimated effective diffusivity
of 3.m2/s. The Young, Rhines and Garrett shear dispersion model applied to this situation
gives an estimate of .08 m2 / s (1 J. For longer times, Garrett predicts that dye streaks wil
coalesce into a more homogeneous patch that grows with an effective diffusivity related to
the Lagrangian velocity autocorrelation time scale. During later dye surveys (1-2 years), the
tracer has expanded to encompass hundreds of kilometers and is more homogeneous. The
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observed diffusivity for this scale is 103 m2 / s, and agrees with estimates calculated from float
velocities.

In both experiments, observed diffusivities on 1-10 km scales are larger than predicted by
shear dispersion alone. Both Sundermeyer and Polzin et aL.99 propose that the small scale
eddies known as vortical modes could be an alternate diffusion mechanism. In brief, vortical
modes are thought to be generated when a vertical mixing event creates a relatively well
mixed patch of water within a stratified fluid (5). This density anomaly adjusts to pressure
and Coriolis forces by spreading radially outward and beginning to rotate anticyclonicaly. A
steady rotational state can exist until the anomaly diffuses away or some event or instabilty
breaks it apart. Both the adjustment and equilbrium phases can act to enhance horizontal
diffusivity.

Sundermeyer considers dimensional arguments and concludes that in the coastal ocean
at least, horizontal spreading from vortical mode generation and adjustment may be of an
appropriate magnitude to explain observed diffusivities (1). Polzin et aL. evaluate evidence
of vortical modes in NATRE by looking at spectral shear and strain values that are not well
explained by an internal wave field. Using inferred vortical mode spectra, they calculate
estimates for shear dispersion and stirring contributions to effective difusivity and alo get
results potentially large enough to explain observations(6).

To tackle the time dependent picture of difusivity due to vortical modes, we start with
a broad qualitative description of what might happen to an initially small dye patch in an
ocean where small eddies randomly appear and disappear in various locations near the patch.
We ignore the initial vertical ming event that generates the vortical mode as beyond the
scope of this project. Instead we assume that we start with a round (axsymmetric) density
anomaly that abruptly appears near a small patch of concentrate. Over the lifetime of a
single vortex, a small dye patch located nearby feels a net (center of mass) displacement

both outward due to the initial adjustment and around the vortex. The patch alo feels
a distortion due to the stretching effects of radial shear and molecular and shear-enhanced
diffusion. On a longer timescale, the patch wil witness the appearance and disappearance
of many vortices appearing at dierent positions around it. Additionally, as it grows in size
it eventually becomes large enough to feel several spatially separated vortices at the same
time. The larger the number of vortices felt, the more their net displacements wil cancel out
to produce little net patch movement. However, the net movements felt by smaller segments
of the patch stretch, twist, and fold the patch; increase gradients; and enhance diffusion

to cause the patch as a whole to grow in size. We seek an understanding of difusion that

wil encompass both small and large time limits. For small times, we'll have a more time
dependent story of patch growth. For larger times and larger spatial scales we hope that
the net effects of smaller motions can be parameterized by an effective diffusivity. Our goals
hence are threefold: to understand the time dependence of small time evolution, to estimate a
long time eddy diffusivity, and to figue out an appropriate time scale for transition between
these two regimes.

Toward these goals, we develop a a simple analytical model that we hope replicates some
of the essential stirring and ming characteristics of oceanic vortical modes. Such an an-
alytical approximation allows us to look at the role small eddies may play in the different
stages of horizontal tracer dispersion, get some bounds on the relative importance of different
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difusive mechanisms, and explore how these results are functions of fundamental problem
parameters. In section 2 we begin by looking at numerically integrated full numerical so-
lutions for vortical mode generation. Based upon these solutions, in Section 3 we suggest
an analytical approximation for a vortical mode field and extend it into a time dependent
stochastic modeL. In section 4 we evaluate the expected effect of an idealized single vortex
velocity field on the evolution of a dye patch. We expand the time scale to consider a time
dependent blinking vortex field in section 5. Throughout, we try to integrate different ways of
looking at diffusion and consider dependence on a few oceanographic parameters of interest.
Finally, in section 6 we re-dimensionalize our results and make some simple comparisons to
the observed ocean values.

2 Vortical Mode Solutions

Before we can develop an appropriate analytical model, we must fist get a better feeling
for physically realistic vortex velocity fields. We start with the generation of the density
anomalies that become vortical modes. We then numerically solve for the equilibrium solu-
tions that describe the velocity field after an adjustment period. Finally, we consider physical
arguments for time dependence.

2.1 Generation Possibilties

Many observations have shown diapycnal mixing in the ocean to occur episodically ¡7). En-
ergetic events such as internal wave breaking and wave wave interaction can lead to shear
instabilties and overturning. Such mixng events produce local regions of relatively unstrat-
ified water. Most observations of mixed patch height in the CMO coastal area range from
2-10 m ¡lJ In the NATRE experiment, observed vertical patch sizes were much larger, on
the order of 10-50 m ¡6). It is diffcult to measure the horizontal extent of mixng events. A
starting guess is that the mixed patches have roughly the same aspect ratio as the internal
waves that generate them, Nlf (where N is the buoyancy frequency and f the local inertial
frequency). Microstructure sections made during the CMO experiment show miing patches
on the order of a kilometer in horizontal extent ¡S).

Following Garrett and M un, we estimate the frequency of vertical mixing events by
con.sidering net observed vertical diffusivity¡l). We assume that vertical difusion of tracer
is due to the sum of discrete identical vertical mixing events which occur with a frequency
lJ, are characterized by height h*, and by stratification change D.N2. Using potential energy
arguments we can infer the frequency of event occurrence given an observed vertical diffusivity
of Kz,

N2 1
lJ = 3 D.N2 h2Kzo (1)

2.2 Adjustment

A density anomaly of sufcient size in a stratified fluid wil evolve according to the pressure
and Coriolis forces it feels until a state of balance is achieved. In studying the equilibrium
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solution reached after adjustment of an initial density anomaly, we follow McWillams tactic
of combining the thermal wind equations with conservation of potential vorticity and mass
(9). He starts by non-dimensionalizing as follows:

ad - jN;a

Od - p*v*j1* 0

gh*
rd l*r

Zd - h*z

Pd - p*v*j1*

Pd
p*N;h*-
9 P

Vd = v*v,

where the subscript 'd' indicates the dimensional form of a vaiable. Variables without this

subscript (now and throughout this paper) are assumed to be dimensionless. Variable q is
Ertel's potential vorticity, 0 is the density' anomaly (deviation from constant stratification)
and the other variables have their traditional meaning (radial and vertical distance, pressure,
density and velocity respectively). Important non-dimensional parameters are given by

R
4v*-
jl*

(N*h* )
2

B -
j1*

ß
R-

4B'

Rand B are the Rossby and Burger numbers. ß can be shown to be a measure of the strength
of the density anomaly, with initial density and stratifcation profiles given non-dimensionally
by

N~i

Pi - -z + ßO

= 1 - ß ~: .

(We use ß instead of McWillams 'l because the later is used as a stretching rate in later
sections.) Following McWillams, we assume an initial density anomaly of the form

0= 2ze-¡z2+(r/ro)2J. (2)

At this point, parameters ro and B both describe an aspect ratio of the problem. Without
loss of generality, we can set B=l and vary roo

For simpl.icity, we adopt these non-dimensionalizations for the remainder of our paper.
Physically, all horizontal distances, angular velocities and times discussed are fractions of
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the internal Rossby radius, intertial frequency and inertial period respectively. To convert
any result back into dimensional coordinates, one only needs to specify f, N and an anomaly
height scale h*. Dimensional quantities are then given by

N
(3)rd = -h*r

f
Üd = fßü (4)

1
(5)td -

fßt.
We'll return briefly to the world of dimensions at the end of the paper to compare our results
with oceanographic data.

The actual process of geostrophic adjustment wil involve internal waves which radiate

energy away in a time roughly given by 1/ f (10). After the transients have disappeared, the
system wil achieve an equilbrium state where Coriolis, pressure and centrifugal forces are
in balance. Equilibrium density and potential vorticity are given by

P¡ -z - ßåp
åz

= ZN2 _ Rß( 82p )2a¡ s 48 8r8z

with

8 =/I+RåpV r år
2r (8 - 1)

R

Z 1 + R å(rv) .- 4r ar

v ==

Knowledge of one variable, p(r, z), is enough to specify the whole system. This final state
is related to the initial state through the net displacements felt by each Lagrangian water

parceL. Non-dimensional displacement variables are defined as

((r¡, Z¡) =
17(r¡,Z¡)

r¡ - ri
Z¡ - Zi.

(6)

(7)

These parcels conserve their density and potential vorticity values during adjustment

p¡(r, z) =
a¡(r,z)

Pi(r - (,z - 17)

ai (r - (, z - 17).

(8)

(9)
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Figure 1: Pre-adjustment density field used for numerical calculations. The full density field
is shown in (a), the density anomaly in (b), and a vertical profile at T = 0 in (c). Also shown
in (c) is a reference linear stratification profile. All values are non-dimensionaL.

Plugging forms for Pi, Pf, qi, qf into equations (8) and (9) gives us two equations and three
unknowns (p,(,r¡). The final equation comes from requiring that the adjustment be incom-
pressible, or equivalently that the Jacobian of the lagrangian transformation is identically
one:

Ti (8Ti 8zi _ 8Ti 8zi) _ 1

T¡ 8Tf 8z¡ 8zf 8T¡ - ,
(10)

where Ti, Tf, Zi, zf can be written in terms of ( and r¡ following equations 6-7. As McWilliams
suggests, an iterative method is necessary to solve the non-linear set of equations 8-10 for
p,(,r¡. There are only two free parameters in this system, TO and ß, which control the aspect
ratio and strength of the initial anomaly, respectively. Physically, TO = 1 corresponds to an
anomaly with aspect ratio f / N. Larger TO corresponds to a flatter anomaly and vice versa.
The anomaly strength is controlled by ß, which ranges from 0 (no anomaly, or background
stratification) to .5 (minimum of zero stratification). Figue 1 shows an initial density field
with TO = 1, ß = l,the associated density anomaly, and a profile of density at T = 0 (with
linear stratification for comparison). These values of TO and ß wil be used as a good first
estimate.

We numerically integrated solutions to equations (8), (9), and (10) i. Boundary conditions
lNumerical integration was done using routines AVINT and HSTCYL, avaable from the NIST Guide to

A vailable Math Softare
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Figure 2: Equilbrium solutions for the density anomaly (a) and angular velocity (b).

are given by

r¡, (,p ~o as T,Z~O (11)

(=åp=O at T=O (12)
åT
åp

at z=O. (13)r¡ = - =0åz
(14)

As expected, equilibrium solutions consist of a slumped density anomaly rotating anti-
cyclonically. Figure 2 shows non-dimensional equilibrium density and angular velocity fields.
Above and below the main anomaly, there are smaller, cyclonically rotating vortices that
correspond to regions of enhanced stratification that border the well mixed patch. We ignore
these smaller vortices for now and hope to come bac to them in future work.

Figue 3 shows profiles at z = 0 of radial adjustment displacements, (, and equilibrium
angular velocities. Adjustment displacements are largest at the edge of the initial anomaly
(T = TO = 1), and have a maxmum value that approaches 1 as TO becomes large. Angular
velocity is roughly given by solid body rotation out to T f" .5, and exponentially decays for
larger r. Also shown is an analytical approxiation of velocity that wil be used in later
sections. Futher dependence on parameters TO and ß is considered by McWillams. The
effect of varying these parameters on our difion calculations may be discussed in future
work.

2.3 Time dependence

As isolated vortical mode wil exist in its equilibrium state until the density anomaly diffuses
away, another vertical mixing event occurs on top of it, or it succumbs to some type of
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Figure 3: Outward adjustment displacements (a) and equilibrium radial velocity (b) at z=O
for TO = 1 and ß = .25. Also shown are distances Ti and T2 which are the edge of solid body
rotation and an effective edge of vortex infuence.

instability or large scale strain. The time scale for vertically mixng an anomaly of height h
away by a molecular vertical diffusivity Kzm is

h2Ti = -. (15)
Kzm

A new vortex wil on average appear at a particular site with a frequency given by (1). Since
molecular diffusivity wil always be smaler than observed difusivity, we expect the maxmum
lifetime for vortices wil be given by

T == I/v.

For the coastal ocean observed patch size of 2-10 m and observed vertical diffusivity of
1O-Sm2 / s, the appropriate dimensional timescale is Td = 1 - 20 days. In non-dimensional
units, ~h = .01 - .3. In most cases, signifcantly less than one rotation is completed. In the
open ocean, patch heights of 10-50 m and diffusivities of .5-1 *1O-Sm2 Is give nondimensional
OT = .3 - 15 (All calculations assume 0 = .07.) In the later case vortices can exist in
equilbrium form for many rotations. This difference in the time scale of vortical modes in
different regions is in itself a major result. We expect that the ways in which vortical modes
contribute to diffusion may be signifcantly different in these two situations. Hence, it wil be

a primary goal of subsequent calculations to consider how vortical mode enhanced difusion
both qualitatively and quantitatively depends on our choice of T.

3 Analytical Model

We now wish to consider the difusive effects of a field of such vortices. To make our task
tractable, we incorporate an analytical approximation to the solutions in section 2 into a
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simple Random Renovating Vortex model that allows us to stochastically approach diffusion
quantities of interest. We posit a field of vortices, each of which appears in a random loca-
tion, exists for a set time T, identical for all vortices, and disappears. Associated with the
appearance of any vortex are instantaneous adjustment displacements ( outward from the
vortex center. During the subsequent interval T of vortex existence, water parcels follow a
steady azimuthal velocity field, n(r). For simplicity, we basically ignore z dependence from
now on (except when considering vertical shear dispersion). We hope a first order picture
of the dispersive abilities of vortical. modes wil emerge from considering the radial depen-
dence alone. Future work may include a more baroclinic modeL. The numerical solutions to
McWiliams equations suggest analytical forms as follows. Let the azimuthalyelocity field a
distance r from the center of the vortex be given by

n(r) == f no r .c ri (16)
1. noe-a(r-ri) r ~ ri.

The free parameters are ri, the edge of the solid body rotation part of the vortex, no, the
velocity scale, and 0:, the exponential decay rate for the outer vortex velocity field. Fitting
this model to the numerical solution shown in Figue 3 yields ri = .5, 0: = 1.3, and no = .07.
Also noted on the graph is a distance r2, which we define as a length-scale of vortex infuence.
It should scale roughly with the exponential decay scale, r2 '" 1 + 1/0:. For simplicity, we set
r2 = 2.

Simplifying further, we assume a parcel at any given location feels only one vortex at
a time and that vortices do not interact with each other. Despite these caveats, we want

vortices to be evenly distributed in space, in some statistical sense. Hence, we propose that
the probabilty of a vortex appearing within rand r + dr of a given parcel is given by the
Holtzmark distribution,

P(r) == 22re-(r/r2)2dr.
r2

Intuitively, this probability is proportional to the area of the strip between rand r + dr,
multiplied by the probabilty that there isn't a closer (within a circle r) vortex. The proba-
bilty is normalized using the vortex spatial scale, r2. Finally, we assume that these spatially
uncorrelated vortices blink in and out of existence simultaneously over units of time T. At
small scales, the steady flow field of the single, closest vortex wil be felt during each time
interval. For objects of larger scales, several spatially separated vortices may be felt during
each time step.

To account for the variabilty associated with different realizations of vortex placement,
we ensemble average many quantities of interest. For any quantity which is a function of
distance to the vortex center, r, we define

(J(r)) = ~oo j(r)P(r)dr.

Ensemble averaging can be problematic, as no particular oceanic realization wil resemble
the smoothness of an ensemble average. However, such averaging is necessary to make our
problem tractable and we hope that the most salient features are preserved.
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4 Short Times / One Vortex

Using this model we can consider what happens to a small dye patch during short times,
in which it feels only the effects of a single vortex. The center of mass of the patch wil
be displaced as a point parcel would be. This displacement is made up of two components,
the quick adjustment radial displacement and the slow azimuthal displacement from the

equilibrium velocity field. A patch wil also be stretched by radial shear, and for long times
and high shear could be wrapped up around the vortex center several times. Finally, the patch
wil be diffusing all this time, both from molecular diffusion and under some circumstances
from an enhanced horizontal shear dispersion. Each of these items wil be considered in turn
below.

4.1 Outward Displacements

The first displacement comes during the adjustment phase and is given by (( r). The ensemble
average adjustment displacement felt by a parcel wil take into account the probability of
being a given distance away from the closest vortex center and is given by

(((r)2) = ! (2(r)P(r)dr

~ .01

(17)

(18)

where the approximate form was obtained by integrating the numerical ((r) profile shown
in Figure 3. As a reminder, these numbers should be scaled by (h*Nj J)2 to return to

dimensional units of m2. Since we don't have a good analytical approximation for ((r) and

since it doesn't vary with the main parameter of interest, 7, we aim for just an order of
magnitude estimate.

4.2 Azimuthal Displacements

The average azimuthal displacements felt by a parcel moving around a vortex wil depend
not only on the distance to the vortex center, but alo on the length of time 7 it has to move.

For a given 7 and r, the displacement is shown in Figue 4 and is given by

Z2 = 2r2(1 - cos(0(r)7))

(Z2) = loo P(r)2r2(1 - cos (0(r)7))dr.

With O(r) given by 16, it is difcult to solve for (Z2) analytically. However, there are a
few limits of interest that are more approachable. For small vortex lifetimes, we can Taylor
expand(19) in powers of (07).

(19)

00 4( l)n-i 100
(Z2):: ¿)n07)2n - I r3e-(:z)Z e2no.(ri-r)dr.n=i (2n). ri (20)
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Figure 4: Azimuthal distance traveled during a time r by a particle a distance r away from
the center of the closest vortex (V).

Taking only the first expansion term and integrating. gives

( r-)2
(Z2) ~ 2(Oor)2e - T2 r, (21)

where we define

r == r~ ¡J7a'T2eQ2r~+2Qri +(ri/r2)2 (3 + 2(ar2)2)(erf(ri + ll2) - 1)4 r2
+2((i)2 - ari + (ar2)2 + 1)J. (22)

r2

The upper bound on (19) is obtained by noting that

1 - cos ¡O(r)rJ :: 2,

and thus r2 (:!)2(Z2):: ; (rr + r~)e - T2 . (23)
A numerical solution to equation (19) together with the limits given in (21) and (23) is plot-
ted in Figure 5a. The outward displacement magnitude, (2, is also plotted for reference.
Figure 5b shows expected squared displacements divided by r, which is related to the dif-
fusivity expected for a random walk process of given step length. For increasing r, average
displacements approach steady values, but expected diffusivities peak and then decline.

The relative importance of azimuthal versus radial displacements depends on the magni-
tude of r. From Figure 5, the two effects achieve equal magnitudes for Or rv .6. In coastal
areas, we expect outward displacements to be more important, and vice versa for the open
ocean. More precisely, the true ensemble average displacement is (( + ()2), which is even
less analytically tractable. But since

(i2) + ((2) :: ((l + ()2),

calculating them separately gives us an upper bound on average displacement magnitude.
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Figure 5: Numerically integrated average squared displacements along with analytically cal-
culated limits are shown in (a). Also shown are adjustment displacements squared for com-
parison. Random walk diffusivities based on such displacements are shown in (b).

4.3 Azimuthal stretching

While a dye patch moves around a vortex center, it is sheared by radial gradients in velocity.
The direction of shear is liely to be diferent in diferent periods of time T. Hence, in
calculating stretching we must consider not only the distance to a vortex center but also a
dye streak orientation with respect to a vortex. The increase in length of a small line element
during one time interval T is shown in Figure 6 and given by

2 s21 dO(r) . dO(r) 28s == - = ¡i + Tr- sin(2Ø) + (Tr- cos Ø) ).s5 dr dr
Ensemble averaging must be done over r and ø. We assume that ø is evenly distributed

between 0 and 27r. After N period of length T have passed, a streak of initial length So wil
have grown to

(si) - s2 ¡( (8s(r, ø)2).p)r)n- 0

- s2 ¡(i + T; (r 8~~)) 2 )r)n- 0

- s2 e-n(ri/r2)2¡i + ra2(OoT)2t. (24)- 0

Equation (24) can be written in a simple exponential form

(si) = e2'Yt, (25)
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Figure 7: Exponential stretching rate felt over many vortex lifetimes.

by defining

1 ( 2 2 ri 2)
'l == -2 In(l + ra (nOT) ) - (-) .T r2 (26)

One might note the similarity of this to the Lyapunov exponents calculated for the Random
Renovating Wave model developed in the principle lectures. The stretching rate, 'Y, is plotted
in Figure 7 as a function of nT.

4.4 Diffusion/Shear Dispersion

As a dye patch stretches and moves around a vortex center, its area wil increase due to hori-
zontal diffusivity. Molecular diffusion in a sheared velocity field is enhanced by the interaction
between horizontal or vertical shear and a background horizontal or vertical difusivity. In
a steady shear field, this interaction leads to an anomalously fast diffusion at large times(4).
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In an oscillatory flow field, the anomalous difusion of steady shear is appropriate only for
time-scales smaller than the oscillation time. Over several periods, diffusion regains a Fickian

character, with an enhanced effective diffusivity which is averaged over the oscilation time
of the anomalous difusion. Young et aL. considered the vertical shear associated with typical
open ocean values of the internal wave field and found that horizontal diffusion was enhanced
over it's molecular values by a factor of N2 / p. Our flow similarly contains a finite time
scale. In our case, shear is steady for the vortex existence time, T, after which it may change
direction and magnitude. However, unlike the Young et aL. model in which the advective
solution returns to it's original state at the end of each oscilation, our flow is circular within
each time period. Therefore, Rhines and Young's work on two-dimensional dispersion for
closed streamlines is also helpful(ll). The shear in their case is radial shear of a circular

flow. To get the best shear dispersion estimate for our problem, we start with the Rhines
and Young approach and add a vertical component of shear and time dependence.

Following their approach, we start with the advection diffusion equation for concentration,
o in a steady velocity field. For a circular velocity field with azimuthal velocity given by

1
-utj = n(r, z)r (27)

and distinct vertical and horizontal diffusivities, the governing equation is

1 1
Ot + nOtj = KH(-(rOr)r + 2'0tjø) + Kßzzr r (28)

If we assume that there is an independent internal wave field with a faster time scale super-
imposed on our vortical mode field, a plausible relationship between KH and Kz is given by
(4)

N2
KH = --Kz.

We assume the solution can be written as a sum of components with diferent azimuthal
wavenumbers, each of which is given by

(29)

o = A(r, z, t)einØ
li - lt - n(r, z)t.

(30)

(31)

Plugging (30) into (28) and grouping terms gives an equation for the rate of concentration
change in the framework of the advective solution

1 n2
At = KH(-(rAr)r + 2A) + KzAzzr rA - - - -

-i-(KH(-(rnr)r + 2Arnr) + Kz(Anzz + 2AznzHr
-2 -2

--(KHAnr + KznzH,

(32)
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Figure 8: Non-dimensional magnitude of vertical and horizontal shear from the full numerical
solutions for an equilibrium vortex velocity field.

with

ñ == ntn.

The rhs terms of (32) are grouped by powers of (ntn), which is physically related to
distance traveled around the vortex center. Analysis in section 2 indicated that oceanic

vortical modes can have existence times that vary from much shorter to much longer than
their eddy turnover time such that we are interested in solutions for a range of ñ values.
The first term in (32) is simply molecular difusion, and in the limit of ñ ~ i, this is the

dominant term. In the opposite limit, ñ // i, the third term of (32) dominates. This is the
limit considered by Rhines and Young. Following their analysis, the solution to (32) for large
ñ becomes

A '" e-ln2t3(KHn~+Kzn~J. (33)

¡~
:it
:~:it
J\

For intermediate values of ñ, we need to use the full version of (32). Such precision is
beyond the scope of this paper, and unnecessary to get the sort of magnitude estimates we are
interested in. The above approximations suggest that for vortices with short lifetimes (coastal
regions), vortical shear dispersion is not signcant, and we can define an appropriate effective
horizontal diffusivity, Ks which is in this case equal to the traditionally used internal wave
enhanced value given by (29). In areas with long lived vortices (open ocean), this traditional
value is likely to be futher enhanced by vortical mode shear dispersion. Roughly following
methods of dealing with oscilatory waves in Rhines and Young and Young et aL, we pull
from (33) an effective diffusivity of the form

Ks '" ~n2T2(KHn; + Kzn;). (34)
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Figue 9: Schematic of diferent growth rates that characterize tracer distribution.

KH is given by (29) and Kz is perhaps a molecular difusivity. Radial and vertical shears
from the McWiliams model are shown in Figure 8. The reader wil recall that these shears
are non-dimensional and dimensional forms of O~ and 0; wil have a relative scaling factor of
N2 / p. Hence, the roughly comparable magnitudes shown in Figue 8 indicate comparable
importance of the two terms in (34).

All of the abovementioned effects (stretching, shear dispersion, net displacement) occur
at the same time for a dye patch feeling a single vortex field. To gain some insight into how
these various effects fit together into a more coherent picture of diffusion, we now turn to
longer time scales.

5 Longer Times

During longer time periods, a dye patch wil experience the effects of multiple vortices, both
because we are considering times greater than an individual vortex lifetime and because over
long times a patch grows spatially to feel many vortices. As a dye patch is stretched by
several randomly oriented vortices in turn, it stretches and folds as ilustrated in the cartoon
in Figure 9. There are now two types of diffusion of interest. First, one might like to know the
size of the bounding circle, designated as Ap in Figue 9. This represents the area in which
one has a chance of encountering concentrate. As suggested by Garrett, this area grows as
the separation between discrete parcels in the flow field (3) . The second quantity of interest is
the actual area occupied by dye, At, which wil depend on the stretching rate 'Y from equation

(26). We now approach both these quantities more specifically for our RRV flow field.
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5.1 Multiparticle Dispersion

The bounding area, Ap, wil roughly grow lie the size of a group of discrete water parcels
initially close together. Qualitatively, the dispersion rate of a collection of particles is a
function of how close they are to each other. A group of closeby particles wil all be feeling a
similar velocity field and wil move more or less together, dispersed only by the small velocity
differences between their positions. As they move apart, they feel a larger velocity difference
and move apart more quickly. In our case there comes a point when they are so far separated
that (on average) they no longer feel the same vortex, at which point their velocities become
completely uncorrelated. At this point each particle moves in its own random walk and the
particle separation distance should increase as twice that of a single random walker.

Quantitatively, the area of a group of particles is described by the second moment,n n
2 i ~ _ 2 i ~ 2 -2a = - ~ (Xi - X) = - ~ Xi - X ,n i=l n i=l (35)

with

i n
X == - L Xi.

n i=l

Parcel position Xi at any time t can be obtained by integrating the Lagrangian velocity field

Xi == XiO + 1t ui(t')dt'. (36)

Plugging (36) into (35) gives

i n (rt J 2ao + ;; tt 10 ui(t')dt'

i n n r rt
-2 L L 10 ui(t')dt'10 uj(t")dt".n i=l j=l 0 0

For our model, t = NT, where N is the number of vortex lifetimes experienced. The net
displacement, Xi(t), is simply the sum of displacement from each successive vortex

a2 =

(37)

rt ui(t')dt' = t r u~k)(t')dt'.

10 k=110
Next, we simplify by ensemble averaging (37). Consider how variance increases on average
during one period

(O"~) - (0"~-1) - (~t ¡¡ U,(t'ldt'J\

i n n r r
-( 2 L L 10 ui(t')dt'10 uj(t")dt"),n i=l j=l 0 0
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which can be re-written as

1 n 1 n n
= ~ í)i2) - n2 L í)lilj)

i=l i=l j=l

= ! i)l2H1-! t (lilj\
n i=l n j=l ((2)

Here (i2), from (19) is the same for each parcel and (lilj) is a measure of correlation between
a pair of parcels and must be summed over all pair combinations. Physically, (38) states that
the increase in particle area goes like the single particle difusivity with a correction term
that accounts for correlation between particles. If all particles are moving with the same,
perfectly correlated velocity, (lilj) = (i2), then no relative dispersion occurs. In our flow, the
degree of correlation is a function of the particle separation, (lilj) = F((ah_i)J.

(38)

To make this calculation more tractable, consider the evolution of distance between only two
particles. Let (ç2) = X2 - Xl be the distance between two parcels. The ensemble averaged
increase in (ç2) during any single time period is given by

(~h) - (~h-i) = 2(i2)(1- (aj(i~)-i))J (39)

For two parcels a distance ~ apart, (lilj) is given by

(00 (27r
(Z;j) = 10 10 P(r)2r(r + ór)y'(1 - cos (n(r)T)J1 - cos (n(r + ór)T)Jdcpdr, (40)

with

~ J~2ór==Y4+r2- 4-~rcos(cp)+r2.

We define a spatial correlation function

_ (lilj)'Rij = (l2) (41)

As is, this representation assumes that as particles grow futher apart their velocity becomes
less correlated but they stil feel different parts of the same vortex field. It is more realistic to
say that significantly separated particles wil feel the effects of uncorrelated vortices. From
Section 2, the lengthscale of vortex infuence is r2. We manually impose this constraint
by defining a new correlation function in which particles greater than r2 away feel different
vortices

'R'(~) == ('R)(Ç)J(~), (42)

where f(~) is some function that goes from 1 at r = 0 to 0 for large r. There are several

forms f(Ç) can take. We could impose that correlation abruptly goes to 0 when the distance
exceeds r2, so f (~) takes the form of a Heavyside step function
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Figure 10: Two different possibilties for multiparticle spatial correlation.

fi (0 = fIT -( T2
LOT ~ T2.

(43)

This is straightforward but a little abrupt. Another possibilty is to make the transition very
smooth by assuming that the probabilty of nearby particles being in different vortices goes
from 0 to 1 linearly:

ç
!2(O = 1 - Ro' (44)

Both possibilities for ~' are plotted in Figue 10, where Rïj has been numerically cal-
culated from (19) and (40) for different values of ç. Realty is liely to be somewhere in
between. The second choice has the advantage of a continuous derivative. It also provides
an approximate lower bound for parcel spatial correlation and hence an upper bound for
diffusion rate. We wil use the form in (44) from now on.

The real quantity of interest is the time evolution of ç for particles initially separated by a
distance ço. We numerically integrate (39) for different values of ço and T and plot the results
in Figure 11. For reference, we also plot the separation growth expected for uncorrelated
particles based on (19) alone, assuming (Zïlj) = O. At large times, particle separation goes as
twice the single particle dispersion rate, (l2), as expected. For a given value of T, the initial
particle separation, ço, controls the time it takes to settle into linear growth, but not the
qualitative nature of the transition or any aspect of the large time solution. For diferent
values of T, several things change. First, the final difusivity (the intercept of our log-log

plot) is different, as expected from the relationship in Figure 5. Second, the transition to
linear growth has a different character. For T = 1,10, the initial growth in (ç2) is slower than
linear, while for T = 100,1000 it grows with a faster than linear growth rate.
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Figure 11: Squared pair separation distance obtained by iterative integration. r ranges from
1 to 1000. In all subplots the solid lines represent cEo values of .1,.5 and 1. The dotted line is
the growth rate expected for uncorrelated randomly walking paricles.
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5.2 Streak Area

The other way to characterize the growth of a dye streak is by the actual area of the tracer.
As described by Ledwell et aL. and Sundermeyer, the streak will go through an initial period
of stretching during which it gets thinner, cross-streak gradients get larger and cross-streak
diffusive fluxes grow. Eventually a balance between stretching and diffusion is reached, at
which point the streak continues to grow larger, but its width remains the same. This
equilbrium width is related to the stretching rate 'Y (26), by

di=fj (45)

where Ks is an appropriate horizontal diffusivity (section 4.4).
After a width is established, the streak area grows with its increasing length

At - (.6l)(l)

¡ol!e" (46)

for some initial length lo.

5.3 The Big Picture

During the initial period of stretching and folding of a dye patch, the containing area Ap wil
be significantly larger than the actual dye area At. However, tracer area grows exponentialy,
(46), and wil catch up. Physically, as the tracer area depicted in Figure 9 grows, different

parts of the tracer streak get close enough together that they start to merge and the tracer
fills in the area bounded by Ap. From then on, the dye patch is fairly homogeneous, and
continues to grow in a Fickian manner with Ap. In Figue 12, we plot Ap(t) and At(t) together
for T = .008, T = 100, ço = .1. We have assumed that both quantities start with the same
initial area,

(K 2Ao == loy -: = ço.

In this case, tracer area is much smaller than the bounding area up until a time fho rv 70,
after which tracer area grows linearly as Ap.

6 Ocean comparisons and Conclusions

Our goal in this work has been to evaluate whether sub-mesoscale eddies could make a

significant contribution to horizontal diffusion in the coastal or open ocean. Because it was
not immediately apparent which of the potential stirring and mixing abilties of vortical modes
would be important, we undertook a step by step look at the time dependent diffusion of an
initially small patch of passive tracer. To get a realistic form for a single vortical mode, we
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looked at numerical solutions to the non-linear adjustment of an isolated density anomaly,
and incorporated an idealzed version of these results into a simple stochastic renovating
vortex modeL. Most of the qualitative features of qualitative tracer evolution we discuss are
the same as those described by Garrett for a two-dimensional turbulent field. Using our

analytical model, we're able to calculate exact values for some of the stages he talks about
more qualitatively. The picture that emerges is that at space and time scales ofthe same order
of magnitude of vortex scales and lifetimes, a patch of dye twists and folds with exponentially
increasing area, fillng a larger bounding area governed by the multiparticle dispersion rate.
At larger space and time scales, the tracer area grows in a fickian manner with the effect of
vortical modes incorporated into an effective difusivity.

In a realistic ocean, the added complexities of stirring processes operating on a variety
of time and space scales wil prohibit comparison of the distinct stages of diffusion we've
discussed. The most practical results to emerge from our work are estimates of an effective

(Fickian) diffusvity, and bounds on when such a difusivity is appropriate. In the coastal
ocean, vortex lifetimes are likely to be shorter than their turnover timescale. In this limit, the
displacements, stretching distortion and shear dispersion associated with azimuthal motion
may not be as important as displacements from the initial vortex adjustment. We calculate
a non-dimensional effective diffusivity for this random-walk lie motion of .01 (Figue 5.) To
redimensionalize, we multiply by (N2h~fß)/ p. Using N = 10 cph, f = 1 day-i, ß = .25, and
h* = 3-10 m, we get dimensional diffusivities of up to .1 m2 / s. While this is an enhancement
over the estimates from shear dispersion alone, it is stil an order of magnitude smaller than
observations. In the open ocean, vortices may exist for many rotations, in which case the

mechanisms of Section 5 are more appropriate. Using h* up to 30 m, we calculate dimensional
diffusivities of order 1 m2 / s, the same order as observations. This value wil be appropriate
only after a dye patch has grown to scales larger than the vortex scale (approximately an
internal Rossby radius). Our analysis suggests the time necessary to get there is highly
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dependent on the initial dye patch size and the vortex lifetime (Figue 11).
There are numerous additional complexities that could be included in future work. First,

given the importance of the vortex lifetime, T in our results, we should try to get better es-
timates of realistic ocean values. We should consider the potential effect of instabilities as a
limit on expected lifetime. Second, we could consider a model with a continuous distribution
of vortex lifetimes. Third, we could use a the full baroclinic vortex form suggested by the
numerical adjustment results. Such an approach would include the effects of cyclonically ro-
tating vortices, which could significantly enhance stirring motions. Finally, we could compare
our analytical results with full numerical simulations, such as those being performed by P.
Lelong (12).
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Stationary vortices in a Keplerian shear flow

P. Garand

i Introduction

1.1 Planetary formation

Science in it's most general definition began as a quest to answer the fundamental questions
on the origin of humanity and it's relation to the surrounding Universe. One of the keys
to understanding the origin of Life is the mechanism of formation of our own Solar system,
and especially the formation of planets. This subject has gained a new interest in the past
few years with the discovery of giant planets orbiting some of the nearest neighbouring stars.
The generally accepted theory of planet formation consists in the following steps:

. Due to the onset of a large scale gravitational instabilty, the core of a dense molecu-

lar cloud collapses into a protostar; the conservation of its initial angular momentum
results in the gradual flattening of the collapsing gas into an accretion disk around the
protostar.

. The gas in the accretion disk has two components: a molecular gas, composed mainly
of H2 and other small molecules, and a dust gas, composed of particles of sizes ranging
from a few microns to a few centimeters. The interaction between these components
takes place mainly via Stokes drag. The vertical stratifcation in the accretion disk
relies on the balance between pressure and the vertical component of the gravitational
force. As a result, since the thermal pressure of the dust gas is much smaller than that
of the molecular gas, the dust settles into a very thin disk within the accretion disk.

. The dust particles then coalesce into larger and larger grains, up to sizes of a few
kilometers; as they grow in mass, the dynamics of these "planetesimals" gradually
decouple from that of the molecular gas.

. The planetesimals continue aggregating into planets. Giant planets may accrete some
of the molecular gas stil left in the accretion disk.

However, although the dust aggregation into larger grains is known to take place, the
exact mechanism is poorly understood. The time-scale for this aggregation process has an
upper limit of a few Myr (106 yr) set by the evolution of the protostar into a T-Tauri star.
Indeed, T - Tauri stars are observed to have intense magnetic activity and strong stellar winds
which scatter all non-gravitationally bound dust and gas into the interstellar space. Random
encounters of the dust particles due to thermal agitation is not sufcient to account for the
growth of the dust grains into planetesimals within the T-Tauri evolution time-scale.
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In an attempt to remedy this problem, it has been shown in the case of two-dimensional

barotropic turbulence in a rotating fluid that dust particles may migrate to the center of.
anticyclonic vortices ¡1). They concentrate there for the lifetime of the vortex. As a result,
provided the vortices are long lived, it is possible to greatly increase the aggregation rate, and
reach the required sizes of dust grains before the T-Tauri phase. However, it is not yet clear
whether a Keplerian flow can undergo self-sustained turbulence. Indeed, from the Rayleigh
infexion theorem, we see that the accretion flow is stable to linear shear instabilty, and the
latest numerical simulations seem to indicate that the primordial solar nebula may be stable
to nonlinear hydrodynamic instabilties too ¡2). It has been shown that even a very small
magnetic field may trigger some linear instabilty ¡3), but in this case it is not clear how the
magnetic forces would infuence the exitence or stabilty of the vortices.

Although the problem of hydro dynamical stability of the accretion flows is not yet fully
understood, there has been evidence in two-dimensional decaying turbulence for the sponta-

neous apparition and the persistence of vortices on time-scales much larger than the turnover
time-scale. There is therefore hope in the Keplerian case that even if the turbulence is not
self-sustained, the initial anisotropies in the flow are large enough to create these long-lived
vortex structures. The work presented in this report is an attempt at finding steady state
solutions for vortices in Keplerian accretion flows. If these solutions exist and are found to be
stable, they would explain the persistence of the vortices, and therefore solve the remaining
dust aggregation problem.

1.2 Mathematical setup

We wil always take U to be the velocity field, 'l the corresponding stream function and w
the potential vorticity. In the work presented here, we have chosen to simplify the problem
greatly by considering only 2-dimensional, incompressible fluid motion. As a result of this

approximation, we can now write

U = -Vx('lêz) = êz x V'l and w = wêz = V27fêz . (1)

We wil consider the vortex to be a perturbation on the main Keplerian accretion flow.
The unperturbed shear flow UK is given by the Keplerian rotation law, which describes the
equilbrium between the centrifugal and gravitational forces:

UK = VKêØ = JG: êø (2)
where R is the distance from the central accreting object of mass M. The corresponding
vorticity is WK = ! V ~.l. The vortex studied wil be placed at a distance Ro from the center,
at 0 = O. In the following work, we wil often have to change from the polar coordinate system
around the central mass, (R,O) to that around the vortex, (r, rp). We chose to take rp = 0
where 0 = 0; this change of coordinate is represented in Fig.I.

The perturbed vorticity and flow are represented by dashed quantities. The equation for
the evolution of the vorticity perturbation isaw aw' i i i i )

-a + u. Vw = at + UK' Vw + U . VWK + U . Vw = 0 . (3
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Figure 1: Change of coordinate

This can be rewritten in cylindrical coordinates around the vortex patch as

åw' 1 åw' 1 åWK å'l' 1 å'l' åw' 1 åw' å'l'- + VK-- - --- + --- - --- = 0 .åt r åc. r år åc. r år åc. r år åc.
The vorticity perturbation and the perturbed stream function are related by

w' = V2'1' .

(4)

(5)

1.3 Dimensionless quantities

In order to simplify the expressions, we wil now introduce the following new units system:

M = 1, Ro = 1, and To = 1 (6)

where To is the revolution time around the central object at radius Ro, namely To = 27rv::1.
As a result, the Keplerian velocity becomes VK = 27rR-1/2.

1.4 Change of reference frame
We wil be looking for vortex solutions where the vortex is rotating around the central star
with a Keplerian velocity. Steady state solutions then only have a meanig when taken in
the rotating coordinate frame. We use a frame of reference rotating with velocity which is
that of the center of the vortex patch. The relative shear around this point is given by

vK(R) = 27r(R-1/2 - R) (7)

The corresponding stream function is

'lK(R) = 27r (2(R1/2 - 1) - ~(R2 - 1)) (8)

Without loss of generality, we have chosen 'lK(1) = O. The Keplerian vorticity and its
gradient are given by

WK = 7rR-3/2 - 47r, and åWK = _~7rR-5/2åR 2 (9)
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2 Top hat vortices in a Keplerian shear
In this section we wil use an approximation which consists in neglecting the background
Keplerian vorticity gradient in the vorticity equation. This approximation is valid primarily
for small vortices. In this case, there exists a solution of the steady state problem with w'
piecewise constant. We wil therefore try to find solutions of the type

w' = V2'1' = q inside the vortex patch
= 0 outside the vortex patch (10)

Equation (10) can now be rewritten as

V2'1' = qll (a + r¡(cp) - r) (11)

where a is the average radius of the patch, and r¡ is the departure from that average. We wil
linearize this equation by considering r¡ ~ a, so that

V2'1' = qll(a - r) + qr¡(cp)8(a - r) + O(r¡2) (12)

Replacing w' in equation (4) by this ansatz, we get the contour dynamics equation (pro-
vided we neglect the term involving the vorticity gradient)

ar¡ r vK(r) ar¡ r 1 a'l' ar¡ r 1 a'l' (r r') O( 2) - 0-u+--u+---u+-- u+r¡u + r¡ -
at r acp T aT acp r acp (13)

where 8 == 8(a - r). Taking the steady state part of this equation, we integrate it once across

the boundary r = a to get

(a'lK a'l') ar¡ a'l' O( 2) - 0
-+- -+-+ r¡ -ar aT r=a acp acp (14)

The condition for no fluid to enter or leave the vortex (which defines it as a localized vortex
patch) is that the total stream functiòn should be constant along the boundary

:cp ('IK + 'i') Ir=a + O(r¡2) = 0
(15)

so that if we integrate equation (14) along the boundary, we get

, (a'lK a'l')
'IK (a) + 'I (a) + & + aT r=a r¡ = 'lr¡ (16)

where 'Ir¡ is a constant. Since this implies that the velocity field is everywhere parallel to the
boundary, there is no net force exerted on the vortex..
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2.1 Solution to zeroth order

Let 'lc be a solution of the zeroth order in r¡ of equation (12):

n2'lc = qll(a - r) .

We can integrate this on either sides of r = a, which yields the solution

qr2
'lc(r) - "4 + ci lnr + C2 for r .( a

- cslnr+c4forr::a

(17)

(18)

Regularity at the origin requires that ci = 0, and we can choose C4 = O. Note that the stream
function diverges at infnity, but the velocity field is well behaved. Matching the function
and its derivative at r = a yields

qa2
cslna-+C2 =

4
qa Cs

(19)=
2 a

so that finally, we have

(qr2 qa2 (1)) qa2'l (r) = - + - lna - - ll(a - r) + -ll(r - a) lnr .c 4 2 2 2 (20)

2.2 Solution to first order
If we define 'l' = 'lc + ~, subtracting equation (17) from equation (12) yields

n2~ = qr¡(cp)8(a - r) .

Write that ~ = Ln 'lneinrp, and r¡ = Ln r¡neinrp, then equation (21) becomes

1 a ( a'ln) n2

-: ar r ar - r2 'ln = qr¡n 8 (a - r)

so the solution wil be of the kind

'ln(r .( a) = ai(rja)lnl
'ln(r :: a) = a2(rja)-lnl

(21)

(22)

(23)

provided n -# 0; we have implicitly imposed regularity of the solutions at the origin and at
infnity. Matching the solution at r = a requires that ai = a2. Finally, integrating equation

(21) across the discontinuity, we get

a'lnia+
- = qr¡n
ar a-

For n -# 0, this condition yields ai = a2 = - ~. We therefore get

~ = - L ;r¡~a ((rja)lnl1-(a - r) + (rja)-lnl1-(r - a)) einrp
n;¡0 I I

(24)

(25)

The case of n = 0 is discussed in the next session.
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2.3 Matching the vortex patch to the Keplerian flow.

The function r¡ is given by equatio~ (16), which corresponds to the requiement that the
shape of the vortex patch remains steady. We rewrite it here

aiPK aiPc - 2
iPK(a) + r¡¡¡(a) + iPc(a) + r¡ ar (a) + iP(a) = iP17 + O(r¡ ) (26)

The ;¡ term, as we saw, is of first order in r¡. This equation provides all the r¡n's but r¡o.
A last condition arises from the normalization of the total vortiCity of the patch, which is
equivalent to fing the area of the patch. If we require that the area be A = 7ra2 (i.e. the
area of a corresponding circular patch), then we have

A =
127r ia+17 127r (a + r¡)2

rdrdip = 2 dip = 7r(a + r¡O)2 + 7r 2: r¡~o 0 0 n~O
- 7r(a + r¡O)2 + O(r¡2) (27)

The normalization condition on A is therefore r¡o = 0, and is valid to fist order in r¡. The
only terms left to evaluate are iPK(a) and r¡8trK (a).

2.3.1 The linear shear case

Before starting on the Keplerian shear flow case, let's treat the simple linear shear case; in
any case, one would expect that the results of the linear shear case are recovered in the limit
where the size of the vortex patch a is much smaller than the distance of the patch to the
center of the Keplerian shear flow R.

A linear shear is given by uL(R) = s(R - 1), (taking the velocity to be 0 at the position
of the center of the vortex patch) so that the corresponding stream function is iPL(R) =

~(R - 1)2. Since, to a first approximation R = 1 + r cosip + O(r2), we have iPdr) -
~r2 cos2ip = s~2 (e2irp - 2 + e-2irp). The matching condition then yields

2sa (e2irp _ 2 + e-2irp) +
8

(2: r¡neinrp) s; (e2irp - 2 + e-2irp)nlO

+ qa2 i + ('" inrp) qa _ '" qr¡na inrp _ nl.

2 na ~r¡ne 2 ~ 21nl e - 0/17nlO nlO

(28)

An important point is that the first term in that expression is potentially much larger
than the other ones. In order for this term to be balanced, one requires that r¡q ~ sa. Since

r¡ ~ a, this condition is equivalent to q ~ s. Hence this work is only valid for vortex patches

with vorticity much larger than the local Keplerian vorticity. We also see that the second
term in that expression is of order of r¡ j a compared to the other ones, and wil be neglected
in the coming analysis. As a result, if we take ig7r (28) e-imrpdipj27r, we get

qa2 sa2 sa
iP = -lna - - and r¡:l2 =--17 2 4 2q (29)
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and all other r¡n are zero. We see again that the condition r¡ -(-( a is equivalent to the condition
s -(-( q. We therefore have

sa
r¡(cp) = -- cos(2cp)

q
(30)

To first order in r¡, this corresponds to an ellptical shape1.

2.3.2 The Keplerian shear case

As a first approximation, let's take R = 1 + r coscp. This approximation wil be discussed
later. In this case, if we defie

'lK(a) == 'lK(1 + a coscp) == L I-:eincp
n

(31)

we have, from the matching condition given by equation (26)

qa2
'lr¡ = I~ + TIna

2I::lnl
r¡n = qa(1 _ In!) for Inl )- 1

(32)

(33)

Because of the symmetry in cp -1 -cp of the Keplerian shear flow, we know that I:: = i!5n,
which is confrmed by expression (33). The case n = 1 corresponds to a translation of the
vortex along the O-direction (azimuthally around the central mass), so that r¡i can always
be taken to be 0 by an appropriate change of referential2. The 1-: are given by

1-: = fo27r 'lKh/1 + a coscp)e-incp~: (34)
_ 27f r27r (2( VI + a coscp - 1) - ~(a2 cos2cp + 2a coscp)J e-incpdcpJ 0 2 27f

In order to solve this integral, we need to expand it as a Taylor series (which is necessarily

convergent since we have a .. 1). So

. 127r - d 127r (1/2)k ' diK = -7fa2 cos20e-incp.. + 47f L _ak coskcpe-incp..n 0 27f 0 k! 27f
k:;l

(35)

where we define (I/)k = 1/(1/ - 1)(...)(1/ - k + 1), and (1/)0 = 1. Then

K 2 ~ (1/2)k k 1 kIn = -7fa J2,n + 47f ~ --a 2k C k;n
k=lnl

(36)

llndeed, the equation for an ellpse being r = býl - a cos2cpje 1, if the eccentricity e is very small, then

r ~ b(l + e cos2() j2a) = ro + ~: cos(2cp).
2lndeed, let's take the example of the displacement of a circular patch: the equation for a circle centered

on x = TJ (instead of x = 0) is (x - TJ)2 + y2 = a2. Expanding this to fist order in TJ and changing coordinates
from (x, y) to (r, cp), we get r = a + TJ coscp, which corresponds to an n = 1 deformation mode.
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Figure 2: On the left: steady-state shape of the vortex patch, for a = 0.05,0.1 and 0.2 in the
Keplerian shear case, with the approximation R = 1 + r cosip. In al 3 plots q = 1. On the right:

Ratio of the 3rd and 4th order of deformation to the 2nd as a fuction of a.

where the C~ are the binomial coeffcients. Finaly, we compute the deformation by adding
the Fourier coeffcients as

r¡(cp) = L 2r¡n cos(ncp)
n)-O

(37)

Fig. 2 present the results for some values of a and q. One can however guess (and check)
that:

. The larger q, the smaller the deformation from a circular patch. Since q only appears

in the "normalization" of r¡ rather than in the relative amplitude of the modes r¡n of
deformation, changing q only amounts to changing the total amplitude of the deforma-

tion. In the following plots, a small value of q was chosen on purpose to let the vortex
deformation be more easily identifiable. In reality, we should take q ?? 1 to have the
required r¡ ~ a.

. On the other hand, the value of a wil infuence the relative importance of the r¡n, and

wil dictate the shape of the vortex. The larger a, the larger the higher order modes of
deformation, and the more diffcult the convergence.

We can see in Fig. 2 that for a (aj Ro in real unts) small, the dominant term in the
deformation r¡ is r¡2, the ellpsoidal term. The ratio of the 3rd and 4rd order deformation
modes to the second is also shown. As we can see from this plot, for aj Ro -: 0.1, the shape
of the vortex patch is very well approximated by an ellpse.
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2.3.3 Validity of the approximation R = 1 + r coscp.

The full expression for R is

R = VI + r2 + 2r coscp :: 1 + r coscp + O(r2) (38)

therefore the approximation is only valid for r ~ 1. Let's study again the example of the
linear shear case: this time, we have

'ldR) = ~(R - 1)2 = ~ (2 + r2 + 2r coscp - 2Vl + r2 + 2r coscp) (39)

Following the same procedure as before (Taylor expansion + Fourier decomposition) we can
obtain the Fourier coeffcients of 'lL(a): successively

'lda) = -8 ¿)a2 + 2a coscp)k (1~~)k
k;:l

= -8 L (1~~)k t C;ak+P2k-P cosk-pcp

k;:l p=O
(40)

so that

k

iL = _ '" (1/2)k '" 2k-PCk k+p ~Ck-pn 8 ~ k! ~ pa 2k-p k-p-nk;:l p=O 2 (41)

The 1Jn are given by equation (33). The resulting steady-state shape of the vortex patch is
shown in Fig.3 This deformation is due to the fact that the flow is not a plane parallel flow,
but rather curves around the central accreting object. When the size of the patch is large,
this curvature acts to deform it.

~o conclude, if we interpolate the linear shear results to the Keplerian case, it is likely
that the approximation wil fail for a )- 0.1. The full expression for R should therefore be
kept. The results for the Keplerian shear, using equation (38) in expression (35), are the
following:

k

iK = -4 '" (1/4)k '" k+P2k-PCkCk-Pn 7l ~ k' ~ a p k-p-nk;:l . p=O 2 (42)

The corresponding vortex patches are presented in Fig. 4, for both a cyclonic and an anticy-
clonic vortex.

2.4 Discussion.

Assuming that the background vorticity is constant, it has been possible to calculate the
steady state shape oftop-hat (Le. constant piece-wise) vortices. In a linear shear, it is a well
known result that the shape of the vortices should be ellptical (4). For very small vortices,
for which the variation of the background vorticity is negligible, we could expect, and saw
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Figue 3: On the left: steady-state shape of the vortex patch, for a = 0.1,0.2 and 0.4 in the liear
shear case. In all 3 plots q = 1. On the right: relative amplitude of the 3rd and 4th moment of
deformation compared to the second, for varying vaues of a.

that the vortices were mainly ellptical in shape. However, for larger vortices3, there is a
systematic variation from ellptical, and this has two main causes: firstly, the curvature of
the Keplerian flow around the central star, and secondly (and this is the dominant effect),
the background vaiation in the velocity field. The next step in this analysis would be to
consider the stabilty of these vortices, in a similar way as has been done by Meacham et
al.(5). This is not in the scope of this project.

3 Including the main flow vorticity gradient
In the previous section, the vorticity gradient term in the vorticity equation (4) has been
neglected in order to allow solutions with piece-wise constant vorticity. However, including
the vorticity gradient term forbids this solution. In particular, when the nonlinear terms can
be neglected, we wil see that there exist stationary wave-like solutions: the lee waves. These
have to be taken into account in their interaction with the vortex patch. In the following

work, we wil therefore study two main regimes:

. Far from the vortex, the perturbation induced by the vortex is small; the vorticity
equation becomes a linear equation for stationary lee waves. The far field of the vortex
can then be obtained by studying the lee waves which are created around a point vortex.

. Near the vortex, the perturbation is much stronger than the Keplerian flow. By reseal-

ing the coordinate system to emphasize the region near the vortex, we wil see that

to a first approximation, the gradient of the vorticity can be neglected. This zeroth
3In fact the approximation of constant vorticity around the vortex is no more vaid for the larger

vortices anyway.
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Figure 4: Deformation of a vortex patch in a Keplerian shear for a = 0.05,0.1,0.2, and q = 1.

order solution resembles closely that presented in Section 1 for the linear shear. The
deformation of the vortex patch is then given by the next order in the approximation.

In the steady state, equation (4) becomes

J('lK + 'l', WK + w') = 0 (43)
where the Jacobian J is, in the cylindrical coordinate system

18A8B 18AßB
J(A,B) = RßR ßO - R ßO ßR

Let's now use the new coordinate system

(44)

o = -X
R = exp(Y) (45)

The Keplerian velocity and stream function in this new ordinate system is then (using equa-
tions (7), (8), (9) and r = 371)

VK = 2~ (e-lY - eY)

'lK = 2l (2elY _ ~e2Y _ ~)3 2 2
l _2Y 4r

WK = -e 2 --3 3
The Jacobian equation then becomes (dropping the primes on the perturbed quantities)

(2l ( ly 1 2Y 3) l _2Y 4l -2Y 2 )
J '" 2e2 - '2e - '2 + 'l, '3e 2 - '" + e \7 'l = 0

where we now have J(A,B) = 8xAÖyB - ÖyA8xB, and the Laplacian operator is \72 =
ßxx + Öyy.

(46)

(47)

(48)

(49)
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3.1 The far field: a linear approach
3.1.1 Assumptions and equations

We wil assume that the perturbation is much smaller than the Keplerian stream function.
This should be valid everywhere but around Y = 0, where'lK vanishes. Equation (49) implies
that

r _2Y 4r -2Y 2 (2r ( lY 1 2Y 3) J-e 2 - - + e V' 'l = F - 2e 2 - -e - - + 'l3 3 3 2 2 (50)

The function F is not unique. This mean that there are many steady state solutions to the
problem we are considering, each of them depending on the type of forcing, the symmetries
required, the behaviour far from the vortex. We must choose the fuction F carefully to
represent the physics of the system considered. We want to represent the presence of a small
vortex patch, and its infuence on the Keplerian accretion flow. Far from the vortex (the

region considered here), we hope that there exist solutions in which the disturbance caused
by the vortex is very small, so that the Keplerian stream lines are merely displaced by a small
amount. Taking these two ideas in consideration, we see that a possible prescription for F is

F('lK + 'l) = FK('lK + 'l) + Q8(X)8(Y) (51)

where Q is the total vorticity of the patch, and the function FK is defined as

r _ 2 Y 4r (2r ( 1 Y 1 2Y 3) J
WK = FK('lK) ~ -e 2 - - = FK - 2e2 - -e --, 3 3 3 2 2 (52)

Putting this ansatz back into equation (50) we get

e-2YV'2'l FK('lK + 'l) - FK('lK) + Q8(X)8(Y)

~ 'lFR('lK) + Q8(X)8(Y) (53)

since we assumed that 'l ~ 'lK. The function FR can easily be obtained by taking the

Y-derivative of equation (52), and is

8WK 3 3 (1 ')-1
FR = 8Y = --e-2Y e2Y - e2Y8'lK 4

8Y
(54)

We finally get

(e~Y - 1) V'2'l = ~'l + Q8(X)8(Y) (e~Y - e2Y) (55)

Note that equation (53) is an equation for stationary waves, the lee waves.
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3.1.2 Localized solutions to the point vortex problem

The periodicity in X suggests the expansion 'l = ¿m 'lmeimX. The symmetry of the system
as X -7 -X limits the sum to m ;: O. In this case, we wil have to solve

(e~Y - 1) (ô;i; - m2'lm) = ~'lm + ~ 8(Y) (e~Y - e2Y) (56)

Asymptotically, we see that there exists solutions to this equation which are localized in the
radial direction:

. for Y :: 1, we get

2Y (ô2'lm 2) 3e2 ôy2 -m 'lm ~ ¡'lm (57)

This equation can be solved exactly by using the change of variable t = e-~Y, which
leads to the solutions

'lm = I:t~m(tit) (58)

For Y ~ 1, t -7 0 so we must keep the I+im solution to ensure the decay of the
3

solutions. Note that when m = 0, there is no decaying solution. This wil be discussed
later.

. for Y -(-( -1, which corresponds to the center of the accretion disk, the equation becomes

(ô2'lm 2)"" 3ôy2 - m 'lm .. - ¡'lm (59)

which has the decaying solutions

. J:
'lm ex exp( V m2 - 4Y) (60) .~

~;

when m i= O. When m = 0, we get oscillatory solutions.

Near the point vortex (X, Y small) the equation becomes

( ô2'lm 2) 1 QY ôy2 - m 'lm ~ 2'lm + Y 27l 8(Y) (61)

By changing the variable to t = aY, we get, for the homogeneous part

ô2'lm m2 1
-- - a2 'lm - 2at'lm = 0

(62)
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which corresponds to a Whitaker equation with coeffcients K. = -1/20:, and p,2 = 114 (d.

Abramovitz & Stegu ¡6)) provided ~ = 1/4. The solutions are the Whitaker functions
MK.,J. and WK.,J. such that

i t i 1
MK.,J. e-2 t2+J. M(2' + p, - K., 1 + 2p" t)

i i 1
WK.,J. = e-2tt2+J.U(2' + p, - K., 1 + 2p" t) (63)

where M and U are the regular and singular confuent hypergeometric functions. Since we are
actually solving the problem of stationar waves in a shear flow, we know that the point at
which the velocity vanishes is a critical layer for the waves. The singularity of the equations
near Y = 0 reflects the presence of this critical layer. As a result we expect solutions of the
kind ¡7)

'lr ex tPi (t)
'ls ex tIn ItlPi (t) + P2(t) (64)

with Pi(t) = ao + ait +,.. and P2(t) = bo + bit + b2t2 +... near the origin, we know that

we should take p, = 1/2 ¡6). The expansion of the fuctions near the origin is then

i i 00 (1 - K.) tn-2ttM(1 - 2 t) = -2tt '" ne K." e L. (12)
n=O n. n

WK.,i/2 = e-~ttU(1 - K., 2, t)

e-~tt ¡ 00 (1 - K.)ntn
= r( -K.) M(1 - K., 2, t) In t + ~ (2)nn! ('lr(1 - K. + n)

r( -K.) 1J
'lr(1 + n) - 'lr(2 + n)) + r(1 _ K.) t

MK.,i/2 (65)

(66)

where 'lr(a) = r'(a)/r(a). We see that in order for WK.,J. to be well defined, we need to

choose t positive everywhere, which means taking 0:+ = 2m for Y ? 0 and 0:_ = -2m for

Y -( O. This also means that the Y ? 0 and Y -( 0 branches wil have diferent values of K.:
K.+ = -114m and K._ = 114m.

Let's now write the full solutions:

'lm(Y? 0)

'lm(Y -( 0)

AMK. l (2mY) + BWK. l (2mY)+'2 +'2
= CMK._,~(-2mY) +DWK._,~(-2mY)

(67)

(68)

Since MK. l (0) = 0, and WK. l (0) = r(i~ )' the continuity of'lm across the origin implies, 2 ' 2 K,
B

r(1 + 114m)

D-
r(1 - 114m)

(69)

Integrating equation (56) across Y = 0, we get the jump condition

å'lm 10+ _ (0+ 'lm Q
åY 0- - 10- 2ydY + 27r (70)
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The integral term on the RHS is mathematically il-defined. However, if we assume that it
should really be the principal value of this integral, then we can show that this term is 0
using the expansion in Y of 'l near Y = 0, and we are left with the simple jump condition

8'lm 10+ _ Q
8Y 0- - 211

(71)

Since we have M~,l (0) = 1 and W~,l (0) = r(~~) lnt + c(~) where c(~) is a constant
term, we see that the singular part of the derivative is continuous across the origin when the
function 'lm itself is: indeed, the derivative is

'l:n(0+) = 2m ( A + BI;~~::i + BC(~+))

= ( In( -2mY) )'l:n(0_) -2m C+D r(-~_) +Dc(~_)

(72)

(73)

so that the continuity of the singular part of the derivative implies

B
r(1/4m)

D B D~ =
r(-1/4m) r(1 + 114m) r(1 - 114m)

(74)

using the property r(1 + x) = xr(x).

This comment implies that although the derivative of the function 'lm becomes singular
near the origin, it is stil possible to have a finite jump of the derivatives across the origin.
The asymptotic behaviour and the jump condition define unquely the four coeffcients A, B,
C and D for each value of m but 0, to yield a unque solution for the far field depending only
on the vortex strength Q.

3.1.3 The axisymmetric (m=O) case

In this case, the solutions do not decay at infnity. In fact, we see that for Y ?? 1, the equation
becomes 'l~ = 0, which has the general solutions 'l0 = aY + b, and for Y -(-( - 1 there is an

oscilatory solution 'l = c cos ( .J + d ( sin( /f). There is here an arbitrariness in the

choice of the boundary conditions, which is solved by the matching with the inner solution.
For the purpose of plotting the results only, we chose to take the following boundary conditions
'l0 (Yc) = 'l0 ( - Y;) = O. Again, there exists a unique solution fulllng these 2 boundary
conditions and the jump condition at the origin.

3.1.4 Numerical procedure and results

Having established that there exists a unique solution to the problem, it is now easy to find
it numerically. We start by integrating equation (56) from +00 and -00 towards the origin
using the asymptotic behaviour as a first boundary condition. We define a free parameter h
as 'lm(O) = h, and use this as a second boundary condition for both branches of the solution.
We then calibrate this parameter h so that the jump across the origin is indeed Q/211. Since
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both parts of the solution are linear, increasing h by a factor of 2 amounts to increasing Q
by a factor of 2: there is a linear relation between hand Q, namely

Q
27r = s(m)h (75)

The coeffcients s(m) can be found numerically by fiing h = 1. The result is shown in Fig.5,
on the left. On the right, the resulting solutions for Q = -50 are shown. Note the slow
convergence of the modes for large m. This is due to the fact that the point vortex is a

logarithmic singularity, and the amplitude of the modes vary as i / m.

-iso.

2

,.

-2

..

.. .1. -5 ,. 15i. is 20 25 30 -is
m

-so

t

-100

Figure 5: On the left, the coeffcients s(m) have been calculated and are represented as a function
of m. On the right, this calibration has been used to calculate the fuctions 'lm for m = 0,1,2,3,4,5
for Q = -50. Only the first few have been labelled. The cutoff for 'lo has been chosen at Yc = 10.

Finally, we are left to sum the Fourier coeffcients to reconstruct the function: we have

00

'i = 'lo + 2 L 'lm(Y) cos(mX)
. m=l

(76)

The contour lines of the total stream function (the perturbation and the Keplerian shear)
have been plotted for 4 values of Q, and are represented in Fig.6. In all cases, the summation
over m has been truncated at m = 20.

3.1.5 Discussion

The solutions obtained correspond well to what might have been expected. There are here
two main features to the result. Firstly, the presence of a point vortex in any shear flow
induces the deformation of stream lines seen in Fig.7. This type of deformation is also seen
in the results presented here. The second feature corresponds to the presence of the critical
layer at the radius R = i, and is characterized by the discontinuity in the velocities at that

radius. This is qualitatively similar to the case of the eat's Eyes patterns seen in the plane
parallel shear flows (7). The linear approximation theoretically fails as Y -+ 0, and a full
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Figure 6: Stream line contours of around an anticyclonic point vortex in Keplerian shear flow, Q=l,
(upper left), Q=lO (upper right), Q=-l (lower left) and Q=-lO (lower right)

non-linear theory would normally be necessary; however, it was shown that the nonlinear

boudary layer simply connects to the linear branches of the solution far from the critical
layer, without change in the phase of the logarithm, so that the solution found here is a good
approximation to the nonlinear solution provided Y ~ E

3.2 Close to the vortex

In this case, we want to chose a new scaling to represent the region near the vortex. Let's
chose to take Y = EY and X = EX, and expand the equations in E, assuming that E -(-( 1. We
also assume the following form for the stream function 1/ and the vorticity:

1/ = E2 (1/o + E1/i)

W = Wo + EWi

(77)

(78)

231



'8 s:::¿ ~0~~~
Figure 7: Stream lines around a cyclonic (left) and an anticyclonic (right) vortex positioned at a
zero-velocity point

The Jacobian equation becomes

( r 2 5 3 2J -iY -12lEY +'lO+E'li+O(E),l 3 )
3(1 - 2EY) + (1 - 2Ey)V2'IO + EV2'Ii + O(E2) = 0 (79)

and we also have

Wo = ~2'Io
Wi = V2'Ii - 2yV2'Io

(80)

(81)

The successive orders in E from the Jacobian yield

( r 2 2 )
J 'lo - iY , V 'lo

( r2 r ) ( 532)J 'lo-iY'-iy+wi +J 'li-12ry,V 'lo

= 0 (82)

= 0 (83)

3.2.1 Zeroth order solutions

. The solutions to

( r2 2 )
J 'lo - iY , V 'lo = 0 (84)

are well known, and have been calculated in the previous section: taking piece-wise constant
solutions, we get an ellptical vortex patch of constant vorticity. This suggests the use of the
ellptical orthogonal coordinate system (X, (), such that

x = fx(
Y = f-ýx2 -1Jl (85)

with 1 .: X and -1 .: ( .: 1. The boundar of the vortex is given by X = a so that the

solution can be written as

Wo = a1í(X - a) (86)
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The stream function 'lo is then given by equation (82). The Laplacian in the ellptical
coordinate system is

v2'lo = P(x; _ (2) (Vx2 - 1 :X ( VX2 -1 ~~)

+ JI~ (JIâ'lo)J = qll(a - X)â( â( (87).

Looking for separable solutions, such that 'lo(X, () = ¿n Gn(X)Hn((), we must solve

VX2 -1~ (Vx2 -1 âGn) - À~Gn +qf2X2âX âX
JI~ (JIâHn) _ -À~Hn - qf2(2a( â(

(88)

(89)

The homogeneous part generates the Chebyshev polynomials for both X and ( with À = n.

The polynomial form the basis for the regular solution. The Hn solutions must always be
regular, so that we simply have

00

H(() = L bnTn(()

n=O
(90)

where the Tn are the Chebyshev polynomials of the first kind. However, because of the
matching of \l, we also need to find the singular solution for G outside the vortex. In order
to do this, let's perform the change of vaiables X = cosh a

â2Gn _ 2G
âa2 - n n (91)

We have the solutions, for n :: 0

Gn = aneno. + a~e-no. an (X + V X2 - 1) n + ãn (X + V X2 _ 1) -n

anRn + anSn (92)

which defines the functions Rn and Sn, and and for n = 0

Go = ao in(X + V X2 - 1) + ao = aoSo + ao (93)

which defines So, and Ro == 1. The special solution, necessary inside the vortex, is a second
order polynomial in the variables X or ( respectively, so that the final solution is

,ph" f, ( A"Tn(x) + (~ - 2) q;' (BoTn(l + ((2 - 2) q;' (94)

00'lgut = :L CnSn(X)Tn(() (95)
n=O
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where we have used the fact. that the solutions must be regular inside the vortex, and that
they should decay outside the vortex. Note that we can rewrite x2 = (To(x) + T2(X))/2 =

(1 + T2(X))/2. The matching condition at the boundary X = a yields the following relation
between the coeffcients 4:

(AnTn(a) + (a2 - 2) qt) (Bn + q~2 8n,2) = CnSn(a) for n :; 0

(Ao + (a2 - 2)q~2) (Bo - 3q~2) = CoSo(a) for n = 0

The matching of the derivatives yields a similar system,

(AnT~(a) + qj2(a - 1)) (Bn + q~2 8n,2) = CnS~(a) for n :; 0

qj2(a - 1) (Bo - 3q~2) = CoS~(a) for n = 0

Using equation (82) with the fact that W = 0 yields

~ (1/o - ! ry2) I = 0a( 2 x=a (98)

or rather,

1/o - !ry21 = 1/o(a,() - !rj2(a2 - 1)(1 - (2) = c2 x=a 2
where c is a constant. This implies that we must taker 2 2 1

CnSn(a) = 2. j (a - 1)(8n,0 - "28n,2)

(99)

(100)

so we see that only 2 coeffcients are non-zero, namely Co and C2.
If we were to match this with the Keplerian shear flow, and ignore the far field solution,

we would then obtain a unique relation between the size of the vortex a and it's vorticity q.

3.2.2 First order solutions

We now have to solve equation (83). The Jacobians in this equation can directly be trans-
formed into Jacobians for the new coordinate system: with

.J(A B) _ aAaB _ aAaB, - aX a( a( ax (101)

41n order to derive these conditions, we use the orthogonality relation between the Chebyshev polynomials

11 d(Tn (()Tm(() ~ =-1 i - (2 ~8m,n if n =1 0

7r8m,n if n = 0

(96)

(97)
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we get

( r2 r ) ( 532):J 'lo - "2Y , -"2Y + wi +:J 'li - 12 ry , \7 'lo = 0 (102)

Since \72'lO = q1-(a - X), we see that

( r 2 r) a ( 5 3):J 'lo--y ,--Y+Wi =-q8(a-x)- 'li--ry2 2 a( 12 x=a (103)

This equation suggests the ansatz Wi = qr¡(()8(a - X) + W2, so that we have the condition

ar¡ a ( r 2) a ( 5 3)
-- 'lo - -y + - 'li - -ry = 0a( ax 2 x=a a( 12 x=a (104)

which can be integrated along the boundary to yield

r¡(() :X ('lo - ~y2) x=a +'li(a,() - 152rj3(a2 - 1)3/2(1 - (2)3/2 = 'lr¡ (105)

The equation for W2 is

( r 2 r ):J 'lo - "2Y , -"2Y + W2 = 0 (106)

which implies

( r 2) l
W2 = G 'lo - "2Y + "2Y (107)

As in the far field solution, we must chose the fuction G to represent the presence of a
vortex. Ideally, the functions F should be the linear continuation of G when 'l -(-( 'lK. As a
first guess, we chose to take simply G == 0, so that

l
W2 = -y

2 (108)

We now have to express the stream function 'li as a function of y. This can be done by
solving the equation

l
\72'li = 2yq1-(a - X) + qr¡(()8(a - X) + "2Y (109)

Set 'li = cPi + cP2 + cP3, where the cPi satisfy respectively

\72 cPi =

\72 cP2 -

\72 cP3 =

qr¡(()8(a - X)

r-y
2

2qy1-(a - X)

(110)

(111)

(112)
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In all three cases we wil have to solve the homogeneous equation 'Ç2rPh = O. This has already
been done in the zeroth order case, and the result is

00

4Jiut = í)a~ut Rn(X) + b~utSn(X))Tn(()
n=O

(113)

outside the vortex, where the singular solution must be kept, and
00

4Jl: = L a~Tn(X)Tn(()
n=O

(114)

inside the vortex. For rP2 and 4J3, the special solutions are easy to find and we get

l 3
4J2 = 4Jh + 4J2,s = rPh + 12Y + C1Y + Co

4J3 = 4Jh + 4J3,s = 4Jh + (~y3 + d1Y + do) ll(a - X)

(115)

(116)

Note that the solutions are divergent for large Y, and that the true solution is obtained
by matching the near-vortex solution to a far field, wave-like solution. Inside the vortex,
however, the solutions must be reguar.

To summarize, renormalizing the coeffcients an and bn, we have

1/~n

00

- L a~Tn(X)Tn(() + 4J2,s + 4J3,s
n=O
00

L (a~utRn(x) + b~utSn(X)) Tn(() + 4J2,s
n=O

(117)nl,out _0/1 -

where by definition, Ro(X) = 1. The continuity of the function across the boundary of the
vortex implies that

ia~Tn(a) + ili ~Tn(()d( = i (a~utRn(a) +,b~utSn(a)) (118)

for n :; 0 and

7rain + 11 4J3,s (a, () dl' = 1r (aout + bout S (a))n -1 .J ., 0 0 0 (119)

for n = O. For 4Ji, the function must be continuous across the boundary, but the derivative
has a jump given by equation (112). Integrating (112) across the boundary, we get

1 a2 - 1 (a4J1 J a+

j2 a2 - (2 aX a- = ar¡(()
(120)

Let's write r¡(() = L~=o r¡nTn((). The matching condition ofthe derivatives therefore implies
that, for n :; 0

(a~utR~(a) + b~utS~(a)) - a~T~(a) = ar¡n (121)
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and for n = 0,

bgutSó(a) = aTlo (122)

The coeffcients TIn can actualy bè determined from self-consistently using equation (105),
provided we know an and bn for all n. If we truncate the system at the order N - 1, there
are in total 3N + 3 coeffcients to solve for, and 2N matching conditions. The remaining
coeffcients are given by the matching of this solution to a far field.

3.3 Matching of the far field to the vortex solution.

The behaviour of the far-field is mostly determined by the total vorticity Q of the vortex patch
(with the exception of the axisymmetric component). In order to be consistent between the
far-field and the close-field, we require that Q = €2a, since we assumed the size of the vortex
patch to be of order of €. The aim of this section is more to assess whether such a matching
is possible rather than to perform it. The actual matching, as we shall see, can only be done
numerically, and wil be the aim of future work.

In order to do this matching, it is necessary to study the behaviour of the inner solution
for X -7 00 and the outer solution as X -7 1. The ellptical coordinate system asymptotically
tends to the polar coordinate system as X ~ 1. Indeed, we then have r2 = x2 + y2 ~ f2X2
and (~ coscp = xl V x2 + y2. Also, we use the property that Tn ( coscp) = cos( ncp), and
that X + VX2 - 1 ~ 2X. As a result, for X ~ 1, the inner solution tends to

00 (2) -n
'linner = €2 L en -. cos(ncp) + €3 (agut + bgut In (x + 0x2 - 1))n=O f

+ ti (a~ut (~r +b~t Gf) co(n~) + h"J (123)
On the other hand, as we saw, the outer solution tends to

00

'l0uter = O!:i'lguter(IYJ) + L (Am,:iM:l1/4m,1/2(IYJ)
n=l

+ Bm,:iW:ll/4m,1"/2(IYJ)) cos(nX) (124)

where the :I sign refers to the difference in the Y ). 0 and Y .. 0 branches. All the coeffcients
Am:i and Bm:i are uniquely defined, with the exception of the m = 0 mode where we, ,
imposed some additional boundary conditions to determine them. These may be taken as
free parameters if necessary to perform the matching on to the inner solution.

Let's study the various terms that appear in the inner and the outer, and that may
cause problems in the matching. The most obvious term is the axisymmetric term, which
has the main component as (l 112)€3y3 in the inner, and that can be shown to behave as
Co + ci Y + C2 y2 + C3 y3 + ... + logarithmic terms in the outer. The y3 terms can be matched,
since we can to choose the coeffcients C3 on either sides of Y = 0 to be l /12. This is possible

since we had the freedom of varying the boundary conditions on the axisymmetric mode to fit
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this requirement. Next, we must fit the logarithmc terms. The main logarithmc dependence
in the inner comes from the O(€2) term. As we take y -t 00, this term can be assimilated to
the contribution from a point vortex only in the outer region. We expect this term to match
exactly onto the outer solution for a point vortex only, which has been studied in Section
3.2.5. Finally, it can be shown that the remaining difference between the point vortex case
and the vortex+waves case is non-singular, so that this could possibly be matched onto the
o (€3) term in the inner. This last matching would yield the coeffcients an and bn, and

therefore determine the shape of the boundary by determining r¡.

4 Conclusion

In an attempt to understand the dynamics of vortices in accretion flows, we have been looking
for steady state solutions of such a system, since the existence of stable steady states might
be reason for the observed longevity of the vortices. The fist part of the project was a simple

attempt at finding such solutions using the rather crude assumption of a constant vorticity
field, which is only truly justifed in the case small vortex patches. This assumption allowed
us to consider top-hat vortex solutions, and study their steady state shapes. The second
part of the project was an attempt at dropping this assumption. In that case, it has been
shown that a general stationary lee wave solution must be added to the vortex solution in
order to satisfy the vorticity equation. This problem can only be solved asymptotically in
two limits: far from the vortex, it is possible to find linearized solutions. Closer to the vortex,
an expansion in the small parameter € which is really the ratio of the size of the vortex to
the distance to the center of the shear flow, yields results very similar to the first section:
to zeroth order, we recover the ellptical vortex solution, and to first order, the deformation
of the vortex matches onto the "background flow" , which consists of the Keplerian flow and
the lee waves. The possibilty of the matching between the two solution has been considered,
and wil be the purpose of future work.
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Some analysis of a two-dimensional
double diffsion experiment

David Osmond

1 Introduction

Convection driven by double difusion occurs when two properties contributing to the density
of a fluid difuse at different rates. In the ocean, the density of water is governed primarily
by heat and salt, and the heat difuses about 100 times faster than salt. It is now clear that
double difusion is an important process driving convection in the ocean, especially given its
abilty to move fluid particles across isopycnals.

Despite the primary mechanisms of double difusion being formulated back in 1960 by
Stern (1) as he considered the 'perpetual salt fountain' experiment conceived by his colleagues
a few years earlier (2), there remains a great deal to be learnt on the subject. The two simplest
examples of double diffusive convection are salt fingers and difusive layers. Both types involve
a stable stratifcation of one component, and an unstable stratifcation of the other, although
the overall density field is always stable. Fingers occur when the faster difusing component
is stably stratified. If we consider the heat-salt situation present in oceans, salt fingers occur
when the salt is unstably stratified, so there is hot salty water overlying cold fresh water. If a
perturbation moves a fluid parcel downwards, it finds itself in cooler and fresher suroundings
than was previously the case. It loses both heat and salt to the surrounding fluid; however,

since temperature difuses more rapidly, it experiences a net increase in density and thus
continues its downwards motion. The surrounding fluid gains heat from this descending
finger, and it in turn becomes lighter and moves upwards. Eventually the region becomes
filled with fingers moving in alternating upwards and downwards directions.

Diffusive layers result when the slower diffusing substance is stably stratified. Thus in

the ocean they occur when cool fresh water over lies hot salty water. Temperature difuses
faster than salt, so the bottom layer is heating the top layer, thus driving convection in a
similar manner to Rayleigh Bénard convection. The top layer also cools the bottom, which
also drives convection. The convection tends to homogenise the fluid above and below the
diffusive interface so that a very sharp interface results.

These two processes are primarily one-dimensionaL. The substances in the mean state

have gradients only in the vertical direction. The situation becomes more complicated when
there are gradients in both horizontal and vertical planes, and the physics of this process are
less well understood.

In 1996 Tuner and Veronis resumed work on an experiment Tuner had been considering
for a long time, and which was designed to look at one example of the two-dimensional double
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Figure 1: The experimental set-up. Salt and sugar are slowly pumped into the left and right
hand side respectively of a long tanle Both source rates are 5 ml per minute. The volume of
fluid in the tank is kept constant by using a constant head overflow device in the very center
of the tank.

diffusive problem. Veronis' suggestion was to consider the simplest confgurations possible,
and here we consider one of them.

2 The Experiment

A long thin tank (1820 x 80 x 120 mm) is constructed with an inlet at the center of each
end, and a constant pressure head outlet at mid height in the center of the tank. It is

pictured in figure 1. The tank is filled with a 50-50 mixture of salt and sugar with a density
p = 1100 kg/m3. Sugar is chosen as the second difusing component, as it does not difuse
through the side wall of the tank as does heat. Sugar has a difusivity about 1/3 that of
salt, and so in this system plays the role that salt does in the ocean, while the salt plays the
part of heat in the real ocean.

The experiment commences by slowly pumping a salt solution with density p = 1100 kg/m3
through the inlet at the left end of the tank, and a sugar solution with the same density in
through the right hand inlet. Both flow rates are very close to 5 cm3/min. Initially, when
the salt emerges from the source at the left inlet, it is much saltier than the fluid in the tank,
and thus salt diffuses out of it. Sugar also diffuses from the fluid in the tank into the salt
plume, but at a slower rate. The plume gets lighter as salt diffuses from it, while a sheath of
fluid surrounding the plume gets denser as the salt from the plume diffuses into it. Thus the
plume separates into a light core which convects up towards the surface, and a dense sheath
which sinks towards the base. The opposite process occurs at the sugar source, so that the
core sinks and the sheath rises.

As time continues, the density difference between the the top and bottom of the tan
increases. The rate of increase slows however, and after some time (a few days in this

experiment), a steady state density field is formed. Active double diffusive convection stil
continues however, although it does not alter the density field significantly. To first order,
the steady state convection consists of a region of fingering in the top left quadrant of the
tank above the salt plume, and again in the lower right quadrant beneath the sugar source.
In the top right and bottom left quadrants, difusive layers are visible.
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Figure 2: Sugar, salt and density profiles of the left and right hand side of the experimental
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The steady state sugar, salinity and density profiles are shown in Figure 2. There are
distinct differences between the left and right hand side of the tank, as would be expected from
the antisymmetric convective patterns, so they are profiled separately. The most dominant
feature of the profiles is the rapid increase of density at mid height. In particular, in both the
left and right hand sides of the tank most of this increase has arisen from the sugar having
settled predominantly to the bottom half of the tank. In contrast, the salt is marginally
unstable in both sides of the tank, having slightly higher concentrations in the top half than
in the bottom, and rapidly changing extrema at mid height.

Looking more carefully at the profiles, we can broadly divide each side of the tank into
4 layers. Starting with the left hand side, on top we have fairly constant concentrations

for about 50mm. As mentioned earlier, fingers were observed in this region, which in this
experiment are associated with a stable salt gradient, and an unstable sugar gradient. There
are some indications of these gradients, although they are clearly very small compared to
most of the other features.

The next 10mm contain rapid increases of both salt and sugar, thus leading to a very
stable density profile. This acts as a very strong barrier to any kind of vertical convection

through this layer, and indeed one would only expect pure diffusion to transfer properties
from one side to the other. Measurements of the profile from Figue 2 leads us to estimates
of the diffusive salt flux to be of order 0.14 mgjs, while the sugar flux is about 0.06mgjs.
The rate at which both salt and sugar are being pumped into the tank through the source
is approximately 8.33 mgjs, or about 60 and 150 times larger than the pure salt and sugar
diffusive fluxes respectively.

From 50-60mm above the bottom of the tank there is a very stable sugar gradient, and
an unstable salt gradient. We associate this with a strong diffusive layer, and indeed that is
what is seen in the experiment. In the lowest 50 mm the sugar concentration gently increases
and the salt decreases downward as in the diffusive layer above.

The layers are reversed in the right hand side of the tame There is a region of weak diffus-
ing layers on top of a sharp diffusive interface, followed by a layer stable in both properties,
while weak fingering occurs in the lowest layer. The level of the sources and sink corresponds
very closely to the interface between the strong diffusive layer and the stable layer.

As mentioned earlier, the dominant feature of the profiles was the fact that most of the
sugar was in the bottom half of the tan, while the salt is marginally unstable. This is
very similar to the profile one would expect if one had run a diffusive layer experiment by
placing a salt solution above a sugar one. The unstable salt stratifcation drives the diffusive
layers until the salt is nearly evenly distributed between the upper and lower halves, in the
process raising some of the sugar, but not as much as the salt that is lowered. Diffusive layers
do a better job of reducing the potential energy of a fluid than do fingers, so from energy
considerations it is not surrising that the density field resembles that of a diffusive layers

experiment rather than a fingers experiment. But given that both diffusive layers and fingers
are active in this experiment, it is not immediately clear from a dynamic viewpoint as to why
the diffusive layers dominate the concentration profiles.

Given that the sugar travels upwards through the diffusive layers, and downwards through
the fingers, we present Figure 3 as a simplistic picture of the salt and sugar pathways through
the tank.
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Figure 3: Simplistic picture of salt and sugar pathways through tanle

One aspect of double difusion experiments that has been looked at quite closely is the
ratio of the fluxes through either the fingers or the difusive layers. For salt-sugar fingers the
ratio of sugar to salt fluxes is around 0.9, provided the density ratio, Rp = o/I'z/ßSz is not
too close to one. For salt-sugar difusive layers, the ratio of salt to sugar fluxes is around 0.6,
again provided the density ratio is not too close to one. Given that we have four dominant
flux pathways indicated in Figue 3, and four difusive regions, we may construct a series
of 4 equations with 4 unnowns. Alas, the 4 equations are not independent, nor are they
even consistent, so there is no solution other than the trivial zero solution. We may ilustrate
this through an analogy with two connected water wheels. One water wheel is powered by
a descending sugar solution, and it in turn raises a salt solution. There is friction in the
system, so that it can only raise 9 kg of salt for every 10kg of sugar that fal through it. We
shall call this the finger wheeL. The second water wheel is powered by the descending salt
solution, power it uses to raise the sugar solution. This water wheel has a greater friction,
so that it can only raise 6kg of sugar for every lOkg of salt that powers it. This wheel is
called the diffusive wheeL. The two wheels are connected so that the salt raised by the finger
wheel powers the difusive interface wheel, which in turn raises the sugar to drive the first
wheeL. As the wheels are not 100% effcient, the system slows to a halt. Clearly we need
some other mechanism to get either salt or sugar or both to the top of the system to drive
the interconnected components so that they run continuously.

Figure 3 hints at one possibilty. In the early stages of the experiment, while the tank
was stil close to being homogeneous, the plumes rapidly split into a core and sheath, one
part rising up to the top of the tank, and the other half descending to the bottom. These
are represented by the wiggly lines in Figure 3. In the final steady state, this process is not
nearly as obvious, but never-the-Iess there are possible signs of it stil occuring. Another
option is the fact that most of the diffusive layers are inclined at an angle. This can be
explained through the experimental evidence that fluid is moving parallel to these interfaces.
Fluid immediately underneath the difusive layer is continually getting denser, and so as it
moves laterally underneath the interface, it also tends to sink, thus causing the interface
to slope downwards. The fluid above the interface is continually getting lighter, thus it
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must be moving in the opposite direction to the fluid underneath the interface so that in its
direction of motion the interface is sloping upwards to accommodate its increased buoyancy.
This advection can transport sugar or salt vertically (as it travels horizontally), without ever
crossing the difusive layer and thus being constrained to the flux transport ratios.

3 Theory

Before delving into the theory of difusive fingers and layers, let us continue with the coupled
water wheels analogy. For the wheels to turn, we require an additional driving force to
overcome the friction of the system. Let us derive a formula for the ratio of the flux of the
driving to the flux transport of the wheels.

Let us define FTi to be the salt flux indicated in figue 3 for the path that travels from
the source, up through the fingers, down through the layers, and then out through the outlet.
Fsi is the corresponding value for the sugar flux. The two wiggly lines flowing upwards from
the sources represent the driving terms FT2 and Fs2. The driving salt flux FT2 bypasses the
fingers, using a different mechansm to get to the top, but then joins up with the salt flux
FTi in traveling down through the layers. Similarly, the driving sugar flux FS2 bypasses the
layers, but joins up with Fsi to pass through the fingers. Let II ~ 0.9 be the ratio of the
sugar to salt flux through the fingers, and id ~ 0.6 be the ratio of the salt to sugar flux
through the diffusive layers. Thus we have the following relationships:

FTi - II
Fsi + FS2 - ,

Fsi
= id.

FTi + FT2
(1)

We rearrange to get

FTi = i/(Fs2 + IdFT2), Fsi = id(FT2 + iIFS2)1 - idil 1 - idil (2)

We consider three situations.

. FT2 = 0:

FTi II ~ 2.0,
Fsi ilid

~ 1.2- = -
FS2 1 - idil FS2 1 - idil

. FS2 = 0:

FTi ilid ~ 1.2,
Fsi id

~ 1.3= =
FT2 1-idil FT2 1 - idil

· FT2 = Fs2:

FTi = ,/(1 + id) "" 1 6 Fsi = id1 + '1) ~ 1.2.
FT2 + FS2 2(1 - Idl/) "" . , FT2 + FS2 2(1 - Idl/)

(3)

p

L~
:':~

'r

(4)

(5)

It is clear that in all situations, the driving flux is able to generate more convection than
itself in the fingers - diffusive layers system; however the ratio is not more than about two.
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3.1 Salt Fingers

The linear stability analysis of the perturbations that grow into salt fingers is a well-studied
problem, and reveal the wavelength of the disturbance which grows fastest. There remains

some debate as to whether in the equilibrium model the fingers remain with this width (as
proposed by Schmitt (3)), or whether they obtain a different width which maximises the
buoyancy flux (see Stern (4) and Howard and Veronis (5)). Most theories appear to agree that
the salt flux through fingers scales as the formula

ßF '" /'T(ßflS)2S aTzL2

where L is the buoyancy-layer scale defined as

(6)

L = (411/'!,) 1/4
gaTz

The discrepancy between most formulas comes into the formula for 'Iz. It is the unstable
salt field which drives the fingers, and thus presumably controls the gradients in the finger
zone, so ideally one would like to rewrite the temperature gradient Tz that appears in (6) iii
terms ofthe salinity difference in order to determine the flux law solely as a function of ßflS.
Many people favour a 4/3 power law (see Stern (4), section 11.4), and there is experimental
evidence in support of this (Tuner (6)). However, as we have profiles of both the T and S
field, we are able to try either formula, and see if they give consistent results. The formula
we shall use is that derived by Howard and Veronis (5) in the form of (6) given by

(7)

ßF - 0 1578 .J g/'t (ßflS)2S1 - . li p;' (8)

together with Stern and Turner's (7) empirically fit curve to the 4/3 power law

ßFs2 = C(ßflS)4/3, (9)

where C = 10-4 m/s
In both cases we assume the heat flux FT is a factor of 0.91 (7) times the salt flux.

3.2 Diffusive Layers

Tuner (8) first suggested that since convection through diffusive layers was similar to Rayleigh
Bénard convection, the formula for the heat flux should scale in a similar fashion. That
is, the nondimensional heat flux through diffusive layers, given by the N usselt number,
NUT = FTd//'TflT, should be proportional to the Rayleigh number to the power of 1/3.
The reasoning behind this relationship is that the length scale of the convective roll is not in
general governed by the size of the tan, and it is this relationship that removes the external
length scale dependence. It follows that the heat flux is given by

aFT = C(Rp) (g/'~/1I)1/3 (aflT)4/3 (10)
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The function C has quite a strong dependence on Rp, especially for heat salt systems.
Shirtclife (9) found his experimental results fit the formula

C = 2.6R;12.6. (11)

He also provided an estimate for the flux ratio, ßFs/aFT = 0.60.

4 The Flux box model

As mentioned previously in section 2, the experimental profiles drawn in Figue 2 suggest
the tank can be divided up into eight primary regions, four on each side. We draw them in
Figure 4.

Table 1 provides all the data necessary to solve the flux equations given in the preceding
section. To get the total flux of either solute, we must multiply by the area of the region
where the fingering or diffusive layer is present. We assume this area is constant for all six of
the interfaces we consider, and non-dimensionalise it by half the actual physical area of the .
box A, writing the non-dimensional area by Ai, We then non-dimensionalise the fluxes by
the input salt and sugar flux, and the answers are listed in Table i.

One clear result is that the flux through box 1 is much smaller than any of the other
fluxes. This results from the extremely small unstable sugar gradient which is driving it.
There is a large amount of uncertainty in the value for ßßS, indeed it may be up to a factor
of three bigger than the best fitting line used to generate the value listed. This would increase
the values of Fsi and FTI by a factor of 9, but they would stil remain negligible compared
to the other terms.

Another clear result is that nearly all the fluxes are much larger than physically reasonable.
Although we have not substituted in a value for A I, we would expect it to be of order one,
meaning that the entire left hand of the tank is fingering in the top layer, diffusing in the
bottom, and vice-versa in the right hand side. The dimensionless flux values listed imply
the dimensional fluxes are often over 100 times greater than the input flux. Referring to

our previous water wheel analogy, a small amount of driving can generate fluxes through
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Property Box 1 Box 2 Box 3 Box 4 Box 5 Box 6 Box 7 Box 8

height (m) 0.05 0.01 0.01 0.03 0.05 0.01 0.01 0.03
al:T 0.8 13.2 -19 -4 -1.4 -24.2 7 8
ßl:S -0.13 15.5 36 6 1.9 44.6 15 -3.5
Rp 6 1.9 1.5 1.4 1.8 2.3
dI'z(m-i) 16 1320 -1900 -133 -28 -2420 700 -267
aFsi/A¡ 0.7 130
aFTi/ A ¡ 0.6 110
aFS2/A¡ 0.015 11

aFT2/A¡ 0.013 9.7
aFS3/A¡ 54 130 110 20
aFT3/A¡ 90 210 190 34

Table 1: Properties of the Eight Boxes. The fluxes have been normalised by the source input
fluxes. A ¡ is the area of the convecting region divided by the area of half the tanle The
subscripts on the fluxes refer to whether they were predicted by equation (8), (9) or (10)
respectively.

the coupled difusive system greater than the driving term, but by no more than a factor of
two. Clearly a factor of 100 or more is out of the question, even if it were possible for the
entire input fluxes to reach the top of the tank by some unidentifed mechanism to become
the driving flux. Thus there must be a problem with our application of the theory. There
are a few obvious suggestions. Firstly, the formula by Howard and Veronis was derived for
two fluids which have vastly different difusivities. It was designed for the heat-salt system
rather than our sugar-salt system. They alowed the salt to pass through the fingers without
diffusing, so one would expect their formula to predict a larger salt flux than the sugar-salt
experiment produces. Secondly, our profiles of the both the sugar and salt in most cases just
do not have the resolution required to gain accurate values of the salt and sugar contrasts
across the interfaces. The contrasts that appear in the theories refer to the contrasts that
occur across the finger or layer interfaces, while we are using instead the contrasts that occur
across the whole box. In the one dimensional theories the fluid above and below the interfaces
are usually well mixed, so this difference is not important. In our experiment, the regions are
distinctly two dimensionaL. This is most obvious in the experiment through the observation
that the diffusive layers are generally inclined at some angle to the horizontaL. This siope is
associated with advection paralel to the interface, and we seem not to have the well mixed
regions above and below the interfaces that the theories assume. Thus the difference between
the sugar or salt contrasts across the interfaces, and the corresponding differences across the
boxes that we used to apply the theories may be signicant. To conclude, we suggest that
the simple theories derived from one dimensional models do not adequately describe this
complicated two dimensional system.
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5 The box model

In the previous section, we divided the tank up into the eight well defined regions observed

in Figure 2. In that model, we used the temperatures and salnities found on the boundary
of the boxes to determine the fluxes within each box. Let us now construct a similar box
model corresponding to those eight regions, but now assign a mean temperature and salnity
to each box rather than boundary values. The idea in this model is to try to calculate the
fluxes between the boxes as opposed, to the fluxes within each box.

In the previous section, we found that the simple one dimensional formulas for fingering
and diffusion did not adequately describe the experimental system. Let u~ discard these
theories and return to the simple assumption that the flux between two boxes is proportional
to the difference in concentration between those boxes. Writing a formula for the rate of
change of salinity in box 1, we get

Vil\ = bi2(T2 - Ti) + bis(Ts - Ti) + TilC - QiTi == O. (12)

The final equivalence is due to the fact that we are interested in finding the steady state
solution. The first two terms on the right hand side of this equation are the fluxes of sugar
into box 1 from box 2 and box 5 respectively, where the b terms are unnown flux transfer
coeffcients. The thid term represents a source input term. For the moment we wil assume
that the salt source is able to directly inject fluid into all four boxes on the left hand side
of the tank (boxes 1-4). C is the salinity of the salt source, also equal to the concentration
of sugar in the sugar source, while Tii is an unknown outflow coeffcient. The fourth term
represents the rate of outflow of salt from box 1, where Qi represents the rate at which fluid
is leaving box 1, which has salinity Ti. Finally Vi is the volume of box 1. We choose to use
units of kg/m3 for both salt and sugar concentrations, so the transfer coeffcients bij have
units of m3/s. It is tempting to interpret these as the volume flux between box i and box
j; however this is would only be correct if the flux transports were due to advection only,

which is not true. To further emphasise this, we use different transfer co-effcients for the
corresponding sugar equations, aij.

Inherent in the above equation is the assumption that each box is homogeneous. Thus,
the flux of either solute to the outflow is equal to the the volume flux of the fluid leaving that
box times th~ concentration of that solute. In addition, we assume that fluid entering each
box from the infow has the concentration of the reservoirs, and thus the flux of either salt is
proportional to the volume flux times the concentration.

There are similar equations for rate of change of salinity for the remaining 7 boxes, as
well as the 8 corresponding equations for sugar, and they may be found in the appendix. In
addition, there are two more conservation equations. They are simply that the sum of the
individual salt sources is equal to the flux of the salt source, C ¿j Tij = QC, as is the sum
of the individual sugar sources, C ¿j Sij = QC. There are also two similar conservation

equations for the sum of the outflow terms, however they are already implicitly expressed in
the previous 18 equations.

The experimental data gives us the values of the sugar and salt concentrations in the
boxes. Thus the unnowns are the 10 transfer parameters for each of sugar and salt, the 8
output flux terms Qj, and the 4 input flux terms for each of salt and sugar - a total of 36
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unknowns.
As of the moment, we have 19 equations - just over half the number of unnowns - a

highly under-determined problem. We can introduce more equations, for example by relating
the transfer coeffcients in some way, or reducing the number of unnowns by restricting
infow and outflow from some boxes, but for the moment, let us discuss a method of finding
solutions to under-determined pròblems, described by Veronis in General Ocean Circulation
¡1O).

Our eighteen equations may be written in matrix form Ax = b. Here A has 19 rows and
36 columns, or more generally m x n, where m is less than n. The sizes of x and bare n x 1
and m x 1 respectively.

The key to the method is to assume we can write x = A Tf, where AT is the tranpose
of A, and f is a yet to be determined matrix of size m x 1. f satisfies the following equation,
AA Tf = Ax = b. Now AAT is square (m x m), and if it has a non-zero determinant, we
may solve for f = (AA T)-lb, and thus x = A T(AA T)-lb.

We have thus determined a unique solution to an undetermined problem. The apparent
paradox is explained through the writing ofx = A Tf. This means we are writing the solution
vector x as a linear combination of the m vectors that make up the rows of A. x has n
components, and thus defines a point in an n dimensional space. We canot write all the
points in the n dimensional space through the summation of m vectors. It turns out that the
solution this method returns is a projection of the (unnown) true solution in n dimensional
space, onto a m dimensional space defined by the m rows of A.

Let us take the example of x+y = 10, so A=¡l, 1). We do not know what the true solution
is, other than it lies on the line y = 10 - x, but its projection onto the one dimensional vector
space defined by the one row of A is x = y = 5. It is clear in the formulation of the problem
that we have not treated x any diferently to y, and that is reflected in the identical values
returned. This is important, as if we distinguish between them somehow, then that can make
a great difference. For example, let us non-dimensionalise x by L, and y by 2L, writing
X = xlL and Y = yl(2L). The original equation may now be written X + 2Y = lOlL, and

the returned solution is X = 21 L, Y = 41 L, which lies on the space defined by the vector

(1,2), the row of A. In terms of the original variables, the solution is x = 2, y = 8, vastly
different to the previous solution (5,5) even though the equation solved was identicaL. This
has important consequences for how we scale our problem. We must choose consistent scales
for all quantities, as otherwise the solution wil be biased towards those quantities that were
scaled by values too large. It is clear that to use this method, if there is no reason to favour
any unknown value over any other, then it is important to reflect that in the formulation of
the equations, so that their co-effcients are equal.

Figure 5 shows how the solutions to the box model equations do not change dramatically
as we increase the number of equations unti they equal the number of unnowns. Plotted
are the infow, outflow and cross box salt and sugar flux transports. The fluxes have been
normalised so that the sum of each of the salt and sugar infows is 100, as is the sum of
each of the outflows. In picture (a), only the 19 equations listed in the appendix have been
used. The main point to note in this picture is that the horizontal transports are an order of
magnitude bigger than the vertical transports. In addition, the infows and outflows to the
two middle layers are also an order of magnitude larger than the corresponding values for the
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Figure 5: Salt and sugar fluxes given by the solution to the box model equations. The fluxes
have been normalised so that the sum of each of the infows is 100, as is the sum of the
outflows. In (a), only the original 19 equations are solved. In (b), there are an additional 10
equations, corresponding to limiting the outflöws to the middle two layers, and applying the
six vertical dynamic constraints. (c) is an exact solution, as it contains the same number of
unnowns as equations. It differs from (b) through the infows being limited to the 3 boxes
indicated, while the outflows have been limited further to just the two middle layers.
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Figure 6: Fluxes of salt and sugar given by the solutions to the box model equations. Fluxes
normalised as in figue 5. In (a), the coeffcients of the infows have been reduced from Co to
Co/50. In (b) the source inputs are limited to the top left and bottom right hand boxes. In
both cases the outflows are limited to the middle two boxes on each side, and the six vertical
dynamical constraints described in the text are applied.
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upper and lower layer. As a result, there is very little transport of sugar or salt occurring
in the upper and lower layers. In (b), there are an additional 10 constraints, consisting of
restricting the outflow from 8 to four layers, and adding 6 vertical dynamical constraints.
These are based on symmetry arguments and are ai2 = a78, bi2 = b78, a23 = a67, b23 = b67,
a34 = a56 and b34 = b56. Notice the fluxes are very similar to those plotted in (a). In (c),
the solution is exact, as the number of unknowns is the same as the number of equations. To
achieve this match, we have had to restrict the infows to just the 3 boxes indicated, and the
outflows to the two boxes indicated. We feel these constraints are too harsh, and we provide
the result only to show the the exact solution is not too dissimilar to those plotted in (a) and
(b).

Our reason for the unexpectedly small fluxes in the upper and lower layers, particularly
in Figure 5 (a) where we have not forbidden infow or outflow to the top and bottom layers,
is that we have formulated our original 19 equations in a maner that is biased against fluxes
in these regions. This is due to assuming the input source enters all boxes at the source

concentration. This is a reasonable assumption for the middle two layers, but not so for the
upper and lower layers. The main reason for alowing infow and outflow from the upper and
lower layers is to allow some mechanism to drive the diffusive 'water wheels'. While we have
not specified what that mechanism is, although we suspect it is due to vertical transport
along the sloping diffusive layers, it is highly improbable that the flux from the source to
the upper and lower layers via this mechanism arrives with the concentration of the infow.
We have seen in the examples provided earlier that if we non-dimensionalise a term in the
under-determined system of equations by an large quantity, then that term dominates the

equation. Thus we expect the infow terms to dominate the equations. For conservation

arguments, this term must be balanced by the sum of the other terms, and the co-effcient of
the outflow is the next biggest term, so it is the next most dominant term. Thus we see the
cross-box transport seems to playa minor role in these conservation equations.

To see how changing the scaling for the input terms makes a difference, in Figue 6 (a)
we show the solution to the system of equations where the source term is now the source
concentration divided by 50. We can see in this figue that the vertical fluxes is now a similar

order of magnitude to the horizontal fluxes, and we have convection in the upper and lower
layers. This solution matches nicely' the schematic drawing of the fluxes drawn in Figure
3, however it is not realstic, as we should really only rescale the input terms to the upper
and lower boxes in this way. If we were to do that however, we would somehow have to
redistribute the lost concentration to the two middle layers, the method by which to do so is
currently not clear.

As a final test of our box model, we try restricting the source terms to solely the upper
left and lower right boxes. The resulting fluxes are pictured in Figure 6 (b). Notice the very
large recirculations apparent in the upper and lower halves. This bears a nice similarity to the
water-wheel analogy. A driving flux can generate larger fluxes in the coupled double diffusive
regions that the driving flux itself. In this case the factor is greater than the maximum factor
of two predicted by the theory, but we have not specified any flux ratio parameters for the
finger or diffusive regions, and thus we would not expect a match. This example also helps
to explain why we see very little infow or outflow from the upper or lower layers. It does not
take much of an inflow in these layers to drive large amounts of recirculation in the middle
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layers. It seems logical that this model tends to reject these high-energy solutions when there
is a much simpler solution with no flux in the upper and lower layers.

6 Conclusion

We have seen that a coupled system of fingers and diffusive layers cannot be sustained adjacent
to each other without some other driving mechanism to transport either salt or sugar to the
top of system. With driving, the resulting fluxes through the fingers and diffusive layers can
be up to twice as large as the original driving term.

The one dimensional flux laws predict fluxes through the salt fingers and diffusive layers
up to a few hundred times the source fluxes. These are much too large to be considered
possible. While the flux laws used are not without question, it is more likely that the two
dimensional problem we are analysing is too far removed from the one-dimensional theories
to be of use, in addition to the experimental data being a little too sparsely separated.

Our box model only permits the driving flux to enter the top of the system at the same
concentration as the source. The large co-effcient of this source term dominates the vector
space of the possible solution set, and to fist order it is the outflow that matches this term.
The cross box transports play only a minor role in the solutiöns. Small amounts of source

flux terms in the upper and lower layers produce large amounts of recirculation in the middle
layers, which the model rejects in favour of the less energetic solutions that contain very little
input terms to the upper and lower layers. To generate non-negligible amounts of convection

in the upper and lower layers, we require a theory for the mechanism behind the driving
term, which we may then use to scale the source terms for the upper and lower layers.
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8 Appendix: The box model equations

The model has nineteen basic equations, comprised of a sugar equation for each box,

8i = ai2(82 - 8i) + ais(8s - 8i) + C8i! - 8iQi == 0,

82 = ai2(8i - 82) + a23(83 - 82) + a26(86 - 82) + C8i2 - 82Q2 == 0,

83 = a23(82 - 83) + a34(84 - 83) + a37(87 - 83) + C8i3 - 83Q3 == 0,

84 = a34(83 - 84) + a4s(8s - 84) + C8i4 - 84Q4 == 0,

8s = ais(8i - 8s) + aS6(86 - 8s) - 8sQs == 0,

86 = a26(82 - 86) + aS6(8s - 86) + a67(87 - 86) - 86Q6 == 0,

87 = a37(83 - 87) + a67(86 - 87) + a7s(8s - 87) - 87Q7 == 0,

8s = a4s(84 - 8s) + a7s(87 - 8s) - 8sQs == 0,

a salt equation for each box,

Ti = bi2(T2 - Ti) + bis(Ts - Ti) - TiQi == 0,

T2 = bi2(Ti - T2) + b23(T3 - T2) + b26(T6 - T2) - T2Q2 == 0,

T3 = b23(T2 - T3) + b34(T4 - T3) + b37(T7 - T3) - T3Q3 == 0,

T4 = b34(T3 - T4) + b4S(Ts - T4) - T4Q4 == 0,

Ts = bis(Ti - Ts) + bS6(T6 - Ts) + CTiS - TsQs == 0,

T6 = b26(T2 - T6) + bS6(Ts - T6) + b67(T7 - T6) + CTi6 - T6Q6 == 0,

T7 = b37(T3 - T7) + b67(T6 - T7) + b7S(Ts - T7) + CTi7 - T7Q7 == 0,

Ts = b4S(T4 - Ts) + b7S(T7 -'Ts) + CTis - TsQs == 0,

plus three conservation equations,

Qi + Q2 + Q3 + Q4 + Qs + Q6 + Q7 + Qs = 2Q,

'"

¡.

N-

.!\

8ii + 8i2 + 8i3 + 8i4 = Q,

Tii + Ti2 + Ti3 + Ti4 = Q.
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Scalar Dispersion in a Two Dimensional Random Flow Field

Meredith M. Metzger

Department of Mechanical Engineering
University of Utah

i Introduction

Experimental observations of the vertical propagation and decay of near inertial oscillations
(NIO) through the oceanic mied layer has stimulated a desire to understand the effect ofNIO
activity on mixing processes in the upper ocean. Ocean surface forcing due to the passage
of large scale wind events or storms instigates the formation of coherent NIO structures
which tend to migrate in a helical trajectory as evident from near surface buoy drifters.
Observations also indicate that NIO mied layer activity eventually decays to background
levels approximately 20 days after the initial onset of the storm ¡i). A major challenge to
oceanographers has been to explain the primary mechanisms responsible for the observed time
scales of NIO propagation and decay. Young and Ben Jelloul ¡2) hypothesized that advective
distortion by the geostrophic eddy field decreases the NIO horizontal coherence scale. From
a multiple time scale analysis, they formulate a reduced NIO equation linearized about the
geostrophic flow. This analysis effectively filters out inertial oscillations allowing focus on the
near inertial component of the motion. Their NIO equation combines the effects of advection
by the geostrophic velocity, wave dispersion, and refraction due to the geostrophic vorticity.
Subsequent work by Balmforth et al. ¡3) investigated results from the NIO equation for
the case of a background geostrophic shear flow. The present study extends this work by

considering the fundamental properties of the NIO equation for the specifc case of linearized
NIOs superposed on a two stage random wave model of the background geostrophic eddy
field.

We begin the paper with an overview of near inertial oscilations and describe the method-
ology used to obtain the reduced NIO equation that provides the basis for the present study.
We wil see that the NIO equation is characterized by a parameter termed the dispersivity,
analogous to the difusivity associated with passive scalar difusion processes. We then dis-
cuss the random wave model used to represent the background geostrophic flow and some
fundamental properties associated with this type of model flow. We then study some limit-
ing parameter cases of the governing equation, specifcally, zero and infnite dispersivity. We
present data from the numerical solution of the governing equation for a range of dispersivity
values. Finally, we take a look at the decay of energy in the large scales and conclude with
comments on directions for future research.
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2 Near Inertial Oscillations (NIO)
Inertial oscilations describe fluid motions arising from a force balance between fluid inertia
and Coriolis acceleration. The reduced horizontal momentum equations, in a reference frame
rotating with the earth, are

Ut - fov = 0 and Vt + fou = o. (1)

w here the subscript t represents partial diferentiation with respect to time and f 0 = 20 sin ()
is the inertial frequency with () and 0 denoting the latitude and the earth's rotation rate,
respectively. Throughout the paper, we follow the convention that (u,v) describe the hor-
izontal velocity components in the easterly (x) and northerly (y) directions, respectively,
and z refers to the vertical direction. The solution to (1), assumig constant f, is simply
U = U e-ifot where U = u + iv and U is the initial velocity. The corresponding particle
trajectories, x + iy = t e-ifot, form closed loops. As a simple model of the passage of a

storm front, we assume that at time t = 0, an instantaneous, homogeneous wind event occurs
thereby exciting the entire horizontal domain to move with a unform velocity of Ü. The
ensuing motions, described by (1), are referred to as inertial oscilations. Using data from
mid latitude ocean buoy drifters (1), estimates of the typical diameter of inertial oscilations
is of the order of 5km. In reality, however, (1) only represents the leading order behavior of
the flow; and therefore, ensuing motions are actually near inertial oscilations that are more

accurately characterized by helical type trajectories and have a finite lifespan in the mied
layer of approximately 20 days.

Note, in the solution of (1), a constant inertial frequency fo was assumed. This assumption
ceases to be valid if a coherent fluid motion spans a large enough horizontal extent; then the
latitude difference (and, hence, the change in fo) between the most northerly and southerly
points of the coherent motion can no longer be neglected. For simplicity, we neglect these
so-called ß effects in the remainder of the paper.

3 Reduced Linearized NIO Equation

The previous work of Young and Ben Jelloul (2) regarding near inertial oscillations provides
the basis for the present study. We briefly sumarize the relevant points of that work here.
We begin by assuming hydrostatic, Boussinesq, inviscid, incompressible flow. The velocity is
linearized about the bacground geostrophic flow which can be written compactly in terms of
a streamfunction, W (x, y, z, t) = Pg / (f oPo) with Pg denoting the geostrophic pressure field and

Po, the mean density. Futher reduction of the linearized governing equations (not reproduced
here) is achieved through a multiple time scale analysis with the requirement that internal
waves be nearly inertiaL. The general dispersion relation for internal waves can be written as
w2 = (N;/1~ + f;/1~)/ /12 where w is the oscillation frequency, (/1h, /1v) denote the horizontal
and vertical wavenumbers, respectively, /12 = /1~ + /1~, and No is the characteristic buoyancy
frequency associated with the vertical density stratifcation of the fluid (for further discussion
of internal waves, see Gil (4), pp. 258). We define a small parameter € == (No/1h)/(fo/1v).
Physical estimates of No in the North Pacific and North Atlantic indicate No/ fo = 0(102)
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(5J. Therefore, in order for € ~ 1, the characteristic vertical wavelengths of the motion

must be several orders of magntude smaller than the characteristic horizontal wavelengths,
i.e. Kv // Kh. This is entirely consistent with our use of the hydrostatic approximation

(see Gil(4J,pp. 159 for a discussion on the equivalence between longwave and hydrostatic
approximations). The internal wave dispersion relation then reduces to w2 ~ f;(1 + €2);
whereby, inertial oscillations are recovered at leading order. Departures from perfect inertial
oscilations become appreciable on the slow time scale ts == €2 fat.

In the multiple time scale analysis, the complex velocity U is expanded in powers of €2
giving U = Uo + €2U2 + . .. where the leading order solution Uo is simply the velocity asso-
ciated with the inertial oscillations governed by (1). For convenience we write the leading
order solution as Uo = MAx, y, z, ts) e-ifot which allows for trivial integration of the incom-
pressibility condition to obtain the leading order vertical velocity explicitly. If we futher
define a new complex field A such that M == (f;N-2)Az, then it is also possible to explicitly
calculate the leading order pressure by integrating the hydrostatic equation along with the
mass conservation equation. In essence, A incorporates all of the relevant physical quantities
of interest. Therefore, we prefer to work solely with the dependent variable A. Substituting
the definition of A into the leading order horizontal velocity solution yields an expression for
the demodulated velocity of the NIO

u + iv = e-fot LA, (2)

where

LA == (f; N-2 Az)z. (3)
We find that the O( €2) equation contains resonant terms proportional to e-ifot. To prevent

related secular terms from arising in the higher order correction, we require that

. .
LAt + J(w,LA) + ~fo\72A+ ~\72WLA = 0, (4)

where \72 = 8xx+8yy represents the horizontal Laplacian operator and J(w, LA) = wx(LA)y-
wy(LA)x is the Jacobian. One advantage of (4) is that the fist term on the left hand side has
the direct physical interpretation of being the time rate of change of the horizontal velocity.

The vertical boundary conditions demand zero vertical velocity at the top and bottom of the
ocean, translating into

Az(x, y, 0, t) = Az(x, y, -H, t) = 0 (5)

where H is the depth of the ocean. This condition follows the rigid lid approximation that
assumes the typical amplitude of surface waves are negligible compared to the vertical wave-
length of the propagating NIOs. Normalized horizontal boundary conditions are 27f periodic.
The initial condition depends on how one chooses to model the passage of the storm or other
instigating event. We wil specify this condition later. The present study wil focus on in-
vestigating some of the fundamental characteristics of the NIO equation (4) in the specific
context of a simple random wave model of the background turbulent geostrophic eddy field.
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4 Vertical Normal Modes

The top and bottom boundaries of the ocean have the effect of confning wave energy to a
region of finite vertical extent. Thus, the ocean can be considered as a waveguide causing
energy to propagate along the horizontal direction. With this notion, we proceed in assuming
a solution to (4) in terms of a superposition of vertical normal modes

00

A = L Am(x,y,t)Pm(z)am,
m=l

(6)

where m denotes the vertical wavenumber, Pm(z) represents the eigenfunctions, and am
represents the projection of the initial condition onto the vertical normal modes. Note, the
expansion in (6) relies on the assumption that the background geostrophic flow is barotropic,
i.e. wz=O. Applying the differential operator L to (6) gives

LA = L(AmPm) = (Am)LPm. (7)

Substituting (7) into (4),

LPm -i(foj2)\12 Am = _R-2
Pm - Amt + J(w, Am) + ij2(\12w)Am m . (8)

For historical reasons (6), eigenvalues are represented as R;;?, where Rm (dimensions of length)
symbolizes the Rossby deformation radius. From (8), we obtain a partial differential equation
for Am

i 2 ihm 2
Amt + J(w,Am) + '2(\1 w)Am = 2\1 Am, (9)

where hm = foR~ wil be referred to as the dispersivityT associated with the mth vertical
mode. Since the initial condition of A has been projected onto vertical normal modes, the
initial condition associated with each Am is simply Am(x, y, 0) = 1. Exact numerical values
of 1im depend on the eigenvalues of (8) which, in turn, depend on the shape of the buoyancy
frequency profile, N =N(z). If we assume N=constant, then Pm(z) ex cos(N2(foRm)-2z) and
Rm = Nj foy'Hj(mn). A constant buoyancy frequency profile, however, is not a reasonable
physical model; and therefore, we chose something slightly more realistic. In this regard, we
follow the work of Gil (6). Figue 1 shows the model N profile used here. The corresponding
eigenvalues are computed numerically and plotted in figue 2 using a value of fo = lxio-4s-1.

TThis is appropriate nomenclature since (9) begets a dipersion relation. Consider only the time derivative
and Laplacian terms; assuming a solution of the form ek:Hy-wt yields the real-vaued dispersion relation
w = ñ(k2 + £2). This is particularly interesting since (9) "looks like" an advection-dision equation but
because of the i multiplying the Laplacian term, a real-valued dispersion relation is obtained analogous to a
wave equation.

260



o x 10'

-0.5

-1
5

-1,5 4

i -2
N roE 3

-2,5

-3 2

-3,5

-4

-4.5
o 0,002 0.00 0,00 ,o.OB 0,01 0.012 0.014

N(s- )

o
2 4 6 8 10 12 14 16 18 20

m

Figure 1: Buoyancy frequency profile used
to calculate hm.

Figue 2: Dispersivityas a fuction of ver-
tical wavenumber m.

Of interest is the relatively large range of fi values (over four orders of magnitude) apparent
just within the fist 10 vertical modes. We expect this to play an important role in the
developing structure of A. Also, note that for the N profile in figure 1, fi -+ m-2 as compared
to fi -+ m-1/2 for the case of N=constant.

Except for the dependence of the dispersivity fi on the vertical wavenumber m, A appar-
ently satisfies the same initial value problem regardless of the specific vertical normal mode
under consideration. Therefore, in the remainder of the paper, we drop the subscript m on
A. Focus is placed on understanding the general behavior of the initial value problem given
by

. 'fi
At + J(w, A) + ~(\72W)A = i2 \72 A, A(x,y,O) = 1 (10)

for a range of parameter values 0 ~ fi 0( 00 and a specifc form of W detailed in section 6.
Equation (10) wil be referred to as the passive scalar dispersion equation.

5 Scalar Dispersion Equation

An important aspect of (10) is that the quantity IAI2 is conserved over the spatial domain.
To see this, we start by writing A in terms of a magnitude R and phase ø

A = Rei6. (11)

Substituting (11) into (10), separating real and imaginary parts and dividing by é6n yields
evolution equations for Rand ø, respectively,
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-/i
Rt + J(~, R) = 2 (2V RVO + RV20J ,

-( /i (V2R 2)Ot + J(~,O) = 2 + 2 R - (VO) ,

(12)

(13)

where ( = V2~ represents the vorticity. Multiplying (12) by R and integrating over the two
dimensional spatial domain gives

~ r R2 dB = _/i r V(R2 VO) dB = _/i r R2 VO. fdC = _/i r R2 åO dCDt J s 2 J s 2 J c 2 J c 2 åT '
where DRj Dt == åRjåt + J(~, R) and f is the outward normal unt vector at the boundary.
In obtaining (14), we have used the product rule VR2j2VO = V(R2j2VO) - R2j2V20 and
the divergence theorem. Far-field boundary conditions are utilzed, which translates into
V A . f = 0, on the boundary; or in polar representation, ~~ = 0 and ~2 ~~ = 0, on the
boundary. Note, periodic boundary conditions in a two dimensional box automatically satisfy
the far-field conditions due to the fact that the gradient of the function at one end of the
periodic domain is exactly equal and opposite to the gradient at the other end. Application

of the far-field boundary condition to the last expression of (14) leaves

(14)

~t Iv IAi2dV = 0,
(15)

which proves our initial statement at the beginning of the section.
We contrast (15) with the case of passive scalar difusion. The equation governing the

evolution of a scalar concentration field c in a background flow can be written as

Ct + J(~,c) = vV2c, c(x, y, 0) = Co, (16)

where v is the molecular diffusivity coeffcient, in analogy to the dispersivity of the scalar
dispersion equation (10). Following the same procedure for A, we find

Dlc? 1 2
- -dV = -v (Vc) dV,Dt y2 y (17)

We conclude that the diffusion process tends to minimie the squared scalar concentration
whereas the dispersion process conserves this same quantity. What does this say about the
generation of small scales or the cascade of energy from large to small scales? Does A exhibit
a Batchelor scalejspectrum ¡7)? These questions have motivated, to some extent, the work
herein. At this point, we present the specifc streamfunction model used for the remainder
of the calculations in the paper.
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6 Two Stage Random Wave Model

We wil investigate the behavior of (10) for the specifc two dimensional, random flow field
described by the following streamfction '1

Wn = f sin(y + Øn),
1. cos(x + Xn),

2nr -( t ~ (2n + l)r,

(2n + l)r -( t ~ (2n + 2)r,
(18)

for n = 0,1,. .. , where ø, X are uniform random phases between 0 and 27r and r represents a
characteristic decorrelation time of the turbulence. A variation of this model has been used in
the past, ¡S). Note, we have nondimensionalized '1 by a characteristic streamfunction '10 and
the spatial coordinates by a characteristic horizontal wavenumber /'h' The spatial domain is
thus 27r periodic. In order for the model to have physical relevance to the oceanc geostrophic
eddy field, we have taken '10 = 3000m2/s and /'h = 6 x 10-5m-I, based on the data of ¡I).
Together, these give a characteristic decorrelation time scale of r* = O(lday). The velocity
components, ü = (u, v), follow from the definition of the streamfunction as u = - '1 y and
v = '1 x' The corresponding particles trajectories are

xn+1 = Xn - cos(Yn + Øn)t, 2nroC16(2n+l)r

Yn+1 = Yn + cos(xn+1 + Xn)t (2n+l)roCt::2n+1)r.

(19)

(20)

As apparent, the flow model is characterized by a two stage advection process. In the
first stage, during time intervals 2nr -( t ~ (2n + l)r, particles are advected in the x direction
only for a time r; while in the second stage, during (2n + l)r -( t ~ (2n + l)r, particles

are advected in the Y direction only for a time r. The combination of these two advection
stages constitutes a single step in the random wave modeL. The total time to complete n
steps is then t = n(2r). The main advantage of the two stage random model stems from

simplifications in the subsequent mathematics as wil be described later. It is worthwhile to
analyze the two stage random flow field in terms of the effect on material line stretching and
fluid particle diffusivity. We compare the two stage model of (IS) with a one stage model
such as the rennovating random wave model,

Wn = cos ¡xcosØn + ysinØn + Xn), (n - l)r -( t ~ nr, (21)

where advection is performed in a single stage.

6. i Material line stretching

We investigate material line stretching induced by (19-20) in the context of Lyapunov expo-
nents. Lyapunov exponents are used extensively in the study of nonlinear dynamical systems
as a measure of whether two initial conditions diverge exponentially in time, thus possibly
leading to the onset of chaos. The same concept is often applied to neighboring fluid particles
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in the study of fluid turbulence. In this maner, the Lyapunov exponent gives some indica-
tion of the stretching of differential line elements in the flow. In the case of advection of a
real-valued passive scalar, this can be directly related to the development of spatial gradients
in the scalar field. We wil consider later whether an analogy to the complex-valued scalar A
exists.

6.1.1 Lyapunovexponent: background

We follow the general definitions and methodology of Seydel (9) regarding the Lyapunov
exponent calculations. An initially small ring of fluid particles with initial radius Po deforms
into an ellpse with major axis J. due to regions of localzed strain in the flow. Linearizing the
flow about the origin Po = 0, we obtain hn = Jnho where J denotes the Jacobian matrix of
the random map given by (19-20), and ho, hn describe the particle positions in the original

(circular) and deformed (ellptic) confgurations, respectively. Strictly, hn and ho must be
differential vectors for the linearization to be valid. We look for exponential stretching of the
form IIhnll2 = (llholl ét)2 where L denotes the Lyapunov exponent. Rearranging and taking
the limit as t -+ 00 leads to

L = lim ~ In (ii:nho) ,n-lOO 4n7 IIholl2 (22)

where we have substituted in t = 2n7 with 27 denoting the decorrelation time associated
with the two stage random wave model of (19-20). Since J describes a random process, we
ensemble average (denoted as (.)) over the random variables CPn and Xn so that L does not
depend on a particular realization. Additionally, we use the identity IInholl2 = h;(JnT In)ho
to simplify (22). The resultant definition of the Lyapunov exponent used herein is

L = l' ~l (h; (K)ho)1m n .... ,n-lOO 4n7 hT h
o 0

(23)

where K = JnT In. Note, for convenience, we have taken (K) rather than (InK). The
ramifications of this subtle diference stem from the fundamental diferences between additive
and multiplicative random walks as detailed by Redner (10); but it is not a primary concern
of the present study.

6.1.2 Lyapunov exponent: two stage random wave model

We now want to explicitly calculate the Lyapunov exponent defined in (23) for the two
stage random wave model given by (19-20). During the nth step of the random walk, In =
In(Xn)Ji(CPn), where J1 and In describe advection in the x direction (fist stage) and y

direction (second stage), respectively. From (19-20),

J1(CPn) = (~ sin(Yn 7 CPn)7) , and In(Xn) = ( . (1 ) 01),
- sm xn+ i + Xn 7 (24)
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The independence of each step allows the ensemble average of K after n steps to be written
as

(K) = (JT(lPi)(J~(Xi)... (JT(lPn)(J~(Xn)Ju(Xn))Ji(lPn))'" Ju(Xi))Ji(lPi)). (25)

Introducing the diagonal matrix r = (g g), the inner most ensemble average of (K) can
be written as (J~(Xn) r JU(Xn))' Upon calculating several sequential ensemble averages? the
recurrsion relation for ã = (a, b) becomes apparent. After n steps, we find

( J ¡ r2 J ( J
an+!_ 1 "2 an
bn+! - r; 1 + r44 bn' (26)

where ao = bo = 1. With this, the general form of the Lyapunov exponent (23) reduces to

L = n11~ 4~7 In ((hi h2J (a; b~J (~:J) . (27)

In order to represent ãn in terms of ão we need to solve the corresponding eigenproblem,

Mv= ÀV, with M as given in (26). Due to space limitations, we do not provide the details
of this calculation. The main result is ãn = RAnRTão, where R is the rotation matrix,

(v+ V-) (À+n)R= l ~ , and An= ~n . After performing the algebra, we findV2 V2 0 À

2-i-3nan = 4 ((16 + 74 + (72 - 4))16 + 74)(8 + 74 - 72)16 + 74t +
16 +7

(16 + 74 - (72 - 4))16 + 74)(8 + 74 + 72)16 + 74)nJ, (28)

bn = 2-i-3n r (4 + 72 + Ý16 + 74)(8 + 74 + 72Ý16 + 74)n _
L Ý16 + 74

(72 - 4 + Ý16 + 74)(8 + 74 - 72Ý16 + 74)nJ (29)
16 + 74 + 72Ý16 + 74 .

Notice, an and bn are not equal; therefore, stretching is anisotropic in this flow field. In fact,
looking at the simple case of n = 1, ai = 1 + 72/2 and bi = 1 + 72/2 + 74/4; we see that more
stretching occurs in the y direction as compared to the x direction. However, at long times,
taking the limit as n -7 00, we find that the stretching does become isotropic as shown in

the following. We rewrite (27) as

. 1 ( 2 an 2) . 1 )L = hm -4 In hi -b + h2 + hm -4 In(bn.n-+oo n 7 n n-+oo n 7 (30)
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As n -t 00, t- = - T; + ~. Figure 3 shows anlbn as a function of n for a family of

three r values. We see that for any given r, anlbn asymptotes to a constant value. Therefore,
in the limit as n -t 00, the first term in (30) goes to zero. At large n, bn remains as the only
contribution to L and thus stretching becomes isotropic. From figure 3, one can determine
how quickly the flow becomes isotropic for a given r. We see that for r = 3, stretching

becomes isotropic after the first step.
With further manipulation of (27) we obtain the functional relation between L and r

1 ( ~ J
L = 4r In (1 + r4/8) + "8 vi r4 + 16 . (31)

Figure 4 shows the graphical representation of (31) compared with that obtained for the
rennovating random wave model of (21). Maximum stretching in the two stage random wave
model occurs at r = 3.64 in contrast to r = 3.94 for the one stage random modeL. In general,
the two stage random wave model generates more stretching of the fluid elements.

6.2 Diffusivity of fluid particles
We follow Einstein's theory of Brownian movement (11) to determine the diffusivity associated
with the movement of fluid particles in the random wave model of (19-20). For a random
walk processes in two dimensions, Einstein showed that

b.2 n = 4Defft, (32)

where b. is the particle displacement, an overline denotes an average performed over n steps
in the random walk, and Deff is the effective diffusion coeffcient that appears in the scalar
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diffusion equation. Since each of the steps in the random walk is independent, ß 2 n = nß 2 =
ß2tj7, where t is the total time and 7 represents the decorrelation time of the random walk. In
our particular case, particle displacements during the nth step can be written as r~ =r;n +r;in,
where ri, rn are the displacements during the x, Y stages of advection, respectively. Without
loss of generality, we can make the coordinate translation (xn, Yn) -7 (0,0) before each nth
step. Applying this simplification to (19-20) gives

r~ = 72 COs2(ain) + 72 cos2( - COS(ain)7 + Xn). (33)

Because we want the calculation to be independent of the random phase angles associated
with a particular realzation, we ensemble average over both ai and X to yield (r2)l/,x = 72.
Note, in analogy to (32), ß2=(r2)l/,x. Taking the average of (r2)l/,x over n total steps in the
random walk and using (32) gives the resultant particle displacement diffusivity of Deff = i.
It is interesting to note that this difusivity is identical to that of the rennovating random
wave model (21) where advection is performed in a single step. At this point, there is some
confidence in our understanding of the model flow field; we, therefore, proceed to study the
behavior of the scalar dispersion equation (10) under the two limiting parameter conditions
of ñ = 0 and ñ -7 00.

7 Zero Dispersion Limit

In the case ñ = 0, the scalar dispersion equation (10) along with (18) reduces to

At - cos(y + ai)Ax - ~ sin(y+ai)A = 0, 2nr-(t::(2n+1)r,

At - cos(x + X)Ay - ~ sin(x + X)A = 0, (2n+1)r-(t::(2n+2)r.

(34)

(35)

We solve the above set of equations using the method of characteristics. In the fist stage of
the random wave model, we define new variables x = x + crt, L = t, fj = y; while in the second
stage, we define fj = y + cut, L = t, x = x where Cr = cos(y + ai) and Cu = cos(x + X). This
effectively removes the advective terms from (34) simplifying the problem to two, uncoupled,
first order ordinary differential equations, one at each advection stage. The solutions valid
in the first and second stages are

Ar = Aoei/2Sin(ý+l/)t and A = Arei/2sin(i:x)t, (36)

respectively, where Ao represents the initial condition at the beginnng of the nth step. Recall,
at n = 0, A(x, y, t=O) = 1. Using the fact that x and fj remain constant along characteristic
curves, the solution can be written in terms of an iterated map

2nr/K(2n+l)r . A = A ei/2sin(Yn+l/n)r.. _ . r n+l n ,
(2n+l)r/t..(2n+l)r . A = A ei/2 sin(xn+i +Xn)r.. _ . n+l rn+i ,

xn+1 = Xn - cos(Yn + ain)7,

Yn+l = Yn + cos(xn+1 + Xn)7.

(37)

(38)

267



-1 ~,5 o 0.5 1

Figure 5: Snapshots of the spatial structure of ~(A) for the T = i, ri = O. Recall that at
n = 0, ~(A) = 1.

Figure 5 displays four snapshots of ~(A) as computed from the map above for the case of
T = 1. The resolution is 1028 x 1028. Later, we wil compare these pictures to the structure
of ~(A) for ñ i= O. From (37) and (38), it is apparent that no mechanism exists to instigate
changes in ¡AI; therefore, IAI remains constant at its initial value of unity. This agrees with

the previous results of section 5. However, the phase of A, denoted by () as in (11), does
exhibit interesting behavior. The iterated map for () follows directly from (37-38) as

()n+1 = ()n + sin(Yn + iPn)~ + sin(xn+1 + Xn)~' (39)

where Xn+1 and Yn+1 are given as in (37) and (38). We observe that for ñ = 0, () undergoes
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a random walk process and therefore has an associated difusivity De (not to be confused
with the difusivity of particle trajectories). To calculate De, we follow the procedure in
section 6.2. The ensemble averaged variance of 0 is defined as (O,2)ø,x = ((On+l - On)2).
Substituting in (39) and performing the average yields (0,2) = 72/4. Making the analogy
with Einstein's theory in (32), we have 112 = (O,2)ø,x' Taking the average of 112 over n total

steps in the random wal and using (32)t gives the resultant phase difusivity De = 7/16.

y o

Figure 6: Phase of A for the case of ñ = 0, T = 1 afer 25 random advection steps.

This is an interesting result in that the behavior of 0 for zero dispersivity undergoes a

normal diffusion process analogous to that of a real passive scalar. The structure of 0 after
25 iterations of the map in (39), for 7 = 1, is shown in figue 6. Note, in order to obtain a
continous field, results are plotted as O/27r. The initial condition at t = 0 is 0 = 0 and the

resolution is 1028 x 1028. This picture looks surrisingly similiar to the stirring of a passive
scalar as presented in (8) (figure 1 of that paper), for a random velocity field nearly equivalent
to that of (18).

8 Strong Dispersion Limit

We use a simple multiscale analysis to investigate the large ñ behavior of (10) by introducing
a small parameter € and a slow time t such that ñ = O(I/€) and t = €t. Applying these

scalings to (10) and multiplying by € gives

i( i 2
At' + €J(w,A) + €"2A = 2\7 A. (40)

tIn the case of e, we have a one diensional random walk given by ¿\2n = 2Defft.

269



We assume that the solution can be written as a power series expanion in 15, A = Ao +
€Ai + 152 A2 + ... . The 0(1) equation is obtained by substituting this expansion into (40)

and taking the limit as 15 -+ 0

i 2
AOti = 2'\ Ao

with the initial condition Ao(t = 0) = 1. The solution Ao = 1 trivially satisfies this initial
value problem. The 0(15) equation is obtained by substituting the 0(1) solution into (40),
dividing by 15, and taking the limit as 15 -+ 0

0(1) : (41)

i( i 2Aiti + 2 = 2'\ Ai

with the initial condition Ai (t = 0) = O. Note, J(w, Ao) = O. Because of the explicit form
of (, see (18), we need to consider the two stages of the advection process separately. This
complicates the problem in that the initial condition for each advection stage depends on the
final state at the end of the previous advection stage. We start by considering the first time
interval 0 0( t :: 7, during which (= - sin(y + Ø) and (42) reduces to

0(15) : (42)

. .
Aiti - ~'\2Ai = -~sin(Y+Ø). (43)

with Ai(t=O)=O. We require both the homogeneous and particular parts of the solution to
vanish at t = O. Therefore, the homogenous part of the solution is simply O. We assume a
particular solution of the form Ai = ã(t) sin(y + Ø). Substituting this into (43), we obtain
an ordinary differential equation for ã(t'), the solution of which is ã(t') = 1 - e-it /2. Thus,

in the first time interval,

1 it
A = 1 + ji(1 - e-2/i) sin(y + Ø) + 0(152), 00( t:: 7. (44)

In the subsequent time interval 7 0( t :: 27, (= - sin(x + X) and the initial condition is
Ai(t=7)=(I- e-~~) sin(y + Ø). Following the same procedure used above, we find

A = 1 + ~ (1 +e-2i/i(t-r) ((1- e-~~)sin(y+ Ø) + 1)) sin(x + X) + 0(E2), 70( t:: 27.

(45)

One thing to notice in the strong dispersion limit is that spatial structure in A develops very
slowly, in stark contrast to the case of ñ = 0 where, after only 12 iterations, the structure of
A has become highly stretched and contorted (see figure 5). We wil return to these results
later in section 10 to ascertain how the energy contained in the large scales of A varies as a
function of ñ. We now consider the regime ñ =1 o.
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9 Numerical Solution for 1i =f 0

Both the spatial domain and the streamfunction are 27r periodic; therefore, we seek a general
solution to (10) in the form of a Fourier series expansion

A=
00

~ a (t) eik x+iP yL. k,£ ,
f 1 if k = f = 0,

ak,£(O) = 0',
otherwise (46)

k,l=-oo

where Æ = (k, f) describes the wavenumber vector and ak,£(t) are the corresponding Fourier
coeffcients. Substituting (46) into (10) yields

~ ( i 2 J ¡ç.x in ~~ åk,£ + if Wx ak,£ - ik Wy ak,£ + ~\7 Wak,£ e = -2" L.k,l=-oo k,l=-oo (k2 + £2)ak,£é'x. (47)

In order to eliminate the summations, we utilze the fact that the Fourier modes are

orthogonaL. To exploit this, we multiply (47) by e-iqy-ipx and integrate over y = 0-27r and
x = ü-27r. Integrations are performed in detail in the Appendix. It is worth noting that if
we did not chose a two stage random wave model for the velocity field, but rather used a
single stage model such as (21), then it would not be possible to analytically integrate the
terms resulting from (47). Performing the integrations yields two sets of coupled, first order
ordinary differential equations for ak,£(t), each valid in one of the two stages of the advection
process

'il (1 - i2k) "il (1 + i2k) -in 2 2åk,£ + ak,£+l e-i 4 - ak,£-l ei 4 = T(k + £ )ak,£,

. (1 + i2£) " (1 - i2f) -in 2 2åk,£+ak+1,£e-ix 4 -ak_i,£eix 4 = T(k +f )ak,£,

(48)

(49)

for n = 0,1,... and k,£ = -00,... ,-1,0,1,...,00 where (48) and (49) are valid during

the time intervals 2n7 -( t :S (2n + 1)7 and (2n + 1)7 -( t :S (2n + 2)7, respectively. The
apparent coupling between nearest neighbors of a results directly from the fact that the
imposed velocity field contains only one Fourier component, the lowest nonzero wavenumber
component. A convenient aspect of the two stage random wave velocity field is that, in the
fist stage, coupling occurs only between £ wavenumbers; while, in the second stage, coupling

occurs only between k wavenumbers.
We solve (48-49) numerically to obtain the time evolution of the Fourier coeffcients ak,£,

then utilize an inverse fast Fourier transform (FFT) algorithm to perform the resummation in
(46) to obtain A. In the numerical solution, k, £ must be truncated at the fVh Fourier mode,
i.e. the summation appearing in (46) occurs over -N :S k,£ :S N. We chose N such that
the amplitudes of the corresponding Fourier modes at Ikl, 1£1 2: N have decreased below a set
tolerance. In practice, though, we typically over resolve the Fourier domain by a substantial
amount since we favor a grid size of 2Px2P, p = 0,1,2,... .
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Figure 7: Snapshots of the spatial structure of ?R(A) for the T = i, Ii = 1. Recal that at

n = 0, ?R(A) = 1.

The two truncated systems can each be described by a matrix equation, written in the
general, compact form

1J(t) = ¡(t, y(t)). (50)

For example, considering the simple case of N = 2, (50) becomes
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a-2 C d 0 0 0 a_2
a-i b c d 0 0 a_i
ao = 0 b c d 0 ao (51)
åi 0 0 b c d ai
a2 0 0 0 b c a2

where b = (1 +i2k)j4éPn, c = -iñj2(k2 +£2), d = -(1-i2k)j4e-itPn, in the fist stage; and
b = (1- i2£)j4éXn, c = -iñj2(k2 +£2), d = -(1 +i2f)j4e-iXn, in the second stage. We use

the tridiagonal structure of (51) to our advantage in selecting a discretization method. The
second order, fully implicit Adams-Moulton method is used in the present study. Applying
this discretization method to (50) gives

Ym+i - Ym = f:+1 - f: (52)ót 2
The numerical method conveniently perserves the tridiagonal structure of the original

truncated system. At each time step, we solve two, uncoupled linear, tridiagonal systems
for ak,e(t) (one during each advection stage) with an effcient tridiagonal system solver. A
numerical C code was written to compute the time evolution of ak,e and perform the sub-
sequent inverse FFT to obtain the spatio-temporal structure of A. Since C does not have
built-in capabilty for handling complex numbers, special functions were written to deal with
complex number operations.

There are some additional comments worth mentioning regarding the present numerical
scheme. At each time step we verify that the code conserves IAI2 over the spatial domain
(refer to section 5) by tracking ao,o' The deviation of ao,O from the expected value of unity
is never greater than 1 x 10-10. Additional calculations regarding the stability and accuracy
of the present numerical scheme were performed; however, due to space limitations, we do
not provide those details. The analyses stem from a comparison between the solution to
the discretized equation and the analytical solution obtained in section 8. We found the
numerical method to be unconditionaly stable. Futhermore, we found that the minimum
time step required to achieve a specified accuracy depended on ñ and the magnitude of the
wavenumber /'2. For example, to achieve 98% accuracy in the highest wavenumber component
of the numerical solution for ñ = 1, a minimum time step 6f 0.005 is required.

Figure 7 displays four snapshots of the spatial structure of ~(A) for the case of ñ = 1,

T = 1. The resolution in each picture is 1028 x 1028. Figue 8 displays the numerical results
from a comparison study between four different parameter values of ñ=O, 0.1, 1, and 10.
Only the real part of A is shown, although the imaginary part exhibits similar structure. The
snapshots are taken at n = 10 with T = 1. All computations utilized the same random data
set for if and X.

10 Energy in Large Scales
We now take a look at how the energy in the large scales decays in time as a function of ñ.
Recall from section 5 that (AA*) represents a conserved quantity where (.) denotes a spatial
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Figure 8: Comparison of the spatial structure of ~(A) for four dierent 1i values of 0, 0.1, 1,
10. All snapshots were taken at n = 10, T = 1 and utilize the same random data set for ø, x.

average and the superscript * denotes the complex conjugate. Therefore, we wil define the
energy associated with the complex scalar A as

~ = (A) (A*). (53)

Figure 9 shows the results of ~ for three different cases of 1i = 0, 0.01, 1 as computed from
the numerical code presented in section 9. The results are for one particular realization only.
The exponential prediction shown stems from the hypothesis that the spatial average in the
definition of (53) can be replaced by an ensemble average, Le. (A) = E(ei°), where E(.)
denotes the expectation of the random process. For the case of 1i = 0, we showed in section 7
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Figure 9: Decay of energy in the large
scales of A for T = 1.

Figure 10: Expanded view of figure 9
in the region near t = O.

that () obeys a random walk; therefore, the probability of () is Gaussian. According to the
prediction,

100 -02/2u2
(A) = e. eiOd()= e-u2/2 =e-Døt,

-00 \/27ru2

where Do is the diffusivity of the phase as calculated in section 7. Obviously from figue 9,
the prediction (54) fails to describe the actual behavior of c.

From our analysis of the strong dispersion limit, we know that as ñ -7 00, cremains
constant at the initial value of 1. This yields an interesting picture of the decay of the large

scale energy as a function of ñ. At ñ = 0, the rate of decay of c is faster than exponentiaL.

As ñ increases from 0, the rate of decay becomes faster than that for ñ = O. However, at
some critical value of ñ :: 1, the rate of energy decay becomes slower than exponential and
eventually becomes zero, since c = 1 for all time as ñ -7 00.

(54)

11 Conclusion and Future Work

The main focus of the present study has been the attempt to understand some of the funda-
mental properties of the passive scalar dispersion equation (10) in the context of a random
wave model (18) for the two dimensional background turbulent velocity field. We have found
that the dispersivity parameter ñ greatly afects the spatiotemporal structure of the complex
scalar A. For ñ = 0, both the real and imaginary parts of A become highly stretched and

contorted even after only 10 iterations of the random wave field. In contrast, for the case of
ñ = 1, the spatial structure of A looks blotchy with little indication of stretching or amplifi-
cation of the gradient of A. As ñ increases, the time evolution of the spatial structure of A
becomes increasingly slower. Below a critical value ñc, energy in the large scales of A decays
faster than exponential; while for cases of ñ :: ñc, the energy in the large scales decays slower

than exponentiaL. In fact, as ñ -7 00, the energy in the large scales remains constant at a
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value of unity. A usefu extension of the present study would be to quantify the structure of
A, visualized herein, using probabilty density functions. Another natural direction for future
work would be to determie whether A exhibits a Batchelor scale. In other words, is there
a limit to the smalest scales of A achievable in the flow? Additionally, if there is a cascade

of energy from large to small scales, then what are the relevat scalings associated with the
spectra and how do these compare with the case of passive scalar difusion?

Finally with regard to near inertial oscilations, from the vertical normal mode decompo-
sition presented in section 4 along with figue 2, we recognize that large ñ corresponds to low
wavenumber vertical motions while ñ-tO corresponds to high wavenumber vertical motions.
It remains somewhat unclear, though, how one can directly apply the present observations
regarding the variation in the decay of energy of A with ñ toward futher understanding the
behavior of the NIO velocity field in the oceanic mied layer. Recall that in order to relate
the NIO velocity field to the results of A presented here, we fist need to compute A using
the superposition of vertical normal modes and then apply the operator L. This is left as a
task for future work.
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13 Appendix

Here, we detail the integrations resulting from the Fourier series expansion of A as described
in section 9. The corresponding terms in (47) wil be referred to sequentially as (I)-(V)

startíng from left to right. Each term is multiplied by e-iqy-ipx and integrated over y = 0-27r
and x = 0-27r. Due to orthogonality of the Fourier modes,

¡27r
ei(k-p)xdx = 27r c5kp and

x=o 1271 .
ei(f.-q)Ydy = 27r c5f.q,

y=o
(55)

where c5 is the kronecker delta. The two stages of the advection process are considered

separately. We only outline integrations for the first stage; those for the second stage follow in
a similar manner. The first advection stage occurs during time intervals, 2n7 -( t :: (2n+ 1)7,
n = 0,1,... with the streamfction given by \I = sin(y + lt). Terms in (47), excluding term

(II) which is identically zero, are as follows:

(1)
r7r (r27r 00 J

10 10 k,t;OO åk,f.(t) ei(k-p)Xdx
è(f.-q)Ydy = (27r)2åk,f.,
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(III) - 121r (121r f ik cos(y + 4;)ak,.e(t) ei(.e-q)y dyJ ei(k-p)xdx =
o 0 k,.e=-oo

-/,'"ltoo i21rk (ak'l+(t) e~¡q + akl-l e:) J e'(k-p)xdx =

- ik(271Y (ak,Hl (e~i4i) + ak,.e-i (e~4i) J '

(IV) 121r (121r . 00 J
- ~i sin(y + 4;) L ak,.e(t) ei(.e-q)Ydy

o 0 k,.e=-oo

r21r r -i4i 00 i4i 00 J
- 10 211 IT k~oo ak,Hi(t) - e4 k~oo ak,.e-i(t)

. ( (e-i4i) (ei4i) J
(211)2 ak,Hl 4 - ak,.e-i '4 '

ei(k-p)Xdx =

ei(k-p)Xdx =

r21 (r21r 'rí 00 J
(V) 10 10 -; k,Eoo (k2 + .e2)ak,f.(t) ei(f.-q)Ydy ei(k-p)Xdx =

2 i1i 2 2
- (211) 2(k +.e )ak,f.(t).

Note, terms similar to cos(y+4;) ei(.e-q)y can be easily integrated by rewriting the trigonometric
part as an exponential, e.g. 1j2(ei(Y+4i) + e-i(Y+4i)).
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The temperature-salinity relationship in the mixed layer

Raffaele Ferrari

i Introduction

In the surface mixed layer (ML) of the ocean there is a remarkable correlation between the
horizontal temperature and salinity gradients. The goals of this project are (1) to investi-
gate if these correlations are the result of processes at work within the ML, (2) to develop
parameterizations of these processes to be used in large-scale ocean models.

Observations show abundant examples of horizontal fronts with temperature and salinity
that oppose in their joint effect on density on scales of 10 m to 100 km ¡l) ¡2J, ¡3). A useful

measure of the degree of compensation ts the density ratio R, defined as the ratio of the
relative effect of temperature and salinity on a density front. Stommel and Chen (¡4J, ¡5))
computed density ratios from large scale meridional temperature-salinity (T - S) gradients in
the range of latitudes between 20° and 50° and concluded that R has a mean close to 1.7, even
though individual fronts can have a density ratio markedly different from 1.7. These results
are obtained from climatological data sets and refer to density ratios on scales of thousands
of kilometers averaged over a number of years. On smaller horizontal scales, between 20 m
and 10 km, Rudnick and Ferrari find that the ML density ratio is 1 and not 2 ¡3). These
observations imply that the mean density ratio on large scale is 1.7, even though typical
thermohaline gradients at small scale have an instantaneous density ratio of 1.

One possible explanation of the correlations between thermohaline gradients in the ML is
that atmospheric forcing and entrainment of thermocline waters create and juxtapose water

masses with compensating T - S gradients. However the ratio of heat to freshwater buoyancy
fluxes is variable in large scale maps and in time series at a point and there is no evidence
that these fluxes force a small scale frontal density ratio of 1 and a large annual mean density
ratio of 1.7. In this project we propose an alternative interpretation that relies on reguating
mechanisms in the ML to create correlations between temperature and salinity, regardless of
the large scale atmospheric forcing. Futhermore we show that the processes responsible for
these correlations are not properly represented in large-scale ocean models and we suggest
more appropriate parameterizations.

2 N onlInear diffusive parameterizations of eddy transfer of

heat and salt in the mixed layer

The basic idea of this study is straightforward: temperature and salinity are dynamically
active in JY~ because they contribute to density gradients. All processes that depend on
density gradients, and not on temperature and salinity gradients separately, are potentially
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capable of creating T - S relations, because they act only on T - S fluctuations that reinforce in

their joint effect on density. In order to test this idea, we fist derive parameterizations of the
ML, which use density gradients as the driving field, and then we examine the consequences of
these parameterizations on the distributions of temperature and salinity in numerical models.

Let us consider the dispersion of some tracer of concentration 9(x, y, z, t) in the ML. We
model the ML as a vigorously mixed shallow layer characterized by a high aspect ratio, i.e.
with a depth H much less than the horizontal scale L. The main point here is that there are
two very different time scales: a fast time scale over which the layer is mixed vertically and a
slow time scale associated with horizontal transports. We argue that in order to describe the

lateral dispersion of the tracer on the slow time scale, it is not necessary to resolve the details
of the processes active on the fast time scale. The combined action of small scale stirring
stirring and vertical mixing can be parameterized as a diffusion of the vertically averaged
tracer.

A mathematical model for the horizontal transport of tracers in the ML is formulated
decomposing 9 in a "mean" - denoted by B - defined as the average over the depth H of the
ML and over a period long compared to the time scale of vertical mixing, and in an "eddy" -
denoted by 9' - defined as the departure from that mean. The Reynold's averaged equation
for a conserved tracer is

Bt + U. "VHB = -"V. u'9' + F. (1)

Here u = (u, v) denotes the horizontal velocity of the incompressible Boussinseq fluid. The
first term in the RHS of (1) is called the eddy flux divergence. Its net effect is to redistribute
the tracer within the body of the fluid. The second term, F, represents the averaged fluxes

of tracer from the surface of the ocean (atmospheric forcing) and through the base of the ML
(entrainment of thermocline waters). The challenge of this section is to derive a long-term,
large-scale equation for the mean tracer, by expressing the eddy fluxes in (1) in terms of
mean quantities.

Eddy fluxes of a conserved tracer can be parameterized with closures based on local mean
gradients. The argument goes that a fluid particle carries the value of å conserved, and hence
transferable, tracer for some length l, before it is mied with its new surroundings. If the
particle was initially typical of its surroundings then the eddy flux of tracer 9 is given by

u'9' = -u'l' . "VB, (2)

where it is assumed that "VB varies little over distances comparable with the miing length
l. The tensor u'l' defines the eddy difusivity. The most commonly used parameterization
of horizontal eddy transports in the ML is to assume a down-gradient Fickian diffusion,

u'9' = -k"VB, (3)

where k is set to an a priori value constant both in space and time. However down-gradient
diffusion follows from (2) only if the statistics of the eddy field are horizontally homogeneous
and isotropic. In the ML lateral eddy transports on time scales longer than the vertical miing
time result from hydro dynamical instabilities that release the gravitational potential energy
stored in horizontal density gradients. The dynamics is simple; lateral density gradients
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slump under the action of gravity and drive horizontal eddy fluxes. The eddy velocity u' and
the eddy displacement l associated with the release of potential energy must be, on average,
in the direction of the density gradients and larger when the horizontal density gradients are
larger. Therefore in the ML the statistics of the eddy field are not homogeneous and isotropic
and a down-gradient Fickian closure is not appropriate. It seems natural to look instead for
closures that include the effect of large scale density gradients. A general expression for the
eddy diffusivity tensor can be written in the form,

u'l' = ì'f(IVpl)VpVp, (4)

where P is the density of the fluid, ì' a constant and f(IV pI) a function whose form de-
pends on the details of the hydrodynamic instabilties that dominate in the eddy field. The
corresponding flux of tracer is,

u'O' = -ì'f(IVpl) (Vp. V8) Vp. (5)

Notice that, even though the flux is in the direction of the mean density gradient, u'O'. VB .. 0;
thus the flux of tracer tends to be down the tracer gradient. With (5) we can write down an
equation that describe the dispersion of the mean tracer,

0t + u. VO = ì'V . (f(IV pI) (V p' VO)V p) + F, (6)

where we dropped the overbars. Hereinafter we assume that all variables are averaged over
the depth of the ML and over times longer than the vertical mixing time.

We can now turn to the case where the tracers are temperature T and salinity B. Let us
express density as p = Po (1 - 9-1 B), where B is buoyancy. Assuming that the equation of
state is linear, and using suitable definitions, the buoyancy is

B = T - B. (7)

With our definitions, B, T and B al have the dimensions of acceleration. The nonlinear

diffusion equations that describe the buoyancy driven dispersion of heat and salt in the ML
follow from (6),

Tt + u. VT - ì'V, (f(IVBI)(VB. VT)VB) + FT,

Bt + u. VB - ì'V. (f(IVBI)(VB. VB)VB) + Fs,

(8)

(9)

where FT and Fs represent the forcings on temperature and salinity.
Parameterizations in which the dynamics depends exclusively on horizontal density gradi-

ents are not new to the oceanographic literature. The idea descends from Stommel's two-box
idealization of the thermohaline circulation (6). Stommel posited a transport law in which
the exchange of mass between boxes is proportional to the square of the density difference.
Some thirty years later Stommel and Young used the same model to study the T - B relation
in the ML (7). Stommel's model is essentially a two-grid points discretization of (8) and (9)
with ¡(IV BI) = IV BI-1. Other classes of nonlinear diffusion models have been developed
for the full range of space and time scale that are of interest to oceanographers: from the
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planetary scale of the thermohaline circulation, through the deformation scale dynamics of
baroclinic eddies, down to the ageostrophic circulations in shallow water systems. Here we
limit our attention to models for the upper ocean. The redistribution of temperature and
salinity in the ML is the result of processes that release the potential energy stored in hori-
zontal stratification; viz. buoyancy driven shear dispersion at scales below the deformation
radius and baroclinic instabilty at larger scales. Our goal is now to emphasize the unity of
the physical ideas underlying the two processes and to show that both can be described by
the equations in (8) and (9).

2.1 Buoyancy driven shear dispersion

W. R. Young, in the first part of this volume, discussed a class of models to parameterize
the transport of heat and salt in a ML idealized as a shallow system with strong vertical

mixing. He derived a set of nonlinear diffusion equations for T and S, where the nonlnearity
arises because the horizontal transport of heat and salt is by shear dispersion, and the shear
flow doing the dispersing is driven by slumping horizontal buoyancy gradients. The main
point of his presentation was that the lateral diffusivity in such a ML is proportional to the
horizontal buoyancy gradient squared. Yollng's model is a particular case of (8) and (9), with
f(I\7BI) = 1 and no vertically averaged flow, u = (0,0),

Tt - 1\7. ((\7 B . \7T)\7 B) + FTi

St = 1\7. ((\7B. \7S)\7B) + Fs.

(10)

(11)

The constant I depends on the depth H of the ML and on the details of the processes doing
the vertical mixing. If mixing is parameterized as an intermittent process that homogenizes
the ML at intervals of time T, one finds that I = H2T3/96 (8). Diferent parameterizations
agree on the fuctional dependence of I on the depth H and the characteristic time of vertical
mixing T.

It is important to discuss the range of oceanic parameters for which the nonlinear diffusion
equations (10) and (11) might apply. Shear dispersion mechanisms can act only at horizontal
scales larger than H, say 100 m, and shorter than the deformation radius, typically 10 km
in the ML, and at timescales longer than the vertical ming time, say a day. Motions with
smaller lengths and higher frequencies are parameterized as "vertical mixing" (e.g. Langmuir
circulations and convective overturning). At larger scales the effects of rotation become
important and the dynamics change substantially as shown in the next section. For H = 100
m and T = 1 day one obtains I = 1017 m2s3; we use this as a reference value throughout the
report whenever we make quantitative statements about our results.

2.2 Buoyancy fluxes produced by baroclinic instability: Green, Stone and
Held

At scales larger then the Rossby radius of deformation eddies produced at baroclinically un-
stable buoyancy gradients can dominate the transports of heat and salt in the ML. Green used
the arguments reviewed at the beginning of this section to show that the transfer properties
of baroclinic 'eddies can be parameterized in terms of their large scale structure (9). Supposing
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that the transfer of buoyancy occurs in the growing phase of baroclinic eddies, when energy
is extracted by the eddy from the baroclinic zone of the large scale flow, Green deduced the
expected form of the eddy diffusivity in the limit of large Richardson number. He then used
linear stability analysis of the baroclinic wave to determine the direction of the eddy fluxes.
Stone derived a similar expression from linear stabilty analysis and extended Green's results
to small Richardson numbers ¡1O). Green and Stone imagined that diabatic processes, like
vertical mixing, restore the baroclinic zone, replenishing the supply of available potential en"'
ergy until it is discharged again by baroclinic instabilty. This repeated conversion of energy
leads to a diapycnal eddy flux. Green and Stone attempted to relate this flux to large-scale
parameters in zonally averaged models of the atmosphere,

v'O' = _!!i2IByIOy,
N (12)

where v'is the meridional eddy velocity, N is the Brunt- Väisälä frequency, a a universal

constant of proportionality, and L a measure of the meridional eddy displacement. Green
argues that this distance is set by the width of the baroclinic zone. Stone, however, suggest
that the deformation radius is the appropriate length scale. The ideas of Green and Stone,
however, converge on predicting that the baroclinic eddy fluxes across a buoyancy gradient
are driven by the absolute value of the diapycnal buoyancy gradient. It then makes good
physical sense to extend (12) to two dimensions as,

u'O' = - ;l2IvBi-i (VO. VB) VB. (13)

With this parameterization of lateral eddy transports, the dispersion of temperature and
salinity in the ML is once again described by nonlinear difusion equations of the form in (8)
and (9); in this case f(IVBI) = IVBI-i and I = ai2N-i.

Pavan and Held used the results of numerical simulations to test diffusive parameteriza-
tions of the buoyancy fluxes produced by baroclinic instability ¡ii). They integrated a two
layer model of a baroclinically unstable jet to obtain a series of statistically steady states
for different jet widths and evaluate diffusive approximations of the eddy buoyancy fluxes.
In their simulations the flow is forced by relaxation to an unstable prescribed buoyancy gra-
dient. Pavan and Held found that a flux-gradient relationship, deduced by a simple fit on
numerical results, predicts the magntude and the shape of the eddy fluxes in the unstable
jet flows remarkably welL. The functional form of the relationship difers from that suggested
by Green and Stone; for large buoyancy gradients, that is for temperature gradients larger
than the climatological mean of 6° Cover 1000 km, the effective diffusivity is proportional to
the fourth power of the buoyancy gradient. In the presence of two stratifying components,
like heat and salt, one obtains a set of coupled equations for temperature and salinity of the
form in (8) and (9) with ¡(IVBI) = IVBI.

The main conclusion of this brief review is that diferent diffusive parameterizations of
tracer fluxes produced by baroclinic instability agree on one point: diapycnal baroclinic fluxes
can be described with nonlinear diffusive closures where the diffusivity is proportional to some
power of the buoyancy gradient. Differences emerge only in the power law that relates the
buoyancy flux to its gradient, but all parameterizations are captured by the general form in
(8) and (9). The parameterizations discussed so far describe the eddy transports across and
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not along isopycnal surfaces. A ful parameterization of baroclinic instability should account
for the epipycnal fluxes as well. However our goal is to explain how a density ratio of one is
maintained in the ML at small scales, even though the ratio of heat and freshwater fluxes is
extremely variable in the external forcing. Isopycnal eddy fluxes do not release the energy
stored in horizontal buoyancy gradients and thus cannot explain compensation. Therefore we
do not attempt a parameterization of epipycnal fluxes in this project, but it remains an open
question to verify the role of these fluxes in creating correlations between two dimensional
distributions of temperature and salinity.

3 Temperature-salinity correlations at small scales as a result
of nonlinear diffusive parameterizations

We begin by exploring the implications of the nonlinear diffusive parameterization of the
ML in an idealized setting. Suppose that temperature and salinity variations are created at
some instant by atmospheric forcing or entrainment of thermocline waters and that these
horizontal nonuniformities disappear as a result of nonlinear diffusion. This is a rundown
problem in which there is no external forcing and the down-:gradient difusion eventually
erases all the initial fluctuations in temperature and salinity. There is no mechanism to
produce new randomness: all the randomness comes from the initial condition. Equations
(8) and (9) reduce to

Tt = ,V. U(IVBJ)(VB. VT)VBJ, St = ,V. U(IVBI)(VB. VS)VBJ. (14)

Observe that the free decay of temperature and salinity is perfectly symmetric in this system.
If the statistics of temperature and salinity are identical in the initial conditions, then no
asymmetries in the thermohaline fields can develop at later times. One might then expect
that this rundown problem shows only the progressive decay of the initial temperature and
salinity fluctuations. However apart from the trivial decay, well before all fluctuations are
erased, nonlinear diffusion creates nontrivial correlations between the thermohaline fields and
between their gradients. The physical reason is that in the initial conditions there wil be
regions in which the temperature and salinity gradients wil happen to partially compensate
in their joint effect on buoyancy. In those regions the nonlinear diffusion wil be small and the
initially compensating gradients wil persist. Likewise, the initial conditions wil also contain
regions in which the thermohaline gradients accidentally produce large buoyancy changes;
those regions are then subject to strong difusion and the gradients wil quickly disappear.

The consequence of this selective decay is that only compensated thermohaline gradients
persist as the system runs down and a density ratio of 1 is established.

3.1 One-dimensional model

We start by considering the simplest problem in which the temperature and salinity have
spatial variations in only the y-direction. Equations (14) then reduce to

Tt = , (IBylnTy)y, St =,(IBylnSy)y' (15)
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where n is an integer that can take any value from 1 to 3 according to the nonlinear closure
under consideration.

The one-dimensional case is sufcient to ilustrate the development of thermohaline cor-

relations from random initial conditions. Numerical simulations of the system in (15) are
carried in non dimensional variables. Buoyancy, temperature and salinity are measured in
terms of the initial RMS buoyancy variations (Bo), lengths in terms of the initial correlation
length (£0), and time in terms of T"( == £õhBõ. T"( is the time it takes to mix tracers over
a distance £0 using nonlinear diffusion driven by the initial RMS buoyancy gradients. In
terms of non dimensional variables one simply sets, = 1 in (15). The initial conditions are
established by selecting T and 8 uncorrelated at each grid point using a uniform probability
density function with zero mean such that

(B2) = 1, (T2) = (82) = ~,2
(16)

where () is an integral over the domain

(B2) == ~ lLB2 dy. (17)

The numerical calculations are performed by integrating the non dimensional coupled

equations for temperature and salinity. Global conservation of heat and salt is satisfied by
requiring that the gradients Ty and 8y vanish at both ends of the domain (i.e., 'no-flux'
boundary conditions). We solve the system in (15) on a discrete spatial grid with an explicit
Euler forward scheme in time and central diferencing in space. The time step, flt, is short
enough to accurately solve the set of ordinary diferential equations obtained by the spatial
discretization of (15).

The creation of positive correlations between temperature and salinity and their gradients
is shown in a series of T - 8 and Ty - 8y scatterplots. Figures 1, 2 and 3 show the results
of simulations with different nonlinear power diffusivities, respectively n = 1, n = 2 and
n = 3 in (15). In all three cases the thermohaline compensation is evident as an extension

of the cloud of points along the "compensation line" Ty = 8y at time t = 3. A cloud of

points collapsed along the "compensation line" is equivalent to a density ratio of 1; thus dif-
fusive parameterizations with a difusivity that depends on the horizontal buoyancy gradient
correctly predict the observed density ratio of 1 at small scales. The reader interested in a
more rigorous analysis of these simulations is referred to (8), where the nonlinear difusion
equation with difusivity n = 2 is analyzed both numerically and analytically. Here we want
to stress the fact that compensation is typical of all parameterizations that have a difsivity
that grows proportionally with the horizontal gradients of buoyancy. Changing the power
law in the diffusive parameterization affects the aspect ratio of the cloud of points in the

scatterplots, but not the orientation of the major axis.
Finally let us discuss the characteristic time over which compensation occurs. After

the passage of a hurricane, typical temperature gradients can be as large as 0.1 °C over a
kilometer. The shear dispersion model for a mixed layer 100 m deep and a vertical miing
time of the order of one day, shows compensation over scales of a kilometer after only one
hour. Choosing a vertical mixing time scale of a third of a day gives that compensation is
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created in one day. More importantly compensation on scales of 10 km is established in a
time 100 times slower. Therefore we expect compensation to be restored afer each forcing
event on scales of a kilometer, while on larger scales compensation and external forcing act
on comparable time scales. This explains why a density ratio of 1 is observed only up to
scales of at most 10 kilometers.

3.2 Two-dimensional model

In the previous section we investigated nonlinear diffsive parameterizations in one dimension.
We now extend our analysis to two dimensional models. A second spatial dimension adds
new flavor to the problem, because the nonlinear difusion depends not only on the magnitude
but also on the relative orientation of the thermohaline gradients.

Numerical simulations of the nonlnear diffusion equation in (i 4) are carried in dimension-
less variables as discussed in the previous section. Conservation of heat and salt is satisfied
by imposing periodic boundary conditions at the edges of a square domain. The initial con-
ditions have random and uncorrelated T and S profies. The numerical integrator uses a
third order Adams-Bashford scheme in time and central diferences in space. The time step
is chosen short enough to ensure stabilty and accuracy of the solutions.

The two dimensional rundown problem shows that correlations develop between the mag-
nitudes of the thermohaline fields in much the same way described for the one dimensional
case. Scatterplots of the thermohaline gradients, computed along an arbitrary path within
the domain, collapse along the compensation line during the first phases of the simulation
and look exactly like those in figures 1, 2 and 3. The new result is that correlations develop
also between the orientation of the thermohaline gradients. Figure 4 . shows histograms of

the angles between the temperàture and salinity gradients at each grid point. The process
of "thermohaline alignent" is extremely fast and by time t = i (of the order of one day
or less in dimensional unts for typical ML gradients) T and S gradients are nearly every-
where paralleL. Note that the number of aligned gradients increases with time, proving that
nonlinear diffusion actively tilts the T and S isolines so as to create a uniform buoyancy
field. In one dimension compensation is the result of dissipation of all buoyancy gradients. In
two dimensions nonlinear difusion can also create compensated gradients not present in the
initial conditions, by selectively dissipating those components of thermohaline gradients that
project on density gradients. The results shown in figue 4 are obtained for a shear dispersion
closure, that is by substituting ¡(IV' BD = 1 in (14). Analogous results are obtained for the
other forms of ¡(IV' BD introduced in section 2.

The main result of the two dimensional simulations is that nonlinear diffusive parameter-
izations of the ML produce compensation between the gradients of temperature and salinity
along any direction. This is consistent with the density of ratio of 1 measured by profiling the
ML along one dimensional paths (3J. It remains to understand why compensation and a den-
sity ratio of 1 are observed only at small scales and not at scales of thousands of kilometers.
We address this point in the next section.
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Figure 1: This figure shows the results of a simulation in which 1000 points in the (8, T) and

(8y, Ty) planes are created by picking uncorrelated temperature and salinity from a uniform
probability density with variance 1/2; thus the vaiance of B = T - 8 is one. The nonlinear
diffusivity is of the form ¡By I = ITy - 8y I. The upper panels show scatterplots at time t = O.
The lower panels scatterplots at t = 3.
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Figure 2: As II figure (1), but with a nonlinear diffusivity of the form IByl2 = ¡Ty - Sy12.
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289



o

Time=0.1

90 1000
60

o

270 270

. ". - .
18 ..":;"::":;:iJ¡ 0

,,:':'.:~.

Time=0.5
.

90 2000
60

. . ......~....'. ... .. . ... .. .
18 .............. .... ,=...... 0. .. .

. . . .... ~. .." .. : ...... ...... .

270 270

Figure 4: Histograms of the angles between the temperature and the salinity gradients at
four different times in a simulations on a grid of 100 x 100 points. The initial conditions are
created by picking uncorrelated temperature and salinity from a unform probabilty density
with variance 1/2; thus the variance of B = T - S is one. The thermohaline fields evolve

according to the equations in (14) with'Y = 1 and f(lV' BI) = 1.
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4 Temperature-salinity relation at large scales explained with
a forced nonlinear diffusion equation

We showed how correlations develop between the thermohaline fields as a result of nonlin-
ear diffusive parameterizations by solving initial value problems in which temperature and
salinity are prepared as random and uncorrelated distributions. For typical ML thermoha-
line gradients these correlations are established on time scales of days for length scales of a
kilometer and much slower for longer length scales. One then expects that horizontal density
fluctuations on scales of a few kilometers disappear soon after they are created by forcing
events like storms or wind bursts. This is consistent with the experimental evidence that

typical thermohaline gradients on scales shorter than 10 km are compensated (3J. At scales
of tens of kilometers nonlinear diffusion is not as effcient and it does not restore compensa-
tion between one forcing event and the next. The long term climatological T - S relationship

and the large scale density ratio of the ML are then the result of the competition between
nonlinear diffusion, that dissipates horizontal density gradients, and thermohaline forcing,
that continuously creates thermohaline anomalies.

The combined action of surface forcing and nonlinear difusion on large scales in the ML
is investigated with a model of the form given in (S) and (9). We restrict temperature and
salinity to have spatial variations only in the meridional y-direction. A one dimensional model
enables us to perform extensive Monte Carlo simulations and to .obtain stable statistics of the
thermohaline fields under the action of forcing. At the same time the one dimensional case
capture the essential dynamcs of thermohaline compensation; we verified that introducing a
second dimension in simulations of the rundown problem does not change the dynamcs that
lead to the decay of density gradients. Only the process of thermohaline alignent cannot
be captured in one dimension, but a characterization of the relative orientation of T and S
gradients goes beyond the goal of this study. Here we limit our analysis to one dimensional
statistics like the density ratio.

Numerical simulations of the nonlinear diffusion equations with forcing must be run for
long times to achieve stable statistics. In order to save on CPU time, we limited our analysis
of the equations in (S) and (9) to only one form of nonlinear diffusion. We chose the quadratic
nonlinear diffusion that follows from a shear dispersion closure and set ¡(IVBI) = 1. Only a
few results depend on this particular choice and we wil point them out. In .one dimension
the equations for T and S reduce to

Tt = ,(B;Ty)y - a(T - O(y)) + G(y, t).

St = ,(B;Sy)y + F(y, t),
(IS)

(19)

In the temperature equation (IS), 0 is the long time averaged atmospheric temperature
determined by climatological data and a(T - 0) represents the atmospheric feedback on the
temperature of the ML: the larger T - 0, the larger the heat flux from the atmospheric
boundary layer into the ocean ML. G(y, t) represents all other sources of heat such as daily
and seasonal temperature variations. In the following numerical calculations G(y, t) is set
to zero under the assumption that the long term surface temperature is dominated by the
climatologiCàl forcing rather than by the short term temperature fluctuations. The parameter
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a sets the time scale needed for the ocean ML to adjust to the atmospheric temperature O.
When this time scale is small compared to the characteristic time scale of nonlinear difusion,
the equation for temperature reduces to

T = O(y) (20)

The parameter a is determined by the time averaged heat flux from the atmosphere to the
ocean and for a 100 m deep ML it is taken to be 10-7 s-1 (12J. For climatological gradients

(6°C over 1000 km) the nonlinear diffusion term is three orders of magnitude smaller than
the relaxation term and (20) is a very good approximation of the equilibrated temperature
field. Numerical simulations wil show that this is indeed the case.

In the salinity equation (19), F(y, t) represents the combined action of salinity fluxes
across the air-sea interface (evaporation and precipitation) and across the base of the ML
(entrainment of thermocline waters). The forcing on salinity F(y, t) is modeled in the form
of localized sources and sinks randomly distributed in space and time. Each forcing event
create a salinity anomaly of the order of 0.01 psu in one day, equivalent to 3 em of freshwater
dumped in a 100 m deep ML or equivalently to an entrainment of 2 m of water with a salinity
larger/smaller of 0.5 psu. We adjust the size and frequency of the forcing events so that we
obtain the equivalent of a precipitation of 1 m per year, a value typical at midlatitudes in the
North Pacific and in the North Atlantic (13J, (14J. In order to conserve salinity the integral
of the forcing on salinity must have zero average over long times,

lim rT dt rL dyF(y, t) = O.T-too 10 10 (21)

We impose this constraint by prescribing F(y, t) as the sum of five positive and five negative
Gaussians, all of the same amplitude, so that their sum is identically zero at all times. The
positions of the Gaussians within the L = 1000 km of the domain is sampled from a uniform
probability distribution and is changed every day. This ensures that the long time average
forcing is zero at each point, even though several Gaussians can hit in the same place over a
short period of time and produce strC?ng local salinity and buoyancy gradients.

The key element of the problem set in (18) and (19) is that there is an asymmetry in the
large scale forcing of temperature and salinity. Temperature is relaxed to some atmospheric
climatological mean, while salinity is forced by random rainfall, evaporation and entrainment.
The idea that asymmetries in the thermohaline forcing together with nonlinear parameter-
izations of eddy fluxes produce the observed large scale mean density ratio has been raised
by Stommel (4J. Stommel tested this hypothesis with an idealized two-box model of the ML,
but did not attempt any comparison with observations. Here we explore the process in the
context of a continuous model of the ML and we quantify its effect for realistic oceanographic
parameters.

4.1 Numerical algorithm

For the simulations we use dimensionless variables. Temperature and salinity gradients are
measured in terms of of the climatological temperature gradient (6°C over 1000 km), lengths
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in terms of the domain length (1000 km) and the time in terms of the time it takes to mix
tracers across the domain (3000 years).

The numerical calculations are performed by integrating the non dimensional equation
for the temperature and salinity gradients, obtained by differentiating (18) and (19) in y,

(Ty)t =

(By)t

(B;Ty)yy - a(Ty - By) - ¡i(Ty)yyyy.

(By2By) + Fy - ¡i(By)yyyy,yy

(22)

(23)

The hyperviscosity is introduced to dissipate small scale gradients and to allow longer time
stepping in the simulations. In this section we are interested in the effect of nonlinear diffusion
on large scales and we do not need to resolve small scale structures. We use a grid spacing
of 1 km and choose a value for ¡i that filters out all f1uctuations with length scales shorter
than 3 km. Global conservation of heat and salt is satisfied by requiring that Ty = Tyyy = 0
and By = Byyy = 0 at both ends ofthe domain (Le., no-f1ux boundary conditions). We solve
the system in (22) and (23) on a discrete spatial grid with an explicit Euler forward scheme
in time and a dealiased sine spectral code in space. The time step is set by the decorrelation
time of the stochastic forcing acting on salinity, chosen to be one day.

4.2 The effect of stochastic forcing on salinity

The vision of the large scale T - B relation in the ML is that the enormously variable

forcing creates salinity anomalies that are eliminated by nonlinear diffusion. The combination
of strong forcing on salinity and nonlinear eddy f1uxes holds the average density ratio to
a constant value. It is instructive to study the decay of a localized salinity anomaly to

understand how the T - B relationship is established.
Let us study the evolution of T and B after the forcing has created a large scale salinity

anomaly. We prescribe a linear climatological gradient (By = 1) and we assume that the
relaxation time scale is so fast (large a limit) that temperature is always in equilibrium
(Ty = 1). In this limit the nonlinear diffusion equation for salinity reduces to,

Bt = ((By - 1)2ByJy - ¡i(By)yyyy, (24)
.'

,.,

t
J\

We take the initial salinity profile to have the same width and shape of the Gaussian salinity
anomalies created by F in (19). Figure 5 shows the profiles of B and By at time zero and
at some later time. Salinity is diffused faster where the initial profile has a negative slope
than where it has a positive slope. This asymmetry is easily explained if we consider that
for a gradient of given magnitude ¡Byl the nonlinear diffusivity (By _1)2 is larger where By is
negative than when By is positive. A look at the profiles of salinity gradients confrms that By
diffuses at a slower rate when it has a value close to 1. As expected, in the absence of forcing,
salinity decays to the only stable solution By = 0 (the solution By = 1 is only semistable), but
regions where the salinity gradient is close to one decay slowly. We speculate that averaging
the solution over many independent forcing events wil reflect this asymmetry and produce
a positive average salinity gradient (By); Le., the presence of a climatological gradient By = 1
breaks the symmetry in the decay of the salinity gradients and determines a finite mean
density ratio R = 1/(By).
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Figure 5: Evolution of a Gaussian salinity anomaly subject to the nonlinear diffusion equation
in (24). The upper panels show the initial salinity and salinity gradient and the lower panels
the -same variables at a later time. Only the central part of the integration domain is shown.
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Some general properties of the evolution of the salinity gradient are better revealed by
writing equation (23) in variational form,

2 ( c5(l J
(Sy)i = åy c5Sy + Fy, (25)

where (l(Sy) is the functional

(l(Sy) == Ll (H(Sy, y) + ~tL(Syy)2 J dy (26)

and H(Sy, y) is the function

1423122
H(Sy,y) = ¡Sy - 3BySy + 2BySy. (27)

In (25) we introduced the variational derivative ofthe functional (l(Sy),

c5(l

c5S = Hsy - tLSyy'y
(28)

In the absence of forcing, the form (25) can be used to show that the system has only one
stable equilibrium which minimizes the functional (l(Sy), i.e., Sy = 0 (figure 27). Futhermore
the shape of the potential is such that the decay towards equilbrium is slower around the
saddle line Sy = By. We then expect that, even though the random forcing creates positive
and negative Sy anomalies with the same probabilty, salinity gradients with values close to
zero and By are more persistent and the long time averaged salinity gradient at each point
settles to some value between zero and By.

4.3 Numerical simulations

We begin our numerical experiments of the system in (22) and (23) by relaxng temperature
towards a linear climatological gradient; i.e. we set By = 1 in (22). The initial temperature
and salinity gradients are chosen to be zero. The model is run continuously for 3200 years.

During the first stages of the simulation the thermohaline fields evolve from the initial
conditions towards a statistically steady state. Temperature relaxes to the climatological
mean in a few years. After that fluctuations from the equilbrium solution T(y, t) = B(y)
are negligible. The spin up time for salinity is approximately 200 years. In the following all
statistics are computed discarding this initial spin up time.

Figure 7 shows the mean thermohaline fields averaged over 3000 years. In the upper left
panel, T and S profiles are plotted as a function of latitude. Salinity develops a large scale
structure, even though the random forcing is uniormly distributed in the domain. The long
time average profile of salinity is, to a good approximation, S = (2/3)y. The analog of the
oceanographic mean horizontal density ratio for this model is R = Ty/ Sy = 3/2, where the
overbars denote the temporal averaging. A mean density ratio of 1.5 on a scale of 1000 km,
the size of our domain, is consistent with the observational results of Stommel and Chen (4),

(5). Notice though that our averages are carried over 3000 years, while both Stommel and
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Figure 6: The function H(Sy) in the case of a linear climatological temperature gradient, i.e.,
By = 1. The dark line is a possible Sy profile.

Chen used climatologies averaged over less than 20 years. We return to this point at the end

of the section.

Simple arguments based on a Reynold's decomposition of the thermohaline fields are now
used to interpret the density ratio of 3/2 obtained in the numerical simulations. Let us
decompose Sand T as the sum of a temporal mean plus fluctuations about that mean; i.e.,
S = S + S' and T = T + T'. Numerical experiments show that we can safely neglect T'

in the Reynold's decomposition of T and write T = T = B. Taking the time average of the

nonlinear diffusion equation for salinity then gives,

St = (S~3 + S~2(3Sy - 2By) + Sy(Sy - Byf\ + F. (29)

Both F and St vanish if the average is carried over a long enough time. The sum of the
first three terms in the RHS of (29) must then vanish as well. Notice that this sum cannot
be a constant diferent from zero, because of the no-flux boundary conditions. Futhermore,
the third term, Sy (Sy - Oy)2, is likely to be smaller than the first two, because the typical
amplitude of the fluctuations created by the forcing is larger than the mean gradients; nu-
merical results show that this is indeed the 'case (last panel of figure 7). Therefore the leading
order balance involves only the first two terms. Setting to zero S~3 + S~2(3Sy - 2By) gives an

estimate of the mean salinity gradient,

_ 2 S~3S =---
y 3 S'2'

y
(30)

The numerical simulations show that S~2 settles to a constant profile different from zero, while

S~3 keeps decreasing throughout the domain. This explains why Sy asymptotes 2/3 when

296



averaged over long times. Finally we should remark that we did not include the hyperviscosity

term in this analysis, because its contribution in the long term balance is maintained small
by choosing an appropriate value for tL.

The Reynold's decomposition analysis of the equations in (22) and (23) shows that a large
scale mean salinity gradient is required if all nonlinear fluxes are to balance when averaged
over long times. This balance depends on the particular form of nonlinear difusion chosen.
That is nonlinear closures diferent from 1(1\7 BD = 1 in (8) and (9) would stil produce a large
scale salinity gradient, but its dependence on By would not be that given in (30). Stommel
came to the same conclusion for his two box model (4). He obtained that, for a diffusivity
between the two boxes of the form IByln, the salinity gradient becomes linearly proportional
to the climatological temperature gradient and the mean density ratio approaches (n + 1)/n.
We verified that Stommel argument applies also in the continuous limit for the diffusivity
B;.

So far we showed thermohaline profiles averaged over 3000 years. Averaging over shorter
times gives results that are not in statistical equilibrium. Results averaged over two diferent
subintervals of 30 years from the same simulation shown in figure 7 give a density ratio close
to 3/2 in one case. (figure 8) and 1 in the second case (figue 9). The differences arise because
over 30 years the leading order balance in (29) involves both St and F. It is necessary

to average over longer times to include a number of forcing events large enough to obtain
stationary statistics. Over a 3000 year time span, each point on the grid is hit on average
by 106 forcing events, while over a 30 year time span this number is one hundred times
smaller and as a consequence the average of the forcing is 10 times larger: it is the number
of independent forcing events that sets the time required to have stable statistics. In this
sense our results are consistent with observations, because in their analysis Stommel and
Chen compute averages over a wide range of longitudes in space so that they include many
realizations of forcing events per unit time.

5 Discussion

The main result of this project is that nonlinear diffusive parameterizations of the ML, which
use buoyancy as the driving field, can explain the diferent values of density ratio observed in
oceanographic measurements. At scales shorter than 10 km the nonlinear fluxes are so strong
that a horizontal density ratio of 1 is restored in a few days whenever a forcing event creates
an anomaly in T and S. At larger scales the correlations between temperature and salinity
emerge as a balance between nonlinear difusion and thermohaline forcing. The large scale
forcing on temperature is modeled as a relaxation of temperature towards a climatological
mean profile to account for the atmospheric feedbacks on thermal anomalies. There is no
reason to include an analogous term in the equation for salinity and the forcing on salinity is
purely stochastic. The difference in the forcings breaks the symmetry between T and S. The
large scale temperature gradient relaxes in a few years towards the climatological mean, while
salinity develops a large scale gradient that on average is proportional to that of temperature
even though the forcing on salinity is uniformly distributed over the domain. The ratio of
the large scale mean gradients of T and S is close to 3/2 for the specific nonlinear diffusion
parameterization used in the simulations. This value is consistent with observations.
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In order to show both a density ratio of 1 at small scales and a density ratio of 1.5 at large.
scales, we are running numerical simulations of the equations in (18) and (19) with stochastic
noise on temperature and salinity; that is G(y, t) and F(y, t) have a white spectrum in space
and time. Preliminary results show that compensation develops over a few grid points and

produce a small scale density ratio of 1, while at large scales salnity compensates only part
of the temperature gradient and the density ratio settles to 1.5.

In our model the instantaneous distribution of buoyancy gradients at large scale is de-
termined by the most recent forcing events. On the other hand observations in the ML of
all oceans show that buoyancy fronts tend to concentrate in regions of Eckman convergence.
The analysis of nonlinear diffusion models with a large scale advection that has regions of
convergence is a direction for future research. The hypothesis is that the stochastic forcing
creates buoyancy anomalies uniformly throughout the domain and the advective field collects
them towards regions of convergence. The result is that the average density ratio is stil3j2,
but it is all due to a few localized gradients.

Finally, it would be instructive to implement nonlinear difusive parameterizations of the
thermohalne eddy fluxes in large scale ocean models. It is well known that ocean models tend
to produce unrealistic distributions of salinity in the ML, because there is no feedback mech-
anism that maintains large scale salinity anomalies within reasonable bounds. Typically the
cure is to introduce some ad hoc relaxation to observations. Nonlinear difusive parameteri-
zations obtain the same result by introducing an indirect feedback through the climatological
temperature gradient. Futhermore tpe parameterizations we have discussed in this project
are the results of closures based on sound physical arguments and are not dictated by nu-
merical necessity. An obvious goal is to test the diferent nonlinear parameterizations against
the observed density ratio to infer which are more appropriate.
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Young (Scnpps Institution of Oceanography) gave a senes of pricipal lectues, the notes of which as taen by the fellows, appear
in ths volume. Report of the projects of the student fellows makes up the second half of this volume.
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